pmap.c revision 224611
1226031Sstas/*-
2226031Sstas * Copyright (C) 2007-2009 Semihalf, Rafal Jaworowski <raj@semihalf.com>
3226031Sstas * Copyright (C) 2006 Semihalf, Marian Balakowicz <m8@semihalf.com>
4226031Sstas * All rights reserved.
5226031Sstas *
6226031Sstas * Redistribution and use in source and binary forms, with or without
7226031Sstas * modification, are permitted provided that the following conditions
8226031Sstas * are met:
9226031Sstas * 1. Redistributions of source code must retain the above copyright
10226031Sstas *    notice, this list of conditions and the following disclaimer.
11226031Sstas * 2. Redistributions in binary form must reproduce the above copyright
12226031Sstas *    notice, this list of conditions and the following disclaimer in the
13226031Sstas *    documentation and/or other materials provided with the distribution.
14226031Sstas *
15226031Sstas * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16226031Sstas * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17226031Sstas * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN
18226031Sstas * NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
19226031Sstas * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
20226031Sstas * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
21226031Sstas * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
22226031Sstas * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
23226031Sstas * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
24226031Sstas * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25226031Sstas *
26226031Sstas * Some hw specific parts of this pmap were derived or influenced
27226031Sstas * by NetBSD's ibm4xx pmap module. More generic code is shared with
28226031Sstas * a few other pmap modules from the FreeBSD tree.
29226031Sstas */
30226031Sstas
31226031Sstas /*
32226031Sstas  * VM layout notes:
33226031Sstas  *
34226031Sstas  * Kernel and user threads run within one common virtual address space
35226031Sstas  * defined by AS=0.
36226031Sstas  *
37226031Sstas  * Virtual address space layout:
38226031Sstas  * -----------------------------
39226031Sstas  * 0x0000_0000 - 0xafff_ffff	: user process
40226031Sstas  * 0xb000_0000 - 0xbfff_ffff	: pmap_mapdev()-ed area (PCI/PCIE etc.)
41226031Sstas  * 0xc000_0000 - 0xc0ff_ffff	: kernel reserved
42226031Sstas  *   0xc000_0000 - data_end	: kernel code+data, env, metadata etc.
43226031Sstas  * 0xc100_0000 - 0xfeef_ffff	: KVA
44226031Sstas  *   0xc100_0000 - 0xc100_3fff : reserved for page zero/copy
45226031Sstas  *   0xc100_4000 - 0xc200_3fff : reserved for ptbl bufs
46226031Sstas  *   0xc200_4000 - 0xc200_8fff : guard page + kstack0
47226031Sstas  *   0xc200_9000 - 0xfeef_ffff	: actual free KVA space
48226031Sstas  * 0xfef0_0000 - 0xffff_ffff	: I/O devices region
49226031Sstas  */
50226031Sstas
51226031Sstas#include <sys/cdefs.h>
52226031Sstas__FBSDID("$FreeBSD: head/sys/powerpc/booke/pmap.c 224611 2011-08-02 15:35:43Z marcel $");
53226031Sstas
54226031Sstas#include <sys/types.h>
55226031Sstas#include <sys/param.h>
56226031Sstas#include <sys/malloc.h>
57226031Sstas#include <sys/ktr.h>
58226031Sstas#include <sys/proc.h>
59226031Sstas#include <sys/user.h>
60226031Sstas#include <sys/queue.h>
61226031Sstas#include <sys/systm.h>
62226031Sstas#include <sys/kernel.h>
63226031Sstas#include <sys/linker.h>
64226031Sstas#include <sys/msgbuf.h>
65226031Sstas#include <sys/lock.h>
66226031Sstas#include <sys/mutex.h>
67226031Sstas#include <sys/sched.h>
68226031Sstas#include <sys/smp.h>
69226031Sstas#include <sys/vmmeter.h>
70226031Sstas
71226031Sstas#include <vm/vm.h>
72226031Sstas#include <vm/vm_page.h>
73226031Sstas#include <vm/vm_kern.h>
74226031Sstas#include <vm/vm_pageout.h>
75#include <vm/vm_extern.h>
76#include <vm/vm_object.h>
77#include <vm/vm_param.h>
78#include <vm/vm_map.h>
79#include <vm/vm_pager.h>
80#include <vm/uma.h>
81
82#include <machine/cpu.h>
83#include <machine/pcb.h>
84#include <machine/platform.h>
85
86#include <machine/tlb.h>
87#include <machine/spr.h>
88#include <machine/vmparam.h>
89#include <machine/md_var.h>
90#include <machine/mmuvar.h>
91#include <machine/pmap.h>
92#include <machine/pte.h>
93
94#include "mmu_if.h"
95
96#ifdef  DEBUG
97#define debugf(fmt, args...) printf(fmt, ##args)
98#else
99#define debugf(fmt, args...)
100#endif
101
102#define TODO			panic("%s: not implemented", __func__);
103
104#include "opt_sched.h"
105#ifndef SCHED_4BSD
106#error "e500 only works with SCHED_4BSD which uses a global scheduler lock."
107#endif
108extern struct mtx sched_lock;
109
110extern int dumpsys_minidump;
111
112extern unsigned char _etext[];
113extern unsigned char _end[];
114
115extern uint32_t *bootinfo;
116
117#ifdef SMP
118extern uint32_t kernload_ap;
119#endif
120
121vm_paddr_t kernload;
122vm_offset_t kernstart;
123vm_size_t kernsize;
124
125/* Message buffer and tables. */
126static vm_offset_t data_start;
127static vm_size_t data_end;
128
129/* Phys/avail memory regions. */
130static struct mem_region *availmem_regions;
131static int availmem_regions_sz;
132static struct mem_region *physmem_regions;
133static int physmem_regions_sz;
134
135/* Reserved KVA space and mutex for mmu_booke_zero_page. */
136static vm_offset_t zero_page_va;
137static struct mtx zero_page_mutex;
138
139static struct mtx tlbivax_mutex;
140
141/*
142 * Reserved KVA space for mmu_booke_zero_page_idle. This is used
143 * by idle thred only, no lock required.
144 */
145static vm_offset_t zero_page_idle_va;
146
147/* Reserved KVA space and mutex for mmu_booke_copy_page. */
148static vm_offset_t copy_page_src_va;
149static vm_offset_t copy_page_dst_va;
150static struct mtx copy_page_mutex;
151
152/**************************************************************************/
153/* PMAP */
154/**************************************************************************/
155
156static void mmu_booke_enter_locked(mmu_t, pmap_t, vm_offset_t, vm_page_t,
157    vm_prot_t, boolean_t);
158
159unsigned int kptbl_min;		/* Index of the first kernel ptbl. */
160unsigned int kernel_ptbls;	/* Number of KVA ptbls. */
161
162/*
163 * If user pmap is processed with mmu_booke_remove and the resident count
164 * drops to 0, there are no more pages to remove, so we need not continue.
165 */
166#define PMAP_REMOVE_DONE(pmap) \
167	((pmap) != kernel_pmap && (pmap)->pm_stats.resident_count == 0)
168
169extern void tid_flush(tlbtid_t);
170
171/**************************************************************************/
172/* TLB and TID handling */
173/**************************************************************************/
174
175/* Translation ID busy table */
176static volatile pmap_t tidbusy[MAXCPU][TID_MAX + 1];
177
178/*
179 * TLB0 capabilities (entry, way numbers etc.). These can vary between e500
180 * core revisions and should be read from h/w registers during early config.
181 */
182uint32_t tlb0_entries;
183uint32_t tlb0_ways;
184uint32_t tlb0_entries_per_way;
185
186#define TLB0_ENTRIES		(tlb0_entries)
187#define TLB0_WAYS		(tlb0_ways)
188#define TLB0_ENTRIES_PER_WAY	(tlb0_entries_per_way)
189
190#define TLB1_ENTRIES 16
191
192/* In-ram copy of the TLB1 */
193static tlb_entry_t tlb1[TLB1_ENTRIES];
194
195/* Next free entry in the TLB1 */
196static unsigned int tlb1_idx;
197
198static tlbtid_t tid_alloc(struct pmap *);
199
200static void tlb_print_entry(int, uint32_t, uint32_t, uint32_t, uint32_t);
201
202static int tlb1_set_entry(vm_offset_t, vm_offset_t, vm_size_t, uint32_t);
203static void tlb1_write_entry(unsigned int);
204static int tlb1_iomapped(int, vm_paddr_t, vm_size_t, vm_offset_t *);
205static vm_size_t tlb1_mapin_region(vm_offset_t, vm_paddr_t, vm_size_t);
206
207static vm_size_t tsize2size(unsigned int);
208static unsigned int size2tsize(vm_size_t);
209static unsigned int ilog2(unsigned int);
210
211static void set_mas4_defaults(void);
212
213static inline void tlb0_flush_entry(vm_offset_t);
214static inline unsigned int tlb0_tableidx(vm_offset_t, unsigned int);
215
216/**************************************************************************/
217/* Page table management */
218/**************************************************************************/
219
220/* Data for the pv entry allocation mechanism */
221static uma_zone_t pvzone;
222static struct vm_object pvzone_obj;
223static int pv_entry_count = 0, pv_entry_max = 0, pv_entry_high_water = 0;
224
225#define PV_ENTRY_ZONE_MIN	2048	/* min pv entries in uma zone */
226
227#ifndef PMAP_SHPGPERPROC
228#define PMAP_SHPGPERPROC	200
229#endif
230
231static void ptbl_init(void);
232static struct ptbl_buf *ptbl_buf_alloc(void);
233static void ptbl_buf_free(struct ptbl_buf *);
234static void ptbl_free_pmap_ptbl(pmap_t, pte_t *);
235
236static pte_t *ptbl_alloc(mmu_t, pmap_t, unsigned int);
237static void ptbl_free(mmu_t, pmap_t, unsigned int);
238static void ptbl_hold(mmu_t, pmap_t, unsigned int);
239static int ptbl_unhold(mmu_t, pmap_t, unsigned int);
240
241static vm_paddr_t pte_vatopa(mmu_t, pmap_t, vm_offset_t);
242static pte_t *pte_find(mmu_t, pmap_t, vm_offset_t);
243static void pte_enter(mmu_t, pmap_t, vm_page_t, vm_offset_t, uint32_t);
244static int pte_remove(mmu_t, pmap_t, vm_offset_t, uint8_t);
245
246static pv_entry_t pv_alloc(void);
247static void pv_free(pv_entry_t);
248static void pv_insert(pmap_t, vm_offset_t, vm_page_t);
249static void pv_remove(pmap_t, vm_offset_t, vm_page_t);
250
251/* Number of kva ptbl buffers, each covering one ptbl (PTBL_PAGES). */
252#define PTBL_BUFS		(128 * 16)
253
254struct ptbl_buf {
255	TAILQ_ENTRY(ptbl_buf) link;	/* list link */
256	vm_offset_t kva;		/* va of mapping */
257};
258
259/* ptbl free list and a lock used for access synchronization. */
260static TAILQ_HEAD(, ptbl_buf) ptbl_buf_freelist;
261static struct mtx ptbl_buf_freelist_lock;
262
263/* Base address of kva space allocated fot ptbl bufs. */
264static vm_offset_t ptbl_buf_pool_vabase;
265
266/* Pointer to ptbl_buf structures. */
267static struct ptbl_buf *ptbl_bufs;
268
269void pmap_bootstrap_ap(volatile uint32_t *);
270
271/*
272 * Kernel MMU interface
273 */
274static void		mmu_booke_change_wiring(mmu_t, pmap_t, vm_offset_t, boolean_t);
275static void		mmu_booke_clear_modify(mmu_t, vm_page_t);
276static void		mmu_booke_clear_reference(mmu_t, vm_page_t);
277static void		mmu_booke_copy(mmu_t, pmap_t, pmap_t, vm_offset_t,
278    vm_size_t, vm_offset_t);
279static void		mmu_booke_copy_page(mmu_t, vm_page_t, vm_page_t);
280static void		mmu_booke_enter(mmu_t, pmap_t, vm_offset_t, vm_page_t,
281    vm_prot_t, boolean_t);
282static void		mmu_booke_enter_object(mmu_t, pmap_t, vm_offset_t, vm_offset_t,
283    vm_page_t, vm_prot_t);
284static void		mmu_booke_enter_quick(mmu_t, pmap_t, vm_offset_t, vm_page_t,
285    vm_prot_t);
286static vm_paddr_t	mmu_booke_extract(mmu_t, pmap_t, vm_offset_t);
287static vm_page_t	mmu_booke_extract_and_hold(mmu_t, pmap_t, vm_offset_t,
288    vm_prot_t);
289static void		mmu_booke_init(mmu_t);
290static boolean_t	mmu_booke_is_modified(mmu_t, vm_page_t);
291static boolean_t	mmu_booke_is_prefaultable(mmu_t, pmap_t, vm_offset_t);
292static boolean_t	mmu_booke_is_referenced(mmu_t, vm_page_t);
293static boolean_t	mmu_booke_ts_referenced(mmu_t, vm_page_t);
294static vm_offset_t	mmu_booke_map(mmu_t, vm_offset_t *, vm_offset_t, vm_offset_t,
295    int);
296static int		mmu_booke_mincore(mmu_t, pmap_t, vm_offset_t,
297    vm_paddr_t *);
298static void		mmu_booke_object_init_pt(mmu_t, pmap_t, vm_offset_t,
299    vm_object_t, vm_pindex_t, vm_size_t);
300static boolean_t	mmu_booke_page_exists_quick(mmu_t, pmap_t, vm_page_t);
301static void		mmu_booke_page_init(mmu_t, vm_page_t);
302static int		mmu_booke_page_wired_mappings(mmu_t, vm_page_t);
303static void		mmu_booke_pinit(mmu_t, pmap_t);
304static void		mmu_booke_pinit0(mmu_t, pmap_t);
305static void		mmu_booke_protect(mmu_t, pmap_t, vm_offset_t, vm_offset_t,
306    vm_prot_t);
307static void		mmu_booke_qenter(mmu_t, vm_offset_t, vm_page_t *, int);
308static void		mmu_booke_qremove(mmu_t, vm_offset_t, int);
309static void		mmu_booke_release(mmu_t, pmap_t);
310static void		mmu_booke_remove(mmu_t, pmap_t, vm_offset_t, vm_offset_t);
311static void		mmu_booke_remove_all(mmu_t, vm_page_t);
312static void		mmu_booke_remove_write(mmu_t, vm_page_t);
313static void		mmu_booke_zero_page(mmu_t, vm_page_t);
314static void		mmu_booke_zero_page_area(mmu_t, vm_page_t, int, int);
315static void		mmu_booke_zero_page_idle(mmu_t, vm_page_t);
316static void		mmu_booke_activate(mmu_t, struct thread *);
317static void		mmu_booke_deactivate(mmu_t, struct thread *);
318static void		mmu_booke_bootstrap(mmu_t, vm_offset_t, vm_offset_t);
319static void		*mmu_booke_mapdev(mmu_t, vm_offset_t, vm_size_t);
320static void		mmu_booke_unmapdev(mmu_t, vm_offset_t, vm_size_t);
321static vm_offset_t	mmu_booke_kextract(mmu_t, vm_offset_t);
322static void		mmu_booke_kenter(mmu_t, vm_offset_t, vm_offset_t);
323static void		mmu_booke_kremove(mmu_t, vm_offset_t);
324static boolean_t	mmu_booke_dev_direct_mapped(mmu_t, vm_offset_t, vm_size_t);
325static void		mmu_booke_sync_icache(mmu_t, pmap_t, vm_offset_t,
326    vm_size_t);
327static vm_offset_t	mmu_booke_dumpsys_map(mmu_t, struct pmap_md *,
328    vm_size_t, vm_size_t *);
329static void		mmu_booke_dumpsys_unmap(mmu_t, struct pmap_md *,
330    vm_size_t, vm_offset_t);
331static struct pmap_md	*mmu_booke_scan_md(mmu_t, struct pmap_md *);
332
333static mmu_method_t mmu_booke_methods[] = {
334	/* pmap dispatcher interface */
335	MMUMETHOD(mmu_change_wiring,	mmu_booke_change_wiring),
336	MMUMETHOD(mmu_clear_modify,	mmu_booke_clear_modify),
337	MMUMETHOD(mmu_clear_reference,	mmu_booke_clear_reference),
338	MMUMETHOD(mmu_copy,		mmu_booke_copy),
339	MMUMETHOD(mmu_copy_page,	mmu_booke_copy_page),
340	MMUMETHOD(mmu_enter,		mmu_booke_enter),
341	MMUMETHOD(mmu_enter_object,	mmu_booke_enter_object),
342	MMUMETHOD(mmu_enter_quick,	mmu_booke_enter_quick),
343	MMUMETHOD(mmu_extract,		mmu_booke_extract),
344	MMUMETHOD(mmu_extract_and_hold,	mmu_booke_extract_and_hold),
345	MMUMETHOD(mmu_init,		mmu_booke_init),
346	MMUMETHOD(mmu_is_modified,	mmu_booke_is_modified),
347	MMUMETHOD(mmu_is_prefaultable,	mmu_booke_is_prefaultable),
348	MMUMETHOD(mmu_is_referenced,	mmu_booke_is_referenced),
349	MMUMETHOD(mmu_ts_referenced,	mmu_booke_ts_referenced),
350	MMUMETHOD(mmu_map,		mmu_booke_map),
351	MMUMETHOD(mmu_mincore,		mmu_booke_mincore),
352	MMUMETHOD(mmu_object_init_pt,	mmu_booke_object_init_pt),
353	MMUMETHOD(mmu_page_exists_quick,mmu_booke_page_exists_quick),
354	MMUMETHOD(mmu_page_init,	mmu_booke_page_init),
355	MMUMETHOD(mmu_page_wired_mappings, mmu_booke_page_wired_mappings),
356	MMUMETHOD(mmu_pinit,		mmu_booke_pinit),
357	MMUMETHOD(mmu_pinit0,		mmu_booke_pinit0),
358	MMUMETHOD(mmu_protect,		mmu_booke_protect),
359	MMUMETHOD(mmu_qenter,		mmu_booke_qenter),
360	MMUMETHOD(mmu_qremove,		mmu_booke_qremove),
361	MMUMETHOD(mmu_release,		mmu_booke_release),
362	MMUMETHOD(mmu_remove,		mmu_booke_remove),
363	MMUMETHOD(mmu_remove_all,	mmu_booke_remove_all),
364	MMUMETHOD(mmu_remove_write,	mmu_booke_remove_write),
365	MMUMETHOD(mmu_sync_icache,	mmu_booke_sync_icache),
366	MMUMETHOD(mmu_zero_page,	mmu_booke_zero_page),
367	MMUMETHOD(mmu_zero_page_area,	mmu_booke_zero_page_area),
368	MMUMETHOD(mmu_zero_page_idle,	mmu_booke_zero_page_idle),
369	MMUMETHOD(mmu_activate,		mmu_booke_activate),
370	MMUMETHOD(mmu_deactivate,	mmu_booke_deactivate),
371
372	/* Internal interfaces */
373	MMUMETHOD(mmu_bootstrap,	mmu_booke_bootstrap),
374	MMUMETHOD(mmu_dev_direct_mapped,mmu_booke_dev_direct_mapped),
375	MMUMETHOD(mmu_mapdev,		mmu_booke_mapdev),
376	MMUMETHOD(mmu_kenter,		mmu_booke_kenter),
377	MMUMETHOD(mmu_kextract,		mmu_booke_kextract),
378/*	MMUMETHOD(mmu_kremove,		mmu_booke_kremove),	*/
379	MMUMETHOD(mmu_unmapdev,		mmu_booke_unmapdev),
380
381	/* dumpsys() support */
382	MMUMETHOD(mmu_dumpsys_map,	mmu_booke_dumpsys_map),
383	MMUMETHOD(mmu_dumpsys_unmap,	mmu_booke_dumpsys_unmap),
384	MMUMETHOD(mmu_scan_md,		mmu_booke_scan_md),
385
386	{ 0, 0 }
387};
388
389MMU_DEF(booke_mmu, MMU_TYPE_BOOKE, mmu_booke_methods, 0);
390
391static inline void
392tlb_miss_lock(void)
393{
394#ifdef SMP
395	struct pcpu *pc;
396
397	if (!smp_started)
398		return;
399
400	STAILQ_FOREACH(pc, &cpuhead, pc_allcpu) {
401		if (pc != pcpup) {
402
403			CTR3(KTR_PMAP, "%s: tlb miss LOCK of CPU=%d, "
404			    "tlb_lock=%p", __func__, pc->pc_cpuid, pc->pc_booke_tlb_lock);
405
406			KASSERT((pc->pc_cpuid != PCPU_GET(cpuid)),
407			    ("tlb_miss_lock: tried to lock self"));
408
409			tlb_lock(pc->pc_booke_tlb_lock);
410
411			CTR1(KTR_PMAP, "%s: locked", __func__);
412		}
413	}
414#endif
415}
416
417static inline void
418tlb_miss_unlock(void)
419{
420#ifdef SMP
421	struct pcpu *pc;
422
423	if (!smp_started)
424		return;
425
426	STAILQ_FOREACH(pc, &cpuhead, pc_allcpu) {
427		if (pc != pcpup) {
428			CTR2(KTR_PMAP, "%s: tlb miss UNLOCK of CPU=%d",
429			    __func__, pc->pc_cpuid);
430
431			tlb_unlock(pc->pc_booke_tlb_lock);
432
433			CTR1(KTR_PMAP, "%s: unlocked", __func__);
434		}
435	}
436#endif
437}
438
439/* Return number of entries in TLB0. */
440static __inline void
441tlb0_get_tlbconf(void)
442{
443	uint32_t tlb0_cfg;
444
445	tlb0_cfg = mfspr(SPR_TLB0CFG);
446	tlb0_entries = tlb0_cfg & TLBCFG_NENTRY_MASK;
447	tlb0_ways = (tlb0_cfg & TLBCFG_ASSOC_MASK) >> TLBCFG_ASSOC_SHIFT;
448	tlb0_entries_per_way = tlb0_entries / tlb0_ways;
449}
450
451/* Initialize pool of kva ptbl buffers. */
452static void
453ptbl_init(void)
454{
455	int i;
456
457	CTR3(KTR_PMAP, "%s: s (ptbl_bufs = 0x%08x size 0x%08x)", __func__,
458	    (uint32_t)ptbl_bufs, sizeof(struct ptbl_buf) * PTBL_BUFS);
459	CTR3(KTR_PMAP, "%s: s (ptbl_buf_pool_vabase = 0x%08x size = 0x%08x)",
460	    __func__, ptbl_buf_pool_vabase, PTBL_BUFS * PTBL_PAGES * PAGE_SIZE);
461
462	mtx_init(&ptbl_buf_freelist_lock, "ptbl bufs lock", NULL, MTX_DEF);
463	TAILQ_INIT(&ptbl_buf_freelist);
464
465	for (i = 0; i < PTBL_BUFS; i++) {
466		ptbl_bufs[i].kva = ptbl_buf_pool_vabase + i * PTBL_PAGES * PAGE_SIZE;
467		TAILQ_INSERT_TAIL(&ptbl_buf_freelist, &ptbl_bufs[i], link);
468	}
469}
470
471/* Get a ptbl_buf from the freelist. */
472static struct ptbl_buf *
473ptbl_buf_alloc(void)
474{
475	struct ptbl_buf *buf;
476
477	mtx_lock(&ptbl_buf_freelist_lock);
478	buf = TAILQ_FIRST(&ptbl_buf_freelist);
479	if (buf != NULL)
480		TAILQ_REMOVE(&ptbl_buf_freelist, buf, link);
481	mtx_unlock(&ptbl_buf_freelist_lock);
482
483	CTR2(KTR_PMAP, "%s: buf = %p", __func__, buf);
484
485	return (buf);
486}
487
488/* Return ptbl buff to free pool. */
489static void
490ptbl_buf_free(struct ptbl_buf *buf)
491{
492
493	CTR2(KTR_PMAP, "%s: buf = %p", __func__, buf);
494
495	mtx_lock(&ptbl_buf_freelist_lock);
496	TAILQ_INSERT_TAIL(&ptbl_buf_freelist, buf, link);
497	mtx_unlock(&ptbl_buf_freelist_lock);
498}
499
500/*
501 * Search the list of allocated ptbl bufs and find on list of allocated ptbls
502 */
503static void
504ptbl_free_pmap_ptbl(pmap_t pmap, pte_t *ptbl)
505{
506	struct ptbl_buf *pbuf;
507
508	CTR2(KTR_PMAP, "%s: ptbl = %p", __func__, ptbl);
509
510	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
511
512	TAILQ_FOREACH(pbuf, &pmap->pm_ptbl_list, link)
513		if (pbuf->kva == (vm_offset_t)ptbl) {
514			/* Remove from pmap ptbl buf list. */
515			TAILQ_REMOVE(&pmap->pm_ptbl_list, pbuf, link);
516
517			/* Free corresponding ptbl buf. */
518			ptbl_buf_free(pbuf);
519			break;
520		}
521}
522
523/* Allocate page table. */
524static pte_t *
525ptbl_alloc(mmu_t mmu, pmap_t pmap, unsigned int pdir_idx)
526{
527	vm_page_t mtbl[PTBL_PAGES];
528	vm_page_t m;
529	struct ptbl_buf *pbuf;
530	unsigned int pidx;
531	pte_t *ptbl;
532	int i;
533
534	CTR4(KTR_PMAP, "%s: pmap = %p su = %d pdir_idx = %d", __func__, pmap,
535	    (pmap == kernel_pmap), pdir_idx);
536
537	KASSERT((pdir_idx <= (VM_MAXUSER_ADDRESS / PDIR_SIZE)),
538	    ("ptbl_alloc: invalid pdir_idx"));
539	KASSERT((pmap->pm_pdir[pdir_idx] == NULL),
540	    ("pte_alloc: valid ptbl entry exists!"));
541
542	pbuf = ptbl_buf_alloc();
543	if (pbuf == NULL)
544		panic("pte_alloc: couldn't alloc kernel virtual memory");
545
546	ptbl = (pte_t *)pbuf->kva;
547
548	CTR2(KTR_PMAP, "%s: ptbl kva = %p", __func__, ptbl);
549
550	/* Allocate ptbl pages, this will sleep! */
551	for (i = 0; i < PTBL_PAGES; i++) {
552		pidx = (PTBL_PAGES * pdir_idx) + i;
553		while ((m = vm_page_alloc(NULL, pidx,
554		    VM_ALLOC_NOOBJ | VM_ALLOC_WIRED)) == NULL) {
555
556			PMAP_UNLOCK(pmap);
557			vm_page_unlock_queues();
558			VM_WAIT;
559			vm_page_lock_queues();
560			PMAP_LOCK(pmap);
561		}
562		mtbl[i] = m;
563	}
564
565	/* Map allocated pages into kernel_pmap. */
566	mmu_booke_qenter(mmu, (vm_offset_t)ptbl, mtbl, PTBL_PAGES);
567
568	/* Zero whole ptbl. */
569	bzero((caddr_t)ptbl, PTBL_PAGES * PAGE_SIZE);
570
571	/* Add pbuf to the pmap ptbl bufs list. */
572	TAILQ_INSERT_TAIL(&pmap->pm_ptbl_list, pbuf, link);
573
574	return (ptbl);
575}
576
577/* Free ptbl pages and invalidate pdir entry. */
578static void
579ptbl_free(mmu_t mmu, pmap_t pmap, unsigned int pdir_idx)
580{
581	pte_t *ptbl;
582	vm_paddr_t pa;
583	vm_offset_t va;
584	vm_page_t m;
585	int i;
586
587	CTR4(KTR_PMAP, "%s: pmap = %p su = %d pdir_idx = %d", __func__, pmap,
588	    (pmap == kernel_pmap), pdir_idx);
589
590	KASSERT((pdir_idx <= (VM_MAXUSER_ADDRESS / PDIR_SIZE)),
591	    ("ptbl_free: invalid pdir_idx"));
592
593	ptbl = pmap->pm_pdir[pdir_idx];
594
595	CTR2(KTR_PMAP, "%s: ptbl = %p", __func__, ptbl);
596
597	KASSERT((ptbl != NULL), ("ptbl_free: null ptbl"));
598
599	/*
600	 * Invalidate the pdir entry as soon as possible, so that other CPUs
601	 * don't attempt to look up the page tables we are releasing.
602	 */
603	mtx_lock_spin(&tlbivax_mutex);
604	tlb_miss_lock();
605
606	pmap->pm_pdir[pdir_idx] = NULL;
607
608	tlb_miss_unlock();
609	mtx_unlock_spin(&tlbivax_mutex);
610
611	for (i = 0; i < PTBL_PAGES; i++) {
612		va = ((vm_offset_t)ptbl + (i * PAGE_SIZE));
613		pa = pte_vatopa(mmu, kernel_pmap, va);
614		m = PHYS_TO_VM_PAGE(pa);
615		vm_page_free_zero(m);
616		atomic_subtract_int(&cnt.v_wire_count, 1);
617		mmu_booke_kremove(mmu, va);
618	}
619
620	ptbl_free_pmap_ptbl(pmap, ptbl);
621}
622
623/*
624 * Decrement ptbl pages hold count and attempt to free ptbl pages.
625 * Called when removing pte entry from ptbl.
626 *
627 * Return 1 if ptbl pages were freed.
628 */
629static int
630ptbl_unhold(mmu_t mmu, pmap_t pmap, unsigned int pdir_idx)
631{
632	pte_t *ptbl;
633	vm_paddr_t pa;
634	vm_page_t m;
635	int i;
636
637	CTR4(KTR_PMAP, "%s: pmap = %p su = %d pdir_idx = %d", __func__, pmap,
638	    (pmap == kernel_pmap), pdir_idx);
639
640	KASSERT((pdir_idx <= (VM_MAXUSER_ADDRESS / PDIR_SIZE)),
641	    ("ptbl_unhold: invalid pdir_idx"));
642	KASSERT((pmap != kernel_pmap),
643	    ("ptbl_unhold: unholding kernel ptbl!"));
644
645	ptbl = pmap->pm_pdir[pdir_idx];
646
647	//debugf("ptbl_unhold: ptbl = 0x%08x\n", (u_int32_t)ptbl);
648	KASSERT(((vm_offset_t)ptbl >= VM_MIN_KERNEL_ADDRESS),
649	    ("ptbl_unhold: non kva ptbl"));
650
651	/* decrement hold count */
652	for (i = 0; i < PTBL_PAGES; i++) {
653		pa = pte_vatopa(mmu, kernel_pmap,
654		    (vm_offset_t)ptbl + (i * PAGE_SIZE));
655		m = PHYS_TO_VM_PAGE(pa);
656		m->wire_count--;
657	}
658
659	/*
660	 * Free ptbl pages if there are no pte etries in this ptbl.
661	 * wire_count has the same value for all ptbl pages, so check the last
662	 * page.
663	 */
664	if (m->wire_count == 0) {
665		ptbl_free(mmu, pmap, pdir_idx);
666
667		//debugf("ptbl_unhold: e (freed ptbl)\n");
668		return (1);
669	}
670
671	return (0);
672}
673
674/*
675 * Increment hold count for ptbl pages. This routine is used when a new pte
676 * entry is being inserted into the ptbl.
677 */
678static void
679ptbl_hold(mmu_t mmu, pmap_t pmap, unsigned int pdir_idx)
680{
681	vm_paddr_t pa;
682	pte_t *ptbl;
683	vm_page_t m;
684	int i;
685
686	CTR3(KTR_PMAP, "%s: pmap = %p pdir_idx = %d", __func__, pmap,
687	    pdir_idx);
688
689	KASSERT((pdir_idx <= (VM_MAXUSER_ADDRESS / PDIR_SIZE)),
690	    ("ptbl_hold: invalid pdir_idx"));
691	KASSERT((pmap != kernel_pmap),
692	    ("ptbl_hold: holding kernel ptbl!"));
693
694	ptbl = pmap->pm_pdir[pdir_idx];
695
696	KASSERT((ptbl != NULL), ("ptbl_hold: null ptbl"));
697
698	for (i = 0; i < PTBL_PAGES; i++) {
699		pa = pte_vatopa(mmu, kernel_pmap,
700		    (vm_offset_t)ptbl + (i * PAGE_SIZE));
701		m = PHYS_TO_VM_PAGE(pa);
702		m->wire_count++;
703	}
704}
705
706/* Allocate pv_entry structure. */
707pv_entry_t
708pv_alloc(void)
709{
710	pv_entry_t pv;
711
712	pv_entry_count++;
713	if (pv_entry_count > pv_entry_high_water)
714		pagedaemon_wakeup();
715	pv = uma_zalloc(pvzone, M_NOWAIT);
716
717	return (pv);
718}
719
720/* Free pv_entry structure. */
721static __inline void
722pv_free(pv_entry_t pve)
723{
724
725	pv_entry_count--;
726	uma_zfree(pvzone, pve);
727}
728
729
730/* Allocate and initialize pv_entry structure. */
731static void
732pv_insert(pmap_t pmap, vm_offset_t va, vm_page_t m)
733{
734	pv_entry_t pve;
735
736	//int su = (pmap == kernel_pmap);
737	//debugf("pv_insert: s (su = %d pmap = 0x%08x va = 0x%08x m = 0x%08x)\n", su,
738	//	(u_int32_t)pmap, va, (u_int32_t)m);
739
740	pve = pv_alloc();
741	if (pve == NULL)
742		panic("pv_insert: no pv entries!");
743
744	pve->pv_pmap = pmap;
745	pve->pv_va = va;
746
747	/* add to pv_list */
748	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
749	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
750
751	TAILQ_INSERT_TAIL(&m->md.pv_list, pve, pv_link);
752
753	//debugf("pv_insert: e\n");
754}
755
756/* Destroy pv entry. */
757static void
758pv_remove(pmap_t pmap, vm_offset_t va, vm_page_t m)
759{
760	pv_entry_t pve;
761
762	//int su = (pmap == kernel_pmap);
763	//debugf("pv_remove: s (su = %d pmap = 0x%08x va = 0x%08x)\n", su, (u_int32_t)pmap, va);
764
765	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
766	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
767
768	/* find pv entry */
769	TAILQ_FOREACH(pve, &m->md.pv_list, pv_link) {
770		if ((pmap == pve->pv_pmap) && (va == pve->pv_va)) {
771			/* remove from pv_list */
772			TAILQ_REMOVE(&m->md.pv_list, pve, pv_link);
773			if (TAILQ_EMPTY(&m->md.pv_list))
774				vm_page_flag_clear(m, PG_WRITEABLE);
775
776			/* free pv entry struct */
777			pv_free(pve);
778			break;
779		}
780	}
781
782	//debugf("pv_remove: e\n");
783}
784
785/*
786 * Clean pte entry, try to free page table page if requested.
787 *
788 * Return 1 if ptbl pages were freed, otherwise return 0.
789 */
790static int
791pte_remove(mmu_t mmu, pmap_t pmap, vm_offset_t va, uint8_t flags)
792{
793	unsigned int pdir_idx = PDIR_IDX(va);
794	unsigned int ptbl_idx = PTBL_IDX(va);
795	vm_page_t m;
796	pte_t *ptbl;
797	pte_t *pte;
798
799	//int su = (pmap == kernel_pmap);
800	//debugf("pte_remove: s (su = %d pmap = 0x%08x va = 0x%08x flags = %d)\n",
801	//		su, (u_int32_t)pmap, va, flags);
802
803	ptbl = pmap->pm_pdir[pdir_idx];
804	KASSERT(ptbl, ("pte_remove: null ptbl"));
805
806	pte = &ptbl[ptbl_idx];
807
808	if (pte == NULL || !PTE_ISVALID(pte))
809		return (0);
810
811	if (PTE_ISWIRED(pte))
812		pmap->pm_stats.wired_count--;
813
814	/* Handle managed entry. */
815	if (PTE_ISMANAGED(pte)) {
816		/* Get vm_page_t for mapped pte. */
817		m = PHYS_TO_VM_PAGE(PTE_PA(pte));
818
819		if (PTE_ISMODIFIED(pte))
820			vm_page_dirty(m);
821
822		if (PTE_ISREFERENCED(pte))
823			vm_page_flag_set(m, PG_REFERENCED);
824
825		pv_remove(pmap, va, m);
826	}
827
828	mtx_lock_spin(&tlbivax_mutex);
829	tlb_miss_lock();
830
831	tlb0_flush_entry(va);
832	pte->flags = 0;
833	pte->rpn = 0;
834
835	tlb_miss_unlock();
836	mtx_unlock_spin(&tlbivax_mutex);
837
838	pmap->pm_stats.resident_count--;
839
840	if (flags & PTBL_UNHOLD) {
841		//debugf("pte_remove: e (unhold)\n");
842		return (ptbl_unhold(mmu, pmap, pdir_idx));
843	}
844
845	//debugf("pte_remove: e\n");
846	return (0);
847}
848
849/*
850 * Insert PTE for a given page and virtual address.
851 */
852static void
853pte_enter(mmu_t mmu, pmap_t pmap, vm_page_t m, vm_offset_t va, uint32_t flags)
854{
855	unsigned int pdir_idx = PDIR_IDX(va);
856	unsigned int ptbl_idx = PTBL_IDX(va);
857	pte_t *ptbl, *pte;
858
859	CTR4(KTR_PMAP, "%s: su = %d pmap = %p va = %p", __func__,
860	    pmap == kernel_pmap, pmap, va);
861
862	/* Get the page table pointer. */
863	ptbl = pmap->pm_pdir[pdir_idx];
864
865	if (ptbl == NULL) {
866		/* Allocate page table pages. */
867		ptbl = ptbl_alloc(mmu, pmap, pdir_idx);
868	} else {
869		/*
870		 * Check if there is valid mapping for requested
871		 * va, if there is, remove it.
872		 */
873		pte = &pmap->pm_pdir[pdir_idx][ptbl_idx];
874		if (PTE_ISVALID(pte)) {
875			pte_remove(mmu, pmap, va, PTBL_HOLD);
876		} else {
877			/*
878			 * pte is not used, increment hold count
879			 * for ptbl pages.
880			 */
881			if (pmap != kernel_pmap)
882				ptbl_hold(mmu, pmap, pdir_idx);
883		}
884	}
885
886	/*
887	 * Insert pv_entry into pv_list for mapped page if part of managed
888	 * memory.
889	 */
890        if ((m->flags & PG_FICTITIOUS) == 0) {
891		if ((m->flags & PG_UNMANAGED) == 0) {
892			flags |= PTE_MANAGED;
893
894			/* Create and insert pv entry. */
895			pv_insert(pmap, va, m);
896		}
897	}
898
899	pmap->pm_stats.resident_count++;
900
901	mtx_lock_spin(&tlbivax_mutex);
902	tlb_miss_lock();
903
904	tlb0_flush_entry(va);
905	if (pmap->pm_pdir[pdir_idx] == NULL) {
906		/*
907		 * If we just allocated a new page table, hook it in
908		 * the pdir.
909		 */
910		pmap->pm_pdir[pdir_idx] = ptbl;
911	}
912	pte = &(pmap->pm_pdir[pdir_idx][ptbl_idx]);
913	pte->rpn = VM_PAGE_TO_PHYS(m) & ~PTE_PA_MASK;
914	pte->flags |= (PTE_VALID | flags);
915
916	tlb_miss_unlock();
917	mtx_unlock_spin(&tlbivax_mutex);
918}
919
920/* Return the pa for the given pmap/va. */
921static vm_paddr_t
922pte_vatopa(mmu_t mmu, pmap_t pmap, vm_offset_t va)
923{
924	vm_paddr_t pa = 0;
925	pte_t *pte;
926
927	pte = pte_find(mmu, pmap, va);
928	if ((pte != NULL) && PTE_ISVALID(pte))
929		pa = (PTE_PA(pte) | (va & PTE_PA_MASK));
930	return (pa);
931}
932
933/* Get a pointer to a PTE in a page table. */
934static pte_t *
935pte_find(mmu_t mmu, pmap_t pmap, vm_offset_t va)
936{
937	unsigned int pdir_idx = PDIR_IDX(va);
938	unsigned int ptbl_idx = PTBL_IDX(va);
939
940	KASSERT((pmap != NULL), ("pte_find: invalid pmap"));
941
942	if (pmap->pm_pdir[pdir_idx])
943		return (&(pmap->pm_pdir[pdir_idx][ptbl_idx]));
944
945	return (NULL);
946}
947
948/**************************************************************************/
949/* PMAP related */
950/**************************************************************************/
951
952/*
953 * This is called during booke_init, before the system is really initialized.
954 */
955static void
956mmu_booke_bootstrap(mmu_t mmu, vm_offset_t start, vm_offset_t kernelend)
957{
958	vm_offset_t phys_kernelend;
959	struct mem_region *mp, *mp1;
960	int cnt, i, j;
961	u_int s, e, sz;
962	u_int phys_avail_count;
963	vm_size_t physsz, hwphyssz, kstack0_sz;
964	vm_offset_t kernel_pdir, kstack0, va;
965	vm_paddr_t kstack0_phys;
966	void *dpcpu;
967	pte_t *pte;
968
969	debugf("mmu_booke_bootstrap: entered\n");
970
971#ifdef SMP
972	kernload_ap = kernload;
973#endif
974
975
976	/* Initialize invalidation mutex */
977	mtx_init(&tlbivax_mutex, "tlbivax", NULL, MTX_SPIN);
978
979	/* Read TLB0 size and associativity. */
980	tlb0_get_tlbconf();
981
982	/*
983	 * Align kernel start and end address (kernel image).
984	 * Note that kernel end does not necessarily relate to kernsize.
985	 * kernsize is the size of the kernel that is actually mapped.
986	 */
987	kernstart = trunc_page(start);
988	data_start = round_page(kernelend);
989	data_end = data_start;
990
991	/*
992	 * Addresses of preloaded modules (like file systems) use
993	 * physical addresses. Make sure we relocate those into
994	 * virtual addresses.
995	 */
996	preload_addr_relocate = kernstart - kernload;
997
998	/* Allocate the dynamic per-cpu area. */
999	dpcpu = (void *)data_end;
1000	data_end += DPCPU_SIZE;
1001
1002	/* Allocate space for the message buffer. */
1003	msgbufp = (struct msgbuf *)data_end;
1004	data_end += msgbufsize;
1005	debugf(" msgbufp at 0x%08x end = 0x%08x\n", (uint32_t)msgbufp,
1006	    data_end);
1007
1008	data_end = round_page(data_end);
1009
1010	/* Allocate space for ptbl_bufs. */
1011	ptbl_bufs = (struct ptbl_buf *)data_end;
1012	data_end += sizeof(struct ptbl_buf) * PTBL_BUFS;
1013	debugf(" ptbl_bufs at 0x%08x end = 0x%08x\n", (uint32_t)ptbl_bufs,
1014	    data_end);
1015
1016	data_end = round_page(data_end);
1017
1018	/* Allocate PTE tables for kernel KVA. */
1019	kernel_pdir = data_end;
1020	kernel_ptbls = (VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS +
1021	    PDIR_SIZE - 1) / PDIR_SIZE;
1022	data_end += kernel_ptbls * PTBL_PAGES * PAGE_SIZE;
1023	debugf(" kernel ptbls: %d\n", kernel_ptbls);
1024	debugf(" kernel pdir at 0x%08x end = 0x%08x\n", kernel_pdir, data_end);
1025
1026	debugf(" data_end: 0x%08x\n", data_end);
1027	if (data_end - kernstart > kernsize) {
1028		kernsize += tlb1_mapin_region(kernstart + kernsize,
1029		    kernload + kernsize, (data_end - kernstart) - kernsize);
1030	}
1031	data_end = kernstart + kernsize;
1032	debugf(" updated data_end: 0x%08x\n", data_end);
1033
1034	/*
1035	 * Clear the structures - note we can only do it safely after the
1036	 * possible additional TLB1 translations are in place (above) so that
1037	 * all range up to the currently calculated 'data_end' is covered.
1038	 */
1039	dpcpu_init(dpcpu, 0);
1040	memset((void *)ptbl_bufs, 0, sizeof(struct ptbl_buf) * PTBL_SIZE);
1041	memset((void *)kernel_pdir, 0, kernel_ptbls * PTBL_PAGES * PAGE_SIZE);
1042
1043	/*******************************************************/
1044	/* Set the start and end of kva. */
1045	/*******************************************************/
1046	virtual_avail = round_page(data_end);
1047	virtual_end = VM_MAX_KERNEL_ADDRESS;
1048
1049	/* Allocate KVA space for page zero/copy operations. */
1050	zero_page_va = virtual_avail;
1051	virtual_avail += PAGE_SIZE;
1052	zero_page_idle_va = virtual_avail;
1053	virtual_avail += PAGE_SIZE;
1054	copy_page_src_va = virtual_avail;
1055	virtual_avail += PAGE_SIZE;
1056	copy_page_dst_va = virtual_avail;
1057	virtual_avail += PAGE_SIZE;
1058	debugf("zero_page_va = 0x%08x\n", zero_page_va);
1059	debugf("zero_page_idle_va = 0x%08x\n", zero_page_idle_va);
1060	debugf("copy_page_src_va = 0x%08x\n", copy_page_src_va);
1061	debugf("copy_page_dst_va = 0x%08x\n", copy_page_dst_va);
1062
1063	/* Initialize page zero/copy mutexes. */
1064	mtx_init(&zero_page_mutex, "mmu_booke_zero_page", NULL, MTX_DEF);
1065	mtx_init(&copy_page_mutex, "mmu_booke_copy_page", NULL, MTX_DEF);
1066
1067	/* Allocate KVA space for ptbl bufs. */
1068	ptbl_buf_pool_vabase = virtual_avail;
1069	virtual_avail += PTBL_BUFS * PTBL_PAGES * PAGE_SIZE;
1070	debugf("ptbl_buf_pool_vabase = 0x%08x end = 0x%08x\n",
1071	    ptbl_buf_pool_vabase, virtual_avail);
1072
1073	/* Calculate corresponding physical addresses for the kernel region. */
1074	phys_kernelend = kernload + kernsize;
1075	debugf("kernel image and allocated data:\n");
1076	debugf(" kernload    = 0x%08x\n", kernload);
1077	debugf(" kernstart   = 0x%08x\n", kernstart);
1078	debugf(" kernsize    = 0x%08x\n", kernsize);
1079
1080	if (sizeof(phys_avail) / sizeof(phys_avail[0]) < availmem_regions_sz)
1081		panic("mmu_booke_bootstrap: phys_avail too small");
1082
1083	/*
1084	 * Remove kernel physical address range from avail regions list. Page
1085	 * align all regions.  Non-page aligned memory isn't very interesting
1086	 * to us.  Also, sort the entries for ascending addresses.
1087	 */
1088
1089	/* Retrieve phys/avail mem regions */
1090	mem_regions(&physmem_regions, &physmem_regions_sz,
1091	    &availmem_regions, &availmem_regions_sz);
1092	sz = 0;
1093	cnt = availmem_regions_sz;
1094	debugf("processing avail regions:\n");
1095	for (mp = availmem_regions; mp->mr_size; mp++) {
1096		s = mp->mr_start;
1097		e = mp->mr_start + mp->mr_size;
1098		debugf(" %08x-%08x -> ", s, e);
1099		/* Check whether this region holds all of the kernel. */
1100		if (s < kernload && e > phys_kernelend) {
1101			availmem_regions[cnt].mr_start = phys_kernelend;
1102			availmem_regions[cnt++].mr_size = e - phys_kernelend;
1103			e = kernload;
1104		}
1105		/* Look whether this regions starts within the kernel. */
1106		if (s >= kernload && s < phys_kernelend) {
1107			if (e <= phys_kernelend)
1108				goto empty;
1109			s = phys_kernelend;
1110		}
1111		/* Now look whether this region ends within the kernel. */
1112		if (e > kernload && e <= phys_kernelend) {
1113			if (s >= kernload)
1114				goto empty;
1115			e = kernload;
1116		}
1117		/* Now page align the start and size of the region. */
1118		s = round_page(s);
1119		e = trunc_page(e);
1120		if (e < s)
1121			e = s;
1122		sz = e - s;
1123		debugf("%08x-%08x = %x\n", s, e, sz);
1124
1125		/* Check whether some memory is left here. */
1126		if (sz == 0) {
1127		empty:
1128			memmove(mp, mp + 1,
1129			    (cnt - (mp - availmem_regions)) * sizeof(*mp));
1130			cnt--;
1131			mp--;
1132			continue;
1133		}
1134
1135		/* Do an insertion sort. */
1136		for (mp1 = availmem_regions; mp1 < mp; mp1++)
1137			if (s < mp1->mr_start)
1138				break;
1139		if (mp1 < mp) {
1140			memmove(mp1 + 1, mp1, (char *)mp - (char *)mp1);
1141			mp1->mr_start = s;
1142			mp1->mr_size = sz;
1143		} else {
1144			mp->mr_start = s;
1145			mp->mr_size = sz;
1146		}
1147	}
1148	availmem_regions_sz = cnt;
1149
1150	/*******************************************************/
1151	/* Steal physical memory for kernel stack from the end */
1152	/* of the first avail region                           */
1153	/*******************************************************/
1154	kstack0_sz = KSTACK_PAGES * PAGE_SIZE;
1155	kstack0_phys = availmem_regions[0].mr_start +
1156	    availmem_regions[0].mr_size;
1157	kstack0_phys -= kstack0_sz;
1158	availmem_regions[0].mr_size -= kstack0_sz;
1159
1160	/*******************************************************/
1161	/* Fill in phys_avail table, based on availmem_regions */
1162	/*******************************************************/
1163	phys_avail_count = 0;
1164	physsz = 0;
1165	hwphyssz = 0;
1166	TUNABLE_ULONG_FETCH("hw.physmem", (u_long *) &hwphyssz);
1167
1168	debugf("fill in phys_avail:\n");
1169	for (i = 0, j = 0; i < availmem_regions_sz; i++, j += 2) {
1170
1171		debugf(" region: 0x%08x - 0x%08x (0x%08x)\n",
1172		    availmem_regions[i].mr_start,
1173		    availmem_regions[i].mr_start +
1174		        availmem_regions[i].mr_size,
1175		    availmem_regions[i].mr_size);
1176
1177		if (hwphyssz != 0 &&
1178		    (physsz + availmem_regions[i].mr_size) >= hwphyssz) {
1179			debugf(" hw.physmem adjust\n");
1180			if (physsz < hwphyssz) {
1181				phys_avail[j] = availmem_regions[i].mr_start;
1182				phys_avail[j + 1] =
1183				    availmem_regions[i].mr_start +
1184				    hwphyssz - physsz;
1185				physsz = hwphyssz;
1186				phys_avail_count++;
1187			}
1188			break;
1189		}
1190
1191		phys_avail[j] = availmem_regions[i].mr_start;
1192		phys_avail[j + 1] = availmem_regions[i].mr_start +
1193		    availmem_regions[i].mr_size;
1194		phys_avail_count++;
1195		physsz += availmem_regions[i].mr_size;
1196	}
1197	physmem = btoc(physsz);
1198
1199	/* Calculate the last available physical address. */
1200	for (i = 0; phys_avail[i + 2] != 0; i += 2)
1201		;
1202	Maxmem = powerpc_btop(phys_avail[i + 1]);
1203
1204	debugf("Maxmem = 0x%08lx\n", Maxmem);
1205	debugf("phys_avail_count = %d\n", phys_avail_count);
1206	debugf("physsz = 0x%08x physmem = %ld (0x%08lx)\n", physsz, physmem,
1207	    physmem);
1208
1209	/*******************************************************/
1210	/* Initialize (statically allocated) kernel pmap. */
1211	/*******************************************************/
1212	PMAP_LOCK_INIT(kernel_pmap);
1213	kptbl_min = VM_MIN_KERNEL_ADDRESS / PDIR_SIZE;
1214
1215	debugf("kernel_pmap = 0x%08x\n", (uint32_t)kernel_pmap);
1216	debugf("kptbl_min = %d, kernel_ptbls = %d\n", kptbl_min, kernel_ptbls);
1217	debugf("kernel pdir range: 0x%08x - 0x%08x\n",
1218	    kptbl_min * PDIR_SIZE, (kptbl_min + kernel_ptbls) * PDIR_SIZE - 1);
1219
1220	/* Initialize kernel pdir */
1221	for (i = 0; i < kernel_ptbls; i++)
1222		kernel_pmap->pm_pdir[kptbl_min + i] =
1223		    (pte_t *)(kernel_pdir + (i * PAGE_SIZE * PTBL_PAGES));
1224
1225	for (i = 0; i < MAXCPU; i++) {
1226		kernel_pmap->pm_tid[i] = TID_KERNEL;
1227
1228		/* Initialize each CPU's tidbusy entry 0 with kernel_pmap */
1229		tidbusy[i][0] = kernel_pmap;
1230	}
1231
1232	/*
1233	 * Fill in PTEs covering kernel code and data. They are not required
1234	 * for address translation, as this area is covered by static TLB1
1235	 * entries, but for pte_vatopa() to work correctly with kernel area
1236	 * addresses.
1237	 */
1238	for (va = KERNBASE; va < data_end; va += PAGE_SIZE) {
1239		pte = &(kernel_pmap->pm_pdir[PDIR_IDX(va)][PTBL_IDX(va)]);
1240		pte->rpn = kernload + (va - KERNBASE);
1241		pte->flags = PTE_M | PTE_SR | PTE_SW | PTE_SX | PTE_WIRED |
1242		    PTE_VALID;
1243	}
1244	/* Mark kernel_pmap active on all CPUs */
1245	CPU_FILL(&kernel_pmap->pm_active);
1246
1247	/*******************************************************/
1248	/* Final setup */
1249	/*******************************************************/
1250
1251	/* Enter kstack0 into kernel map, provide guard page */
1252	kstack0 = virtual_avail + KSTACK_GUARD_PAGES * PAGE_SIZE;
1253	thread0.td_kstack = kstack0;
1254	thread0.td_kstack_pages = KSTACK_PAGES;
1255
1256	debugf("kstack_sz = 0x%08x\n", kstack0_sz);
1257	debugf("kstack0_phys at 0x%08x - 0x%08x\n",
1258	    kstack0_phys, kstack0_phys + kstack0_sz);
1259	debugf("kstack0 at 0x%08x - 0x%08x\n", kstack0, kstack0 + kstack0_sz);
1260
1261	virtual_avail += KSTACK_GUARD_PAGES * PAGE_SIZE + kstack0_sz;
1262	for (i = 0; i < KSTACK_PAGES; i++) {
1263		mmu_booke_kenter(mmu, kstack0, kstack0_phys);
1264		kstack0 += PAGE_SIZE;
1265		kstack0_phys += PAGE_SIZE;
1266	}
1267
1268	debugf("virtual_avail = %08x\n", virtual_avail);
1269	debugf("virtual_end   = %08x\n", virtual_end);
1270
1271	debugf("mmu_booke_bootstrap: exit\n");
1272}
1273
1274void
1275pmap_bootstrap_ap(volatile uint32_t *trcp __unused)
1276{
1277	int i;
1278
1279	/*
1280	 * Finish TLB1 configuration: the BSP already set up its TLB1 and we
1281	 * have the snapshot of its contents in the s/w tlb1[] table, so use
1282	 * these values directly to (re)program AP's TLB1 hardware.
1283	 */
1284	for (i = 0; i < tlb1_idx; i ++) {
1285		/* Skip invalid entries */
1286		if (!(tlb1[i].mas1 & MAS1_VALID))
1287			continue;
1288
1289		tlb1_write_entry(i);
1290	}
1291
1292	set_mas4_defaults();
1293}
1294
1295/*
1296 * Get the physical page address for the given pmap/virtual address.
1297 */
1298static vm_paddr_t
1299mmu_booke_extract(mmu_t mmu, pmap_t pmap, vm_offset_t va)
1300{
1301	vm_paddr_t pa;
1302
1303	PMAP_LOCK(pmap);
1304	pa = pte_vatopa(mmu, pmap, va);
1305	PMAP_UNLOCK(pmap);
1306
1307	return (pa);
1308}
1309
1310/*
1311 * Extract the physical page address associated with the given
1312 * kernel virtual address.
1313 */
1314static vm_paddr_t
1315mmu_booke_kextract(mmu_t mmu, vm_offset_t va)
1316{
1317
1318	return (pte_vatopa(mmu, kernel_pmap, va));
1319}
1320
1321/*
1322 * Initialize the pmap module.
1323 * Called by vm_init, to initialize any structures that the pmap
1324 * system needs to map virtual memory.
1325 */
1326static void
1327mmu_booke_init(mmu_t mmu)
1328{
1329	int shpgperproc = PMAP_SHPGPERPROC;
1330
1331	/*
1332	 * Initialize the address space (zone) for the pv entries.  Set a
1333	 * high water mark so that the system can recover from excessive
1334	 * numbers of pv entries.
1335	 */
1336	pvzone = uma_zcreate("PV ENTRY", sizeof(struct pv_entry), NULL, NULL,
1337	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM | UMA_ZONE_NOFREE);
1338
1339	TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc);
1340	pv_entry_max = shpgperproc * maxproc + cnt.v_page_count;
1341
1342	TUNABLE_INT_FETCH("vm.pmap.pv_entries", &pv_entry_max);
1343	pv_entry_high_water = 9 * (pv_entry_max / 10);
1344
1345	uma_zone_set_obj(pvzone, &pvzone_obj, pv_entry_max);
1346
1347	/* Pre-fill pvzone with initial number of pv entries. */
1348	uma_prealloc(pvzone, PV_ENTRY_ZONE_MIN);
1349
1350	/* Initialize ptbl allocation. */
1351	ptbl_init();
1352}
1353
1354/*
1355 * Map a list of wired pages into kernel virtual address space.  This is
1356 * intended for temporary mappings which do not need page modification or
1357 * references recorded.  Existing mappings in the region are overwritten.
1358 */
1359static void
1360mmu_booke_qenter(mmu_t mmu, vm_offset_t sva, vm_page_t *m, int count)
1361{
1362	vm_offset_t va;
1363
1364	va = sva;
1365	while (count-- > 0) {
1366		mmu_booke_kenter(mmu, va, VM_PAGE_TO_PHYS(*m));
1367		va += PAGE_SIZE;
1368		m++;
1369	}
1370}
1371
1372/*
1373 * Remove page mappings from kernel virtual address space.  Intended for
1374 * temporary mappings entered by mmu_booke_qenter.
1375 */
1376static void
1377mmu_booke_qremove(mmu_t mmu, vm_offset_t sva, int count)
1378{
1379	vm_offset_t va;
1380
1381	va = sva;
1382	while (count-- > 0) {
1383		mmu_booke_kremove(mmu, va);
1384		va += PAGE_SIZE;
1385	}
1386}
1387
1388/*
1389 * Map a wired page into kernel virtual address space.
1390 */
1391static void
1392mmu_booke_kenter(mmu_t mmu, vm_offset_t va, vm_offset_t pa)
1393{
1394	unsigned int pdir_idx = PDIR_IDX(va);
1395	unsigned int ptbl_idx = PTBL_IDX(va);
1396	uint32_t flags;
1397	pte_t *pte;
1398
1399	KASSERT(((va >= VM_MIN_KERNEL_ADDRESS) &&
1400	    (va <= VM_MAX_KERNEL_ADDRESS)), ("mmu_booke_kenter: invalid va"));
1401
1402	flags = 0;
1403	flags |= (PTE_SR | PTE_SW | PTE_SX | PTE_WIRED | PTE_VALID);
1404	flags |= PTE_M;
1405
1406	pte = &(kernel_pmap->pm_pdir[pdir_idx][ptbl_idx]);
1407
1408	mtx_lock_spin(&tlbivax_mutex);
1409	tlb_miss_lock();
1410
1411	if (PTE_ISVALID(pte)) {
1412
1413		CTR1(KTR_PMAP, "%s: replacing entry!", __func__);
1414
1415		/* Flush entry from TLB0 */
1416		tlb0_flush_entry(va);
1417	}
1418
1419	pte->rpn = pa & ~PTE_PA_MASK;
1420	pte->flags = flags;
1421
1422	//debugf("mmu_booke_kenter: pdir_idx = %d ptbl_idx = %d va=0x%08x "
1423	//		"pa=0x%08x rpn=0x%08x flags=0x%08x\n",
1424	//		pdir_idx, ptbl_idx, va, pa, pte->rpn, pte->flags);
1425
1426	/* Flush the real memory from the instruction cache. */
1427	if ((flags & (PTE_I | PTE_G)) == 0) {
1428		__syncicache((void *)va, PAGE_SIZE);
1429	}
1430
1431	tlb_miss_unlock();
1432	mtx_unlock_spin(&tlbivax_mutex);
1433}
1434
1435/*
1436 * Remove a page from kernel page table.
1437 */
1438static void
1439mmu_booke_kremove(mmu_t mmu, vm_offset_t va)
1440{
1441	unsigned int pdir_idx = PDIR_IDX(va);
1442	unsigned int ptbl_idx = PTBL_IDX(va);
1443	pte_t *pte;
1444
1445//	CTR2(KTR_PMAP,("%s: s (va = 0x%08x)\n", __func__, va));
1446
1447	KASSERT(((va >= VM_MIN_KERNEL_ADDRESS) &&
1448	    (va <= VM_MAX_KERNEL_ADDRESS)),
1449	    ("mmu_booke_kremove: invalid va"));
1450
1451	pte = &(kernel_pmap->pm_pdir[pdir_idx][ptbl_idx]);
1452
1453	if (!PTE_ISVALID(pte)) {
1454
1455		CTR1(KTR_PMAP, "%s: invalid pte", __func__);
1456
1457		return;
1458	}
1459
1460	mtx_lock_spin(&tlbivax_mutex);
1461	tlb_miss_lock();
1462
1463	/* Invalidate entry in TLB0, update PTE. */
1464	tlb0_flush_entry(va);
1465	pte->flags = 0;
1466	pte->rpn = 0;
1467
1468	tlb_miss_unlock();
1469	mtx_unlock_spin(&tlbivax_mutex);
1470}
1471
1472/*
1473 * Initialize pmap associated with process 0.
1474 */
1475static void
1476mmu_booke_pinit0(mmu_t mmu, pmap_t pmap)
1477{
1478
1479	mmu_booke_pinit(mmu, pmap);
1480	PCPU_SET(curpmap, pmap);
1481}
1482
1483/*
1484 * Initialize a preallocated and zeroed pmap structure,
1485 * such as one in a vmspace structure.
1486 */
1487static void
1488mmu_booke_pinit(mmu_t mmu, pmap_t pmap)
1489{
1490	int i;
1491
1492	CTR4(KTR_PMAP, "%s: pmap = %p, proc %d '%s'", __func__, pmap,
1493	    curthread->td_proc->p_pid, curthread->td_proc->p_comm);
1494
1495	KASSERT((pmap != kernel_pmap), ("pmap_pinit: initializing kernel_pmap"));
1496
1497	PMAP_LOCK_INIT(pmap);
1498	for (i = 0; i < MAXCPU; i++)
1499		pmap->pm_tid[i] = TID_NONE;
1500	CPU_ZERO(&kernel_pmap->pm_active);
1501	bzero(&pmap->pm_stats, sizeof(pmap->pm_stats));
1502	bzero(&pmap->pm_pdir, sizeof(pte_t *) * PDIR_NENTRIES);
1503	TAILQ_INIT(&pmap->pm_ptbl_list);
1504}
1505
1506/*
1507 * Release any resources held by the given physical map.
1508 * Called when a pmap initialized by mmu_booke_pinit is being released.
1509 * Should only be called if the map contains no valid mappings.
1510 */
1511static void
1512mmu_booke_release(mmu_t mmu, pmap_t pmap)
1513{
1514
1515	KASSERT(pmap->pm_stats.resident_count == 0,
1516	    ("pmap_release: pmap resident count %ld != 0",
1517	    pmap->pm_stats.resident_count));
1518
1519	PMAP_LOCK_DESTROY(pmap);
1520}
1521
1522/*
1523 * Insert the given physical page at the specified virtual address in the
1524 * target physical map with the protection requested. If specified the page
1525 * will be wired down.
1526 */
1527static void
1528mmu_booke_enter(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m,
1529    vm_prot_t prot, boolean_t wired)
1530{
1531
1532	vm_page_lock_queues();
1533	PMAP_LOCK(pmap);
1534	mmu_booke_enter_locked(mmu, pmap, va, m, prot, wired);
1535	vm_page_unlock_queues();
1536	PMAP_UNLOCK(pmap);
1537}
1538
1539static void
1540mmu_booke_enter_locked(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m,
1541    vm_prot_t prot, boolean_t wired)
1542{
1543	pte_t *pte;
1544	vm_paddr_t pa;
1545	uint32_t flags;
1546	int su, sync;
1547
1548	pa = VM_PAGE_TO_PHYS(m);
1549	su = (pmap == kernel_pmap);
1550	sync = 0;
1551
1552	//debugf("mmu_booke_enter_locked: s (pmap=0x%08x su=%d tid=%d m=0x%08x va=0x%08x "
1553	//		"pa=0x%08x prot=0x%08x wired=%d)\n",
1554	//		(u_int32_t)pmap, su, pmap->pm_tid,
1555	//		(u_int32_t)m, va, pa, prot, wired);
1556
1557	if (su) {
1558		KASSERT(((va >= virtual_avail) &&
1559		    (va <= VM_MAX_KERNEL_ADDRESS)),
1560		    ("mmu_booke_enter_locked: kernel pmap, non kernel va"));
1561	} else {
1562		KASSERT((va <= VM_MAXUSER_ADDRESS),
1563		    ("mmu_booke_enter_locked: user pmap, non user va"));
1564	}
1565	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0 ||
1566	    (m->oflags & VPO_BUSY) != 0 || VM_OBJECT_LOCKED(m->object),
1567	    ("mmu_booke_enter_locked: page %p is not busy", m));
1568
1569	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1570
1571	/*
1572	 * If there is an existing mapping, and the physical address has not
1573	 * changed, must be protection or wiring change.
1574	 */
1575	if (((pte = pte_find(mmu, pmap, va)) != NULL) &&
1576	    (PTE_ISVALID(pte)) && (PTE_PA(pte) == pa)) {
1577
1578		/*
1579		 * Before actually updating pte->flags we calculate and
1580		 * prepare its new value in a helper var.
1581		 */
1582		flags = pte->flags;
1583		flags &= ~(PTE_UW | PTE_UX | PTE_SW | PTE_SX | PTE_MODIFIED);
1584
1585		/* Wiring change, just update stats. */
1586		if (wired) {
1587			if (!PTE_ISWIRED(pte)) {
1588				flags |= PTE_WIRED;
1589				pmap->pm_stats.wired_count++;
1590			}
1591		} else {
1592			if (PTE_ISWIRED(pte)) {
1593				flags &= ~PTE_WIRED;
1594				pmap->pm_stats.wired_count--;
1595			}
1596		}
1597
1598		if (prot & VM_PROT_WRITE) {
1599			/* Add write permissions. */
1600			flags |= PTE_SW;
1601			if (!su)
1602				flags |= PTE_UW;
1603
1604			if ((flags & PTE_MANAGED) != 0)
1605				vm_page_flag_set(m, PG_WRITEABLE);
1606		} else {
1607			/* Handle modified pages, sense modify status. */
1608
1609			/*
1610			 * The PTE_MODIFIED flag could be set by underlying
1611			 * TLB misses since we last read it (above), possibly
1612			 * other CPUs could update it so we check in the PTE
1613			 * directly rather than rely on that saved local flags
1614			 * copy.
1615			 */
1616			if (PTE_ISMODIFIED(pte))
1617				vm_page_dirty(m);
1618		}
1619
1620		if (prot & VM_PROT_EXECUTE) {
1621			flags |= PTE_SX;
1622			if (!su)
1623				flags |= PTE_UX;
1624
1625			/*
1626			 * Check existing flags for execute permissions: if we
1627			 * are turning execute permissions on, icache should
1628			 * be flushed.
1629			 */
1630			if ((pte->flags & (PTE_UX | PTE_SX)) == 0)
1631				sync++;
1632		}
1633
1634		flags &= ~PTE_REFERENCED;
1635
1636		/*
1637		 * The new flags value is all calculated -- only now actually
1638		 * update the PTE.
1639		 */
1640		mtx_lock_spin(&tlbivax_mutex);
1641		tlb_miss_lock();
1642
1643		tlb0_flush_entry(va);
1644		pte->flags = flags;
1645
1646		tlb_miss_unlock();
1647		mtx_unlock_spin(&tlbivax_mutex);
1648
1649	} else {
1650		/*
1651		 * If there is an existing mapping, but it's for a different
1652		 * physical address, pte_enter() will delete the old mapping.
1653		 */
1654		//if ((pte != NULL) && PTE_ISVALID(pte))
1655		//	debugf("mmu_booke_enter_locked: replace\n");
1656		//else
1657		//	debugf("mmu_booke_enter_locked: new\n");
1658
1659		/* Now set up the flags and install the new mapping. */
1660		flags = (PTE_SR | PTE_VALID);
1661		flags |= PTE_M;
1662
1663		if (!su)
1664			flags |= PTE_UR;
1665
1666		if (prot & VM_PROT_WRITE) {
1667			flags |= PTE_SW;
1668			if (!su)
1669				flags |= PTE_UW;
1670
1671			if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0)
1672				vm_page_flag_set(m, PG_WRITEABLE);
1673		}
1674
1675		if (prot & VM_PROT_EXECUTE) {
1676			flags |= PTE_SX;
1677			if (!su)
1678				flags |= PTE_UX;
1679		}
1680
1681		/* If its wired update stats. */
1682		if (wired) {
1683			pmap->pm_stats.wired_count++;
1684			flags |= PTE_WIRED;
1685		}
1686
1687		pte_enter(mmu, pmap, m, va, flags);
1688
1689		/* Flush the real memory from the instruction cache. */
1690		if (prot & VM_PROT_EXECUTE)
1691			sync++;
1692	}
1693
1694	if (sync && (su || pmap == PCPU_GET(curpmap))) {
1695		__syncicache((void *)va, PAGE_SIZE);
1696		sync = 0;
1697	}
1698}
1699
1700/*
1701 * Maps a sequence of resident pages belonging to the same object.
1702 * The sequence begins with the given page m_start.  This page is
1703 * mapped at the given virtual address start.  Each subsequent page is
1704 * mapped at a virtual address that is offset from start by the same
1705 * amount as the page is offset from m_start within the object.  The
1706 * last page in the sequence is the page with the largest offset from
1707 * m_start that can be mapped at a virtual address less than the given
1708 * virtual address end.  Not every virtual page between start and end
1709 * is mapped; only those for which a resident page exists with the
1710 * corresponding offset from m_start are mapped.
1711 */
1712static void
1713mmu_booke_enter_object(mmu_t mmu, pmap_t pmap, vm_offset_t start,
1714    vm_offset_t end, vm_page_t m_start, vm_prot_t prot)
1715{
1716	vm_page_t m;
1717	vm_pindex_t diff, psize;
1718
1719	psize = atop(end - start);
1720	m = m_start;
1721	vm_page_lock_queues();
1722	PMAP_LOCK(pmap);
1723	while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
1724		mmu_booke_enter_locked(mmu, pmap, start + ptoa(diff), m,
1725		    prot & (VM_PROT_READ | VM_PROT_EXECUTE), FALSE);
1726		m = TAILQ_NEXT(m, listq);
1727	}
1728	vm_page_unlock_queues();
1729	PMAP_UNLOCK(pmap);
1730}
1731
1732static void
1733mmu_booke_enter_quick(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m,
1734    vm_prot_t prot)
1735{
1736
1737	vm_page_lock_queues();
1738	PMAP_LOCK(pmap);
1739	mmu_booke_enter_locked(mmu, pmap, va, m,
1740	    prot & (VM_PROT_READ | VM_PROT_EXECUTE), FALSE);
1741	vm_page_unlock_queues();
1742	PMAP_UNLOCK(pmap);
1743}
1744
1745/*
1746 * Remove the given range of addresses from the specified map.
1747 *
1748 * It is assumed that the start and end are properly rounded to the page size.
1749 */
1750static void
1751mmu_booke_remove(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_offset_t endva)
1752{
1753	pte_t *pte;
1754	uint8_t hold_flag;
1755
1756	int su = (pmap == kernel_pmap);
1757
1758	//debugf("mmu_booke_remove: s (su = %d pmap=0x%08x tid=%d va=0x%08x endva=0x%08x)\n",
1759	//		su, (u_int32_t)pmap, pmap->pm_tid, va, endva);
1760
1761	if (su) {
1762		KASSERT(((va >= virtual_avail) &&
1763		    (va <= VM_MAX_KERNEL_ADDRESS)),
1764		    ("mmu_booke_remove: kernel pmap, non kernel va"));
1765	} else {
1766		KASSERT((va <= VM_MAXUSER_ADDRESS),
1767		    ("mmu_booke_remove: user pmap, non user va"));
1768	}
1769
1770	if (PMAP_REMOVE_DONE(pmap)) {
1771		//debugf("mmu_booke_remove: e (empty)\n");
1772		return;
1773	}
1774
1775	hold_flag = PTBL_HOLD_FLAG(pmap);
1776	//debugf("mmu_booke_remove: hold_flag = %d\n", hold_flag);
1777
1778	vm_page_lock_queues();
1779	PMAP_LOCK(pmap);
1780	for (; va < endva; va += PAGE_SIZE) {
1781		pte = pte_find(mmu, pmap, va);
1782		if ((pte != NULL) && PTE_ISVALID(pte))
1783			pte_remove(mmu, pmap, va, hold_flag);
1784	}
1785	PMAP_UNLOCK(pmap);
1786	vm_page_unlock_queues();
1787
1788	//debugf("mmu_booke_remove: e\n");
1789}
1790
1791/*
1792 * Remove physical page from all pmaps in which it resides.
1793 */
1794static void
1795mmu_booke_remove_all(mmu_t mmu, vm_page_t m)
1796{
1797	pv_entry_t pv, pvn;
1798	uint8_t hold_flag;
1799
1800	vm_page_lock_queues();
1801	for (pv = TAILQ_FIRST(&m->md.pv_list); pv != NULL; pv = pvn) {
1802		pvn = TAILQ_NEXT(pv, pv_link);
1803
1804		PMAP_LOCK(pv->pv_pmap);
1805		hold_flag = PTBL_HOLD_FLAG(pv->pv_pmap);
1806		pte_remove(mmu, pv->pv_pmap, pv->pv_va, hold_flag);
1807		PMAP_UNLOCK(pv->pv_pmap);
1808	}
1809	vm_page_flag_clear(m, PG_WRITEABLE);
1810	vm_page_unlock_queues();
1811}
1812
1813/*
1814 * Map a range of physical addresses into kernel virtual address space.
1815 */
1816static vm_offset_t
1817mmu_booke_map(mmu_t mmu, vm_offset_t *virt, vm_offset_t pa_start,
1818    vm_offset_t pa_end, int prot)
1819{
1820	vm_offset_t sva = *virt;
1821	vm_offset_t va = sva;
1822
1823	//debugf("mmu_booke_map: s (sva = 0x%08x pa_start = 0x%08x pa_end = 0x%08x)\n",
1824	//		sva, pa_start, pa_end);
1825
1826	while (pa_start < pa_end) {
1827		mmu_booke_kenter(mmu, va, pa_start);
1828		va += PAGE_SIZE;
1829		pa_start += PAGE_SIZE;
1830	}
1831	*virt = va;
1832
1833	//debugf("mmu_booke_map: e (va = 0x%08x)\n", va);
1834	return (sva);
1835}
1836
1837/*
1838 * The pmap must be activated before it's address space can be accessed in any
1839 * way.
1840 */
1841static void
1842mmu_booke_activate(mmu_t mmu, struct thread *td)
1843{
1844	pmap_t pmap;
1845	u_int cpuid;
1846
1847	pmap = &td->td_proc->p_vmspace->vm_pmap;
1848
1849	CTR5(KTR_PMAP, "%s: s (td = %p, proc = '%s', id = %d, pmap = 0x%08x)",
1850	    __func__, td, td->td_proc->p_comm, td->td_proc->p_pid, pmap);
1851
1852	KASSERT((pmap != kernel_pmap), ("mmu_booke_activate: kernel_pmap!"));
1853
1854	mtx_lock_spin(&sched_lock);
1855
1856	cpuid = PCPU_GET(cpuid);
1857	CPU_SET_ATOMIC(cpuid, &pmap->pm_active);
1858	PCPU_SET(curpmap, pmap);
1859
1860	if (pmap->pm_tid[cpuid] == TID_NONE)
1861		tid_alloc(pmap);
1862
1863	/* Load PID0 register with pmap tid value. */
1864	mtspr(SPR_PID0, pmap->pm_tid[cpuid]);
1865	__asm __volatile("isync");
1866
1867	mtx_unlock_spin(&sched_lock);
1868
1869	CTR3(KTR_PMAP, "%s: e (tid = %d for '%s')", __func__,
1870	    pmap->pm_tid[PCPU_GET(cpuid)], td->td_proc->p_comm);
1871}
1872
1873/*
1874 * Deactivate the specified process's address space.
1875 */
1876static void
1877mmu_booke_deactivate(mmu_t mmu, struct thread *td)
1878{
1879	pmap_t pmap;
1880
1881	pmap = &td->td_proc->p_vmspace->vm_pmap;
1882
1883	CTR5(KTR_PMAP, "%s: td=%p, proc = '%s', id = %d, pmap = 0x%08x",
1884	    __func__, td, td->td_proc->p_comm, td->td_proc->p_pid, pmap);
1885
1886	CPU_CLR_ATOMIC(PCPU_GET(cpuid), &pmap->pm_active);
1887	PCPU_SET(curpmap, NULL);
1888}
1889
1890/*
1891 * Copy the range specified by src_addr/len
1892 * from the source map to the range dst_addr/len
1893 * in the destination map.
1894 *
1895 * This routine is only advisory and need not do anything.
1896 */
1897static void
1898mmu_booke_copy(mmu_t mmu, pmap_t dst_pmap, pmap_t src_pmap,
1899    vm_offset_t dst_addr, vm_size_t len, vm_offset_t src_addr)
1900{
1901
1902}
1903
1904/*
1905 * Set the physical protection on the specified range of this map as requested.
1906 */
1907static void
1908mmu_booke_protect(mmu_t mmu, pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
1909    vm_prot_t prot)
1910{
1911	vm_offset_t va;
1912	vm_page_t m;
1913	pte_t *pte;
1914
1915	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
1916		mmu_booke_remove(mmu, pmap, sva, eva);
1917		return;
1918	}
1919
1920	if (prot & VM_PROT_WRITE)
1921		return;
1922
1923	vm_page_lock_queues();
1924	PMAP_LOCK(pmap);
1925	for (va = sva; va < eva; va += PAGE_SIZE) {
1926		if ((pte = pte_find(mmu, pmap, va)) != NULL) {
1927			if (PTE_ISVALID(pte)) {
1928				m = PHYS_TO_VM_PAGE(PTE_PA(pte));
1929
1930				mtx_lock_spin(&tlbivax_mutex);
1931				tlb_miss_lock();
1932
1933				/* Handle modified pages. */
1934				if (PTE_ISMODIFIED(pte) && PTE_ISMANAGED(pte))
1935					vm_page_dirty(m);
1936
1937				tlb0_flush_entry(va);
1938				pte->flags &= ~(PTE_UW | PTE_SW | PTE_MODIFIED);
1939
1940				tlb_miss_unlock();
1941				mtx_unlock_spin(&tlbivax_mutex);
1942			}
1943		}
1944	}
1945	PMAP_UNLOCK(pmap);
1946	vm_page_unlock_queues();
1947}
1948
1949/*
1950 * Clear the write and modified bits in each of the given page's mappings.
1951 */
1952static void
1953mmu_booke_remove_write(mmu_t mmu, vm_page_t m)
1954{
1955	pv_entry_t pv;
1956	pte_t *pte;
1957
1958	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
1959	    ("mmu_booke_remove_write: page %p is not managed", m));
1960
1961	/*
1962	 * If the page is not VPO_BUSY, then PG_WRITEABLE cannot be set by
1963	 * another thread while the object is locked.  Thus, if PG_WRITEABLE
1964	 * is clear, no page table entries need updating.
1965	 */
1966	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1967	if ((m->oflags & VPO_BUSY) == 0 &&
1968	    (m->flags & PG_WRITEABLE) == 0)
1969		return;
1970	vm_page_lock_queues();
1971	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
1972		PMAP_LOCK(pv->pv_pmap);
1973		if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL) {
1974			if (PTE_ISVALID(pte)) {
1975				m = PHYS_TO_VM_PAGE(PTE_PA(pte));
1976
1977				mtx_lock_spin(&tlbivax_mutex);
1978				tlb_miss_lock();
1979
1980				/* Handle modified pages. */
1981				if (PTE_ISMODIFIED(pte))
1982					vm_page_dirty(m);
1983
1984				/* Flush mapping from TLB0. */
1985				pte->flags &= ~(PTE_UW | PTE_SW | PTE_MODIFIED);
1986
1987				tlb_miss_unlock();
1988				mtx_unlock_spin(&tlbivax_mutex);
1989			}
1990		}
1991		PMAP_UNLOCK(pv->pv_pmap);
1992	}
1993	vm_page_flag_clear(m, PG_WRITEABLE);
1994	vm_page_unlock_queues();
1995}
1996
1997static void
1998mmu_booke_sync_icache(mmu_t mmu, pmap_t pm, vm_offset_t va, vm_size_t sz)
1999{
2000	pte_t *pte;
2001	pmap_t pmap;
2002	vm_page_t m;
2003	vm_offset_t addr;
2004	vm_paddr_t pa;
2005	int active, valid;
2006
2007	va = trunc_page(va);
2008	sz = round_page(sz);
2009
2010	vm_page_lock_queues();
2011	pmap = PCPU_GET(curpmap);
2012	active = (pm == kernel_pmap || pm == pmap) ? 1 : 0;
2013	while (sz > 0) {
2014		PMAP_LOCK(pm);
2015		pte = pte_find(mmu, pm, va);
2016		valid = (pte != NULL && PTE_ISVALID(pte)) ? 1 : 0;
2017		if (valid)
2018			pa = PTE_PA(pte);
2019		PMAP_UNLOCK(pm);
2020		if (valid) {
2021			if (!active) {
2022				/* Create a mapping in the active pmap. */
2023				addr = 0;
2024				m = PHYS_TO_VM_PAGE(pa);
2025				PMAP_LOCK(pmap);
2026				pte_enter(mmu, pmap, m, addr,
2027				    PTE_SR | PTE_VALID | PTE_UR);
2028				__syncicache((void *)addr, PAGE_SIZE);
2029				pte_remove(mmu, pmap, addr, PTBL_UNHOLD);
2030				PMAP_UNLOCK(pmap);
2031			} else
2032				__syncicache((void *)va, PAGE_SIZE);
2033		}
2034		va += PAGE_SIZE;
2035		sz -= PAGE_SIZE;
2036	}
2037	vm_page_unlock_queues();
2038}
2039
2040/*
2041 * Atomically extract and hold the physical page with the given
2042 * pmap and virtual address pair if that mapping permits the given
2043 * protection.
2044 */
2045static vm_page_t
2046mmu_booke_extract_and_hold(mmu_t mmu, pmap_t pmap, vm_offset_t va,
2047    vm_prot_t prot)
2048{
2049	pte_t *pte;
2050	vm_page_t m;
2051	uint32_t pte_wbit;
2052	vm_paddr_t pa;
2053
2054	m = NULL;
2055	pa = 0;
2056	PMAP_LOCK(pmap);
2057retry:
2058	pte = pte_find(mmu, pmap, va);
2059	if ((pte != NULL) && PTE_ISVALID(pte)) {
2060		if (pmap == kernel_pmap)
2061			pte_wbit = PTE_SW;
2062		else
2063			pte_wbit = PTE_UW;
2064
2065		if ((pte->flags & pte_wbit) || ((prot & VM_PROT_WRITE) == 0)) {
2066			if (vm_page_pa_tryrelock(pmap, PTE_PA(pte), &pa))
2067				goto retry;
2068			m = PHYS_TO_VM_PAGE(PTE_PA(pte));
2069			vm_page_hold(m);
2070		}
2071	}
2072
2073	PA_UNLOCK_COND(pa);
2074	PMAP_UNLOCK(pmap);
2075	return (m);
2076}
2077
2078/*
2079 * Initialize a vm_page's machine-dependent fields.
2080 */
2081static void
2082mmu_booke_page_init(mmu_t mmu, vm_page_t m)
2083{
2084
2085	TAILQ_INIT(&m->md.pv_list);
2086}
2087
2088/*
2089 * mmu_booke_zero_page_area zeros the specified hardware page by
2090 * mapping it into virtual memory and using bzero to clear
2091 * its contents.
2092 *
2093 * off and size must reside within a single page.
2094 */
2095static void
2096mmu_booke_zero_page_area(mmu_t mmu, vm_page_t m, int off, int size)
2097{
2098	vm_offset_t va;
2099
2100	/* XXX KASSERT off and size are within a single page? */
2101
2102	mtx_lock(&zero_page_mutex);
2103	va = zero_page_va;
2104
2105	mmu_booke_kenter(mmu, va, VM_PAGE_TO_PHYS(m));
2106	bzero((caddr_t)va + off, size);
2107	mmu_booke_kremove(mmu, va);
2108
2109	mtx_unlock(&zero_page_mutex);
2110}
2111
2112/*
2113 * mmu_booke_zero_page zeros the specified hardware page.
2114 */
2115static void
2116mmu_booke_zero_page(mmu_t mmu, vm_page_t m)
2117{
2118
2119	mmu_booke_zero_page_area(mmu, m, 0, PAGE_SIZE);
2120}
2121
2122/*
2123 * mmu_booke_copy_page copies the specified (machine independent) page by
2124 * mapping the page into virtual memory and using memcopy to copy the page,
2125 * one machine dependent page at a time.
2126 */
2127static void
2128mmu_booke_copy_page(mmu_t mmu, vm_page_t sm, vm_page_t dm)
2129{
2130	vm_offset_t sva, dva;
2131
2132	sva = copy_page_src_va;
2133	dva = copy_page_dst_va;
2134
2135	mtx_lock(&copy_page_mutex);
2136	mmu_booke_kenter(mmu, sva, VM_PAGE_TO_PHYS(sm));
2137	mmu_booke_kenter(mmu, dva, VM_PAGE_TO_PHYS(dm));
2138	memcpy((caddr_t)dva, (caddr_t)sva, PAGE_SIZE);
2139	mmu_booke_kremove(mmu, dva);
2140	mmu_booke_kremove(mmu, sva);
2141	mtx_unlock(&copy_page_mutex);
2142}
2143
2144/*
2145 * mmu_booke_zero_page_idle zeros the specified hardware page by mapping it
2146 * into virtual memory and using bzero to clear its contents. This is intended
2147 * to be called from the vm_pagezero process only and outside of Giant. No
2148 * lock is required.
2149 */
2150static void
2151mmu_booke_zero_page_idle(mmu_t mmu, vm_page_t m)
2152{
2153	vm_offset_t va;
2154
2155	va = zero_page_idle_va;
2156	mmu_booke_kenter(mmu, va, VM_PAGE_TO_PHYS(m));
2157	bzero((caddr_t)va, PAGE_SIZE);
2158	mmu_booke_kremove(mmu, va);
2159}
2160
2161/*
2162 * Return whether or not the specified physical page was modified
2163 * in any of physical maps.
2164 */
2165static boolean_t
2166mmu_booke_is_modified(mmu_t mmu, vm_page_t m)
2167{
2168	pte_t *pte;
2169	pv_entry_t pv;
2170	boolean_t rv;
2171
2172	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
2173	    ("mmu_booke_is_modified: page %p is not managed", m));
2174	rv = FALSE;
2175
2176	/*
2177	 * If the page is not VPO_BUSY, then PG_WRITEABLE cannot be
2178	 * concurrently set while the object is locked.  Thus, if PG_WRITEABLE
2179	 * is clear, no PTEs can be modified.
2180	 */
2181	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2182	if ((m->oflags & VPO_BUSY) == 0 &&
2183	    (m->flags & PG_WRITEABLE) == 0)
2184		return (rv);
2185	vm_page_lock_queues();
2186	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2187		PMAP_LOCK(pv->pv_pmap);
2188		if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL &&
2189		    PTE_ISVALID(pte)) {
2190			if (PTE_ISMODIFIED(pte))
2191				rv = TRUE;
2192		}
2193		PMAP_UNLOCK(pv->pv_pmap);
2194		if (rv)
2195			break;
2196	}
2197	vm_page_unlock_queues();
2198	return (rv);
2199}
2200
2201/*
2202 * Return whether or not the specified virtual address is eligible
2203 * for prefault.
2204 */
2205static boolean_t
2206mmu_booke_is_prefaultable(mmu_t mmu, pmap_t pmap, vm_offset_t addr)
2207{
2208
2209	return (FALSE);
2210}
2211
2212/*
2213 * Return whether or not the specified physical page was referenced
2214 * in any physical maps.
2215 */
2216static boolean_t
2217mmu_booke_is_referenced(mmu_t mmu, vm_page_t m)
2218{
2219	pte_t *pte;
2220	pv_entry_t pv;
2221	boolean_t rv;
2222
2223	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
2224	    ("mmu_booke_is_referenced: page %p is not managed", m));
2225	rv = FALSE;
2226	vm_page_lock_queues();
2227	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2228		PMAP_LOCK(pv->pv_pmap);
2229		if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL &&
2230		    PTE_ISVALID(pte)) {
2231			if (PTE_ISREFERENCED(pte))
2232				rv = TRUE;
2233		}
2234		PMAP_UNLOCK(pv->pv_pmap);
2235		if (rv)
2236			break;
2237	}
2238	vm_page_unlock_queues();
2239	return (rv);
2240}
2241
2242/*
2243 * Clear the modify bits on the specified physical page.
2244 */
2245static void
2246mmu_booke_clear_modify(mmu_t mmu, vm_page_t m)
2247{
2248	pte_t *pte;
2249	pv_entry_t pv;
2250
2251	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
2252	    ("mmu_booke_clear_modify: page %p is not managed", m));
2253	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2254	KASSERT((m->oflags & VPO_BUSY) == 0,
2255	    ("mmu_booke_clear_modify: page %p is busy", m));
2256
2257	/*
2258	 * If the page is not PG_WRITEABLE, then no PTEs can be modified.
2259	 * If the object containing the page is locked and the page is not
2260	 * VPO_BUSY, then PG_WRITEABLE cannot be concurrently set.
2261	 */
2262	if ((m->flags & PG_WRITEABLE) == 0)
2263		return;
2264	vm_page_lock_queues();
2265	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2266		PMAP_LOCK(pv->pv_pmap);
2267		if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL &&
2268		    PTE_ISVALID(pte)) {
2269			mtx_lock_spin(&tlbivax_mutex);
2270			tlb_miss_lock();
2271
2272			if (pte->flags & (PTE_SW | PTE_UW | PTE_MODIFIED)) {
2273				tlb0_flush_entry(pv->pv_va);
2274				pte->flags &= ~(PTE_SW | PTE_UW | PTE_MODIFIED |
2275				    PTE_REFERENCED);
2276			}
2277
2278			tlb_miss_unlock();
2279			mtx_unlock_spin(&tlbivax_mutex);
2280		}
2281		PMAP_UNLOCK(pv->pv_pmap);
2282	}
2283	vm_page_unlock_queues();
2284}
2285
2286/*
2287 * Return a count of reference bits for a page, clearing those bits.
2288 * It is not necessary for every reference bit to be cleared, but it
2289 * is necessary that 0 only be returned when there are truly no
2290 * reference bits set.
2291 *
2292 * XXX: The exact number of bits to check and clear is a matter that
2293 * should be tested and standardized at some point in the future for
2294 * optimal aging of shared pages.
2295 */
2296static int
2297mmu_booke_ts_referenced(mmu_t mmu, vm_page_t m)
2298{
2299	pte_t *pte;
2300	pv_entry_t pv;
2301	int count;
2302
2303	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
2304	    ("mmu_booke_ts_referenced: page %p is not managed", m));
2305	count = 0;
2306	vm_page_lock_queues();
2307	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2308		PMAP_LOCK(pv->pv_pmap);
2309		if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL &&
2310		    PTE_ISVALID(pte)) {
2311			if (PTE_ISREFERENCED(pte)) {
2312				mtx_lock_spin(&tlbivax_mutex);
2313				tlb_miss_lock();
2314
2315				tlb0_flush_entry(pv->pv_va);
2316				pte->flags &= ~PTE_REFERENCED;
2317
2318				tlb_miss_unlock();
2319				mtx_unlock_spin(&tlbivax_mutex);
2320
2321				if (++count > 4) {
2322					PMAP_UNLOCK(pv->pv_pmap);
2323					break;
2324				}
2325			}
2326		}
2327		PMAP_UNLOCK(pv->pv_pmap);
2328	}
2329	vm_page_unlock_queues();
2330	return (count);
2331}
2332
2333/*
2334 * Clear the reference bit on the specified physical page.
2335 */
2336static void
2337mmu_booke_clear_reference(mmu_t mmu, vm_page_t m)
2338{
2339	pte_t *pte;
2340	pv_entry_t pv;
2341
2342	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
2343	    ("mmu_booke_clear_reference: page %p is not managed", m));
2344	vm_page_lock_queues();
2345	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2346		PMAP_LOCK(pv->pv_pmap);
2347		if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL &&
2348		    PTE_ISVALID(pte)) {
2349			if (PTE_ISREFERENCED(pte)) {
2350				mtx_lock_spin(&tlbivax_mutex);
2351				tlb_miss_lock();
2352
2353				tlb0_flush_entry(pv->pv_va);
2354				pte->flags &= ~PTE_REFERENCED;
2355
2356				tlb_miss_unlock();
2357				mtx_unlock_spin(&tlbivax_mutex);
2358			}
2359		}
2360		PMAP_UNLOCK(pv->pv_pmap);
2361	}
2362	vm_page_unlock_queues();
2363}
2364
2365/*
2366 * Change wiring attribute for a map/virtual-address pair.
2367 */
2368static void
2369mmu_booke_change_wiring(mmu_t mmu, pmap_t pmap, vm_offset_t va, boolean_t wired)
2370{
2371	pte_t *pte;
2372
2373	PMAP_LOCK(pmap);
2374	if ((pte = pte_find(mmu, pmap, va)) != NULL) {
2375		if (wired) {
2376			if (!PTE_ISWIRED(pte)) {
2377				pte->flags |= PTE_WIRED;
2378				pmap->pm_stats.wired_count++;
2379			}
2380		} else {
2381			if (PTE_ISWIRED(pte)) {
2382				pte->flags &= ~PTE_WIRED;
2383				pmap->pm_stats.wired_count--;
2384			}
2385		}
2386	}
2387	PMAP_UNLOCK(pmap);
2388}
2389
2390/*
2391 * Return true if the pmap's pv is one of the first 16 pvs linked to from this
2392 * page.  This count may be changed upwards or downwards in the future; it is
2393 * only necessary that true be returned for a small subset of pmaps for proper
2394 * page aging.
2395 */
2396static boolean_t
2397mmu_booke_page_exists_quick(mmu_t mmu, pmap_t pmap, vm_page_t m)
2398{
2399	pv_entry_t pv;
2400	int loops;
2401	boolean_t rv;
2402
2403	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
2404	    ("mmu_booke_page_exists_quick: page %p is not managed", m));
2405	loops = 0;
2406	rv = FALSE;
2407	vm_page_lock_queues();
2408	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2409		if (pv->pv_pmap == pmap) {
2410			rv = TRUE;
2411			break;
2412		}
2413		if (++loops >= 16)
2414			break;
2415	}
2416	vm_page_unlock_queues();
2417	return (rv);
2418}
2419
2420/*
2421 * Return the number of managed mappings to the given physical page that are
2422 * wired.
2423 */
2424static int
2425mmu_booke_page_wired_mappings(mmu_t mmu, vm_page_t m)
2426{
2427	pv_entry_t pv;
2428	pte_t *pte;
2429	int count = 0;
2430
2431	if ((m->flags & PG_FICTITIOUS) != 0)
2432		return (count);
2433	vm_page_lock_queues();
2434	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2435		PMAP_LOCK(pv->pv_pmap);
2436		if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL)
2437			if (PTE_ISVALID(pte) && PTE_ISWIRED(pte))
2438				count++;
2439		PMAP_UNLOCK(pv->pv_pmap);
2440	}
2441	vm_page_unlock_queues();
2442	return (count);
2443}
2444
2445static int
2446mmu_booke_dev_direct_mapped(mmu_t mmu, vm_offset_t pa, vm_size_t size)
2447{
2448	int i;
2449	vm_offset_t va;
2450
2451	/*
2452	 * This currently does not work for entries that
2453	 * overlap TLB1 entries.
2454	 */
2455	for (i = 0; i < tlb1_idx; i ++) {
2456		if (tlb1_iomapped(i, pa, size, &va) == 0)
2457			return (0);
2458	}
2459
2460	return (EFAULT);
2461}
2462
2463vm_offset_t
2464mmu_booke_dumpsys_map(mmu_t mmu, struct pmap_md *md, vm_size_t ofs,
2465    vm_size_t *sz)
2466{
2467	vm_paddr_t pa, ppa;
2468	vm_offset_t va;
2469	vm_size_t gran;
2470
2471	/* Raw physical memory dumps don't have a virtual address. */
2472	if (md->md_vaddr == ~0UL) {
2473		/* We always map a 256MB page at 256M. */
2474		gran = 256 * 1024 * 1024;
2475		pa = md->md_paddr + ofs;
2476		ppa = pa & ~(gran - 1);
2477		ofs = pa - ppa;
2478		va = gran;
2479		tlb1_set_entry(va, ppa, gran, _TLB_ENTRY_IO);
2480		if (*sz > (gran - ofs))
2481			*sz = gran - ofs;
2482		return (va + ofs);
2483	}
2484
2485	/* Minidumps are based on virtual memory addresses. */
2486	va = md->md_vaddr + ofs;
2487	if (va >= kernstart + kernsize) {
2488		gran = PAGE_SIZE - (va & PAGE_MASK);
2489		if (*sz > gran)
2490			*sz = gran;
2491	}
2492	return (va);
2493}
2494
2495void
2496mmu_booke_dumpsys_unmap(mmu_t mmu, struct pmap_md *md, vm_size_t ofs,
2497    vm_offset_t va)
2498{
2499
2500	/* Raw physical memory dumps don't have a virtual address. */
2501	if (md->md_vaddr == ~0UL) {
2502		tlb1_idx--;
2503		tlb1[tlb1_idx].mas1 = 0;
2504		tlb1[tlb1_idx].mas2 = 0;
2505		tlb1[tlb1_idx].mas3 = 0;
2506		tlb1_write_entry(tlb1_idx);
2507		return;
2508	}
2509
2510	/* Minidumps are based on virtual memory addresses. */
2511	/* Nothing to do... */
2512}
2513
2514struct pmap_md *
2515mmu_booke_scan_md(mmu_t mmu, struct pmap_md *prev)
2516{
2517	static struct pmap_md md;
2518	pte_t *pte;
2519	vm_offset_t va;
2520
2521	if (dumpsys_minidump) {
2522		md.md_paddr = ~0UL;	/* Minidumps use virtual addresses. */
2523		if (prev == NULL) {
2524			/* 1st: kernel .data and .bss. */
2525			md.md_index = 1;
2526			md.md_vaddr = trunc_page((uintptr_t)_etext);
2527			md.md_size = round_page((uintptr_t)_end) - md.md_vaddr;
2528			return (&md);
2529		}
2530		switch (prev->md_index) {
2531		case 1:
2532			/* 2nd: msgbuf and tables (see pmap_bootstrap()). */
2533			md.md_index = 2;
2534			md.md_vaddr = data_start;
2535			md.md_size = data_end - data_start;
2536			break;
2537		case 2:
2538			/* 3rd: kernel VM. */
2539			va = prev->md_vaddr + prev->md_size;
2540			/* Find start of next chunk (from va). */
2541			while (va < virtual_end) {
2542				/* Don't dump the buffer cache. */
2543				if (va >= kmi.buffer_sva &&
2544				    va < kmi.buffer_eva) {
2545					va = kmi.buffer_eva;
2546					continue;
2547				}
2548				pte = pte_find(mmu, kernel_pmap, va);
2549				if (pte != NULL && PTE_ISVALID(pte))
2550					break;
2551				va += PAGE_SIZE;
2552			}
2553			if (va < virtual_end) {
2554				md.md_vaddr = va;
2555				va += PAGE_SIZE;
2556				/* Find last page in chunk. */
2557				while (va < virtual_end) {
2558					/* Don't run into the buffer cache. */
2559					if (va == kmi.buffer_sva)
2560						break;
2561					pte = pte_find(mmu, kernel_pmap, va);
2562					if (pte == NULL || !PTE_ISVALID(pte))
2563						break;
2564					va += PAGE_SIZE;
2565				}
2566				md.md_size = va - md.md_vaddr;
2567				break;
2568			}
2569			md.md_index = 3;
2570			/* FALLTHROUGH */
2571		default:
2572			return (NULL);
2573		}
2574	} else { /* minidumps */
2575		mem_regions(&physmem_regions, &physmem_regions_sz,
2576		    &availmem_regions, &availmem_regions_sz);
2577
2578		if (prev == NULL) {
2579			/* first physical chunk. */
2580			md.md_paddr = physmem_regions[0].mr_start;
2581			md.md_size = physmem_regions[0].mr_size;
2582			md.md_vaddr = ~0UL;
2583			md.md_index = 1;
2584		} else if (md.md_index < physmem_regions_sz) {
2585			md.md_paddr = physmem_regions[md.md_index].mr_start;
2586			md.md_size = physmem_regions[md.md_index].mr_size;
2587			md.md_vaddr = ~0UL;
2588			md.md_index++;
2589		} else {
2590			/* There's no next physical chunk. */
2591			return (NULL);
2592		}
2593	}
2594
2595	return (&md);
2596}
2597
2598/*
2599 * Map a set of physical memory pages into the kernel virtual address space.
2600 * Return a pointer to where it is mapped. This routine is intended to be used
2601 * for mapping device memory, NOT real memory.
2602 */
2603static void *
2604mmu_booke_mapdev(mmu_t mmu, vm_offset_t pa, vm_size_t size)
2605{
2606	void *res;
2607	uintptr_t va;
2608	vm_size_t sz;
2609
2610	va = (pa >= 0x80000000) ? pa : (0xe2000000 + pa);
2611	res = (void *)va;
2612
2613	do {
2614		sz = 1 << (ilog2(size) & ~1);
2615		if (bootverbose)
2616			printf("Wiring VA=%x to PA=%x (size=%x), "
2617			    "using TLB1[%d]\n", va, pa, sz, tlb1_idx);
2618		tlb1_set_entry(va, pa, sz, _TLB_ENTRY_IO);
2619		size -= sz;
2620		pa += sz;
2621		va += sz;
2622	} while (size > 0);
2623
2624	return (res);
2625}
2626
2627/*
2628 * 'Unmap' a range mapped by mmu_booke_mapdev().
2629 */
2630static void
2631mmu_booke_unmapdev(mmu_t mmu, vm_offset_t va, vm_size_t size)
2632{
2633	vm_offset_t base, offset;
2634
2635	/*
2636	 * Unmap only if this is inside kernel virtual space.
2637	 */
2638	if ((va >= VM_MIN_KERNEL_ADDRESS) && (va <= VM_MAX_KERNEL_ADDRESS)) {
2639		base = trunc_page(va);
2640		offset = va & PAGE_MASK;
2641		size = roundup(offset + size, PAGE_SIZE);
2642		kmem_free(kernel_map, base, size);
2643	}
2644}
2645
2646/*
2647 * mmu_booke_object_init_pt preloads the ptes for a given object into the
2648 * specified pmap. This eliminates the blast of soft faults on process startup
2649 * and immediately after an mmap.
2650 */
2651static void
2652mmu_booke_object_init_pt(mmu_t mmu, pmap_t pmap, vm_offset_t addr,
2653    vm_object_t object, vm_pindex_t pindex, vm_size_t size)
2654{
2655
2656	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
2657	KASSERT(object->type == OBJT_DEVICE || object->type == OBJT_SG,
2658	    ("mmu_booke_object_init_pt: non-device object"));
2659}
2660
2661/*
2662 * Perform the pmap work for mincore.
2663 */
2664static int
2665mmu_booke_mincore(mmu_t mmu, pmap_t pmap, vm_offset_t addr,
2666    vm_paddr_t *locked_pa)
2667{
2668
2669	TODO;
2670	return (0);
2671}
2672
2673/**************************************************************************/
2674/* TID handling */
2675/**************************************************************************/
2676
2677/*
2678 * Allocate a TID. If necessary, steal one from someone else.
2679 * The new TID is flushed from the TLB before returning.
2680 */
2681static tlbtid_t
2682tid_alloc(pmap_t pmap)
2683{
2684	tlbtid_t tid;
2685	int thiscpu;
2686
2687	KASSERT((pmap != kernel_pmap), ("tid_alloc: kernel pmap"));
2688
2689	CTR2(KTR_PMAP, "%s: s (pmap = %p)", __func__, pmap);
2690
2691	thiscpu = PCPU_GET(cpuid);
2692
2693	tid = PCPU_GET(tid_next);
2694	if (tid > TID_MAX)
2695		tid = TID_MIN;
2696	PCPU_SET(tid_next, tid + 1);
2697
2698	/* If we are stealing TID then clear the relevant pmap's field */
2699	if (tidbusy[thiscpu][tid] != NULL) {
2700
2701		CTR2(KTR_PMAP, "%s: warning: stealing tid %d", __func__, tid);
2702
2703		tidbusy[thiscpu][tid]->pm_tid[thiscpu] = TID_NONE;
2704
2705		/* Flush all entries from TLB0 matching this TID. */
2706		tid_flush(tid);
2707	}
2708
2709	tidbusy[thiscpu][tid] = pmap;
2710	pmap->pm_tid[thiscpu] = tid;
2711	__asm __volatile("msync; isync");
2712
2713	CTR3(KTR_PMAP, "%s: e (%02d next = %02d)", __func__, tid,
2714	    PCPU_GET(tid_next));
2715
2716	return (tid);
2717}
2718
2719/**************************************************************************/
2720/* TLB0 handling */
2721/**************************************************************************/
2722
2723static void
2724tlb_print_entry(int i, uint32_t mas1, uint32_t mas2, uint32_t mas3,
2725    uint32_t mas7)
2726{
2727	int as;
2728	char desc[3];
2729	tlbtid_t tid;
2730	vm_size_t size;
2731	unsigned int tsize;
2732
2733	desc[2] = '\0';
2734	if (mas1 & MAS1_VALID)
2735		desc[0] = 'V';
2736	else
2737		desc[0] = ' ';
2738
2739	if (mas1 & MAS1_IPROT)
2740		desc[1] = 'P';
2741	else
2742		desc[1] = ' ';
2743
2744	as = (mas1 & MAS1_TS_MASK) ? 1 : 0;
2745	tid = MAS1_GETTID(mas1);
2746
2747	tsize = (mas1 & MAS1_TSIZE_MASK) >> MAS1_TSIZE_SHIFT;
2748	size = 0;
2749	if (tsize)
2750		size = tsize2size(tsize);
2751
2752	debugf("%3d: (%s) [AS=%d] "
2753	    "sz = 0x%08x tsz = %d tid = %d mas1 = 0x%08x "
2754	    "mas2(va) = 0x%08x mas3(pa) = 0x%08x mas7 = 0x%08x\n",
2755	    i, desc, as, size, tsize, tid, mas1, mas2, mas3, mas7);
2756}
2757
2758/* Convert TLB0 va and way number to tlb0[] table index. */
2759static inline unsigned int
2760tlb0_tableidx(vm_offset_t va, unsigned int way)
2761{
2762	unsigned int idx;
2763
2764	idx = (way * TLB0_ENTRIES_PER_WAY);
2765	idx += (va & MAS2_TLB0_ENTRY_IDX_MASK) >> MAS2_TLB0_ENTRY_IDX_SHIFT;
2766	return (idx);
2767}
2768
2769/*
2770 * Invalidate TLB0 entry.
2771 */
2772static inline void
2773tlb0_flush_entry(vm_offset_t va)
2774{
2775
2776	CTR2(KTR_PMAP, "%s: s va=0x%08x", __func__, va);
2777
2778	mtx_assert(&tlbivax_mutex, MA_OWNED);
2779
2780	__asm __volatile("tlbivax 0, %0" :: "r"(va & MAS2_EPN_MASK));
2781	__asm __volatile("isync; msync");
2782	__asm __volatile("tlbsync; msync");
2783
2784	CTR1(KTR_PMAP, "%s: e", __func__);
2785}
2786
2787/* Print out contents of the MAS registers for each TLB0 entry */
2788void
2789tlb0_print_tlbentries(void)
2790{
2791	uint32_t mas0, mas1, mas2, mas3, mas7;
2792	int entryidx, way, idx;
2793
2794	debugf("TLB0 entries:\n");
2795	for (way = 0; way < TLB0_WAYS; way ++)
2796		for (entryidx = 0; entryidx < TLB0_ENTRIES_PER_WAY; entryidx++) {
2797
2798			mas0 = MAS0_TLBSEL(0) | MAS0_ESEL(way);
2799			mtspr(SPR_MAS0, mas0);
2800			__asm __volatile("isync");
2801
2802			mas2 = entryidx << MAS2_TLB0_ENTRY_IDX_SHIFT;
2803			mtspr(SPR_MAS2, mas2);
2804
2805			__asm __volatile("isync; tlbre");
2806
2807			mas1 = mfspr(SPR_MAS1);
2808			mas2 = mfspr(SPR_MAS2);
2809			mas3 = mfspr(SPR_MAS3);
2810			mas7 = mfspr(SPR_MAS7);
2811
2812			idx = tlb0_tableidx(mas2, way);
2813			tlb_print_entry(idx, mas1, mas2, mas3, mas7);
2814		}
2815}
2816
2817/**************************************************************************/
2818/* TLB1 handling */
2819/**************************************************************************/
2820
2821/*
2822 * TLB1 mapping notes:
2823 *
2824 * TLB1[0]	CCSRBAR
2825 * TLB1[1]	Kernel text and data.
2826 * TLB1[2-15]	Additional kernel text and data mappings (if required), PCI
2827 *		windows, other devices mappings.
2828 */
2829
2830/*
2831 * Write given entry to TLB1 hardware.
2832 * Use 32 bit pa, clear 4 high-order bits of RPN (mas7).
2833 */
2834static void
2835tlb1_write_entry(unsigned int idx)
2836{
2837	uint32_t mas0, mas7;
2838
2839	//debugf("tlb1_write_entry: s\n");
2840
2841	/* Clear high order RPN bits */
2842	mas7 = 0;
2843
2844	/* Select entry */
2845	mas0 = MAS0_TLBSEL(1) | MAS0_ESEL(idx);
2846	//debugf("tlb1_write_entry: mas0 = 0x%08x\n", mas0);
2847
2848	mtspr(SPR_MAS0, mas0);
2849	__asm __volatile("isync");
2850	mtspr(SPR_MAS1, tlb1[idx].mas1);
2851	__asm __volatile("isync");
2852	mtspr(SPR_MAS2, tlb1[idx].mas2);
2853	__asm __volatile("isync");
2854	mtspr(SPR_MAS3, tlb1[idx].mas3);
2855	__asm __volatile("isync");
2856	mtspr(SPR_MAS7, mas7);
2857	__asm __volatile("isync; tlbwe; isync; msync");
2858
2859	//debugf("tlb1_write_entry: e\n");
2860}
2861
2862/*
2863 * Return the largest uint value log such that 2^log <= num.
2864 */
2865static unsigned int
2866ilog2(unsigned int num)
2867{
2868	int lz;
2869
2870	__asm ("cntlzw %0, %1" : "=r" (lz) : "r" (num));
2871	return (31 - lz);
2872}
2873
2874/*
2875 * Convert TLB TSIZE value to mapped region size.
2876 */
2877static vm_size_t
2878tsize2size(unsigned int tsize)
2879{
2880
2881	/*
2882	 * size = 4^tsize KB
2883	 * size = 4^tsize * 2^10 = 2^(2 * tsize - 10)
2884	 */
2885
2886	return ((1 << (2 * tsize)) * 1024);
2887}
2888
2889/*
2890 * Convert region size (must be power of 4) to TLB TSIZE value.
2891 */
2892static unsigned int
2893size2tsize(vm_size_t size)
2894{
2895
2896	return (ilog2(size) / 2 - 5);
2897}
2898
2899/*
2900 * Register permanent kernel mapping in TLB1.
2901 *
2902 * Entries are created starting from index 0 (current free entry is
2903 * kept in tlb1_idx) and are not supposed to be invalidated.
2904 */
2905static int
2906tlb1_set_entry(vm_offset_t va, vm_offset_t pa, vm_size_t size,
2907    uint32_t flags)
2908{
2909	uint32_t ts, tid;
2910	int tsize;
2911
2912	if (tlb1_idx >= TLB1_ENTRIES) {
2913		printf("tlb1_set_entry: TLB1 full!\n");
2914		return (-1);
2915	}
2916
2917	/* Convert size to TSIZE */
2918	tsize = size2tsize(size);
2919
2920	tid = (TID_KERNEL << MAS1_TID_SHIFT) & MAS1_TID_MASK;
2921	/* XXX TS is hard coded to 0 for now as we only use single address space */
2922	ts = (0 << MAS1_TS_SHIFT) & MAS1_TS_MASK;
2923
2924	/* XXX LOCK tlb1[] */
2925
2926	tlb1[tlb1_idx].mas1 = MAS1_VALID | MAS1_IPROT | ts | tid;
2927	tlb1[tlb1_idx].mas1 |= ((tsize << MAS1_TSIZE_SHIFT) & MAS1_TSIZE_MASK);
2928	tlb1[tlb1_idx].mas2 = (va & MAS2_EPN_MASK) | flags;
2929
2930	/* Set supervisor RWX permission bits */
2931	tlb1[tlb1_idx].mas3 = (pa & MAS3_RPN) | MAS3_SR | MAS3_SW | MAS3_SX;
2932
2933	tlb1_write_entry(tlb1_idx++);
2934
2935	/* XXX UNLOCK tlb1[] */
2936
2937	/*
2938	 * XXX in general TLB1 updates should be propagated between CPUs,
2939	 * since current design assumes to have the same TLB1 set-up on all
2940	 * cores.
2941	 */
2942	return (0);
2943}
2944
2945/*
2946 * Map in contiguous RAM region into the TLB1 using maximum of
2947 * KERNEL_REGION_MAX_TLB_ENTRIES entries.
2948 *
2949 * If necessary round up last entry size and return total size
2950 * used by all allocated entries.
2951 */
2952vm_size_t
2953tlb1_mapin_region(vm_offset_t va, vm_paddr_t pa, vm_size_t size)
2954{
2955	vm_size_t pgs[KERNEL_REGION_MAX_TLB_ENTRIES];
2956	vm_size_t mapped, pgsz, base, mask;
2957	int idx, nents;
2958
2959	/* Round up to the next 1M */
2960	size = (size + (1 << 20) - 1) & ~((1 << 20) - 1);
2961
2962	mapped = 0;
2963	idx = 0;
2964	base = va;
2965	pgsz = 64*1024*1024;
2966	while (mapped < size) {
2967		while (mapped < size && idx < KERNEL_REGION_MAX_TLB_ENTRIES) {
2968			while (pgsz > (size - mapped))
2969				pgsz >>= 2;
2970			pgs[idx++] = pgsz;
2971			mapped += pgsz;
2972		}
2973
2974		/* We under-map. Correct for this. */
2975		if (mapped < size) {
2976			while (pgs[idx - 1] == pgsz) {
2977				idx--;
2978				mapped -= pgsz;
2979			}
2980			/* XXX We may increase beyond out starting point. */
2981			pgsz <<= 2;
2982			pgs[idx++] = pgsz;
2983			mapped += pgsz;
2984		}
2985	}
2986
2987	nents = idx;
2988	mask = pgs[0] - 1;
2989	/* Align address to the boundary */
2990	if (va & mask) {
2991		va = (va + mask) & ~mask;
2992		pa = (pa + mask) & ~mask;
2993	}
2994
2995	for (idx = 0; idx < nents; idx++) {
2996		pgsz = pgs[idx];
2997		debugf("%u: %x -> %x, size=%x\n", idx, pa, va, pgsz);
2998		tlb1_set_entry(va, pa, pgsz, _TLB_ENTRY_MEM);
2999		pa += pgsz;
3000		va += pgsz;
3001	}
3002
3003	mapped = (va - base);
3004	debugf("mapped size 0x%08x (wasted space 0x%08x)\n",
3005	    mapped, mapped - size);
3006	return (mapped);
3007}
3008
3009/*
3010 * TLB1 initialization routine, to be called after the very first
3011 * assembler level setup done in locore.S.
3012 */
3013void
3014tlb1_init(vm_offset_t ccsrbar)
3015{
3016	uint32_t mas0, mas1, mas3;
3017	uint32_t tsz;
3018	u_int i;
3019
3020	if (bootinfo != NULL && bootinfo[0] != 1) {
3021		tlb1_idx = *((uint16_t *)(bootinfo + 8));
3022	} else
3023		tlb1_idx = 1;
3024
3025	/* The first entry/entries are used to map the kernel. */
3026	for (i = 0; i < tlb1_idx; i++) {
3027		mas0 = MAS0_TLBSEL(1) | MAS0_ESEL(i);
3028		mtspr(SPR_MAS0, mas0);
3029		__asm __volatile("isync; tlbre");
3030
3031		mas1 = mfspr(SPR_MAS1);
3032		if ((mas1 & MAS1_VALID) == 0)
3033			continue;
3034
3035		mas3 = mfspr(SPR_MAS3);
3036
3037		tlb1[i].mas1 = mas1;
3038		tlb1[i].mas2 = mfspr(SPR_MAS2);
3039		tlb1[i].mas3 = mas3;
3040
3041		if (i == 0)
3042			kernload = mas3 & MAS3_RPN;
3043
3044		tsz = (mas1 & MAS1_TSIZE_MASK) >> MAS1_TSIZE_SHIFT;
3045		kernsize += (tsz > 0) ? tsize2size(tsz) : 0;
3046	}
3047
3048	/* Map in CCSRBAR. */
3049	tlb1_set_entry(CCSRBAR_VA, ccsrbar, CCSRBAR_SIZE, _TLB_ENTRY_IO);
3050
3051	/* Setup TLB miss defaults */
3052	set_mas4_defaults();
3053}
3054
3055/*
3056 * Setup MAS4 defaults.
3057 * These values are loaded to MAS0-2 on a TLB miss.
3058 */
3059static void
3060set_mas4_defaults(void)
3061{
3062	uint32_t mas4;
3063
3064	/* Defaults: TLB0, PID0, TSIZED=4K */
3065	mas4 = MAS4_TLBSELD0;
3066	mas4 |= (TLB_SIZE_4K << MAS4_TSIZED_SHIFT) & MAS4_TSIZED_MASK;
3067#ifdef SMP
3068	mas4 |= MAS4_MD;
3069#endif
3070	mtspr(SPR_MAS4, mas4);
3071	__asm __volatile("isync");
3072}
3073
3074/*
3075 * Print out contents of the MAS registers for each TLB1 entry
3076 */
3077void
3078tlb1_print_tlbentries(void)
3079{
3080	uint32_t mas0, mas1, mas2, mas3, mas7;
3081	int i;
3082
3083	debugf("TLB1 entries:\n");
3084	for (i = 0; i < TLB1_ENTRIES; i++) {
3085
3086		mas0 = MAS0_TLBSEL(1) | MAS0_ESEL(i);
3087		mtspr(SPR_MAS0, mas0);
3088
3089		__asm __volatile("isync; tlbre");
3090
3091		mas1 = mfspr(SPR_MAS1);
3092		mas2 = mfspr(SPR_MAS2);
3093		mas3 = mfspr(SPR_MAS3);
3094		mas7 = mfspr(SPR_MAS7);
3095
3096		tlb_print_entry(i, mas1, mas2, mas3, mas7);
3097	}
3098}
3099
3100/*
3101 * Print out contents of the in-ram tlb1 table.
3102 */
3103void
3104tlb1_print_entries(void)
3105{
3106	int i;
3107
3108	debugf("tlb1[] table entries:\n");
3109	for (i = 0; i < TLB1_ENTRIES; i++)
3110		tlb_print_entry(i, tlb1[i].mas1, tlb1[i].mas2, tlb1[i].mas3, 0);
3111}
3112
3113/*
3114 * Return 0 if the physical IO range is encompassed by one of the
3115 * the TLB1 entries, otherwise return related error code.
3116 */
3117static int
3118tlb1_iomapped(int i, vm_paddr_t pa, vm_size_t size, vm_offset_t *va)
3119{
3120	uint32_t prot;
3121	vm_paddr_t pa_start;
3122	vm_paddr_t pa_end;
3123	unsigned int entry_tsize;
3124	vm_size_t entry_size;
3125
3126	*va = (vm_offset_t)NULL;
3127
3128	/* Skip invalid entries */
3129	if (!(tlb1[i].mas1 & MAS1_VALID))
3130		return (EINVAL);
3131
3132	/*
3133	 * The entry must be cache-inhibited, guarded, and r/w
3134	 * so it can function as an i/o page
3135	 */
3136	prot = tlb1[i].mas2 & (MAS2_I | MAS2_G);
3137	if (prot != (MAS2_I | MAS2_G))
3138		return (EPERM);
3139
3140	prot = tlb1[i].mas3 & (MAS3_SR | MAS3_SW);
3141	if (prot != (MAS3_SR | MAS3_SW))
3142		return (EPERM);
3143
3144	/* The address should be within the entry range. */
3145	entry_tsize = (tlb1[i].mas1 & MAS1_TSIZE_MASK) >> MAS1_TSIZE_SHIFT;
3146	KASSERT((entry_tsize), ("tlb1_iomapped: invalid entry tsize"));
3147
3148	entry_size = tsize2size(entry_tsize);
3149	pa_start = tlb1[i].mas3 & MAS3_RPN;
3150	pa_end = pa_start + entry_size - 1;
3151
3152	if ((pa < pa_start) || ((pa + size) > pa_end))
3153		return (ERANGE);
3154
3155	/* Return virtual address of this mapping. */
3156	*va = (tlb1[i].mas2 & MAS2_EPN_MASK) + (pa - pa_start);
3157	return (0);
3158}
3159