mmu_oea.c revision 143200
1/*-
2 * Copyright (c) 2001 The NetBSD Foundation, Inc.
3 * All rights reserved.
4 *
5 * This code is derived from software contributed to The NetBSD Foundation
6 * by Matt Thomas <matt@3am-software.com> of Allegro Networks, Inc.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 *    must display the following acknowledgement:
18 *        This product includes software developed by the NetBSD
19 *        Foundation, Inc. and its contributors.
20 * 4. Neither the name of The NetBSD Foundation nor the names of its
21 *    contributors may be used to endorse or promote products derived
22 *    from this software without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
25 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
26 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
27 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
28 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
29 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
30 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
31 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
32 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
33 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
34 * POSSIBILITY OF SUCH DAMAGE.
35 */
36/*-
37 * Copyright (C) 1995, 1996 Wolfgang Solfrank.
38 * Copyright (C) 1995, 1996 TooLs GmbH.
39 * All rights reserved.
40 *
41 * Redistribution and use in source and binary forms, with or without
42 * modification, are permitted provided that the following conditions
43 * are met:
44 * 1. Redistributions of source code must retain the above copyright
45 *    notice, this list of conditions and the following disclaimer.
46 * 2. Redistributions in binary form must reproduce the above copyright
47 *    notice, this list of conditions and the following disclaimer in the
48 *    documentation and/or other materials provided with the distribution.
49 * 3. All advertising materials mentioning features or use of this software
50 *    must display the following acknowledgement:
51 *	This product includes software developed by TooLs GmbH.
52 * 4. The name of TooLs GmbH may not be used to endorse or promote products
53 *    derived from this software without specific prior written permission.
54 *
55 * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
56 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
57 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
58 * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
59 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
60 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
61 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
62 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
63 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
64 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
65 *
66 * $NetBSD: pmap.c,v 1.28 2000/03/26 20:42:36 kleink Exp $
67 */
68/*-
69 * Copyright (C) 2001 Benno Rice.
70 * All rights reserved.
71 *
72 * Redistribution and use in source and binary forms, with or without
73 * modification, are permitted provided that the following conditions
74 * are met:
75 * 1. Redistributions of source code must retain the above copyright
76 *    notice, this list of conditions and the following disclaimer.
77 * 2. Redistributions in binary form must reproduce the above copyright
78 *    notice, this list of conditions and the following disclaimer in the
79 *    documentation and/or other materials provided with the distribution.
80 *
81 * THIS SOFTWARE IS PROVIDED BY Benno Rice ``AS IS'' AND ANY EXPRESS OR
82 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
83 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
84 * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
85 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
86 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
87 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
88 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
89 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
90 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
91 */
92
93#include <sys/cdefs.h>
94__FBSDID("$FreeBSD: head/sys/powerpc/aim/mmu_oea.c 143200 2005-03-07 01:46:06Z grehan $");
95
96/*
97 * Manages physical address maps.
98 *
99 * In addition to hardware address maps, this module is called upon to
100 * provide software-use-only maps which may or may not be stored in the
101 * same form as hardware maps.  These pseudo-maps are used to store
102 * intermediate results from copy operations to and from address spaces.
103 *
104 * Since the information managed by this module is also stored by the
105 * logical address mapping module, this module may throw away valid virtual
106 * to physical mappings at almost any time.  However, invalidations of
107 * mappings must be done as requested.
108 *
109 * In order to cope with hardware architectures which make virtual to
110 * physical map invalidates expensive, this module may delay invalidate
111 * reduced protection operations until such time as they are actually
112 * necessary.  This module is given full information as to which processors
113 * are currently using which maps, and to when physical maps must be made
114 * correct.
115 */
116
117#include "opt_kstack_pages.h"
118
119#include <sys/param.h>
120#include <sys/kernel.h>
121#include <sys/ktr.h>
122#include <sys/lock.h>
123#include <sys/msgbuf.h>
124#include <sys/mutex.h>
125#include <sys/proc.h>
126#include <sys/sysctl.h>
127#include <sys/systm.h>
128#include <sys/vmmeter.h>
129
130#include <dev/ofw/openfirm.h>
131
132#include <vm/vm.h>
133#include <vm/vm_param.h>
134#include <vm/vm_kern.h>
135#include <vm/vm_page.h>
136#include <vm/vm_map.h>
137#include <vm/vm_object.h>
138#include <vm/vm_extern.h>
139#include <vm/vm_pageout.h>
140#include <vm/vm_pager.h>
141#include <vm/uma.h>
142
143#include <machine/cpu.h>
144#include <machine/powerpc.h>
145#include <machine/bat.h>
146#include <machine/frame.h>
147#include <machine/md_var.h>
148#include <machine/psl.h>
149#include <machine/pte.h>
150#include <machine/sr.h>
151
152#define	PMAP_DEBUG
153
154#define TODO	panic("%s: not implemented", __func__);
155
156#define	TLBIE(va)	__asm __volatile("tlbie %0" :: "r"(va))
157#define	TLBSYNC()	__asm __volatile("tlbsync");
158#define	SYNC()		__asm __volatile("sync");
159#define	EIEIO()		__asm __volatile("eieio");
160
161#define	VSID_MAKE(sr, hash)	((sr) | (((hash) & 0xfffff) << 4))
162#define	VSID_TO_SR(vsid)	((vsid) & 0xf)
163#define	VSID_TO_HASH(vsid)	(((vsid) >> 4) & 0xfffff)
164
165#define	PVO_PTEGIDX_MASK	0x007		/* which PTEG slot */
166#define	PVO_PTEGIDX_VALID	0x008		/* slot is valid */
167#define	PVO_WIRED		0x010		/* PVO entry is wired */
168#define	PVO_MANAGED		0x020		/* PVO entry is managed */
169#define	PVO_EXECUTABLE		0x040		/* PVO entry is executable */
170#define	PVO_BOOTSTRAP		0x080		/* PVO entry allocated during
171						   bootstrap */
172#define PVO_FAKE		0x100		/* fictitious phys page */
173#define	PVO_VADDR(pvo)		((pvo)->pvo_vaddr & ~ADDR_POFF)
174#define	PVO_ISEXECUTABLE(pvo)	((pvo)->pvo_vaddr & PVO_EXECUTABLE)
175#define PVO_ISFAKE(pvo)		((pvo)->pvo_vaddr & PVO_FAKE)
176#define	PVO_PTEGIDX_GET(pvo)	((pvo)->pvo_vaddr & PVO_PTEGIDX_MASK)
177#define	PVO_PTEGIDX_ISSET(pvo)	((pvo)->pvo_vaddr & PVO_PTEGIDX_VALID)
178#define	PVO_PTEGIDX_CLR(pvo)	\
179	((void)((pvo)->pvo_vaddr &= ~(PVO_PTEGIDX_VALID|PVO_PTEGIDX_MASK)))
180#define	PVO_PTEGIDX_SET(pvo, i)	\
181	((void)((pvo)->pvo_vaddr |= (i)|PVO_PTEGIDX_VALID))
182
183#define	PMAP_PVO_CHECK(pvo)
184
185struct ofw_map {
186	vm_offset_t	om_va;
187	vm_size_t	om_len;
188	vm_offset_t	om_pa;
189	u_int		om_mode;
190};
191
192int	pmap_bootstrapped = 0;
193
194/*
195 * Virtual and physical address of message buffer.
196 */
197struct		msgbuf *msgbufp;
198vm_offset_t	msgbuf_phys;
199
200int pmap_pagedaemon_waken;
201
202/*
203 * Map of physical memory regions.
204 */
205vm_offset_t	phys_avail[128];
206u_int		phys_avail_count;
207static struct	mem_region *regions;
208static struct	mem_region *pregions;
209int		regions_sz, pregions_sz;
210static struct	ofw_map *translations;
211
212/*
213 * First and last available kernel virtual addresses.
214 */
215vm_offset_t virtual_avail;
216vm_offset_t virtual_end;
217vm_offset_t kernel_vm_end;
218
219/*
220 * Kernel pmap.
221 */
222struct pmap kernel_pmap_store;
223extern struct pmap ofw_pmap;
224
225/*
226 * Lock for the pteg and pvo tables.
227 */
228struct mtx	pmap_table_mutex;
229
230/*
231 * PTEG data.
232 */
233static struct	pteg *pmap_pteg_table;
234u_int		pmap_pteg_count;
235u_int		pmap_pteg_mask;
236
237/*
238 * PVO data.
239 */
240struct	pvo_head *pmap_pvo_table;		/* pvo entries by pteg index */
241struct	pvo_head pmap_pvo_kunmanaged =
242    LIST_HEAD_INITIALIZER(pmap_pvo_kunmanaged);	/* list of unmanaged pages */
243struct	pvo_head pmap_pvo_unmanaged =
244    LIST_HEAD_INITIALIZER(pmap_pvo_unmanaged);	/* list of unmanaged pages */
245
246uma_zone_t	pmap_upvo_zone;	/* zone for pvo entries for unmanaged pages */
247uma_zone_t	pmap_mpvo_zone;	/* zone for pvo entries for managed pages */
248
249#define	BPVO_POOL_SIZE	32768
250static struct	pvo_entry *pmap_bpvo_pool;
251static int	pmap_bpvo_pool_index = 0;
252
253#define	VSID_NBPW	(sizeof(u_int32_t) * 8)
254static u_int	pmap_vsid_bitmap[NPMAPS / VSID_NBPW];
255
256static boolean_t pmap_initialized = FALSE;
257
258/*
259 * Statistics.
260 */
261u_int	pmap_pte_valid = 0;
262u_int	pmap_pte_overflow = 0;
263u_int	pmap_pte_replacements = 0;
264u_int	pmap_pvo_entries = 0;
265u_int	pmap_pvo_enter_calls = 0;
266u_int	pmap_pvo_remove_calls = 0;
267u_int	pmap_pte_spills = 0;
268SYSCTL_INT(_machdep, OID_AUTO, pmap_pte_valid, CTLFLAG_RD, &pmap_pte_valid,
269    0, "");
270SYSCTL_INT(_machdep, OID_AUTO, pmap_pte_overflow, CTLFLAG_RD,
271    &pmap_pte_overflow, 0, "");
272SYSCTL_INT(_machdep, OID_AUTO, pmap_pte_replacements, CTLFLAG_RD,
273    &pmap_pte_replacements, 0, "");
274SYSCTL_INT(_machdep, OID_AUTO, pmap_pvo_entries, CTLFLAG_RD, &pmap_pvo_entries,
275    0, "");
276SYSCTL_INT(_machdep, OID_AUTO, pmap_pvo_enter_calls, CTLFLAG_RD,
277    &pmap_pvo_enter_calls, 0, "");
278SYSCTL_INT(_machdep, OID_AUTO, pmap_pvo_remove_calls, CTLFLAG_RD,
279    &pmap_pvo_remove_calls, 0, "");
280SYSCTL_INT(_machdep, OID_AUTO, pmap_pte_spills, CTLFLAG_RD,
281    &pmap_pte_spills, 0, "");
282
283struct	pvo_entry *pmap_pvo_zeropage;
284
285vm_offset_t	pmap_rkva_start = VM_MIN_KERNEL_ADDRESS;
286u_int		pmap_rkva_count = 4;
287
288/*
289 * Allocate physical memory for use in pmap_bootstrap.
290 */
291static vm_offset_t	pmap_bootstrap_alloc(vm_size_t, u_int);
292
293/*
294 * PTE calls.
295 */
296static int		pmap_pte_insert(u_int, struct pte *);
297
298/*
299 * PVO calls.
300 */
301static int	pmap_pvo_enter(pmap_t, uma_zone_t, struct pvo_head *,
302		    vm_offset_t, vm_offset_t, u_int, int);
303static void	pmap_pvo_remove(struct pvo_entry *, int);
304static struct	pvo_entry *pmap_pvo_find_va(pmap_t, vm_offset_t, int *);
305static struct	pte *pmap_pvo_to_pte(const struct pvo_entry *, int);
306
307/*
308 * Utility routines.
309 */
310static struct		pvo_entry *pmap_rkva_alloc(void);
311static void		pmap_pa_map(struct pvo_entry *, vm_offset_t,
312			    struct pte *, int *);
313static void		pmap_pa_unmap(struct pvo_entry *, struct pte *, int *);
314static void		pmap_syncicache(vm_offset_t, vm_size_t);
315static boolean_t	pmap_query_bit(vm_page_t, int);
316static u_int		pmap_clear_bit(vm_page_t, int, int *);
317static void		tlbia(void);
318
319static __inline int
320va_to_sr(u_int *sr, vm_offset_t va)
321{
322	return (sr[(uintptr_t)va >> ADDR_SR_SHFT]);
323}
324
325static __inline u_int
326va_to_pteg(u_int sr, vm_offset_t addr)
327{
328	u_int hash;
329
330	hash = (sr & SR_VSID_MASK) ^ (((u_int)addr & ADDR_PIDX) >>
331	    ADDR_PIDX_SHFT);
332	return (hash & pmap_pteg_mask);
333}
334
335static __inline struct pvo_head *
336pa_to_pvoh(vm_offset_t pa, vm_page_t *pg_p)
337{
338	struct	vm_page *pg;
339
340	pg = PHYS_TO_VM_PAGE(pa);
341
342	if (pg_p != NULL)
343		*pg_p = pg;
344
345	if (pg == NULL)
346		return (&pmap_pvo_unmanaged);
347
348	return (&pg->md.mdpg_pvoh);
349}
350
351static __inline struct pvo_head *
352vm_page_to_pvoh(vm_page_t m)
353{
354
355	return (&m->md.mdpg_pvoh);
356}
357
358static __inline void
359pmap_attr_clear(vm_page_t m, int ptebit)
360{
361
362	m->md.mdpg_attrs &= ~ptebit;
363}
364
365static __inline int
366pmap_attr_fetch(vm_page_t m)
367{
368
369	return (m->md.mdpg_attrs);
370}
371
372static __inline void
373pmap_attr_save(vm_page_t m, int ptebit)
374{
375
376	m->md.mdpg_attrs |= ptebit;
377}
378
379static __inline int
380pmap_pte_compare(const struct pte *pt, const struct pte *pvo_pt)
381{
382	if (pt->pte_hi == pvo_pt->pte_hi)
383		return (1);
384
385	return (0);
386}
387
388static __inline int
389pmap_pte_match(struct pte *pt, u_int sr, vm_offset_t va, int which)
390{
391	return (pt->pte_hi & ~PTE_VALID) ==
392	    (((sr & SR_VSID_MASK) << PTE_VSID_SHFT) |
393	    ((va >> ADDR_API_SHFT) & PTE_API) | which);
394}
395
396static __inline void
397pmap_pte_create(struct pte *pt, u_int sr, vm_offset_t va, u_int pte_lo)
398{
399	/*
400	 * Construct a PTE.  Default to IMB initially.  Valid bit only gets
401	 * set when the real pte is set in memory.
402	 *
403	 * Note: Don't set the valid bit for correct operation of tlb update.
404	 */
405	pt->pte_hi = ((sr & SR_VSID_MASK) << PTE_VSID_SHFT) |
406	    (((va & ADDR_PIDX) >> ADDR_API_SHFT) & PTE_API);
407	pt->pte_lo = pte_lo;
408}
409
410static __inline void
411pmap_pte_synch(struct pte *pt, struct pte *pvo_pt)
412{
413
414	pvo_pt->pte_lo |= pt->pte_lo & (PTE_REF | PTE_CHG);
415}
416
417static __inline void
418pmap_pte_clear(struct pte *pt, vm_offset_t va, int ptebit)
419{
420
421	/*
422	 * As shown in Section 7.6.3.2.3
423	 */
424	pt->pte_lo &= ~ptebit;
425	TLBIE(va);
426	EIEIO();
427	TLBSYNC();
428	SYNC();
429}
430
431static __inline void
432pmap_pte_set(struct pte *pt, struct pte *pvo_pt)
433{
434
435	pvo_pt->pte_hi |= PTE_VALID;
436
437	/*
438	 * Update the PTE as defined in section 7.6.3.1.
439	 * Note that the REF/CHG bits are from pvo_pt and thus should havce
440	 * been saved so this routine can restore them (if desired).
441	 */
442	pt->pte_lo = pvo_pt->pte_lo;
443	EIEIO();
444	pt->pte_hi = pvo_pt->pte_hi;
445	SYNC();
446	pmap_pte_valid++;
447}
448
449static __inline void
450pmap_pte_unset(struct pte *pt, struct pte *pvo_pt, vm_offset_t va)
451{
452
453	pvo_pt->pte_hi &= ~PTE_VALID;
454
455	/*
456	 * Force the reg & chg bits back into the PTEs.
457	 */
458	SYNC();
459
460	/*
461	 * Invalidate the pte.
462	 */
463	pt->pte_hi &= ~PTE_VALID;
464
465	SYNC();
466	TLBIE(va);
467	EIEIO();
468	TLBSYNC();
469	SYNC();
470
471	/*
472	 * Save the reg & chg bits.
473	 */
474	pmap_pte_synch(pt, pvo_pt);
475	pmap_pte_valid--;
476}
477
478static __inline void
479pmap_pte_change(struct pte *pt, struct pte *pvo_pt, vm_offset_t va)
480{
481
482	/*
483	 * Invalidate the PTE
484	 */
485	pmap_pte_unset(pt, pvo_pt, va);
486	pmap_pte_set(pt, pvo_pt);
487}
488
489/*
490 * Quick sort callout for comparing memory regions.
491 */
492static int	mr_cmp(const void *a, const void *b);
493static int	om_cmp(const void *a, const void *b);
494
495static int
496mr_cmp(const void *a, const void *b)
497{
498	const struct	mem_region *regiona;
499	const struct	mem_region *regionb;
500
501	regiona = a;
502	regionb = b;
503	if (regiona->mr_start < regionb->mr_start)
504		return (-1);
505	else if (regiona->mr_start > regionb->mr_start)
506		return (1);
507	else
508		return (0);
509}
510
511static int
512om_cmp(const void *a, const void *b)
513{
514	const struct	ofw_map *mapa;
515	const struct	ofw_map *mapb;
516
517	mapa = a;
518	mapb = b;
519	if (mapa->om_pa < mapb->om_pa)
520		return (-1);
521	else if (mapa->om_pa > mapb->om_pa)
522		return (1);
523	else
524		return (0);
525}
526
527static vm_size_t
528pmap_tunable_physmem(void)
529{
530	char *cp;
531	vm_size_t retval;
532
533	retval = 0;
534
535        if ((cp = getenv("hw.physmem")) != NULL) {
536                u_int64_t allowmem, sanity;
537                char *ep;
538
539		sanity = allowmem = strtouq(cp, &ep, 0);
540		if ((ep != cp) && (*ep != 0)) {
541			switch(*ep) {
542			case 'g':
543			case 'G':
544				/*
545				 * Can't have more than 4G of RAM
546				 */
547				if (allowmem > 4) {
548					printf("Invalid memory size '%s'\n",
549					       cp);
550					return (0);
551				}
552				allowmem <<= 10;
553			case 'm':
554			case 'M':
555				allowmem <<= 10;
556			case 'k':
557			case 'K':
558				allowmem <<= 10;
559				break;
560			default:
561				allowmem = sanity = 0;
562			}
563			if (allowmem < sanity)
564				allowmem = 0;
565		}
566		if (allowmem == 0)
567			printf("Ignoring invalid memory size of '%s'\n", cp);
568		else
569			retval = allowmem;
570		freeenv(cp);
571	}
572
573	return (retval);
574}
575
576void
577pmap_bootstrap(vm_offset_t kernelstart, vm_offset_t kernelend)
578{
579	ihandle_t	mmui;
580	phandle_t	chosen, mmu;
581	int		sz;
582	int		i, j;
583	int		ofw_mappings;
584	vm_size_t	size, physsz, hwphyssz;
585	vm_offset_t	pa, va, off;
586	u_int		batl, batu;
587
588        /*
589         * Set up BAT0 to map the lowest 256 MB area
590         */
591        battable[0x0].batl = BATL(0x00000000, BAT_M, BAT_PP_RW);
592        battable[0x0].batu = BATU(0x00000000, BAT_BL_256M, BAT_Vs);
593
594        /*
595         * Map PCI memory space.
596         */
597        battable[0x8].batl = BATL(0x80000000, BAT_I|BAT_G, BAT_PP_RW);
598        battable[0x8].batu = BATU(0x80000000, BAT_BL_256M, BAT_Vs);
599
600        battable[0x9].batl = BATL(0x90000000, BAT_I|BAT_G, BAT_PP_RW);
601        battable[0x9].batu = BATU(0x90000000, BAT_BL_256M, BAT_Vs);
602
603        battable[0xa].batl = BATL(0xa0000000, BAT_I|BAT_G, BAT_PP_RW);
604        battable[0xa].batu = BATU(0xa0000000, BAT_BL_256M, BAT_Vs);
605
606        battable[0xb].batl = BATL(0xb0000000, BAT_I|BAT_G, BAT_PP_RW);
607        battable[0xb].batu = BATU(0xb0000000, BAT_BL_256M, BAT_Vs);
608
609        /*
610         * Map obio devices.
611         */
612        battable[0xf].batl = BATL(0xf0000000, BAT_I|BAT_G, BAT_PP_RW);
613        battable[0xf].batu = BATU(0xf0000000, BAT_BL_256M, BAT_Vs);
614
615	/*
616	 * Use an IBAT and a DBAT to map the bottom segment of memory
617	 * where we are.
618	 */
619	batu = BATU(0x00000000, BAT_BL_256M, BAT_Vs);
620	batl = BATL(0x00000000, BAT_M, BAT_PP_RW);
621	__asm ("mtibatu 0,%0; mtibatl 0,%1; isync; \n"
622	       "mtdbatu 0,%0; mtdbatl 0,%1; isync"
623	    :: "r"(batu), "r"(batl));
624
625#if 0
626	/* map frame buffer */
627	batu = BATU(0x90000000, BAT_BL_256M, BAT_Vs);
628	batl = BATL(0x90000000, BAT_I|BAT_G, BAT_PP_RW);
629	__asm ("mtdbatu 1,%0; mtdbatl 1,%1; isync"
630	    :: "r"(batu), "r"(batl));
631#endif
632
633#if 1
634	/* map pci space */
635	batu = BATU(0x80000000, BAT_BL_256M, BAT_Vs);
636	batl = BATL(0x80000000, BAT_I|BAT_G, BAT_PP_RW);
637	__asm ("mtdbatu 1,%0; mtdbatl 1,%1; isync"
638	    :: "r"(batu), "r"(batl));
639#endif
640
641	/*
642	 * Set the start and end of kva.
643	 */
644	virtual_avail = VM_MIN_KERNEL_ADDRESS;
645	virtual_end = VM_MAX_KERNEL_ADDRESS;
646
647	mem_regions(&pregions, &pregions_sz, &regions, &regions_sz);
648	CTR0(KTR_PMAP, "pmap_bootstrap: physical memory");
649
650	qsort(pregions, pregions_sz, sizeof(*pregions), mr_cmp);
651	for (i = 0; i < pregions_sz; i++) {
652		vm_offset_t pa;
653		vm_offset_t end;
654
655		CTR3(KTR_PMAP, "physregion: %#x - %#x (%#x)",
656			pregions[i].mr_start,
657			pregions[i].mr_start + pregions[i].mr_size,
658			pregions[i].mr_size);
659		/*
660		 * Install entries into the BAT table to allow all
661		 * of physmem to be convered by on-demand BAT entries.
662		 * The loop will sometimes set the same battable element
663		 * twice, but that's fine since they won't be used for
664		 * a while yet.
665		 */
666		pa = pregions[i].mr_start & 0xf0000000;
667		end = pregions[i].mr_start + pregions[i].mr_size;
668		do {
669                        u_int n = pa >> ADDR_SR_SHFT;
670
671			battable[n].batl = BATL(pa, BAT_M, BAT_PP_RW);
672			battable[n].batu = BATU(pa, BAT_BL_256M, BAT_Vs);
673			pa += SEGMENT_LENGTH;
674		} while (pa < end);
675	}
676
677	if (sizeof(phys_avail)/sizeof(phys_avail[0]) < regions_sz)
678		panic("pmap_bootstrap: phys_avail too small");
679	qsort(regions, regions_sz, sizeof(*regions), mr_cmp);
680	phys_avail_count = 0;
681	physsz = 0;
682	hwphyssz = pmap_tunable_physmem();
683	for (i = 0, j = 0; i < regions_sz; i++, j += 2) {
684		CTR3(KTR_PMAP, "region: %#x - %#x (%#x)", regions[i].mr_start,
685		    regions[i].mr_start + regions[i].mr_size,
686		    regions[i].mr_size);
687		if (hwphyssz != 0 &&
688		    (physsz + regions[i].mr_size) >= hwphyssz) {
689			if (physsz < hwphyssz) {
690				phys_avail[j] = regions[i].mr_start;
691				phys_avail[j + 1] = regions[i].mr_start +
692				    hwphyssz - physsz;
693				physsz = hwphyssz;
694				phys_avail_count++;
695			}
696			break;
697		}
698		phys_avail[j] = regions[i].mr_start;
699		phys_avail[j + 1] = regions[i].mr_start + regions[i].mr_size;
700		phys_avail_count++;
701		physsz += regions[i].mr_size;
702	}
703	physmem = btoc(physsz);
704
705	/*
706	 * Allocate PTEG table.
707	 */
708#ifdef PTEGCOUNT
709	pmap_pteg_count = PTEGCOUNT;
710#else
711	pmap_pteg_count = 0x1000;
712
713	while (pmap_pteg_count < physmem)
714		pmap_pteg_count <<= 1;
715
716	pmap_pteg_count >>= 1;
717#endif /* PTEGCOUNT */
718
719	size = pmap_pteg_count * sizeof(struct pteg);
720	CTR2(KTR_PMAP, "pmap_bootstrap: %d PTEGs, %d bytes", pmap_pteg_count,
721	    size);
722	pmap_pteg_table = (struct pteg *)pmap_bootstrap_alloc(size, size);
723	CTR1(KTR_PMAP, "pmap_bootstrap: PTEG table at %p", pmap_pteg_table);
724	bzero((void *)pmap_pteg_table, pmap_pteg_count * sizeof(struct pteg));
725	pmap_pteg_mask = pmap_pteg_count - 1;
726
727	/*
728	 * Allocate pv/overflow lists.
729	 */
730	size = sizeof(struct pvo_head) * pmap_pteg_count;
731	pmap_pvo_table = (struct pvo_head *)pmap_bootstrap_alloc(size,
732	    PAGE_SIZE);
733	CTR1(KTR_PMAP, "pmap_bootstrap: PVO table at %p", pmap_pvo_table);
734	for (i = 0; i < pmap_pteg_count; i++)
735		LIST_INIT(&pmap_pvo_table[i]);
736
737	/*
738	 * Initialize the lock that synchronizes access to the pteg and pvo
739	 * tables.
740	 */
741	mtx_init(&pmap_table_mutex, "pmap table", NULL, MTX_DEF);
742
743	/*
744	 * Allocate the message buffer.
745	 */
746	msgbuf_phys = pmap_bootstrap_alloc(MSGBUF_SIZE, 0);
747
748	/*
749	 * Initialise the unmanaged pvo pool.
750	 */
751	pmap_bpvo_pool = (struct pvo_entry *)pmap_bootstrap_alloc(
752		BPVO_POOL_SIZE*sizeof(struct pvo_entry), 0);
753	pmap_bpvo_pool_index = 0;
754
755	/*
756	 * Make sure kernel vsid is allocated as well as VSID 0.
757	 */
758	pmap_vsid_bitmap[(KERNEL_VSIDBITS & (NPMAPS - 1)) / VSID_NBPW]
759		|= 1 << (KERNEL_VSIDBITS % VSID_NBPW);
760	pmap_vsid_bitmap[0] |= 1;
761
762	/*
763	 * Set up the Open Firmware pmap and add it's mappings.
764	 */
765	pmap_pinit(&ofw_pmap);
766	ofw_pmap.pm_sr[KERNEL_SR] = KERNEL_SEGMENT;
767	ofw_pmap.pm_sr[KERNEL2_SR] = KERNEL2_SEGMENT;
768	if ((chosen = OF_finddevice("/chosen")) == -1)
769		panic("pmap_bootstrap: can't find /chosen");
770	OF_getprop(chosen, "mmu", &mmui, 4);
771	if ((mmu = OF_instance_to_package(mmui)) == -1)
772		panic("pmap_bootstrap: can't get mmu package");
773	if ((sz = OF_getproplen(mmu, "translations")) == -1)
774		panic("pmap_bootstrap: can't get ofw translation count");
775	translations = NULL;
776	for (i = 0; phys_avail[i] != 0; i += 2) {
777		if (phys_avail[i + 1] >= sz) {
778			translations = (struct ofw_map *)phys_avail[i];
779			break;
780		}
781	}
782	if (translations == NULL)
783		panic("pmap_bootstrap: no space to copy translations");
784	bzero(translations, sz);
785	if (OF_getprop(mmu, "translations", translations, sz) == -1)
786		panic("pmap_bootstrap: can't get ofw translations");
787	CTR0(KTR_PMAP, "pmap_bootstrap: translations");
788	sz /= sizeof(*translations);
789	qsort(translations, sz, sizeof (*translations), om_cmp);
790	for (i = 0, ofw_mappings = 0; i < sz; i++) {
791		CTR3(KTR_PMAP, "translation: pa=%#x va=%#x len=%#x",
792		    translations[i].om_pa, translations[i].om_va,
793		    translations[i].om_len);
794
795		/*
796		 * If the mapping is 1:1, let the RAM and device on-demand
797		 * BAT tables take care of the translation.
798		 */
799		if (translations[i].om_va == translations[i].om_pa)
800			continue;
801
802		/* Enter the pages */
803		for (off = 0; off < translations[i].om_len; off += PAGE_SIZE) {
804			struct	vm_page m;
805
806			m.phys_addr = translations[i].om_pa + off;
807			pmap_enter(&ofw_pmap, translations[i].om_va + off, &m,
808				   VM_PROT_ALL, 1);
809			ofw_mappings++;
810		}
811	}
812#ifdef SMP
813	TLBSYNC();
814#endif
815
816	/*
817	 * Initialize the kernel pmap (which is statically allocated).
818	 */
819	PMAP_LOCK_INIT(kernel_pmap);
820	for (i = 0; i < 16; i++) {
821		kernel_pmap->pm_sr[i] = EMPTY_SEGMENT;
822	}
823	kernel_pmap->pm_sr[KERNEL_SR] = KERNEL_SEGMENT;
824	kernel_pmap->pm_sr[KERNEL2_SR] = KERNEL2_SEGMENT;
825	kernel_pmap->pm_active = ~0;
826
827	/*
828	 * Allocate a kernel stack with a guard page for thread0 and map it
829	 * into the kernel page map.
830	 */
831	pa = pmap_bootstrap_alloc(KSTACK_PAGES * PAGE_SIZE, 0);
832	kstack0_phys = pa;
833	kstack0 = virtual_avail + (KSTACK_GUARD_PAGES * PAGE_SIZE);
834	CTR2(KTR_PMAP, "pmap_bootstrap: kstack0 at %#x (%#x)", kstack0_phys,
835	    kstack0);
836	virtual_avail += (KSTACK_PAGES + KSTACK_GUARD_PAGES) * PAGE_SIZE;
837	for (i = 0; i < KSTACK_PAGES; i++) {
838		pa = kstack0_phys + i * PAGE_SIZE;
839		va = kstack0 + i * PAGE_SIZE;
840		pmap_kenter(va, pa);
841		TLBIE(va);
842	}
843
844	/*
845	 * Calculate the last available physical address.
846	 */
847	for (i = 0; phys_avail[i + 2] != 0; i += 2)
848		;
849	Maxmem = powerpc_btop(phys_avail[i + 1]);
850
851	/*
852	 * Allocate virtual address space for the message buffer.
853	 */
854	msgbufp = (struct msgbuf *)virtual_avail;
855	virtual_avail += round_page(MSGBUF_SIZE);
856
857	/*
858	 * Initialize hardware.
859	 */
860	for (i = 0; i < 16; i++) {
861		mtsrin(i << ADDR_SR_SHFT, EMPTY_SEGMENT);
862	}
863	__asm __volatile ("mtsr %0,%1"
864	    :: "n"(KERNEL_SR), "r"(KERNEL_SEGMENT));
865	__asm __volatile ("mtsr %0,%1"
866	    :: "n"(KERNEL2_SR), "r"(KERNEL2_SEGMENT));
867	__asm __volatile ("sync; mtsdr1 %0; isync"
868	    :: "r"((u_int)pmap_pteg_table | (pmap_pteg_mask >> 10)));
869	tlbia();
870
871	pmap_bootstrapped++;
872}
873
874/*
875 * Activate a user pmap.  The pmap must be activated before it's address
876 * space can be accessed in any way.
877 */
878void
879pmap_activate(struct thread *td)
880{
881	pmap_t	pm, pmr;
882
883	/*
884	 * Load all the data we need up front to encourage the compiler to
885	 * not issue any loads while we have interrupts disabled below.
886	 */
887	pm = &td->td_proc->p_vmspace->vm_pmap;
888
889	if ((pmr = (pmap_t)pmap_kextract((vm_offset_t)pm)) == NULL)
890		pmr = pm;
891
892	pm->pm_active |= PCPU_GET(cpumask);
893	PCPU_SET(curpmap, pmr);
894}
895
896void
897pmap_deactivate(struct thread *td)
898{
899	pmap_t	pm;
900
901	pm = &td->td_proc->p_vmspace->vm_pmap;
902	pm->pm_active &= ~(PCPU_GET(cpumask));
903	PCPU_SET(curpmap, NULL);
904}
905
906vm_offset_t
907pmap_addr_hint(vm_object_t object, vm_offset_t va, vm_size_t size)
908{
909
910	return (va);
911}
912
913void
914pmap_change_wiring(pmap_t pm, vm_offset_t va, boolean_t wired)
915{
916	struct	pvo_entry *pvo;
917
918	PMAP_LOCK(pm);
919	pvo = pmap_pvo_find_va(pm, va & ~ADDR_POFF, NULL);
920
921	if (pvo != NULL) {
922		if (wired) {
923			if ((pvo->pvo_vaddr & PVO_WIRED) == 0)
924				pm->pm_stats.wired_count++;
925			pvo->pvo_vaddr |= PVO_WIRED;
926		} else {
927			if ((pvo->pvo_vaddr & PVO_WIRED) != 0)
928				pm->pm_stats.wired_count--;
929			pvo->pvo_vaddr &= ~PVO_WIRED;
930		}
931	}
932	PMAP_UNLOCK(pm);
933}
934
935void
936pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr,
937	  vm_size_t len, vm_offset_t src_addr)
938{
939
940	/*
941	 * This is not needed as it's mainly an optimisation.
942	 * It may want to be implemented later though.
943	 */
944}
945
946void
947pmap_copy_page(vm_page_t msrc, vm_page_t mdst)
948{
949	vm_offset_t	dst;
950	vm_offset_t	src;
951
952	dst = VM_PAGE_TO_PHYS(mdst);
953	src = VM_PAGE_TO_PHYS(msrc);
954
955	kcopy((void *)src, (void *)dst, PAGE_SIZE);
956}
957
958/*
959 * Zero a page of physical memory by temporarily mapping it into the tlb.
960 */
961void
962pmap_zero_page(vm_page_t m)
963{
964	vm_offset_t pa = VM_PAGE_TO_PHYS(m);
965	caddr_t va;
966
967	if (pa < SEGMENT_LENGTH) {
968		va = (caddr_t) pa;
969	} else if (pmap_initialized) {
970		if (pmap_pvo_zeropage == NULL)
971			pmap_pvo_zeropage = pmap_rkva_alloc();
972		pmap_pa_map(pmap_pvo_zeropage, pa, NULL, NULL);
973		va = (caddr_t)PVO_VADDR(pmap_pvo_zeropage);
974	} else {
975		panic("pmap_zero_page: can't zero pa %#x", pa);
976	}
977
978	bzero(va, PAGE_SIZE);
979
980	if (pa >= SEGMENT_LENGTH)
981		pmap_pa_unmap(pmap_pvo_zeropage, NULL, NULL);
982}
983
984void
985pmap_zero_page_area(vm_page_t m, int off, int size)
986{
987	vm_offset_t pa = VM_PAGE_TO_PHYS(m);
988	caddr_t va;
989
990	if (pa < SEGMENT_LENGTH) {
991		va = (caddr_t) pa;
992	} else if (pmap_initialized) {
993		if (pmap_pvo_zeropage == NULL)
994			pmap_pvo_zeropage = pmap_rkva_alloc();
995		pmap_pa_map(pmap_pvo_zeropage, pa, NULL, NULL);
996		va = (caddr_t)PVO_VADDR(pmap_pvo_zeropage);
997	} else {
998		panic("pmap_zero_page: can't zero pa %#x", pa);
999	}
1000
1001	bzero(va + off, size);
1002
1003	if (pa >= SEGMENT_LENGTH)
1004		pmap_pa_unmap(pmap_pvo_zeropage, NULL, NULL);
1005}
1006
1007void
1008pmap_zero_page_idle(vm_page_t m)
1009{
1010
1011	/* XXX this is called outside of Giant, is pmap_zero_page safe? */
1012	/* XXX maybe have a dedicated mapping for this to avoid the problem? */
1013	mtx_lock(&Giant);
1014	pmap_zero_page(m);
1015	mtx_unlock(&Giant);
1016}
1017
1018/*
1019 * Map the given physical page at the specified virtual address in the
1020 * target pmap with the protection requested.  If specified the page
1021 * will be wired down.
1022 */
1023void
1024pmap_enter(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
1025	   boolean_t wired)
1026{
1027	struct		pvo_head *pvo_head;
1028	uma_zone_t	zone;
1029	vm_page_t	pg;
1030	u_int		pte_lo, pvo_flags, was_exec, i;
1031	int		error;
1032
1033	if (!pmap_initialized) {
1034		pvo_head = &pmap_pvo_kunmanaged;
1035		zone = pmap_upvo_zone;
1036		pvo_flags = 0;
1037		pg = NULL;
1038		was_exec = PTE_EXEC;
1039	} else {
1040		pvo_head = vm_page_to_pvoh(m);
1041		pg = m;
1042		zone = pmap_mpvo_zone;
1043		pvo_flags = PVO_MANAGED;
1044		was_exec = 0;
1045	}
1046	if (pmap_bootstrapped)
1047		vm_page_lock_queues();
1048	PMAP_LOCK(pmap);
1049
1050	/* XXX change the pvo head for fake pages */
1051	if ((m->flags & PG_FICTITIOUS) == PG_FICTITIOUS)
1052		pvo_head = &pmap_pvo_kunmanaged;
1053
1054	/*
1055	 * If this is a managed page, and it's the first reference to the page,
1056	 * clear the execness of the page.  Otherwise fetch the execness.
1057	 */
1058	if ((pg != NULL) && ((m->flags & PG_FICTITIOUS) == 0)) {
1059		if (LIST_EMPTY(pvo_head)) {
1060			pmap_attr_clear(pg, PTE_EXEC);
1061		} else {
1062			was_exec = pmap_attr_fetch(pg) & PTE_EXEC;
1063		}
1064	}
1065
1066	/*
1067	 * Assume the page is cache inhibited and access is guarded unless
1068	 * it's in our available memory array.
1069	 */
1070	pte_lo = PTE_I | PTE_G;
1071	for (i = 0; i < pregions_sz; i++) {
1072		if ((VM_PAGE_TO_PHYS(m) >= pregions[i].mr_start) &&
1073		    (VM_PAGE_TO_PHYS(m) <
1074			(pregions[i].mr_start + pregions[i].mr_size))) {
1075			pte_lo &= ~(PTE_I | PTE_G);
1076			break;
1077		}
1078	}
1079
1080	if (prot & VM_PROT_WRITE)
1081		pte_lo |= PTE_BW;
1082	else
1083		pte_lo |= PTE_BR;
1084
1085	if (prot & VM_PROT_EXECUTE)
1086		pvo_flags |= PVO_EXECUTABLE;
1087
1088	if (wired)
1089		pvo_flags |= PVO_WIRED;
1090
1091	if ((m->flags & PG_FICTITIOUS) != 0)
1092		pvo_flags |= PVO_FAKE;
1093
1094	error = pmap_pvo_enter(pmap, zone, pvo_head, va, VM_PAGE_TO_PHYS(m),
1095	    pte_lo, pvo_flags);
1096
1097	/*
1098	 * Flush the real page from the instruction cache if this page is
1099	 * mapped executable and cacheable and was not previously mapped (or
1100	 * was not mapped executable).
1101	 */
1102	if (error == 0 && (pvo_flags & PVO_EXECUTABLE) &&
1103	    (pte_lo & PTE_I) == 0 && was_exec == 0) {
1104		/*
1105		 * Flush the real memory from the cache.
1106		 */
1107		pmap_syncicache(VM_PAGE_TO_PHYS(m), PAGE_SIZE);
1108		if (pg != NULL)
1109			pmap_attr_save(pg, PTE_EXEC);
1110	}
1111	if (pmap_bootstrapped)
1112		vm_page_unlock_queues();
1113
1114	/* XXX syncicache always until problems are sorted */
1115	pmap_syncicache(VM_PAGE_TO_PHYS(m), PAGE_SIZE);
1116	PMAP_UNLOCK(pmap);
1117}
1118
1119vm_page_t
1120pmap_enter_quick(pmap_t pm, vm_offset_t va, vm_page_t m, vm_page_t mpte)
1121{
1122
1123	vm_page_busy(m);
1124	vm_page_unlock_queues();
1125	VM_OBJECT_UNLOCK(m->object);
1126	mtx_lock(&Giant);
1127	pmap_enter(pm, va, m, VM_PROT_READ | VM_PROT_EXECUTE, FALSE);
1128	mtx_unlock(&Giant);
1129	VM_OBJECT_LOCK(m->object);
1130	vm_page_lock_queues();
1131	vm_page_wakeup(m);
1132	return (NULL);
1133}
1134
1135vm_paddr_t
1136pmap_extract(pmap_t pm, vm_offset_t va)
1137{
1138	struct	pvo_entry *pvo;
1139	vm_paddr_t pa;
1140
1141	PMAP_LOCK(pm);
1142	pvo = pmap_pvo_find_va(pm, va & ~ADDR_POFF, NULL);
1143	if (pvo == NULL)
1144		pa = 0;
1145	else
1146		pa = (pvo->pvo_pte.pte_lo & PTE_RPGN) | (va & ADDR_POFF);
1147	PMAP_UNLOCK(pm);
1148	return (pa);
1149}
1150
1151/*
1152 * Atomically extract and hold the physical page with the given
1153 * pmap and virtual address pair if that mapping permits the given
1154 * protection.
1155 */
1156vm_page_t
1157pmap_extract_and_hold(pmap_t pmap, vm_offset_t va, vm_prot_t prot)
1158{
1159	struct	pvo_entry *pvo;
1160	vm_page_t m;
1161
1162	m = NULL;
1163	mtx_lock(&Giant);
1164	vm_page_lock_queues();
1165	PMAP_LOCK(pmap);
1166	pvo = pmap_pvo_find_va(pmap, va & ~ADDR_POFF, NULL);
1167	if (pvo != NULL && (pvo->pvo_pte.pte_hi & PTE_VALID) &&
1168	    ((pvo->pvo_pte.pte_lo & PTE_PP) == PTE_RW ||
1169	     (prot & VM_PROT_WRITE) == 0)) {
1170		m = PHYS_TO_VM_PAGE(pvo->pvo_pte.pte_lo & PTE_RPGN);
1171		vm_page_hold(m);
1172	}
1173	vm_page_unlock_queues();
1174	PMAP_UNLOCK(pmap);
1175	mtx_unlock(&Giant);
1176	return (m);
1177}
1178
1179/*
1180 * Grow the number of kernel page table entries.  Unneeded.
1181 */
1182void
1183pmap_growkernel(vm_offset_t addr)
1184{
1185}
1186
1187void
1188pmap_init(void)
1189{
1190
1191	CTR0(KTR_PMAP, "pmap_init");
1192
1193	pmap_upvo_zone = uma_zcreate("UPVO entry", sizeof (struct pvo_entry),
1194	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
1195	    UMA_ZONE_VM | UMA_ZONE_NOFREE);
1196	pmap_mpvo_zone = uma_zcreate("MPVO entry", sizeof(struct pvo_entry),
1197	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
1198	    UMA_ZONE_VM | UMA_ZONE_NOFREE);
1199	pmap_initialized = TRUE;
1200}
1201
1202void
1203pmap_init2(void)
1204{
1205
1206	CTR0(KTR_PMAP, "pmap_init2");
1207}
1208
1209boolean_t
1210pmap_is_modified(vm_page_t m)
1211{
1212
1213	if ((m->flags & (PG_FICTITIOUS |PG_UNMANAGED)) != 0)
1214		return (FALSE);
1215
1216	return (pmap_query_bit(m, PTE_CHG));
1217}
1218
1219/*
1220 *	pmap_is_prefaultable:
1221 *
1222 *	Return whether or not the specified virtual address is elgible
1223 *	for prefault.
1224 */
1225boolean_t
1226pmap_is_prefaultable(pmap_t pmap, vm_offset_t addr)
1227{
1228
1229	return (FALSE);
1230}
1231
1232void
1233pmap_clear_reference(vm_page_t m)
1234{
1235
1236	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0)
1237		return;
1238	pmap_clear_bit(m, PTE_REF, NULL);
1239}
1240
1241void
1242pmap_clear_modify(vm_page_t m)
1243{
1244
1245	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0)
1246		return;
1247	pmap_clear_bit(m, PTE_CHG, NULL);
1248}
1249
1250/*
1251 *	pmap_ts_referenced:
1252 *
1253 *	Return a count of reference bits for a page, clearing those bits.
1254 *	It is not necessary for every reference bit to be cleared, but it
1255 *	is necessary that 0 only be returned when there are truly no
1256 *	reference bits set.
1257 *
1258 *	XXX: The exact number of bits to check and clear is a matter that
1259 *	should be tested and standardized at some point in the future for
1260 *	optimal aging of shared pages.
1261 */
1262int
1263pmap_ts_referenced(vm_page_t m)
1264{
1265	int count;
1266
1267	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0)
1268		return (0);
1269
1270	count = pmap_clear_bit(m, PTE_REF, NULL);
1271
1272	return (count);
1273}
1274
1275/*
1276 * Map a wired page into kernel virtual address space.
1277 */
1278void
1279pmap_kenter(vm_offset_t va, vm_offset_t pa)
1280{
1281	u_int		pte_lo;
1282	int		error;
1283	int		i;
1284
1285#if 0
1286	if (va < VM_MIN_KERNEL_ADDRESS)
1287		panic("pmap_kenter: attempt to enter non-kernel address %#x",
1288		    va);
1289#endif
1290
1291	pte_lo = PTE_I | PTE_G;
1292	for (i = 0; i < pregions_sz; i++) {
1293		if ((pa >= pregions[i].mr_start) &&
1294		    (pa < (pregions[i].mr_start + pregions[i].mr_size))) {
1295			pte_lo &= ~(PTE_I | PTE_G);
1296			break;
1297		}
1298	}
1299
1300	PMAP_LOCK(kernel_pmap);
1301	error = pmap_pvo_enter(kernel_pmap, pmap_upvo_zone,
1302	    &pmap_pvo_kunmanaged, va, pa, pte_lo, PVO_WIRED);
1303
1304	if (error != 0 && error != ENOENT)
1305		panic("pmap_kenter: failed to enter va %#x pa %#x: %d", va,
1306		    pa, error);
1307
1308	/*
1309	 * Flush the real memory from the instruction cache.
1310	 */
1311	if ((pte_lo & (PTE_I | PTE_G)) == 0) {
1312		pmap_syncicache(pa, PAGE_SIZE);
1313	}
1314	PMAP_UNLOCK(kernel_pmap);
1315}
1316
1317/*
1318 * Extract the physical page address associated with the given kernel virtual
1319 * address.
1320 */
1321vm_offset_t
1322pmap_kextract(vm_offset_t va)
1323{
1324	struct		pvo_entry *pvo;
1325	vm_paddr_t pa;
1326
1327#ifdef UMA_MD_SMALL_ALLOC
1328	/*
1329	 * Allow direct mappings
1330	 */
1331	if (va < VM_MIN_KERNEL_ADDRESS) {
1332		return (va);
1333	}
1334#endif
1335
1336	PMAP_LOCK(kernel_pmap);
1337	pvo = pmap_pvo_find_va(kernel_pmap, va & ~ADDR_POFF, NULL);
1338	KASSERT(pvo != NULL, ("pmap_kextract: no addr found"));
1339	pa = (pvo->pvo_pte.pte_lo & PTE_RPGN) | (va & ADDR_POFF);
1340	PMAP_UNLOCK(kernel_pmap);
1341	return (pa);
1342}
1343
1344/*
1345 * Remove a wired page from kernel virtual address space.
1346 */
1347void
1348pmap_kremove(vm_offset_t va)
1349{
1350
1351	pmap_remove(kernel_pmap, va, va + PAGE_SIZE);
1352}
1353
1354/*
1355 * Map a range of physical addresses into kernel virtual address space.
1356 *
1357 * The value passed in *virt is a suggested virtual address for the mapping.
1358 * Architectures which can support a direct-mapped physical to virtual region
1359 * can return the appropriate address within that region, leaving '*virt'
1360 * unchanged.  We cannot and therefore do not; *virt is updated with the
1361 * first usable address after the mapped region.
1362 */
1363vm_offset_t
1364pmap_map(vm_offset_t *virt, vm_offset_t pa_start, vm_offset_t pa_end, int prot)
1365{
1366	vm_offset_t	sva, va;
1367
1368	sva = *virt;
1369	va = sva;
1370	for (; pa_start < pa_end; pa_start += PAGE_SIZE, va += PAGE_SIZE)
1371		pmap_kenter(va, pa_start);
1372	*virt = va;
1373	return (sva);
1374}
1375
1376int
1377pmap_mincore(pmap_t pmap, vm_offset_t addr)
1378{
1379	TODO;
1380	return (0);
1381}
1382
1383void
1384pmap_object_init_pt(pmap_t pm, vm_offset_t addr, vm_object_t object,
1385		    vm_pindex_t pindex, vm_size_t size)
1386{
1387
1388	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1389	KASSERT(object->type == OBJT_DEVICE,
1390	    ("pmap_object_init_pt: non-device object"));
1391	KASSERT(pm == &curproc->p_vmspace->vm_pmap || pm == kernel_pmap,
1392	    ("pmap_object_init_pt: non current pmap"));
1393}
1394
1395/*
1396 * Lower the permission for all mappings to a given page.
1397 */
1398void
1399pmap_page_protect(vm_page_t m, vm_prot_t prot)
1400{
1401	struct	pvo_head *pvo_head;
1402	struct	pvo_entry *pvo, *next_pvo;
1403	struct	pte *pt;
1404	pmap_t	pmap;
1405
1406	/*
1407	 * Since the routine only downgrades protection, if the
1408	 * maximal protection is desired, there isn't any change
1409	 * to be made.
1410	 */
1411	if ((prot & (VM_PROT_READ|VM_PROT_WRITE)) ==
1412	    (VM_PROT_READ|VM_PROT_WRITE))
1413		return;
1414
1415	pvo_head = vm_page_to_pvoh(m);
1416	for (pvo = LIST_FIRST(pvo_head); pvo != NULL; pvo = next_pvo) {
1417		next_pvo = LIST_NEXT(pvo, pvo_vlink);
1418		PMAP_PVO_CHECK(pvo);	/* sanity check */
1419		pmap = pvo->pvo_pmap;
1420		PMAP_LOCK(pmap);
1421
1422		/*
1423		 * Downgrading to no mapping at all, we just remove the entry.
1424		 */
1425		if ((prot & VM_PROT_READ) == 0) {
1426			pmap_pvo_remove(pvo, -1);
1427			PMAP_UNLOCK(pmap);
1428			continue;
1429		}
1430
1431		/*
1432		 * If EXEC permission is being revoked, just clear the flag
1433		 * in the PVO.
1434		 */
1435		if ((prot & VM_PROT_EXECUTE) == 0)
1436			pvo->pvo_vaddr &= ~PVO_EXECUTABLE;
1437
1438		/*
1439		 * If this entry is already RO, don't diddle with the page
1440		 * table.
1441		 */
1442		if ((pvo->pvo_pte.pte_lo & PTE_PP) == PTE_BR) {
1443			PMAP_UNLOCK(pmap);
1444			PMAP_PVO_CHECK(pvo);
1445			continue;
1446		}
1447
1448		/*
1449		 * Grab the PTE before we diddle the bits so pvo_to_pte can
1450		 * verify the pte contents are as expected.
1451		 */
1452		pt = pmap_pvo_to_pte(pvo, -1);
1453		pvo->pvo_pte.pte_lo &= ~PTE_PP;
1454		pvo->pvo_pte.pte_lo |= PTE_BR;
1455		if (pt != NULL)
1456			pmap_pte_change(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
1457		PMAP_UNLOCK(pmap);
1458		PMAP_PVO_CHECK(pvo);	/* sanity check */
1459	}
1460
1461	/*
1462	 * Downgrading from writeable: clear the VM page flag
1463	 */
1464	if ((prot & VM_PROT_WRITE) != VM_PROT_WRITE)
1465		vm_page_flag_clear(m, PG_WRITEABLE);
1466}
1467
1468/*
1469 * Returns true if the pmap's pv is one of the first
1470 * 16 pvs linked to from this page.  This count may
1471 * be changed upwards or downwards in the future; it
1472 * is only necessary that true be returned for a small
1473 * subset of pmaps for proper page aging.
1474 */
1475boolean_t
1476pmap_page_exists_quick(pmap_t pmap, vm_page_t m)
1477{
1478        int loops;
1479	struct pvo_entry *pvo;
1480
1481        if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
1482                return FALSE;
1483
1484	loops = 0;
1485	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
1486		if (pvo->pvo_pmap == pmap)
1487			return (TRUE);
1488		if (++loops >= 16)
1489			break;
1490	}
1491
1492	return (FALSE);
1493}
1494
1495static u_int	pmap_vsidcontext;
1496
1497void
1498pmap_pinit(pmap_t pmap)
1499{
1500	int	i, mask;
1501	u_int	entropy;
1502
1503	KASSERT((int)pmap < VM_MIN_KERNEL_ADDRESS, ("pmap_pinit: virt pmap"));
1504	PMAP_LOCK_INIT(pmap);
1505
1506	entropy = 0;
1507	__asm __volatile("mftb %0" : "=r"(entropy));
1508
1509	/*
1510	 * Allocate some segment registers for this pmap.
1511	 */
1512	for (i = 0; i < NPMAPS; i += VSID_NBPW) {
1513		u_int	hash, n;
1514
1515		/*
1516		 * Create a new value by mutiplying by a prime and adding in
1517		 * entropy from the timebase register.  This is to make the
1518		 * VSID more random so that the PT hash function collides
1519		 * less often.  (Note that the prime casues gcc to do shifts
1520		 * instead of a multiply.)
1521		 */
1522		pmap_vsidcontext = (pmap_vsidcontext * 0x1105) + entropy;
1523		hash = pmap_vsidcontext & (NPMAPS - 1);
1524		if (hash == 0)		/* 0 is special, avoid it */
1525			continue;
1526		n = hash >> 5;
1527		mask = 1 << (hash & (VSID_NBPW - 1));
1528		hash = (pmap_vsidcontext & 0xfffff);
1529		if (pmap_vsid_bitmap[n] & mask) {	/* collision? */
1530			/* anything free in this bucket? */
1531			if (pmap_vsid_bitmap[n] == 0xffffffff) {
1532				entropy = (pmap_vsidcontext >> 20);
1533				continue;
1534			}
1535			i = ffs(~pmap_vsid_bitmap[i]) - 1;
1536			mask = 1 << i;
1537			hash &= 0xfffff & ~(VSID_NBPW - 1);
1538			hash |= i;
1539		}
1540		pmap_vsid_bitmap[n] |= mask;
1541		for (i = 0; i < 16; i++)
1542			pmap->pm_sr[i] = VSID_MAKE(i, hash);
1543		return;
1544	}
1545
1546	panic("pmap_pinit: out of segments");
1547}
1548
1549/*
1550 * Initialize the pmap associated with process 0.
1551 */
1552void
1553pmap_pinit0(pmap_t pm)
1554{
1555
1556	pmap_pinit(pm);
1557	bzero(&pm->pm_stats, sizeof(pm->pm_stats));
1558}
1559
1560/*
1561 * Set the physical protection on the specified range of this map as requested.
1562 */
1563void
1564pmap_protect(pmap_t pm, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
1565{
1566	struct	pvo_entry *pvo;
1567	struct	pte *pt;
1568	int	pteidx;
1569
1570	CTR4(KTR_PMAP, "pmap_protect: pm=%p sva=%#x eva=%#x prot=%#x", pm, sva,
1571	    eva, prot);
1572
1573
1574	KASSERT(pm == &curproc->p_vmspace->vm_pmap || pm == kernel_pmap,
1575	    ("pmap_protect: non current pmap"));
1576
1577	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
1578		mtx_lock(&Giant);
1579		pmap_remove(pm, sva, eva);
1580		mtx_unlock(&Giant);
1581		return;
1582	}
1583
1584	mtx_lock(&Giant);
1585	vm_page_lock_queues();
1586	PMAP_LOCK(pm);
1587	for (; sva < eva; sva += PAGE_SIZE) {
1588		pvo = pmap_pvo_find_va(pm, sva, &pteidx);
1589		if (pvo == NULL)
1590			continue;
1591
1592		if ((prot & VM_PROT_EXECUTE) == 0)
1593			pvo->pvo_vaddr &= ~PVO_EXECUTABLE;
1594
1595		/*
1596		 * Grab the PTE pointer before we diddle with the cached PTE
1597		 * copy.
1598		 */
1599		pt = pmap_pvo_to_pte(pvo, pteidx);
1600		/*
1601		 * Change the protection of the page.
1602		 */
1603		pvo->pvo_pte.pte_lo &= ~PTE_PP;
1604		pvo->pvo_pte.pte_lo |= PTE_BR;
1605
1606		/*
1607		 * If the PVO is in the page table, update that pte as well.
1608		 */
1609		if (pt != NULL)
1610			pmap_pte_change(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
1611	}
1612	vm_page_unlock_queues();
1613	PMAP_UNLOCK(pm);
1614	mtx_unlock(&Giant);
1615}
1616
1617/*
1618 * Map a list of wired pages into kernel virtual address space.  This is
1619 * intended for temporary mappings which do not need page modification or
1620 * references recorded.  Existing mappings in the region are overwritten.
1621 */
1622void
1623pmap_qenter(vm_offset_t sva, vm_page_t *m, int count)
1624{
1625	vm_offset_t va;
1626
1627	va = sva;
1628	while (count-- > 0) {
1629		pmap_kenter(va, VM_PAGE_TO_PHYS(*m));
1630		va += PAGE_SIZE;
1631		m++;
1632	}
1633}
1634
1635/*
1636 * Remove page mappings from kernel virtual address space.  Intended for
1637 * temporary mappings entered by pmap_qenter.
1638 */
1639void
1640pmap_qremove(vm_offset_t sva, int count)
1641{
1642	vm_offset_t va;
1643
1644	va = sva;
1645	while (count-- > 0) {
1646		pmap_kremove(va);
1647		va += PAGE_SIZE;
1648	}
1649}
1650
1651void
1652pmap_release(pmap_t pmap)
1653{
1654        int idx, mask;
1655
1656	/*
1657	 * Free segment register's VSID
1658	 */
1659        if (pmap->pm_sr[0] == 0)
1660                panic("pmap_release");
1661
1662        idx = VSID_TO_HASH(pmap->pm_sr[0]) & (NPMAPS-1);
1663        mask = 1 << (idx % VSID_NBPW);
1664        idx /= VSID_NBPW;
1665        pmap_vsid_bitmap[idx] &= ~mask;
1666	PMAP_LOCK_DESTROY(pmap);
1667}
1668
1669/*
1670 * Remove the given range of addresses from the specified map.
1671 */
1672void
1673pmap_remove(pmap_t pm, vm_offset_t sva, vm_offset_t eva)
1674{
1675	struct	pvo_entry *pvo;
1676	int	pteidx;
1677
1678	vm_page_lock_queues();
1679	PMAP_LOCK(pm);
1680	for (; sva < eva; sva += PAGE_SIZE) {
1681		pvo = pmap_pvo_find_va(pm, sva, &pteidx);
1682		if (pvo != NULL) {
1683			pmap_pvo_remove(pvo, pteidx);
1684		}
1685	}
1686	PMAP_UNLOCK(pm);
1687	vm_page_unlock_queues();
1688}
1689
1690/*
1691 * Remove physical page from all pmaps in which it resides. pmap_pvo_remove()
1692 * will reflect changes in pte's back to the vm_page.
1693 */
1694void
1695pmap_remove_all(vm_page_t m)
1696{
1697	struct  pvo_head *pvo_head;
1698	struct	pvo_entry *pvo, *next_pvo;
1699	pmap_t	pmap;
1700
1701	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1702
1703	pvo_head = vm_page_to_pvoh(m);
1704	for (pvo = LIST_FIRST(pvo_head); pvo != NULL; pvo = next_pvo) {
1705		next_pvo = LIST_NEXT(pvo, pvo_vlink);
1706
1707		PMAP_PVO_CHECK(pvo);	/* sanity check */
1708		pmap = pvo->pvo_pmap;
1709		PMAP_LOCK(pmap);
1710		pmap_pvo_remove(pvo, -1);
1711		PMAP_UNLOCK(pmap);
1712	}
1713	vm_page_flag_clear(m, PG_WRITEABLE);
1714}
1715
1716/*
1717 * Remove all pages from specified address space, this aids process exit
1718 * speeds.  This is much faster than pmap_remove in the case of running down
1719 * an entire address space.  Only works for the current pmap.
1720 */
1721void
1722pmap_remove_pages(pmap_t pm, vm_offset_t sva, vm_offset_t eva)
1723{
1724}
1725
1726/*
1727 * Allocate a physical page of memory directly from the phys_avail map.
1728 * Can only be called from pmap_bootstrap before avail start and end are
1729 * calculated.
1730 */
1731static vm_offset_t
1732pmap_bootstrap_alloc(vm_size_t size, u_int align)
1733{
1734	vm_offset_t	s, e;
1735	int		i, j;
1736
1737	size = round_page(size);
1738	for (i = 0; phys_avail[i + 1] != 0; i += 2) {
1739		if (align != 0)
1740			s = (phys_avail[i] + align - 1) & ~(align - 1);
1741		else
1742			s = phys_avail[i];
1743		e = s + size;
1744
1745		if (s < phys_avail[i] || e > phys_avail[i + 1])
1746			continue;
1747
1748		if (s == phys_avail[i]) {
1749			phys_avail[i] += size;
1750		} else if (e == phys_avail[i + 1]) {
1751			phys_avail[i + 1] -= size;
1752		} else {
1753			for (j = phys_avail_count * 2; j > i; j -= 2) {
1754				phys_avail[j] = phys_avail[j - 2];
1755				phys_avail[j + 1] = phys_avail[j - 1];
1756			}
1757
1758			phys_avail[i + 3] = phys_avail[i + 1];
1759			phys_avail[i + 1] = s;
1760			phys_avail[i + 2] = e;
1761			phys_avail_count++;
1762		}
1763
1764		return (s);
1765	}
1766	panic("pmap_bootstrap_alloc: could not allocate memory");
1767}
1768
1769/*
1770 * Return an unmapped pvo for a kernel virtual address.
1771 * Used by pmap functions that operate on physical pages.
1772 */
1773static struct pvo_entry *
1774pmap_rkva_alloc(void)
1775{
1776	struct		pvo_entry *pvo;
1777	struct		pte *pt;
1778	vm_offset_t	kva;
1779	int		pteidx;
1780
1781	if (pmap_rkva_count == 0)
1782		panic("pmap_rkva_alloc: no more reserved KVAs");
1783
1784	kva = pmap_rkva_start + (PAGE_SIZE * --pmap_rkva_count);
1785	pmap_kenter(kva, 0);
1786
1787	pvo = pmap_pvo_find_va(kernel_pmap, kva, &pteidx);
1788
1789	if (pvo == NULL)
1790		panic("pmap_kva_alloc: pmap_pvo_find_va failed");
1791
1792	pt = pmap_pvo_to_pte(pvo, pteidx);
1793
1794	if (pt == NULL)
1795		panic("pmap_kva_alloc: pmap_pvo_to_pte failed");
1796
1797	pmap_pte_unset(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
1798	PVO_PTEGIDX_CLR(pvo);
1799
1800	pmap_pte_overflow++;
1801
1802	return (pvo);
1803}
1804
1805static void
1806pmap_pa_map(struct pvo_entry *pvo, vm_offset_t pa, struct pte *saved_pt,
1807    int *depth_p)
1808{
1809	struct	pte *pt;
1810
1811	/*
1812	 * If this pvo already has a valid pte, we need to save it so it can
1813	 * be restored later.  We then just reload the new PTE over the old
1814	 * slot.
1815	 */
1816	if (saved_pt != NULL) {
1817		pt = pmap_pvo_to_pte(pvo, -1);
1818
1819		if (pt != NULL) {
1820			pmap_pte_unset(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
1821			PVO_PTEGIDX_CLR(pvo);
1822			pmap_pte_overflow++;
1823		}
1824
1825		*saved_pt = pvo->pvo_pte;
1826
1827		pvo->pvo_pte.pte_lo &= ~PTE_RPGN;
1828	}
1829
1830	pvo->pvo_pte.pte_lo |= pa;
1831
1832	if (!pmap_pte_spill(pvo->pvo_vaddr))
1833		panic("pmap_pa_map: could not spill pvo %p", pvo);
1834
1835	if (depth_p != NULL)
1836		(*depth_p)++;
1837}
1838
1839static void
1840pmap_pa_unmap(struct pvo_entry *pvo, struct pte *saved_pt, int *depth_p)
1841{
1842	struct	pte *pt;
1843
1844	pt = pmap_pvo_to_pte(pvo, -1);
1845
1846	if (pt != NULL) {
1847		pmap_pte_unset(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
1848		PVO_PTEGIDX_CLR(pvo);
1849		pmap_pte_overflow++;
1850	}
1851
1852	pvo->pvo_pte.pte_lo &= ~PTE_RPGN;
1853
1854	/*
1855	 * If there is a saved PTE and it's valid, restore it and return.
1856	 */
1857	if (saved_pt != NULL && (saved_pt->pte_lo & PTE_RPGN) != 0) {
1858		if (depth_p != NULL && --(*depth_p) == 0)
1859			panic("pmap_pa_unmap: restoring but depth == 0");
1860
1861		pvo->pvo_pte = *saved_pt;
1862
1863		if (!pmap_pte_spill(pvo->pvo_vaddr))
1864			panic("pmap_pa_unmap: could not spill pvo %p", pvo);
1865	}
1866}
1867
1868static void
1869pmap_syncicache(vm_offset_t pa, vm_size_t len)
1870{
1871	__syncicache((void *)pa, len);
1872}
1873
1874static void
1875tlbia(void)
1876{
1877	caddr_t	i;
1878
1879	SYNC();
1880	for (i = 0; i < (caddr_t)0x00040000; i += 0x00001000) {
1881		TLBIE(i);
1882		EIEIO();
1883	}
1884	TLBSYNC();
1885	SYNC();
1886}
1887
1888static int
1889pmap_pvo_enter(pmap_t pm, uma_zone_t zone, struct pvo_head *pvo_head,
1890    vm_offset_t va, vm_offset_t pa, u_int pte_lo, int flags)
1891{
1892	struct	pvo_entry *pvo;
1893	u_int	sr;
1894	int	first;
1895	u_int	ptegidx;
1896	int	i;
1897	int     bootstrap;
1898
1899	pmap_pvo_enter_calls++;
1900	first = 0;
1901	bootstrap = 0;
1902
1903	/*
1904	 * Compute the PTE Group index.
1905	 */
1906	va &= ~ADDR_POFF;
1907	sr = va_to_sr(pm->pm_sr, va);
1908	ptegidx = va_to_pteg(sr, va);
1909
1910	/*
1911	 * Remove any existing mapping for this page.  Reuse the pvo entry if
1912	 * there is a mapping.
1913	 */
1914	mtx_lock(&pmap_table_mutex);
1915	LIST_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
1916		if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
1917			if ((pvo->pvo_pte.pte_lo & PTE_RPGN) == pa &&
1918			    (pvo->pvo_pte.pte_lo & PTE_PP) ==
1919			    (pte_lo & PTE_PP)) {
1920				mtx_unlock(&pmap_table_mutex);
1921				return (0);
1922			}
1923			pmap_pvo_remove(pvo, -1);
1924			break;
1925		}
1926	}
1927
1928	/*
1929	 * If we aren't overwriting a mapping, try to allocate.
1930	 */
1931	if (pmap_initialized) {
1932		pvo = uma_zalloc(zone, M_NOWAIT);
1933	} else {
1934		if (pmap_bpvo_pool_index >= BPVO_POOL_SIZE) {
1935			panic("pmap_enter: bpvo pool exhausted, %d, %d, %d",
1936			      pmap_bpvo_pool_index, BPVO_POOL_SIZE,
1937			      BPVO_POOL_SIZE * sizeof(struct pvo_entry));
1938		}
1939		pvo = &pmap_bpvo_pool[pmap_bpvo_pool_index];
1940		pmap_bpvo_pool_index++;
1941		bootstrap = 1;
1942	}
1943
1944	if (pvo == NULL) {
1945		mtx_unlock(&pmap_table_mutex);
1946		return (ENOMEM);
1947	}
1948
1949	pmap_pvo_entries++;
1950	pvo->pvo_vaddr = va;
1951	pvo->pvo_pmap = pm;
1952	LIST_INSERT_HEAD(&pmap_pvo_table[ptegidx], pvo, pvo_olink);
1953	pvo->pvo_vaddr &= ~ADDR_POFF;
1954	if (flags & VM_PROT_EXECUTE)
1955		pvo->pvo_vaddr |= PVO_EXECUTABLE;
1956	if (flags & PVO_WIRED)
1957		pvo->pvo_vaddr |= PVO_WIRED;
1958	if (pvo_head != &pmap_pvo_kunmanaged)
1959		pvo->pvo_vaddr |= PVO_MANAGED;
1960	if (bootstrap)
1961		pvo->pvo_vaddr |= PVO_BOOTSTRAP;
1962	if (flags & PVO_FAKE)
1963		pvo->pvo_vaddr |= PVO_FAKE;
1964
1965	pmap_pte_create(&pvo->pvo_pte, sr, va, pa | pte_lo);
1966
1967	/*
1968	 * Remember if the list was empty and therefore will be the first
1969	 * item.
1970	 */
1971	if (LIST_FIRST(pvo_head) == NULL)
1972		first = 1;
1973	LIST_INSERT_HEAD(pvo_head, pvo, pvo_vlink);
1974
1975	if (pvo->pvo_pte.pte_lo & PVO_WIRED)
1976		pm->pm_stats.wired_count++;
1977	pm->pm_stats.resident_count++;
1978
1979	/*
1980	 * We hope this succeeds but it isn't required.
1981	 */
1982	i = pmap_pte_insert(ptegidx, &pvo->pvo_pte);
1983	if (i >= 0) {
1984		PVO_PTEGIDX_SET(pvo, i);
1985	} else {
1986		panic("pmap_pvo_enter: overflow");
1987		pmap_pte_overflow++;
1988	}
1989	mtx_unlock(&pmap_table_mutex);
1990
1991	return (first ? ENOENT : 0);
1992}
1993
1994static void
1995pmap_pvo_remove(struct pvo_entry *pvo, int pteidx)
1996{
1997	struct	pte *pt;
1998
1999	/*
2000	 * If there is an active pte entry, we need to deactivate it (and
2001	 * save the ref & cfg bits).
2002	 */
2003	pt = pmap_pvo_to_pte(pvo, pteidx);
2004	if (pt != NULL) {
2005		pmap_pte_unset(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
2006		PVO_PTEGIDX_CLR(pvo);
2007	} else {
2008		pmap_pte_overflow--;
2009	}
2010
2011	/*
2012	 * Update our statistics.
2013	 */
2014	pvo->pvo_pmap->pm_stats.resident_count--;
2015	if (pvo->pvo_pte.pte_lo & PVO_WIRED)
2016		pvo->pvo_pmap->pm_stats.wired_count--;
2017
2018	/*
2019	 * Save the REF/CHG bits into their cache if the page is managed.
2020	 */
2021	if ((pvo->pvo_vaddr & (PVO_MANAGED|PVO_FAKE)) == PVO_MANAGED) {
2022		struct	vm_page *pg;
2023
2024		pg = PHYS_TO_VM_PAGE(pvo->pvo_pte.pte_lo & PTE_RPGN);
2025		if (pg != NULL) {
2026			pmap_attr_save(pg, pvo->pvo_pte.pte_lo &
2027			    (PTE_REF | PTE_CHG));
2028		}
2029	}
2030
2031	/*
2032	 * Remove this PVO from the PV list.
2033	 */
2034	LIST_REMOVE(pvo, pvo_vlink);
2035
2036	/*
2037	 * Remove this from the overflow list and return it to the pool
2038	 * if we aren't going to reuse it.
2039	 */
2040	LIST_REMOVE(pvo, pvo_olink);
2041	if (!(pvo->pvo_vaddr & PVO_BOOTSTRAP))
2042		uma_zfree(pvo->pvo_vaddr & PVO_MANAGED ? pmap_mpvo_zone :
2043		    pmap_upvo_zone, pvo);
2044	pmap_pvo_entries--;
2045	pmap_pvo_remove_calls++;
2046}
2047
2048static __inline int
2049pmap_pvo_pte_index(const struct pvo_entry *pvo, int ptegidx)
2050{
2051	int	pteidx;
2052
2053	/*
2054	 * We can find the actual pte entry without searching by grabbing
2055	 * the PTEG index from 3 unused bits in pte_lo[11:9] and by
2056	 * noticing the HID bit.
2057	 */
2058	pteidx = ptegidx * 8 + PVO_PTEGIDX_GET(pvo);
2059	if (pvo->pvo_pte.pte_hi & PTE_HID)
2060		pteidx ^= pmap_pteg_mask * 8;
2061
2062	return (pteidx);
2063}
2064
2065static struct pvo_entry *
2066pmap_pvo_find_va(pmap_t pm, vm_offset_t va, int *pteidx_p)
2067{
2068	struct	pvo_entry *pvo;
2069	int	ptegidx;
2070	u_int	sr;
2071
2072	va &= ~ADDR_POFF;
2073	sr = va_to_sr(pm->pm_sr, va);
2074	ptegidx = va_to_pteg(sr, va);
2075
2076	mtx_lock(&pmap_table_mutex);
2077	LIST_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
2078		if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
2079			if (pteidx_p)
2080				*pteidx_p = pmap_pvo_pte_index(pvo, ptegidx);
2081			break;
2082		}
2083	}
2084	mtx_unlock(&pmap_table_mutex);
2085
2086	return (pvo);
2087}
2088
2089static struct pte *
2090pmap_pvo_to_pte(const struct pvo_entry *pvo, int pteidx)
2091{
2092	struct	pte *pt;
2093
2094	/*
2095	 * If we haven't been supplied the ptegidx, calculate it.
2096	 */
2097	if (pteidx == -1) {
2098		int	ptegidx;
2099		u_int	sr;
2100
2101		sr = va_to_sr(pvo->pvo_pmap->pm_sr, pvo->pvo_vaddr);
2102		ptegidx = va_to_pteg(sr, pvo->pvo_vaddr);
2103		pteidx = pmap_pvo_pte_index(pvo, ptegidx);
2104	}
2105
2106	pt = &pmap_pteg_table[pteidx >> 3].pt[pteidx & 7];
2107
2108	if ((pvo->pvo_pte.pte_hi & PTE_VALID) && !PVO_PTEGIDX_ISSET(pvo)) {
2109		panic("pmap_pvo_to_pte: pvo %p has valid pte in pvo but no "
2110		    "valid pte index", pvo);
2111	}
2112
2113	if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0 && PVO_PTEGIDX_ISSET(pvo)) {
2114		panic("pmap_pvo_to_pte: pvo %p has valid pte index in pvo "
2115		    "pvo but no valid pte", pvo);
2116	}
2117
2118	if ((pt->pte_hi ^ (pvo->pvo_pte.pte_hi & ~PTE_VALID)) == PTE_VALID) {
2119		if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0) {
2120			panic("pmap_pvo_to_pte: pvo %p has valid pte in "
2121			    "pmap_pteg_table %p but invalid in pvo", pvo, pt);
2122		}
2123
2124		if (((pt->pte_lo ^ pvo->pvo_pte.pte_lo) & ~(PTE_CHG|PTE_REF))
2125		    != 0) {
2126			panic("pmap_pvo_to_pte: pvo %p pte does not match "
2127			    "pte %p in pmap_pteg_table", pvo, pt);
2128		}
2129
2130		return (pt);
2131	}
2132
2133	if (pvo->pvo_pte.pte_hi & PTE_VALID) {
2134		panic("pmap_pvo_to_pte: pvo %p has invalid pte %p in "
2135		    "pmap_pteg_table but valid in pvo", pvo, pt);
2136	}
2137
2138	return (NULL);
2139}
2140
2141/*
2142 * XXX: THIS STUFF SHOULD BE IN pte.c?
2143 */
2144int
2145pmap_pte_spill(vm_offset_t addr)
2146{
2147	struct	pvo_entry *source_pvo, *victim_pvo;
2148	struct	pvo_entry *pvo;
2149	int	ptegidx, i, j;
2150	u_int	sr;
2151	struct	pteg *pteg;
2152	struct	pte *pt;
2153
2154	pmap_pte_spills++;
2155
2156	sr = mfsrin(addr);
2157	ptegidx = va_to_pteg(sr, addr);
2158
2159	/*
2160	 * Have to substitute some entry.  Use the primary hash for this.
2161	 * Use low bits of timebase as random generator.
2162	 */
2163	pteg = &pmap_pteg_table[ptegidx];
2164	mtx_lock(&pmap_table_mutex);
2165	__asm __volatile("mftb %0" : "=r"(i));
2166	i &= 7;
2167	pt = &pteg->pt[i];
2168
2169	source_pvo = NULL;
2170	victim_pvo = NULL;
2171	LIST_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
2172		/*
2173		 * We need to find a pvo entry for this address.
2174		 */
2175		PMAP_PVO_CHECK(pvo);
2176		if (source_pvo == NULL &&
2177		    pmap_pte_match(&pvo->pvo_pte, sr, addr,
2178		    pvo->pvo_pte.pte_hi & PTE_HID)) {
2179			/*
2180			 * Now found an entry to be spilled into the pteg.
2181			 * The PTE is now valid, so we know it's active.
2182			 */
2183			j = pmap_pte_insert(ptegidx, &pvo->pvo_pte);
2184
2185			if (j >= 0) {
2186				PVO_PTEGIDX_SET(pvo, j);
2187				pmap_pte_overflow--;
2188				PMAP_PVO_CHECK(pvo);
2189				mtx_unlock(&pmap_table_mutex);
2190				return (1);
2191			}
2192
2193			source_pvo = pvo;
2194
2195			if (victim_pvo != NULL)
2196				break;
2197		}
2198
2199		/*
2200		 * We also need the pvo entry of the victim we are replacing
2201		 * so save the R & C bits of the PTE.
2202		 */
2203		if ((pt->pte_hi & PTE_HID) == 0 && victim_pvo == NULL &&
2204		    pmap_pte_compare(pt, &pvo->pvo_pte)) {
2205			victim_pvo = pvo;
2206			if (source_pvo != NULL)
2207				break;
2208		}
2209	}
2210
2211	if (source_pvo == NULL) {
2212		mtx_unlock(&pmap_table_mutex);
2213		return (0);
2214	}
2215
2216	if (victim_pvo == NULL) {
2217		if ((pt->pte_hi & PTE_HID) == 0)
2218			panic("pmap_pte_spill: victim p-pte (%p) has no pvo"
2219			    "entry", pt);
2220
2221		/*
2222		 * If this is a secondary PTE, we need to search it's primary
2223		 * pvo bucket for the matching PVO.
2224		 */
2225		LIST_FOREACH(pvo, &pmap_pvo_table[ptegidx ^ pmap_pteg_mask],
2226		    pvo_olink) {
2227			PMAP_PVO_CHECK(pvo);
2228			/*
2229			 * We also need the pvo entry of the victim we are
2230			 * replacing so save the R & C bits of the PTE.
2231			 */
2232			if (pmap_pte_compare(pt, &pvo->pvo_pte)) {
2233				victim_pvo = pvo;
2234				break;
2235			}
2236		}
2237
2238		if (victim_pvo == NULL)
2239			panic("pmap_pte_spill: victim s-pte (%p) has no pvo"
2240			    "entry", pt);
2241	}
2242
2243	/*
2244	 * We are invalidating the TLB entry for the EA we are replacing even
2245	 * though it's valid.  If we don't, we lose any ref/chg bit changes
2246	 * contained in the TLB entry.
2247	 */
2248	source_pvo->pvo_pte.pte_hi &= ~PTE_HID;
2249
2250	pmap_pte_unset(pt, &victim_pvo->pvo_pte, victim_pvo->pvo_vaddr);
2251	pmap_pte_set(pt, &source_pvo->pvo_pte);
2252
2253	PVO_PTEGIDX_CLR(victim_pvo);
2254	PVO_PTEGIDX_SET(source_pvo, i);
2255	pmap_pte_replacements++;
2256
2257	PMAP_PVO_CHECK(victim_pvo);
2258	PMAP_PVO_CHECK(source_pvo);
2259
2260	mtx_unlock(&pmap_table_mutex);
2261	return (1);
2262}
2263
2264static int
2265pmap_pte_insert(u_int ptegidx, struct pte *pvo_pt)
2266{
2267	struct	pte *pt;
2268	int	i;
2269
2270	/*
2271	 * First try primary hash.
2272	 */
2273	for (pt = pmap_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
2274		if ((pt->pte_hi & PTE_VALID) == 0) {
2275			pvo_pt->pte_hi &= ~PTE_HID;
2276			pmap_pte_set(pt, pvo_pt);
2277			return (i);
2278		}
2279	}
2280
2281	/*
2282	 * Now try secondary hash.
2283	 */
2284	ptegidx ^= pmap_pteg_mask;
2285	ptegidx++;
2286	for (pt = pmap_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
2287		if ((pt->pte_hi & PTE_VALID) == 0) {
2288			pvo_pt->pte_hi |= PTE_HID;
2289			pmap_pte_set(pt, pvo_pt);
2290			return (i);
2291		}
2292	}
2293
2294	panic("pmap_pte_insert: overflow");
2295	return (-1);
2296}
2297
2298static boolean_t
2299pmap_query_bit(vm_page_t m, int ptebit)
2300{
2301	struct	pvo_entry *pvo;
2302	struct	pte *pt;
2303
2304#if 0
2305	if (pmap_attr_fetch(m) & ptebit)
2306		return (TRUE);
2307#endif
2308
2309	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2310		PMAP_PVO_CHECK(pvo);	/* sanity check */
2311
2312		/*
2313		 * See if we saved the bit off.  If so, cache it and return
2314		 * success.
2315		 */
2316		if (pvo->pvo_pte.pte_lo & ptebit) {
2317			pmap_attr_save(m, ptebit);
2318			PMAP_PVO_CHECK(pvo);	/* sanity check */
2319			return (TRUE);
2320		}
2321	}
2322
2323	/*
2324	 * No luck, now go through the hard part of looking at the PTEs
2325	 * themselves.  Sync so that any pending REF/CHG bits are flushed to
2326	 * the PTEs.
2327	 */
2328	SYNC();
2329	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2330		PMAP_PVO_CHECK(pvo);	/* sanity check */
2331
2332		/*
2333		 * See if this pvo has a valid PTE.  if so, fetch the
2334		 * REF/CHG bits from the valid PTE.  If the appropriate
2335		 * ptebit is set, cache it and return success.
2336		 */
2337		pt = pmap_pvo_to_pte(pvo, -1);
2338		if (pt != NULL) {
2339			pmap_pte_synch(pt, &pvo->pvo_pte);
2340			if (pvo->pvo_pte.pte_lo & ptebit) {
2341				pmap_attr_save(m, ptebit);
2342				PMAP_PVO_CHECK(pvo);	/* sanity check */
2343				return (TRUE);
2344			}
2345		}
2346	}
2347
2348	return (FALSE);
2349}
2350
2351static u_int
2352pmap_clear_bit(vm_page_t m, int ptebit, int *origbit)
2353{
2354	u_int	count;
2355	struct	pvo_entry *pvo;
2356	struct	pte *pt;
2357	int	rv;
2358
2359	/*
2360	 * Clear the cached value.
2361	 */
2362	rv = pmap_attr_fetch(m);
2363	pmap_attr_clear(m, ptebit);
2364
2365	/*
2366	 * Sync so that any pending REF/CHG bits are flushed to the PTEs (so
2367	 * we can reset the right ones).  note that since the pvo entries and
2368	 * list heads are accessed via BAT0 and are never placed in the page
2369	 * table, we don't have to worry about further accesses setting the
2370	 * REF/CHG bits.
2371	 */
2372	SYNC();
2373
2374	/*
2375	 * For each pvo entry, clear the pvo's ptebit.  If this pvo has a
2376	 * valid pte clear the ptebit from the valid pte.
2377	 */
2378	count = 0;
2379	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2380		PMAP_PVO_CHECK(pvo);	/* sanity check */
2381		pt = pmap_pvo_to_pte(pvo, -1);
2382		if (pt != NULL) {
2383			pmap_pte_synch(pt, &pvo->pvo_pte);
2384			if (pvo->pvo_pte.pte_lo & ptebit) {
2385				count++;
2386				pmap_pte_clear(pt, PVO_VADDR(pvo), ptebit);
2387			}
2388		}
2389		rv |= pvo->pvo_pte.pte_lo;
2390		pvo->pvo_pte.pte_lo &= ~ptebit;
2391		PMAP_PVO_CHECK(pvo);	/* sanity check */
2392	}
2393
2394	if (origbit != NULL) {
2395		*origbit = rv;
2396	}
2397
2398	return (count);
2399}
2400
2401/*
2402 * Return true if the physical range is encompassed by the battable[idx]
2403 */
2404static int
2405pmap_bat_mapped(int idx, vm_offset_t pa, vm_size_t size)
2406{
2407	u_int prot;
2408	u_int32_t start;
2409	u_int32_t end;
2410	u_int32_t bat_ble;
2411
2412	/*
2413	 * Return immediately if not a valid mapping
2414	 */
2415	if (!battable[idx].batu & BAT_Vs)
2416		return (EINVAL);
2417
2418	/*
2419	 * The BAT entry must be cache-inhibited, guarded, and r/w
2420	 * so it can function as an i/o page
2421	 */
2422	prot = battable[idx].batl & (BAT_I|BAT_G|BAT_PP_RW);
2423	if (prot != (BAT_I|BAT_G|BAT_PP_RW))
2424		return (EPERM);
2425
2426	/*
2427	 * The address should be within the BAT range. Assume that the
2428	 * start address in the BAT has the correct alignment (thus
2429	 * not requiring masking)
2430	 */
2431	start = battable[idx].batl & BAT_PBS;
2432	bat_ble = (battable[idx].batu & ~(BAT_EBS)) | 0x03;
2433	end = start | (bat_ble << 15) | 0x7fff;
2434
2435	if ((pa < start) || ((pa + size) > end))
2436		return (ERANGE);
2437
2438	return (0);
2439}
2440
2441int
2442pmap_dev_direct_mapped(vm_offset_t pa, vm_size_t size)
2443{
2444	int i;
2445
2446	/*
2447	 * This currently does not work for entries that
2448	 * overlap 256M BAT segments.
2449	 */
2450
2451	for(i = 0; i < 16; i++)
2452		if (pmap_bat_mapped(i, pa, size) == 0)
2453			return (0);
2454
2455	return (EFAULT);
2456}
2457
2458/*
2459 * Map a set of physical memory pages into the kernel virtual
2460 * address space. Return a pointer to where it is mapped. This
2461 * routine is intended to be used for mapping device memory,
2462 * NOT real memory.
2463 */
2464void *
2465pmap_mapdev(vm_offset_t pa, vm_size_t size)
2466{
2467	vm_offset_t va, tmpva, ppa, offset;
2468	int i;
2469
2470	ppa = trunc_page(pa);
2471	offset = pa & PAGE_MASK;
2472	size = roundup(offset + size, PAGE_SIZE);
2473
2474	GIANT_REQUIRED;
2475
2476	/*
2477	 * If the physical address lies within a valid BAT table entry,
2478	 * return the 1:1 mapping. This currently doesn't work
2479	 * for regions that overlap 256M BAT segments.
2480	 */
2481	for (i = 0; i < 16; i++) {
2482		if (pmap_bat_mapped(i, pa, size) == 0)
2483			return ((void *) pa);
2484	}
2485
2486	va = kmem_alloc_nofault(kernel_map, size);
2487	if (!va)
2488		panic("pmap_mapdev: Couldn't alloc kernel virtual memory");
2489
2490	for (tmpva = va; size > 0;) {
2491		pmap_kenter(tmpva, ppa);
2492		TLBIE(tmpva); /* XXX or should it be invalidate-all ? */
2493		size -= PAGE_SIZE;
2494		tmpva += PAGE_SIZE;
2495		ppa += PAGE_SIZE;
2496	}
2497
2498	return ((void *)(va + offset));
2499}
2500
2501void
2502pmap_unmapdev(vm_offset_t va, vm_size_t size)
2503{
2504	vm_offset_t base, offset;
2505
2506	/*
2507	 * If this is outside kernel virtual space, then it's a
2508	 * battable entry and doesn't require unmapping
2509	 */
2510	if ((va >= VM_MIN_KERNEL_ADDRESS) && (va <= VM_MAX_KERNEL_ADDRESS)) {
2511		base = trunc_page(va);
2512		offset = va & PAGE_MASK;
2513		size = roundup(offset + size, PAGE_SIZE);
2514		kmem_free(kernel_map, base, size);
2515	}
2516}
2517