nfs_bio.c revision 232327
1/*-
2 * Copyright (c) 1989, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * Rick Macklem at The University of Guelph.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 4. Neither the name of the University nor the names of its contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 *
32 *	@(#)nfs_bio.c	8.9 (Berkeley) 3/30/95
33 */
34
35#include <sys/cdefs.h>
36__FBSDID("$FreeBSD: head/sys/nfsclient/nfs_bio.c 232327 2012-03-01 03:53:07Z rmacklem $");
37
38#include "opt_kdtrace.h"
39
40#include <sys/param.h>
41#include <sys/systm.h>
42#include <sys/bio.h>
43#include <sys/buf.h>
44#include <sys/kernel.h>
45#include <sys/mbuf.h>
46#include <sys/mount.h>
47#include <sys/proc.h>
48#include <sys/vmmeter.h>
49#include <sys/vnode.h>
50
51#include <vm/vm.h>
52#include <vm/vm_extern.h>
53#include <vm/vm_page.h>
54#include <vm/vm_object.h>
55#include <vm/vm_pager.h>
56#include <vm/vnode_pager.h>
57
58#include <nfs/nfsproto.h>
59#include <nfsclient/nfs.h>
60#include <nfsclient/nfsmount.h>
61#include <nfsclient/nfsnode.h>
62#include <nfs/nfs_kdtrace.h>
63
64static struct buf *nfs_getcacheblk(struct vnode *vp, daddr_t bn, int size,
65		    struct thread *td);
66static int nfs_directio_write(struct vnode *vp, struct uio *uiop,
67			      struct ucred *cred, int ioflag);
68
69extern int nfs_directio_enable;
70extern int nfs_directio_allow_mmap;
71
72/*
73 * Vnode op for VM getpages.
74 */
75int
76nfs_getpages(struct vop_getpages_args *ap)
77{
78	int i, error, nextoff, size, toff, count, npages;
79	struct uio uio;
80	struct iovec iov;
81	vm_offset_t kva;
82	struct buf *bp;
83	struct vnode *vp;
84	struct thread *td;
85	struct ucred *cred;
86	struct nfsmount *nmp;
87	vm_object_t object;
88	vm_page_t *pages;
89	struct nfsnode *np;
90
91	vp = ap->a_vp;
92	np = VTONFS(vp);
93	td = curthread;				/* XXX */
94	cred = curthread->td_ucred;		/* XXX */
95	nmp = VFSTONFS(vp->v_mount);
96	pages = ap->a_m;
97	count = ap->a_count;
98
99	if ((object = vp->v_object) == NULL) {
100		nfs_printf("nfs_getpages: called with non-merged cache vnode??\n");
101		return (VM_PAGER_ERROR);
102	}
103
104	if (nfs_directio_enable && !nfs_directio_allow_mmap) {
105		mtx_lock(&np->n_mtx);
106		if ((np->n_flag & NNONCACHE) && (vp->v_type == VREG)) {
107			mtx_unlock(&np->n_mtx);
108			nfs_printf("nfs_getpages: called on non-cacheable vnode??\n");
109			return (VM_PAGER_ERROR);
110		} else
111			mtx_unlock(&np->n_mtx);
112	}
113
114	mtx_lock(&nmp->nm_mtx);
115	if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 &&
116	    (nmp->nm_state & NFSSTA_GOTFSINFO) == 0) {
117		mtx_unlock(&nmp->nm_mtx);
118		/* We'll never get here for v4, because we always have fsinfo */
119		(void)nfs_fsinfo(nmp, vp, cred, td);
120	} else
121		mtx_unlock(&nmp->nm_mtx);
122
123	npages = btoc(count);
124
125	/*
126	 * If the requested page is partially valid, just return it and
127	 * allow the pager to zero-out the blanks.  Partially valid pages
128	 * can only occur at the file EOF.
129	 */
130	VM_OBJECT_LOCK(object);
131	if (pages[ap->a_reqpage]->valid != 0) {
132		for (i = 0; i < npages; ++i) {
133			if (i != ap->a_reqpage) {
134				vm_page_lock(pages[i]);
135				vm_page_free(pages[i]);
136				vm_page_unlock(pages[i]);
137			}
138		}
139		VM_OBJECT_UNLOCK(object);
140		return (0);
141	}
142	VM_OBJECT_UNLOCK(object);
143
144	/*
145	 * We use only the kva address for the buffer, but this is extremely
146	 * convienient and fast.
147	 */
148	bp = getpbuf(&nfs_pbuf_freecnt);
149
150	kva = (vm_offset_t) bp->b_data;
151	pmap_qenter(kva, pages, npages);
152	PCPU_INC(cnt.v_vnodein);
153	PCPU_ADD(cnt.v_vnodepgsin, npages);
154
155	iov.iov_base = (caddr_t) kva;
156	iov.iov_len = count;
157	uio.uio_iov = &iov;
158	uio.uio_iovcnt = 1;
159	uio.uio_offset = IDX_TO_OFF(pages[0]->pindex);
160	uio.uio_resid = count;
161	uio.uio_segflg = UIO_SYSSPACE;
162	uio.uio_rw = UIO_READ;
163	uio.uio_td = td;
164
165	error = (nmp->nm_rpcops->nr_readrpc)(vp, &uio, cred);
166	pmap_qremove(kva, npages);
167
168	relpbuf(bp, &nfs_pbuf_freecnt);
169
170	if (error && (uio.uio_resid == count)) {
171		nfs_printf("nfs_getpages: error %d\n", error);
172		VM_OBJECT_LOCK(object);
173		for (i = 0; i < npages; ++i) {
174			if (i != ap->a_reqpage) {
175				vm_page_lock(pages[i]);
176				vm_page_free(pages[i]);
177				vm_page_unlock(pages[i]);
178			}
179		}
180		VM_OBJECT_UNLOCK(object);
181		return (VM_PAGER_ERROR);
182	}
183
184	/*
185	 * Calculate the number of bytes read and validate only that number
186	 * of bytes.  Note that due to pending writes, size may be 0.  This
187	 * does not mean that the remaining data is invalid!
188	 */
189
190	size = count - uio.uio_resid;
191	VM_OBJECT_LOCK(object);
192	for (i = 0, toff = 0; i < npages; i++, toff = nextoff) {
193		vm_page_t m;
194		nextoff = toff + PAGE_SIZE;
195		m = pages[i];
196
197		if (nextoff <= size) {
198			/*
199			 * Read operation filled an entire page
200			 */
201			m->valid = VM_PAGE_BITS_ALL;
202			KASSERT(m->dirty == 0,
203			    ("nfs_getpages: page %p is dirty", m));
204		} else if (size > toff) {
205			/*
206			 * Read operation filled a partial page.
207			 */
208			m->valid = 0;
209			vm_page_set_valid_range(m, 0, size - toff);
210			KASSERT(m->dirty == 0,
211			    ("nfs_getpages: page %p is dirty", m));
212		} else {
213			/*
214			 * Read operation was short.  If no error occured
215			 * we may have hit a zero-fill section.   We simply
216			 * leave valid set to 0.
217			 */
218			;
219		}
220		if (i != ap->a_reqpage) {
221			/*
222			 * Whether or not to leave the page activated is up in
223			 * the air, but we should put the page on a page queue
224			 * somewhere (it already is in the object).  Result:
225			 * It appears that emperical results show that
226			 * deactivating pages is best.
227			 */
228
229			/*
230			 * Just in case someone was asking for this page we
231			 * now tell them that it is ok to use.
232			 */
233			if (!error) {
234				if (m->oflags & VPO_WANTED) {
235					vm_page_lock(m);
236					vm_page_activate(m);
237					vm_page_unlock(m);
238				} else {
239					vm_page_lock(m);
240					vm_page_deactivate(m);
241					vm_page_unlock(m);
242				}
243				vm_page_wakeup(m);
244			} else {
245				vm_page_lock(m);
246				vm_page_free(m);
247				vm_page_unlock(m);
248			}
249		}
250	}
251	VM_OBJECT_UNLOCK(object);
252	return (0);
253}
254
255/*
256 * Vnode op for VM putpages.
257 */
258int
259nfs_putpages(struct vop_putpages_args *ap)
260{
261	struct uio uio;
262	struct iovec iov;
263	vm_offset_t kva;
264	struct buf *bp;
265	int iomode, must_commit, i, error, npages, count;
266	off_t offset;
267	int *rtvals;
268	struct vnode *vp;
269	struct thread *td;
270	struct ucred *cred;
271	struct nfsmount *nmp;
272	struct nfsnode *np;
273	vm_page_t *pages;
274
275	vp = ap->a_vp;
276	np = VTONFS(vp);
277	td = curthread;				/* XXX */
278	cred = curthread->td_ucred;		/* XXX */
279	nmp = VFSTONFS(vp->v_mount);
280	pages = ap->a_m;
281	count = ap->a_count;
282	rtvals = ap->a_rtvals;
283	npages = btoc(count);
284	offset = IDX_TO_OFF(pages[0]->pindex);
285
286	mtx_lock(&nmp->nm_mtx);
287	if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 &&
288	    (nmp->nm_state & NFSSTA_GOTFSINFO) == 0) {
289		mtx_unlock(&nmp->nm_mtx);
290		(void)nfs_fsinfo(nmp, vp, cred, td);
291	} else
292		mtx_unlock(&nmp->nm_mtx);
293
294	mtx_lock(&np->n_mtx);
295	if (nfs_directio_enable && !nfs_directio_allow_mmap &&
296	    (np->n_flag & NNONCACHE) && (vp->v_type == VREG)) {
297		mtx_unlock(&np->n_mtx);
298		nfs_printf("nfs_putpages: called on noncache-able vnode??\n");
299		mtx_lock(&np->n_mtx);
300	}
301
302	for (i = 0; i < npages; i++)
303		rtvals[i] = VM_PAGER_ERROR;
304
305	/*
306	 * When putting pages, do not extend file past EOF.
307	 */
308	if (offset + count > np->n_size) {
309		count = np->n_size - offset;
310		if (count < 0)
311			count = 0;
312	}
313	mtx_unlock(&np->n_mtx);
314
315	/*
316	 * We use only the kva address for the buffer, but this is extremely
317	 * convienient and fast.
318	 */
319	bp = getpbuf(&nfs_pbuf_freecnt);
320
321	kva = (vm_offset_t) bp->b_data;
322	pmap_qenter(kva, pages, npages);
323	PCPU_INC(cnt.v_vnodeout);
324	PCPU_ADD(cnt.v_vnodepgsout, count);
325
326	iov.iov_base = (caddr_t) kva;
327	iov.iov_len = count;
328	uio.uio_iov = &iov;
329	uio.uio_iovcnt = 1;
330	uio.uio_offset = offset;
331	uio.uio_resid = count;
332	uio.uio_segflg = UIO_SYSSPACE;
333	uio.uio_rw = UIO_WRITE;
334	uio.uio_td = td;
335
336	if ((ap->a_sync & VM_PAGER_PUT_SYNC) == 0)
337	    iomode = NFSV3WRITE_UNSTABLE;
338	else
339	    iomode = NFSV3WRITE_FILESYNC;
340
341	error = (nmp->nm_rpcops->nr_writerpc)(vp, &uio, cred, &iomode, &must_commit);
342
343	pmap_qremove(kva, npages);
344	relpbuf(bp, &nfs_pbuf_freecnt);
345
346	if (!error) {
347		vnode_pager_undirty_pages(pages, rtvals, count - uio.uio_resid);
348		if (must_commit) {
349			nfs_clearcommit(vp->v_mount);
350		}
351	}
352	return rtvals[0];
353}
354
355/*
356 * For nfs, cache consistency can only be maintained approximately.
357 * Although RFC1094 does not specify the criteria, the following is
358 * believed to be compatible with the reference port.
359 * For nfs:
360 * If the file's modify time on the server has changed since the
361 * last read rpc or you have written to the file,
362 * you may have lost data cache consistency with the
363 * server, so flush all of the file's data out of the cache.
364 * Then force a getattr rpc to ensure that you have up to date
365 * attributes.
366 * NB: This implies that cache data can be read when up to
367 * NFS_ATTRTIMEO seconds out of date. If you find that you need current
368 * attributes this could be forced by setting n_attrstamp to 0 before
369 * the VOP_GETATTR() call.
370 */
371static inline int
372nfs_bioread_check_cons(struct vnode *vp, struct thread *td, struct ucred *cred)
373{
374	int error = 0;
375	struct vattr vattr;
376	struct nfsnode *np = VTONFS(vp);
377	int old_lock;
378	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
379
380	/*
381	 * Grab the exclusive lock before checking whether the cache is
382	 * consistent.
383	 * XXX - We can make this cheaper later (by acquiring cheaper locks).
384	 * But for now, this suffices.
385	 */
386	old_lock = nfs_upgrade_vnlock(vp);
387	if (vp->v_iflag & VI_DOOMED) {
388		nfs_downgrade_vnlock(vp, old_lock);
389		return (EBADF);
390	}
391
392	mtx_lock(&np->n_mtx);
393	if (np->n_flag & NMODIFIED) {
394		mtx_unlock(&np->n_mtx);
395		if (vp->v_type != VREG) {
396			if (vp->v_type != VDIR)
397				panic("nfs: bioread, not dir");
398			(nmp->nm_rpcops->nr_invaldir)(vp);
399			error = nfs_vinvalbuf(vp, V_SAVE, td, 1);
400			if (error)
401				goto out;
402		}
403		np->n_attrstamp = 0;
404		KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp);
405		error = VOP_GETATTR(vp, &vattr, cred);
406		if (error)
407			goto out;
408		mtx_lock(&np->n_mtx);
409		np->n_mtime = vattr.va_mtime;
410		mtx_unlock(&np->n_mtx);
411	} else {
412		mtx_unlock(&np->n_mtx);
413		error = VOP_GETATTR(vp, &vattr, cred);
414		if (error)
415			return (error);
416		mtx_lock(&np->n_mtx);
417		if ((np->n_flag & NSIZECHANGED)
418		    || (NFS_TIMESPEC_COMPARE(&np->n_mtime, &vattr.va_mtime))) {
419			mtx_unlock(&np->n_mtx);
420			if (vp->v_type == VDIR)
421				(nmp->nm_rpcops->nr_invaldir)(vp);
422			error = nfs_vinvalbuf(vp, V_SAVE, td, 1);
423			if (error)
424				goto out;
425			mtx_lock(&np->n_mtx);
426			np->n_mtime = vattr.va_mtime;
427			np->n_flag &= ~NSIZECHANGED;
428		}
429		mtx_unlock(&np->n_mtx);
430	}
431out:
432	nfs_downgrade_vnlock(vp, old_lock);
433	return error;
434}
435
436/*
437 * Vnode op for read using bio
438 */
439int
440nfs_bioread(struct vnode *vp, struct uio *uio, int ioflag, struct ucred *cred)
441{
442	struct nfsnode *np = VTONFS(vp);
443	int biosize, i;
444	struct buf *bp, *rabp;
445	struct thread *td;
446	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
447	daddr_t lbn, rabn;
448	off_t end;
449	int bcount;
450	int seqcount;
451	int nra, error = 0, n = 0, on = 0;
452
453	KASSERT(uio->uio_rw == UIO_READ, ("nfs_read mode"));
454	if (uio->uio_resid == 0)
455		return (0);
456	if (uio->uio_offset < 0)	/* XXX VDIR cookies can be negative */
457		return (EINVAL);
458	td = uio->uio_td;
459
460	mtx_lock(&nmp->nm_mtx);
461	if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 &&
462	    (nmp->nm_state & NFSSTA_GOTFSINFO) == 0) {
463		mtx_unlock(&nmp->nm_mtx);
464		(void)nfs_fsinfo(nmp, vp, cred, td);
465	} else
466		mtx_unlock(&nmp->nm_mtx);
467
468	end = uio->uio_offset + uio->uio_resid;
469	if (vp->v_type != VDIR &&
470	    (end > nmp->nm_maxfilesize || end < uio->uio_offset))
471		return (EFBIG);
472
473	if (nfs_directio_enable && (ioflag & IO_DIRECT) && (vp->v_type == VREG))
474		/* No caching/ no readaheads. Just read data into the user buffer */
475		return nfs_readrpc(vp, uio, cred);
476
477	biosize = vp->v_bufobj.bo_bsize;
478	seqcount = (int)((off_t)(ioflag >> IO_SEQSHIFT) * biosize / BKVASIZE);
479
480	error = nfs_bioread_check_cons(vp, td, cred);
481	if (error)
482		return error;
483
484	do {
485	    u_quad_t nsize;
486
487	    mtx_lock(&np->n_mtx);
488	    nsize = np->n_size;
489	    mtx_unlock(&np->n_mtx);
490
491	    switch (vp->v_type) {
492	    case VREG:
493		nfsstats.biocache_reads++;
494		lbn = uio->uio_offset / biosize;
495		on = uio->uio_offset & (biosize - 1);
496
497		/*
498		 * Start the read ahead(s), as required.
499		 */
500		if (nmp->nm_readahead > 0) {
501		    for (nra = 0; nra < nmp->nm_readahead && nra < seqcount &&
502			(off_t)(lbn + 1 + nra) * biosize < nsize; nra++) {
503			rabn = lbn + 1 + nra;
504			if (incore(&vp->v_bufobj, rabn) == NULL) {
505			    rabp = nfs_getcacheblk(vp, rabn, biosize, td);
506			    if (!rabp) {
507				error = nfs_sigintr(nmp, td);
508				return (error ? error : EINTR);
509			    }
510			    if ((rabp->b_flags & (B_CACHE|B_DELWRI)) == 0) {
511				rabp->b_flags |= B_ASYNC;
512				rabp->b_iocmd = BIO_READ;
513				vfs_busy_pages(rabp, 0);
514				if (nfs_asyncio(nmp, rabp, cred, td)) {
515				    rabp->b_flags |= B_INVAL;
516				    rabp->b_ioflags |= BIO_ERROR;
517				    vfs_unbusy_pages(rabp);
518				    brelse(rabp);
519				    break;
520				}
521			    } else {
522				brelse(rabp);
523			    }
524			}
525		    }
526		}
527
528		/* Note that bcount is *not* DEV_BSIZE aligned. */
529		bcount = biosize;
530		if ((off_t)lbn * biosize >= nsize) {
531			bcount = 0;
532		} else if ((off_t)(lbn + 1) * biosize > nsize) {
533			bcount = nsize - (off_t)lbn * biosize;
534		}
535		bp = nfs_getcacheblk(vp, lbn, bcount, td);
536
537		if (!bp) {
538			error = nfs_sigintr(nmp, td);
539			return (error ? error : EINTR);
540		}
541
542		/*
543		 * If B_CACHE is not set, we must issue the read.  If this
544		 * fails, we return an error.
545		 */
546
547		if ((bp->b_flags & B_CACHE) == 0) {
548		    bp->b_iocmd = BIO_READ;
549		    vfs_busy_pages(bp, 0);
550		    error = nfs_doio(vp, bp, cred, td);
551		    if (error) {
552			brelse(bp);
553			return (error);
554		    }
555		}
556
557		/*
558		 * on is the offset into the current bp.  Figure out how many
559		 * bytes we can copy out of the bp.  Note that bcount is
560		 * NOT DEV_BSIZE aligned.
561		 *
562		 * Then figure out how many bytes we can copy into the uio.
563		 */
564
565		n = 0;
566		if (on < bcount)
567			n = MIN((unsigned)(bcount - on), uio->uio_resid);
568		break;
569	    case VLNK:
570		nfsstats.biocache_readlinks++;
571		bp = nfs_getcacheblk(vp, (daddr_t)0, NFS_MAXPATHLEN, td);
572		if (!bp) {
573			error = nfs_sigintr(nmp, td);
574			return (error ? error : EINTR);
575		}
576		if ((bp->b_flags & B_CACHE) == 0) {
577		    bp->b_iocmd = BIO_READ;
578		    vfs_busy_pages(bp, 0);
579		    error = nfs_doio(vp, bp, cred, td);
580		    if (error) {
581			bp->b_ioflags |= BIO_ERROR;
582			brelse(bp);
583			return (error);
584		    }
585		}
586		n = MIN(uio->uio_resid, NFS_MAXPATHLEN - bp->b_resid);
587		on = 0;
588		break;
589	    case VDIR:
590		nfsstats.biocache_readdirs++;
591		if (np->n_direofoffset
592		    && uio->uio_offset >= np->n_direofoffset) {
593		    return (0);
594		}
595		lbn = (uoff_t)uio->uio_offset / NFS_DIRBLKSIZ;
596		on = uio->uio_offset & (NFS_DIRBLKSIZ - 1);
597		bp = nfs_getcacheblk(vp, lbn, NFS_DIRBLKSIZ, td);
598		if (!bp) {
599		    error = nfs_sigintr(nmp, td);
600		    return (error ? error : EINTR);
601		}
602		if ((bp->b_flags & B_CACHE) == 0) {
603		    bp->b_iocmd = BIO_READ;
604		    vfs_busy_pages(bp, 0);
605		    error = nfs_doio(vp, bp, cred, td);
606		    if (error) {
607			    brelse(bp);
608		    }
609		    while (error == NFSERR_BAD_COOKIE) {
610			(nmp->nm_rpcops->nr_invaldir)(vp);
611			error = nfs_vinvalbuf(vp, 0, td, 1);
612			/*
613			 * Yuck! The directory has been modified on the
614			 * server. The only way to get the block is by
615			 * reading from the beginning to get all the
616			 * offset cookies.
617			 *
618			 * Leave the last bp intact unless there is an error.
619			 * Loop back up to the while if the error is another
620			 * NFSERR_BAD_COOKIE (double yuch!).
621			 */
622			for (i = 0; i <= lbn && !error; i++) {
623			    if (np->n_direofoffset
624				&& (i * NFS_DIRBLKSIZ) >= np->n_direofoffset)
625				    return (0);
626			    bp = nfs_getcacheblk(vp, i, NFS_DIRBLKSIZ, td);
627			    if (!bp) {
628				error = nfs_sigintr(nmp, td);
629				return (error ? error : EINTR);
630			    }
631			    if ((bp->b_flags & B_CACHE) == 0) {
632				    bp->b_iocmd = BIO_READ;
633				    vfs_busy_pages(bp, 0);
634				    error = nfs_doio(vp, bp, cred, td);
635				    /*
636				     * no error + B_INVAL == directory EOF,
637				     * use the block.
638				     */
639				    if (error == 0 && (bp->b_flags & B_INVAL))
640					    break;
641			    }
642			    /*
643			     * An error will throw away the block and the
644			     * for loop will break out.  If no error and this
645			     * is not the block we want, we throw away the
646			     * block and go for the next one via the for loop.
647			     */
648			    if (error || i < lbn)
649				    brelse(bp);
650			}
651		    }
652		    /*
653		     * The above while is repeated if we hit another cookie
654		     * error.  If we hit an error and it wasn't a cookie error,
655		     * we give up.
656		     */
657		    if (error)
658			    return (error);
659		}
660
661		/*
662		 * If not eof and read aheads are enabled, start one.
663		 * (You need the current block first, so that you have the
664		 *  directory offset cookie of the next block.)
665		 */
666		if (nmp->nm_readahead > 0 &&
667		    (bp->b_flags & B_INVAL) == 0 &&
668		    (np->n_direofoffset == 0 ||
669		    (lbn + 1) * NFS_DIRBLKSIZ < np->n_direofoffset) &&
670		    incore(&vp->v_bufobj, lbn + 1) == NULL) {
671			rabp = nfs_getcacheblk(vp, lbn + 1, NFS_DIRBLKSIZ, td);
672			if (rabp) {
673			    if ((rabp->b_flags & (B_CACHE|B_DELWRI)) == 0) {
674				rabp->b_flags |= B_ASYNC;
675				rabp->b_iocmd = BIO_READ;
676				vfs_busy_pages(rabp, 0);
677				if (nfs_asyncio(nmp, rabp, cred, td)) {
678				    rabp->b_flags |= B_INVAL;
679				    rabp->b_ioflags |= BIO_ERROR;
680				    vfs_unbusy_pages(rabp);
681				    brelse(rabp);
682				}
683			    } else {
684				brelse(rabp);
685			    }
686			}
687		}
688		/*
689		 * Unlike VREG files, whos buffer size ( bp->b_bcount ) is
690		 * chopped for the EOF condition, we cannot tell how large
691		 * NFS directories are going to be until we hit EOF.  So
692		 * an NFS directory buffer is *not* chopped to its EOF.  Now,
693		 * it just so happens that b_resid will effectively chop it
694		 * to EOF.  *BUT* this information is lost if the buffer goes
695		 * away and is reconstituted into a B_CACHE state ( due to
696		 * being VMIO ) later.  So we keep track of the directory eof
697		 * in np->n_direofoffset and chop it off as an extra step
698		 * right here.
699		 */
700		n = lmin(uio->uio_resid, NFS_DIRBLKSIZ - bp->b_resid - on);
701		if (np->n_direofoffset && n > np->n_direofoffset - uio->uio_offset)
702			n = np->n_direofoffset - uio->uio_offset;
703		break;
704	    default:
705		nfs_printf(" nfs_bioread: type %x unexpected\n", vp->v_type);
706		bp = NULL;
707		break;
708	    };
709
710	    if (n > 0) {
711		    error = uiomove(bp->b_data + on, (int)n, uio);
712	    }
713	    if (vp->v_type == VLNK)
714		n = 0;
715	    if (bp != NULL)
716		brelse(bp);
717	} while (error == 0 && uio->uio_resid > 0 && n > 0);
718	return (error);
719}
720
721/*
722 * The NFS write path cannot handle iovecs with len > 1. So we need to
723 * break up iovecs accordingly (restricting them to wsize).
724 * For the SYNC case, we can do this with 1 copy (user buffer -> mbuf).
725 * For the ASYNC case, 2 copies are needed. The first a copy from the
726 * user buffer to a staging buffer and then a second copy from the staging
727 * buffer to mbufs. This can be optimized by copying from the user buffer
728 * directly into mbufs and passing the chain down, but that requires a
729 * fair amount of re-working of the relevant codepaths (and can be done
730 * later).
731 */
732static int
733nfs_directio_write(vp, uiop, cred, ioflag)
734	struct vnode *vp;
735	struct uio *uiop;
736	struct ucred *cred;
737	int ioflag;
738{
739	int error;
740	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
741	struct thread *td = uiop->uio_td;
742	int size;
743	int wsize;
744
745	mtx_lock(&nmp->nm_mtx);
746	wsize = nmp->nm_wsize;
747	mtx_unlock(&nmp->nm_mtx);
748	if (ioflag & IO_SYNC) {
749		int iomode, must_commit;
750		struct uio uio;
751		struct iovec iov;
752do_sync:
753		while (uiop->uio_resid > 0) {
754			size = MIN(uiop->uio_resid, wsize);
755			size = MIN(uiop->uio_iov->iov_len, size);
756			iov.iov_base = uiop->uio_iov->iov_base;
757			iov.iov_len = size;
758			uio.uio_iov = &iov;
759			uio.uio_iovcnt = 1;
760			uio.uio_offset = uiop->uio_offset;
761			uio.uio_resid = size;
762			uio.uio_segflg = UIO_USERSPACE;
763			uio.uio_rw = UIO_WRITE;
764			uio.uio_td = td;
765			iomode = NFSV3WRITE_FILESYNC;
766			error = (nmp->nm_rpcops->nr_writerpc)(vp, &uio, cred,
767						      &iomode, &must_commit);
768			KASSERT((must_commit == 0),
769				("nfs_directio_write: Did not commit write"));
770			if (error)
771				return (error);
772			uiop->uio_offset += size;
773			uiop->uio_resid -= size;
774			if (uiop->uio_iov->iov_len <= size) {
775				uiop->uio_iovcnt--;
776				uiop->uio_iov++;
777			} else {
778				uiop->uio_iov->iov_base =
779					(char *)uiop->uio_iov->iov_base + size;
780				uiop->uio_iov->iov_len -= size;
781			}
782		}
783	} else {
784		struct uio *t_uio;
785		struct iovec *t_iov;
786		struct buf *bp;
787
788		/*
789		 * Break up the write into blocksize chunks and hand these
790		 * over to nfsiod's for write back.
791		 * Unfortunately, this incurs a copy of the data. Since
792		 * the user could modify the buffer before the write is
793		 * initiated.
794		 *
795		 * The obvious optimization here is that one of the 2 copies
796		 * in the async write path can be eliminated by copying the
797		 * data here directly into mbufs and passing the mbuf chain
798		 * down. But that will require a fair amount of re-working
799		 * of the code and can be done if there's enough interest
800		 * in NFS directio access.
801		 */
802		while (uiop->uio_resid > 0) {
803			size = MIN(uiop->uio_resid, wsize);
804			size = MIN(uiop->uio_iov->iov_len, size);
805			bp = getpbuf(&nfs_pbuf_freecnt);
806			t_uio = malloc(sizeof(struct uio), M_NFSDIRECTIO, M_WAITOK);
807			t_iov = malloc(sizeof(struct iovec), M_NFSDIRECTIO, M_WAITOK);
808			t_iov->iov_base = malloc(size, M_NFSDIRECTIO, M_WAITOK);
809			t_iov->iov_len = size;
810			t_uio->uio_iov = t_iov;
811			t_uio->uio_iovcnt = 1;
812			t_uio->uio_offset = uiop->uio_offset;
813			t_uio->uio_resid = size;
814			t_uio->uio_segflg = UIO_SYSSPACE;
815			t_uio->uio_rw = UIO_WRITE;
816			t_uio->uio_td = td;
817			KASSERT(uiop->uio_segflg == UIO_USERSPACE ||
818			    uiop->uio_segflg == UIO_SYSSPACE,
819			    ("nfs_directio_write: Bad uio_segflg"));
820			if (uiop->uio_segflg == UIO_USERSPACE) {
821				error = copyin(uiop->uio_iov->iov_base,
822				    t_iov->iov_base, size);
823				if (error != 0)
824					goto err_free;
825			} else
826				/*
827				 * UIO_SYSSPACE may never happen, but handle
828				 * it just in case it does.
829				 */
830				bcopy(uiop->uio_iov->iov_base, t_iov->iov_base,
831				    size);
832			bp->b_flags |= B_DIRECT;
833			bp->b_iocmd = BIO_WRITE;
834			if (cred != NOCRED) {
835				crhold(cred);
836				bp->b_wcred = cred;
837			} else
838				bp->b_wcred = NOCRED;
839			bp->b_caller1 = (void *)t_uio;
840			bp->b_vp = vp;
841			error = nfs_asyncio(nmp, bp, NOCRED, td);
842err_free:
843			if (error) {
844				free(t_iov->iov_base, M_NFSDIRECTIO);
845				free(t_iov, M_NFSDIRECTIO);
846				free(t_uio, M_NFSDIRECTIO);
847				bp->b_vp = NULL;
848				relpbuf(bp, &nfs_pbuf_freecnt);
849				if (error == EINTR)
850					return (error);
851				goto do_sync;
852			}
853			uiop->uio_offset += size;
854			uiop->uio_resid -= size;
855			if (uiop->uio_iov->iov_len <= size) {
856				uiop->uio_iovcnt--;
857				uiop->uio_iov++;
858			} else {
859				uiop->uio_iov->iov_base =
860					(char *)uiop->uio_iov->iov_base + size;
861				uiop->uio_iov->iov_len -= size;
862			}
863		}
864	}
865	return (0);
866}
867
868/*
869 * Vnode op for write using bio
870 */
871int
872nfs_write(struct vop_write_args *ap)
873{
874	int biosize;
875	struct uio *uio = ap->a_uio;
876	struct thread *td = uio->uio_td;
877	struct vnode *vp = ap->a_vp;
878	struct nfsnode *np = VTONFS(vp);
879	struct ucred *cred = ap->a_cred;
880	int ioflag = ap->a_ioflag;
881	struct buf *bp;
882	struct vattr vattr;
883	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
884	daddr_t lbn;
885	off_t end;
886	int bcount;
887	int n, on, error = 0;
888
889	KASSERT(uio->uio_rw == UIO_WRITE, ("nfs_write mode"));
890	KASSERT(uio->uio_segflg != UIO_USERSPACE || uio->uio_td == curthread,
891	    ("nfs_write proc"));
892	if (vp->v_type != VREG)
893		return (EIO);
894	mtx_lock(&np->n_mtx);
895	if (np->n_flag & NWRITEERR) {
896		np->n_flag &= ~NWRITEERR;
897		mtx_unlock(&np->n_mtx);
898		return (np->n_error);
899	} else
900		mtx_unlock(&np->n_mtx);
901	mtx_lock(&nmp->nm_mtx);
902	if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 &&
903	    (nmp->nm_state & NFSSTA_GOTFSINFO) == 0) {
904		mtx_unlock(&nmp->nm_mtx);
905		(void)nfs_fsinfo(nmp, vp, cred, td);
906	} else
907		mtx_unlock(&nmp->nm_mtx);
908
909	/*
910	 * Synchronously flush pending buffers if we are in synchronous
911	 * mode or if we are appending.
912	 */
913	if (ioflag & (IO_APPEND | IO_SYNC)) {
914		mtx_lock(&np->n_mtx);
915		if (np->n_flag & NMODIFIED) {
916			mtx_unlock(&np->n_mtx);
917#ifdef notyet /* Needs matching nonblock semantics elsewhere, too. */
918			/*
919			 * Require non-blocking, synchronous writes to
920			 * dirty files to inform the program it needs
921			 * to fsync(2) explicitly.
922			 */
923			if (ioflag & IO_NDELAY)
924				return (EAGAIN);
925#endif
926flush_and_restart:
927			np->n_attrstamp = 0;
928			KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp);
929			error = nfs_vinvalbuf(vp, V_SAVE, td, 1);
930			if (error)
931				return (error);
932		} else
933			mtx_unlock(&np->n_mtx);
934	}
935
936	/*
937	 * If IO_APPEND then load uio_offset.  We restart here if we cannot
938	 * get the append lock.
939	 */
940	if (ioflag & IO_APPEND) {
941		np->n_attrstamp = 0;
942		KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp);
943		error = VOP_GETATTR(vp, &vattr, cred);
944		if (error)
945			return (error);
946		mtx_lock(&np->n_mtx);
947		uio->uio_offset = np->n_size;
948		mtx_unlock(&np->n_mtx);
949	}
950
951	if (uio->uio_offset < 0)
952		return (EINVAL);
953	end = uio->uio_offset + uio->uio_resid;
954	if (end > nmp->nm_maxfilesize || end < uio->uio_offset)
955		return (EFBIG);
956	if (uio->uio_resid == 0)
957		return (0);
958
959	if (nfs_directio_enable && (ioflag & IO_DIRECT) && vp->v_type == VREG)
960		return nfs_directio_write(vp, uio, cred, ioflag);
961
962	/*
963	 * Maybe this should be above the vnode op call, but so long as
964	 * file servers have no limits, i don't think it matters
965	 */
966	if (vn_rlimit_fsize(vp, uio, td))
967		return (EFBIG);
968
969	biosize = vp->v_bufobj.bo_bsize;
970	/*
971	 * Find all of this file's B_NEEDCOMMIT buffers.  If our writes
972	 * would exceed the local maximum per-file write commit size when
973	 * combined with those, we must decide whether to flush,
974	 * go synchronous, or return error.  We don't bother checking
975	 * IO_UNIT -- we just make all writes atomic anyway, as there's
976	 * no point optimizing for something that really won't ever happen.
977	 */
978	if (!(ioflag & IO_SYNC)) {
979		int nflag;
980
981		mtx_lock(&np->n_mtx);
982		nflag = np->n_flag;
983		mtx_unlock(&np->n_mtx);
984		int needrestart = 0;
985		if (nmp->nm_wcommitsize < uio->uio_resid) {
986			/*
987			 * If this request could not possibly be completed
988			 * without exceeding the maximum outstanding write
989			 * commit size, see if we can convert it into a
990			 * synchronous write operation.
991			 */
992			if (ioflag & IO_NDELAY)
993				return (EAGAIN);
994			ioflag |= IO_SYNC;
995			if (nflag & NMODIFIED)
996				needrestart = 1;
997		} else if (nflag & NMODIFIED) {
998			int wouldcommit = 0;
999			BO_LOCK(&vp->v_bufobj);
1000			if (vp->v_bufobj.bo_dirty.bv_cnt != 0) {
1001				TAILQ_FOREACH(bp, &vp->v_bufobj.bo_dirty.bv_hd,
1002				    b_bobufs) {
1003					if (bp->b_flags & B_NEEDCOMMIT)
1004						wouldcommit += bp->b_bcount;
1005				}
1006			}
1007			BO_UNLOCK(&vp->v_bufobj);
1008			/*
1009			 * Since we're not operating synchronously and
1010			 * bypassing the buffer cache, we are in a commit
1011			 * and holding all of these buffers whether
1012			 * transmitted or not.  If not limited, this
1013			 * will lead to the buffer cache deadlocking,
1014			 * as no one else can flush our uncommitted buffers.
1015			 */
1016			wouldcommit += uio->uio_resid;
1017			/*
1018			 * If we would initially exceed the maximum
1019			 * outstanding write commit size, flush and restart.
1020			 */
1021			if (wouldcommit > nmp->nm_wcommitsize)
1022				needrestart = 1;
1023		}
1024		if (needrestart)
1025			goto flush_and_restart;
1026	}
1027
1028	do {
1029		nfsstats.biocache_writes++;
1030		lbn = uio->uio_offset / biosize;
1031		on = uio->uio_offset & (biosize-1);
1032		n = MIN((unsigned)(biosize - on), uio->uio_resid);
1033again:
1034		/*
1035		 * Handle direct append and file extension cases, calculate
1036		 * unaligned buffer size.
1037		 */
1038		mtx_lock(&np->n_mtx);
1039		if (uio->uio_offset == np->n_size && n) {
1040			mtx_unlock(&np->n_mtx);
1041			/*
1042			 * Get the buffer (in its pre-append state to maintain
1043			 * B_CACHE if it was previously set).  Resize the
1044			 * nfsnode after we have locked the buffer to prevent
1045			 * readers from reading garbage.
1046			 */
1047			bcount = on;
1048			bp = nfs_getcacheblk(vp, lbn, bcount, td);
1049
1050			if (bp != NULL) {
1051				long save;
1052
1053				mtx_lock(&np->n_mtx);
1054				np->n_size = uio->uio_offset + n;
1055				np->n_flag |= NMODIFIED;
1056				vnode_pager_setsize(vp, np->n_size);
1057				mtx_unlock(&np->n_mtx);
1058
1059				save = bp->b_flags & B_CACHE;
1060				bcount += n;
1061				allocbuf(bp, bcount);
1062				bp->b_flags |= save;
1063			}
1064		} else {
1065			/*
1066			 * Obtain the locked cache block first, and then
1067			 * adjust the file's size as appropriate.
1068			 */
1069			bcount = on + n;
1070			if ((off_t)lbn * biosize + bcount < np->n_size) {
1071				if ((off_t)(lbn + 1) * biosize < np->n_size)
1072					bcount = biosize;
1073				else
1074					bcount = np->n_size - (off_t)lbn * biosize;
1075			}
1076			mtx_unlock(&np->n_mtx);
1077			bp = nfs_getcacheblk(vp, lbn, bcount, td);
1078			mtx_lock(&np->n_mtx);
1079			if (uio->uio_offset + n > np->n_size) {
1080				np->n_size = uio->uio_offset + n;
1081				np->n_flag |= NMODIFIED;
1082				vnode_pager_setsize(vp, np->n_size);
1083			}
1084			mtx_unlock(&np->n_mtx);
1085		}
1086
1087		if (!bp) {
1088			error = nfs_sigintr(nmp, td);
1089			if (!error)
1090				error = EINTR;
1091			break;
1092		}
1093
1094		/*
1095		 * Issue a READ if B_CACHE is not set.  In special-append
1096		 * mode, B_CACHE is based on the buffer prior to the write
1097		 * op and is typically set, avoiding the read.  If a read
1098		 * is required in special append mode, the server will
1099		 * probably send us a short-read since we extended the file
1100		 * on our end, resulting in b_resid == 0 and, thusly,
1101		 * B_CACHE getting set.
1102		 *
1103		 * We can also avoid issuing the read if the write covers
1104		 * the entire buffer.  We have to make sure the buffer state
1105		 * is reasonable in this case since we will not be initiating
1106		 * I/O.  See the comments in kern/vfs_bio.c's getblk() for
1107		 * more information.
1108		 *
1109		 * B_CACHE may also be set due to the buffer being cached
1110		 * normally.
1111		 */
1112
1113		if (on == 0 && n == bcount) {
1114			bp->b_flags |= B_CACHE;
1115			bp->b_flags &= ~B_INVAL;
1116			bp->b_ioflags &= ~BIO_ERROR;
1117		}
1118
1119		if ((bp->b_flags & B_CACHE) == 0) {
1120			bp->b_iocmd = BIO_READ;
1121			vfs_busy_pages(bp, 0);
1122			error = nfs_doio(vp, bp, cred, td);
1123			if (error) {
1124				brelse(bp);
1125				break;
1126			}
1127		}
1128		if (bp->b_wcred == NOCRED)
1129			bp->b_wcred = crhold(cred);
1130		mtx_lock(&np->n_mtx);
1131		np->n_flag |= NMODIFIED;
1132		mtx_unlock(&np->n_mtx);
1133
1134		/*
1135		 * If dirtyend exceeds file size, chop it down.  This should
1136		 * not normally occur but there is an append race where it
1137		 * might occur XXX, so we log it.
1138		 *
1139		 * If the chopping creates a reverse-indexed or degenerate
1140		 * situation with dirtyoff/end, we 0 both of them.
1141		 */
1142
1143		if (bp->b_dirtyend > bcount) {
1144			nfs_printf("NFS append race @%lx:%d\n",
1145			    (long)bp->b_blkno * DEV_BSIZE,
1146			    bp->b_dirtyend - bcount);
1147			bp->b_dirtyend = bcount;
1148		}
1149
1150		if (bp->b_dirtyoff >= bp->b_dirtyend)
1151			bp->b_dirtyoff = bp->b_dirtyend = 0;
1152
1153		/*
1154		 * If the new write will leave a contiguous dirty
1155		 * area, just update the b_dirtyoff and b_dirtyend,
1156		 * otherwise force a write rpc of the old dirty area.
1157		 *
1158		 * While it is possible to merge discontiguous writes due to
1159		 * our having a B_CACHE buffer ( and thus valid read data
1160		 * for the hole), we don't because it could lead to
1161		 * significant cache coherency problems with multiple clients,
1162		 * especially if locking is implemented later on.
1163		 *
1164		 * as an optimization we could theoretically maintain
1165		 * a linked list of discontinuous areas, but we would still
1166		 * have to commit them separately so there isn't much
1167		 * advantage to it except perhaps a bit of asynchronization.
1168		 */
1169
1170		if (bp->b_dirtyend > 0 &&
1171		    (on > bp->b_dirtyend || (on + n) < bp->b_dirtyoff)) {
1172			if (bwrite(bp) == EINTR) {
1173				error = EINTR;
1174				break;
1175			}
1176			goto again;
1177		}
1178
1179		error = uiomove((char *)bp->b_data + on, n, uio);
1180
1181		/*
1182		 * Since this block is being modified, it must be written
1183		 * again and not just committed.  Since write clustering does
1184		 * not work for the stage 1 data write, only the stage 2
1185		 * commit rpc, we have to clear B_CLUSTEROK as well.
1186		 */
1187		bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
1188
1189		if (error) {
1190			bp->b_ioflags |= BIO_ERROR;
1191			brelse(bp);
1192			break;
1193		}
1194
1195		/*
1196		 * Only update dirtyoff/dirtyend if not a degenerate
1197		 * condition.
1198		 */
1199		if (n) {
1200			if (bp->b_dirtyend > 0) {
1201				bp->b_dirtyoff = min(on, bp->b_dirtyoff);
1202				bp->b_dirtyend = max((on + n), bp->b_dirtyend);
1203			} else {
1204				bp->b_dirtyoff = on;
1205				bp->b_dirtyend = on + n;
1206			}
1207			vfs_bio_set_valid(bp, on, n);
1208		}
1209
1210		/*
1211		 * If IO_SYNC do bwrite().
1212		 *
1213		 * IO_INVAL appears to be unused.  The idea appears to be
1214		 * to turn off caching in this case.  Very odd.  XXX
1215		 */
1216		if ((ioflag & IO_SYNC)) {
1217			if (ioflag & IO_INVAL)
1218				bp->b_flags |= B_NOCACHE;
1219			error = bwrite(bp);
1220			if (error)
1221				break;
1222		} else if ((n + on) == biosize) {
1223			bp->b_flags |= B_ASYNC;
1224			(void) (nmp->nm_rpcops->nr_writebp)(bp, 0, NULL);
1225		} else {
1226			bdwrite(bp);
1227		}
1228	} while (uio->uio_resid > 0 && n > 0);
1229
1230	return (error);
1231}
1232
1233/*
1234 * Get an nfs cache block.
1235 *
1236 * Allocate a new one if the block isn't currently in the cache
1237 * and return the block marked busy. If the calling process is
1238 * interrupted by a signal for an interruptible mount point, return
1239 * NULL.
1240 *
1241 * The caller must carefully deal with the possible B_INVAL state of
1242 * the buffer.  nfs_doio() clears B_INVAL (and nfs_asyncio() clears it
1243 * indirectly), so synchronous reads can be issued without worrying about
1244 * the B_INVAL state.  We have to be a little more careful when dealing
1245 * with writes (see comments in nfs_write()) when extending a file past
1246 * its EOF.
1247 */
1248static struct buf *
1249nfs_getcacheblk(struct vnode *vp, daddr_t bn, int size, struct thread *td)
1250{
1251	struct buf *bp;
1252	struct mount *mp;
1253	struct nfsmount *nmp;
1254
1255	mp = vp->v_mount;
1256	nmp = VFSTONFS(mp);
1257
1258	if (nmp->nm_flag & NFSMNT_INT) {
1259 		sigset_t oldset;
1260
1261 		nfs_set_sigmask(td, &oldset);
1262		bp = getblk(vp, bn, size, NFS_PCATCH, 0, 0);
1263 		nfs_restore_sigmask(td, &oldset);
1264		while (bp == NULL) {
1265			if (nfs_sigintr(nmp, td))
1266				return (NULL);
1267			bp = getblk(vp, bn, size, 0, 2 * hz, 0);
1268		}
1269	} else {
1270		bp = getblk(vp, bn, size, 0, 0, 0);
1271	}
1272
1273	if (vp->v_type == VREG)
1274		bp->b_blkno = bn * (vp->v_bufobj.bo_bsize / DEV_BSIZE);
1275	return (bp);
1276}
1277
1278/*
1279 * Flush and invalidate all dirty buffers. If another process is already
1280 * doing the flush, just wait for completion.
1281 */
1282int
1283nfs_vinvalbuf(struct vnode *vp, int flags, struct thread *td, int intrflg)
1284{
1285	struct nfsnode *np = VTONFS(vp);
1286	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
1287	int error = 0, slpflag, slptimeo;
1288 	int old_lock = 0;
1289
1290	ASSERT_VOP_LOCKED(vp, "nfs_vinvalbuf");
1291
1292	if ((nmp->nm_flag & NFSMNT_INT) == 0)
1293		intrflg = 0;
1294	if (intrflg) {
1295		slpflag = NFS_PCATCH;
1296		slptimeo = 2 * hz;
1297	} else {
1298		slpflag = 0;
1299		slptimeo = 0;
1300	}
1301
1302	old_lock = nfs_upgrade_vnlock(vp);
1303	if (vp->v_iflag & VI_DOOMED) {
1304		/*
1305		 * Since vgonel() uses the generic vinvalbuf() to flush
1306		 * dirty buffers and it does not call this function, it
1307		 * is safe to just return OK when VI_DOOMED is set.
1308		 */
1309		nfs_downgrade_vnlock(vp, old_lock);
1310		return (0);
1311	}
1312
1313	/*
1314	 * Now, flush as required.
1315	 */
1316	if ((flags & V_SAVE) && (vp->v_bufobj.bo_object != NULL)) {
1317		VM_OBJECT_LOCK(vp->v_bufobj.bo_object);
1318		vm_object_page_clean(vp->v_bufobj.bo_object, 0, 0, OBJPC_SYNC);
1319		VM_OBJECT_UNLOCK(vp->v_bufobj.bo_object);
1320		/*
1321		 * If the page clean was interrupted, fail the invalidation.
1322		 * Not doing so, we run the risk of losing dirty pages in the
1323		 * vinvalbuf() call below.
1324		 */
1325		if (intrflg && (error = nfs_sigintr(nmp, td)))
1326			goto out;
1327	}
1328
1329	error = vinvalbuf(vp, flags, slpflag, 0);
1330	while (error) {
1331		if (intrflg && (error = nfs_sigintr(nmp, td)))
1332			goto out;
1333		error = vinvalbuf(vp, flags, 0, slptimeo);
1334	}
1335	mtx_lock(&np->n_mtx);
1336	if (np->n_directio_asyncwr == 0)
1337		np->n_flag &= ~NMODIFIED;
1338	mtx_unlock(&np->n_mtx);
1339out:
1340	nfs_downgrade_vnlock(vp, old_lock);
1341	return error;
1342}
1343
1344/*
1345 * Initiate asynchronous I/O. Return an error if no nfsiods are available.
1346 * This is mainly to avoid queueing async I/O requests when the nfsiods
1347 * are all hung on a dead server.
1348 *
1349 * Note: nfs_asyncio() does not clear (BIO_ERROR|B_INVAL) but when the bp
1350 * is eventually dequeued by the async daemon, nfs_doio() *will*.
1351 */
1352int
1353nfs_asyncio(struct nfsmount *nmp, struct buf *bp, struct ucred *cred, struct thread *td)
1354{
1355	int iod;
1356	int gotiod;
1357	int slpflag = 0;
1358	int slptimeo = 0;
1359	int error, error2;
1360
1361	/*
1362	 * Commits are usually short and sweet so lets save some cpu and
1363	 * leave the async daemons for more important rpc's (such as reads
1364	 * and writes).
1365	 */
1366	mtx_lock(&nfs_iod_mtx);
1367	if (bp->b_iocmd == BIO_WRITE && (bp->b_flags & B_NEEDCOMMIT) &&
1368	    (nmp->nm_bufqiods > nfs_numasync / 2)) {
1369		mtx_unlock(&nfs_iod_mtx);
1370		return(EIO);
1371	}
1372again:
1373	if (nmp->nm_flag & NFSMNT_INT)
1374		slpflag = NFS_PCATCH;
1375	gotiod = FALSE;
1376
1377	/*
1378	 * Find a free iod to process this request.
1379	 */
1380	for (iod = 0; iod < nfs_numasync; iod++)
1381		if (nfs_iodwant[iod] == NFSIOD_AVAILABLE) {
1382			gotiod = TRUE;
1383			break;
1384		}
1385
1386	/*
1387	 * Try to create one if none are free.
1388	 */
1389	if (!gotiod)
1390		nfs_nfsiodnew();
1391	else {
1392		/*
1393		 * Found one, so wake it up and tell it which
1394		 * mount to process.
1395		 */
1396		NFS_DPF(ASYNCIO, ("nfs_asyncio: waking iod %d for mount %p\n",
1397		    iod, nmp));
1398		nfs_iodwant[iod] = NFSIOD_NOT_AVAILABLE;
1399		nfs_iodmount[iod] = nmp;
1400		nmp->nm_bufqiods++;
1401		wakeup(&nfs_iodwant[iod]);
1402	}
1403
1404	/*
1405	 * If none are free, we may already have an iod working on this mount
1406	 * point.  If so, it will process our request.
1407	 */
1408	if (!gotiod) {
1409		if (nmp->nm_bufqiods > 0) {
1410			NFS_DPF(ASYNCIO,
1411		("nfs_asyncio: %d iods are already processing mount %p\n",
1412				 nmp->nm_bufqiods, nmp));
1413			gotiod = TRUE;
1414		}
1415	}
1416
1417	/*
1418	 * If we have an iod which can process the request, then queue
1419	 * the buffer.
1420	 */
1421	if (gotiod) {
1422		/*
1423		 * Ensure that the queue never grows too large.  We still want
1424		 * to asynchronize so we block rather then return EIO.
1425		 */
1426		while (nmp->nm_bufqlen >= 2 * nfs_numasync) {
1427			NFS_DPF(ASYNCIO,
1428		("nfs_asyncio: waiting for mount %p queue to drain\n", nmp));
1429			nmp->nm_bufqwant = TRUE;
1430 			error = nfs_msleep(td, &nmp->nm_bufq, &nfs_iod_mtx,
1431					   slpflag | PRIBIO,
1432 					   "nfsaio", slptimeo);
1433			if (error) {
1434				error2 = nfs_sigintr(nmp, td);
1435				if (error2) {
1436					mtx_unlock(&nfs_iod_mtx);
1437					return (error2);
1438				}
1439				if (slpflag == NFS_PCATCH) {
1440					slpflag = 0;
1441					slptimeo = 2 * hz;
1442				}
1443			}
1444			/*
1445			 * We might have lost our iod while sleeping,
1446			 * so check and loop if nescessary.
1447			 */
1448			goto again;
1449		}
1450
1451		/* We might have lost our nfsiod */
1452		if (nmp->nm_bufqiods == 0) {
1453			NFS_DPF(ASYNCIO,
1454("nfs_asyncio: no iods after mount %p queue was drained, looping\n", nmp));
1455			goto again;
1456		}
1457
1458		if (bp->b_iocmd == BIO_READ) {
1459			if (bp->b_rcred == NOCRED && cred != NOCRED)
1460				bp->b_rcred = crhold(cred);
1461		} else {
1462			if (bp->b_wcred == NOCRED && cred != NOCRED)
1463				bp->b_wcred = crhold(cred);
1464		}
1465
1466		if (bp->b_flags & B_REMFREE)
1467			bremfreef(bp);
1468		BUF_KERNPROC(bp);
1469		TAILQ_INSERT_TAIL(&nmp->nm_bufq, bp, b_freelist);
1470		nmp->nm_bufqlen++;
1471		if ((bp->b_flags & B_DIRECT) && bp->b_iocmd == BIO_WRITE) {
1472			mtx_lock(&(VTONFS(bp->b_vp))->n_mtx);
1473			VTONFS(bp->b_vp)->n_flag |= NMODIFIED;
1474			VTONFS(bp->b_vp)->n_directio_asyncwr++;
1475			mtx_unlock(&(VTONFS(bp->b_vp))->n_mtx);
1476		}
1477		mtx_unlock(&nfs_iod_mtx);
1478		return (0);
1479	}
1480
1481	mtx_unlock(&nfs_iod_mtx);
1482
1483	/*
1484	 * All the iods are busy on other mounts, so return EIO to
1485	 * force the caller to process the i/o synchronously.
1486	 */
1487	NFS_DPF(ASYNCIO, ("nfs_asyncio: no iods available, i/o is synchronous\n"));
1488	return (EIO);
1489}
1490
1491void
1492nfs_doio_directwrite(struct buf *bp)
1493{
1494	int iomode, must_commit;
1495	struct uio *uiop = (struct uio *)bp->b_caller1;
1496	char *iov_base = uiop->uio_iov->iov_base;
1497	struct nfsmount *nmp = VFSTONFS(bp->b_vp->v_mount);
1498
1499	iomode = NFSV3WRITE_FILESYNC;
1500	uiop->uio_td = NULL; /* NULL since we're in nfsiod */
1501	(nmp->nm_rpcops->nr_writerpc)(bp->b_vp, uiop, bp->b_wcred, &iomode, &must_commit);
1502	KASSERT((must_commit == 0), ("nfs_doio_directwrite: Did not commit write"));
1503	free(iov_base, M_NFSDIRECTIO);
1504	free(uiop->uio_iov, M_NFSDIRECTIO);
1505	free(uiop, M_NFSDIRECTIO);
1506	if ((bp->b_flags & B_DIRECT) && bp->b_iocmd == BIO_WRITE) {
1507		struct nfsnode *np = VTONFS(bp->b_vp);
1508		mtx_lock(&np->n_mtx);
1509		np->n_directio_asyncwr--;
1510		if (np->n_directio_asyncwr == 0) {
1511			VTONFS(bp->b_vp)->n_flag &= ~NMODIFIED;
1512			if ((np->n_flag & NFSYNCWAIT)) {
1513				np->n_flag &= ~NFSYNCWAIT;
1514				wakeup((caddr_t)&np->n_directio_asyncwr);
1515			}
1516		}
1517		mtx_unlock(&np->n_mtx);
1518	}
1519	bp->b_vp = NULL;
1520	relpbuf(bp, &nfs_pbuf_freecnt);
1521}
1522
1523/*
1524 * Do an I/O operation to/from a cache block. This may be called
1525 * synchronously or from an nfsiod.
1526 */
1527int
1528nfs_doio(struct vnode *vp, struct buf *bp, struct ucred *cr, struct thread *td)
1529{
1530	struct uio *uiop;
1531	struct nfsnode *np;
1532	struct nfsmount *nmp;
1533	int error = 0, iomode, must_commit = 0;
1534	struct uio uio;
1535	struct iovec io;
1536	struct proc *p = td ? td->td_proc : NULL;
1537	uint8_t	iocmd;
1538
1539	np = VTONFS(vp);
1540	nmp = VFSTONFS(vp->v_mount);
1541	uiop = &uio;
1542	uiop->uio_iov = &io;
1543	uiop->uio_iovcnt = 1;
1544	uiop->uio_segflg = UIO_SYSSPACE;
1545	uiop->uio_td = td;
1546
1547	/*
1548	 * clear BIO_ERROR and B_INVAL state prior to initiating the I/O.  We
1549	 * do this here so we do not have to do it in all the code that
1550	 * calls us.
1551	 */
1552	bp->b_flags &= ~B_INVAL;
1553	bp->b_ioflags &= ~BIO_ERROR;
1554
1555	KASSERT(!(bp->b_flags & B_DONE), ("nfs_doio: bp %p already marked done", bp));
1556	iocmd = bp->b_iocmd;
1557	if (iocmd == BIO_READ) {
1558	    io.iov_len = uiop->uio_resid = bp->b_bcount;
1559	    io.iov_base = bp->b_data;
1560	    uiop->uio_rw = UIO_READ;
1561
1562	    switch (vp->v_type) {
1563	    case VREG:
1564		uiop->uio_offset = ((off_t)bp->b_blkno) * DEV_BSIZE;
1565		nfsstats.read_bios++;
1566		error = (nmp->nm_rpcops->nr_readrpc)(vp, uiop, cr);
1567
1568		if (!error) {
1569		    if (uiop->uio_resid) {
1570			/*
1571			 * If we had a short read with no error, we must have
1572			 * hit a file hole.  We should zero-fill the remainder.
1573			 * This can also occur if the server hits the file EOF.
1574			 *
1575			 * Holes used to be able to occur due to pending
1576			 * writes, but that is not possible any longer.
1577			 */
1578			int nread = bp->b_bcount - uiop->uio_resid;
1579			int left  = uiop->uio_resid;
1580
1581			if (left > 0)
1582				bzero((char *)bp->b_data + nread, left);
1583			uiop->uio_resid = 0;
1584		    }
1585		}
1586		/* ASSERT_VOP_LOCKED(vp, "nfs_doio"); */
1587		if (p && (vp->v_vflag & VV_TEXT)) {
1588			mtx_lock(&np->n_mtx);
1589			if (NFS_TIMESPEC_COMPARE(&np->n_mtime, &np->n_vattr.va_mtime)) {
1590				mtx_unlock(&np->n_mtx);
1591				PROC_LOCK(p);
1592				killproc(p, "text file modification");
1593				PROC_UNLOCK(p);
1594			} else
1595				mtx_unlock(&np->n_mtx);
1596		}
1597		break;
1598	    case VLNK:
1599		uiop->uio_offset = (off_t)0;
1600		nfsstats.readlink_bios++;
1601		error = (nmp->nm_rpcops->nr_readlinkrpc)(vp, uiop, cr);
1602		break;
1603	    case VDIR:
1604		nfsstats.readdir_bios++;
1605		uiop->uio_offset = ((u_quad_t)bp->b_lblkno) * NFS_DIRBLKSIZ;
1606		if ((nmp->nm_flag & NFSMNT_RDIRPLUS) != 0) {
1607			error = nfs_readdirplusrpc(vp, uiop, cr);
1608			if (error == NFSERR_NOTSUPP)
1609				nmp->nm_flag &= ~NFSMNT_RDIRPLUS;
1610		}
1611		if ((nmp->nm_flag & NFSMNT_RDIRPLUS) == 0)
1612			error = nfs_readdirrpc(vp, uiop, cr);
1613		/*
1614		 * end-of-directory sets B_INVAL but does not generate an
1615		 * error.
1616		 */
1617		if (error == 0 && uiop->uio_resid == bp->b_bcount)
1618			bp->b_flags |= B_INVAL;
1619		break;
1620	    default:
1621		nfs_printf("nfs_doio:  type %x unexpected\n", vp->v_type);
1622		break;
1623	    };
1624	    if (error) {
1625		bp->b_ioflags |= BIO_ERROR;
1626		bp->b_error = error;
1627	    }
1628	} else {
1629	    /*
1630	     * If we only need to commit, try to commit
1631	     */
1632	    if (bp->b_flags & B_NEEDCOMMIT) {
1633		    int retv;
1634		    off_t off;
1635
1636		    off = ((u_quad_t)bp->b_blkno) * DEV_BSIZE + bp->b_dirtyoff;
1637		    retv = (nmp->nm_rpcops->nr_commit)(
1638				vp, off, bp->b_dirtyend-bp->b_dirtyoff,
1639				bp->b_wcred, td);
1640		    if (retv == 0) {
1641			    bp->b_dirtyoff = bp->b_dirtyend = 0;
1642			    bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
1643			    bp->b_resid = 0;
1644			    bufdone(bp);
1645			    return (0);
1646		    }
1647		    if (retv == NFSERR_STALEWRITEVERF) {
1648			    nfs_clearcommit(vp->v_mount);
1649		    }
1650	    }
1651
1652	    /*
1653	     * Setup for actual write
1654	     */
1655	    mtx_lock(&np->n_mtx);
1656	    if ((off_t)bp->b_blkno * DEV_BSIZE + bp->b_dirtyend > np->n_size)
1657		bp->b_dirtyend = np->n_size - (off_t)bp->b_blkno * DEV_BSIZE;
1658	    mtx_unlock(&np->n_mtx);
1659
1660	    if (bp->b_dirtyend > bp->b_dirtyoff) {
1661		io.iov_len = uiop->uio_resid = bp->b_dirtyend
1662		    - bp->b_dirtyoff;
1663		uiop->uio_offset = (off_t)bp->b_blkno * DEV_BSIZE
1664		    + bp->b_dirtyoff;
1665		io.iov_base = (char *)bp->b_data + bp->b_dirtyoff;
1666		uiop->uio_rw = UIO_WRITE;
1667		nfsstats.write_bios++;
1668
1669		if ((bp->b_flags & (B_ASYNC | B_NEEDCOMMIT | B_NOCACHE | B_CLUSTER)) == B_ASYNC)
1670		    iomode = NFSV3WRITE_UNSTABLE;
1671		else
1672		    iomode = NFSV3WRITE_FILESYNC;
1673
1674		error = (nmp->nm_rpcops->nr_writerpc)(vp, uiop, cr, &iomode, &must_commit);
1675
1676		/*
1677		 * When setting B_NEEDCOMMIT also set B_CLUSTEROK to try
1678		 * to cluster the buffers needing commit.  This will allow
1679		 * the system to submit a single commit rpc for the whole
1680		 * cluster.  We can do this even if the buffer is not 100%
1681		 * dirty (relative to the NFS blocksize), so we optimize the
1682		 * append-to-file-case.
1683		 *
1684		 * (when clearing B_NEEDCOMMIT, B_CLUSTEROK must also be
1685		 * cleared because write clustering only works for commit
1686		 * rpc's, not for the data portion of the write).
1687		 */
1688
1689		if (!error && iomode == NFSV3WRITE_UNSTABLE) {
1690		    bp->b_flags |= B_NEEDCOMMIT;
1691		    if (bp->b_dirtyoff == 0
1692			&& bp->b_dirtyend == bp->b_bcount)
1693			bp->b_flags |= B_CLUSTEROK;
1694		} else {
1695		    bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
1696		}
1697
1698		/*
1699		 * For an interrupted write, the buffer is still valid
1700		 * and the write hasn't been pushed to the server yet,
1701		 * so we can't set BIO_ERROR and report the interruption
1702		 * by setting B_EINTR. For the B_ASYNC case, B_EINTR
1703		 * is not relevant, so the rpc attempt is essentially
1704		 * a noop.  For the case of a V3 write rpc not being
1705		 * committed to stable storage, the block is still
1706		 * dirty and requires either a commit rpc or another
1707		 * write rpc with iomode == NFSV3WRITE_FILESYNC before
1708		 * the block is reused. This is indicated by setting
1709		 * the B_DELWRI and B_NEEDCOMMIT flags.
1710		 *
1711		 * If the buffer is marked B_PAGING, it does not reside on
1712		 * the vp's paging queues so we cannot call bdirty().  The
1713		 * bp in this case is not an NFS cache block so we should
1714		 * be safe. XXX
1715		 *
1716		 * The logic below breaks up errors into recoverable and
1717		 * unrecoverable. For the former, we clear B_INVAL|B_NOCACHE
1718		 * and keep the buffer around for potential write retries.
1719		 * For the latter (eg ESTALE), we toss the buffer away (B_INVAL)
1720		 * and save the error in the nfsnode. This is less than ideal
1721		 * but necessary. Keeping such buffers around could potentially
1722		 * cause buffer exhaustion eventually (they can never be written
1723		 * out, so will get constantly be re-dirtied). It also causes
1724		 * all sorts of vfs panics. For non-recoverable write errors,
1725		 * also invalidate the attrcache, so we'll be forced to go over
1726		 * the wire for this object, returning an error to user on next
1727		 * call (most of the time).
1728		 */
1729    		if (error == EINTR || error == EIO || error == ETIMEDOUT
1730		    || (!error && (bp->b_flags & B_NEEDCOMMIT))) {
1731			int s;
1732
1733			s = splbio();
1734			bp->b_flags &= ~(B_INVAL|B_NOCACHE);
1735			if ((bp->b_flags & B_PAGING) == 0) {
1736			    bdirty(bp);
1737			    bp->b_flags &= ~B_DONE;
1738			}
1739			if (error && (bp->b_flags & B_ASYNC) == 0)
1740			    bp->b_flags |= B_EINTR;
1741			splx(s);
1742	    	} else {
1743		    if (error) {
1744			bp->b_ioflags |= BIO_ERROR;
1745			bp->b_flags |= B_INVAL;
1746			bp->b_error = np->n_error = error;
1747			mtx_lock(&np->n_mtx);
1748			np->n_flag |= NWRITEERR;
1749			np->n_attrstamp = 0;
1750			KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp);
1751			mtx_unlock(&np->n_mtx);
1752		    }
1753		    bp->b_dirtyoff = bp->b_dirtyend = 0;
1754		}
1755	    } else {
1756		bp->b_resid = 0;
1757		bufdone(bp);
1758		return (0);
1759	    }
1760	}
1761	bp->b_resid = uiop->uio_resid;
1762	if (must_commit)
1763	    nfs_clearcommit(vp->v_mount);
1764	bufdone(bp);
1765	return (error);
1766}
1767
1768/*
1769 * Used to aid in handling ftruncate() operations on the NFS client side.
1770 * Truncation creates a number of special problems for NFS.  We have to
1771 * throw away VM pages and buffer cache buffers that are beyond EOF, and
1772 * we have to properly handle VM pages or (potentially dirty) buffers
1773 * that straddle the truncation point.
1774 */
1775
1776int
1777nfs_meta_setsize(struct vnode *vp, struct ucred *cred, struct thread *td, u_quad_t nsize)
1778{
1779	struct nfsnode *np = VTONFS(vp);
1780	u_quad_t tsize;
1781	int biosize = vp->v_bufobj.bo_bsize;
1782	int error = 0;
1783
1784	mtx_lock(&np->n_mtx);
1785	tsize = np->n_size;
1786	np->n_size = nsize;
1787	mtx_unlock(&np->n_mtx);
1788
1789	if (nsize < tsize) {
1790		struct buf *bp;
1791		daddr_t lbn;
1792		int bufsize;
1793
1794		/*
1795		 * vtruncbuf() doesn't get the buffer overlapping the
1796		 * truncation point.  We may have a B_DELWRI and/or B_CACHE
1797		 * buffer that now needs to be truncated.
1798		 */
1799		error = vtruncbuf(vp, cred, td, nsize, biosize);
1800		lbn = nsize / biosize;
1801		bufsize = nsize & (biosize - 1);
1802		bp = nfs_getcacheblk(vp, lbn, bufsize, td);
1803 		if (!bp)
1804 			return EINTR;
1805		if (bp->b_dirtyoff > bp->b_bcount)
1806			bp->b_dirtyoff = bp->b_bcount;
1807		if (bp->b_dirtyend > bp->b_bcount)
1808			bp->b_dirtyend = bp->b_bcount;
1809		bp->b_flags |= B_RELBUF;  /* don't leave garbage around */
1810		brelse(bp);
1811	} else {
1812		vnode_pager_setsize(vp, nsize);
1813	}
1814	return(error);
1815}
1816
1817