tcp_subr.c revision 285979
1/*-
2 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 4. Neither the name of the University nor the names of its contributors
14 *    may be used to endorse or promote products derived from this software
15 *    without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 *
29 *	@(#)tcp_subr.c	8.2 (Berkeley) 5/24/95
30 */
31
32#include <sys/cdefs.h>
33__FBSDID("$FreeBSD: releng/10.1/sys/netinet/tcp_subr.c 285979 2015-07-28 19:59:11Z delphij $");
34
35#include "opt_compat.h"
36#include "opt_inet.h"
37#include "opt_inet6.h"
38#include "opt_ipsec.h"
39#include "opt_kdtrace.h"
40#include "opt_tcpdebug.h"
41
42#include <sys/param.h>
43#include <sys/systm.h>
44#include <sys/callout.h>
45#include <sys/hhook.h>
46#include <sys/kernel.h>
47#include <sys/khelp.h>
48#include <sys/sysctl.h>
49#include <sys/jail.h>
50#include <sys/malloc.h>
51#include <sys/mbuf.h>
52#ifdef INET6
53#include <sys/domain.h>
54#endif
55#include <sys/priv.h>
56#include <sys/proc.h>
57#include <sys/sdt.h>
58#include <sys/socket.h>
59#include <sys/socketvar.h>
60#include <sys/protosw.h>
61#include <sys/random.h>
62
63#include <vm/uma.h>
64
65#include <net/route.h>
66#include <net/if.h>
67#include <net/vnet.h>
68
69#include <netinet/cc.h>
70#include <netinet/in.h>
71#include <netinet/in_kdtrace.h>
72#include <netinet/in_pcb.h>
73#include <netinet/in_systm.h>
74#include <netinet/in_var.h>
75#include <netinet/ip.h>
76#include <netinet/ip_icmp.h>
77#include <netinet/ip_var.h>
78#ifdef INET6
79#include <netinet/ip6.h>
80#include <netinet6/in6_pcb.h>
81#include <netinet6/ip6_var.h>
82#include <netinet6/scope6_var.h>
83#include <netinet6/nd6.h>
84#endif
85
86#include <netinet/tcp_fsm.h>
87#include <netinet/tcp_seq.h>
88#include <netinet/tcp_timer.h>
89#include <netinet/tcp_var.h>
90#include <netinet/tcp_syncache.h>
91#ifdef INET6
92#include <netinet6/tcp6_var.h>
93#endif
94#include <netinet/tcpip.h>
95#ifdef TCPDEBUG
96#include <netinet/tcp_debug.h>
97#endif
98#ifdef INET6
99#include <netinet6/ip6protosw.h>
100#endif
101#ifdef TCP_OFFLOAD
102#include <netinet/tcp_offload.h>
103#endif
104
105#ifdef IPSEC
106#include <netipsec/ipsec.h>
107#include <netipsec/xform.h>
108#ifdef INET6
109#include <netipsec/ipsec6.h>
110#endif
111#include <netipsec/key.h>
112#include <sys/syslog.h>
113#endif /*IPSEC*/
114
115#include <machine/in_cksum.h>
116#include <sys/md5.h>
117
118#include <security/mac/mac_framework.h>
119
120VNET_DEFINE(int, tcp_mssdflt) = TCP_MSS;
121#ifdef INET6
122VNET_DEFINE(int, tcp_v6mssdflt) = TCP6_MSS;
123#endif
124
125static int
126sysctl_net_inet_tcp_mss_check(SYSCTL_HANDLER_ARGS)
127{
128	int error, new;
129
130	new = V_tcp_mssdflt;
131	error = sysctl_handle_int(oidp, &new, 0, req);
132	if (error == 0 && req->newptr) {
133		if (new < TCP_MINMSS)
134			error = EINVAL;
135		else
136			V_tcp_mssdflt = new;
137	}
138	return (error);
139}
140
141SYSCTL_VNET_PROC(_net_inet_tcp, TCPCTL_MSSDFLT, mssdflt,
142    CTLTYPE_INT|CTLFLAG_RW, &VNET_NAME(tcp_mssdflt), 0,
143    &sysctl_net_inet_tcp_mss_check, "I",
144    "Default TCP Maximum Segment Size");
145
146#ifdef INET6
147static int
148sysctl_net_inet_tcp_mss_v6_check(SYSCTL_HANDLER_ARGS)
149{
150	int error, new;
151
152	new = V_tcp_v6mssdflt;
153	error = sysctl_handle_int(oidp, &new, 0, req);
154	if (error == 0 && req->newptr) {
155		if (new < TCP_MINMSS)
156			error = EINVAL;
157		else
158			V_tcp_v6mssdflt = new;
159	}
160	return (error);
161}
162
163SYSCTL_VNET_PROC(_net_inet_tcp, TCPCTL_V6MSSDFLT, v6mssdflt,
164    CTLTYPE_INT|CTLFLAG_RW, &VNET_NAME(tcp_v6mssdflt), 0,
165    &sysctl_net_inet_tcp_mss_v6_check, "I",
166   "Default TCP Maximum Segment Size for IPv6");
167#endif /* INET6 */
168
169/*
170 * Minimum MSS we accept and use. This prevents DoS attacks where
171 * we are forced to a ridiculous low MSS like 20 and send hundreds
172 * of packets instead of one. The effect scales with the available
173 * bandwidth and quickly saturates the CPU and network interface
174 * with packet generation and sending. Set to zero to disable MINMSS
175 * checking. This setting prevents us from sending too small packets.
176 */
177VNET_DEFINE(int, tcp_minmss) = TCP_MINMSS;
178SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, minmss, CTLFLAG_RW,
179     &VNET_NAME(tcp_minmss), 0,
180    "Minimum TCP Maximum Segment Size");
181
182VNET_DEFINE(int, tcp_do_rfc1323) = 1;
183SYSCTL_VNET_INT(_net_inet_tcp, TCPCTL_DO_RFC1323, rfc1323, CTLFLAG_RW,
184    &VNET_NAME(tcp_do_rfc1323), 0,
185    "Enable rfc1323 (high performance TCP) extensions");
186
187static int	tcp_log_debug = 0;
188SYSCTL_INT(_net_inet_tcp, OID_AUTO, log_debug, CTLFLAG_RW,
189    &tcp_log_debug, 0, "Log errors caused by incoming TCP segments");
190
191static int	tcp_tcbhashsize = 0;
192SYSCTL_INT(_net_inet_tcp, OID_AUTO, tcbhashsize, CTLFLAG_RDTUN,
193    &tcp_tcbhashsize, 0, "Size of TCP control-block hashtable");
194
195static int	do_tcpdrain = 1;
196SYSCTL_INT(_net_inet_tcp, OID_AUTO, do_tcpdrain, CTLFLAG_RW, &do_tcpdrain, 0,
197    "Enable tcp_drain routine for extra help when low on mbufs");
198
199SYSCTL_VNET_UINT(_net_inet_tcp, OID_AUTO, pcbcount, CTLFLAG_RD,
200    &VNET_NAME(tcbinfo.ipi_count), 0, "Number of active PCBs");
201
202static VNET_DEFINE(int, icmp_may_rst) = 1;
203#define	V_icmp_may_rst			VNET(icmp_may_rst)
204SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, icmp_may_rst, CTLFLAG_RW,
205    &VNET_NAME(icmp_may_rst), 0,
206    "Certain ICMP unreachable messages may abort connections in SYN_SENT");
207
208static VNET_DEFINE(int, tcp_isn_reseed_interval) = 0;
209#define	V_tcp_isn_reseed_interval	VNET(tcp_isn_reseed_interval)
210SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, isn_reseed_interval, CTLFLAG_RW,
211    &VNET_NAME(tcp_isn_reseed_interval), 0,
212    "Seconds between reseeding of ISN secret");
213
214static int	tcp_soreceive_stream = 0;
215SYSCTL_INT(_net_inet_tcp, OID_AUTO, soreceive_stream, CTLFLAG_RDTUN,
216    &tcp_soreceive_stream, 0, "Using soreceive_stream for TCP sockets");
217
218#ifdef TCP_SIGNATURE
219static int	tcp_sig_checksigs = 1;
220SYSCTL_INT(_net_inet_tcp, OID_AUTO, signature_verify_input, CTLFLAG_RW,
221    &tcp_sig_checksigs, 0, "Verify RFC2385 digests on inbound traffic");
222#endif
223
224VNET_DEFINE(uma_zone_t, sack_hole_zone);
225#define	V_sack_hole_zone		VNET(sack_hole_zone)
226
227VNET_DEFINE(struct hhook_head *, tcp_hhh[HHOOK_TCP_LAST+1]);
228
229static struct inpcb *tcp_notify(struct inpcb *, int);
230static struct inpcb *tcp_mtudisc_notify(struct inpcb *, int);
231static char *	tcp_log_addr(struct in_conninfo *inc, struct tcphdr *th,
232		    void *ip4hdr, const void *ip6hdr);
233
234/*
235 * Target size of TCP PCB hash tables. Must be a power of two.
236 *
237 * Note that this can be overridden by the kernel environment
238 * variable net.inet.tcp.tcbhashsize
239 */
240#ifndef TCBHASHSIZE
241#define TCBHASHSIZE	0
242#endif
243
244/*
245 * XXX
246 * Callouts should be moved into struct tcp directly.  They are currently
247 * separate because the tcpcb structure is exported to userland for sysctl
248 * parsing purposes, which do not know about callouts.
249 */
250struct tcpcb_mem {
251	struct	tcpcb		tcb;
252	struct	tcp_timer	tt;
253	struct	cc_var		ccv;
254	struct	osd		osd;
255};
256
257static VNET_DEFINE(uma_zone_t, tcpcb_zone);
258#define	V_tcpcb_zone			VNET(tcpcb_zone)
259
260MALLOC_DEFINE(M_TCPLOG, "tcplog", "TCP address and flags print buffers");
261static struct mtx isn_mtx;
262
263#define	ISN_LOCK_INIT()	mtx_init(&isn_mtx, "isn_mtx", NULL, MTX_DEF)
264#define	ISN_LOCK()	mtx_lock(&isn_mtx)
265#define	ISN_UNLOCK()	mtx_unlock(&isn_mtx)
266
267/*
268 * TCP initialization.
269 */
270static void
271tcp_zone_change(void *tag)
272{
273
274	uma_zone_set_max(V_tcbinfo.ipi_zone, maxsockets);
275	uma_zone_set_max(V_tcpcb_zone, maxsockets);
276	tcp_tw_zone_change();
277}
278
279static int
280tcp_inpcb_init(void *mem, int size, int flags)
281{
282	struct inpcb *inp = mem;
283
284	INP_LOCK_INIT(inp, "inp", "tcpinp");
285	return (0);
286}
287
288/*
289 * Take a value and get the next power of 2 that doesn't overflow.
290 * Used to size the tcp_inpcb hash buckets.
291 */
292static int
293maketcp_hashsize(int size)
294{
295	int hashsize;
296
297	/*
298	 * auto tune.
299	 * get the next power of 2 higher than maxsockets.
300	 */
301	hashsize = 1 << fls(size);
302	/* catch overflow, and just go one power of 2 smaller */
303	if (hashsize < size) {
304		hashsize = 1 << (fls(size) - 1);
305	}
306	return (hashsize);
307}
308
309void
310tcp_init(void)
311{
312	const char *tcbhash_tuneable;
313	int hashsize;
314
315	tcbhash_tuneable = "net.inet.tcp.tcbhashsize";
316
317	if (hhook_head_register(HHOOK_TYPE_TCP, HHOOK_TCP_EST_IN,
318	    &V_tcp_hhh[HHOOK_TCP_EST_IN], HHOOK_NOWAIT|HHOOK_HEADISINVNET) != 0)
319		printf("%s: WARNING: unable to register helper hook\n", __func__);
320	if (hhook_head_register(HHOOK_TYPE_TCP, HHOOK_TCP_EST_OUT,
321	    &V_tcp_hhh[HHOOK_TCP_EST_OUT], HHOOK_NOWAIT|HHOOK_HEADISINVNET) != 0)
322		printf("%s: WARNING: unable to register helper hook\n", __func__);
323
324	hashsize = TCBHASHSIZE;
325	TUNABLE_INT_FETCH(tcbhash_tuneable, &hashsize);
326	if (hashsize == 0) {
327		/*
328		 * Auto tune the hash size based on maxsockets.
329		 * A perfect hash would have a 1:1 mapping
330		 * (hashsize = maxsockets) however it's been
331		 * suggested that O(2) average is better.
332		 */
333		hashsize = maketcp_hashsize(maxsockets / 4);
334		/*
335		 * Our historical default is 512,
336		 * do not autotune lower than this.
337		 */
338		if (hashsize < 512)
339			hashsize = 512;
340		if (bootverbose)
341			printf("%s: %s auto tuned to %d\n", __func__,
342			    tcbhash_tuneable, hashsize);
343	}
344	/*
345	 * We require a hashsize to be a power of two.
346	 * Previously if it was not a power of two we would just reset it
347	 * back to 512, which could be a nasty surprise if you did not notice
348	 * the error message.
349	 * Instead what we do is clip it to the closest power of two lower
350	 * than the specified hash value.
351	 */
352	if (!powerof2(hashsize)) {
353		int oldhashsize = hashsize;
354
355		hashsize = maketcp_hashsize(hashsize);
356		/* prevent absurdly low value */
357		if (hashsize < 16)
358			hashsize = 16;
359		printf("%s: WARNING: TCB hash size not a power of 2, "
360		    "clipped from %d to %d.\n", __func__, oldhashsize,
361		    hashsize);
362	}
363	in_pcbinfo_init(&V_tcbinfo, "tcp", &V_tcb, hashsize, hashsize,
364	    "tcp_inpcb", tcp_inpcb_init, NULL, UMA_ZONE_NOFREE,
365	    IPI_HASHFIELDS_4TUPLE);
366
367	/*
368	 * These have to be type stable for the benefit of the timers.
369	 */
370	V_tcpcb_zone = uma_zcreate("tcpcb", sizeof(struct tcpcb_mem),
371	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
372	uma_zone_set_max(V_tcpcb_zone, maxsockets);
373	uma_zone_set_warning(V_tcpcb_zone, "kern.ipc.maxsockets limit reached");
374
375	tcp_tw_init();
376	syncache_init();
377	tcp_hc_init();
378
379	TUNABLE_INT_FETCH("net.inet.tcp.sack.enable", &V_tcp_do_sack);
380	V_sack_hole_zone = uma_zcreate("sackhole", sizeof(struct sackhole),
381	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
382
383	/* Skip initialization of globals for non-default instances. */
384	if (!IS_DEFAULT_VNET(curvnet))
385		return;
386
387	tcp_reass_global_init();
388
389	/* XXX virtualize those bellow? */
390	tcp_delacktime = TCPTV_DELACK;
391	tcp_keepinit = TCPTV_KEEP_INIT;
392	tcp_keepidle = TCPTV_KEEP_IDLE;
393	tcp_keepintvl = TCPTV_KEEPINTVL;
394	tcp_maxpersistidle = TCPTV_KEEP_IDLE;
395	tcp_msl = TCPTV_MSL;
396	tcp_rexmit_min = TCPTV_MIN;
397	if (tcp_rexmit_min < 1)
398		tcp_rexmit_min = 1;
399	tcp_rexmit_slop = TCPTV_CPU_VAR;
400	tcp_finwait2_timeout = TCPTV_FINWAIT2_TIMEOUT;
401	tcp_tcbhashsize = hashsize;
402
403	TUNABLE_INT_FETCH("net.inet.tcp.soreceive_stream", &tcp_soreceive_stream);
404	if (tcp_soreceive_stream) {
405#ifdef INET
406		tcp_usrreqs.pru_soreceive = soreceive_stream;
407#endif
408#ifdef INET6
409		tcp6_usrreqs.pru_soreceive = soreceive_stream;
410#endif /* INET6 */
411	}
412
413#ifdef INET6
414#define TCP_MINPROTOHDR (sizeof(struct ip6_hdr) + sizeof(struct tcphdr))
415#else /* INET6 */
416#define TCP_MINPROTOHDR (sizeof(struct tcpiphdr))
417#endif /* INET6 */
418	if (max_protohdr < TCP_MINPROTOHDR)
419		max_protohdr = TCP_MINPROTOHDR;
420	if (max_linkhdr + TCP_MINPROTOHDR > MHLEN)
421		panic("tcp_init");
422#undef TCP_MINPROTOHDR
423
424	ISN_LOCK_INIT();
425	EVENTHANDLER_REGISTER(shutdown_pre_sync, tcp_fini, NULL,
426		SHUTDOWN_PRI_DEFAULT);
427	EVENTHANDLER_REGISTER(maxsockets_change, tcp_zone_change, NULL,
428		EVENTHANDLER_PRI_ANY);
429}
430
431#ifdef VIMAGE
432void
433tcp_destroy(void)
434{
435
436	tcp_hc_destroy();
437	syncache_destroy();
438	tcp_tw_destroy();
439	in_pcbinfo_destroy(&V_tcbinfo);
440	uma_zdestroy(V_sack_hole_zone);
441	uma_zdestroy(V_tcpcb_zone);
442}
443#endif
444
445void
446tcp_fini(void *xtp)
447{
448
449}
450
451/*
452 * Fill in the IP and TCP headers for an outgoing packet, given the tcpcb.
453 * tcp_template used to store this data in mbufs, but we now recopy it out
454 * of the tcpcb each time to conserve mbufs.
455 */
456void
457tcpip_fillheaders(struct inpcb *inp, void *ip_ptr, void *tcp_ptr)
458{
459	struct tcphdr *th = (struct tcphdr *)tcp_ptr;
460
461	INP_WLOCK_ASSERT(inp);
462
463#ifdef INET6
464	if ((inp->inp_vflag & INP_IPV6) != 0) {
465		struct ip6_hdr *ip6;
466
467		ip6 = (struct ip6_hdr *)ip_ptr;
468		ip6->ip6_flow = (ip6->ip6_flow & ~IPV6_FLOWINFO_MASK) |
469			(inp->inp_flow & IPV6_FLOWINFO_MASK);
470		ip6->ip6_vfc = (ip6->ip6_vfc & ~IPV6_VERSION_MASK) |
471			(IPV6_VERSION & IPV6_VERSION_MASK);
472		ip6->ip6_nxt = IPPROTO_TCP;
473		ip6->ip6_plen = htons(sizeof(struct tcphdr));
474		ip6->ip6_src = inp->in6p_laddr;
475		ip6->ip6_dst = inp->in6p_faddr;
476	}
477#endif /* INET6 */
478#if defined(INET6) && defined(INET)
479	else
480#endif
481#ifdef INET
482	{
483		struct ip *ip;
484
485		ip = (struct ip *)ip_ptr;
486		ip->ip_v = IPVERSION;
487		ip->ip_hl = 5;
488		ip->ip_tos = inp->inp_ip_tos;
489		ip->ip_len = 0;
490		ip->ip_id = 0;
491		ip->ip_off = 0;
492		ip->ip_ttl = inp->inp_ip_ttl;
493		ip->ip_sum = 0;
494		ip->ip_p = IPPROTO_TCP;
495		ip->ip_src = inp->inp_laddr;
496		ip->ip_dst = inp->inp_faddr;
497	}
498#endif /* INET */
499	th->th_sport = inp->inp_lport;
500	th->th_dport = inp->inp_fport;
501	th->th_seq = 0;
502	th->th_ack = 0;
503	th->th_x2 = 0;
504	th->th_off = 5;
505	th->th_flags = 0;
506	th->th_win = 0;
507	th->th_urp = 0;
508	th->th_sum = 0;		/* in_pseudo() is called later for ipv4 */
509}
510
511/*
512 * Create template to be used to send tcp packets on a connection.
513 * Allocates an mbuf and fills in a skeletal tcp/ip header.  The only
514 * use for this function is in keepalives, which use tcp_respond.
515 */
516struct tcptemp *
517tcpip_maketemplate(struct inpcb *inp)
518{
519	struct tcptemp *t;
520
521	t = malloc(sizeof(*t), M_TEMP, M_NOWAIT);
522	if (t == NULL)
523		return (NULL);
524	tcpip_fillheaders(inp, (void *)&t->tt_ipgen, (void *)&t->tt_t);
525	return (t);
526}
527
528/*
529 * Send a single message to the TCP at address specified by
530 * the given TCP/IP header.  If m == NULL, then we make a copy
531 * of the tcpiphdr at ti and send directly to the addressed host.
532 * This is used to force keep alive messages out using the TCP
533 * template for a connection.  If flags are given then we send
534 * a message back to the TCP which originated the * segment ti,
535 * and discard the mbuf containing it and any other attached mbufs.
536 *
537 * In any case the ack and sequence number of the transmitted
538 * segment are as specified by the parameters.
539 *
540 * NOTE: If m != NULL, then ti must point to *inside* the mbuf.
541 */
542void
543tcp_respond(struct tcpcb *tp, void *ipgen, struct tcphdr *th, struct mbuf *m,
544    tcp_seq ack, tcp_seq seq, int flags)
545{
546	int tlen;
547	int win = 0;
548	struct ip *ip;
549	struct tcphdr *nth;
550#ifdef INET6
551	struct ip6_hdr *ip6;
552	int isipv6;
553#endif /* INET6 */
554	int ipflags = 0;
555	struct inpcb *inp;
556
557	KASSERT(tp != NULL || m != NULL, ("tcp_respond: tp and m both NULL"));
558
559#ifdef INET6
560	isipv6 = ((struct ip *)ipgen)->ip_v == (IPV6_VERSION >> 4);
561	ip6 = ipgen;
562#endif /* INET6 */
563	ip = ipgen;
564
565	if (tp != NULL) {
566		inp = tp->t_inpcb;
567		KASSERT(inp != NULL, ("tcp control block w/o inpcb"));
568		INP_WLOCK_ASSERT(inp);
569	} else
570		inp = NULL;
571
572	if (tp != NULL) {
573		if (!(flags & TH_RST)) {
574			win = sbspace(&inp->inp_socket->so_rcv);
575			if (win > (long)TCP_MAXWIN << tp->rcv_scale)
576				win = (long)TCP_MAXWIN << tp->rcv_scale;
577		}
578	}
579	if (m == NULL) {
580		m = m_gethdr(M_NOWAIT, MT_DATA);
581		if (m == NULL)
582			return;
583		tlen = 0;
584		m->m_data += max_linkhdr;
585#ifdef INET6
586		if (isipv6) {
587			bcopy((caddr_t)ip6, mtod(m, caddr_t),
588			      sizeof(struct ip6_hdr));
589			ip6 = mtod(m, struct ip6_hdr *);
590			nth = (struct tcphdr *)(ip6 + 1);
591		} else
592#endif /* INET6 */
593		{
594			bcopy((caddr_t)ip, mtod(m, caddr_t), sizeof(struct ip));
595			ip = mtod(m, struct ip *);
596			nth = (struct tcphdr *)(ip + 1);
597		}
598		bcopy((caddr_t)th, (caddr_t)nth, sizeof(struct tcphdr));
599		flags = TH_ACK;
600	} else {
601		/*
602		 *  reuse the mbuf.
603		 * XXX MRT We inherrit the FIB, which is lucky.
604		 */
605		m_freem(m->m_next);
606		m->m_next = NULL;
607		m->m_data = (caddr_t)ipgen;
608		/* m_len is set later */
609		tlen = 0;
610#define xchg(a,b,type) { type t; t=a; a=b; b=t; }
611#ifdef INET6
612		if (isipv6) {
613			xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
614			nth = (struct tcphdr *)(ip6 + 1);
615		} else
616#endif /* INET6 */
617		{
618			xchg(ip->ip_dst.s_addr, ip->ip_src.s_addr, uint32_t);
619			nth = (struct tcphdr *)(ip + 1);
620		}
621		if (th != nth) {
622			/*
623			 * this is usually a case when an extension header
624			 * exists between the IPv6 header and the
625			 * TCP header.
626			 */
627			nth->th_sport = th->th_sport;
628			nth->th_dport = th->th_dport;
629		}
630		xchg(nth->th_dport, nth->th_sport, uint16_t);
631#undef xchg
632	}
633#ifdef INET6
634	if (isipv6) {
635		ip6->ip6_flow = 0;
636		ip6->ip6_vfc = IPV6_VERSION;
637		ip6->ip6_nxt = IPPROTO_TCP;
638		tlen += sizeof (struct ip6_hdr) + sizeof (struct tcphdr);
639		ip6->ip6_plen = htons(tlen - sizeof(*ip6));
640	}
641#endif
642#if defined(INET) && defined(INET6)
643	else
644#endif
645#ifdef INET
646	{
647		tlen += sizeof (struct tcpiphdr);
648		ip->ip_len = htons(tlen);
649		ip->ip_ttl = V_ip_defttl;
650		if (V_path_mtu_discovery)
651			ip->ip_off |= htons(IP_DF);
652	}
653#endif
654	m->m_len = tlen;
655	m->m_pkthdr.len = tlen;
656	m->m_pkthdr.rcvif = NULL;
657#ifdef MAC
658	if (inp != NULL) {
659		/*
660		 * Packet is associated with a socket, so allow the
661		 * label of the response to reflect the socket label.
662		 */
663		INP_WLOCK_ASSERT(inp);
664		mac_inpcb_create_mbuf(inp, m);
665	} else {
666		/*
667		 * Packet is not associated with a socket, so possibly
668		 * update the label in place.
669		 */
670		mac_netinet_tcp_reply(m);
671	}
672#endif
673	nth->th_seq = htonl(seq);
674	nth->th_ack = htonl(ack);
675	nth->th_x2 = 0;
676	nth->th_off = sizeof (struct tcphdr) >> 2;
677	nth->th_flags = flags;
678	if (tp != NULL)
679		nth->th_win = htons((u_short) (win >> tp->rcv_scale));
680	else
681		nth->th_win = htons((u_short)win);
682	nth->th_urp = 0;
683
684	m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
685#ifdef INET6
686	if (isipv6) {
687		m->m_pkthdr.csum_flags = CSUM_TCP_IPV6;
688		nth->th_sum = in6_cksum_pseudo(ip6,
689		    tlen - sizeof(struct ip6_hdr), IPPROTO_TCP, 0);
690		ip6->ip6_hlim = in6_selecthlim(tp != NULL ? tp->t_inpcb :
691		    NULL, NULL);
692	}
693#endif /* INET6 */
694#if defined(INET6) && defined(INET)
695	else
696#endif
697#ifdef INET
698	{
699		m->m_pkthdr.csum_flags = CSUM_TCP;
700		nth->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
701		    htons((u_short)(tlen - sizeof(struct ip) + ip->ip_p)));
702	}
703#endif /* INET */
704#ifdef TCPDEBUG
705	if (tp == NULL || (inp->inp_socket->so_options & SO_DEBUG))
706		tcp_trace(TA_OUTPUT, 0, tp, mtod(m, void *), th, 0);
707#endif
708	if (flags & TH_RST)
709		TCP_PROBE5(accept__refused, NULL, NULL, mtod(m, const char *),
710		    tp, nth);
711
712	TCP_PROBE5(send, NULL, tp, mtod(m, const char *), tp, nth);
713#ifdef INET6
714	if (isipv6)
715		(void) ip6_output(m, NULL, NULL, ipflags, NULL, NULL, inp);
716#endif /* INET6 */
717#if defined(INET) && defined(INET6)
718	else
719#endif
720#ifdef INET
721		(void) ip_output(m, NULL, NULL, ipflags, NULL, inp);
722#endif
723}
724
725/*
726 * Create a new TCP control block, making an
727 * empty reassembly queue and hooking it to the argument
728 * protocol control block.  The `inp' parameter must have
729 * come from the zone allocator set up in tcp_init().
730 */
731struct tcpcb *
732tcp_newtcpcb(struct inpcb *inp)
733{
734	struct tcpcb_mem *tm;
735	struct tcpcb *tp;
736#ifdef INET6
737	int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
738#endif /* INET6 */
739
740	tm = uma_zalloc(V_tcpcb_zone, M_NOWAIT | M_ZERO);
741	if (tm == NULL)
742		return (NULL);
743	tp = &tm->tcb;
744
745	/* Initialise cc_var struct for this tcpcb. */
746	tp->ccv = &tm->ccv;
747	tp->ccv->type = IPPROTO_TCP;
748	tp->ccv->ccvc.tcp = tp;
749
750	/*
751	 * Use the current system default CC algorithm.
752	 */
753	CC_LIST_RLOCK();
754	KASSERT(!STAILQ_EMPTY(&cc_list), ("cc_list is empty!"));
755	CC_ALGO(tp) = CC_DEFAULT();
756	CC_LIST_RUNLOCK();
757
758	if (CC_ALGO(tp)->cb_init != NULL)
759		if (CC_ALGO(tp)->cb_init(tp->ccv) > 0) {
760			uma_zfree(V_tcpcb_zone, tm);
761			return (NULL);
762		}
763
764	tp->osd = &tm->osd;
765	if (khelp_init_osd(HELPER_CLASS_TCP, tp->osd)) {
766		uma_zfree(V_tcpcb_zone, tm);
767		return (NULL);
768	}
769
770#ifdef VIMAGE
771	tp->t_vnet = inp->inp_vnet;
772#endif
773	tp->t_timers = &tm->tt;
774	/*	LIST_INIT(&tp->t_segq); */	/* XXX covered by M_ZERO */
775	tp->t_maxseg = tp->t_maxopd =
776#ifdef INET6
777		isipv6 ? V_tcp_v6mssdflt :
778#endif /* INET6 */
779		V_tcp_mssdflt;
780
781	/* Set up our timeouts. */
782	callout_init(&tp->t_timers->tt_rexmt, CALLOUT_MPSAFE);
783	callout_init(&tp->t_timers->tt_persist, CALLOUT_MPSAFE);
784	callout_init(&tp->t_timers->tt_keep, CALLOUT_MPSAFE);
785	callout_init(&tp->t_timers->tt_2msl, CALLOUT_MPSAFE);
786	callout_init(&tp->t_timers->tt_delack, CALLOUT_MPSAFE);
787
788	if (V_tcp_do_rfc1323)
789		tp->t_flags = (TF_REQ_SCALE|TF_REQ_TSTMP);
790	if (V_tcp_do_sack)
791		tp->t_flags |= TF_SACK_PERMIT;
792	TAILQ_INIT(&tp->snd_holes);
793	tp->t_inpcb = inp;	/* XXX */
794	/*
795	 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
796	 * rtt estimate.  Set rttvar so that srtt + 4 * rttvar gives
797	 * reasonable initial retransmit time.
798	 */
799	tp->t_srtt = TCPTV_SRTTBASE;
800	tp->t_rttvar = ((TCPTV_RTOBASE - TCPTV_SRTTBASE) << TCP_RTTVAR_SHIFT) / 4;
801	tp->t_rttmin = tcp_rexmit_min;
802	tp->t_rxtcur = TCPTV_RTOBASE;
803	tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
804	tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT;
805	tp->t_rcvtime = ticks;
806	/*
807	 * IPv4 TTL initialization is necessary for an IPv6 socket as well,
808	 * because the socket may be bound to an IPv6 wildcard address,
809	 * which may match an IPv4-mapped IPv6 address.
810	 */
811	inp->inp_ip_ttl = V_ip_defttl;
812	inp->inp_ppcb = tp;
813	return (tp);		/* XXX */
814}
815
816/*
817 * Switch the congestion control algorithm back to NewReno for any active
818 * control blocks using an algorithm which is about to go away.
819 * This ensures the CC framework can allow the unload to proceed without leaving
820 * any dangling pointers which would trigger a panic.
821 * Returning non-zero would inform the CC framework that something went wrong
822 * and it would be unsafe to allow the unload to proceed. However, there is no
823 * way for this to occur with this implementation so we always return zero.
824 */
825int
826tcp_ccalgounload(struct cc_algo *unload_algo)
827{
828	struct cc_algo *tmpalgo;
829	struct inpcb *inp;
830	struct tcpcb *tp;
831	VNET_ITERATOR_DECL(vnet_iter);
832
833	/*
834	 * Check all active control blocks across all network stacks and change
835	 * any that are using "unload_algo" back to NewReno. If "unload_algo"
836	 * requires cleanup code to be run, call it.
837	 */
838	VNET_LIST_RLOCK();
839	VNET_FOREACH(vnet_iter) {
840		CURVNET_SET(vnet_iter);
841		INP_INFO_RLOCK(&V_tcbinfo);
842		/*
843		 * New connections already part way through being initialised
844		 * with the CC algo we're removing will not race with this code
845		 * because the INP_INFO_WLOCK is held during initialisation. We
846		 * therefore don't enter the loop below until the connection
847		 * list has stabilised.
848		 */
849		LIST_FOREACH(inp, &V_tcb, inp_list) {
850			INP_WLOCK(inp);
851			/* Important to skip tcptw structs. */
852			if (!(inp->inp_flags & INP_TIMEWAIT) &&
853			    (tp = intotcpcb(inp)) != NULL) {
854				/*
855				 * By holding INP_WLOCK here, we are assured
856				 * that the connection is not currently
857				 * executing inside the CC module's functions
858				 * i.e. it is safe to make the switch back to
859				 * NewReno.
860				 */
861				if (CC_ALGO(tp) == unload_algo) {
862					tmpalgo = CC_ALGO(tp);
863					/* NewReno does not require any init. */
864					CC_ALGO(tp) = &newreno_cc_algo;
865					if (tmpalgo->cb_destroy != NULL)
866						tmpalgo->cb_destroy(tp->ccv);
867				}
868			}
869			INP_WUNLOCK(inp);
870		}
871		INP_INFO_RUNLOCK(&V_tcbinfo);
872		CURVNET_RESTORE();
873	}
874	VNET_LIST_RUNLOCK();
875
876	return (0);
877}
878
879/*
880 * Drop a TCP connection, reporting
881 * the specified error.  If connection is synchronized,
882 * then send a RST to peer.
883 */
884struct tcpcb *
885tcp_drop(struct tcpcb *tp, int errno)
886{
887	struct socket *so = tp->t_inpcb->inp_socket;
888
889	INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
890	INP_WLOCK_ASSERT(tp->t_inpcb);
891
892	if (TCPS_HAVERCVDSYN(tp->t_state)) {
893		tcp_state_change(tp, TCPS_CLOSED);
894		(void) tcp_output(tp);
895		TCPSTAT_INC(tcps_drops);
896	} else
897		TCPSTAT_INC(tcps_conndrops);
898	if (errno == ETIMEDOUT && tp->t_softerror)
899		errno = tp->t_softerror;
900	so->so_error = errno;
901	return (tcp_close(tp));
902}
903
904void
905tcp_discardcb(struct tcpcb *tp)
906{
907	struct inpcb *inp = tp->t_inpcb;
908	struct socket *so = inp->inp_socket;
909#ifdef INET6
910	int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
911#endif /* INET6 */
912
913	INP_WLOCK_ASSERT(inp);
914
915	/*
916	 * Make sure that all of our timers are stopped before we delete the
917	 * PCB.
918	 *
919	 * XXXRW: Really, we would like to use callout_drain() here in order
920	 * to avoid races experienced in tcp_timer.c where a timer is already
921	 * executing at this point.  However, we can't, both because we're
922	 * running in a context where we can't sleep, and also because we
923	 * hold locks required by the timers.  What we instead need to do is
924	 * test to see if callout_drain() is required, and if so, defer some
925	 * portion of the remainder of tcp_discardcb() to an asynchronous
926	 * context that can callout_drain() and then continue.  Some care
927	 * will be required to ensure that no further processing takes place
928	 * on the tcpcb, even though it hasn't been freed (a flag?).
929	 */
930	callout_stop(&tp->t_timers->tt_rexmt);
931	callout_stop(&tp->t_timers->tt_persist);
932	callout_stop(&tp->t_timers->tt_keep);
933	callout_stop(&tp->t_timers->tt_2msl);
934	callout_stop(&tp->t_timers->tt_delack);
935
936	/*
937	 * If we got enough samples through the srtt filter,
938	 * save the rtt and rttvar in the routing entry.
939	 * 'Enough' is arbitrarily defined as 4 rtt samples.
940	 * 4 samples is enough for the srtt filter to converge
941	 * to within enough % of the correct value; fewer samples
942	 * and we could save a bogus rtt. The danger is not high
943	 * as tcp quickly recovers from everything.
944	 * XXX: Works very well but needs some more statistics!
945	 */
946	if (tp->t_rttupdated >= 4) {
947		struct hc_metrics_lite metrics;
948		u_long ssthresh;
949
950		bzero(&metrics, sizeof(metrics));
951		/*
952		 * Update the ssthresh always when the conditions below
953		 * are satisfied. This gives us better new start value
954		 * for the congestion avoidance for new connections.
955		 * ssthresh is only set if packet loss occured on a session.
956		 *
957		 * XXXRW: 'so' may be NULL here, and/or socket buffer may be
958		 * being torn down.  Ideally this code would not use 'so'.
959		 */
960		ssthresh = tp->snd_ssthresh;
961		if (ssthresh != 0 && ssthresh < so->so_snd.sb_hiwat / 2) {
962			/*
963			 * convert the limit from user data bytes to
964			 * packets then to packet data bytes.
965			 */
966			ssthresh = (ssthresh + tp->t_maxseg / 2) / tp->t_maxseg;
967			if (ssthresh < 2)
968				ssthresh = 2;
969			ssthresh *= (u_long)(tp->t_maxseg +
970#ifdef INET6
971			    (isipv6 ? sizeof (struct ip6_hdr) +
972				sizeof (struct tcphdr) :
973#endif
974				sizeof (struct tcpiphdr)
975#ifdef INET6
976			    )
977#endif
978			    );
979		} else
980			ssthresh = 0;
981		metrics.rmx_ssthresh = ssthresh;
982
983		metrics.rmx_rtt = tp->t_srtt;
984		metrics.rmx_rttvar = tp->t_rttvar;
985		metrics.rmx_cwnd = tp->snd_cwnd;
986		metrics.rmx_sendpipe = 0;
987		metrics.rmx_recvpipe = 0;
988
989		tcp_hc_update(&inp->inp_inc, &metrics);
990	}
991
992	/* free the reassembly queue, if any */
993	tcp_reass_flush(tp);
994
995#ifdef TCP_OFFLOAD
996	/* Disconnect offload device, if any. */
997	if (tp->t_flags & TF_TOE)
998		tcp_offload_detach(tp);
999#endif
1000
1001	tcp_free_sackholes(tp);
1002
1003	/* Allow the CC algorithm to clean up after itself. */
1004	if (CC_ALGO(tp)->cb_destroy != NULL)
1005		CC_ALGO(tp)->cb_destroy(tp->ccv);
1006
1007	khelp_destroy_osd(tp->osd);
1008
1009	CC_ALGO(tp) = NULL;
1010	inp->inp_ppcb = NULL;
1011	tp->t_inpcb = NULL;
1012	uma_zfree(V_tcpcb_zone, tp);
1013}
1014
1015/*
1016 * Attempt to close a TCP control block, marking it as dropped, and freeing
1017 * the socket if we hold the only reference.
1018 */
1019struct tcpcb *
1020tcp_close(struct tcpcb *tp)
1021{
1022	struct inpcb *inp = tp->t_inpcb;
1023	struct socket *so;
1024
1025	INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
1026	INP_WLOCK_ASSERT(inp);
1027
1028#ifdef TCP_OFFLOAD
1029	if (tp->t_state == TCPS_LISTEN)
1030		tcp_offload_listen_stop(tp);
1031#endif
1032	in_pcbdrop(inp);
1033	TCPSTAT_INC(tcps_closed);
1034	KASSERT(inp->inp_socket != NULL, ("tcp_close: inp_socket NULL"));
1035	so = inp->inp_socket;
1036	soisdisconnected(so);
1037	if (inp->inp_flags & INP_SOCKREF) {
1038		KASSERT(so->so_state & SS_PROTOREF,
1039		    ("tcp_close: !SS_PROTOREF"));
1040		inp->inp_flags &= ~INP_SOCKREF;
1041		INP_WUNLOCK(inp);
1042		ACCEPT_LOCK();
1043		SOCK_LOCK(so);
1044		so->so_state &= ~SS_PROTOREF;
1045		sofree(so);
1046		return (NULL);
1047	}
1048	return (tp);
1049}
1050
1051void
1052tcp_drain(void)
1053{
1054	VNET_ITERATOR_DECL(vnet_iter);
1055
1056	if (!do_tcpdrain)
1057		return;
1058
1059	VNET_LIST_RLOCK_NOSLEEP();
1060	VNET_FOREACH(vnet_iter) {
1061		CURVNET_SET(vnet_iter);
1062		struct inpcb *inpb;
1063		struct tcpcb *tcpb;
1064
1065	/*
1066	 * Walk the tcpbs, if existing, and flush the reassembly queue,
1067	 * if there is one...
1068	 * XXX: The "Net/3" implementation doesn't imply that the TCP
1069	 *      reassembly queue should be flushed, but in a situation
1070	 *	where we're really low on mbufs, this is potentially
1071	 *	useful.
1072	 */
1073		INP_INFO_RLOCK(&V_tcbinfo);
1074		LIST_FOREACH(inpb, V_tcbinfo.ipi_listhead, inp_list) {
1075			if (inpb->inp_flags & INP_TIMEWAIT)
1076				continue;
1077			INP_WLOCK(inpb);
1078			if ((tcpb = intotcpcb(inpb)) != NULL) {
1079				tcp_reass_flush(tcpb);
1080				tcp_clean_sackreport(tcpb);
1081			}
1082			INP_WUNLOCK(inpb);
1083		}
1084		INP_INFO_RUNLOCK(&V_tcbinfo);
1085		CURVNET_RESTORE();
1086	}
1087	VNET_LIST_RUNLOCK_NOSLEEP();
1088}
1089
1090/*
1091 * Notify a tcp user of an asynchronous error;
1092 * store error as soft error, but wake up user
1093 * (for now, won't do anything until can select for soft error).
1094 *
1095 * Do not wake up user since there currently is no mechanism for
1096 * reporting soft errors (yet - a kqueue filter may be added).
1097 */
1098static struct inpcb *
1099tcp_notify(struct inpcb *inp, int error)
1100{
1101	struct tcpcb *tp;
1102
1103	INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
1104	INP_WLOCK_ASSERT(inp);
1105
1106	if ((inp->inp_flags & INP_TIMEWAIT) ||
1107	    (inp->inp_flags & INP_DROPPED))
1108		return (inp);
1109
1110	tp = intotcpcb(inp);
1111	KASSERT(tp != NULL, ("tcp_notify: tp == NULL"));
1112
1113	/*
1114	 * Ignore some errors if we are hooked up.
1115	 * If connection hasn't completed, has retransmitted several times,
1116	 * and receives a second error, give up now.  This is better
1117	 * than waiting a long time to establish a connection that
1118	 * can never complete.
1119	 */
1120	if (tp->t_state == TCPS_ESTABLISHED &&
1121	    (error == EHOSTUNREACH || error == ENETUNREACH ||
1122	     error == EHOSTDOWN)) {
1123		return (inp);
1124	} else if (tp->t_state < TCPS_ESTABLISHED && tp->t_rxtshift > 3 &&
1125	    tp->t_softerror) {
1126		tp = tcp_drop(tp, error);
1127		if (tp != NULL)
1128			return (inp);
1129		else
1130			return (NULL);
1131	} else {
1132		tp->t_softerror = error;
1133		return (inp);
1134	}
1135#if 0
1136	wakeup( &so->so_timeo);
1137	sorwakeup(so);
1138	sowwakeup(so);
1139#endif
1140}
1141
1142static int
1143tcp_pcblist(SYSCTL_HANDLER_ARGS)
1144{
1145	int error, i, m, n, pcb_count;
1146	struct inpcb *inp, **inp_list;
1147	inp_gen_t gencnt;
1148	struct xinpgen xig;
1149
1150	/*
1151	 * The process of preparing the TCB list is too time-consuming and
1152	 * resource-intensive to repeat twice on every request.
1153	 */
1154	if (req->oldptr == NULL) {
1155		n = V_tcbinfo.ipi_count + syncache_pcbcount();
1156		n += imax(n / 8, 10);
1157		req->oldidx = 2 * (sizeof xig) + n * sizeof(struct xtcpcb);
1158		return (0);
1159	}
1160
1161	if (req->newptr != NULL)
1162		return (EPERM);
1163
1164	/*
1165	 * OK, now we're committed to doing something.
1166	 */
1167	INP_INFO_RLOCK(&V_tcbinfo);
1168	gencnt = V_tcbinfo.ipi_gencnt;
1169	n = V_tcbinfo.ipi_count;
1170	INP_INFO_RUNLOCK(&V_tcbinfo);
1171
1172	m = syncache_pcbcount();
1173
1174	error = sysctl_wire_old_buffer(req, 2 * (sizeof xig)
1175		+ (n + m) * sizeof(struct xtcpcb));
1176	if (error != 0)
1177		return (error);
1178
1179	xig.xig_len = sizeof xig;
1180	xig.xig_count = n + m;
1181	xig.xig_gen = gencnt;
1182	xig.xig_sogen = so_gencnt;
1183	error = SYSCTL_OUT(req, &xig, sizeof xig);
1184	if (error)
1185		return (error);
1186
1187	error = syncache_pcblist(req, m, &pcb_count);
1188	if (error)
1189		return (error);
1190
1191	inp_list = malloc(n * sizeof *inp_list, M_TEMP, M_WAITOK);
1192	if (inp_list == NULL)
1193		return (ENOMEM);
1194
1195	INP_INFO_RLOCK(&V_tcbinfo);
1196	for (inp = LIST_FIRST(V_tcbinfo.ipi_listhead), i = 0;
1197	    inp != NULL && i < n; inp = LIST_NEXT(inp, inp_list)) {
1198		INP_WLOCK(inp);
1199		if (inp->inp_gencnt <= gencnt) {
1200			/*
1201			 * XXX: This use of cr_cansee(), introduced with
1202			 * TCP state changes, is not quite right, but for
1203			 * now, better than nothing.
1204			 */
1205			if (inp->inp_flags & INP_TIMEWAIT) {
1206				if (intotw(inp) != NULL)
1207					error = cr_cansee(req->td->td_ucred,
1208					    intotw(inp)->tw_cred);
1209				else
1210					error = EINVAL;	/* Skip this inp. */
1211			} else
1212				error = cr_canseeinpcb(req->td->td_ucred, inp);
1213			if (error == 0) {
1214				in_pcbref(inp);
1215				inp_list[i++] = inp;
1216			}
1217		}
1218		INP_WUNLOCK(inp);
1219	}
1220	INP_INFO_RUNLOCK(&V_tcbinfo);
1221	n = i;
1222
1223	error = 0;
1224	for (i = 0; i < n; i++) {
1225		inp = inp_list[i];
1226		INP_RLOCK(inp);
1227		if (inp->inp_gencnt <= gencnt) {
1228			struct xtcpcb xt;
1229			void *inp_ppcb;
1230
1231			bzero(&xt, sizeof(xt));
1232			xt.xt_len = sizeof xt;
1233			/* XXX should avoid extra copy */
1234			bcopy(inp, &xt.xt_inp, sizeof *inp);
1235			inp_ppcb = inp->inp_ppcb;
1236			if (inp_ppcb == NULL)
1237				bzero((char *) &xt.xt_tp, sizeof xt.xt_tp);
1238			else if (inp->inp_flags & INP_TIMEWAIT) {
1239				bzero((char *) &xt.xt_tp, sizeof xt.xt_tp);
1240				xt.xt_tp.t_state = TCPS_TIME_WAIT;
1241			} else {
1242				bcopy(inp_ppcb, &xt.xt_tp, sizeof xt.xt_tp);
1243				if (xt.xt_tp.t_timers)
1244					tcp_timer_to_xtimer(&xt.xt_tp, xt.xt_tp.t_timers, &xt.xt_timer);
1245			}
1246			if (inp->inp_socket != NULL)
1247				sotoxsocket(inp->inp_socket, &xt.xt_socket);
1248			else {
1249				bzero(&xt.xt_socket, sizeof xt.xt_socket);
1250				xt.xt_socket.xso_protocol = IPPROTO_TCP;
1251			}
1252			xt.xt_inp.inp_gencnt = inp->inp_gencnt;
1253			INP_RUNLOCK(inp);
1254			error = SYSCTL_OUT(req, &xt, sizeof xt);
1255		} else
1256			INP_RUNLOCK(inp);
1257	}
1258	INP_INFO_WLOCK(&V_tcbinfo);
1259	for (i = 0; i < n; i++) {
1260		inp = inp_list[i];
1261		INP_RLOCK(inp);
1262		if (!in_pcbrele_rlocked(inp))
1263			INP_RUNLOCK(inp);
1264	}
1265	INP_INFO_WUNLOCK(&V_tcbinfo);
1266
1267	if (!error) {
1268		/*
1269		 * Give the user an updated idea of our state.
1270		 * If the generation differs from what we told
1271		 * her before, she knows that something happened
1272		 * while we were processing this request, and it
1273		 * might be necessary to retry.
1274		 */
1275		INP_INFO_RLOCK(&V_tcbinfo);
1276		xig.xig_gen = V_tcbinfo.ipi_gencnt;
1277		xig.xig_sogen = so_gencnt;
1278		xig.xig_count = V_tcbinfo.ipi_count + pcb_count;
1279		INP_INFO_RUNLOCK(&V_tcbinfo);
1280		error = SYSCTL_OUT(req, &xig, sizeof xig);
1281	}
1282	free(inp_list, M_TEMP);
1283	return (error);
1284}
1285
1286SYSCTL_PROC(_net_inet_tcp, TCPCTL_PCBLIST, pcblist,
1287    CTLTYPE_OPAQUE | CTLFLAG_RD, NULL, 0,
1288    tcp_pcblist, "S,xtcpcb", "List of active TCP connections");
1289
1290#ifdef INET
1291static int
1292tcp_getcred(SYSCTL_HANDLER_ARGS)
1293{
1294	struct xucred xuc;
1295	struct sockaddr_in addrs[2];
1296	struct inpcb *inp;
1297	int error;
1298
1299	error = priv_check(req->td, PRIV_NETINET_GETCRED);
1300	if (error)
1301		return (error);
1302	error = SYSCTL_IN(req, addrs, sizeof(addrs));
1303	if (error)
1304		return (error);
1305	inp = in_pcblookup(&V_tcbinfo, addrs[1].sin_addr, addrs[1].sin_port,
1306	    addrs[0].sin_addr, addrs[0].sin_port, INPLOOKUP_RLOCKPCB, NULL);
1307	if (inp != NULL) {
1308		if (inp->inp_socket == NULL)
1309			error = ENOENT;
1310		if (error == 0)
1311			error = cr_canseeinpcb(req->td->td_ucred, inp);
1312		if (error == 0)
1313			cru2x(inp->inp_cred, &xuc);
1314		INP_RUNLOCK(inp);
1315	} else
1316		error = ENOENT;
1317	if (error == 0)
1318		error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
1319	return (error);
1320}
1321
1322SYSCTL_PROC(_net_inet_tcp, OID_AUTO, getcred,
1323    CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0,
1324    tcp_getcred, "S,xucred", "Get the xucred of a TCP connection");
1325#endif /* INET */
1326
1327#ifdef INET6
1328static int
1329tcp6_getcred(SYSCTL_HANDLER_ARGS)
1330{
1331	struct xucred xuc;
1332	struct sockaddr_in6 addrs[2];
1333	struct inpcb *inp;
1334	int error;
1335#ifdef INET
1336	int mapped = 0;
1337#endif
1338
1339	error = priv_check(req->td, PRIV_NETINET_GETCRED);
1340	if (error)
1341		return (error);
1342	error = SYSCTL_IN(req, addrs, sizeof(addrs));
1343	if (error)
1344		return (error);
1345	if ((error = sa6_embedscope(&addrs[0], V_ip6_use_defzone)) != 0 ||
1346	    (error = sa6_embedscope(&addrs[1], V_ip6_use_defzone)) != 0) {
1347		return (error);
1348	}
1349	if (IN6_IS_ADDR_V4MAPPED(&addrs[0].sin6_addr)) {
1350#ifdef INET
1351		if (IN6_IS_ADDR_V4MAPPED(&addrs[1].sin6_addr))
1352			mapped = 1;
1353		else
1354#endif
1355			return (EINVAL);
1356	}
1357
1358#ifdef INET
1359	if (mapped == 1)
1360		inp = in_pcblookup(&V_tcbinfo,
1361			*(struct in_addr *)&addrs[1].sin6_addr.s6_addr[12],
1362			addrs[1].sin6_port,
1363			*(struct in_addr *)&addrs[0].sin6_addr.s6_addr[12],
1364			addrs[0].sin6_port, INPLOOKUP_RLOCKPCB, NULL);
1365	else
1366#endif
1367		inp = in6_pcblookup(&V_tcbinfo,
1368			&addrs[1].sin6_addr, addrs[1].sin6_port,
1369			&addrs[0].sin6_addr, addrs[0].sin6_port,
1370			INPLOOKUP_RLOCKPCB, NULL);
1371	if (inp != NULL) {
1372		if (inp->inp_socket == NULL)
1373			error = ENOENT;
1374		if (error == 0)
1375			error = cr_canseeinpcb(req->td->td_ucred, inp);
1376		if (error == 0)
1377			cru2x(inp->inp_cred, &xuc);
1378		INP_RUNLOCK(inp);
1379	} else
1380		error = ENOENT;
1381	if (error == 0)
1382		error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
1383	return (error);
1384}
1385
1386SYSCTL_PROC(_net_inet6_tcp6, OID_AUTO, getcred,
1387    CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0,
1388    tcp6_getcred, "S,xucred", "Get the xucred of a TCP6 connection");
1389#endif /* INET6 */
1390
1391
1392#ifdef INET
1393void
1394tcp_ctlinput(int cmd, struct sockaddr *sa, void *vip)
1395{
1396	struct ip *ip = vip;
1397	struct tcphdr *th;
1398	struct in_addr faddr;
1399	struct inpcb *inp;
1400	struct tcpcb *tp;
1401	struct inpcb *(*notify)(struct inpcb *, int) = tcp_notify;
1402	struct icmp *icp;
1403	struct in_conninfo inc;
1404	tcp_seq icmp_tcp_seq;
1405	int mtu;
1406
1407	faddr = ((struct sockaddr_in *)sa)->sin_addr;
1408	if (sa->sa_family != AF_INET || faddr.s_addr == INADDR_ANY)
1409		return;
1410
1411	if (cmd == PRC_MSGSIZE)
1412		notify = tcp_mtudisc_notify;
1413	else if (V_icmp_may_rst && (cmd == PRC_UNREACH_ADMIN_PROHIB ||
1414		cmd == PRC_UNREACH_PORT || cmd == PRC_TIMXCEED_INTRANS) && ip)
1415		notify = tcp_drop_syn_sent;
1416	/*
1417	 * Redirects don't need to be handled up here.
1418	 */
1419	else if (PRC_IS_REDIRECT(cmd))
1420		return;
1421	/*
1422	 * Source quench is depreciated.
1423	 */
1424	else if (cmd == PRC_QUENCH)
1425		return;
1426	/*
1427	 * Hostdead is ugly because it goes linearly through all PCBs.
1428	 * XXX: We never get this from ICMP, otherwise it makes an
1429	 * excellent DoS attack on machines with many connections.
1430	 */
1431	else if (cmd == PRC_HOSTDEAD)
1432		ip = NULL;
1433	else if ((unsigned)cmd >= PRC_NCMDS || inetctlerrmap[cmd] == 0)
1434		return;
1435	if (ip != NULL) {
1436		icp = (struct icmp *)((caddr_t)ip
1437				      - offsetof(struct icmp, icmp_ip));
1438		th = (struct tcphdr *)((caddr_t)ip
1439				       + (ip->ip_hl << 2));
1440		INP_INFO_WLOCK(&V_tcbinfo);
1441		inp = in_pcblookup(&V_tcbinfo, faddr, th->th_dport,
1442		    ip->ip_src, th->th_sport, INPLOOKUP_WLOCKPCB, NULL);
1443		if (inp != NULL)  {
1444			if (!(inp->inp_flags & INP_TIMEWAIT) &&
1445			    !(inp->inp_flags & INP_DROPPED) &&
1446			    !(inp->inp_socket == NULL)) {
1447				icmp_tcp_seq = htonl(th->th_seq);
1448				tp = intotcpcb(inp);
1449				if (SEQ_GEQ(icmp_tcp_seq, tp->snd_una) &&
1450				    SEQ_LT(icmp_tcp_seq, tp->snd_max)) {
1451					if (cmd == PRC_MSGSIZE) {
1452					    /*
1453					     * MTU discovery:
1454					     * If we got a needfrag set the MTU
1455					     * in the route to the suggested new
1456					     * value (if given) and then notify.
1457					     */
1458					    bzero(&inc, sizeof(inc));
1459					    inc.inc_faddr = faddr;
1460					    inc.inc_fibnum =
1461						inp->inp_inc.inc_fibnum;
1462
1463					    mtu = ntohs(icp->icmp_nextmtu);
1464					    /*
1465					     * If no alternative MTU was
1466					     * proposed, try the next smaller
1467					     * one.
1468					     */
1469					    if (!mtu)
1470						mtu = ip_next_mtu(
1471						 ntohs(ip->ip_len), 1);
1472					    if (mtu < V_tcp_minmss
1473						 + sizeof(struct tcpiphdr))
1474						mtu = V_tcp_minmss
1475						 + sizeof(struct tcpiphdr);
1476					    /*
1477					     * Only cache the MTU if it
1478					     * is smaller than the interface
1479					     * or route MTU.  tcp_mtudisc()
1480					     * will do right thing by itself.
1481					     */
1482					    if (mtu <= tcp_maxmtu(&inc, NULL))
1483						tcp_hc_updatemtu(&inc, mtu);
1484					    tcp_mtudisc(inp, mtu);
1485					} else
1486						inp = (*notify)(inp,
1487						    inetctlerrmap[cmd]);
1488				}
1489			}
1490			if (inp != NULL)
1491				INP_WUNLOCK(inp);
1492		} else {
1493			bzero(&inc, sizeof(inc));
1494			inc.inc_fport = th->th_dport;
1495			inc.inc_lport = th->th_sport;
1496			inc.inc_faddr = faddr;
1497			inc.inc_laddr = ip->ip_src;
1498			syncache_unreach(&inc, th);
1499		}
1500		INP_INFO_WUNLOCK(&V_tcbinfo);
1501	} else
1502		in_pcbnotifyall(&V_tcbinfo, faddr, inetctlerrmap[cmd], notify);
1503}
1504#endif /* INET */
1505
1506#ifdef INET6
1507void
1508tcp6_ctlinput(int cmd, struct sockaddr *sa, void *d)
1509{
1510	struct tcphdr th;
1511	struct inpcb *(*notify)(struct inpcb *, int) = tcp_notify;
1512	struct ip6_hdr *ip6;
1513	struct mbuf *m;
1514	struct ip6ctlparam *ip6cp = NULL;
1515	const struct sockaddr_in6 *sa6_src = NULL;
1516	int off;
1517	struct tcp_portonly {
1518		u_int16_t th_sport;
1519		u_int16_t th_dport;
1520	} *thp;
1521
1522	if (sa->sa_family != AF_INET6 ||
1523	    sa->sa_len != sizeof(struct sockaddr_in6))
1524		return;
1525
1526	if (cmd == PRC_MSGSIZE)
1527		notify = tcp_mtudisc_notify;
1528	else if (!PRC_IS_REDIRECT(cmd) &&
1529		 ((unsigned)cmd >= PRC_NCMDS || inet6ctlerrmap[cmd] == 0))
1530		return;
1531	/* Source quench is depreciated. */
1532	else if (cmd == PRC_QUENCH)
1533		return;
1534
1535	/* if the parameter is from icmp6, decode it. */
1536	if (d != NULL) {
1537		ip6cp = (struct ip6ctlparam *)d;
1538		m = ip6cp->ip6c_m;
1539		ip6 = ip6cp->ip6c_ip6;
1540		off = ip6cp->ip6c_off;
1541		sa6_src = ip6cp->ip6c_src;
1542	} else {
1543		m = NULL;
1544		ip6 = NULL;
1545		off = 0;	/* fool gcc */
1546		sa6_src = &sa6_any;
1547	}
1548
1549	if (ip6 != NULL) {
1550		struct in_conninfo inc;
1551		/*
1552		 * XXX: We assume that when IPV6 is non NULL,
1553		 * M and OFF are valid.
1554		 */
1555
1556		/* check if we can safely examine src and dst ports */
1557		if (m->m_pkthdr.len < off + sizeof(*thp))
1558			return;
1559
1560		bzero(&th, sizeof(th));
1561		m_copydata(m, off, sizeof(*thp), (caddr_t)&th);
1562
1563		in6_pcbnotify(&V_tcbinfo, sa, th.th_dport,
1564		    (struct sockaddr *)ip6cp->ip6c_src,
1565		    th.th_sport, cmd, NULL, notify);
1566
1567		bzero(&inc, sizeof(inc));
1568		inc.inc_fport = th.th_dport;
1569		inc.inc_lport = th.th_sport;
1570		inc.inc6_faddr = ((struct sockaddr_in6 *)sa)->sin6_addr;
1571		inc.inc6_laddr = ip6cp->ip6c_src->sin6_addr;
1572		inc.inc_flags |= INC_ISIPV6;
1573		INP_INFO_WLOCK(&V_tcbinfo);
1574		syncache_unreach(&inc, &th);
1575		INP_INFO_WUNLOCK(&V_tcbinfo);
1576	} else
1577		in6_pcbnotify(&V_tcbinfo, sa, 0, (const struct sockaddr *)sa6_src,
1578			      0, cmd, NULL, notify);
1579}
1580#endif /* INET6 */
1581
1582
1583/*
1584 * Following is where TCP initial sequence number generation occurs.
1585 *
1586 * There are two places where we must use initial sequence numbers:
1587 * 1.  In SYN-ACK packets.
1588 * 2.  In SYN packets.
1589 *
1590 * All ISNs for SYN-ACK packets are generated by the syncache.  See
1591 * tcp_syncache.c for details.
1592 *
1593 * The ISNs in SYN packets must be monotonic; TIME_WAIT recycling
1594 * depends on this property.  In addition, these ISNs should be
1595 * unguessable so as to prevent connection hijacking.  To satisfy
1596 * the requirements of this situation, the algorithm outlined in
1597 * RFC 1948 is used, with only small modifications.
1598 *
1599 * Implementation details:
1600 *
1601 * Time is based off the system timer, and is corrected so that it
1602 * increases by one megabyte per second.  This allows for proper
1603 * recycling on high speed LANs while still leaving over an hour
1604 * before rollover.
1605 *
1606 * As reading the *exact* system time is too expensive to be done
1607 * whenever setting up a TCP connection, we increment the time
1608 * offset in two ways.  First, a small random positive increment
1609 * is added to isn_offset for each connection that is set up.
1610 * Second, the function tcp_isn_tick fires once per clock tick
1611 * and increments isn_offset as necessary so that sequence numbers
1612 * are incremented at approximately ISN_BYTES_PER_SECOND.  The
1613 * random positive increments serve only to ensure that the same
1614 * exact sequence number is never sent out twice (as could otherwise
1615 * happen when a port is recycled in less than the system tick
1616 * interval.)
1617 *
1618 * net.inet.tcp.isn_reseed_interval controls the number of seconds
1619 * between seeding of isn_secret.  This is normally set to zero,
1620 * as reseeding should not be necessary.
1621 *
1622 * Locking of the global variables isn_secret, isn_last_reseed, isn_offset,
1623 * isn_offset_old, and isn_ctx is performed using the TCP pcbinfo lock.  In
1624 * general, this means holding an exclusive (write) lock.
1625 */
1626
1627#define ISN_BYTES_PER_SECOND 1048576
1628#define ISN_STATIC_INCREMENT 4096
1629#define ISN_RANDOM_INCREMENT (4096 - 1)
1630
1631static VNET_DEFINE(u_char, isn_secret[32]);
1632static VNET_DEFINE(int, isn_last);
1633static VNET_DEFINE(int, isn_last_reseed);
1634static VNET_DEFINE(u_int32_t, isn_offset);
1635static VNET_DEFINE(u_int32_t, isn_offset_old);
1636
1637#define	V_isn_secret			VNET(isn_secret)
1638#define	V_isn_last			VNET(isn_last)
1639#define	V_isn_last_reseed		VNET(isn_last_reseed)
1640#define	V_isn_offset			VNET(isn_offset)
1641#define	V_isn_offset_old		VNET(isn_offset_old)
1642
1643tcp_seq
1644tcp_new_isn(struct tcpcb *tp)
1645{
1646	MD5_CTX isn_ctx;
1647	u_int32_t md5_buffer[4];
1648	tcp_seq new_isn;
1649	u_int32_t projected_offset;
1650
1651	INP_WLOCK_ASSERT(tp->t_inpcb);
1652
1653	ISN_LOCK();
1654	/* Seed if this is the first use, reseed if requested. */
1655	if ((V_isn_last_reseed == 0) || ((V_tcp_isn_reseed_interval > 0) &&
1656	     (((u_int)V_isn_last_reseed + (u_int)V_tcp_isn_reseed_interval*hz)
1657		< (u_int)ticks))) {
1658		read_random(&V_isn_secret, sizeof(V_isn_secret));
1659		V_isn_last_reseed = ticks;
1660	}
1661
1662	/* Compute the md5 hash and return the ISN. */
1663	MD5Init(&isn_ctx);
1664	MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_fport, sizeof(u_short));
1665	MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_lport, sizeof(u_short));
1666#ifdef INET6
1667	if ((tp->t_inpcb->inp_vflag & INP_IPV6) != 0) {
1668		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_faddr,
1669			  sizeof(struct in6_addr));
1670		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_laddr,
1671			  sizeof(struct in6_addr));
1672	} else
1673#endif
1674	{
1675		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_faddr,
1676			  sizeof(struct in_addr));
1677		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_laddr,
1678			  sizeof(struct in_addr));
1679	}
1680	MD5Update(&isn_ctx, (u_char *) &V_isn_secret, sizeof(V_isn_secret));
1681	MD5Final((u_char *) &md5_buffer, &isn_ctx);
1682	new_isn = (tcp_seq) md5_buffer[0];
1683	V_isn_offset += ISN_STATIC_INCREMENT +
1684		(arc4random() & ISN_RANDOM_INCREMENT);
1685	if (ticks != V_isn_last) {
1686		projected_offset = V_isn_offset_old +
1687		    ISN_BYTES_PER_SECOND / hz * (ticks - V_isn_last);
1688		if (SEQ_GT(projected_offset, V_isn_offset))
1689			V_isn_offset = projected_offset;
1690		V_isn_offset_old = V_isn_offset;
1691		V_isn_last = ticks;
1692	}
1693	new_isn += V_isn_offset;
1694	ISN_UNLOCK();
1695	return (new_isn);
1696}
1697
1698/*
1699 * When a specific ICMP unreachable message is received and the
1700 * connection state is SYN-SENT, drop the connection.  This behavior
1701 * is controlled by the icmp_may_rst sysctl.
1702 */
1703struct inpcb *
1704tcp_drop_syn_sent(struct inpcb *inp, int errno)
1705{
1706	struct tcpcb *tp;
1707
1708	INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
1709	INP_WLOCK_ASSERT(inp);
1710
1711	if ((inp->inp_flags & INP_TIMEWAIT) ||
1712	    (inp->inp_flags & INP_DROPPED))
1713		return (inp);
1714
1715	tp = intotcpcb(inp);
1716	if (tp->t_state != TCPS_SYN_SENT)
1717		return (inp);
1718
1719	tp = tcp_drop(tp, errno);
1720	if (tp != NULL)
1721		return (inp);
1722	else
1723		return (NULL);
1724}
1725
1726/*
1727 * When `need fragmentation' ICMP is received, update our idea of the MSS
1728 * based on the new value. Also nudge TCP to send something, since we
1729 * know the packet we just sent was dropped.
1730 * This duplicates some code in the tcp_mss() function in tcp_input.c.
1731 */
1732static struct inpcb *
1733tcp_mtudisc_notify(struct inpcb *inp, int error)
1734{
1735
1736	return (tcp_mtudisc(inp, -1));
1737}
1738
1739struct inpcb *
1740tcp_mtudisc(struct inpcb *inp, int mtuoffer)
1741{
1742	struct tcpcb *tp;
1743	struct socket *so;
1744
1745	INP_WLOCK_ASSERT(inp);
1746	if ((inp->inp_flags & INP_TIMEWAIT) ||
1747	    (inp->inp_flags & INP_DROPPED))
1748		return (inp);
1749
1750	tp = intotcpcb(inp);
1751	KASSERT(tp != NULL, ("tcp_mtudisc: tp == NULL"));
1752
1753	tcp_mss_update(tp, -1, mtuoffer, NULL, NULL);
1754
1755	so = inp->inp_socket;
1756	SOCKBUF_LOCK(&so->so_snd);
1757	/* If the mss is larger than the socket buffer, decrease the mss. */
1758	if (so->so_snd.sb_hiwat < tp->t_maxseg)
1759		tp->t_maxseg = so->so_snd.sb_hiwat;
1760	SOCKBUF_UNLOCK(&so->so_snd);
1761
1762	TCPSTAT_INC(tcps_mturesent);
1763	tp->t_rtttime = 0;
1764	tp->snd_nxt = tp->snd_una;
1765	tcp_free_sackholes(tp);
1766	tp->snd_recover = tp->snd_max;
1767	if (tp->t_flags & TF_SACK_PERMIT)
1768		EXIT_FASTRECOVERY(tp->t_flags);
1769	tcp_output(tp);
1770	return (inp);
1771}
1772
1773#ifdef INET
1774/*
1775 * Look-up the routing entry to the peer of this inpcb.  If no route
1776 * is found and it cannot be allocated, then return 0.  This routine
1777 * is called by TCP routines that access the rmx structure and by
1778 * tcp_mss_update to get the peer/interface MTU.
1779 */
1780u_long
1781tcp_maxmtu(struct in_conninfo *inc, struct tcp_ifcap *cap)
1782{
1783	struct route sro;
1784	struct sockaddr_in *dst;
1785	struct ifnet *ifp;
1786	u_long maxmtu = 0;
1787
1788	KASSERT(inc != NULL, ("tcp_maxmtu with NULL in_conninfo pointer"));
1789
1790	bzero(&sro, sizeof(sro));
1791	if (inc->inc_faddr.s_addr != INADDR_ANY) {
1792	        dst = (struct sockaddr_in *)&sro.ro_dst;
1793		dst->sin_family = AF_INET;
1794		dst->sin_len = sizeof(*dst);
1795		dst->sin_addr = inc->inc_faddr;
1796		in_rtalloc_ign(&sro, 0, inc->inc_fibnum);
1797	}
1798	if (sro.ro_rt != NULL) {
1799		ifp = sro.ro_rt->rt_ifp;
1800		if (sro.ro_rt->rt_mtu == 0)
1801			maxmtu = ifp->if_mtu;
1802		else
1803			maxmtu = min(sro.ro_rt->rt_mtu, ifp->if_mtu);
1804
1805		/* Report additional interface capabilities. */
1806		if (cap != NULL) {
1807			if (ifp->if_capenable & IFCAP_TSO4 &&
1808			    ifp->if_hwassist & CSUM_TSO) {
1809				cap->ifcap |= CSUM_TSO;
1810				cap->tsomax = ifp->if_hw_tsomax;
1811			}
1812		}
1813		RTFREE(sro.ro_rt);
1814	}
1815	return (maxmtu);
1816}
1817#endif /* INET */
1818
1819#ifdef INET6
1820u_long
1821tcp_maxmtu6(struct in_conninfo *inc, struct tcp_ifcap *cap)
1822{
1823	struct route_in6 sro6;
1824	struct ifnet *ifp;
1825	u_long maxmtu = 0;
1826
1827	KASSERT(inc != NULL, ("tcp_maxmtu6 with NULL in_conninfo pointer"));
1828
1829	bzero(&sro6, sizeof(sro6));
1830	if (!IN6_IS_ADDR_UNSPECIFIED(&inc->inc6_faddr)) {
1831		sro6.ro_dst.sin6_family = AF_INET6;
1832		sro6.ro_dst.sin6_len = sizeof(struct sockaddr_in6);
1833		sro6.ro_dst.sin6_addr = inc->inc6_faddr;
1834		in6_rtalloc_ign(&sro6, 0, inc->inc_fibnum);
1835	}
1836	if (sro6.ro_rt != NULL) {
1837		ifp = sro6.ro_rt->rt_ifp;
1838		if (sro6.ro_rt->rt_mtu == 0)
1839			maxmtu = IN6_LINKMTU(sro6.ro_rt->rt_ifp);
1840		else
1841			maxmtu = min(sro6.ro_rt->rt_mtu,
1842				     IN6_LINKMTU(sro6.ro_rt->rt_ifp));
1843
1844		/* Report additional interface capabilities. */
1845		if (cap != NULL) {
1846			if (ifp->if_capenable & IFCAP_TSO6 &&
1847			    ifp->if_hwassist & CSUM_TSO) {
1848				cap->ifcap |= CSUM_TSO;
1849				cap->tsomax = ifp->if_hw_tsomax;
1850			}
1851		}
1852		RTFREE(sro6.ro_rt);
1853	}
1854
1855	return (maxmtu);
1856}
1857#endif /* INET6 */
1858
1859#ifdef IPSEC
1860/* compute ESP/AH header size for TCP, including outer IP header. */
1861size_t
1862ipsec_hdrsiz_tcp(struct tcpcb *tp)
1863{
1864	struct inpcb *inp;
1865	struct mbuf *m;
1866	size_t hdrsiz;
1867	struct ip *ip;
1868#ifdef INET6
1869	struct ip6_hdr *ip6;
1870#endif
1871	struct tcphdr *th;
1872
1873	if ((tp == NULL) || ((inp = tp->t_inpcb) == NULL))
1874		return (0);
1875	m = m_gethdr(M_NOWAIT, MT_DATA);
1876	if (!m)
1877		return (0);
1878
1879#ifdef INET6
1880	if ((inp->inp_vflag & INP_IPV6) != 0) {
1881		ip6 = mtod(m, struct ip6_hdr *);
1882		th = (struct tcphdr *)(ip6 + 1);
1883		m->m_pkthdr.len = m->m_len =
1884			sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
1885		tcpip_fillheaders(inp, ip6, th);
1886		hdrsiz = ipsec_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1887	} else
1888#endif /* INET6 */
1889	{
1890		ip = mtod(m, struct ip *);
1891		th = (struct tcphdr *)(ip + 1);
1892		m->m_pkthdr.len = m->m_len = sizeof(struct tcpiphdr);
1893		tcpip_fillheaders(inp, ip, th);
1894		hdrsiz = ipsec_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1895	}
1896
1897	m_free(m);
1898	return (hdrsiz);
1899}
1900#endif /* IPSEC */
1901
1902#ifdef TCP_SIGNATURE
1903/*
1904 * Callback function invoked by m_apply() to digest TCP segment data
1905 * contained within an mbuf chain.
1906 */
1907static int
1908tcp_signature_apply(void *fstate, void *data, u_int len)
1909{
1910
1911	MD5Update(fstate, (u_char *)data, len);
1912	return (0);
1913}
1914
1915/*
1916 * Compute TCP-MD5 hash of a TCP segment. (RFC2385)
1917 *
1918 * Parameters:
1919 * m		pointer to head of mbuf chain
1920 * _unused
1921 * len		length of TCP segment data, excluding options
1922 * optlen	length of TCP segment options
1923 * buf		pointer to storage for computed MD5 digest
1924 * direction	direction of flow (IPSEC_DIR_INBOUND or OUTBOUND)
1925 *
1926 * We do this over ip, tcphdr, segment data, and the key in the SADB.
1927 * When called from tcp_input(), we can be sure that th_sum has been
1928 * zeroed out and verified already.
1929 *
1930 * Return 0 if successful, otherwise return -1.
1931 *
1932 * XXX The key is retrieved from the system's PF_KEY SADB, by keying a
1933 * search with the destination IP address, and a 'magic SPI' to be
1934 * determined by the application. This is hardcoded elsewhere to 1179
1935 * right now. Another branch of this code exists which uses the SPD to
1936 * specify per-application flows but it is unstable.
1937 */
1938int
1939tcp_signature_compute(struct mbuf *m, int _unused, int len, int optlen,
1940    u_char *buf, u_int direction)
1941{
1942	union sockaddr_union dst;
1943#ifdef INET
1944	struct ippseudo ippseudo;
1945#endif
1946	MD5_CTX ctx;
1947	int doff;
1948	struct ip *ip;
1949#ifdef INET
1950	struct ipovly *ipovly;
1951#endif
1952	struct secasvar *sav;
1953	struct tcphdr *th;
1954#ifdef INET6
1955	struct ip6_hdr *ip6;
1956	struct in6_addr in6;
1957	char ip6buf[INET6_ADDRSTRLEN];
1958	uint32_t plen;
1959	uint16_t nhdr;
1960#endif
1961	u_short savecsum;
1962
1963	KASSERT(m != NULL, ("NULL mbuf chain"));
1964	KASSERT(buf != NULL, ("NULL signature pointer"));
1965
1966	/* Extract the destination from the IP header in the mbuf. */
1967	bzero(&dst, sizeof(union sockaddr_union));
1968	ip = mtod(m, struct ip *);
1969#ifdef INET6
1970	ip6 = NULL;	/* Make the compiler happy. */
1971#endif
1972	switch (ip->ip_v) {
1973#ifdef INET
1974	case IPVERSION:
1975		dst.sa.sa_len = sizeof(struct sockaddr_in);
1976		dst.sa.sa_family = AF_INET;
1977		dst.sin.sin_addr = (direction == IPSEC_DIR_INBOUND) ?
1978		    ip->ip_src : ip->ip_dst;
1979		break;
1980#endif
1981#ifdef INET6
1982	case (IPV6_VERSION >> 4):
1983		ip6 = mtod(m, struct ip6_hdr *);
1984		dst.sa.sa_len = sizeof(struct sockaddr_in6);
1985		dst.sa.sa_family = AF_INET6;
1986		dst.sin6.sin6_addr = (direction == IPSEC_DIR_INBOUND) ?
1987		    ip6->ip6_src : ip6->ip6_dst;
1988		break;
1989#endif
1990	default:
1991		return (EINVAL);
1992		/* NOTREACHED */
1993		break;
1994	}
1995
1996	/* Look up an SADB entry which matches the address of the peer. */
1997	sav = KEY_ALLOCSA(&dst, IPPROTO_TCP, htonl(TCP_SIG_SPI));
1998	if (sav == NULL) {
1999		ipseclog((LOG_ERR, "%s: SADB lookup failed for %s\n", __func__,
2000		    (ip->ip_v == IPVERSION) ? inet_ntoa(dst.sin.sin_addr) :
2001#ifdef INET6
2002			(ip->ip_v == (IPV6_VERSION >> 4)) ?
2003			    ip6_sprintf(ip6buf, &dst.sin6.sin6_addr) :
2004#endif
2005			"(unsupported)"));
2006		return (EINVAL);
2007	}
2008
2009	MD5Init(&ctx);
2010	/*
2011	 * Step 1: Update MD5 hash with IP(v6) pseudo-header.
2012	 *
2013	 * XXX The ippseudo header MUST be digested in network byte order,
2014	 * or else we'll fail the regression test. Assume all fields we've
2015	 * been doing arithmetic on have been in host byte order.
2016	 * XXX One cannot depend on ipovly->ih_len here. When called from
2017	 * tcp_output(), the underlying ip_len member has not yet been set.
2018	 */
2019	switch (ip->ip_v) {
2020#ifdef INET
2021	case IPVERSION:
2022		ipovly = (struct ipovly *)ip;
2023		ippseudo.ippseudo_src = ipovly->ih_src;
2024		ippseudo.ippseudo_dst = ipovly->ih_dst;
2025		ippseudo.ippseudo_pad = 0;
2026		ippseudo.ippseudo_p = IPPROTO_TCP;
2027		ippseudo.ippseudo_len = htons(len + sizeof(struct tcphdr) +
2028		    optlen);
2029		MD5Update(&ctx, (char *)&ippseudo, sizeof(struct ippseudo));
2030
2031		th = (struct tcphdr *)((u_char *)ip + sizeof(struct ip));
2032		doff = sizeof(struct ip) + sizeof(struct tcphdr) + optlen;
2033		break;
2034#endif
2035#ifdef INET6
2036	/*
2037	 * RFC 2385, 2.0  Proposal
2038	 * For IPv6, the pseudo-header is as described in RFC 2460, namely the
2039	 * 128-bit source IPv6 address, 128-bit destination IPv6 address, zero-
2040	 * extended next header value (to form 32 bits), and 32-bit segment
2041	 * length.
2042	 * Note: Upper-Layer Packet Length comes before Next Header.
2043	 */
2044	case (IPV6_VERSION >> 4):
2045		in6 = ip6->ip6_src;
2046		in6_clearscope(&in6);
2047		MD5Update(&ctx, (char *)&in6, sizeof(struct in6_addr));
2048		in6 = ip6->ip6_dst;
2049		in6_clearscope(&in6);
2050		MD5Update(&ctx, (char *)&in6, sizeof(struct in6_addr));
2051		plen = htonl(len + sizeof(struct tcphdr) + optlen);
2052		MD5Update(&ctx, (char *)&plen, sizeof(uint32_t));
2053		nhdr = 0;
2054		MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
2055		MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
2056		MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
2057		nhdr = IPPROTO_TCP;
2058		MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
2059
2060		th = (struct tcphdr *)((u_char *)ip6 + sizeof(struct ip6_hdr));
2061		doff = sizeof(struct ip6_hdr) + sizeof(struct tcphdr) + optlen;
2062		break;
2063#endif
2064	default:
2065		return (EINVAL);
2066		/* NOTREACHED */
2067		break;
2068	}
2069
2070
2071	/*
2072	 * Step 2: Update MD5 hash with TCP header, excluding options.
2073	 * The TCP checksum must be set to zero.
2074	 */
2075	savecsum = th->th_sum;
2076	th->th_sum = 0;
2077	MD5Update(&ctx, (char *)th, sizeof(struct tcphdr));
2078	th->th_sum = savecsum;
2079
2080	/*
2081	 * Step 3: Update MD5 hash with TCP segment data.
2082	 *         Use m_apply() to avoid an early m_pullup().
2083	 */
2084	if (len > 0)
2085		m_apply(m, doff, len, tcp_signature_apply, &ctx);
2086
2087	/*
2088	 * Step 4: Update MD5 hash with shared secret.
2089	 */
2090	MD5Update(&ctx, sav->key_auth->key_data, _KEYLEN(sav->key_auth));
2091	MD5Final(buf, &ctx);
2092
2093	key_sa_recordxfer(sav, m);
2094	KEY_FREESAV(&sav);
2095	return (0);
2096}
2097
2098/*
2099 * Verify the TCP-MD5 hash of a TCP segment. (RFC2385)
2100 *
2101 * Parameters:
2102 * m		pointer to head of mbuf chain
2103 * len		length of TCP segment data, excluding options
2104 * optlen	length of TCP segment options
2105 * buf		pointer to storage for computed MD5 digest
2106 * direction	direction of flow (IPSEC_DIR_INBOUND or OUTBOUND)
2107 *
2108 * Return 1 if successful, otherwise return 0.
2109 */
2110int
2111tcp_signature_verify(struct mbuf *m, int off0, int tlen, int optlen,
2112    struct tcpopt *to, struct tcphdr *th, u_int tcpbflag)
2113{
2114	char tmpdigest[TCP_SIGLEN];
2115
2116	if (tcp_sig_checksigs == 0)
2117		return (1);
2118	if ((tcpbflag & TF_SIGNATURE) == 0) {
2119		if ((to->to_flags & TOF_SIGNATURE) != 0) {
2120
2121			/*
2122			 * If this socket is not expecting signature but
2123			 * the segment contains signature just fail.
2124			 */
2125			TCPSTAT_INC(tcps_sig_err_sigopt);
2126			TCPSTAT_INC(tcps_sig_rcvbadsig);
2127			return (0);
2128		}
2129
2130		/* Signature is not expected, and not present in segment. */
2131		return (1);
2132	}
2133
2134	/*
2135	 * If this socket is expecting signature but the segment does not
2136	 * contain any just fail.
2137	 */
2138	if ((to->to_flags & TOF_SIGNATURE) == 0) {
2139		TCPSTAT_INC(tcps_sig_err_nosigopt);
2140		TCPSTAT_INC(tcps_sig_rcvbadsig);
2141		return (0);
2142	}
2143	if (tcp_signature_compute(m, off0, tlen, optlen, &tmpdigest[0],
2144	    IPSEC_DIR_INBOUND) == -1) {
2145		TCPSTAT_INC(tcps_sig_err_buildsig);
2146		TCPSTAT_INC(tcps_sig_rcvbadsig);
2147		return (0);
2148	}
2149
2150	if (bcmp(to->to_signature, &tmpdigest[0], TCP_SIGLEN) != 0) {
2151		TCPSTAT_INC(tcps_sig_rcvbadsig);
2152		return (0);
2153	}
2154	TCPSTAT_INC(tcps_sig_rcvgoodsig);
2155	return (1);
2156}
2157#endif /* TCP_SIGNATURE */
2158
2159static int
2160sysctl_drop(SYSCTL_HANDLER_ARGS)
2161{
2162	/* addrs[0] is a foreign socket, addrs[1] is a local one. */
2163	struct sockaddr_storage addrs[2];
2164	struct inpcb *inp;
2165	struct tcpcb *tp;
2166	struct tcptw *tw;
2167	struct sockaddr_in *fin, *lin;
2168#ifdef INET6
2169	struct sockaddr_in6 *fin6, *lin6;
2170#endif
2171	int error;
2172
2173	inp = NULL;
2174	fin = lin = NULL;
2175#ifdef INET6
2176	fin6 = lin6 = NULL;
2177#endif
2178	error = 0;
2179
2180	if (req->oldptr != NULL || req->oldlen != 0)
2181		return (EINVAL);
2182	if (req->newptr == NULL)
2183		return (EPERM);
2184	if (req->newlen < sizeof(addrs))
2185		return (ENOMEM);
2186	error = SYSCTL_IN(req, &addrs, sizeof(addrs));
2187	if (error)
2188		return (error);
2189
2190	switch (addrs[0].ss_family) {
2191#ifdef INET6
2192	case AF_INET6:
2193		fin6 = (struct sockaddr_in6 *)&addrs[0];
2194		lin6 = (struct sockaddr_in6 *)&addrs[1];
2195		if (fin6->sin6_len != sizeof(struct sockaddr_in6) ||
2196		    lin6->sin6_len != sizeof(struct sockaddr_in6))
2197			return (EINVAL);
2198		if (IN6_IS_ADDR_V4MAPPED(&fin6->sin6_addr)) {
2199			if (!IN6_IS_ADDR_V4MAPPED(&lin6->sin6_addr))
2200				return (EINVAL);
2201			in6_sin6_2_sin_in_sock((struct sockaddr *)&addrs[0]);
2202			in6_sin6_2_sin_in_sock((struct sockaddr *)&addrs[1]);
2203			fin = (struct sockaddr_in *)&addrs[0];
2204			lin = (struct sockaddr_in *)&addrs[1];
2205			break;
2206		}
2207		error = sa6_embedscope(fin6, V_ip6_use_defzone);
2208		if (error)
2209			return (error);
2210		error = sa6_embedscope(lin6, V_ip6_use_defzone);
2211		if (error)
2212			return (error);
2213		break;
2214#endif
2215#ifdef INET
2216	case AF_INET:
2217		fin = (struct sockaddr_in *)&addrs[0];
2218		lin = (struct sockaddr_in *)&addrs[1];
2219		if (fin->sin_len != sizeof(struct sockaddr_in) ||
2220		    lin->sin_len != sizeof(struct sockaddr_in))
2221			return (EINVAL);
2222		break;
2223#endif
2224	default:
2225		return (EINVAL);
2226	}
2227	INP_INFO_WLOCK(&V_tcbinfo);
2228	switch (addrs[0].ss_family) {
2229#ifdef INET6
2230	case AF_INET6:
2231		inp = in6_pcblookup(&V_tcbinfo, &fin6->sin6_addr,
2232		    fin6->sin6_port, &lin6->sin6_addr, lin6->sin6_port,
2233		    INPLOOKUP_WLOCKPCB, NULL);
2234		break;
2235#endif
2236#ifdef INET
2237	case AF_INET:
2238		inp = in_pcblookup(&V_tcbinfo, fin->sin_addr, fin->sin_port,
2239		    lin->sin_addr, lin->sin_port, INPLOOKUP_WLOCKPCB, NULL);
2240		break;
2241#endif
2242	}
2243	if (inp != NULL) {
2244		if (inp->inp_flags & INP_TIMEWAIT) {
2245			/*
2246			 * XXXRW: There currently exists a state where an
2247			 * inpcb is present, but its timewait state has been
2248			 * discarded.  For now, don't allow dropping of this
2249			 * type of inpcb.
2250			 */
2251			tw = intotw(inp);
2252			if (tw != NULL)
2253				tcp_twclose(tw, 0);
2254			else
2255				INP_WUNLOCK(inp);
2256		} else if (!(inp->inp_flags & INP_DROPPED) &&
2257			   !(inp->inp_socket->so_options & SO_ACCEPTCONN)) {
2258			tp = intotcpcb(inp);
2259			tp = tcp_drop(tp, ECONNABORTED);
2260			if (tp != NULL)
2261				INP_WUNLOCK(inp);
2262		} else
2263			INP_WUNLOCK(inp);
2264	} else
2265		error = ESRCH;
2266	INP_INFO_WUNLOCK(&V_tcbinfo);
2267	return (error);
2268}
2269
2270SYSCTL_VNET_PROC(_net_inet_tcp, TCPCTL_DROP, drop,
2271    CTLTYPE_STRUCT|CTLFLAG_WR|CTLFLAG_SKIP, NULL,
2272    0, sysctl_drop, "", "Drop TCP connection");
2273
2274/*
2275 * Generate a standardized TCP log line for use throughout the
2276 * tcp subsystem.  Memory allocation is done with M_NOWAIT to
2277 * allow use in the interrupt context.
2278 *
2279 * NB: The caller MUST free(s, M_TCPLOG) the returned string.
2280 * NB: The function may return NULL if memory allocation failed.
2281 *
2282 * Due to header inclusion and ordering limitations the struct ip
2283 * and ip6_hdr pointers have to be passed as void pointers.
2284 */
2285char *
2286tcp_log_vain(struct in_conninfo *inc, struct tcphdr *th, void *ip4hdr,
2287    const void *ip6hdr)
2288{
2289
2290	/* Is logging enabled? */
2291	if (tcp_log_in_vain == 0)
2292		return (NULL);
2293
2294	return (tcp_log_addr(inc, th, ip4hdr, ip6hdr));
2295}
2296
2297char *
2298tcp_log_addrs(struct in_conninfo *inc, struct tcphdr *th, void *ip4hdr,
2299    const void *ip6hdr)
2300{
2301
2302	/* Is logging enabled? */
2303	if (tcp_log_debug == 0)
2304		return (NULL);
2305
2306	return (tcp_log_addr(inc, th, ip4hdr, ip6hdr));
2307}
2308
2309static char *
2310tcp_log_addr(struct in_conninfo *inc, struct tcphdr *th, void *ip4hdr,
2311    const void *ip6hdr)
2312{
2313	char *s, *sp;
2314	size_t size;
2315	struct ip *ip;
2316#ifdef INET6
2317	const struct ip6_hdr *ip6;
2318
2319	ip6 = (const struct ip6_hdr *)ip6hdr;
2320#endif /* INET6 */
2321	ip = (struct ip *)ip4hdr;
2322
2323	/*
2324	 * The log line looks like this:
2325	 * "TCP: [1.2.3.4]:50332 to [1.2.3.4]:80 tcpflags 0x2<SYN>"
2326	 */
2327	size = sizeof("TCP: []:12345 to []:12345 tcpflags 0x2<>") +
2328	    sizeof(PRINT_TH_FLAGS) + 1 +
2329#ifdef INET6
2330	    2 * INET6_ADDRSTRLEN;
2331#else
2332	    2 * INET_ADDRSTRLEN;
2333#endif /* INET6 */
2334
2335	s = malloc(size, M_TCPLOG, M_ZERO|M_NOWAIT);
2336	if (s == NULL)
2337		return (NULL);
2338
2339	strcat(s, "TCP: [");
2340	sp = s + strlen(s);
2341
2342	if (inc && ((inc->inc_flags & INC_ISIPV6) == 0)) {
2343		inet_ntoa_r(inc->inc_faddr, sp);
2344		sp = s + strlen(s);
2345		sprintf(sp, "]:%i to [", ntohs(inc->inc_fport));
2346		sp = s + strlen(s);
2347		inet_ntoa_r(inc->inc_laddr, sp);
2348		sp = s + strlen(s);
2349		sprintf(sp, "]:%i", ntohs(inc->inc_lport));
2350#ifdef INET6
2351	} else if (inc) {
2352		ip6_sprintf(sp, &inc->inc6_faddr);
2353		sp = s + strlen(s);
2354		sprintf(sp, "]:%i to [", ntohs(inc->inc_fport));
2355		sp = s + strlen(s);
2356		ip6_sprintf(sp, &inc->inc6_laddr);
2357		sp = s + strlen(s);
2358		sprintf(sp, "]:%i", ntohs(inc->inc_lport));
2359	} else if (ip6 && th) {
2360		ip6_sprintf(sp, &ip6->ip6_src);
2361		sp = s + strlen(s);
2362		sprintf(sp, "]:%i to [", ntohs(th->th_sport));
2363		sp = s + strlen(s);
2364		ip6_sprintf(sp, &ip6->ip6_dst);
2365		sp = s + strlen(s);
2366		sprintf(sp, "]:%i", ntohs(th->th_dport));
2367#endif /* INET6 */
2368#ifdef INET
2369	} else if (ip && th) {
2370		inet_ntoa_r(ip->ip_src, sp);
2371		sp = s + strlen(s);
2372		sprintf(sp, "]:%i to [", ntohs(th->th_sport));
2373		sp = s + strlen(s);
2374		inet_ntoa_r(ip->ip_dst, sp);
2375		sp = s + strlen(s);
2376		sprintf(sp, "]:%i", ntohs(th->th_dport));
2377#endif /* INET */
2378	} else {
2379		free(s, M_TCPLOG);
2380		return (NULL);
2381	}
2382	sp = s + strlen(s);
2383	if (th)
2384		sprintf(sp, " tcpflags 0x%b", th->th_flags, PRINT_TH_FLAGS);
2385	if (*(s + size - 1) != '\0')
2386		panic("%s: string too long", __func__);
2387	return (s);
2388}
2389
2390/*
2391 * A subroutine which makes it easy to track TCP state changes with DTrace.
2392 * This function shouldn't be called for t_state initializations that don't
2393 * correspond to actual TCP state transitions.
2394 */
2395void
2396tcp_state_change(struct tcpcb *tp, int newstate)
2397{
2398#if defined(KDTRACE_HOOKS)
2399	int pstate = tp->t_state;
2400#endif
2401
2402	tp->t_state = newstate;
2403	TCP_PROBE6(state__change, NULL, tp, NULL, tp, NULL, pstate);
2404}
2405