vm_fault.c revision 273099
1/*-
2 * Copyright (c) 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 * Copyright (c) 1994 John S. Dyson
5 * All rights reserved.
6 * Copyright (c) 1994 David Greenman
7 * All rights reserved.
8 *
9 *
10 * This code is derived from software contributed to Berkeley by
11 * The Mach Operating System project at Carnegie-Mellon University.
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 *    notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 *    notice, this list of conditions and the following disclaimer in the
20 *    documentation and/or other materials provided with the distribution.
21 * 3. All advertising materials mentioning features or use of this software
22 *    must display the following acknowledgement:
23 *	This product includes software developed by the University of
24 *	California, Berkeley and its contributors.
25 * 4. Neither the name of the University nor the names of its contributors
26 *    may be used to endorse or promote products derived from this software
27 *    without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 * SUCH DAMAGE.
40 *
41 *	from: @(#)vm_fault.c	8.4 (Berkeley) 1/12/94
42 *
43 *
44 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
45 * All rights reserved.
46 *
47 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
48 *
49 * Permission to use, copy, modify and distribute this software and
50 * its documentation is hereby granted, provided that both the copyright
51 * notice and this permission notice appear in all copies of the
52 * software, derivative works or modified versions, and any portions
53 * thereof, and that both notices appear in supporting documentation.
54 *
55 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
56 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
57 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
58 *
59 * Carnegie Mellon requests users of this software to return to
60 *
61 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
62 *  School of Computer Science
63 *  Carnegie Mellon University
64 *  Pittsburgh PA 15213-3890
65 *
66 * any improvements or extensions that they make and grant Carnegie the
67 * rights to redistribute these changes.
68 */
69
70/*
71 *	Page fault handling module.
72 */
73
74#include <sys/cdefs.h>
75__FBSDID("$FreeBSD: releng/10.1/sys/vm/vm_fault.c 273099 2014-10-14 16:28:37Z kib $");
76
77#include "opt_ktrace.h"
78#include "opt_vm.h"
79
80#include <sys/param.h>
81#include <sys/systm.h>
82#include <sys/kernel.h>
83#include <sys/lock.h>
84#include <sys/proc.h>
85#include <sys/resourcevar.h>
86#include <sys/rwlock.h>
87#include <sys/sysctl.h>
88#include <sys/vmmeter.h>
89#include <sys/vnode.h>
90#ifdef KTRACE
91#include <sys/ktrace.h>
92#endif
93
94#include <vm/vm.h>
95#include <vm/vm_param.h>
96#include <vm/pmap.h>
97#include <vm/vm_map.h>
98#include <vm/vm_object.h>
99#include <vm/vm_page.h>
100#include <vm/vm_pageout.h>
101#include <vm/vm_kern.h>
102#include <vm/vm_pager.h>
103#include <vm/vm_extern.h>
104
105#define PFBAK 4
106#define PFFOR 4
107
108static int vm_fault_additional_pages(vm_page_t, int, int, vm_page_t *, int *);
109
110#define	VM_FAULT_READ_BEHIND	8
111#define	VM_FAULT_READ_MAX	(1 + VM_FAULT_READ_AHEAD_MAX)
112#define	VM_FAULT_NINCR		(VM_FAULT_READ_MAX / VM_FAULT_READ_BEHIND)
113#define	VM_FAULT_SUM		(VM_FAULT_NINCR * (VM_FAULT_NINCR + 1) / 2)
114#define	VM_FAULT_CACHE_BEHIND	(VM_FAULT_READ_BEHIND * VM_FAULT_SUM)
115
116struct faultstate {
117	vm_page_t m;
118	vm_object_t object;
119	vm_pindex_t pindex;
120	vm_page_t first_m;
121	vm_object_t	first_object;
122	vm_pindex_t first_pindex;
123	vm_map_t map;
124	vm_map_entry_t entry;
125	int lookup_still_valid;
126	struct vnode *vp;
127};
128
129static void vm_fault_cache_behind(const struct faultstate *fs, int distance);
130static void vm_fault_prefault(const struct faultstate *fs, vm_offset_t addra,
131	    int faultcount, int reqpage);
132
133static inline void
134release_page(struct faultstate *fs)
135{
136
137	vm_page_xunbusy(fs->m);
138	vm_page_lock(fs->m);
139	vm_page_deactivate(fs->m);
140	vm_page_unlock(fs->m);
141	fs->m = NULL;
142}
143
144static inline void
145unlock_map(struct faultstate *fs)
146{
147
148	if (fs->lookup_still_valid) {
149		vm_map_lookup_done(fs->map, fs->entry);
150		fs->lookup_still_valid = FALSE;
151	}
152}
153
154static void
155unlock_and_deallocate(struct faultstate *fs)
156{
157
158	vm_object_pip_wakeup(fs->object);
159	VM_OBJECT_WUNLOCK(fs->object);
160	if (fs->object != fs->first_object) {
161		VM_OBJECT_WLOCK(fs->first_object);
162		vm_page_lock(fs->first_m);
163		vm_page_free(fs->first_m);
164		vm_page_unlock(fs->first_m);
165		vm_object_pip_wakeup(fs->first_object);
166		VM_OBJECT_WUNLOCK(fs->first_object);
167		fs->first_m = NULL;
168	}
169	vm_object_deallocate(fs->first_object);
170	unlock_map(fs);
171	if (fs->vp != NULL) {
172		vput(fs->vp);
173		fs->vp = NULL;
174	}
175}
176
177static void
178vm_fault_dirty(vm_map_entry_t entry, vm_page_t m, vm_prot_t prot,
179    vm_prot_t fault_type, int fault_flags, boolean_t set_wd)
180{
181	boolean_t need_dirty;
182
183	if (((prot & VM_PROT_WRITE) == 0 &&
184	    (fault_flags & VM_FAULT_DIRTY) == 0) ||
185	    (m->oflags & VPO_UNMANAGED) != 0)
186		return;
187
188	VM_OBJECT_ASSERT_LOCKED(m->object);
189
190	need_dirty = ((fault_type & VM_PROT_WRITE) != 0 &&
191	    (fault_flags & VM_FAULT_CHANGE_WIRING) == 0) ||
192	    (fault_flags & VM_FAULT_DIRTY) != 0;
193
194	if (set_wd)
195		vm_object_set_writeable_dirty(m->object);
196	else
197		/*
198		 * If two callers of vm_fault_dirty() with set_wd ==
199		 * FALSE, one for the map entry with MAP_ENTRY_NOSYNC
200		 * flag set, other with flag clear, race, it is
201		 * possible for the no-NOSYNC thread to see m->dirty
202		 * != 0 and not clear VPO_NOSYNC.  Take vm_page lock
203		 * around manipulation of VPO_NOSYNC and
204		 * vm_page_dirty() call, to avoid the race and keep
205		 * m->oflags consistent.
206		 */
207		vm_page_lock(m);
208
209	/*
210	 * If this is a NOSYNC mmap we do not want to set VPO_NOSYNC
211	 * if the page is already dirty to prevent data written with
212	 * the expectation of being synced from not being synced.
213	 * Likewise if this entry does not request NOSYNC then make
214	 * sure the page isn't marked NOSYNC.  Applications sharing
215	 * data should use the same flags to avoid ping ponging.
216	 */
217	if ((entry->eflags & MAP_ENTRY_NOSYNC) != 0) {
218		if (m->dirty == 0) {
219			m->oflags |= VPO_NOSYNC;
220		}
221	} else {
222		m->oflags &= ~VPO_NOSYNC;
223	}
224
225	/*
226	 * If the fault is a write, we know that this page is being
227	 * written NOW so dirty it explicitly to save on
228	 * pmap_is_modified() calls later.
229	 *
230	 * Also tell the backing pager, if any, that it should remove
231	 * any swap backing since the page is now dirty.
232	 */
233	if (need_dirty)
234		vm_page_dirty(m);
235	if (!set_wd)
236		vm_page_unlock(m);
237	if (need_dirty)
238		vm_pager_page_unswapped(m);
239}
240
241/*
242 * TRYPAGER - used by vm_fault to calculate whether the pager for the
243 *	      current object *might* contain the page.
244 *
245 *	      default objects are zero-fill, there is no real pager.
246 */
247#define TRYPAGER	(fs.object->type != OBJT_DEFAULT && \
248			((fault_flags & VM_FAULT_CHANGE_WIRING) == 0 || wired))
249
250/*
251 *	vm_fault:
252 *
253 *	Handle a page fault occurring at the given address,
254 *	requiring the given permissions, in the map specified.
255 *	If successful, the page is inserted into the
256 *	associated physical map.
257 *
258 *	NOTE: the given address should be truncated to the
259 *	proper page address.
260 *
261 *	KERN_SUCCESS is returned if the page fault is handled; otherwise,
262 *	a standard error specifying why the fault is fatal is returned.
263 *
264 *	The map in question must be referenced, and remains so.
265 *	Caller may hold no locks.
266 */
267int
268vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
269    int fault_flags)
270{
271	struct thread *td;
272	int result;
273
274	td = curthread;
275	if ((td->td_pflags & TDP_NOFAULTING) != 0)
276		return (KERN_PROTECTION_FAILURE);
277#ifdef KTRACE
278	if (map != kernel_map && KTRPOINT(td, KTR_FAULT))
279		ktrfault(vaddr, fault_type);
280#endif
281	result = vm_fault_hold(map, trunc_page(vaddr), fault_type, fault_flags,
282	    NULL);
283#ifdef KTRACE
284	if (map != kernel_map && KTRPOINT(td, KTR_FAULTEND))
285		ktrfaultend(result);
286#endif
287	return (result);
288}
289
290int
291vm_fault_hold(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
292    int fault_flags, vm_page_t *m_hold)
293{
294	vm_prot_t prot;
295	long ahead, behind;
296	int alloc_req, era, faultcount, nera, reqpage, result;
297	boolean_t growstack, is_first_object_locked, wired;
298	int map_generation;
299	vm_object_t next_object;
300	vm_page_t marray[VM_FAULT_READ_MAX];
301	int hardfault;
302	struct faultstate fs;
303	struct vnode *vp;
304	vm_page_t m;
305	int locked, error;
306
307	hardfault = 0;
308	growstack = TRUE;
309	PCPU_INC(cnt.v_vm_faults);
310	fs.vp = NULL;
311	faultcount = reqpage = 0;
312
313RetryFault:;
314
315	/*
316	 * Find the backing store object and offset into it to begin the
317	 * search.
318	 */
319	fs.map = map;
320	result = vm_map_lookup(&fs.map, vaddr, fault_type, &fs.entry,
321	    &fs.first_object, &fs.first_pindex, &prot, &wired);
322	if (result != KERN_SUCCESS) {
323		if (growstack && result == KERN_INVALID_ADDRESS &&
324		    map != kernel_map) {
325			result = vm_map_growstack(curproc, vaddr);
326			if (result != KERN_SUCCESS)
327				return (KERN_FAILURE);
328			growstack = FALSE;
329			goto RetryFault;
330		}
331		return (result);
332	}
333
334	map_generation = fs.map->timestamp;
335
336	if (fs.entry->eflags & MAP_ENTRY_NOFAULT) {
337		if ((curthread->td_pflags & TDP_DEVMEMIO) != 0) {
338			vm_map_unlock_read(fs.map);
339			return (KERN_FAILURE);
340		}
341		panic("vm_fault: fault on nofault entry, addr: %lx",
342		    (u_long)vaddr);
343	}
344
345	if (fs.entry->eflags & MAP_ENTRY_IN_TRANSITION &&
346	    fs.entry->wiring_thread != curthread) {
347		vm_map_unlock_read(fs.map);
348		vm_map_lock(fs.map);
349		if (vm_map_lookup_entry(fs.map, vaddr, &fs.entry) &&
350		    (fs.entry->eflags & MAP_ENTRY_IN_TRANSITION)) {
351			fs.entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
352			vm_map_unlock_and_wait(fs.map, 0);
353		} else
354			vm_map_unlock(fs.map);
355		goto RetryFault;
356	}
357
358	if (wired)
359		fault_type = prot | (fault_type & VM_PROT_COPY);
360
361	if (fs.vp == NULL /* avoid locked vnode leak */ &&
362	    (fault_flags & (VM_FAULT_CHANGE_WIRING | VM_FAULT_DIRTY)) == 0 &&
363	    /* avoid calling vm_object_set_writeable_dirty() */
364	    ((prot & VM_PROT_WRITE) == 0 ||
365	    fs.first_object->type != OBJT_VNODE ||
366	    (fs.first_object->flags & OBJ_MIGHTBEDIRTY) != 0)) {
367		VM_OBJECT_RLOCK(fs.first_object);
368		if ((prot & VM_PROT_WRITE) != 0 &&
369		    fs.first_object->type == OBJT_VNODE &&
370		    (fs.first_object->flags & OBJ_MIGHTBEDIRTY) == 0)
371			goto fast_failed;
372		m = vm_page_lookup(fs.first_object, fs.first_pindex);
373		/* A busy page can be mapped for read|execute access. */
374		if (m == NULL || ((prot & VM_PROT_WRITE) != 0 &&
375		    vm_page_busied(m)) || m->valid != VM_PAGE_BITS_ALL)
376			goto fast_failed;
377		result = pmap_enter(fs.map->pmap, vaddr, m, prot,
378		   fault_type | PMAP_ENTER_NOSLEEP | (wired ? PMAP_ENTER_WIRED :
379		   0), 0);
380		if (result != KERN_SUCCESS)
381			goto fast_failed;
382		if (m_hold != NULL) {
383			*m_hold = m;
384			vm_page_lock(m);
385			vm_page_hold(m);
386			vm_page_unlock(m);
387		}
388		vm_fault_dirty(fs.entry, m, prot, fault_type, fault_flags,
389		    FALSE);
390		VM_OBJECT_RUNLOCK(fs.first_object);
391		if (!wired)
392			vm_fault_prefault(&fs, vaddr, 0, 0);
393		vm_map_lookup_done(fs.map, fs.entry);
394		curthread->td_ru.ru_minflt++;
395		return (KERN_SUCCESS);
396fast_failed:
397		if (!VM_OBJECT_TRYUPGRADE(fs.first_object)) {
398			VM_OBJECT_RUNLOCK(fs.first_object);
399			VM_OBJECT_WLOCK(fs.first_object);
400		}
401	} else {
402		VM_OBJECT_WLOCK(fs.first_object);
403	}
404
405	/*
406	 * Make a reference to this object to prevent its disposal while we
407	 * are messing with it.  Once we have the reference, the map is free
408	 * to be diddled.  Since objects reference their shadows (and copies),
409	 * they will stay around as well.
410	 *
411	 * Bump the paging-in-progress count to prevent size changes (e.g.
412	 * truncation operations) during I/O.  This must be done after
413	 * obtaining the vnode lock in order to avoid possible deadlocks.
414	 */
415	vm_object_reference_locked(fs.first_object);
416	vm_object_pip_add(fs.first_object, 1);
417
418	fs.lookup_still_valid = TRUE;
419
420	fs.first_m = NULL;
421
422	/*
423	 * Search for the page at object/offset.
424	 */
425	fs.object = fs.first_object;
426	fs.pindex = fs.first_pindex;
427	while (TRUE) {
428		/*
429		 * If the object is dead, we stop here
430		 */
431		if (fs.object->flags & OBJ_DEAD) {
432			unlock_and_deallocate(&fs);
433			return (KERN_PROTECTION_FAILURE);
434		}
435
436		/*
437		 * See if page is resident
438		 */
439		fs.m = vm_page_lookup(fs.object, fs.pindex);
440		if (fs.m != NULL) {
441			/*
442			 * Wait/Retry if the page is busy.  We have to do this
443			 * if the page is either exclusive or shared busy
444			 * because the vm_pager may be using read busy for
445			 * pageouts (and even pageins if it is the vnode
446			 * pager), and we could end up trying to pagein and
447			 * pageout the same page simultaneously.
448			 *
449			 * We can theoretically allow the busy case on a read
450			 * fault if the page is marked valid, but since such
451			 * pages are typically already pmap'd, putting that
452			 * special case in might be more effort then it is
453			 * worth.  We cannot under any circumstances mess
454			 * around with a shared busied page except, perhaps,
455			 * to pmap it.
456			 */
457			if (vm_page_busied(fs.m)) {
458				/*
459				 * Reference the page before unlocking and
460				 * sleeping so that the page daemon is less
461				 * likely to reclaim it.
462				 */
463				vm_page_aflag_set(fs.m, PGA_REFERENCED);
464				if (fs.object != fs.first_object) {
465					if (!VM_OBJECT_TRYWLOCK(
466					    fs.first_object)) {
467						VM_OBJECT_WUNLOCK(fs.object);
468						VM_OBJECT_WLOCK(fs.first_object);
469						VM_OBJECT_WLOCK(fs.object);
470					}
471					vm_page_lock(fs.first_m);
472					vm_page_free(fs.first_m);
473					vm_page_unlock(fs.first_m);
474					vm_object_pip_wakeup(fs.first_object);
475					VM_OBJECT_WUNLOCK(fs.first_object);
476					fs.first_m = NULL;
477				}
478				unlock_map(&fs);
479				if (fs.m == vm_page_lookup(fs.object,
480				    fs.pindex)) {
481					vm_page_sleep_if_busy(fs.m, "vmpfw");
482				}
483				vm_object_pip_wakeup(fs.object);
484				VM_OBJECT_WUNLOCK(fs.object);
485				PCPU_INC(cnt.v_intrans);
486				vm_object_deallocate(fs.first_object);
487				goto RetryFault;
488			}
489			vm_page_lock(fs.m);
490			vm_page_remque(fs.m);
491			vm_page_unlock(fs.m);
492
493			/*
494			 * Mark page busy for other processes, and the
495			 * pagedaemon.  If it still isn't completely valid
496			 * (readable), jump to readrest, else break-out ( we
497			 * found the page ).
498			 */
499			vm_page_xbusy(fs.m);
500			if (fs.m->valid != VM_PAGE_BITS_ALL)
501				goto readrest;
502			break;
503		}
504
505		/*
506		 * Page is not resident, If this is the search termination
507		 * or the pager might contain the page, allocate a new page.
508		 */
509		if (TRYPAGER || fs.object == fs.first_object) {
510			if (fs.pindex >= fs.object->size) {
511				unlock_and_deallocate(&fs);
512				return (KERN_PROTECTION_FAILURE);
513			}
514
515			/*
516			 * Allocate a new page for this object/offset pair.
517			 *
518			 * Unlocked read of the p_flag is harmless. At
519			 * worst, the P_KILLED might be not observed
520			 * there, and allocation can fail, causing
521			 * restart and new reading of the p_flag.
522			 */
523			fs.m = NULL;
524			if (!vm_page_count_severe() || P_KILLED(curproc)) {
525#if VM_NRESERVLEVEL > 0
526				if ((fs.object->flags & OBJ_COLORED) == 0) {
527					fs.object->flags |= OBJ_COLORED;
528					fs.object->pg_color = atop(vaddr) -
529					    fs.pindex;
530				}
531#endif
532				alloc_req = P_KILLED(curproc) ?
533				    VM_ALLOC_SYSTEM : VM_ALLOC_NORMAL;
534				if (fs.object->type != OBJT_VNODE &&
535				    fs.object->backing_object == NULL)
536					alloc_req |= VM_ALLOC_ZERO;
537				fs.m = vm_page_alloc(fs.object, fs.pindex,
538				    alloc_req);
539			}
540			if (fs.m == NULL) {
541				unlock_and_deallocate(&fs);
542				VM_WAITPFAULT;
543				goto RetryFault;
544			} else if (fs.m->valid == VM_PAGE_BITS_ALL)
545				break;
546		}
547
548readrest:
549		/*
550		 * We have found a valid page or we have allocated a new page.
551		 * The page thus may not be valid or may not be entirely
552		 * valid.
553		 *
554		 * Attempt to fault-in the page if there is a chance that the
555		 * pager has it, and potentially fault in additional pages
556		 * at the same time.
557		 */
558		if (TRYPAGER) {
559			int rv;
560			u_char behavior = vm_map_entry_behavior(fs.entry);
561
562			if (behavior == MAP_ENTRY_BEHAV_RANDOM ||
563			    P_KILLED(curproc)) {
564				behind = 0;
565				ahead = 0;
566			} else if (behavior == MAP_ENTRY_BEHAV_SEQUENTIAL) {
567				behind = 0;
568				ahead = atop(fs.entry->end - vaddr) - 1;
569				if (ahead > VM_FAULT_READ_AHEAD_MAX)
570					ahead = VM_FAULT_READ_AHEAD_MAX;
571				if (fs.pindex == fs.entry->next_read)
572					vm_fault_cache_behind(&fs,
573					    VM_FAULT_READ_MAX);
574			} else {
575				/*
576				 * If this is a sequential page fault, then
577				 * arithmetically increase the number of pages
578				 * in the read-ahead window.  Otherwise, reset
579				 * the read-ahead window to its smallest size.
580				 */
581				behind = atop(vaddr - fs.entry->start);
582				if (behind > VM_FAULT_READ_BEHIND)
583					behind = VM_FAULT_READ_BEHIND;
584				ahead = atop(fs.entry->end - vaddr) - 1;
585				era = fs.entry->read_ahead;
586				if (fs.pindex == fs.entry->next_read) {
587					nera = era + behind;
588					if (nera > VM_FAULT_READ_AHEAD_MAX)
589						nera = VM_FAULT_READ_AHEAD_MAX;
590					behind = 0;
591					if (ahead > nera)
592						ahead = nera;
593					if (era == VM_FAULT_READ_AHEAD_MAX)
594						vm_fault_cache_behind(&fs,
595						    VM_FAULT_CACHE_BEHIND);
596				} else if (ahead > VM_FAULT_READ_AHEAD_MIN)
597					ahead = VM_FAULT_READ_AHEAD_MIN;
598				if (era != ahead)
599					fs.entry->read_ahead = ahead;
600			}
601
602			/*
603			 * Call the pager to retrieve the data, if any, after
604			 * releasing the lock on the map.  We hold a ref on
605			 * fs.object and the pages are exclusive busied.
606			 */
607			unlock_map(&fs);
608
609			if (fs.object->type == OBJT_VNODE) {
610				vp = fs.object->handle;
611				if (vp == fs.vp)
612					goto vnode_locked;
613				else if (fs.vp != NULL) {
614					vput(fs.vp);
615					fs.vp = NULL;
616				}
617				locked = VOP_ISLOCKED(vp);
618
619				if (locked != LK_EXCLUSIVE)
620					locked = LK_SHARED;
621				/* Do not sleep for vnode lock while fs.m is busy */
622				error = vget(vp, locked | LK_CANRECURSE |
623				    LK_NOWAIT, curthread);
624				if (error != 0) {
625					vhold(vp);
626					release_page(&fs);
627					unlock_and_deallocate(&fs);
628					error = vget(vp, locked | LK_RETRY |
629					    LK_CANRECURSE, curthread);
630					vdrop(vp);
631					fs.vp = vp;
632					KASSERT(error == 0,
633					    ("vm_fault: vget failed"));
634					goto RetryFault;
635				}
636				fs.vp = vp;
637			}
638vnode_locked:
639			KASSERT(fs.vp == NULL || !fs.map->system_map,
640			    ("vm_fault: vnode-backed object mapped by system map"));
641
642			/*
643			 * now we find out if any other pages should be paged
644			 * in at this time this routine checks to see if the
645			 * pages surrounding this fault reside in the same
646			 * object as the page for this fault.  If they do,
647			 * then they are faulted in also into the object.  The
648			 * array "marray" returned contains an array of
649			 * vm_page_t structs where one of them is the
650			 * vm_page_t passed to the routine.  The reqpage
651			 * return value is the index into the marray for the
652			 * vm_page_t passed to the routine.
653			 *
654			 * fs.m plus the additional pages are exclusive busied.
655			 */
656			faultcount = vm_fault_additional_pages(
657			    fs.m, behind, ahead, marray, &reqpage);
658
659			rv = faultcount ?
660			    vm_pager_get_pages(fs.object, marray, faultcount,
661				reqpage) : VM_PAGER_FAIL;
662
663			if (rv == VM_PAGER_OK) {
664				/*
665				 * Found the page. Leave it busy while we play
666				 * with it.
667				 */
668
669				/*
670				 * Relookup in case pager changed page. Pager
671				 * is responsible for disposition of old page
672				 * if moved.
673				 */
674				fs.m = vm_page_lookup(fs.object, fs.pindex);
675				if (!fs.m) {
676					unlock_and_deallocate(&fs);
677					goto RetryFault;
678				}
679
680				hardfault++;
681				break; /* break to PAGE HAS BEEN FOUND */
682			}
683			/*
684			 * Remove the bogus page (which does not exist at this
685			 * object/offset); before doing so, we must get back
686			 * our object lock to preserve our invariant.
687			 *
688			 * Also wake up any other process that may want to bring
689			 * in this page.
690			 *
691			 * If this is the top-level object, we must leave the
692			 * busy page to prevent another process from rushing
693			 * past us, and inserting the page in that object at
694			 * the same time that we are.
695			 */
696			if (rv == VM_PAGER_ERROR)
697				printf("vm_fault: pager read error, pid %d (%s)\n",
698				    curproc->p_pid, curproc->p_comm);
699			/*
700			 * Data outside the range of the pager or an I/O error
701			 */
702			/*
703			 * XXX - the check for kernel_map is a kludge to work
704			 * around having the machine panic on a kernel space
705			 * fault w/ I/O error.
706			 */
707			if (((fs.map != kernel_map) && (rv == VM_PAGER_ERROR)) ||
708				(rv == VM_PAGER_BAD)) {
709				vm_page_lock(fs.m);
710				vm_page_free(fs.m);
711				vm_page_unlock(fs.m);
712				fs.m = NULL;
713				unlock_and_deallocate(&fs);
714				return ((rv == VM_PAGER_ERROR) ? KERN_FAILURE : KERN_PROTECTION_FAILURE);
715			}
716			if (fs.object != fs.first_object) {
717				vm_page_lock(fs.m);
718				vm_page_free(fs.m);
719				vm_page_unlock(fs.m);
720				fs.m = NULL;
721				/*
722				 * XXX - we cannot just fall out at this
723				 * point, m has been freed and is invalid!
724				 */
725			}
726		}
727
728		/*
729		 * We get here if the object has default pager (or unwiring)
730		 * or the pager doesn't have the page.
731		 */
732		if (fs.object == fs.first_object)
733			fs.first_m = fs.m;
734
735		/*
736		 * Move on to the next object.  Lock the next object before
737		 * unlocking the current one.
738		 */
739		fs.pindex += OFF_TO_IDX(fs.object->backing_object_offset);
740		next_object = fs.object->backing_object;
741		if (next_object == NULL) {
742			/*
743			 * If there's no object left, fill the page in the top
744			 * object with zeros.
745			 */
746			if (fs.object != fs.first_object) {
747				vm_object_pip_wakeup(fs.object);
748				VM_OBJECT_WUNLOCK(fs.object);
749
750				fs.object = fs.first_object;
751				fs.pindex = fs.first_pindex;
752				fs.m = fs.first_m;
753				VM_OBJECT_WLOCK(fs.object);
754			}
755			fs.first_m = NULL;
756
757			/*
758			 * Zero the page if necessary and mark it valid.
759			 */
760			if ((fs.m->flags & PG_ZERO) == 0) {
761				pmap_zero_page(fs.m);
762			} else {
763				PCPU_INC(cnt.v_ozfod);
764			}
765			PCPU_INC(cnt.v_zfod);
766			fs.m->valid = VM_PAGE_BITS_ALL;
767			/* Don't try to prefault neighboring pages. */
768			faultcount = 1;
769			break;	/* break to PAGE HAS BEEN FOUND */
770		} else {
771			KASSERT(fs.object != next_object,
772			    ("object loop %p", next_object));
773			VM_OBJECT_WLOCK(next_object);
774			vm_object_pip_add(next_object, 1);
775			if (fs.object != fs.first_object)
776				vm_object_pip_wakeup(fs.object);
777			VM_OBJECT_WUNLOCK(fs.object);
778			fs.object = next_object;
779		}
780	}
781
782	vm_page_assert_xbusied(fs.m);
783
784	/*
785	 * PAGE HAS BEEN FOUND. [Loop invariant still holds -- the object lock
786	 * is held.]
787	 */
788
789	/*
790	 * If the page is being written, but isn't already owned by the
791	 * top-level object, we have to copy it into a new page owned by the
792	 * top-level object.
793	 */
794	if (fs.object != fs.first_object) {
795		/*
796		 * We only really need to copy if we want to write it.
797		 */
798		if ((fault_type & (VM_PROT_COPY | VM_PROT_WRITE)) != 0) {
799			/*
800			 * This allows pages to be virtually copied from a
801			 * backing_object into the first_object, where the
802			 * backing object has no other refs to it, and cannot
803			 * gain any more refs.  Instead of a bcopy, we just
804			 * move the page from the backing object to the
805			 * first object.  Note that we must mark the page
806			 * dirty in the first object so that it will go out
807			 * to swap when needed.
808			 */
809			is_first_object_locked = FALSE;
810			if (
811				/*
812				 * Only one shadow object
813				 */
814				(fs.object->shadow_count == 1) &&
815				/*
816				 * No COW refs, except us
817				 */
818				(fs.object->ref_count == 1) &&
819				/*
820				 * No one else can look this object up
821				 */
822				(fs.object->handle == NULL) &&
823				/*
824				 * No other ways to look the object up
825				 */
826				((fs.object->type == OBJT_DEFAULT) ||
827				 (fs.object->type == OBJT_SWAP)) &&
828			    (is_first_object_locked = VM_OBJECT_TRYWLOCK(fs.first_object)) &&
829				/*
830				 * We don't chase down the shadow chain
831				 */
832			    fs.object == fs.first_object->backing_object) {
833				/*
834				 * get rid of the unnecessary page
835				 */
836				vm_page_lock(fs.first_m);
837				vm_page_free(fs.first_m);
838				vm_page_unlock(fs.first_m);
839				/*
840				 * grab the page and put it into the
841				 * process'es object.  The page is
842				 * automatically made dirty.
843				 */
844				if (vm_page_rename(fs.m, fs.first_object,
845				    fs.first_pindex)) {
846					unlock_and_deallocate(&fs);
847					goto RetryFault;
848				}
849				vm_page_xbusy(fs.m);
850				fs.first_m = fs.m;
851				fs.m = NULL;
852				PCPU_INC(cnt.v_cow_optim);
853			} else {
854				/*
855				 * Oh, well, lets copy it.
856				 */
857				pmap_copy_page(fs.m, fs.first_m);
858				fs.first_m->valid = VM_PAGE_BITS_ALL;
859				if (wired && (fault_flags &
860				    VM_FAULT_CHANGE_WIRING) == 0) {
861					vm_page_lock(fs.first_m);
862					vm_page_wire(fs.first_m);
863					vm_page_unlock(fs.first_m);
864
865					vm_page_lock(fs.m);
866					vm_page_unwire(fs.m, FALSE);
867					vm_page_unlock(fs.m);
868				}
869				/*
870				 * We no longer need the old page or object.
871				 */
872				release_page(&fs);
873			}
874			/*
875			 * fs.object != fs.first_object due to above
876			 * conditional
877			 */
878			vm_object_pip_wakeup(fs.object);
879			VM_OBJECT_WUNLOCK(fs.object);
880			/*
881			 * Only use the new page below...
882			 */
883			fs.object = fs.first_object;
884			fs.pindex = fs.first_pindex;
885			fs.m = fs.first_m;
886			if (!is_first_object_locked)
887				VM_OBJECT_WLOCK(fs.object);
888			PCPU_INC(cnt.v_cow_faults);
889			curthread->td_cow++;
890		} else {
891			prot &= ~VM_PROT_WRITE;
892		}
893	}
894
895	/*
896	 * We must verify that the maps have not changed since our last
897	 * lookup.
898	 */
899	if (!fs.lookup_still_valid) {
900		vm_object_t retry_object;
901		vm_pindex_t retry_pindex;
902		vm_prot_t retry_prot;
903
904		if (!vm_map_trylock_read(fs.map)) {
905			release_page(&fs);
906			unlock_and_deallocate(&fs);
907			goto RetryFault;
908		}
909		fs.lookup_still_valid = TRUE;
910		if (fs.map->timestamp != map_generation) {
911			result = vm_map_lookup_locked(&fs.map, vaddr, fault_type,
912			    &fs.entry, &retry_object, &retry_pindex, &retry_prot, &wired);
913
914			/*
915			 * If we don't need the page any longer, put it on the inactive
916			 * list (the easiest thing to do here).  If no one needs it,
917			 * pageout will grab it eventually.
918			 */
919			if (result != KERN_SUCCESS) {
920				release_page(&fs);
921				unlock_and_deallocate(&fs);
922
923				/*
924				 * If retry of map lookup would have blocked then
925				 * retry fault from start.
926				 */
927				if (result == KERN_FAILURE)
928					goto RetryFault;
929				return (result);
930			}
931			if ((retry_object != fs.first_object) ||
932			    (retry_pindex != fs.first_pindex)) {
933				release_page(&fs);
934				unlock_and_deallocate(&fs);
935				goto RetryFault;
936			}
937
938			/*
939			 * Check whether the protection has changed or the object has
940			 * been copied while we left the map unlocked. Changing from
941			 * read to write permission is OK - we leave the page
942			 * write-protected, and catch the write fault. Changing from
943			 * write to read permission means that we can't mark the page
944			 * write-enabled after all.
945			 */
946			prot &= retry_prot;
947		}
948	}
949	/*
950	 * If the page was filled by a pager, update the map entry's
951	 * last read offset.  Since the pager does not return the
952	 * actual set of pages that it read, this update is based on
953	 * the requested set.  Typically, the requested and actual
954	 * sets are the same.
955	 *
956	 * XXX The following assignment modifies the map
957	 * without holding a write lock on it.
958	 */
959	if (hardfault)
960		fs.entry->next_read = fs.pindex + faultcount - reqpage;
961
962	vm_fault_dirty(fs.entry, fs.m, prot, fault_type, fault_flags, TRUE);
963	vm_page_assert_xbusied(fs.m);
964
965	/*
966	 * Page must be completely valid or it is not fit to
967	 * map into user space.  vm_pager_get_pages() ensures this.
968	 */
969	KASSERT(fs.m->valid == VM_PAGE_BITS_ALL,
970	    ("vm_fault: page %p partially invalid", fs.m));
971	VM_OBJECT_WUNLOCK(fs.object);
972
973	/*
974	 * Put this page into the physical map.  We had to do the unlock above
975	 * because pmap_enter() may sleep.  We don't put the page
976	 * back on the active queue until later so that the pageout daemon
977	 * won't find it (yet).
978	 */
979	pmap_enter(fs.map->pmap, vaddr, fs.m, prot,
980	    fault_type | (wired ? PMAP_ENTER_WIRED : 0), 0);
981	if (faultcount != 1 && (fault_flags & VM_FAULT_CHANGE_WIRING) == 0 &&
982	    wired == 0)
983		vm_fault_prefault(&fs, vaddr, faultcount, reqpage);
984	VM_OBJECT_WLOCK(fs.object);
985	vm_page_lock(fs.m);
986
987	/*
988	 * If the page is not wired down, then put it where the pageout daemon
989	 * can find it.
990	 */
991	if (fault_flags & VM_FAULT_CHANGE_WIRING) {
992		if (wired)
993			vm_page_wire(fs.m);
994		else
995			vm_page_unwire(fs.m, 1);
996	} else
997		vm_page_activate(fs.m);
998	if (m_hold != NULL) {
999		*m_hold = fs.m;
1000		vm_page_hold(fs.m);
1001	}
1002	vm_page_unlock(fs.m);
1003	vm_page_xunbusy(fs.m);
1004
1005	/*
1006	 * Unlock everything, and return
1007	 */
1008	unlock_and_deallocate(&fs);
1009	if (hardfault) {
1010		PCPU_INC(cnt.v_io_faults);
1011		curthread->td_ru.ru_majflt++;
1012	} else
1013		curthread->td_ru.ru_minflt++;
1014
1015	return (KERN_SUCCESS);
1016}
1017
1018/*
1019 * Speed up the reclamation of up to "distance" pages that precede the
1020 * faulting pindex within the first object of the shadow chain.
1021 */
1022static void
1023vm_fault_cache_behind(const struct faultstate *fs, int distance)
1024{
1025	vm_object_t first_object, object;
1026	vm_page_t m, m_prev;
1027	vm_pindex_t pindex;
1028
1029	object = fs->object;
1030	VM_OBJECT_ASSERT_WLOCKED(object);
1031	first_object = fs->first_object;
1032	if (first_object != object) {
1033		if (!VM_OBJECT_TRYWLOCK(first_object)) {
1034			VM_OBJECT_WUNLOCK(object);
1035			VM_OBJECT_WLOCK(first_object);
1036			VM_OBJECT_WLOCK(object);
1037		}
1038	}
1039	/* Neither fictitious nor unmanaged pages can be cached. */
1040	if ((first_object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0) {
1041		if (fs->first_pindex < distance)
1042			pindex = 0;
1043		else
1044			pindex = fs->first_pindex - distance;
1045		if (pindex < OFF_TO_IDX(fs->entry->offset))
1046			pindex = OFF_TO_IDX(fs->entry->offset);
1047		m = first_object != object ? fs->first_m : fs->m;
1048		vm_page_assert_xbusied(m);
1049		m_prev = vm_page_prev(m);
1050		while ((m = m_prev) != NULL && m->pindex >= pindex &&
1051		    m->valid == VM_PAGE_BITS_ALL) {
1052			m_prev = vm_page_prev(m);
1053			if (vm_page_busied(m))
1054				continue;
1055			vm_page_lock(m);
1056			if (m->hold_count == 0 && m->wire_count == 0) {
1057				pmap_remove_all(m);
1058				vm_page_aflag_clear(m, PGA_REFERENCED);
1059				if (m->dirty != 0)
1060					vm_page_deactivate(m);
1061				else
1062					vm_page_cache(m);
1063			}
1064			vm_page_unlock(m);
1065		}
1066	}
1067	if (first_object != object)
1068		VM_OBJECT_WUNLOCK(first_object);
1069}
1070
1071/*
1072 * vm_fault_prefault provides a quick way of clustering
1073 * pagefaults into a processes address space.  It is a "cousin"
1074 * of vm_map_pmap_enter, except it runs at page fault time instead
1075 * of mmap time.
1076 */
1077static void
1078vm_fault_prefault(const struct faultstate *fs, vm_offset_t addra,
1079    int faultcount, int reqpage)
1080{
1081	pmap_t pmap;
1082	vm_map_entry_t entry;
1083	vm_object_t backing_object, lobject;
1084	vm_offset_t addr, starta;
1085	vm_pindex_t pindex;
1086	vm_page_t m;
1087	int backward, forward, i;
1088
1089	pmap = fs->map->pmap;
1090	if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace))
1091		return;
1092
1093	if (faultcount > 0) {
1094		backward = reqpage;
1095		forward = faultcount - reqpage - 1;
1096	} else {
1097		backward = PFBAK;
1098		forward = PFFOR;
1099	}
1100	entry = fs->entry;
1101
1102	starta = addra - backward * PAGE_SIZE;
1103	if (starta < entry->start) {
1104		starta = entry->start;
1105	} else if (starta > addra) {
1106		starta = 0;
1107	}
1108
1109	/*
1110	 * Generate the sequence of virtual addresses that are candidates for
1111	 * prefaulting in an outward spiral from the faulting virtual address,
1112	 * "addra".  Specifically, the sequence is "addra - PAGE_SIZE", "addra
1113	 * + PAGE_SIZE", "addra - 2 * PAGE_SIZE", "addra + 2 * PAGE_SIZE", ...
1114	 * If the candidate address doesn't have a backing physical page, then
1115	 * the loop immediately terminates.
1116	 */
1117	for (i = 0; i < 2 * imax(backward, forward); i++) {
1118		addr = addra + ((i >> 1) + 1) * ((i & 1) == 0 ? -PAGE_SIZE :
1119		    PAGE_SIZE);
1120		if (addr > addra + forward * PAGE_SIZE)
1121			addr = 0;
1122
1123		if (addr < starta || addr >= entry->end)
1124			continue;
1125
1126		if (!pmap_is_prefaultable(pmap, addr))
1127			continue;
1128
1129		pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
1130		lobject = entry->object.vm_object;
1131		VM_OBJECT_RLOCK(lobject);
1132		while ((m = vm_page_lookup(lobject, pindex)) == NULL &&
1133		    lobject->type == OBJT_DEFAULT &&
1134		    (backing_object = lobject->backing_object) != NULL) {
1135			KASSERT((lobject->backing_object_offset & PAGE_MASK) ==
1136			    0, ("vm_fault_prefault: unaligned object offset"));
1137			pindex += lobject->backing_object_offset >> PAGE_SHIFT;
1138			VM_OBJECT_RLOCK(backing_object);
1139			VM_OBJECT_RUNLOCK(lobject);
1140			lobject = backing_object;
1141		}
1142		if (m == NULL) {
1143			VM_OBJECT_RUNLOCK(lobject);
1144			break;
1145		}
1146		if (m->valid == VM_PAGE_BITS_ALL &&
1147		    (m->flags & PG_FICTITIOUS) == 0)
1148			pmap_enter_quick(pmap, addr, m, entry->protection);
1149		VM_OBJECT_RUNLOCK(lobject);
1150	}
1151}
1152
1153/*
1154 * Hold each of the physical pages that are mapped by the specified range of
1155 * virtual addresses, ["addr", "addr" + "len"), if those mappings are valid
1156 * and allow the specified types of access, "prot".  If all of the implied
1157 * pages are successfully held, then the number of held pages is returned
1158 * together with pointers to those pages in the array "ma".  However, if any
1159 * of the pages cannot be held, -1 is returned.
1160 */
1161int
1162vm_fault_quick_hold_pages(vm_map_t map, vm_offset_t addr, vm_size_t len,
1163    vm_prot_t prot, vm_page_t *ma, int max_count)
1164{
1165	vm_offset_t end, va;
1166	vm_page_t *mp;
1167	int count;
1168	boolean_t pmap_failed;
1169
1170	if (len == 0)
1171		return (0);
1172	end = round_page(addr + len);
1173	addr = trunc_page(addr);
1174
1175	/*
1176	 * Check for illegal addresses.
1177	 */
1178	if (addr < vm_map_min(map) || addr > end || end > vm_map_max(map))
1179		return (-1);
1180
1181	if (atop(end - addr) > max_count)
1182		panic("vm_fault_quick_hold_pages: count > max_count");
1183	count = atop(end - addr);
1184
1185	/*
1186	 * Most likely, the physical pages are resident in the pmap, so it is
1187	 * faster to try pmap_extract_and_hold() first.
1188	 */
1189	pmap_failed = FALSE;
1190	for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE) {
1191		*mp = pmap_extract_and_hold(map->pmap, va, prot);
1192		if (*mp == NULL)
1193			pmap_failed = TRUE;
1194		else if ((prot & VM_PROT_WRITE) != 0 &&
1195		    (*mp)->dirty != VM_PAGE_BITS_ALL) {
1196			/*
1197			 * Explicitly dirty the physical page.  Otherwise, the
1198			 * caller's changes may go unnoticed because they are
1199			 * performed through an unmanaged mapping or by a DMA
1200			 * operation.
1201			 *
1202			 * The object lock is not held here.
1203			 * See vm_page_clear_dirty_mask().
1204			 */
1205			vm_page_dirty(*mp);
1206		}
1207	}
1208	if (pmap_failed) {
1209		/*
1210		 * One or more pages could not be held by the pmap.  Either no
1211		 * page was mapped at the specified virtual address or that
1212		 * mapping had insufficient permissions.  Attempt to fault in
1213		 * and hold these pages.
1214		 */
1215		for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE)
1216			if (*mp == NULL && vm_fault_hold(map, va, prot,
1217			    VM_FAULT_NORMAL, mp) != KERN_SUCCESS)
1218				goto error;
1219	}
1220	return (count);
1221error:
1222	for (mp = ma; mp < ma + count; mp++)
1223		if (*mp != NULL) {
1224			vm_page_lock(*mp);
1225			vm_page_unhold(*mp);
1226			vm_page_unlock(*mp);
1227		}
1228	return (-1);
1229}
1230
1231/*
1232 *	Routine:
1233 *		vm_fault_copy_entry
1234 *	Function:
1235 *		Create new shadow object backing dst_entry with private copy of
1236 *		all underlying pages. When src_entry is equal to dst_entry,
1237 *		function implements COW for wired-down map entry. Otherwise,
1238 *		it forks wired entry into dst_map.
1239 *
1240 *	In/out conditions:
1241 *		The source and destination maps must be locked for write.
1242 *		The source map entry must be wired down (or be a sharing map
1243 *		entry corresponding to a main map entry that is wired down).
1244 */
1245void
1246vm_fault_copy_entry(vm_map_t dst_map, vm_map_t src_map,
1247    vm_map_entry_t dst_entry, vm_map_entry_t src_entry,
1248    vm_ooffset_t *fork_charge)
1249{
1250	vm_object_t backing_object, dst_object, object, src_object;
1251	vm_pindex_t dst_pindex, pindex, src_pindex;
1252	vm_prot_t access, prot;
1253	vm_offset_t vaddr;
1254	vm_page_t dst_m;
1255	vm_page_t src_m;
1256	boolean_t upgrade;
1257
1258#ifdef	lint
1259	src_map++;
1260#endif	/* lint */
1261
1262	upgrade = src_entry == dst_entry;
1263	access = prot = dst_entry->protection;
1264
1265	src_object = src_entry->object.vm_object;
1266	src_pindex = OFF_TO_IDX(src_entry->offset);
1267
1268	if (upgrade && (dst_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) {
1269		dst_object = src_object;
1270		vm_object_reference(dst_object);
1271	} else {
1272		/*
1273		 * Create the top-level object for the destination entry. (Doesn't
1274		 * actually shadow anything - we copy the pages directly.)
1275		 */
1276		dst_object = vm_object_allocate(OBJT_DEFAULT,
1277		    OFF_TO_IDX(dst_entry->end - dst_entry->start));
1278#if VM_NRESERVLEVEL > 0
1279		dst_object->flags |= OBJ_COLORED;
1280		dst_object->pg_color = atop(dst_entry->start);
1281#endif
1282	}
1283
1284	VM_OBJECT_WLOCK(dst_object);
1285	KASSERT(upgrade || dst_entry->object.vm_object == NULL,
1286	    ("vm_fault_copy_entry: vm_object not NULL"));
1287	if (src_object != dst_object) {
1288		dst_entry->object.vm_object = dst_object;
1289		dst_entry->offset = 0;
1290		dst_object->charge = dst_entry->end - dst_entry->start;
1291	}
1292	if (fork_charge != NULL) {
1293		KASSERT(dst_entry->cred == NULL,
1294		    ("vm_fault_copy_entry: leaked swp charge"));
1295		dst_object->cred = curthread->td_ucred;
1296		crhold(dst_object->cred);
1297		*fork_charge += dst_object->charge;
1298	} else if (dst_object->cred == NULL) {
1299		KASSERT(dst_entry->cred != NULL, ("no cred for entry %p",
1300		    dst_entry));
1301		dst_object->cred = dst_entry->cred;
1302		dst_entry->cred = NULL;
1303	}
1304
1305	/*
1306	 * If not an upgrade, then enter the mappings in the pmap as
1307	 * read and/or execute accesses.  Otherwise, enter them as
1308	 * write accesses.
1309	 *
1310	 * A writeable large page mapping is only created if all of
1311	 * the constituent small page mappings are modified. Marking
1312	 * PTEs as modified on inception allows promotion to happen
1313	 * without taking potentially large number of soft faults.
1314	 */
1315	if (!upgrade)
1316		access &= ~VM_PROT_WRITE;
1317
1318	/*
1319	 * Loop through all of the virtual pages within the entry's
1320	 * range, copying each page from the source object to the
1321	 * destination object.  Since the source is wired, those pages
1322	 * must exist.  In contrast, the destination is pageable.
1323	 * Since the destination object does share any backing storage
1324	 * with the source object, all of its pages must be dirtied,
1325	 * regardless of whether they can be written.
1326	 */
1327	for (vaddr = dst_entry->start, dst_pindex = 0;
1328	    vaddr < dst_entry->end;
1329	    vaddr += PAGE_SIZE, dst_pindex++) {
1330again:
1331		/*
1332		 * Find the page in the source object, and copy it in.
1333		 * Because the source is wired down, the page will be
1334		 * in memory.
1335		 */
1336		if (src_object != dst_object)
1337			VM_OBJECT_RLOCK(src_object);
1338		object = src_object;
1339		pindex = src_pindex + dst_pindex;
1340		while ((src_m = vm_page_lookup(object, pindex)) == NULL &&
1341		    (backing_object = object->backing_object) != NULL) {
1342			/*
1343			 * Unless the source mapping is read-only or
1344			 * it is presently being upgraded from
1345			 * read-only, the first object in the shadow
1346			 * chain should provide all of the pages.  In
1347			 * other words, this loop body should never be
1348			 * executed when the source mapping is already
1349			 * read/write.
1350			 */
1351			KASSERT((src_entry->protection & VM_PROT_WRITE) == 0 ||
1352			    upgrade,
1353			    ("vm_fault_copy_entry: main object missing page"));
1354
1355			VM_OBJECT_RLOCK(backing_object);
1356			pindex += OFF_TO_IDX(object->backing_object_offset);
1357			if (object != dst_object)
1358				VM_OBJECT_RUNLOCK(object);
1359			object = backing_object;
1360		}
1361		KASSERT(src_m != NULL, ("vm_fault_copy_entry: page missing"));
1362
1363		if (object != dst_object) {
1364			/*
1365			 * Allocate a page in the destination object.
1366			 */
1367			dst_m = vm_page_alloc(dst_object, (src_object ==
1368			    dst_object ? src_pindex : 0) + dst_pindex,
1369			    VM_ALLOC_NORMAL);
1370			if (dst_m == NULL) {
1371				VM_OBJECT_WUNLOCK(dst_object);
1372				VM_OBJECT_RUNLOCK(object);
1373				VM_WAIT;
1374				VM_OBJECT_WLOCK(dst_object);
1375				goto again;
1376			}
1377			pmap_copy_page(src_m, dst_m);
1378			VM_OBJECT_RUNLOCK(object);
1379			dst_m->valid = VM_PAGE_BITS_ALL;
1380			dst_m->dirty = VM_PAGE_BITS_ALL;
1381		} else {
1382			dst_m = src_m;
1383			if (vm_page_sleep_if_busy(dst_m, "fltupg"))
1384				goto again;
1385			vm_page_xbusy(dst_m);
1386			KASSERT(dst_m->valid == VM_PAGE_BITS_ALL,
1387			    ("invalid dst page %p", dst_m));
1388		}
1389		VM_OBJECT_WUNLOCK(dst_object);
1390
1391		/*
1392		 * Enter it in the pmap. If a wired, copy-on-write
1393		 * mapping is being replaced by a write-enabled
1394		 * mapping, then wire that new mapping.
1395		 */
1396		pmap_enter(dst_map->pmap, vaddr, dst_m, prot,
1397		    access | (upgrade ? PMAP_ENTER_WIRED : 0), 0);
1398
1399		/*
1400		 * Mark it no longer busy, and put it on the active list.
1401		 */
1402		VM_OBJECT_WLOCK(dst_object);
1403
1404		if (upgrade) {
1405			if (src_m != dst_m) {
1406				vm_page_lock(src_m);
1407				vm_page_unwire(src_m, 0);
1408				vm_page_unlock(src_m);
1409				vm_page_lock(dst_m);
1410				vm_page_wire(dst_m);
1411				vm_page_unlock(dst_m);
1412			} else {
1413				KASSERT(dst_m->wire_count > 0,
1414				    ("dst_m %p is not wired", dst_m));
1415			}
1416		} else {
1417			vm_page_lock(dst_m);
1418			vm_page_activate(dst_m);
1419			vm_page_unlock(dst_m);
1420		}
1421		vm_page_xunbusy(dst_m);
1422	}
1423	VM_OBJECT_WUNLOCK(dst_object);
1424	if (upgrade) {
1425		dst_entry->eflags &= ~(MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY);
1426		vm_object_deallocate(src_object);
1427	}
1428}
1429
1430
1431/*
1432 * This routine checks around the requested page for other pages that
1433 * might be able to be faulted in.  This routine brackets the viable
1434 * pages for the pages to be paged in.
1435 *
1436 * Inputs:
1437 *	m, rbehind, rahead
1438 *
1439 * Outputs:
1440 *  marray (array of vm_page_t), reqpage (index of requested page)
1441 *
1442 * Return value:
1443 *  number of pages in marray
1444 */
1445static int
1446vm_fault_additional_pages(m, rbehind, rahead, marray, reqpage)
1447	vm_page_t m;
1448	int rbehind;
1449	int rahead;
1450	vm_page_t *marray;
1451	int *reqpage;
1452{
1453	int i,j;
1454	vm_object_t object;
1455	vm_pindex_t pindex, startpindex, endpindex, tpindex;
1456	vm_page_t rtm;
1457	int cbehind, cahead;
1458
1459	VM_OBJECT_ASSERT_WLOCKED(m->object);
1460
1461	object = m->object;
1462	pindex = m->pindex;
1463	cbehind = cahead = 0;
1464
1465	/*
1466	 * if the requested page is not available, then give up now
1467	 */
1468	if (!vm_pager_has_page(object, pindex, &cbehind, &cahead)) {
1469		return 0;
1470	}
1471
1472	if ((cbehind == 0) && (cahead == 0)) {
1473		*reqpage = 0;
1474		marray[0] = m;
1475		return 1;
1476	}
1477
1478	if (rahead > cahead) {
1479		rahead = cahead;
1480	}
1481
1482	if (rbehind > cbehind) {
1483		rbehind = cbehind;
1484	}
1485
1486	/*
1487	 * scan backward for the read behind pages -- in memory
1488	 */
1489	if (pindex > 0) {
1490		if (rbehind > pindex) {
1491			rbehind = pindex;
1492			startpindex = 0;
1493		} else {
1494			startpindex = pindex - rbehind;
1495		}
1496
1497		if ((rtm = TAILQ_PREV(m, pglist, listq)) != NULL &&
1498		    rtm->pindex >= startpindex)
1499			startpindex = rtm->pindex + 1;
1500
1501		/* tpindex is unsigned; beware of numeric underflow. */
1502		for (i = 0, tpindex = pindex - 1; tpindex >= startpindex &&
1503		    tpindex < pindex; i++, tpindex--) {
1504
1505			rtm = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL |
1506			    VM_ALLOC_IFNOTCACHED);
1507			if (rtm == NULL) {
1508				/*
1509				 * Shift the allocated pages to the
1510				 * beginning of the array.
1511				 */
1512				for (j = 0; j < i; j++) {
1513					marray[j] = marray[j + tpindex + 1 -
1514					    startpindex];
1515				}
1516				break;
1517			}
1518
1519			marray[tpindex - startpindex] = rtm;
1520		}
1521	} else {
1522		startpindex = 0;
1523		i = 0;
1524	}
1525
1526	marray[i] = m;
1527	/* page offset of the required page */
1528	*reqpage = i;
1529
1530	tpindex = pindex + 1;
1531	i++;
1532
1533	/*
1534	 * scan forward for the read ahead pages
1535	 */
1536	endpindex = tpindex + rahead;
1537	if ((rtm = TAILQ_NEXT(m, listq)) != NULL && rtm->pindex < endpindex)
1538		endpindex = rtm->pindex;
1539	if (endpindex > object->size)
1540		endpindex = object->size;
1541
1542	for (; tpindex < endpindex; i++, tpindex++) {
1543
1544		rtm = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL |
1545		    VM_ALLOC_IFNOTCACHED);
1546		if (rtm == NULL) {
1547			break;
1548		}
1549
1550		marray[i] = rtm;
1551	}
1552
1553	/* return number of pages */
1554	return i;
1555}
1556
1557/*
1558 * Block entry into the machine-independent layer's page fault handler by
1559 * the calling thread.  Subsequent calls to vm_fault() by that thread will
1560 * return KERN_PROTECTION_FAILURE.  Enable machine-dependent handling of
1561 * spurious page faults.
1562 */
1563int
1564vm_fault_disable_pagefaults(void)
1565{
1566
1567	return (curthread_pflags_set(TDP_NOFAULTING | TDP_RESETSPUR));
1568}
1569
1570void
1571vm_fault_enable_pagefaults(int save)
1572{
1573
1574	curthread_pflags_restore(save);
1575}
1576