nfs_bio.c revision 239065
1/*-
2 * Copyright (c) 1989, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * Rick Macklem at The University of Guelph.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 4. Neither the name of the University nor the names of its contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 *
32 *	@(#)nfs_bio.c	8.9 (Berkeley) 3/30/95
33 */
34
35#include <sys/cdefs.h>
36__FBSDID("$FreeBSD: head/sys/nfsclient/nfs_bio.c 239065 2012-08-05 14:11:42Z kib $");
37
38#include "opt_kdtrace.h"
39
40#include <sys/param.h>
41#include <sys/systm.h>
42#include <sys/bio.h>
43#include <sys/buf.h>
44#include <sys/kernel.h>
45#include <sys/mbuf.h>
46#include <sys/mount.h>
47#include <sys/proc.h>
48#include <sys/vmmeter.h>
49#include <sys/vnode.h>
50
51#include <vm/vm.h>
52#include <vm/vm_param.h>
53#include <vm/vm_extern.h>
54#include <vm/vm_page.h>
55#include <vm/vm_object.h>
56#include <vm/vm_pager.h>
57#include <vm/vnode_pager.h>
58
59#include <nfs/nfsproto.h>
60#include <nfsclient/nfs.h>
61#include <nfsclient/nfsmount.h>
62#include <nfsclient/nfsnode.h>
63#include <nfs/nfs_kdtrace.h>
64
65static struct buf *nfs_getcacheblk(struct vnode *vp, daddr_t bn, int size,
66		    struct thread *td);
67static int nfs_directio_write(struct vnode *vp, struct uio *uiop,
68			      struct ucred *cred, int ioflag);
69
70extern int nfs_directio_enable;
71extern int nfs_directio_allow_mmap;
72
73/*
74 * Vnode op for VM getpages.
75 */
76int
77nfs_getpages(struct vop_getpages_args *ap)
78{
79	int i, error, nextoff, size, toff, count, npages;
80	struct uio uio;
81	struct iovec iov;
82	vm_offset_t kva;
83	struct buf *bp;
84	struct vnode *vp;
85	struct thread *td;
86	struct ucred *cred;
87	struct nfsmount *nmp;
88	vm_object_t object;
89	vm_page_t *pages;
90	struct nfsnode *np;
91
92	vp = ap->a_vp;
93	np = VTONFS(vp);
94	td = curthread;				/* XXX */
95	cred = curthread->td_ucred;		/* XXX */
96	nmp = VFSTONFS(vp->v_mount);
97	pages = ap->a_m;
98	count = ap->a_count;
99
100	if ((object = vp->v_object) == NULL) {
101		nfs_printf("nfs_getpages: called with non-merged cache vnode??\n");
102		return (VM_PAGER_ERROR);
103	}
104
105	if (nfs_directio_enable && !nfs_directio_allow_mmap) {
106		mtx_lock(&np->n_mtx);
107		if ((np->n_flag & NNONCACHE) && (vp->v_type == VREG)) {
108			mtx_unlock(&np->n_mtx);
109			nfs_printf("nfs_getpages: called on non-cacheable vnode??\n");
110			return (VM_PAGER_ERROR);
111		} else
112			mtx_unlock(&np->n_mtx);
113	}
114
115	mtx_lock(&nmp->nm_mtx);
116	if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 &&
117	    (nmp->nm_state & NFSSTA_GOTFSINFO) == 0) {
118		mtx_unlock(&nmp->nm_mtx);
119		/* We'll never get here for v4, because we always have fsinfo */
120		(void)nfs_fsinfo(nmp, vp, cred, td);
121	} else
122		mtx_unlock(&nmp->nm_mtx);
123
124	npages = btoc(count);
125
126	/*
127	 * If the requested page is partially valid, just return it and
128	 * allow the pager to zero-out the blanks.  Partially valid pages
129	 * can only occur at the file EOF.
130	 */
131	VM_OBJECT_LOCK(object);
132	if (pages[ap->a_reqpage]->valid != 0) {
133		for (i = 0; i < npages; ++i) {
134			if (i != ap->a_reqpage) {
135				vm_page_lock(pages[i]);
136				vm_page_free(pages[i]);
137				vm_page_unlock(pages[i]);
138			}
139		}
140		VM_OBJECT_UNLOCK(object);
141		return (0);
142	}
143	VM_OBJECT_UNLOCK(object);
144
145	/*
146	 * We use only the kva address for the buffer, but this is extremely
147	 * convienient and fast.
148	 */
149	bp = getpbuf(&nfs_pbuf_freecnt);
150
151	kva = (vm_offset_t) bp->b_data;
152	pmap_qenter(kva, pages, npages);
153	PCPU_INC(cnt.v_vnodein);
154	PCPU_ADD(cnt.v_vnodepgsin, npages);
155
156	iov.iov_base = (caddr_t) kva;
157	iov.iov_len = count;
158	uio.uio_iov = &iov;
159	uio.uio_iovcnt = 1;
160	uio.uio_offset = IDX_TO_OFF(pages[0]->pindex);
161	uio.uio_resid = count;
162	uio.uio_segflg = UIO_SYSSPACE;
163	uio.uio_rw = UIO_READ;
164	uio.uio_td = td;
165
166	error = (nmp->nm_rpcops->nr_readrpc)(vp, &uio, cred);
167	pmap_qremove(kva, npages);
168
169	relpbuf(bp, &nfs_pbuf_freecnt);
170
171	if (error && (uio.uio_resid == count)) {
172		nfs_printf("nfs_getpages: error %d\n", error);
173		VM_OBJECT_LOCK(object);
174		for (i = 0; i < npages; ++i) {
175			if (i != ap->a_reqpage) {
176				vm_page_lock(pages[i]);
177				vm_page_free(pages[i]);
178				vm_page_unlock(pages[i]);
179			}
180		}
181		VM_OBJECT_UNLOCK(object);
182		return (VM_PAGER_ERROR);
183	}
184
185	/*
186	 * Calculate the number of bytes read and validate only that number
187	 * of bytes.  Note that due to pending writes, size may be 0.  This
188	 * does not mean that the remaining data is invalid!
189	 */
190
191	size = count - uio.uio_resid;
192	VM_OBJECT_LOCK(object);
193	for (i = 0, toff = 0; i < npages; i++, toff = nextoff) {
194		vm_page_t m;
195		nextoff = toff + PAGE_SIZE;
196		m = pages[i];
197
198		if (nextoff <= size) {
199			/*
200			 * Read operation filled an entire page
201			 */
202			m->valid = VM_PAGE_BITS_ALL;
203			KASSERT(m->dirty == 0,
204			    ("nfs_getpages: page %p is dirty", m));
205		} else if (size > toff) {
206			/*
207			 * Read operation filled a partial page.
208			 */
209			m->valid = 0;
210			vm_page_set_valid_range(m, 0, size - toff);
211			KASSERT(m->dirty == 0,
212			    ("nfs_getpages: page %p is dirty", m));
213		} else {
214			/*
215			 * Read operation was short.  If no error occured
216			 * we may have hit a zero-fill section.   We simply
217			 * leave valid set to 0.
218			 */
219			;
220		}
221		if (i != ap->a_reqpage)
222			vm_page_readahead_finish(m, error);
223	}
224	VM_OBJECT_UNLOCK(object);
225	return (0);
226}
227
228/*
229 * Vnode op for VM putpages.
230 */
231int
232nfs_putpages(struct vop_putpages_args *ap)
233{
234	struct uio uio;
235	struct iovec iov;
236	vm_offset_t kva;
237	struct buf *bp;
238	int iomode, must_commit, i, error, npages, count;
239	off_t offset;
240	int *rtvals;
241	struct vnode *vp;
242	struct thread *td;
243	struct ucred *cred;
244	struct nfsmount *nmp;
245	struct nfsnode *np;
246	vm_page_t *pages;
247
248	vp = ap->a_vp;
249	np = VTONFS(vp);
250	td = curthread;				/* XXX */
251	/* Set the cred to n_writecred for the write rpcs. */
252	if (np->n_writecred != NULL)
253		cred = crhold(np->n_writecred);
254	else
255		cred = crhold(curthread->td_ucred);	/* XXX */
256	nmp = VFSTONFS(vp->v_mount);
257	pages = ap->a_m;
258	count = ap->a_count;
259	rtvals = ap->a_rtvals;
260	npages = btoc(count);
261	offset = IDX_TO_OFF(pages[0]->pindex);
262
263	mtx_lock(&nmp->nm_mtx);
264	if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 &&
265	    (nmp->nm_state & NFSSTA_GOTFSINFO) == 0) {
266		mtx_unlock(&nmp->nm_mtx);
267		(void)nfs_fsinfo(nmp, vp, cred, td);
268	} else
269		mtx_unlock(&nmp->nm_mtx);
270
271	mtx_lock(&np->n_mtx);
272	if (nfs_directio_enable && !nfs_directio_allow_mmap &&
273	    (np->n_flag & NNONCACHE) && (vp->v_type == VREG)) {
274		mtx_unlock(&np->n_mtx);
275		nfs_printf("nfs_putpages: called on noncache-able vnode??\n");
276		mtx_lock(&np->n_mtx);
277	}
278
279	for (i = 0; i < npages; i++)
280		rtvals[i] = VM_PAGER_ERROR;
281
282	/*
283	 * When putting pages, do not extend file past EOF.
284	 */
285	if (offset + count > np->n_size) {
286		count = np->n_size - offset;
287		if (count < 0)
288			count = 0;
289	}
290	mtx_unlock(&np->n_mtx);
291
292	/*
293	 * We use only the kva address for the buffer, but this is extremely
294	 * convienient and fast.
295	 */
296	bp = getpbuf(&nfs_pbuf_freecnt);
297
298	kva = (vm_offset_t) bp->b_data;
299	pmap_qenter(kva, pages, npages);
300	PCPU_INC(cnt.v_vnodeout);
301	PCPU_ADD(cnt.v_vnodepgsout, count);
302
303	iov.iov_base = (caddr_t) kva;
304	iov.iov_len = count;
305	uio.uio_iov = &iov;
306	uio.uio_iovcnt = 1;
307	uio.uio_offset = offset;
308	uio.uio_resid = count;
309	uio.uio_segflg = UIO_SYSSPACE;
310	uio.uio_rw = UIO_WRITE;
311	uio.uio_td = td;
312
313	if ((ap->a_sync & VM_PAGER_PUT_SYNC) == 0)
314	    iomode = NFSV3WRITE_UNSTABLE;
315	else
316	    iomode = NFSV3WRITE_FILESYNC;
317
318	error = (nmp->nm_rpcops->nr_writerpc)(vp, &uio, cred, &iomode, &must_commit);
319	crfree(cred);
320
321	pmap_qremove(kva, npages);
322	relpbuf(bp, &nfs_pbuf_freecnt);
323
324	if (!error) {
325		vnode_pager_undirty_pages(pages, rtvals, count - uio.uio_resid);
326		if (must_commit) {
327			nfs_clearcommit(vp->v_mount);
328		}
329	}
330	return rtvals[0];
331}
332
333/*
334 * For nfs, cache consistency can only be maintained approximately.
335 * Although RFC1094 does not specify the criteria, the following is
336 * believed to be compatible with the reference port.
337 * For nfs:
338 * If the file's modify time on the server has changed since the
339 * last read rpc or you have written to the file,
340 * you may have lost data cache consistency with the
341 * server, so flush all of the file's data out of the cache.
342 * Then force a getattr rpc to ensure that you have up to date
343 * attributes.
344 * NB: This implies that cache data can be read when up to
345 * NFS_ATTRTIMEO seconds out of date. If you find that you need current
346 * attributes this could be forced by setting n_attrstamp to 0 before
347 * the VOP_GETATTR() call.
348 */
349static inline int
350nfs_bioread_check_cons(struct vnode *vp, struct thread *td, struct ucred *cred)
351{
352	int error = 0;
353	struct vattr vattr;
354	struct nfsnode *np = VTONFS(vp);
355	int old_lock;
356	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
357
358	/*
359	 * Grab the exclusive lock before checking whether the cache is
360	 * consistent.
361	 * XXX - We can make this cheaper later (by acquiring cheaper locks).
362	 * But for now, this suffices.
363	 */
364	old_lock = nfs_upgrade_vnlock(vp);
365	if (vp->v_iflag & VI_DOOMED) {
366		nfs_downgrade_vnlock(vp, old_lock);
367		return (EBADF);
368	}
369
370	mtx_lock(&np->n_mtx);
371	if (np->n_flag & NMODIFIED) {
372		mtx_unlock(&np->n_mtx);
373		if (vp->v_type != VREG) {
374			if (vp->v_type != VDIR)
375				panic("nfs: bioread, not dir");
376			(nmp->nm_rpcops->nr_invaldir)(vp);
377			error = nfs_vinvalbuf(vp, V_SAVE, td, 1);
378			if (error)
379				goto out;
380		}
381		np->n_attrstamp = 0;
382		KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp);
383		error = VOP_GETATTR(vp, &vattr, cred);
384		if (error)
385			goto out;
386		mtx_lock(&np->n_mtx);
387		np->n_mtime = vattr.va_mtime;
388		mtx_unlock(&np->n_mtx);
389	} else {
390		mtx_unlock(&np->n_mtx);
391		error = VOP_GETATTR(vp, &vattr, cred);
392		if (error)
393			return (error);
394		mtx_lock(&np->n_mtx);
395		if ((np->n_flag & NSIZECHANGED)
396		    || (NFS_TIMESPEC_COMPARE(&np->n_mtime, &vattr.va_mtime))) {
397			mtx_unlock(&np->n_mtx);
398			if (vp->v_type == VDIR)
399				(nmp->nm_rpcops->nr_invaldir)(vp);
400			error = nfs_vinvalbuf(vp, V_SAVE, td, 1);
401			if (error)
402				goto out;
403			mtx_lock(&np->n_mtx);
404			np->n_mtime = vattr.va_mtime;
405			np->n_flag &= ~NSIZECHANGED;
406		}
407		mtx_unlock(&np->n_mtx);
408	}
409out:
410	nfs_downgrade_vnlock(vp, old_lock);
411	return error;
412}
413
414/*
415 * Vnode op for read using bio
416 */
417int
418nfs_bioread(struct vnode *vp, struct uio *uio, int ioflag, struct ucred *cred)
419{
420	struct nfsnode *np = VTONFS(vp);
421	int biosize, i;
422	struct buf *bp, *rabp;
423	struct thread *td;
424	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
425	daddr_t lbn, rabn;
426	off_t end;
427	int bcount;
428	int seqcount;
429	int nra, error = 0, n = 0, on = 0;
430
431	KASSERT(uio->uio_rw == UIO_READ, ("nfs_read mode"));
432	if (uio->uio_resid == 0)
433		return (0);
434	if (uio->uio_offset < 0)	/* XXX VDIR cookies can be negative */
435		return (EINVAL);
436	td = uio->uio_td;
437
438	mtx_lock(&nmp->nm_mtx);
439	if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 &&
440	    (nmp->nm_state & NFSSTA_GOTFSINFO) == 0) {
441		mtx_unlock(&nmp->nm_mtx);
442		(void)nfs_fsinfo(nmp, vp, cred, td);
443	} else
444		mtx_unlock(&nmp->nm_mtx);
445
446	end = uio->uio_offset + uio->uio_resid;
447	if (vp->v_type != VDIR &&
448	    (end > nmp->nm_maxfilesize || end < uio->uio_offset))
449		return (EFBIG);
450
451	if (nfs_directio_enable && (ioflag & IO_DIRECT) && (vp->v_type == VREG))
452		/* No caching/ no readaheads. Just read data into the user buffer */
453		return nfs_readrpc(vp, uio, cred);
454
455	biosize = vp->v_bufobj.bo_bsize;
456	seqcount = (int)((off_t)(ioflag >> IO_SEQSHIFT) * biosize / BKVASIZE);
457
458	error = nfs_bioread_check_cons(vp, td, cred);
459	if (error)
460		return error;
461
462	do {
463	    u_quad_t nsize;
464
465	    mtx_lock(&np->n_mtx);
466	    nsize = np->n_size;
467	    mtx_unlock(&np->n_mtx);
468
469	    switch (vp->v_type) {
470	    case VREG:
471		nfsstats.biocache_reads++;
472		lbn = uio->uio_offset / biosize;
473		on = uio->uio_offset & (biosize - 1);
474
475		/*
476		 * Start the read ahead(s), as required.
477		 */
478		if (nmp->nm_readahead > 0) {
479		    for (nra = 0; nra < nmp->nm_readahead && nra < seqcount &&
480			(off_t)(lbn + 1 + nra) * biosize < nsize; nra++) {
481			rabn = lbn + 1 + nra;
482			if (incore(&vp->v_bufobj, rabn) == NULL) {
483			    rabp = nfs_getcacheblk(vp, rabn, biosize, td);
484			    if (!rabp) {
485				error = nfs_sigintr(nmp, td);
486				return (error ? error : EINTR);
487			    }
488			    if ((rabp->b_flags & (B_CACHE|B_DELWRI)) == 0) {
489				rabp->b_flags |= B_ASYNC;
490				rabp->b_iocmd = BIO_READ;
491				vfs_busy_pages(rabp, 0);
492				if (nfs_asyncio(nmp, rabp, cred, td)) {
493				    rabp->b_flags |= B_INVAL;
494				    rabp->b_ioflags |= BIO_ERROR;
495				    vfs_unbusy_pages(rabp);
496				    brelse(rabp);
497				    break;
498				}
499			    } else {
500				brelse(rabp);
501			    }
502			}
503		    }
504		}
505
506		/* Note that bcount is *not* DEV_BSIZE aligned. */
507		bcount = biosize;
508		if ((off_t)lbn * biosize >= nsize) {
509			bcount = 0;
510		} else if ((off_t)(lbn + 1) * biosize > nsize) {
511			bcount = nsize - (off_t)lbn * biosize;
512		}
513		bp = nfs_getcacheblk(vp, lbn, bcount, td);
514
515		if (!bp) {
516			error = nfs_sigintr(nmp, td);
517			return (error ? error : EINTR);
518		}
519
520		/*
521		 * If B_CACHE is not set, we must issue the read.  If this
522		 * fails, we return an error.
523		 */
524
525		if ((bp->b_flags & B_CACHE) == 0) {
526		    bp->b_iocmd = BIO_READ;
527		    vfs_busy_pages(bp, 0);
528		    error = nfs_doio(vp, bp, cred, td);
529		    if (error) {
530			brelse(bp);
531			return (error);
532		    }
533		}
534
535		/*
536		 * on is the offset into the current bp.  Figure out how many
537		 * bytes we can copy out of the bp.  Note that bcount is
538		 * NOT DEV_BSIZE aligned.
539		 *
540		 * Then figure out how many bytes we can copy into the uio.
541		 */
542
543		n = 0;
544		if (on < bcount)
545			n = MIN((unsigned)(bcount - on), uio->uio_resid);
546		break;
547	    case VLNK:
548		nfsstats.biocache_readlinks++;
549		bp = nfs_getcacheblk(vp, (daddr_t)0, NFS_MAXPATHLEN, td);
550		if (!bp) {
551			error = nfs_sigintr(nmp, td);
552			return (error ? error : EINTR);
553		}
554		if ((bp->b_flags & B_CACHE) == 0) {
555		    bp->b_iocmd = BIO_READ;
556		    vfs_busy_pages(bp, 0);
557		    error = nfs_doio(vp, bp, cred, td);
558		    if (error) {
559			bp->b_ioflags |= BIO_ERROR;
560			brelse(bp);
561			return (error);
562		    }
563		}
564		n = MIN(uio->uio_resid, NFS_MAXPATHLEN - bp->b_resid);
565		on = 0;
566		break;
567	    case VDIR:
568		nfsstats.biocache_readdirs++;
569		if (np->n_direofoffset
570		    && uio->uio_offset >= np->n_direofoffset) {
571		    return (0);
572		}
573		lbn = (uoff_t)uio->uio_offset / NFS_DIRBLKSIZ;
574		on = uio->uio_offset & (NFS_DIRBLKSIZ - 1);
575		bp = nfs_getcacheblk(vp, lbn, NFS_DIRBLKSIZ, td);
576		if (!bp) {
577		    error = nfs_sigintr(nmp, td);
578		    return (error ? error : EINTR);
579		}
580		if ((bp->b_flags & B_CACHE) == 0) {
581		    bp->b_iocmd = BIO_READ;
582		    vfs_busy_pages(bp, 0);
583		    error = nfs_doio(vp, bp, cred, td);
584		    if (error) {
585			    brelse(bp);
586		    }
587		    while (error == NFSERR_BAD_COOKIE) {
588			(nmp->nm_rpcops->nr_invaldir)(vp);
589			error = nfs_vinvalbuf(vp, 0, td, 1);
590			/*
591			 * Yuck! The directory has been modified on the
592			 * server. The only way to get the block is by
593			 * reading from the beginning to get all the
594			 * offset cookies.
595			 *
596			 * Leave the last bp intact unless there is an error.
597			 * Loop back up to the while if the error is another
598			 * NFSERR_BAD_COOKIE (double yuch!).
599			 */
600			for (i = 0; i <= lbn && !error; i++) {
601			    if (np->n_direofoffset
602				&& (i * NFS_DIRBLKSIZ) >= np->n_direofoffset)
603				    return (0);
604			    bp = nfs_getcacheblk(vp, i, NFS_DIRBLKSIZ, td);
605			    if (!bp) {
606				error = nfs_sigintr(nmp, td);
607				return (error ? error : EINTR);
608			    }
609			    if ((bp->b_flags & B_CACHE) == 0) {
610				    bp->b_iocmd = BIO_READ;
611				    vfs_busy_pages(bp, 0);
612				    error = nfs_doio(vp, bp, cred, td);
613				    /*
614				     * no error + B_INVAL == directory EOF,
615				     * use the block.
616				     */
617				    if (error == 0 && (bp->b_flags & B_INVAL))
618					    break;
619			    }
620			    /*
621			     * An error will throw away the block and the
622			     * for loop will break out.  If no error and this
623			     * is not the block we want, we throw away the
624			     * block and go for the next one via the for loop.
625			     */
626			    if (error || i < lbn)
627				    brelse(bp);
628			}
629		    }
630		    /*
631		     * The above while is repeated if we hit another cookie
632		     * error.  If we hit an error and it wasn't a cookie error,
633		     * we give up.
634		     */
635		    if (error)
636			    return (error);
637		}
638
639		/*
640		 * If not eof and read aheads are enabled, start one.
641		 * (You need the current block first, so that you have the
642		 *  directory offset cookie of the next block.)
643		 */
644		if (nmp->nm_readahead > 0 &&
645		    (bp->b_flags & B_INVAL) == 0 &&
646		    (np->n_direofoffset == 0 ||
647		    (lbn + 1) * NFS_DIRBLKSIZ < np->n_direofoffset) &&
648		    incore(&vp->v_bufobj, lbn + 1) == NULL) {
649			rabp = nfs_getcacheblk(vp, lbn + 1, NFS_DIRBLKSIZ, td);
650			if (rabp) {
651			    if ((rabp->b_flags & (B_CACHE|B_DELWRI)) == 0) {
652				rabp->b_flags |= B_ASYNC;
653				rabp->b_iocmd = BIO_READ;
654				vfs_busy_pages(rabp, 0);
655				if (nfs_asyncio(nmp, rabp, cred, td)) {
656				    rabp->b_flags |= B_INVAL;
657				    rabp->b_ioflags |= BIO_ERROR;
658				    vfs_unbusy_pages(rabp);
659				    brelse(rabp);
660				}
661			    } else {
662				brelse(rabp);
663			    }
664			}
665		}
666		/*
667		 * Unlike VREG files, whos buffer size ( bp->b_bcount ) is
668		 * chopped for the EOF condition, we cannot tell how large
669		 * NFS directories are going to be until we hit EOF.  So
670		 * an NFS directory buffer is *not* chopped to its EOF.  Now,
671		 * it just so happens that b_resid will effectively chop it
672		 * to EOF.  *BUT* this information is lost if the buffer goes
673		 * away and is reconstituted into a B_CACHE state ( due to
674		 * being VMIO ) later.  So we keep track of the directory eof
675		 * in np->n_direofoffset and chop it off as an extra step
676		 * right here.
677		 */
678		n = lmin(uio->uio_resid, NFS_DIRBLKSIZ - bp->b_resid - on);
679		if (np->n_direofoffset && n > np->n_direofoffset - uio->uio_offset)
680			n = np->n_direofoffset - uio->uio_offset;
681		break;
682	    default:
683		nfs_printf(" nfs_bioread: type %x unexpected\n", vp->v_type);
684		bp = NULL;
685		break;
686	    };
687
688	    if (n > 0) {
689		    error = uiomove(bp->b_data + on, (int)n, uio);
690	    }
691	    if (vp->v_type == VLNK)
692		n = 0;
693	    if (bp != NULL)
694		brelse(bp);
695	} while (error == 0 && uio->uio_resid > 0 && n > 0);
696	return (error);
697}
698
699/*
700 * The NFS write path cannot handle iovecs with len > 1. So we need to
701 * break up iovecs accordingly (restricting them to wsize).
702 * For the SYNC case, we can do this with 1 copy (user buffer -> mbuf).
703 * For the ASYNC case, 2 copies are needed. The first a copy from the
704 * user buffer to a staging buffer and then a second copy from the staging
705 * buffer to mbufs. This can be optimized by copying from the user buffer
706 * directly into mbufs and passing the chain down, but that requires a
707 * fair amount of re-working of the relevant codepaths (and can be done
708 * later).
709 */
710static int
711nfs_directio_write(vp, uiop, cred, ioflag)
712	struct vnode *vp;
713	struct uio *uiop;
714	struct ucred *cred;
715	int ioflag;
716{
717	int error;
718	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
719	struct thread *td = uiop->uio_td;
720	int size;
721	int wsize;
722
723	mtx_lock(&nmp->nm_mtx);
724	wsize = nmp->nm_wsize;
725	mtx_unlock(&nmp->nm_mtx);
726	if (ioflag & IO_SYNC) {
727		int iomode, must_commit;
728		struct uio uio;
729		struct iovec iov;
730do_sync:
731		while (uiop->uio_resid > 0) {
732			size = MIN(uiop->uio_resid, wsize);
733			size = MIN(uiop->uio_iov->iov_len, size);
734			iov.iov_base = uiop->uio_iov->iov_base;
735			iov.iov_len = size;
736			uio.uio_iov = &iov;
737			uio.uio_iovcnt = 1;
738			uio.uio_offset = uiop->uio_offset;
739			uio.uio_resid = size;
740			uio.uio_segflg = UIO_USERSPACE;
741			uio.uio_rw = UIO_WRITE;
742			uio.uio_td = td;
743			iomode = NFSV3WRITE_FILESYNC;
744			error = (nmp->nm_rpcops->nr_writerpc)(vp, &uio, cred,
745						      &iomode, &must_commit);
746			KASSERT((must_commit == 0),
747				("nfs_directio_write: Did not commit write"));
748			if (error)
749				return (error);
750			uiop->uio_offset += size;
751			uiop->uio_resid -= size;
752			if (uiop->uio_iov->iov_len <= size) {
753				uiop->uio_iovcnt--;
754				uiop->uio_iov++;
755			} else {
756				uiop->uio_iov->iov_base =
757					(char *)uiop->uio_iov->iov_base + size;
758				uiop->uio_iov->iov_len -= size;
759			}
760		}
761	} else {
762		struct uio *t_uio;
763		struct iovec *t_iov;
764		struct buf *bp;
765
766		/*
767		 * Break up the write into blocksize chunks and hand these
768		 * over to nfsiod's for write back.
769		 * Unfortunately, this incurs a copy of the data. Since
770		 * the user could modify the buffer before the write is
771		 * initiated.
772		 *
773		 * The obvious optimization here is that one of the 2 copies
774		 * in the async write path can be eliminated by copying the
775		 * data here directly into mbufs and passing the mbuf chain
776		 * down. But that will require a fair amount of re-working
777		 * of the code and can be done if there's enough interest
778		 * in NFS directio access.
779		 */
780		while (uiop->uio_resid > 0) {
781			size = MIN(uiop->uio_resid, wsize);
782			size = MIN(uiop->uio_iov->iov_len, size);
783			bp = getpbuf(&nfs_pbuf_freecnt);
784			t_uio = malloc(sizeof(struct uio), M_NFSDIRECTIO, M_WAITOK);
785			t_iov = malloc(sizeof(struct iovec), M_NFSDIRECTIO, M_WAITOK);
786			t_iov->iov_base = malloc(size, M_NFSDIRECTIO, M_WAITOK);
787			t_iov->iov_len = size;
788			t_uio->uio_iov = t_iov;
789			t_uio->uio_iovcnt = 1;
790			t_uio->uio_offset = uiop->uio_offset;
791			t_uio->uio_resid = size;
792			t_uio->uio_segflg = UIO_SYSSPACE;
793			t_uio->uio_rw = UIO_WRITE;
794			t_uio->uio_td = td;
795			KASSERT(uiop->uio_segflg == UIO_USERSPACE ||
796			    uiop->uio_segflg == UIO_SYSSPACE,
797			    ("nfs_directio_write: Bad uio_segflg"));
798			if (uiop->uio_segflg == UIO_USERSPACE) {
799				error = copyin(uiop->uio_iov->iov_base,
800				    t_iov->iov_base, size);
801				if (error != 0)
802					goto err_free;
803			} else
804				/*
805				 * UIO_SYSSPACE may never happen, but handle
806				 * it just in case it does.
807				 */
808				bcopy(uiop->uio_iov->iov_base, t_iov->iov_base,
809				    size);
810			bp->b_flags |= B_DIRECT;
811			bp->b_iocmd = BIO_WRITE;
812			if (cred != NOCRED) {
813				crhold(cred);
814				bp->b_wcred = cred;
815			} else
816				bp->b_wcred = NOCRED;
817			bp->b_caller1 = (void *)t_uio;
818			bp->b_vp = vp;
819			error = nfs_asyncio(nmp, bp, NOCRED, td);
820err_free:
821			if (error) {
822				free(t_iov->iov_base, M_NFSDIRECTIO);
823				free(t_iov, M_NFSDIRECTIO);
824				free(t_uio, M_NFSDIRECTIO);
825				bp->b_vp = NULL;
826				relpbuf(bp, &nfs_pbuf_freecnt);
827				if (error == EINTR)
828					return (error);
829				goto do_sync;
830			}
831			uiop->uio_offset += size;
832			uiop->uio_resid -= size;
833			if (uiop->uio_iov->iov_len <= size) {
834				uiop->uio_iovcnt--;
835				uiop->uio_iov++;
836			} else {
837				uiop->uio_iov->iov_base =
838					(char *)uiop->uio_iov->iov_base + size;
839				uiop->uio_iov->iov_len -= size;
840			}
841		}
842	}
843	return (0);
844}
845
846/*
847 * Vnode op for write using bio
848 */
849int
850nfs_write(struct vop_write_args *ap)
851{
852	int biosize;
853	struct uio *uio = ap->a_uio;
854	struct thread *td = uio->uio_td;
855	struct vnode *vp = ap->a_vp;
856	struct nfsnode *np = VTONFS(vp);
857	struct ucred *cred = ap->a_cred;
858	int ioflag = ap->a_ioflag;
859	struct buf *bp;
860	struct vattr vattr;
861	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
862	daddr_t lbn;
863	off_t end;
864	int bcount;
865	int n, on, error = 0;
866
867	KASSERT(uio->uio_rw == UIO_WRITE, ("nfs_write mode"));
868	KASSERT(uio->uio_segflg != UIO_USERSPACE || uio->uio_td == curthread,
869	    ("nfs_write proc"));
870	if (vp->v_type != VREG)
871		return (EIO);
872	mtx_lock(&np->n_mtx);
873	if (np->n_flag & NWRITEERR) {
874		np->n_flag &= ~NWRITEERR;
875		mtx_unlock(&np->n_mtx);
876		return (np->n_error);
877	} else
878		mtx_unlock(&np->n_mtx);
879	mtx_lock(&nmp->nm_mtx);
880	if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 &&
881	    (nmp->nm_state & NFSSTA_GOTFSINFO) == 0) {
882		mtx_unlock(&nmp->nm_mtx);
883		(void)nfs_fsinfo(nmp, vp, cred, td);
884	} else
885		mtx_unlock(&nmp->nm_mtx);
886
887	/*
888	 * Synchronously flush pending buffers if we are in synchronous
889	 * mode or if we are appending.
890	 */
891	if (ioflag & (IO_APPEND | IO_SYNC)) {
892		mtx_lock(&np->n_mtx);
893		if (np->n_flag & NMODIFIED) {
894			mtx_unlock(&np->n_mtx);
895#ifdef notyet /* Needs matching nonblock semantics elsewhere, too. */
896			/*
897			 * Require non-blocking, synchronous writes to
898			 * dirty files to inform the program it needs
899			 * to fsync(2) explicitly.
900			 */
901			if (ioflag & IO_NDELAY)
902				return (EAGAIN);
903#endif
904flush_and_restart:
905			np->n_attrstamp = 0;
906			KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp);
907			error = nfs_vinvalbuf(vp, V_SAVE, td, 1);
908			if (error)
909				return (error);
910		} else
911			mtx_unlock(&np->n_mtx);
912	}
913
914	/*
915	 * If IO_APPEND then load uio_offset.  We restart here if we cannot
916	 * get the append lock.
917	 */
918	if (ioflag & IO_APPEND) {
919		np->n_attrstamp = 0;
920		KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp);
921		error = VOP_GETATTR(vp, &vattr, cred);
922		if (error)
923			return (error);
924		mtx_lock(&np->n_mtx);
925		uio->uio_offset = np->n_size;
926		mtx_unlock(&np->n_mtx);
927	}
928
929	if (uio->uio_offset < 0)
930		return (EINVAL);
931	end = uio->uio_offset + uio->uio_resid;
932	if (end > nmp->nm_maxfilesize || end < uio->uio_offset)
933		return (EFBIG);
934	if (uio->uio_resid == 0)
935		return (0);
936
937	if (nfs_directio_enable && (ioflag & IO_DIRECT) && vp->v_type == VREG)
938		return nfs_directio_write(vp, uio, cred, ioflag);
939
940	/*
941	 * Maybe this should be above the vnode op call, but so long as
942	 * file servers have no limits, i don't think it matters
943	 */
944	if (vn_rlimit_fsize(vp, uio, td))
945		return (EFBIG);
946
947	biosize = vp->v_bufobj.bo_bsize;
948	/*
949	 * Find all of this file's B_NEEDCOMMIT buffers.  If our writes
950	 * would exceed the local maximum per-file write commit size when
951	 * combined with those, we must decide whether to flush,
952	 * go synchronous, or return error.  We don't bother checking
953	 * IO_UNIT -- we just make all writes atomic anyway, as there's
954	 * no point optimizing for something that really won't ever happen.
955	 */
956	if (!(ioflag & IO_SYNC)) {
957		int nflag;
958
959		mtx_lock(&np->n_mtx);
960		nflag = np->n_flag;
961		mtx_unlock(&np->n_mtx);
962		int needrestart = 0;
963		if (nmp->nm_wcommitsize < uio->uio_resid) {
964			/*
965			 * If this request could not possibly be completed
966			 * without exceeding the maximum outstanding write
967			 * commit size, see if we can convert it into a
968			 * synchronous write operation.
969			 */
970			if (ioflag & IO_NDELAY)
971				return (EAGAIN);
972			ioflag |= IO_SYNC;
973			if (nflag & NMODIFIED)
974				needrestart = 1;
975		} else if (nflag & NMODIFIED) {
976			int wouldcommit = 0;
977			BO_LOCK(&vp->v_bufobj);
978			if (vp->v_bufobj.bo_dirty.bv_cnt != 0) {
979				TAILQ_FOREACH(bp, &vp->v_bufobj.bo_dirty.bv_hd,
980				    b_bobufs) {
981					if (bp->b_flags & B_NEEDCOMMIT)
982						wouldcommit += bp->b_bcount;
983				}
984			}
985			BO_UNLOCK(&vp->v_bufobj);
986			/*
987			 * Since we're not operating synchronously and
988			 * bypassing the buffer cache, we are in a commit
989			 * and holding all of these buffers whether
990			 * transmitted or not.  If not limited, this
991			 * will lead to the buffer cache deadlocking,
992			 * as no one else can flush our uncommitted buffers.
993			 */
994			wouldcommit += uio->uio_resid;
995			/*
996			 * If we would initially exceed the maximum
997			 * outstanding write commit size, flush and restart.
998			 */
999			if (wouldcommit > nmp->nm_wcommitsize)
1000				needrestart = 1;
1001		}
1002		if (needrestart)
1003			goto flush_and_restart;
1004	}
1005
1006	do {
1007		nfsstats.biocache_writes++;
1008		lbn = uio->uio_offset / biosize;
1009		on = uio->uio_offset & (biosize-1);
1010		n = MIN((unsigned)(biosize - on), uio->uio_resid);
1011again:
1012		/*
1013		 * Handle direct append and file extension cases, calculate
1014		 * unaligned buffer size.
1015		 */
1016		mtx_lock(&np->n_mtx);
1017		if (uio->uio_offset == np->n_size && n) {
1018			mtx_unlock(&np->n_mtx);
1019			/*
1020			 * Get the buffer (in its pre-append state to maintain
1021			 * B_CACHE if it was previously set).  Resize the
1022			 * nfsnode after we have locked the buffer to prevent
1023			 * readers from reading garbage.
1024			 */
1025			bcount = on;
1026			bp = nfs_getcacheblk(vp, lbn, bcount, td);
1027
1028			if (bp != NULL) {
1029				long save;
1030
1031				mtx_lock(&np->n_mtx);
1032				np->n_size = uio->uio_offset + n;
1033				np->n_flag |= NMODIFIED;
1034				vnode_pager_setsize(vp, np->n_size);
1035				mtx_unlock(&np->n_mtx);
1036
1037				save = bp->b_flags & B_CACHE;
1038				bcount += n;
1039				allocbuf(bp, bcount);
1040				bp->b_flags |= save;
1041			}
1042		} else {
1043			/*
1044			 * Obtain the locked cache block first, and then
1045			 * adjust the file's size as appropriate.
1046			 */
1047			bcount = on + n;
1048			if ((off_t)lbn * biosize + bcount < np->n_size) {
1049				if ((off_t)(lbn + 1) * biosize < np->n_size)
1050					bcount = biosize;
1051				else
1052					bcount = np->n_size - (off_t)lbn * biosize;
1053			}
1054			mtx_unlock(&np->n_mtx);
1055			bp = nfs_getcacheblk(vp, lbn, bcount, td);
1056			mtx_lock(&np->n_mtx);
1057			if (uio->uio_offset + n > np->n_size) {
1058				np->n_size = uio->uio_offset + n;
1059				np->n_flag |= NMODIFIED;
1060				vnode_pager_setsize(vp, np->n_size);
1061			}
1062			mtx_unlock(&np->n_mtx);
1063		}
1064
1065		if (!bp) {
1066			error = nfs_sigintr(nmp, td);
1067			if (!error)
1068				error = EINTR;
1069			break;
1070		}
1071
1072		/*
1073		 * Issue a READ if B_CACHE is not set.  In special-append
1074		 * mode, B_CACHE is based on the buffer prior to the write
1075		 * op and is typically set, avoiding the read.  If a read
1076		 * is required in special append mode, the server will
1077		 * probably send us a short-read since we extended the file
1078		 * on our end, resulting in b_resid == 0 and, thusly,
1079		 * B_CACHE getting set.
1080		 *
1081		 * We can also avoid issuing the read if the write covers
1082		 * the entire buffer.  We have to make sure the buffer state
1083		 * is reasonable in this case since we will not be initiating
1084		 * I/O.  See the comments in kern/vfs_bio.c's getblk() for
1085		 * more information.
1086		 *
1087		 * B_CACHE may also be set due to the buffer being cached
1088		 * normally.
1089		 */
1090
1091		if (on == 0 && n == bcount) {
1092			bp->b_flags |= B_CACHE;
1093			bp->b_flags &= ~B_INVAL;
1094			bp->b_ioflags &= ~BIO_ERROR;
1095		}
1096
1097		if ((bp->b_flags & B_CACHE) == 0) {
1098			bp->b_iocmd = BIO_READ;
1099			vfs_busy_pages(bp, 0);
1100			error = nfs_doio(vp, bp, cred, td);
1101			if (error) {
1102				brelse(bp);
1103				break;
1104			}
1105		}
1106		if (bp->b_wcred == NOCRED)
1107			bp->b_wcred = crhold(cred);
1108		mtx_lock(&np->n_mtx);
1109		np->n_flag |= NMODIFIED;
1110		mtx_unlock(&np->n_mtx);
1111
1112		/*
1113		 * If dirtyend exceeds file size, chop it down.  This should
1114		 * not normally occur but there is an append race where it
1115		 * might occur XXX, so we log it.
1116		 *
1117		 * If the chopping creates a reverse-indexed or degenerate
1118		 * situation with dirtyoff/end, we 0 both of them.
1119		 */
1120
1121		if (bp->b_dirtyend > bcount) {
1122			nfs_printf("NFS append race @%lx:%d\n",
1123			    (long)bp->b_blkno * DEV_BSIZE,
1124			    bp->b_dirtyend - bcount);
1125			bp->b_dirtyend = bcount;
1126		}
1127
1128		if (bp->b_dirtyoff >= bp->b_dirtyend)
1129			bp->b_dirtyoff = bp->b_dirtyend = 0;
1130
1131		/*
1132		 * If the new write will leave a contiguous dirty
1133		 * area, just update the b_dirtyoff and b_dirtyend,
1134		 * otherwise force a write rpc of the old dirty area.
1135		 *
1136		 * While it is possible to merge discontiguous writes due to
1137		 * our having a B_CACHE buffer ( and thus valid read data
1138		 * for the hole), we don't because it could lead to
1139		 * significant cache coherency problems with multiple clients,
1140		 * especially if locking is implemented later on.
1141		 *
1142		 * as an optimization we could theoretically maintain
1143		 * a linked list of discontinuous areas, but we would still
1144		 * have to commit them separately so there isn't much
1145		 * advantage to it except perhaps a bit of asynchronization.
1146		 */
1147
1148		if (bp->b_dirtyend > 0 &&
1149		    (on > bp->b_dirtyend || (on + n) < bp->b_dirtyoff)) {
1150			if (bwrite(bp) == EINTR) {
1151				error = EINTR;
1152				break;
1153			}
1154			goto again;
1155		}
1156
1157		error = uiomove((char *)bp->b_data + on, n, uio);
1158
1159		/*
1160		 * Since this block is being modified, it must be written
1161		 * again and not just committed.  Since write clustering does
1162		 * not work for the stage 1 data write, only the stage 2
1163		 * commit rpc, we have to clear B_CLUSTEROK as well.
1164		 */
1165		bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
1166
1167		if (error) {
1168			bp->b_ioflags |= BIO_ERROR;
1169			brelse(bp);
1170			break;
1171		}
1172
1173		/*
1174		 * Only update dirtyoff/dirtyend if not a degenerate
1175		 * condition.
1176		 */
1177		if (n) {
1178			if (bp->b_dirtyend > 0) {
1179				bp->b_dirtyoff = min(on, bp->b_dirtyoff);
1180				bp->b_dirtyend = max((on + n), bp->b_dirtyend);
1181			} else {
1182				bp->b_dirtyoff = on;
1183				bp->b_dirtyend = on + n;
1184			}
1185			vfs_bio_set_valid(bp, on, n);
1186		}
1187
1188		/*
1189		 * If IO_SYNC do bwrite().
1190		 *
1191		 * IO_INVAL appears to be unused.  The idea appears to be
1192		 * to turn off caching in this case.  Very odd.  XXX
1193		 */
1194		if ((ioflag & IO_SYNC)) {
1195			if (ioflag & IO_INVAL)
1196				bp->b_flags |= B_NOCACHE;
1197			error = bwrite(bp);
1198			if (error)
1199				break;
1200		} else if ((n + on) == biosize) {
1201			bp->b_flags |= B_ASYNC;
1202			(void) (nmp->nm_rpcops->nr_writebp)(bp, 0, NULL);
1203		} else {
1204			bdwrite(bp);
1205		}
1206	} while (uio->uio_resid > 0 && n > 0);
1207
1208	return (error);
1209}
1210
1211/*
1212 * Get an nfs cache block.
1213 *
1214 * Allocate a new one if the block isn't currently in the cache
1215 * and return the block marked busy. If the calling process is
1216 * interrupted by a signal for an interruptible mount point, return
1217 * NULL.
1218 *
1219 * The caller must carefully deal with the possible B_INVAL state of
1220 * the buffer.  nfs_doio() clears B_INVAL (and nfs_asyncio() clears it
1221 * indirectly), so synchronous reads can be issued without worrying about
1222 * the B_INVAL state.  We have to be a little more careful when dealing
1223 * with writes (see comments in nfs_write()) when extending a file past
1224 * its EOF.
1225 */
1226static struct buf *
1227nfs_getcacheblk(struct vnode *vp, daddr_t bn, int size, struct thread *td)
1228{
1229	struct buf *bp;
1230	struct mount *mp;
1231	struct nfsmount *nmp;
1232
1233	mp = vp->v_mount;
1234	nmp = VFSTONFS(mp);
1235
1236	if (nmp->nm_flag & NFSMNT_INT) {
1237 		sigset_t oldset;
1238
1239 		nfs_set_sigmask(td, &oldset);
1240		bp = getblk(vp, bn, size, NFS_PCATCH, 0, 0);
1241 		nfs_restore_sigmask(td, &oldset);
1242		while (bp == NULL) {
1243			if (nfs_sigintr(nmp, td))
1244				return (NULL);
1245			bp = getblk(vp, bn, size, 0, 2 * hz, 0);
1246		}
1247	} else {
1248		bp = getblk(vp, bn, size, 0, 0, 0);
1249	}
1250
1251	if (vp->v_type == VREG)
1252		bp->b_blkno = bn * (vp->v_bufobj.bo_bsize / DEV_BSIZE);
1253	return (bp);
1254}
1255
1256/*
1257 * Flush and invalidate all dirty buffers. If another process is already
1258 * doing the flush, just wait for completion.
1259 */
1260int
1261nfs_vinvalbuf(struct vnode *vp, int flags, struct thread *td, int intrflg)
1262{
1263	struct nfsnode *np = VTONFS(vp);
1264	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
1265	int error = 0, slpflag, slptimeo;
1266 	int old_lock = 0;
1267
1268	ASSERT_VOP_LOCKED(vp, "nfs_vinvalbuf");
1269
1270	if ((nmp->nm_flag & NFSMNT_INT) == 0)
1271		intrflg = 0;
1272	if (intrflg) {
1273		slpflag = NFS_PCATCH;
1274		slptimeo = 2 * hz;
1275	} else {
1276		slpflag = 0;
1277		slptimeo = 0;
1278	}
1279
1280	old_lock = nfs_upgrade_vnlock(vp);
1281	if (vp->v_iflag & VI_DOOMED) {
1282		/*
1283		 * Since vgonel() uses the generic vinvalbuf() to flush
1284		 * dirty buffers and it does not call this function, it
1285		 * is safe to just return OK when VI_DOOMED is set.
1286		 */
1287		nfs_downgrade_vnlock(vp, old_lock);
1288		return (0);
1289	}
1290
1291	/*
1292	 * Now, flush as required.
1293	 */
1294	if ((flags & V_SAVE) && (vp->v_bufobj.bo_object != NULL)) {
1295		VM_OBJECT_LOCK(vp->v_bufobj.bo_object);
1296		vm_object_page_clean(vp->v_bufobj.bo_object, 0, 0, OBJPC_SYNC);
1297		VM_OBJECT_UNLOCK(vp->v_bufobj.bo_object);
1298		/*
1299		 * If the page clean was interrupted, fail the invalidation.
1300		 * Not doing so, we run the risk of losing dirty pages in the
1301		 * vinvalbuf() call below.
1302		 */
1303		if (intrflg && (error = nfs_sigintr(nmp, td)))
1304			goto out;
1305	}
1306
1307	error = vinvalbuf(vp, flags, slpflag, 0);
1308	while (error) {
1309		if (intrflg && (error = nfs_sigintr(nmp, td)))
1310			goto out;
1311		error = vinvalbuf(vp, flags, 0, slptimeo);
1312	}
1313	mtx_lock(&np->n_mtx);
1314	if (np->n_directio_asyncwr == 0)
1315		np->n_flag &= ~NMODIFIED;
1316	mtx_unlock(&np->n_mtx);
1317out:
1318	nfs_downgrade_vnlock(vp, old_lock);
1319	return error;
1320}
1321
1322/*
1323 * Initiate asynchronous I/O. Return an error if no nfsiods are available.
1324 * This is mainly to avoid queueing async I/O requests when the nfsiods
1325 * are all hung on a dead server.
1326 *
1327 * Note: nfs_asyncio() does not clear (BIO_ERROR|B_INVAL) but when the bp
1328 * is eventually dequeued by the async daemon, nfs_doio() *will*.
1329 */
1330int
1331nfs_asyncio(struct nfsmount *nmp, struct buf *bp, struct ucred *cred, struct thread *td)
1332{
1333	int iod;
1334	int gotiod;
1335	int slpflag = 0;
1336	int slptimeo = 0;
1337	int error, error2;
1338
1339	/*
1340	 * Commits are usually short and sweet so lets save some cpu and
1341	 * leave the async daemons for more important rpc's (such as reads
1342	 * and writes).
1343	 */
1344	mtx_lock(&nfs_iod_mtx);
1345	if (bp->b_iocmd == BIO_WRITE && (bp->b_flags & B_NEEDCOMMIT) &&
1346	    (nmp->nm_bufqiods > nfs_numasync / 2)) {
1347		mtx_unlock(&nfs_iod_mtx);
1348		return(EIO);
1349	}
1350again:
1351	if (nmp->nm_flag & NFSMNT_INT)
1352		slpflag = NFS_PCATCH;
1353	gotiod = FALSE;
1354
1355	/*
1356	 * Find a free iod to process this request.
1357	 */
1358	for (iod = 0; iod < nfs_numasync; iod++)
1359		if (nfs_iodwant[iod] == NFSIOD_AVAILABLE) {
1360			gotiod = TRUE;
1361			break;
1362		}
1363
1364	/*
1365	 * Try to create one if none are free.
1366	 */
1367	if (!gotiod)
1368		nfs_nfsiodnew();
1369	else {
1370		/*
1371		 * Found one, so wake it up and tell it which
1372		 * mount to process.
1373		 */
1374		NFS_DPF(ASYNCIO, ("nfs_asyncio: waking iod %d for mount %p\n",
1375		    iod, nmp));
1376		nfs_iodwant[iod] = NFSIOD_NOT_AVAILABLE;
1377		nfs_iodmount[iod] = nmp;
1378		nmp->nm_bufqiods++;
1379		wakeup(&nfs_iodwant[iod]);
1380	}
1381
1382	/*
1383	 * If none are free, we may already have an iod working on this mount
1384	 * point.  If so, it will process our request.
1385	 */
1386	if (!gotiod) {
1387		if (nmp->nm_bufqiods > 0) {
1388			NFS_DPF(ASYNCIO,
1389		("nfs_asyncio: %d iods are already processing mount %p\n",
1390				 nmp->nm_bufqiods, nmp));
1391			gotiod = TRUE;
1392		}
1393	}
1394
1395	/*
1396	 * If we have an iod which can process the request, then queue
1397	 * the buffer.
1398	 */
1399	if (gotiod) {
1400		/*
1401		 * Ensure that the queue never grows too large.  We still want
1402		 * to asynchronize so we block rather then return EIO.
1403		 */
1404		while (nmp->nm_bufqlen >= 2 * nfs_numasync) {
1405			NFS_DPF(ASYNCIO,
1406		("nfs_asyncio: waiting for mount %p queue to drain\n", nmp));
1407			nmp->nm_bufqwant = TRUE;
1408 			error = nfs_msleep(td, &nmp->nm_bufq, &nfs_iod_mtx,
1409					   slpflag | PRIBIO,
1410 					   "nfsaio", slptimeo);
1411			if (error) {
1412				error2 = nfs_sigintr(nmp, td);
1413				if (error2) {
1414					mtx_unlock(&nfs_iod_mtx);
1415					return (error2);
1416				}
1417				if (slpflag == NFS_PCATCH) {
1418					slpflag = 0;
1419					slptimeo = 2 * hz;
1420				}
1421			}
1422			/*
1423			 * We might have lost our iod while sleeping,
1424			 * so check and loop if nescessary.
1425			 */
1426			goto again;
1427		}
1428
1429		/* We might have lost our nfsiod */
1430		if (nmp->nm_bufqiods == 0) {
1431			NFS_DPF(ASYNCIO,
1432("nfs_asyncio: no iods after mount %p queue was drained, looping\n", nmp));
1433			goto again;
1434		}
1435
1436		if (bp->b_iocmd == BIO_READ) {
1437			if (bp->b_rcred == NOCRED && cred != NOCRED)
1438				bp->b_rcred = crhold(cred);
1439		} else {
1440			if (bp->b_wcred == NOCRED && cred != NOCRED)
1441				bp->b_wcred = crhold(cred);
1442		}
1443
1444		if (bp->b_flags & B_REMFREE)
1445			bremfreef(bp);
1446		BUF_KERNPROC(bp);
1447		TAILQ_INSERT_TAIL(&nmp->nm_bufq, bp, b_freelist);
1448		nmp->nm_bufqlen++;
1449		if ((bp->b_flags & B_DIRECT) && bp->b_iocmd == BIO_WRITE) {
1450			mtx_lock(&(VTONFS(bp->b_vp))->n_mtx);
1451			VTONFS(bp->b_vp)->n_flag |= NMODIFIED;
1452			VTONFS(bp->b_vp)->n_directio_asyncwr++;
1453			mtx_unlock(&(VTONFS(bp->b_vp))->n_mtx);
1454		}
1455		mtx_unlock(&nfs_iod_mtx);
1456		return (0);
1457	}
1458
1459	mtx_unlock(&nfs_iod_mtx);
1460
1461	/*
1462	 * All the iods are busy on other mounts, so return EIO to
1463	 * force the caller to process the i/o synchronously.
1464	 */
1465	NFS_DPF(ASYNCIO, ("nfs_asyncio: no iods available, i/o is synchronous\n"));
1466	return (EIO);
1467}
1468
1469void
1470nfs_doio_directwrite(struct buf *bp)
1471{
1472	int iomode, must_commit;
1473	struct uio *uiop = (struct uio *)bp->b_caller1;
1474	char *iov_base = uiop->uio_iov->iov_base;
1475	struct nfsmount *nmp = VFSTONFS(bp->b_vp->v_mount);
1476
1477	iomode = NFSV3WRITE_FILESYNC;
1478	uiop->uio_td = NULL; /* NULL since we're in nfsiod */
1479	(nmp->nm_rpcops->nr_writerpc)(bp->b_vp, uiop, bp->b_wcred, &iomode, &must_commit);
1480	KASSERT((must_commit == 0), ("nfs_doio_directwrite: Did not commit write"));
1481	free(iov_base, M_NFSDIRECTIO);
1482	free(uiop->uio_iov, M_NFSDIRECTIO);
1483	free(uiop, M_NFSDIRECTIO);
1484	if ((bp->b_flags & B_DIRECT) && bp->b_iocmd == BIO_WRITE) {
1485		struct nfsnode *np = VTONFS(bp->b_vp);
1486		mtx_lock(&np->n_mtx);
1487		np->n_directio_asyncwr--;
1488		if (np->n_directio_asyncwr == 0) {
1489			VTONFS(bp->b_vp)->n_flag &= ~NMODIFIED;
1490			if ((np->n_flag & NFSYNCWAIT)) {
1491				np->n_flag &= ~NFSYNCWAIT;
1492				wakeup((caddr_t)&np->n_directio_asyncwr);
1493			}
1494		}
1495		mtx_unlock(&np->n_mtx);
1496	}
1497	bp->b_vp = NULL;
1498	relpbuf(bp, &nfs_pbuf_freecnt);
1499}
1500
1501/*
1502 * Do an I/O operation to/from a cache block. This may be called
1503 * synchronously or from an nfsiod.
1504 */
1505int
1506nfs_doio(struct vnode *vp, struct buf *bp, struct ucred *cr, struct thread *td)
1507{
1508	struct uio *uiop;
1509	struct nfsnode *np;
1510	struct nfsmount *nmp;
1511	int error = 0, iomode, must_commit = 0;
1512	struct uio uio;
1513	struct iovec io;
1514	struct proc *p = td ? td->td_proc : NULL;
1515	uint8_t	iocmd;
1516
1517	np = VTONFS(vp);
1518	nmp = VFSTONFS(vp->v_mount);
1519	uiop = &uio;
1520	uiop->uio_iov = &io;
1521	uiop->uio_iovcnt = 1;
1522	uiop->uio_segflg = UIO_SYSSPACE;
1523	uiop->uio_td = td;
1524
1525	/*
1526	 * clear BIO_ERROR and B_INVAL state prior to initiating the I/O.  We
1527	 * do this here so we do not have to do it in all the code that
1528	 * calls us.
1529	 */
1530	bp->b_flags &= ~B_INVAL;
1531	bp->b_ioflags &= ~BIO_ERROR;
1532
1533	KASSERT(!(bp->b_flags & B_DONE), ("nfs_doio: bp %p already marked done", bp));
1534	iocmd = bp->b_iocmd;
1535	if (iocmd == BIO_READ) {
1536	    io.iov_len = uiop->uio_resid = bp->b_bcount;
1537	    io.iov_base = bp->b_data;
1538	    uiop->uio_rw = UIO_READ;
1539
1540	    switch (vp->v_type) {
1541	    case VREG:
1542		uiop->uio_offset = ((off_t)bp->b_blkno) * DEV_BSIZE;
1543		nfsstats.read_bios++;
1544		error = (nmp->nm_rpcops->nr_readrpc)(vp, uiop, cr);
1545
1546		if (!error) {
1547		    if (uiop->uio_resid) {
1548			/*
1549			 * If we had a short read with no error, we must have
1550			 * hit a file hole.  We should zero-fill the remainder.
1551			 * This can also occur if the server hits the file EOF.
1552			 *
1553			 * Holes used to be able to occur due to pending
1554			 * writes, but that is not possible any longer.
1555			 */
1556			int nread = bp->b_bcount - uiop->uio_resid;
1557			int left  = uiop->uio_resid;
1558
1559			if (left > 0)
1560				bzero((char *)bp->b_data + nread, left);
1561			uiop->uio_resid = 0;
1562		    }
1563		}
1564		/* ASSERT_VOP_LOCKED(vp, "nfs_doio"); */
1565		if (p && (vp->v_vflag & VV_TEXT)) {
1566			mtx_lock(&np->n_mtx);
1567			if (NFS_TIMESPEC_COMPARE(&np->n_mtime, &np->n_vattr.va_mtime)) {
1568				mtx_unlock(&np->n_mtx);
1569				PROC_LOCK(p);
1570				killproc(p, "text file modification");
1571				PROC_UNLOCK(p);
1572			} else
1573				mtx_unlock(&np->n_mtx);
1574		}
1575		break;
1576	    case VLNK:
1577		uiop->uio_offset = (off_t)0;
1578		nfsstats.readlink_bios++;
1579		error = (nmp->nm_rpcops->nr_readlinkrpc)(vp, uiop, cr);
1580		break;
1581	    case VDIR:
1582		nfsstats.readdir_bios++;
1583		uiop->uio_offset = ((u_quad_t)bp->b_lblkno) * NFS_DIRBLKSIZ;
1584		if ((nmp->nm_flag & NFSMNT_RDIRPLUS) != 0) {
1585			error = nfs_readdirplusrpc(vp, uiop, cr);
1586			if (error == NFSERR_NOTSUPP)
1587				nmp->nm_flag &= ~NFSMNT_RDIRPLUS;
1588		}
1589		if ((nmp->nm_flag & NFSMNT_RDIRPLUS) == 0)
1590			error = nfs_readdirrpc(vp, uiop, cr);
1591		/*
1592		 * end-of-directory sets B_INVAL but does not generate an
1593		 * error.
1594		 */
1595		if (error == 0 && uiop->uio_resid == bp->b_bcount)
1596			bp->b_flags |= B_INVAL;
1597		break;
1598	    default:
1599		nfs_printf("nfs_doio:  type %x unexpected\n", vp->v_type);
1600		break;
1601	    };
1602	    if (error) {
1603		bp->b_ioflags |= BIO_ERROR;
1604		bp->b_error = error;
1605	    }
1606	} else {
1607	    /*
1608	     * If we only need to commit, try to commit
1609	     */
1610	    if (bp->b_flags & B_NEEDCOMMIT) {
1611		    int retv;
1612		    off_t off;
1613
1614		    off = ((u_quad_t)bp->b_blkno) * DEV_BSIZE + bp->b_dirtyoff;
1615		    retv = (nmp->nm_rpcops->nr_commit)(
1616				vp, off, bp->b_dirtyend-bp->b_dirtyoff,
1617				bp->b_wcred, td);
1618		    if (retv == 0) {
1619			    bp->b_dirtyoff = bp->b_dirtyend = 0;
1620			    bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
1621			    bp->b_resid = 0;
1622			    bufdone(bp);
1623			    return (0);
1624		    }
1625		    if (retv == NFSERR_STALEWRITEVERF) {
1626			    nfs_clearcommit(vp->v_mount);
1627		    }
1628	    }
1629
1630	    /*
1631	     * Setup for actual write
1632	     */
1633	    mtx_lock(&np->n_mtx);
1634	    if ((off_t)bp->b_blkno * DEV_BSIZE + bp->b_dirtyend > np->n_size)
1635		bp->b_dirtyend = np->n_size - (off_t)bp->b_blkno * DEV_BSIZE;
1636	    mtx_unlock(&np->n_mtx);
1637
1638	    if (bp->b_dirtyend > bp->b_dirtyoff) {
1639		io.iov_len = uiop->uio_resid = bp->b_dirtyend
1640		    - bp->b_dirtyoff;
1641		uiop->uio_offset = (off_t)bp->b_blkno * DEV_BSIZE
1642		    + bp->b_dirtyoff;
1643		io.iov_base = (char *)bp->b_data + bp->b_dirtyoff;
1644		uiop->uio_rw = UIO_WRITE;
1645		nfsstats.write_bios++;
1646
1647		if ((bp->b_flags & (B_ASYNC | B_NEEDCOMMIT | B_NOCACHE | B_CLUSTER)) == B_ASYNC)
1648		    iomode = NFSV3WRITE_UNSTABLE;
1649		else
1650		    iomode = NFSV3WRITE_FILESYNC;
1651
1652		error = (nmp->nm_rpcops->nr_writerpc)(vp, uiop, cr, &iomode, &must_commit);
1653
1654		/*
1655		 * When setting B_NEEDCOMMIT also set B_CLUSTEROK to try
1656		 * to cluster the buffers needing commit.  This will allow
1657		 * the system to submit a single commit rpc for the whole
1658		 * cluster.  We can do this even if the buffer is not 100%
1659		 * dirty (relative to the NFS blocksize), so we optimize the
1660		 * append-to-file-case.
1661		 *
1662		 * (when clearing B_NEEDCOMMIT, B_CLUSTEROK must also be
1663		 * cleared because write clustering only works for commit
1664		 * rpc's, not for the data portion of the write).
1665		 */
1666
1667		if (!error && iomode == NFSV3WRITE_UNSTABLE) {
1668		    bp->b_flags |= B_NEEDCOMMIT;
1669		    if (bp->b_dirtyoff == 0
1670			&& bp->b_dirtyend == bp->b_bcount)
1671			bp->b_flags |= B_CLUSTEROK;
1672		} else {
1673		    bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
1674		}
1675
1676		/*
1677		 * For an interrupted write, the buffer is still valid
1678		 * and the write hasn't been pushed to the server yet,
1679		 * so we can't set BIO_ERROR and report the interruption
1680		 * by setting B_EINTR. For the B_ASYNC case, B_EINTR
1681		 * is not relevant, so the rpc attempt is essentially
1682		 * a noop.  For the case of a V3 write rpc not being
1683		 * committed to stable storage, the block is still
1684		 * dirty and requires either a commit rpc or another
1685		 * write rpc with iomode == NFSV3WRITE_FILESYNC before
1686		 * the block is reused. This is indicated by setting
1687		 * the B_DELWRI and B_NEEDCOMMIT flags.
1688		 *
1689		 * If the buffer is marked B_PAGING, it does not reside on
1690		 * the vp's paging queues so we cannot call bdirty().  The
1691		 * bp in this case is not an NFS cache block so we should
1692		 * be safe. XXX
1693		 *
1694		 * The logic below breaks up errors into recoverable and
1695		 * unrecoverable. For the former, we clear B_INVAL|B_NOCACHE
1696		 * and keep the buffer around for potential write retries.
1697		 * For the latter (eg ESTALE), we toss the buffer away (B_INVAL)
1698		 * and save the error in the nfsnode. This is less than ideal
1699		 * but necessary. Keeping such buffers around could potentially
1700		 * cause buffer exhaustion eventually (they can never be written
1701		 * out, so will get constantly be re-dirtied). It also causes
1702		 * all sorts of vfs panics. For non-recoverable write errors,
1703		 * also invalidate the attrcache, so we'll be forced to go over
1704		 * the wire for this object, returning an error to user on next
1705		 * call (most of the time).
1706		 */
1707    		if (error == EINTR || error == EIO || error == ETIMEDOUT
1708		    || (!error && (bp->b_flags & B_NEEDCOMMIT))) {
1709			int s;
1710
1711			s = splbio();
1712			bp->b_flags &= ~(B_INVAL|B_NOCACHE);
1713			if ((bp->b_flags & B_PAGING) == 0) {
1714			    bdirty(bp);
1715			    bp->b_flags &= ~B_DONE;
1716			}
1717			if (error && (bp->b_flags & B_ASYNC) == 0)
1718			    bp->b_flags |= B_EINTR;
1719			splx(s);
1720	    	} else {
1721		    if (error) {
1722			bp->b_ioflags |= BIO_ERROR;
1723			bp->b_flags |= B_INVAL;
1724			bp->b_error = np->n_error = error;
1725			mtx_lock(&np->n_mtx);
1726			np->n_flag |= NWRITEERR;
1727			np->n_attrstamp = 0;
1728			KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp);
1729			mtx_unlock(&np->n_mtx);
1730		    }
1731		    bp->b_dirtyoff = bp->b_dirtyend = 0;
1732		}
1733	    } else {
1734		bp->b_resid = 0;
1735		bufdone(bp);
1736		return (0);
1737	    }
1738	}
1739	bp->b_resid = uiop->uio_resid;
1740	if (must_commit)
1741	    nfs_clearcommit(vp->v_mount);
1742	bufdone(bp);
1743	return (error);
1744}
1745
1746/*
1747 * Used to aid in handling ftruncate() operations on the NFS client side.
1748 * Truncation creates a number of special problems for NFS.  We have to
1749 * throw away VM pages and buffer cache buffers that are beyond EOF, and
1750 * we have to properly handle VM pages or (potentially dirty) buffers
1751 * that straddle the truncation point.
1752 */
1753
1754int
1755nfs_meta_setsize(struct vnode *vp, struct ucred *cred, struct thread *td, u_quad_t nsize)
1756{
1757	struct nfsnode *np = VTONFS(vp);
1758	u_quad_t tsize;
1759	int biosize = vp->v_bufobj.bo_bsize;
1760	int error = 0;
1761
1762	mtx_lock(&np->n_mtx);
1763	tsize = np->n_size;
1764	np->n_size = nsize;
1765	mtx_unlock(&np->n_mtx);
1766
1767	if (nsize < tsize) {
1768		struct buf *bp;
1769		daddr_t lbn;
1770		int bufsize;
1771
1772		/*
1773		 * vtruncbuf() doesn't get the buffer overlapping the
1774		 * truncation point.  We may have a B_DELWRI and/or B_CACHE
1775		 * buffer that now needs to be truncated.
1776		 */
1777		error = vtruncbuf(vp, cred, nsize, biosize);
1778		lbn = nsize / biosize;
1779		bufsize = nsize & (biosize - 1);
1780		bp = nfs_getcacheblk(vp, lbn, bufsize, td);
1781 		if (!bp)
1782 			return EINTR;
1783		if (bp->b_dirtyoff > bp->b_bcount)
1784			bp->b_dirtyoff = bp->b_bcount;
1785		if (bp->b_dirtyend > bp->b_bcount)
1786			bp->b_dirtyend = bp->b_bcount;
1787		bp->b_flags |= B_RELBUF;  /* don't leave garbage around */
1788		brelse(bp);
1789	} else {
1790		vnode_pager_setsize(vp, nsize);
1791	}
1792	return(error);
1793}
1794
1795