nfs_bio.c revision 58345
1/*
2 * Copyright (c) 1989, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * Rick Macklem at The University of Guelph.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 *    must display the following acknowledgement:
18 *	This product includes software developed by the University of
19 *	California, Berkeley and its contributors.
20 * 4. Neither the name of the University nor the names of its contributors
21 *    may be used to endorse or promote products derived from this software
22 *    without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 *	@(#)nfs_bio.c	8.9 (Berkeley) 3/30/95
37 * $FreeBSD: head/sys/nfsclient/nfs_bio.c 58345 2000-03-20 10:44:49Z phk $
38 */
39
40
41#include <sys/param.h>
42#include <sys/systm.h>
43#include <sys/resourcevar.h>
44#include <sys/signalvar.h>
45#include <sys/proc.h>
46#include <sys/buf.h>
47#include <sys/vnode.h>
48#include <sys/mount.h>
49#include <sys/kernel.h>
50
51#include <vm/vm.h>
52#include <vm/vm_extern.h>
53#include <vm/vm_page.h>
54#include <vm/vm_object.h>
55#include <vm/vm_pager.h>
56#include <vm/vnode_pager.h>
57
58#include <nfs/rpcv2.h>
59#include <nfs/nfsproto.h>
60#include <nfs/nfs.h>
61#include <nfs/nfsmount.h>
62#include <nfs/nqnfs.h>
63#include <nfs/nfsnode.h>
64
65static struct buf *nfs_getcacheblk __P((struct vnode *vp, daddr_t bn, int size,
66					struct proc *p));
67
68extern int nfs_numasync;
69extern int nfs_pbuf_freecnt;
70extern struct nfsstats nfsstats;
71
72/*
73 * Vnode op for VM getpages.
74 */
75int
76nfs_getpages(ap)
77	struct vop_getpages_args /* {
78		struct vnode *a_vp;
79		vm_page_t *a_m;
80		int a_count;
81		int a_reqpage;
82		vm_ooffset_t a_offset;
83	} */ *ap;
84{
85	int i, error, nextoff, size, toff, count, npages;
86	struct uio uio;
87	struct iovec iov;
88	vm_offset_t kva;
89	struct buf *bp;
90	struct vnode *vp;
91	struct proc *p;
92	struct ucred *cred;
93	struct nfsmount *nmp;
94	vm_page_t *pages;
95
96	vp = ap->a_vp;
97	p = curproc;				/* XXX */
98	cred = curproc->p_ucred;		/* XXX */
99	nmp = VFSTONFS(vp->v_mount);
100	pages = ap->a_m;
101	count = ap->a_count;
102
103	if (vp->v_object == NULL) {
104		printf("nfs_getpages: called with non-merged cache vnode??\n");
105		return VM_PAGER_ERROR;
106	}
107
108	if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 &&
109	    (nmp->nm_state & NFSSTA_GOTFSINFO) == 0)
110		(void)nfs_fsinfo(nmp, vp, cred, p);
111
112	npages = btoc(count);
113
114	/*
115	 * If the requested page is partially valid, just return it and
116	 * allow the pager to zero-out the blanks.  Partially valid pages
117	 * can only occur at the file EOF.
118	 */
119
120	{
121		vm_page_t m = pages[ap->a_reqpage];
122
123		if (m->valid != 0) {
124			/* handled by vm_fault now	  */
125			/* vm_page_zero_invalid(m, TRUE); */
126			for (i = 0; i < npages; ++i) {
127				if (i != ap->a_reqpage)
128					vnode_pager_freepage(pages[i]);
129			}
130			return(0);
131		}
132	}
133
134	/*
135	 * We use only the kva address for the buffer, but this is extremely
136	 * convienient and fast.
137	 */
138	bp = getpbuf(&nfs_pbuf_freecnt);
139
140	kva = (vm_offset_t) bp->b_data;
141	pmap_qenter(kva, pages, npages);
142
143	iov.iov_base = (caddr_t) kva;
144	iov.iov_len = count;
145	uio.uio_iov = &iov;
146	uio.uio_iovcnt = 1;
147	uio.uio_offset = IDX_TO_OFF(pages[0]->pindex);
148	uio.uio_resid = count;
149	uio.uio_segflg = UIO_SYSSPACE;
150	uio.uio_rw = UIO_READ;
151	uio.uio_procp = p;
152
153	error = nfs_readrpc(vp, &uio, cred);
154	pmap_qremove(kva, npages);
155
156	relpbuf(bp, &nfs_pbuf_freecnt);
157
158	if (error && (uio.uio_resid == count)) {
159		printf("nfs_getpages: error %d\n", error);
160		for (i = 0; i < npages; ++i) {
161			if (i != ap->a_reqpage)
162				vnode_pager_freepage(pages[i]);
163		}
164		return VM_PAGER_ERROR;
165	}
166
167	/*
168	 * Calculate the number of bytes read and validate only that number
169	 * of bytes.  Note that due to pending writes, size may be 0.  This
170	 * does not mean that the remaining data is invalid!
171	 */
172
173	size = count - uio.uio_resid;
174
175	for (i = 0, toff = 0; i < npages; i++, toff = nextoff) {
176		vm_page_t m;
177		nextoff = toff + PAGE_SIZE;
178		m = pages[i];
179
180		m->flags &= ~PG_ZERO;
181
182		if (nextoff <= size) {
183			/*
184			 * Read operation filled an entire page
185			 */
186			m->valid = VM_PAGE_BITS_ALL;
187			vm_page_undirty(m);
188		} else if (size > toff) {
189			/*
190			 * Read operation filled a partial page.
191			 */
192			m->valid = 0;
193			vm_page_set_validclean(m, 0, size - toff);
194			/* handled by vm_fault now	  */
195			/* vm_page_zero_invalid(m, TRUE); */
196		}
197
198		if (i != ap->a_reqpage) {
199			/*
200			 * Whether or not to leave the page activated is up in
201			 * the air, but we should put the page on a page queue
202			 * somewhere (it already is in the object).  Result:
203			 * It appears that emperical results show that
204			 * deactivating pages is best.
205			 */
206
207			/*
208			 * Just in case someone was asking for this page we
209			 * now tell them that it is ok to use.
210			 */
211			if (!error) {
212				if (m->flags & PG_WANTED)
213					vm_page_activate(m);
214				else
215					vm_page_deactivate(m);
216				vm_page_wakeup(m);
217			} else {
218				vnode_pager_freepage(m);
219			}
220		}
221	}
222	return 0;
223}
224
225/*
226 * Vnode op for VM putpages.
227 */
228int
229nfs_putpages(ap)
230	struct vop_putpages_args /* {
231		struct vnode *a_vp;
232		vm_page_t *a_m;
233		int a_count;
234		int a_sync;
235		int *a_rtvals;
236		vm_ooffset_t a_offset;
237	} */ *ap;
238{
239	struct uio uio;
240	struct iovec iov;
241	vm_offset_t kva;
242	struct buf *bp;
243	int iomode, must_commit, i, error, npages, count;
244	off_t offset;
245	int *rtvals;
246	struct vnode *vp;
247	struct proc *p;
248	struct ucred *cred;
249	struct nfsmount *nmp;
250	struct nfsnode *np;
251	vm_page_t *pages;
252
253	vp = ap->a_vp;
254	np = VTONFS(vp);
255	p = curproc;				/* XXX */
256	cred = curproc->p_ucred;		/* XXX */
257	nmp = VFSTONFS(vp->v_mount);
258	pages = ap->a_m;
259	count = ap->a_count;
260	rtvals = ap->a_rtvals;
261	npages = btoc(count);
262	offset = IDX_TO_OFF(pages[0]->pindex);
263
264	if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 &&
265	    (nmp->nm_state & NFSSTA_GOTFSINFO) == 0)
266		(void)nfs_fsinfo(nmp, vp, cred, p);
267
268	for (i = 0; i < npages; i++) {
269		rtvals[i] = VM_PAGER_AGAIN;
270	}
271
272	/*
273	 * When putting pages, do not extend file past EOF.
274	 */
275
276	if (offset + count > np->n_size) {
277		count = np->n_size - offset;
278		if (count < 0)
279			count = 0;
280	}
281
282	/*
283	 * We use only the kva address for the buffer, but this is extremely
284	 * convienient and fast.
285	 */
286	bp = getpbuf(&nfs_pbuf_freecnt);
287
288	kva = (vm_offset_t) bp->b_data;
289	pmap_qenter(kva, pages, npages);
290
291	iov.iov_base = (caddr_t) kva;
292	iov.iov_len = count;
293	uio.uio_iov = &iov;
294	uio.uio_iovcnt = 1;
295	uio.uio_offset = offset;
296	uio.uio_resid = count;
297	uio.uio_segflg = UIO_SYSSPACE;
298	uio.uio_rw = UIO_WRITE;
299	uio.uio_procp = p;
300
301	if ((ap->a_sync & VM_PAGER_PUT_SYNC) == 0)
302	    iomode = NFSV3WRITE_UNSTABLE;
303	else
304	    iomode = NFSV3WRITE_FILESYNC;
305
306	error = nfs_writerpc(vp, &uio, cred, &iomode, &must_commit);
307
308	pmap_qremove(kva, npages);
309	relpbuf(bp, &nfs_pbuf_freecnt);
310
311	if (!error) {
312		int nwritten = round_page(count - uio.uio_resid) / PAGE_SIZE;
313		for (i = 0; i < nwritten; i++) {
314			rtvals[i] = VM_PAGER_OK;
315			vm_page_undirty(pages[i]);
316		}
317		if (must_commit)
318			nfs_clearcommit(vp->v_mount);
319	}
320	return rtvals[0];
321}
322
323/*
324 * Vnode op for read using bio
325 */
326int
327nfs_bioread(vp, uio, ioflag, cred)
328	register struct vnode *vp;
329	register struct uio *uio;
330	int ioflag;
331	struct ucred *cred;
332{
333	register struct nfsnode *np = VTONFS(vp);
334	register int biosize, i;
335	struct buf *bp = 0, *rabp;
336	struct vattr vattr;
337	struct proc *p;
338	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
339	daddr_t lbn, rabn;
340	int bcount;
341	int seqcount;
342	int nra, error = 0, n = 0, on = 0;
343
344#ifdef DIAGNOSTIC
345	if (uio->uio_rw != UIO_READ)
346		panic("nfs_read mode");
347#endif
348	if (uio->uio_resid == 0)
349		return (0);
350	if (uio->uio_offset < 0)	/* XXX VDIR cookies can be negative */
351		return (EINVAL);
352	p = uio->uio_procp;
353
354	if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 &&
355	    (nmp->nm_state & NFSSTA_GOTFSINFO) == 0)
356		(void)nfs_fsinfo(nmp, vp, cred, p);
357	if (vp->v_type != VDIR &&
358	    (uio->uio_offset + uio->uio_resid) > nmp->nm_maxfilesize)
359		return (EFBIG);
360	biosize = vp->v_mount->mnt_stat.f_iosize;
361	seqcount = (int)((off_t)(ioflag >> 16) * biosize / BKVASIZE);
362	/*
363	 * For nfs, cache consistency can only be maintained approximately.
364	 * Although RFC1094 does not specify the criteria, the following is
365	 * believed to be compatible with the reference port.
366	 * For nqnfs, full cache consistency is maintained within the loop.
367	 * For nfs:
368	 * If the file's modify time on the server has changed since the
369	 * last read rpc or you have written to the file,
370	 * you may have lost data cache consistency with the
371	 * server, so flush all of the file's data out of the cache.
372	 * Then force a getattr rpc to ensure that you have up to date
373	 * attributes.
374	 * NB: This implies that cache data can be read when up to
375	 * NFS_ATTRTIMEO seconds out of date. If you find that you need current
376	 * attributes this could be forced by setting n_attrstamp to 0 before
377	 * the VOP_GETATTR() call.
378	 */
379	if ((nmp->nm_flag & NFSMNT_NQNFS) == 0) {
380		if (np->n_flag & NMODIFIED) {
381			if (vp->v_type != VREG) {
382				if (vp->v_type != VDIR)
383					panic("nfs: bioread, not dir");
384				nfs_invaldir(vp);
385				error = nfs_vinvalbuf(vp, V_SAVE, cred, p, 1);
386				if (error)
387					return (error);
388			}
389			np->n_attrstamp = 0;
390			error = VOP_GETATTR(vp, &vattr, cred, p);
391			if (error)
392				return (error);
393			np->n_mtime = vattr.va_mtime.tv_sec;
394		} else {
395			error = VOP_GETATTR(vp, &vattr, cred, p);
396			if (error)
397				return (error);
398			if (np->n_mtime != vattr.va_mtime.tv_sec) {
399				if (vp->v_type == VDIR)
400					nfs_invaldir(vp);
401				error = nfs_vinvalbuf(vp, V_SAVE, cred, p, 1);
402				if (error)
403					return (error);
404				np->n_mtime = vattr.va_mtime.tv_sec;
405			}
406		}
407	}
408	do {
409
410	    /*
411	     * Get a valid lease. If cached data is stale, flush it.
412	     */
413	    if (nmp->nm_flag & NFSMNT_NQNFS) {
414		if (NQNFS_CKINVALID(vp, np, ND_READ)) {
415		    do {
416			error = nqnfs_getlease(vp, ND_READ, cred, p);
417		    } while (error == NQNFS_EXPIRED);
418		    if (error)
419			return (error);
420		    if (np->n_lrev != np->n_brev ||
421			(np->n_flag & NQNFSNONCACHE) ||
422			((np->n_flag & NMODIFIED) && vp->v_type == VDIR)) {
423			if (vp->v_type == VDIR)
424			    nfs_invaldir(vp);
425			error = nfs_vinvalbuf(vp, V_SAVE, cred, p, 1);
426			if (error)
427			    return (error);
428			np->n_brev = np->n_lrev;
429		    }
430		} else if (vp->v_type == VDIR && (np->n_flag & NMODIFIED)) {
431		    nfs_invaldir(vp);
432		    error = nfs_vinvalbuf(vp, V_SAVE, cred, p, 1);
433		    if (error)
434			return (error);
435		}
436	    }
437	    if (np->n_flag & NQNFSNONCACHE) {
438		switch (vp->v_type) {
439		case VREG:
440			return (nfs_readrpc(vp, uio, cred));
441		case VLNK:
442			return (nfs_readlinkrpc(vp, uio, cred));
443		case VDIR:
444			break;
445		default:
446			printf(" NQNFSNONCACHE: type %x unexpected\n",
447				vp->v_type);
448		};
449	    }
450	    switch (vp->v_type) {
451	    case VREG:
452		nfsstats.biocache_reads++;
453		lbn = uio->uio_offset / biosize;
454		on = uio->uio_offset & (biosize - 1);
455
456		/*
457		 * Start the read ahead(s), as required.
458		 */
459		if (nfs_numasync > 0 && nmp->nm_readahead > 0) {
460		    for (nra = 0; nra < nmp->nm_readahead && nra < seqcount &&
461			(off_t)(lbn + 1 + nra) * biosize < np->n_size; nra++) {
462			rabn = lbn + 1 + nra;
463			if (!incore(vp, rabn)) {
464			    rabp = nfs_getcacheblk(vp, rabn, biosize, p);
465			    if (!rabp)
466				return (EINTR);
467			    if ((rabp->b_flags & (B_CACHE|B_DELWRI)) == 0) {
468				rabp->b_flags |= B_ASYNC;
469				rabp->b_iocmd = BIO_READ;
470				vfs_busy_pages(rabp, 0);
471				if (nfs_asyncio(rabp, cred, p)) {
472				    rabp->b_flags |= B_INVAL|B_ERROR;
473				    vfs_unbusy_pages(rabp);
474				    brelse(rabp);
475				    break;
476				}
477			    } else {
478				brelse(rabp);
479			    }
480			}
481		    }
482		}
483
484		/*
485		 * Obtain the buffer cache block.  Figure out the buffer size
486		 * when we are at EOF.  If we are modifying the size of the
487		 * buffer based on an EOF condition we need to hold
488		 * nfs_rslock() through obtaining the buffer to prevent
489		 * a potential writer-appender from messing with n_size.
490		 * Otherwise we may accidently truncate the buffer and
491		 * lose dirty data.
492		 *
493		 * Note that bcount is *not* DEV_BSIZE aligned.
494		 */
495
496again:
497		bcount = biosize;
498		if ((off_t)lbn * biosize >= np->n_size) {
499			bcount = 0;
500		} else if ((off_t)(lbn + 1) * biosize > np->n_size) {
501			bcount = np->n_size - (off_t)lbn * biosize;
502		}
503		if (bcount != biosize) {
504			switch(nfs_rslock(np, p)) {
505			case ENOLCK:
506				goto again;
507				/* not reached */
508			case EINTR:
509			case ERESTART:
510				return(EINTR);
511				/* not reached */
512			default:
513				break;
514			}
515		}
516
517		bp = nfs_getcacheblk(vp, lbn, bcount, p);
518
519		if (bcount != biosize)
520			nfs_rsunlock(np, p);
521		if (!bp)
522			return (EINTR);
523
524		/*
525		 * If B_CACHE is not set, we must issue the read.  If this
526		 * fails, we return an error.
527		 */
528
529		if ((bp->b_flags & B_CACHE) == 0) {
530		    bp->b_iocmd = BIO_READ;
531		    vfs_busy_pages(bp, 0);
532		    error = nfs_doio(bp, cred, p);
533		    if (error) {
534			brelse(bp);
535			return (error);
536		    }
537		}
538
539		/*
540		 * on is the offset into the current bp.  Figure out how many
541		 * bytes we can copy out of the bp.  Note that bcount is
542		 * NOT DEV_BSIZE aligned.
543		 *
544		 * Then figure out how many bytes we can copy into the uio.
545		 */
546
547		n = 0;
548		if (on < bcount)
549			n = min((unsigned)(bcount - on), uio->uio_resid);
550		break;
551	    case VLNK:
552		nfsstats.biocache_readlinks++;
553		bp = nfs_getcacheblk(vp, (daddr_t)0, NFS_MAXPATHLEN, p);
554		if (!bp)
555			return (EINTR);
556		if ((bp->b_flags & B_CACHE) == 0) {
557		    bp->b_iocmd = BIO_READ;
558		    vfs_busy_pages(bp, 0);
559		    error = nfs_doio(bp, cred, p);
560		    if (error) {
561			bp->b_flags |= B_ERROR;
562			brelse(bp);
563			return (error);
564		    }
565		}
566		n = min(uio->uio_resid, NFS_MAXPATHLEN - bp->b_resid);
567		on = 0;
568		break;
569	    case VDIR:
570		nfsstats.biocache_readdirs++;
571		if (np->n_direofoffset
572		    && uio->uio_offset >= np->n_direofoffset) {
573		    return (0);
574		}
575		lbn = (uoff_t)uio->uio_offset / NFS_DIRBLKSIZ;
576		on = uio->uio_offset & (NFS_DIRBLKSIZ - 1);
577		bp = nfs_getcacheblk(vp, lbn, NFS_DIRBLKSIZ, p);
578		if (!bp)
579		    return (EINTR);
580		if ((bp->b_flags & B_CACHE) == 0) {
581		    bp->b_iocmd = BIO_READ;
582		    vfs_busy_pages(bp, 0);
583		    error = nfs_doio(bp, cred, p);
584		    if (error) {
585			    brelse(bp);
586		    }
587		    while (error == NFSERR_BAD_COOKIE) {
588			printf("got bad cookie vp %p bp %p\n", vp, bp);
589			nfs_invaldir(vp);
590			error = nfs_vinvalbuf(vp, 0, cred, p, 1);
591			/*
592			 * Yuck! The directory has been modified on the
593			 * server. The only way to get the block is by
594			 * reading from the beginning to get all the
595			 * offset cookies.
596			 *
597			 * Leave the last bp intact unless there is an error.
598			 * Loop back up to the while if the error is another
599			 * NFSERR_BAD_COOKIE (double yuch!).
600			 */
601			for (i = 0; i <= lbn && !error; i++) {
602			    if (np->n_direofoffset
603				&& (i * NFS_DIRBLKSIZ) >= np->n_direofoffset)
604				    return (0);
605			    bp = nfs_getcacheblk(vp, i, NFS_DIRBLKSIZ, p);
606			    if (!bp)
607				return (EINTR);
608			    if ((bp->b_flags & B_CACHE) == 0) {
609				    bp->b_iocmd = BIO_READ;
610				    vfs_busy_pages(bp, 0);
611				    error = nfs_doio(bp, cred, p);
612				    /*
613				     * no error + B_INVAL == directory EOF,
614				     * use the block.
615				     */
616				    if (error == 0 && (bp->b_flags & B_INVAL))
617					    break;
618			    }
619			    /*
620			     * An error will throw away the block and the
621			     * for loop will break out.  If no error and this
622			     * is not the block we want, we throw away the
623			     * block and go for the next one via the for loop.
624			     */
625			    if (error || i < lbn)
626				    brelse(bp);
627			}
628		    }
629		    /*
630		     * The above while is repeated if we hit another cookie
631		     * error.  If we hit an error and it wasn't a cookie error,
632		     * we give up.
633		     */
634		    if (error)
635			    return (error);
636		}
637
638		/*
639		 * If not eof and read aheads are enabled, start one.
640		 * (You need the current block first, so that you have the
641		 *  directory offset cookie of the next block.)
642		 */
643		if (nfs_numasync > 0 && nmp->nm_readahead > 0 &&
644		    (bp->b_flags & B_INVAL) == 0 &&
645		    (np->n_direofoffset == 0 ||
646		    (lbn + 1) * NFS_DIRBLKSIZ < np->n_direofoffset) &&
647		    !(np->n_flag & NQNFSNONCACHE) &&
648		    !incore(vp, lbn + 1)) {
649			rabp = nfs_getcacheblk(vp, lbn + 1, NFS_DIRBLKSIZ, p);
650			if (rabp) {
651			    if ((rabp->b_flags & (B_CACHE|B_DELWRI)) == 0) {
652				rabp->b_flags |= B_ASYNC;
653				rabp->b_iocmd = BIO_READ;
654				vfs_busy_pages(rabp, 0);
655				if (nfs_asyncio(rabp, cred, p)) {
656				    rabp->b_flags |= B_INVAL|B_ERROR;
657				    vfs_unbusy_pages(rabp);
658				    brelse(rabp);
659				}
660			    } else {
661				brelse(rabp);
662			    }
663			}
664		}
665		/*
666		 * Unlike VREG files, whos buffer size ( bp->b_bcount ) is
667		 * chopped for the EOF condition, we cannot tell how large
668		 * NFS directories are going to be until we hit EOF.  So
669		 * an NFS directory buffer is *not* chopped to its EOF.  Now,
670		 * it just so happens that b_resid will effectively chop it
671		 * to EOF.  *BUT* this information is lost if the buffer goes
672		 * away and is reconstituted into a B_CACHE state ( due to
673		 * being VMIO ) later.  So we keep track of the directory eof
674		 * in np->n_direofoffset and chop it off as an extra step
675		 * right here.
676		 */
677		n = lmin(uio->uio_resid, NFS_DIRBLKSIZ - bp->b_resid - on);
678		if (np->n_direofoffset && n > np->n_direofoffset - uio->uio_offset)
679			n = np->n_direofoffset - uio->uio_offset;
680		break;
681	    default:
682		printf(" nfs_bioread: type %x unexpected\n",vp->v_type);
683		break;
684	    };
685
686	    if (n > 0) {
687		    error = uiomove(bp->b_data + on, (int)n, uio);
688	    }
689	    switch (vp->v_type) {
690	    case VREG:
691		break;
692	    case VLNK:
693		n = 0;
694		break;
695	    case VDIR:
696		/*
697		 * Invalidate buffer if caching is disabled, forcing a
698		 * re-read from the remote later.
699		 */
700		if (np->n_flag & NQNFSNONCACHE)
701			bp->b_flags |= B_INVAL;
702		break;
703	    default:
704		printf(" nfs_bioread: type %x unexpected\n",vp->v_type);
705	    }
706	    brelse(bp);
707	} while (error == 0 && uio->uio_resid > 0 && n > 0);
708	return (error);
709}
710
711/*
712 * Vnode op for write using bio
713 */
714int
715nfs_write(ap)
716	struct vop_write_args /* {
717		struct vnode *a_vp;
718		struct uio *a_uio;
719		int  a_ioflag;
720		struct ucred *a_cred;
721	} */ *ap;
722{
723	int biosize;
724	struct uio *uio = ap->a_uio;
725	struct proc *p = uio->uio_procp;
726	struct vnode *vp = ap->a_vp;
727	struct nfsnode *np = VTONFS(vp);
728	struct ucred *cred = ap->a_cred;
729	int ioflag = ap->a_ioflag;
730	struct buf *bp;
731	struct vattr vattr;
732	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
733	daddr_t lbn;
734	int bcount;
735	int n, on, error = 0, iomode, must_commit;
736	int haverslock = 0;
737
738#ifdef DIAGNOSTIC
739	if (uio->uio_rw != UIO_WRITE)
740		panic("nfs_write mode");
741	if (uio->uio_segflg == UIO_USERSPACE && uio->uio_procp != curproc)
742		panic("nfs_write proc");
743#endif
744	if (vp->v_type != VREG)
745		return (EIO);
746	if (np->n_flag & NWRITEERR) {
747		np->n_flag &= ~NWRITEERR;
748		return (np->n_error);
749	}
750	if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 &&
751	    (nmp->nm_state & NFSSTA_GOTFSINFO) == 0)
752		(void)nfs_fsinfo(nmp, vp, cred, p);
753
754	/*
755	 * Synchronously flush pending buffers if we are in synchronous
756	 * mode or if we are appending.
757	 */
758	if (ioflag & (IO_APPEND | IO_SYNC)) {
759		if (np->n_flag & NMODIFIED) {
760			np->n_attrstamp = 0;
761			error = nfs_vinvalbuf(vp, V_SAVE, cred, p, 1);
762			if (error)
763				return (error);
764		}
765	}
766
767	/*
768	 * If IO_APPEND then load uio_offset.  We restart here if we cannot
769	 * get the append lock.
770	 */
771restart:
772	if (ioflag & IO_APPEND) {
773		np->n_attrstamp = 0;
774		error = VOP_GETATTR(vp, &vattr, cred, p);
775		if (error)
776			return (error);
777		uio->uio_offset = np->n_size;
778	}
779
780	if (uio->uio_offset < 0)
781		return (EINVAL);
782	if ((uio->uio_offset + uio->uio_resid) > nmp->nm_maxfilesize)
783		return (EFBIG);
784	if (uio->uio_resid == 0)
785		return (0);
786
787	/*
788	 * We need to obtain the rslock if we intend to modify np->n_size
789	 * in order to guarentee the append point with multiple contending
790	 * writers, to guarentee that no other appenders modify n_size
791	 * while we are trying to obtain a truncated buffer (i.e. to avoid
792	 * accidently truncating data written by another appender due to
793	 * the race), and to ensure that the buffer is populated prior to
794	 * our extending of the file.  We hold rslock through the entire
795	 * operation.
796	 *
797	 * Note that we do not synchronize the case where someone truncates
798	 * the file while we are appending to it because attempting to lock
799	 * this case may deadlock other parts of the system unexpectedly.
800	 */
801	if ((ioflag & IO_APPEND) ||
802	    uio->uio_offset + uio->uio_resid > np->n_size) {
803		switch(nfs_rslock(np, p)) {
804		case ENOLCK:
805			goto restart;
806			/* not reached */
807		case EINTR:
808		case ERESTART:
809			return(EINTR);
810			/* not reached */
811		default:
812			break;
813		}
814		haverslock = 1;
815	}
816
817	/*
818	 * Maybe this should be above the vnode op call, but so long as
819	 * file servers have no limits, i don't think it matters
820	 */
821	if (p && uio->uio_offset + uio->uio_resid >
822	      p->p_rlimit[RLIMIT_FSIZE].rlim_cur) {
823		psignal(p, SIGXFSZ);
824		if (haverslock)
825			nfs_rsunlock(np, p);
826		return (EFBIG);
827	}
828
829	biosize = vp->v_mount->mnt_stat.f_iosize;
830
831	do {
832		/*
833		 * Check for a valid write lease.
834		 */
835		if ((nmp->nm_flag & NFSMNT_NQNFS) &&
836		    NQNFS_CKINVALID(vp, np, ND_WRITE)) {
837			do {
838				error = nqnfs_getlease(vp, ND_WRITE, cred, p);
839			} while (error == NQNFS_EXPIRED);
840			if (error)
841				break;
842			if (np->n_lrev != np->n_brev ||
843			    (np->n_flag & NQNFSNONCACHE)) {
844				error = nfs_vinvalbuf(vp, V_SAVE, cred, p, 1);
845				if (error)
846					break;
847				np->n_brev = np->n_lrev;
848			}
849		}
850		if ((np->n_flag & NQNFSNONCACHE) && uio->uio_iovcnt == 1) {
851		    iomode = NFSV3WRITE_FILESYNC;
852		    error = nfs_writerpc(vp, uio, cred, &iomode, &must_commit);
853		    if (must_commit)
854			    nfs_clearcommit(vp->v_mount);
855		    break;
856		}
857		nfsstats.biocache_writes++;
858		lbn = uio->uio_offset / biosize;
859		on = uio->uio_offset & (biosize-1);
860		n = min((unsigned)(biosize - on), uio->uio_resid);
861again:
862		/*
863		 * Handle direct append and file extension cases, calculate
864		 * unaligned buffer size.
865		 */
866
867		if (uio->uio_offset == np->n_size && n) {
868			/*
869			 * Get the buffer (in its pre-append state to maintain
870			 * B_CACHE if it was previously set).  Resize the
871			 * nfsnode after we have locked the buffer to prevent
872			 * readers from reading garbage.
873			 */
874			bcount = on;
875			bp = nfs_getcacheblk(vp, lbn, bcount, p);
876
877			if (bp != NULL) {
878				long save;
879
880				np->n_size = uio->uio_offset + n;
881				np->n_flag |= NMODIFIED;
882				vnode_pager_setsize(vp, np->n_size);
883
884				save = bp->b_flags & B_CACHE;
885				bcount += n;
886				allocbuf(bp, bcount);
887				bp->b_flags |= save;
888			}
889		} else {
890			/*
891			 * Obtain the locked cache block first, and then
892			 * adjust the file's size as appropriate.
893			 */
894			bcount = on + n;
895			if ((off_t)lbn * biosize + bcount < np->n_size) {
896				if ((off_t)(lbn + 1) * biosize < np->n_size)
897					bcount = biosize;
898				else
899					bcount = np->n_size - (off_t)lbn * biosize;
900			}
901
902			bp = nfs_getcacheblk(vp, lbn, bcount, p);
903
904			if (uio->uio_offset + n > np->n_size) {
905				np->n_size = uio->uio_offset + n;
906				np->n_flag |= NMODIFIED;
907				vnode_pager_setsize(vp, np->n_size);
908			}
909		}
910
911		if (!bp) {
912			error = EINTR;
913			break;
914		}
915
916		/*
917		 * Issue a READ if B_CACHE is not set.  In special-append
918		 * mode, B_CACHE is based on the buffer prior to the write
919		 * op and is typically set, avoiding the read.  If a read
920		 * is required in special append mode, the server will
921		 * probably send us a short-read since we extended the file
922		 * on our end, resulting in b_resid == 0 and, thusly,
923		 * B_CACHE getting set.
924		 *
925		 * We can also avoid issuing the read if the write covers
926		 * the entire buffer.  We have to make sure the buffer state
927		 * is reasonable in this case since we will not be initiating
928		 * I/O.  See the comments in kern/vfs_bio.c's getblk() for
929		 * more information.
930		 *
931		 * B_CACHE may also be set due to the buffer being cached
932		 * normally.
933		 */
934
935		if (on == 0 && n == bcount) {
936			bp->b_flags |= B_CACHE;
937			bp->b_flags &= ~(B_ERROR | B_INVAL);
938		}
939
940		if ((bp->b_flags & B_CACHE) == 0) {
941			bp->b_iocmd = BIO_READ;
942			vfs_busy_pages(bp, 0);
943			error = nfs_doio(bp, cred, p);
944			if (error) {
945				brelse(bp);
946				break;
947			}
948		}
949		if (!bp) {
950			error = EINTR;
951			break;
952		}
953		if (bp->b_wcred == NOCRED) {
954			crhold(cred);
955			bp->b_wcred = cred;
956		}
957		np->n_flag |= NMODIFIED;
958
959		/*
960		 * If dirtyend exceeds file size, chop it down.  This should
961		 * not normally occur but there is an append race where it
962		 * might occur XXX, so we log it.
963		 *
964		 * If the chopping creates a reverse-indexed or degenerate
965		 * situation with dirtyoff/end, we 0 both of them.
966		 */
967
968		if (bp->b_dirtyend > bcount) {
969			printf("NFS append race @%lx:%d\n",
970			    (long)bp->b_blkno * DEV_BSIZE,
971			    bp->b_dirtyend - bcount);
972			bp->b_dirtyend = bcount;
973		}
974
975		if (bp->b_dirtyoff >= bp->b_dirtyend)
976			bp->b_dirtyoff = bp->b_dirtyend = 0;
977
978		/*
979		 * If the new write will leave a contiguous dirty
980		 * area, just update the b_dirtyoff and b_dirtyend,
981		 * otherwise force a write rpc of the old dirty area.
982		 *
983		 * While it is possible to merge discontiguous writes due to
984		 * our having a B_CACHE buffer ( and thus valid read data
985		 * for the hole), we don't because it could lead to
986		 * significant cache coherency problems with multiple clients,
987		 * especially if locking is implemented later on.
988		 *
989		 * as an optimization we could theoretically maintain
990		 * a linked list of discontinuous areas, but we would still
991		 * have to commit them separately so there isn't much
992		 * advantage to it except perhaps a bit of asynchronization.
993		 */
994
995		if (bp->b_dirtyend > 0 &&
996		    (on > bp->b_dirtyend || (on + n) < bp->b_dirtyoff)) {
997			if (VOP_BWRITE(bp->b_vp, bp) == EINTR)
998				return (EINTR);
999			goto again;
1000		}
1001
1002		/*
1003		 * Check for valid write lease and get one as required.
1004		 * In case getblk() and/or bwrite() delayed us.
1005		 */
1006		if ((nmp->nm_flag & NFSMNT_NQNFS) &&
1007		    NQNFS_CKINVALID(vp, np, ND_WRITE)) {
1008			do {
1009				error = nqnfs_getlease(vp, ND_WRITE, cred, p);
1010			} while (error == NQNFS_EXPIRED);
1011			if (error) {
1012				brelse(bp);
1013				break;
1014			}
1015			if (np->n_lrev != np->n_brev ||
1016			    (np->n_flag & NQNFSNONCACHE)) {
1017				brelse(bp);
1018				error = nfs_vinvalbuf(vp, V_SAVE, cred, p, 1);
1019				if (error)
1020					break;
1021				np->n_brev = np->n_lrev;
1022				goto again;
1023			}
1024		}
1025
1026		error = uiomove((char *)bp->b_data + on, n, uio);
1027
1028		/*
1029		 * Since this block is being modified, it must be written
1030		 * again and not just committed.  Since write clustering does
1031		 * not work for the stage 1 data write, only the stage 2
1032		 * commit rpc, we have to clear B_CLUSTEROK as well.
1033		 */
1034		bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
1035
1036		if (error) {
1037			bp->b_flags |= B_ERROR;
1038			brelse(bp);
1039			break;
1040		}
1041
1042		/*
1043		 * Only update dirtyoff/dirtyend if not a degenerate
1044		 * condition.
1045		 */
1046		if (n) {
1047			if (bp->b_dirtyend > 0) {
1048				bp->b_dirtyoff = min(on, bp->b_dirtyoff);
1049				bp->b_dirtyend = max((on + n), bp->b_dirtyend);
1050			} else {
1051				bp->b_dirtyoff = on;
1052				bp->b_dirtyend = on + n;
1053			}
1054			vfs_bio_set_validclean(bp, on, n);
1055		}
1056
1057		/*
1058		 * If the lease is non-cachable or IO_SYNC do bwrite().
1059		 *
1060		 * IO_INVAL appears to be unused.  The idea appears to be
1061		 * to turn off caching in this case.  Very odd.  XXX
1062		 */
1063		if ((np->n_flag & NQNFSNONCACHE) || (ioflag & IO_SYNC)) {
1064			if (ioflag & IO_INVAL)
1065				bp->b_flags |= B_NOCACHE;
1066			error = VOP_BWRITE(bp->b_vp, bp);
1067			if (error)
1068				break;
1069			if (np->n_flag & NQNFSNONCACHE) {
1070				error = nfs_vinvalbuf(vp, V_SAVE, cred, p, 1);
1071				if (error)
1072					break;
1073			}
1074		} else if ((n + on) == biosize &&
1075			(nmp->nm_flag & NFSMNT_NQNFS) == 0) {
1076			bp->b_flags |= B_ASYNC;
1077			(void)nfs_writebp(bp, 0, 0);
1078		} else {
1079			bdwrite(bp);
1080		}
1081	} while (uio->uio_resid > 0 && n > 0);
1082
1083	if (haverslock)
1084		nfs_rsunlock(np, p);
1085
1086	return (error);
1087}
1088
1089/*
1090 * Get an nfs cache block.
1091 *
1092 * Allocate a new one if the block isn't currently in the cache
1093 * and return the block marked busy. If the calling process is
1094 * interrupted by a signal for an interruptible mount point, return
1095 * NULL.
1096 *
1097 * The caller must carefully deal with the possible B_INVAL state of
1098 * the buffer.  nfs_doio() clears B_INVAL (and nfs_asyncio() clears it
1099 * indirectly), so synchronous reads can be issued without worrying about
1100 * the B_INVAL state.  We have to be a little more careful when dealing
1101 * with writes (see comments in nfs_write()) when extending a file past
1102 * its EOF.
1103 */
1104static struct buf *
1105nfs_getcacheblk(vp, bn, size, p)
1106	struct vnode *vp;
1107	daddr_t bn;
1108	int size;
1109	struct proc *p;
1110{
1111	register struct buf *bp;
1112	struct mount *mp;
1113	struct nfsmount *nmp;
1114
1115	mp = vp->v_mount;
1116	nmp = VFSTONFS(mp);
1117
1118	if (nmp->nm_flag & NFSMNT_INT) {
1119		bp = getblk(vp, bn, size, PCATCH, 0);
1120		while (bp == (struct buf *)0) {
1121			if (nfs_sigintr(nmp, (struct nfsreq *)0, p))
1122				return ((struct buf *)0);
1123			bp = getblk(vp, bn, size, 0, 2 * hz);
1124		}
1125	} else {
1126		bp = getblk(vp, bn, size, 0, 0);
1127	}
1128
1129	if (vp->v_type == VREG) {
1130		int biosize;
1131
1132		biosize = mp->mnt_stat.f_iosize;
1133		bp->b_blkno = bn * (biosize / DEV_BSIZE);
1134	}
1135	return (bp);
1136}
1137
1138/*
1139 * Flush and invalidate all dirty buffers. If another process is already
1140 * doing the flush, just wait for completion.
1141 */
1142int
1143nfs_vinvalbuf(vp, flags, cred, p, intrflg)
1144	struct vnode *vp;
1145	int flags;
1146	struct ucred *cred;
1147	struct proc *p;
1148	int intrflg;
1149{
1150	register struct nfsnode *np = VTONFS(vp);
1151	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
1152	int error = 0, slpflag, slptimeo;
1153
1154	if (vp->v_flag & VXLOCK) {
1155		return (0);
1156	}
1157
1158	if ((nmp->nm_flag & NFSMNT_INT) == 0)
1159		intrflg = 0;
1160	if (intrflg) {
1161		slpflag = PCATCH;
1162		slptimeo = 2 * hz;
1163	} else {
1164		slpflag = 0;
1165		slptimeo = 0;
1166	}
1167	/*
1168	 * First wait for any other process doing a flush to complete.
1169	 */
1170	while (np->n_flag & NFLUSHINPROG) {
1171		np->n_flag |= NFLUSHWANT;
1172		error = tsleep((caddr_t)&np->n_flag, PRIBIO + 2, "nfsvinval",
1173			slptimeo);
1174		if (error && intrflg && nfs_sigintr(nmp, (struct nfsreq *)0, p))
1175			return (EINTR);
1176	}
1177
1178	/*
1179	 * Now, flush as required.
1180	 */
1181	np->n_flag |= NFLUSHINPROG;
1182	error = vinvalbuf(vp, flags, cred, p, slpflag, 0);
1183	while (error) {
1184		if (intrflg && nfs_sigintr(nmp, (struct nfsreq *)0, p)) {
1185			np->n_flag &= ~NFLUSHINPROG;
1186			if (np->n_flag & NFLUSHWANT) {
1187				np->n_flag &= ~NFLUSHWANT;
1188				wakeup((caddr_t)&np->n_flag);
1189			}
1190			return (EINTR);
1191		}
1192		error = vinvalbuf(vp, flags, cred, p, 0, slptimeo);
1193	}
1194	np->n_flag &= ~(NMODIFIED | NFLUSHINPROG);
1195	if (np->n_flag & NFLUSHWANT) {
1196		np->n_flag &= ~NFLUSHWANT;
1197		wakeup((caddr_t)&np->n_flag);
1198	}
1199	return (0);
1200}
1201
1202/*
1203 * Initiate asynchronous I/O. Return an error if no nfsiods are available.
1204 * This is mainly to avoid queueing async I/O requests when the nfsiods
1205 * are all hung on a dead server.
1206 *
1207 * Note: nfs_asyncio() does not clear (B_ERROR|B_INVAL) but when the bp
1208 * is eventually dequeued by the async daemon, nfs_doio() *will*.
1209 */
1210int
1211nfs_asyncio(bp, cred, procp)
1212	register struct buf *bp;
1213	struct ucred *cred;
1214	struct proc *procp;
1215{
1216	struct nfsmount *nmp;
1217	int i;
1218	int gotiod;
1219	int slpflag = 0;
1220	int slptimeo = 0;
1221	int error;
1222
1223	/*
1224	 * If no async daemons then return EIO to force caller to run the rpc
1225	 * synchronously.
1226	 */
1227	if (nfs_numasync == 0)
1228		return (EIO);
1229
1230	nmp = VFSTONFS(bp->b_vp->v_mount);
1231
1232	/*
1233	 * Commits are usually short and sweet so lets save some cpu and
1234	 * leave the async daemons for more important rpc's (such as reads
1235	 * and writes).
1236	 */
1237	if (bp->b_iocmd == BIO_WRITE && (bp->b_flags & B_NEEDCOMMIT) &&
1238	    (nmp->nm_bufqiods > nfs_numasync / 2)) {
1239		return(EIO);
1240	}
1241
1242again:
1243	if (nmp->nm_flag & NFSMNT_INT)
1244		slpflag = PCATCH;
1245	gotiod = FALSE;
1246
1247	/*
1248	 * Find a free iod to process this request.
1249	 */
1250	for (i = 0; i < NFS_MAXASYNCDAEMON; i++)
1251		if (nfs_iodwant[i]) {
1252			/*
1253			 * Found one, so wake it up and tell it which
1254			 * mount to process.
1255			 */
1256			NFS_DPF(ASYNCIO,
1257				("nfs_asyncio: waking iod %d for mount %p\n",
1258				 i, nmp));
1259			nfs_iodwant[i] = (struct proc *)0;
1260			nfs_iodmount[i] = nmp;
1261			nmp->nm_bufqiods++;
1262			wakeup((caddr_t)&nfs_iodwant[i]);
1263			gotiod = TRUE;
1264			break;
1265		}
1266
1267	/*
1268	 * If none are free, we may already have an iod working on this mount
1269	 * point.  If so, it will process our request.
1270	 */
1271	if (!gotiod) {
1272		if (nmp->nm_bufqiods > 0) {
1273			NFS_DPF(ASYNCIO,
1274				("nfs_asyncio: %d iods are already processing mount %p\n",
1275				 nmp->nm_bufqiods, nmp));
1276			gotiod = TRUE;
1277		}
1278	}
1279
1280	/*
1281	 * If we have an iod which can process the request, then queue
1282	 * the buffer.
1283	 */
1284	if (gotiod) {
1285		/*
1286		 * Ensure that the queue never grows too large.  We still want
1287		 * to asynchronize so we block rather then return EIO.
1288		 */
1289		while (nmp->nm_bufqlen >= 2*nfs_numasync) {
1290			NFS_DPF(ASYNCIO,
1291				("nfs_asyncio: waiting for mount %p queue to drain\n", nmp));
1292			nmp->nm_bufqwant = TRUE;
1293			error = tsleep(&nmp->nm_bufq, slpflag | PRIBIO,
1294				       "nfsaio", slptimeo);
1295			if (error) {
1296				if (nfs_sigintr(nmp, NULL, procp))
1297					return (EINTR);
1298				if (slpflag == PCATCH) {
1299					slpflag = 0;
1300					slptimeo = 2 * hz;
1301				}
1302			}
1303			/*
1304			 * We might have lost our iod while sleeping,
1305			 * so check and loop if nescessary.
1306			 */
1307			if (nmp->nm_bufqiods == 0) {
1308				NFS_DPF(ASYNCIO,
1309					("nfs_asyncio: no iods after mount %p queue was drained, looping\n", nmp));
1310				goto again;
1311			}
1312		}
1313
1314		if (bp->b_iocmd == BIO_READ) {
1315			if (bp->b_rcred == NOCRED && cred != NOCRED) {
1316				crhold(cred);
1317				bp->b_rcred = cred;
1318			}
1319		} else {
1320			bp->b_flags |= B_WRITEINPROG;
1321			if (bp->b_wcred == NOCRED && cred != NOCRED) {
1322				crhold(cred);
1323				bp->b_wcred = cred;
1324			}
1325		}
1326
1327		BUF_KERNPROC(bp);
1328		TAILQ_INSERT_TAIL(&nmp->nm_bufq, bp, b_freelist);
1329		nmp->nm_bufqlen++;
1330		return (0);
1331	}
1332
1333	/*
1334	 * All the iods are busy on other mounts, so return EIO to
1335	 * force the caller to process the i/o synchronously.
1336	 */
1337	NFS_DPF(ASYNCIO, ("nfs_asyncio: no iods available, i/o is synchronous\n"));
1338	return (EIO);
1339}
1340
1341/*
1342 * Do an I/O operation to/from a cache block. This may be called
1343 * synchronously or from an nfsiod.
1344 */
1345int
1346nfs_doio(bp, cr, p)
1347	struct buf *bp;
1348	struct ucred *cr;
1349	struct proc *p;
1350{
1351	struct uio *uiop;
1352	struct vnode *vp;
1353	struct nfsnode *np;
1354	struct nfsmount *nmp;
1355	int error = 0, iomode, must_commit = 0;
1356	struct uio uio;
1357	struct iovec io;
1358
1359	vp = bp->b_vp;
1360	np = VTONFS(vp);
1361	nmp = VFSTONFS(vp->v_mount);
1362	uiop = &uio;
1363	uiop->uio_iov = &io;
1364	uiop->uio_iovcnt = 1;
1365	uiop->uio_segflg = UIO_SYSSPACE;
1366	uiop->uio_procp = p;
1367
1368	/*
1369	 * clear B_ERROR and B_INVAL state prior to initiating the I/O.  We
1370	 * do this here so we do not have to do it in all the code that
1371	 * calls us.
1372	 */
1373	bp->b_flags &= ~(B_ERROR | B_INVAL);
1374
1375	KASSERT(!(bp->b_flags & B_DONE), ("nfs_doio: bp %p already marked done", bp));
1376
1377	/*
1378	 * Historically, paging was done with physio, but no more.
1379	 */
1380	if (bp->b_flags & B_PHYS) {
1381	    /*
1382	     * ...though reading /dev/drum still gets us here.
1383	     */
1384	    io.iov_len = uiop->uio_resid = bp->b_bcount;
1385	    /* mapping was done by vmapbuf() */
1386	    io.iov_base = bp->b_data;
1387	    uiop->uio_offset = ((off_t)bp->b_blkno) * DEV_BSIZE;
1388	    if (bp->b_iocmd == BIO_READ) {
1389		uiop->uio_rw = UIO_READ;
1390		nfsstats.read_physios++;
1391		error = nfs_readrpc(vp, uiop, cr);
1392	    } else {
1393		int com;
1394
1395		iomode = NFSV3WRITE_DATASYNC;
1396		uiop->uio_rw = UIO_WRITE;
1397		nfsstats.write_physios++;
1398		error = nfs_writerpc(vp, uiop, cr, &iomode, &com);
1399	    }
1400	    if (error) {
1401		bp->b_flags |= B_ERROR;
1402		bp->b_error = error;
1403	    }
1404	} else if (bp->b_iocmd == BIO_READ) {
1405	    io.iov_len = uiop->uio_resid = bp->b_bcount;
1406	    io.iov_base = bp->b_data;
1407	    uiop->uio_rw = UIO_READ;
1408	    switch (vp->v_type) {
1409	    case VREG:
1410		uiop->uio_offset = ((off_t)bp->b_blkno) * DEV_BSIZE;
1411		nfsstats.read_bios++;
1412		error = nfs_readrpc(vp, uiop, cr);
1413		if (!error) {
1414		    if (uiop->uio_resid) {
1415			/*
1416			 * If we had a short read with no error, we must have
1417			 * hit a file hole.  We should zero-fill the remainder.
1418			 * This can also occur if the server hits the file EOF.
1419			 *
1420			 * Holes used to be able to occur due to pending
1421			 * writes, but that is not possible any longer.
1422			 */
1423			int nread = bp->b_bcount - uiop->uio_resid;
1424			int left  = bp->b_bcount - nread;
1425
1426			if (left > 0)
1427				bzero((char *)bp->b_data + nread, left);
1428			uiop->uio_resid = 0;
1429		    }
1430		}
1431		if (p && (vp->v_flag & VTEXT) &&
1432			(((nmp->nm_flag & NFSMNT_NQNFS) &&
1433			  NQNFS_CKINVALID(vp, np, ND_READ) &&
1434			  np->n_lrev != np->n_brev) ||
1435			 (!(nmp->nm_flag & NFSMNT_NQNFS) &&
1436			  np->n_mtime != np->n_vattr.va_mtime.tv_sec))) {
1437			uprintf("Process killed due to text file modification\n");
1438			psignal(p, SIGKILL);
1439			PHOLD(p);
1440		}
1441		break;
1442	    case VLNK:
1443		uiop->uio_offset = (off_t)0;
1444		nfsstats.readlink_bios++;
1445		error = nfs_readlinkrpc(vp, uiop, cr);
1446		break;
1447	    case VDIR:
1448		nfsstats.readdir_bios++;
1449		uiop->uio_offset = ((u_quad_t)bp->b_lblkno) * NFS_DIRBLKSIZ;
1450		if (nmp->nm_flag & NFSMNT_RDIRPLUS) {
1451			error = nfs_readdirplusrpc(vp, uiop, cr);
1452			if (error == NFSERR_NOTSUPP)
1453				nmp->nm_flag &= ~NFSMNT_RDIRPLUS;
1454		}
1455		if ((nmp->nm_flag & NFSMNT_RDIRPLUS) == 0)
1456			error = nfs_readdirrpc(vp, uiop, cr);
1457		/*
1458		 * end-of-directory sets B_INVAL but does not generate an
1459		 * error.
1460		 */
1461		if (error == 0 && uiop->uio_resid == bp->b_bcount)
1462			bp->b_flags |= B_INVAL;
1463		break;
1464	    default:
1465		printf("nfs_doio:  type %x unexpected\n",vp->v_type);
1466		break;
1467	    };
1468	    if (error) {
1469		bp->b_flags |= B_ERROR;
1470		bp->b_error = error;
1471	    }
1472	} else {
1473	    /*
1474	     * If we only need to commit, try to commit
1475	     */
1476	    if (bp->b_flags & B_NEEDCOMMIT) {
1477		    int retv;
1478		    off_t off;
1479
1480		    off = ((u_quad_t)bp->b_blkno) * DEV_BSIZE + bp->b_dirtyoff;
1481		    bp->b_flags |= B_WRITEINPROG;
1482		    retv = nfs_commit(
1483				bp->b_vp, off, bp->b_dirtyend-bp->b_dirtyoff,
1484				bp->b_wcred, p);
1485		    bp->b_flags &= ~B_WRITEINPROG;
1486		    if (retv == 0) {
1487			    bp->b_dirtyoff = bp->b_dirtyend = 0;
1488			    bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
1489			    bp->b_resid = 0;
1490			    biodone(bp);
1491			    return (0);
1492		    }
1493		    if (retv == NFSERR_STALEWRITEVERF) {
1494			    nfs_clearcommit(bp->b_vp->v_mount);
1495		    }
1496	    }
1497
1498	    /*
1499	     * Setup for actual write
1500	     */
1501
1502	    if ((off_t)bp->b_blkno * DEV_BSIZE + bp->b_dirtyend > np->n_size)
1503		bp->b_dirtyend = np->n_size - (off_t)bp->b_blkno * DEV_BSIZE;
1504
1505	    if (bp->b_dirtyend > bp->b_dirtyoff) {
1506		io.iov_len = uiop->uio_resid = bp->b_dirtyend
1507		    - bp->b_dirtyoff;
1508		uiop->uio_offset = (off_t)bp->b_blkno * DEV_BSIZE
1509		    + bp->b_dirtyoff;
1510		io.iov_base = (char *)bp->b_data + bp->b_dirtyoff;
1511		uiop->uio_rw = UIO_WRITE;
1512		nfsstats.write_bios++;
1513
1514		if ((bp->b_flags & (B_ASYNC | B_NEEDCOMMIT | B_NOCACHE | B_CLUSTER)) == B_ASYNC)
1515		    iomode = NFSV3WRITE_UNSTABLE;
1516		else
1517		    iomode = NFSV3WRITE_FILESYNC;
1518
1519		bp->b_flags |= B_WRITEINPROG;
1520		error = nfs_writerpc(vp, uiop, cr, &iomode, &must_commit);
1521
1522		/*
1523		 * When setting B_NEEDCOMMIT also set B_CLUSTEROK to try
1524		 * to cluster the buffers needing commit.  This will allow
1525		 * the system to submit a single commit rpc for the whole
1526		 * cluster.  We can do this even if the buffer is not 100%
1527		 * dirty (relative to the NFS blocksize), so we optimize the
1528		 * append-to-file-case.
1529		 *
1530		 * (when clearing B_NEEDCOMMIT, B_CLUSTEROK must also be
1531		 * cleared because write clustering only works for commit
1532		 * rpc's, not for the data portion of the write).
1533		 */
1534
1535		if (!error && iomode == NFSV3WRITE_UNSTABLE) {
1536		    bp->b_flags |= B_NEEDCOMMIT;
1537		    if (bp->b_dirtyoff == 0
1538			&& bp->b_dirtyend == bp->b_bcount)
1539			bp->b_flags |= B_CLUSTEROK;
1540		} else {
1541		    bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
1542		}
1543		bp->b_flags &= ~B_WRITEINPROG;
1544
1545		/*
1546		 * For an interrupted write, the buffer is still valid
1547		 * and the write hasn't been pushed to the server yet,
1548		 * so we can't set B_ERROR and report the interruption
1549		 * by setting B_EINTR. For the B_ASYNC case, B_EINTR
1550		 * is not relevant, so the rpc attempt is essentially
1551		 * a noop.  For the case of a V3 write rpc not being
1552		 * committed to stable storage, the block is still
1553		 * dirty and requires either a commit rpc or another
1554		 * write rpc with iomode == NFSV3WRITE_FILESYNC before
1555		 * the block is reused. This is indicated by setting
1556		 * the B_DELWRI and B_NEEDCOMMIT flags.
1557		 *
1558		 * If the buffer is marked B_PAGING, it does not reside on
1559		 * the vp's paging queues so we cannot call bdirty().  The
1560		 * bp in this case is not an NFS cache block so we should
1561		 * be safe. XXX
1562		 */
1563    		if (error == EINTR
1564		    || (!error && (bp->b_flags & B_NEEDCOMMIT))) {
1565			int s;
1566
1567			s = splbio();
1568			bp->b_flags &= ~(B_INVAL|B_NOCACHE);
1569			if ((bp->b_flags & B_PAGING) == 0) {
1570			    bdirty(bp);
1571			    bp->b_flags &= ~B_DONE;
1572			}
1573			if (error && (bp->b_flags & B_ASYNC) == 0)
1574			    bp->b_flags |= B_EINTR;
1575			splx(s);
1576	    	} else {
1577		    if (error) {
1578			bp->b_flags |= B_ERROR;
1579			bp->b_error = np->n_error = error;
1580			np->n_flag |= NWRITEERR;
1581		    }
1582		    bp->b_dirtyoff = bp->b_dirtyend = 0;
1583		}
1584	    } else {
1585		bp->b_resid = 0;
1586		biodone(bp);
1587		return (0);
1588	    }
1589	}
1590	bp->b_resid = uiop->uio_resid;
1591	if (must_commit)
1592	    nfs_clearcommit(vp->v_mount);
1593	biodone(bp);
1594	return (error);
1595}
1596