tcp_input.c revision 68318
1/*
2 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 *    must display the following acknowledgement:
15 *	This product includes software developed by the University of
16 *	California, Berkeley and its contributors.
17 * 4. Neither the name of the University nor the names of its contributors
18 *    may be used to endorse or promote products derived from this software
19 *    without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 *
33 *	@(#)tcp_input.c	8.12 (Berkeley) 5/24/95
34 * $FreeBSD: head/sys/netinet/tcp_input.c 68318 2000-11-04 15:59:39Z jlemon $
35 */
36
37#include "opt_ipfw.h"		/* for ipfw_fwd		*/
38#include "opt_inet6.h"
39#include "opt_ipsec.h"
40#include "opt_tcpdebug.h"
41#include "opt_tcp_input.h"
42
43#include <sys/param.h>
44#include <sys/systm.h>
45#include <sys/kernel.h>
46#include <sys/sysctl.h>
47#include <sys/malloc.h>
48#include <sys/mbuf.h>
49#include <sys/proc.h>		/* for proc0 declaration */
50#include <sys/protosw.h>
51#include <sys/socket.h>
52#include <sys/socketvar.h>
53#include <sys/syslog.h>
54
55#include <machine/cpu.h>	/* before tcp_seq.h, for tcp_random18() */
56
57#include <net/if.h>
58#include <net/route.h>
59
60#include <netinet/in.h>
61#include <netinet/in_systm.h>
62#include <netinet/ip.h>
63#include <netinet/ip_icmp.h>	/* for ICMP_BANDLIM		*/
64#include <netinet/in_var.h>
65#include <netinet/icmp_var.h>	/* for ICMP_BANDLIM		*/
66#include <netinet/in_pcb.h>
67#include <netinet/ip_var.h>
68#ifdef INET6
69#include <netinet/ip6.h>
70#include <netinet/icmp6.h>
71#include <netinet6/nd6.h>
72#include <netinet6/ip6_var.h>
73#include <netinet6/in6_pcb.h>
74#endif
75#include <netinet/tcp.h>
76#include <netinet/tcp_fsm.h>
77#include <netinet/tcp_seq.h>
78#include <netinet/tcp_timer.h>
79#include <netinet/tcp_var.h>
80#ifdef INET6
81#include <netinet6/tcp6_var.h>
82#endif
83#include <netinet/tcpip.h>
84#ifdef TCPDEBUG
85#include <netinet/tcp_debug.h>
86
87u_char tcp_saveipgen[40]; /* the size must be of max ip header, now IPv6 */
88struct tcphdr tcp_savetcp;
89#endif /* TCPDEBUG */
90
91#ifdef IPSEC
92#include <netinet6/ipsec.h>
93#ifdef INET6
94#include <netinet6/ipsec6.h>
95#endif
96#include <netkey/key.h>
97#endif /*IPSEC*/
98
99#include <machine/in_cksum.h>
100
101MALLOC_DEFINE(M_TSEGQ, "tseg_qent", "TCP segment queue entry");
102
103static int	tcprexmtthresh = 3;
104tcp_seq	tcp_iss;
105tcp_cc	tcp_ccgen;
106
107struct	tcpstat tcpstat;
108SYSCTL_STRUCT(_net_inet_tcp, TCPCTL_STATS, stats, CTLFLAG_RD,
109    &tcpstat , tcpstat, "TCP statistics (struct tcpstat, netinet/tcp_var.h)");
110
111static int log_in_vain = 0;
112SYSCTL_INT(_net_inet_tcp, OID_AUTO, log_in_vain, CTLFLAG_RW,
113    &log_in_vain, 0, "Log all incoming TCP connections");
114
115static int blackhole = 0;
116SYSCTL_INT(_net_inet_tcp, OID_AUTO, blackhole, CTLFLAG_RW,
117	&blackhole, 0, "Do not send RST when dropping refused connections");
118
119int tcp_delack_enabled = 1;
120SYSCTL_INT(_net_inet_tcp, OID_AUTO, delayed_ack, CTLFLAG_RW,
121    &tcp_delack_enabled, 0,
122    "Delay ACK to try and piggyback it onto a data packet");
123
124int tcp_lq_overflow = 1;
125SYSCTL_INT(_net_inet_tcp, OID_AUTO, tcp_lq_overflow, CTLFLAG_RW,
126    &tcp_lq_overflow, 0,
127    "Listen Queue Overflow");
128
129#ifdef TCP_DROP_SYNFIN
130static int drop_synfin = 0;
131SYSCTL_INT(_net_inet_tcp, OID_AUTO, drop_synfin, CTLFLAG_RW,
132    &drop_synfin, 0, "Drop TCP packets with SYN+FIN set");
133#endif
134
135#ifdef TCP_RESTRICT_RST
136static int restrict_rst = 0;
137SYSCTL_INT(_net_inet_tcp, OID_AUTO, restrict_rst, CTLFLAG_RW,
138    &restrict_rst, 0, "Restrict RST emission");
139#endif
140
141struct inpcbhead tcb;
142#define	tcb6	tcb  /* for KAME src sync over BSD*'s */
143struct inpcbinfo tcbinfo;
144
145static void	 tcp_dooptions __P((struct tcpcb *,
146	    u_char *, int, struct tcphdr *, struct tcpopt *));
147static void	 tcp_pulloutofband __P((struct socket *,
148	    struct tcphdr *, struct mbuf *, int));
149static int	 tcp_reass __P((struct tcpcb *, struct tcphdr *, int *,
150				struct mbuf *));
151static void	 tcp_xmit_timer __P((struct tcpcb *, int));
152static int	 tcp_newreno __P((struct tcpcb *, struct tcphdr *));
153
154/* Neighbor Discovery, Neighbor Unreachability Detection Upper layer hint. */
155#ifdef INET6
156#define ND6_HINT(tp) \
157do { \
158	if ((tp) && (tp)->t_inpcb && \
159	    ((tp)->t_inpcb->inp_vflag & INP_IPV6) != 0 && \
160	    (tp)->t_inpcb->in6p_route.ro_rt) \
161		nd6_nud_hint((tp)->t_inpcb->in6p_route.ro_rt, NULL, 0); \
162} while (0)
163#else
164#define ND6_HINT(tp)
165#endif
166
167/*
168 * Insert segment which inludes th into reassembly queue of tcp with
169 * control block tp.  Return TH_FIN if reassembly now includes
170 * a segment with FIN.  The macro form does the common case inline
171 * (segment is the next to be received on an established connection,
172 * and the queue is empty), avoiding linkage into and removal
173 * from the queue and repetition of various conversions.
174 * Set DELACK for segments received in order, but ack immediately
175 * when segments are out of order (so fast retransmit can work).
176 */
177#define	TCP_REASS(tp, th, tlenp, m, so, flags) { \
178	if ((th)->th_seq == (tp)->rcv_nxt && \
179	    LIST_EMPTY(&(tp)->t_segq) && \
180	    (tp)->t_state == TCPS_ESTABLISHED) { \
181		if (tcp_delack_enabled) \
182			callout_reset(tp->tt_delack, tcp_delacktime, \
183			    tcp_timer_delack, tp); \
184		else \
185			tp->t_flags |= TF_ACKNOW; \
186		(tp)->rcv_nxt += *(tlenp); \
187		flags = (th)->th_flags & TH_FIN; \
188		tcpstat.tcps_rcvpack++;\
189		tcpstat.tcps_rcvbyte += *(tlenp);\
190		ND6_HINT(tp); \
191		sbappend(&(so)->so_rcv, (m)); \
192		sorwakeup(so); \
193	} else { \
194		(flags) = tcp_reass((tp), (th), (tlenp), (m)); \
195		tp->t_flags |= TF_ACKNOW; \
196	} \
197}
198
199static int
200tcp_reass(tp, th, tlenp, m)
201	register struct tcpcb *tp;
202	register struct tcphdr *th;
203	int *tlenp;
204	struct mbuf *m;
205{
206	struct tseg_qent *q;
207	struct tseg_qent *p = NULL;
208	struct tseg_qent *nq;
209	struct tseg_qent *te;
210	struct socket *so = tp->t_inpcb->inp_socket;
211	int flags;
212
213	/*
214	 * Call with th==0 after become established to
215	 * force pre-ESTABLISHED data up to user socket.
216	 */
217	if (th == 0)
218		goto present;
219
220	/* Allocate a new queue entry. If we can't, just drop the pkt. XXX */
221	MALLOC(te, struct tseg_qent *, sizeof (struct tseg_qent), M_TSEGQ,
222	       M_NOWAIT);
223	if (te == NULL) {
224		tcpstat.tcps_rcvmemdrop++;
225		m_freem(m);
226		return (0);
227	}
228
229	/*
230	 * Find a segment which begins after this one does.
231	 */
232	LIST_FOREACH(q, &tp->t_segq, tqe_q) {
233		if (SEQ_GT(q->tqe_th->th_seq, th->th_seq))
234			break;
235		p = q;
236	}
237
238	/*
239	 * If there is a preceding segment, it may provide some of
240	 * our data already.  If so, drop the data from the incoming
241	 * segment.  If it provides all of our data, drop us.
242	 */
243	if (p != NULL) {
244		register int i;
245		/* conversion to int (in i) handles seq wraparound */
246		i = p->tqe_th->th_seq + p->tqe_len - th->th_seq;
247		if (i > 0) {
248			if (i >= *tlenp) {
249				tcpstat.tcps_rcvduppack++;
250				tcpstat.tcps_rcvdupbyte += *tlenp;
251				m_freem(m);
252				FREE(te, M_TSEGQ);
253				/*
254				 * Try to present any queued data
255				 * at the left window edge to the user.
256				 * This is needed after the 3-WHS
257				 * completes.
258				 */
259				goto present;	/* ??? */
260			}
261			m_adj(m, i);
262			*tlenp -= i;
263			th->th_seq += i;
264		}
265	}
266	tcpstat.tcps_rcvoopack++;
267	tcpstat.tcps_rcvoobyte += *tlenp;
268
269	/*
270	 * While we overlap succeeding segments trim them or,
271	 * if they are completely covered, dequeue them.
272	 */
273	while (q) {
274		register int i = (th->th_seq + *tlenp) - q->tqe_th->th_seq;
275		if (i <= 0)
276			break;
277		if (i < q->tqe_len) {
278			q->tqe_th->th_seq += i;
279			q->tqe_len -= i;
280			m_adj(q->tqe_m, i);
281			break;
282		}
283
284		nq = LIST_NEXT(q, tqe_q);
285		LIST_REMOVE(q, tqe_q);
286		m_freem(q->tqe_m);
287		FREE(q, M_TSEGQ);
288		q = nq;
289	}
290
291	/* Insert the new segment queue entry into place. */
292	te->tqe_m = m;
293	te->tqe_th = th;
294	te->tqe_len = *tlenp;
295
296	if (p == NULL) {
297		LIST_INSERT_HEAD(&tp->t_segq, te, tqe_q);
298	} else {
299		LIST_INSERT_AFTER(p, te, tqe_q);
300	}
301
302present:
303	/*
304	 * Present data to user, advancing rcv_nxt through
305	 * completed sequence space.
306	 */
307	if (!TCPS_HAVEESTABLISHED(tp->t_state))
308		return (0);
309	q = LIST_FIRST(&tp->t_segq);
310	if (!q || q->tqe_th->th_seq != tp->rcv_nxt)
311		return (0);
312	do {
313		tp->rcv_nxt += q->tqe_len;
314		flags = q->tqe_th->th_flags & TH_FIN;
315		nq = LIST_NEXT(q, tqe_q);
316		LIST_REMOVE(q, tqe_q);
317		if (so->so_state & SS_CANTRCVMORE)
318			m_freem(q->tqe_m);
319		else
320			sbappend(&so->so_rcv, q->tqe_m);
321		FREE(q, M_TSEGQ);
322		q = nq;
323	} while (q && q->tqe_th->th_seq == tp->rcv_nxt);
324	ND6_HINT(tp);
325	sorwakeup(so);
326	return (flags);
327}
328
329/*
330 * TCP input routine, follows pages 65-76 of the
331 * protocol specification dated September, 1981 very closely.
332 */
333#ifdef INET6
334int
335tcp6_input(mp, offp, proto)
336	struct mbuf **mp;
337	int *offp, proto;
338{
339	register struct mbuf *m = *mp;
340
341	IP6_EXTHDR_CHECK(m, *offp, sizeof(struct tcphdr), IPPROTO_DONE);
342
343	/*
344	 * draft-itojun-ipv6-tcp-to-anycast
345	 * better place to put this in?
346	 */
347	if (m->m_flags & M_ANYCAST6) {
348		struct ip6_hdr *ip6;
349
350		ip6 = mtod(m, struct ip6_hdr *);
351		icmp6_error(m, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_ADDR,
352			    (caddr_t)&ip6->ip6_dst - (caddr_t)ip6);
353		return IPPROTO_DONE;
354	}
355
356	tcp_input(m, *offp, proto);
357	return IPPROTO_DONE;
358}
359#endif
360
361void
362tcp_input(m, off0, proto)
363	register struct mbuf *m;
364	int off0, proto;
365{
366	register struct tcphdr *th;
367	register struct ip *ip = NULL;
368	register struct ipovly *ipov;
369	register struct inpcb *inp;
370	u_char *optp = NULL;
371	int optlen = 0;
372	int len, tlen, off;
373	int drop_hdrlen;
374	register struct tcpcb *tp = 0;
375	register int thflags;
376	struct socket *so = 0;
377	int todrop, acked, ourfinisacked, needoutput = 0;
378	struct in_addr laddr;
379#ifdef INET6
380	struct in6_addr laddr6;
381#endif
382	int dropsocket = 0;
383	int iss = 0;
384	u_long tiwin;
385	struct tcpopt to;		/* options in this segment */
386	struct rmxp_tao *taop;		/* pointer to our TAO cache entry */
387	struct rmxp_tao	tao_noncached;	/* in case there's no cached entry */
388#ifdef TCPDEBUG
389	short ostate = 0;
390#endif
391#ifdef INET6
392	struct ip6_hdr *ip6 = NULL;
393	int isipv6;
394#endif /* INET6 */
395
396#ifdef INET6
397	isipv6 = (mtod(m, struct ip *)->ip_v == 6) ? 1 : 0;
398#endif
399	bzero((char *)&to, sizeof(to));
400
401	tcpstat.tcps_rcvtotal++;
402
403#ifdef INET6
404	if (isipv6) {
405		/* IP6_EXTHDR_CHECK() is already done at tcp6_input() */
406		ip6 = mtod(m, struct ip6_hdr *);
407		tlen = sizeof(*ip6) + ntohs(ip6->ip6_plen) - off0;
408		if (in6_cksum(m, IPPROTO_TCP, off0, tlen)) {
409			tcpstat.tcps_rcvbadsum++;
410			goto drop;
411		}
412		th = (struct tcphdr *)((caddr_t)ip6 + off0);
413	} else
414#endif /* INET6 */
415      {
416	/*
417	 * Get IP and TCP header together in first mbuf.
418	 * Note: IP leaves IP header in first mbuf.
419	 */
420	if (off0 > sizeof (struct ip)) {
421		ip_stripoptions(m, (struct mbuf *)0);
422		off0 = sizeof(struct ip);
423	}
424	if (m->m_len < sizeof (struct tcpiphdr)) {
425		if ((m = m_pullup(m, sizeof (struct tcpiphdr))) == 0) {
426			tcpstat.tcps_rcvshort++;
427			return;
428		}
429	}
430	ip = mtod(m, struct ip *);
431	ipov = (struct ipovly *)ip;
432	th = (struct tcphdr *)((caddr_t)ip + off0);
433	tlen = ip->ip_len;
434
435	if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) {
436		if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR)
437                	th->th_sum = m->m_pkthdr.csum_data;
438		else
439	                th->th_sum = in_pseudo(ip->ip_src.s_addr,
440			    ip->ip_dst.s_addr, htonl(m->m_pkthdr.csum_data +
441			    ip->ip_len + IPPROTO_TCP));
442		th->th_sum ^= 0xffff;
443	} else {
444		/*
445		 * Checksum extended TCP header and data.
446		 */
447		len = sizeof (struct ip) + tlen;
448		bzero(ipov->ih_x1, sizeof(ipov->ih_x1));
449		ipov->ih_len = (u_short)tlen;
450		HTONS(ipov->ih_len);
451		th->th_sum = in_cksum(m, len);
452	}
453	if (th->th_sum) {
454		tcpstat.tcps_rcvbadsum++;
455		goto drop;
456	}
457#ifdef INET6
458	/* Re-initialization for later version check */
459	ip->ip_v = IPVERSION;
460#endif
461      }
462
463	/*
464	 * Check that TCP offset makes sense,
465	 * pull out TCP options and adjust length.		XXX
466	 */
467	off = th->th_off << 2;
468	if (off < sizeof (struct tcphdr) || off > tlen) {
469		tcpstat.tcps_rcvbadoff++;
470		goto drop;
471	}
472	tlen -= off;	/* tlen is used instead of ti->ti_len */
473	if (off > sizeof (struct tcphdr)) {
474#ifdef INET6
475		if (isipv6) {
476			IP6_EXTHDR_CHECK(m, off0, off, );
477			ip6 = mtod(m, struct ip6_hdr *);
478			th = (struct tcphdr *)((caddr_t)ip6 + off0);
479		} else
480#endif /* INET6 */
481	      {
482		if (m->m_len < sizeof(struct ip) + off) {
483			if ((m = m_pullup(m, sizeof (struct ip) + off)) == 0) {
484				tcpstat.tcps_rcvshort++;
485				return;
486			}
487			ip = mtod(m, struct ip *);
488			ipov = (struct ipovly *)ip;
489			th = (struct tcphdr *)((caddr_t)ip + off0);
490		}
491	      }
492		optlen = off - sizeof (struct tcphdr);
493		optp = (u_char *)(th + 1);
494	}
495	thflags = th->th_flags;
496
497#ifdef TCP_DROP_SYNFIN
498	/*
499	 * If the drop_synfin option is enabled, drop all packets with
500	 * both the SYN and FIN bits set. This prevents e.g. nmap from
501	 * identifying the TCP/IP stack.
502	 *
503	 * This is incompatible with RFC1644 extensions (T/TCP).
504	 */
505	if (drop_synfin && (thflags & (TH_SYN|TH_FIN)) == (TH_SYN|TH_FIN))
506		goto drop;
507#endif
508
509	/*
510	 * Convert TCP protocol specific fields to host format.
511	 */
512	NTOHL(th->th_seq);
513	NTOHL(th->th_ack);
514	NTOHS(th->th_win);
515	NTOHS(th->th_urp);
516
517	/*
518	 * Delay droping TCP, IP headers, IPv6 ext headers, and TCP options,
519	 * until after ip6_savecontrol() is called and before other functions
520	 * which don't want those proto headers.
521	 * Because ip6_savecontrol() is going to parse the mbuf to
522	 * search for data to be passed up to user-land, it wants mbuf
523	 * parameters to be unchanged.
524	 */
525	drop_hdrlen = off0 + off;
526
527	/*
528	 * Locate pcb for segment.
529	 */
530findpcb:
531#ifdef IPFIREWALL_FORWARD
532	if (ip_fw_fwd_addr != NULL
533#ifdef INET6
534	    && isipv6 == NULL /* IPv6 support is not yet */
535#endif /* INET6 */
536	    ) {
537		/*
538		 * Diverted. Pretend to be the destination.
539		 * already got one like this?
540		 */
541		inp = in_pcblookup_hash(&tcbinfo, ip->ip_src, th->th_sport,
542			ip->ip_dst, th->th_dport, 0, m->m_pkthdr.rcvif);
543		if (!inp) {
544			/*
545			 * No, then it's new. Try find the ambushing socket
546			 */
547			if (!ip_fw_fwd_addr->sin_port) {
548				inp = in_pcblookup_hash(&tcbinfo, ip->ip_src,
549				    th->th_sport, ip_fw_fwd_addr->sin_addr,
550				    th->th_dport, 1, m->m_pkthdr.rcvif);
551			} else {
552				inp = in_pcblookup_hash(&tcbinfo,
553				    ip->ip_src, th->th_sport,
554	    			    ip_fw_fwd_addr->sin_addr,
555				    ntohs(ip_fw_fwd_addr->sin_port), 1,
556				    m->m_pkthdr.rcvif);
557			}
558		}
559		ip_fw_fwd_addr = NULL;
560	} else
561#endif	/* IPFIREWALL_FORWARD */
562      {
563#ifdef INET6
564	if (isipv6)
565		inp = in6_pcblookup_hash(&tcbinfo, &ip6->ip6_src, th->th_sport,
566					 &ip6->ip6_dst, th->th_dport, 1,
567					 m->m_pkthdr.rcvif);
568	else
569#endif /* INET6 */
570	inp = in_pcblookup_hash(&tcbinfo, ip->ip_src, th->th_sport,
571	    ip->ip_dst, th->th_dport, 1, m->m_pkthdr.rcvif);
572      }
573
574#ifdef IPSEC
575#ifdef INET6
576	if (isipv6) {
577		if (inp != NULL && ipsec6_in_reject_so(m, inp->inp_socket)) {
578			ipsec6stat.in_polvio++;
579			goto drop;
580		}
581	} else
582#endif /* INET6 */
583	if (inp != NULL && ipsec4_in_reject_so(m, inp->inp_socket)) {
584		ipsecstat.in_polvio++;
585		goto drop;
586	}
587#endif /*IPSEC*/
588
589	/*
590	 * If the state is CLOSED (i.e., TCB does not exist) then
591	 * all data in the incoming segment is discarded.
592	 * If the TCB exists but is in CLOSED state, it is embryonic,
593	 * but should either do a listen or a connect soon.
594	 */
595	if (inp == NULL) {
596		if (log_in_vain) {
597#ifdef INET6
598			char dbuf[INET6_ADDRSTRLEN], sbuf[INET6_ADDRSTRLEN];
599#else /* INET6 */
600			char dbuf[4*sizeof "123"], sbuf[4*sizeof "123"];
601#endif /* INET6 */
602
603#ifdef INET6
604			if (isipv6) {
605				strcpy(dbuf, ip6_sprintf(&ip6->ip6_dst));
606				strcpy(sbuf, ip6_sprintf(&ip6->ip6_src));
607			} else
608#endif
609		      {
610			strcpy(dbuf, inet_ntoa(ip->ip_dst));
611			strcpy(sbuf, inet_ntoa(ip->ip_src));
612		      }
613			switch (log_in_vain) {
614			case 1:
615				if(thflags & TH_SYN)
616					log(LOG_INFO,
617			    		"Connection attempt to TCP %s:%d from %s:%d\n",
618			    		dbuf, ntohs(th->th_dport),
619					sbuf,
620					ntohs(th->th_sport));
621				break;
622			case 2:
623				log(LOG_INFO,
624			    	"Connection attempt to TCP %s:%d from %s:%d flags:0x%x\n",
625			    	dbuf, ntohs(th->th_dport), sbuf,
626			    	ntohs(th->th_sport), thflags);
627				break;
628			default:
629				break;
630			}
631		}
632		if (blackhole) {
633			switch (blackhole) {
634			case 1:
635				if (thflags & TH_SYN)
636					goto drop;
637				break;
638			case 2:
639				goto drop;
640			default:
641				goto drop;
642			}
643		}
644		goto maybedropwithreset;
645	}
646	tp = intotcpcb(inp);
647	if (tp == 0)
648		goto maybedropwithreset;
649	if (tp->t_state == TCPS_CLOSED)
650		goto drop;
651
652	/* Unscale the window into a 32-bit value. */
653	if ((thflags & TH_SYN) == 0)
654		tiwin = th->th_win << tp->snd_scale;
655	else
656		tiwin = th->th_win;
657
658#ifdef INET6
659	/* save packet options if user wanted */
660	if (isipv6 && inp->in6p_flags & INP_CONTROLOPTS) {
661		if (inp->in6p_options) {
662			m_freem(inp->in6p_options);
663			inp->in6p_options = 0;
664		}
665		ip6_savecontrol(inp, &inp->in6p_options, ip6, m);
666	}
667        /* else, should also do ip_srcroute() here? */
668#endif /* INET6 */
669
670	so = inp->inp_socket;
671	if (so->so_options & (SO_DEBUG|SO_ACCEPTCONN)) {
672#ifdef TCPDEBUG
673		if (so->so_options & SO_DEBUG) {
674			ostate = tp->t_state;
675#ifdef INET6
676			if (isipv6)
677				bcopy((char *)ip6, (char *)tcp_saveipgen,
678				      sizeof(*ip6));
679			else
680#endif /* INET6 */
681			bcopy((char *)ip, (char *)tcp_saveipgen, sizeof(*ip));
682			tcp_savetcp = *th;
683		}
684#endif
685		if (so->so_options & SO_ACCEPTCONN) {
686			register struct tcpcb *tp0 = tp;
687			struct socket *so2;
688#ifdef IPSEC
689			struct socket *oso;
690#endif
691#ifdef INET6
692			struct inpcb *oinp = sotoinpcb(so);
693#endif /* INET6 */
694
695#ifndef IPSEC
696			/*
697			 * Current IPsec implementation makes incorrect IPsec
698			 * cache if this check is done here.
699			 * So delay this until duplicated socket is created.
700			 */
701			if ((thflags & (TH_RST|TH_ACK|TH_SYN)) != TH_SYN) {
702				/*
703				 * Note: dropwithreset makes sure we don't
704				 * send a RST in response to a RST.
705				 */
706				if (thflags & TH_ACK) {
707					tcpstat.tcps_badsyn++;
708					goto maybedropwithreset;
709				}
710				goto drop;
711			}
712#endif
713			so2 = sonewconn(so, 0);
714			if (so2 == 0) {
715				tcpstat.tcps_listendrop++;
716				so2 = sodropablereq(so);
717				if (so2) {
718					if (tcp_lq_overflow)
719						sototcpcb(so2)->t_flags |=
720						    TF_LQ_OVERFLOW;
721					tcp_drop(sototcpcb(so2), ETIMEDOUT);
722					so2 = sonewconn(so, 0);
723				}
724				if (!so2)
725					goto drop;
726			}
727#ifdef IPSEC
728			oso = so;
729#endif
730			so = so2;
731			/*
732			 * This is ugly, but ....
733			 *
734			 * Mark socket as temporary until we're
735			 * committed to keeping it.  The code at
736			 * ``drop'' and ``dropwithreset'' check the
737			 * flag dropsocket to see if the temporary
738			 * socket created here should be discarded.
739			 * We mark the socket as discardable until
740			 * we're committed to it below in TCPS_LISTEN.
741			 */
742			dropsocket++;
743			inp = (struct inpcb *)so->so_pcb;
744#ifdef INET6
745			if (isipv6)
746				inp->in6p_laddr = ip6->ip6_dst;
747			else {
748				if ((inp->inp_flags & IN6P_BINDV6ONLY) == 0) {
749					inp->inp_vflag &= ~INP_IPV6;
750					inp->inp_vflag |= INP_IPV4;
751				}
752#endif /* INET6 */
753			inp->inp_laddr = ip->ip_dst;
754#ifdef INET6
755			}
756#endif /* INET6 */
757			inp->inp_lport = th->th_dport;
758			if (in_pcbinshash(inp) != 0) {
759				/*
760				 * Undo the assignments above if we failed to
761				 * put the PCB on the hash lists.
762				 */
763#ifdef INET6
764				if (isipv6)
765					inp->in6p_laddr = in6addr_any;
766				else
767#endif /* INET6 */
768				inp->inp_laddr.s_addr = INADDR_ANY;
769				inp->inp_lport = 0;
770				goto drop;
771			}
772#ifdef IPSEC
773			/*
774			 * To avoid creating incorrectly cached IPsec
775			 * association, this is need to be done here.
776			 *
777			 * Subject: (KAME-snap 748)
778			 * From: Wayne Knowles <w.knowles@niwa.cri.nz>
779			 * ftp://ftp.kame.net/pub/mail-list/snap-users/748
780			 */
781			if ((thflags & (TH_RST|TH_ACK|TH_SYN)) != TH_SYN) {
782				/*
783				 * Note: dropwithreset makes sure we don't
784				 * send a RST in response to a RST.
785				 */
786				if (thflags & TH_ACK) {
787					tcpstat.tcps_badsyn++;
788					goto maybedropwithreset;
789				}
790				goto drop;
791			}
792#endif
793#ifdef INET6
794			if (isipv6) {
795				/*
796				 * inherit socket options from the listening
797				 * socket.
798				 */
799				inp->inp_flags |=
800					oinp->inp_flags & INP_CONTROLOPTS;
801				if (inp->inp_flags & INP_CONTROLOPTS) {
802					if (inp->in6p_options) {
803						m_freem(inp->in6p_options);
804						inp->in6p_options = 0;
805					}
806					ip6_savecontrol(inp,
807							&inp->in6p_options,
808							ip6, m);
809				}
810			} else
811#endif /* INET6 */
812			inp->inp_options = ip_srcroute();
813#ifdef IPSEC
814			/* copy old policy into new socket's */
815			if (ipsec_copy_policy(sotoinpcb(oso)->inp_sp,
816			                      inp->inp_sp))
817				printf("tcp_input: could not copy policy\n");
818#endif
819			tp = intotcpcb(inp);
820			tp->t_state = TCPS_LISTEN;
821			tp->t_flags |= tp0->t_flags & (TF_NOPUSH|TF_NOOPT);
822
823			/* Compute proper scaling value from buffer space */
824			while (tp->request_r_scale < TCP_MAX_WINSHIFT &&
825			   TCP_MAXWIN << tp->request_r_scale <
826			   so->so_rcv.sb_hiwat)
827				tp->request_r_scale++;
828		}
829	}
830
831	/*
832	 * Segment received on connection.
833	 * Reset idle time and keep-alive timer.
834	 */
835	tp->t_rcvtime = ticks;
836	if (TCPS_HAVEESTABLISHED(tp->t_state))
837		callout_reset(tp->tt_keep, tcp_keepidle, tcp_timer_keep, tp);
838
839	/*
840	 * Process options if not in LISTEN state,
841	 * else do it below (after getting remote address).
842	 */
843	if (tp->t_state != TCPS_LISTEN)
844		tcp_dooptions(tp, optp, optlen, th, &to);
845
846	/*
847	 * Header prediction: check for the two common cases
848	 * of a uni-directional data xfer.  If the packet has
849	 * no control flags, is in-sequence, the window didn't
850	 * change and we're not retransmitting, it's a
851	 * candidate.  If the length is zero and the ack moved
852	 * forward, we're the sender side of the xfer.  Just
853	 * free the data acked & wake any higher level process
854	 * that was blocked waiting for space.  If the length
855	 * is non-zero and the ack didn't move, we're the
856	 * receiver side.  If we're getting packets in-order
857	 * (the reassembly queue is empty), add the data to
858	 * the socket buffer and note that we need a delayed ack.
859	 * Make sure that the hidden state-flags are also off.
860	 * Since we check for TCPS_ESTABLISHED above, it can only
861	 * be TH_NEEDSYN.
862	 */
863	if (tp->t_state == TCPS_ESTABLISHED &&
864	    (thflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK)) == TH_ACK &&
865	    ((tp->t_flags & (TF_NEEDSYN|TF_NEEDFIN)) == 0) &&
866	    ((to.to_flag & TOF_TS) == 0 ||
867	     TSTMP_GEQ(to.to_tsval, tp->ts_recent)) &&
868	    /*
869	     * Using the CC option is compulsory if once started:
870	     *   the segment is OK if no T/TCP was negotiated or
871	     *   if the segment has a CC option equal to CCrecv
872	     */
873	    ((tp->t_flags & (TF_REQ_CC|TF_RCVD_CC)) != (TF_REQ_CC|TF_RCVD_CC) ||
874	     ((to.to_flag & TOF_CC) != 0 && to.to_cc == tp->cc_recv)) &&
875	    th->th_seq == tp->rcv_nxt &&
876	    tiwin && tiwin == tp->snd_wnd &&
877	    tp->snd_nxt == tp->snd_max) {
878
879		/*
880		 * If last ACK falls within this segment's sequence numbers,
881		 * record the timestamp.
882		 * NOTE that the test is modified according to the latest
883		 * proposal of the tcplw@cray.com list (Braden 1993/04/26).
884		 */
885		if ((to.to_flag & TOF_TS) != 0 &&
886		   SEQ_LEQ(th->th_seq, tp->last_ack_sent)) {
887			tp->ts_recent_age = ticks;
888			tp->ts_recent = to.to_tsval;
889		}
890
891		if (tlen == 0) {
892			if (SEQ_GT(th->th_ack, tp->snd_una) &&
893			    SEQ_LEQ(th->th_ack, tp->snd_max) &&
894			    tp->snd_cwnd >= tp->snd_wnd &&
895			    tp->t_dupacks < tcprexmtthresh) {
896				/*
897				 * this is a pure ack for outstanding data.
898				 */
899				++tcpstat.tcps_predack;
900				/*
901				 * "bad retransmit" recovery
902				 */
903				if (tp->t_rxtshift == 1 &&
904				    ticks < tp->t_badrxtwin) {
905					tp->snd_cwnd = tp->snd_cwnd_prev;
906					tp->snd_ssthresh =
907					    tp->snd_ssthresh_prev;
908					tp->snd_nxt = tp->snd_max;
909					tp->t_badrxtwin = 0;
910				}
911				if ((to.to_flag & TOF_TS) != 0)
912					tcp_xmit_timer(tp,
913					    ticks - to.to_tsecr + 1);
914				else if (tp->t_rtttime &&
915					    SEQ_GT(th->th_ack, tp->t_rtseq))
916					tcp_xmit_timer(tp, ticks - tp->t_rtttime);
917				acked = th->th_ack - tp->snd_una;
918				tcpstat.tcps_rcvackpack++;
919				tcpstat.tcps_rcvackbyte += acked;
920				sbdrop(&so->so_snd, acked);
921				tp->snd_una = th->th_ack;
922				m_freem(m);
923				ND6_HINT(tp); /* some progress has been done */
924
925				/*
926				 * If all outstanding data are acked, stop
927				 * retransmit timer, otherwise restart timer
928				 * using current (possibly backed-off) value.
929				 * If process is waiting for space,
930				 * wakeup/selwakeup/signal.  If data
931				 * are ready to send, let tcp_output
932				 * decide between more output or persist.
933				 */
934				if (tp->snd_una == tp->snd_max)
935					callout_stop(tp->tt_rexmt);
936				else if (!callout_active(tp->tt_persist))
937					callout_reset(tp->tt_rexmt,
938						      tp->t_rxtcur,
939						      tcp_timer_rexmt, tp);
940
941				sowwakeup(so);
942				if (so->so_snd.sb_cc)
943					(void) tcp_output(tp);
944				return;
945			}
946		} else if (th->th_ack == tp->snd_una &&
947		    LIST_EMPTY(&tp->t_segq) &&
948		    tlen <= sbspace(&so->so_rcv)) {
949			/*
950			 * this is a pure, in-sequence data packet
951			 * with nothing on the reassembly queue and
952			 * we have enough buffer space to take it.
953			 */
954			++tcpstat.tcps_preddat;
955			tp->rcv_nxt += tlen;
956			tcpstat.tcps_rcvpack++;
957			tcpstat.tcps_rcvbyte += tlen;
958			ND6_HINT(tp);	/* some progress has been done */
959			/*
960			 * Add data to socket buffer.
961			 */
962			m_adj(m, drop_hdrlen);	/* delayed header drop */
963			sbappend(&so->so_rcv, m);
964			sorwakeup(so);
965			if (tcp_delack_enabled) {
966	                        callout_reset(tp->tt_delack, tcp_delacktime,
967	                            tcp_timer_delack, tp);
968			} else {
969				tp->t_flags |= TF_ACKNOW;
970				tcp_output(tp);
971			}
972			return;
973		}
974	}
975
976	/*
977	 * Calculate amount of space in receive window,
978	 * and then do TCP input processing.
979	 * Receive window is amount of space in rcv queue,
980	 * but not less than advertised window.
981	 */
982	{ int win;
983
984	win = sbspace(&so->so_rcv);
985	if (win < 0)
986		win = 0;
987	tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
988	}
989
990	switch (tp->t_state) {
991
992	/*
993	 * If the state is LISTEN then ignore segment if it contains an RST.
994	 * If the segment contains an ACK then it is bad and send a RST.
995	 * If it does not contain a SYN then it is not interesting; drop it.
996	 * If it is from this socket, drop it, it must be forged.
997	 * Don't bother responding if the destination was a broadcast.
998	 * Otherwise initialize tp->rcv_nxt, and tp->irs, select an initial
999	 * tp->iss, and send a segment:
1000	 *     <SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
1001	 * Also initialize tp->snd_nxt to tp->iss+1 and tp->snd_una to tp->iss.
1002	 * Fill in remote peer address fields if not previously specified.
1003	 * Enter SYN_RECEIVED state, and process any other fields of this
1004	 * segment in this state.
1005	 */
1006	case TCPS_LISTEN: {
1007		register struct sockaddr_in *sin;
1008#ifdef INET6
1009		register struct sockaddr_in6 *sin6;
1010#endif
1011
1012		if (thflags & TH_RST)
1013			goto drop;
1014		if (thflags & TH_ACK)
1015			goto maybedropwithreset;
1016		if ((thflags & TH_SYN) == 0)
1017			goto drop;
1018		if (th->th_dport == th->th_sport) {
1019#ifdef INET6
1020			if (isipv6) {
1021				if (IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst,
1022						       &ip6->ip6_src))
1023					goto drop;
1024			} else
1025#endif /* INET6 */
1026			if (ip->ip_dst.s_addr == ip->ip_src.s_addr)
1027				goto drop;
1028		}
1029		/*
1030		 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
1031		 * in_broadcast() should never return true on a received
1032		 * packet with M_BCAST not set.
1033 		 *
1034 		 * Packets with a multicast source address should also
1035 		 * be discarded.
1036		 */
1037		if (m->m_flags & (M_BCAST|M_MCAST))
1038			goto drop;
1039#ifdef INET6
1040		if (isipv6) {
1041			if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) ||
1042			    IN6_IS_ADDR_MULTICAST(&ip6->ip6_src))
1043				goto drop;
1044		} else
1045#endif
1046		if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
1047		    IN_MULTICAST(ntohl(ip->ip_src.s_addr)) ||
1048		    ip->ip_src.s_addr == htonl(INADDR_BROADCAST))
1049			goto drop;
1050#ifdef INET6
1051		if (isipv6) {
1052			MALLOC(sin6, struct sockaddr_in6 *, sizeof *sin6,
1053			       M_SONAME, M_NOWAIT);
1054			if (sin6 == NULL)
1055				goto drop;
1056			bzero(sin6, sizeof(*sin6));
1057			sin6->sin6_family = AF_INET6;
1058			sin6->sin6_len = sizeof(*sin6);
1059			sin6->sin6_addr = ip6->ip6_src;
1060			sin6->sin6_port = th->th_sport;
1061			laddr6 = inp->in6p_laddr;
1062			if (IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_laddr))
1063				inp->in6p_laddr = ip6->ip6_dst;
1064			if (in6_pcbconnect(inp, (struct sockaddr *)sin6,
1065					   &proc0)) {
1066				inp->in6p_laddr = laddr6;
1067				FREE(sin6, M_SONAME);
1068				goto drop;
1069			}
1070			FREE(sin6, M_SONAME);
1071		} else
1072#endif
1073	      {
1074		MALLOC(sin, struct sockaddr_in *, sizeof *sin, M_SONAME,
1075		       M_NOWAIT);
1076		if (sin == NULL)
1077			goto drop;
1078		sin->sin_family = AF_INET;
1079		sin->sin_len = sizeof(*sin);
1080		sin->sin_addr = ip->ip_src;
1081		sin->sin_port = th->th_sport;
1082		bzero((caddr_t)sin->sin_zero, sizeof(sin->sin_zero));
1083		laddr = inp->inp_laddr;
1084		if (inp->inp_laddr.s_addr == INADDR_ANY)
1085			inp->inp_laddr = ip->ip_dst;
1086		if (in_pcbconnect(inp, (struct sockaddr *)sin, &proc0)) {
1087			inp->inp_laddr = laddr;
1088			FREE(sin, M_SONAME);
1089			goto drop;
1090		}
1091		FREE(sin, M_SONAME);
1092	      }
1093		tp->t_template = tcp_template(tp);
1094		if (tp->t_template == 0) {
1095			tp = tcp_drop(tp, ENOBUFS);
1096			dropsocket = 0;		/* socket is already gone */
1097			goto drop;
1098		}
1099		if ((taop = tcp_gettaocache(inp)) == NULL) {
1100			taop = &tao_noncached;
1101			bzero(taop, sizeof(*taop));
1102		}
1103		tcp_dooptions(tp, optp, optlen, th, &to);
1104		if (iss)
1105			tp->iss = iss;
1106		else
1107			tp->iss = tcp_iss;
1108		tcp_iss += TCP_ISSINCR/4;
1109		tp->irs = th->th_seq;
1110		tcp_sendseqinit(tp);
1111		tcp_rcvseqinit(tp);
1112		tp->snd_recover = tp->snd_una;
1113		/*
1114		 * Initialization of the tcpcb for transaction;
1115		 *   set SND.WND = SEG.WND,
1116		 *   initialize CCsend and CCrecv.
1117		 */
1118		tp->snd_wnd = tiwin;	/* initial send-window */
1119		tp->cc_send = CC_INC(tcp_ccgen);
1120		tp->cc_recv = to.to_cc;
1121		/*
1122		 * Perform TAO test on incoming CC (SEG.CC) option, if any.
1123		 * - compare SEG.CC against cached CC from the same host,
1124		 *	if any.
1125		 * - if SEG.CC > chached value, SYN must be new and is accepted
1126		 *	immediately: save new CC in the cache, mark the socket
1127		 *	connected, enter ESTABLISHED state, turn on flag to
1128		 *	send a SYN in the next segment.
1129		 *	A virtual advertised window is set in rcv_adv to
1130		 *	initialize SWS prevention.  Then enter normal segment
1131		 *	processing: drop SYN, process data and FIN.
1132		 * - otherwise do a normal 3-way handshake.
1133		 */
1134		if ((to.to_flag & TOF_CC) != 0) {
1135		    if (((tp->t_flags & TF_NOPUSH) != 0) &&
1136			taop->tao_cc != 0 && CC_GT(to.to_cc, taop->tao_cc)) {
1137
1138			taop->tao_cc = to.to_cc;
1139			tp->t_starttime = ticks;
1140			tp->t_state = TCPS_ESTABLISHED;
1141
1142			/*
1143			 * If there is a FIN, or if there is data and the
1144			 * connection is local, then delay SYN,ACK(SYN) in
1145			 * the hope of piggy-backing it on a response
1146			 * segment.  Otherwise must send ACK now in case
1147			 * the other side is slow starting.
1148			 */
1149			if (tcp_delack_enabled && ((thflags & TH_FIN) ||
1150			    (tlen != 0 &&
1151#ifdef INET6
1152			      ((isipv6 && in6_localaddr(&inp->in6p_faddr))
1153			      ||
1154			      (!isipv6 &&
1155#endif
1156			    in_localaddr(inp->inp_faddr)
1157#ifdef INET6
1158			       ))
1159#endif
1160			     ))) {
1161                                callout_reset(tp->tt_delack, tcp_delacktime,
1162                                    tcp_timer_delack, tp);
1163				tp->t_flags |= TF_NEEDSYN;
1164			} else
1165				tp->t_flags |= (TF_ACKNOW | TF_NEEDSYN);
1166
1167			/*
1168			 * Limit the `virtual advertised window' to TCP_MAXWIN
1169			 * here.  Even if we requested window scaling, it will
1170			 * become effective only later when our SYN is acked.
1171			 */
1172			tp->rcv_adv += min(tp->rcv_wnd, TCP_MAXWIN);
1173			tcpstat.tcps_connects++;
1174			soisconnected(so);
1175			callout_reset(tp->tt_keep, tcp_keepinit,
1176				      tcp_timer_keep, tp);
1177			dropsocket = 0;		/* committed to socket */
1178			tcpstat.tcps_accepts++;
1179			goto trimthenstep6;
1180		    }
1181		/* else do standard 3-way handshake */
1182		} else {
1183		    /*
1184		     * No CC option, but maybe CC.NEW:
1185		     *   invalidate cached value.
1186		     */
1187		     taop->tao_cc = 0;
1188		}
1189		/*
1190		 * TAO test failed or there was no CC option,
1191		 *    do a standard 3-way handshake.
1192		 */
1193		tp->t_flags |= TF_ACKNOW;
1194		tp->t_state = TCPS_SYN_RECEIVED;
1195		callout_reset(tp->tt_keep, tcp_keepinit, tcp_timer_keep, tp);
1196		dropsocket = 0;		/* committed to socket */
1197		tcpstat.tcps_accepts++;
1198		goto trimthenstep6;
1199		}
1200
1201	/*
1202	 * If the state is SYN_RECEIVED:
1203	 *	if seg contains an ACK, but not for our SYN/ACK, send a RST.
1204	 */
1205	case TCPS_SYN_RECEIVED:
1206		if ((thflags & TH_ACK) &&
1207		    (SEQ_LEQ(th->th_ack, tp->snd_una) ||
1208		     SEQ_GT(th->th_ack, tp->snd_max)))
1209				goto maybedropwithreset;
1210		break;
1211
1212	/*
1213	 * If the state is SYN_SENT:
1214	 *	if seg contains an ACK, but not for our SYN, drop the input.
1215	 *	if seg contains a RST, then drop the connection.
1216	 *	if seg does not contain SYN, then drop it.
1217	 * Otherwise this is an acceptable SYN segment
1218	 *	initialize tp->rcv_nxt and tp->irs
1219	 *	if seg contains ack then advance tp->snd_una
1220	 *	if SYN has been acked change to ESTABLISHED else SYN_RCVD state
1221	 *	arrange for segment to be acked (eventually)
1222	 *	continue processing rest of data/controls, beginning with URG
1223	 */
1224	case TCPS_SYN_SENT:
1225		if ((taop = tcp_gettaocache(inp)) == NULL) {
1226			taop = &tao_noncached;
1227			bzero(taop, sizeof(*taop));
1228		}
1229
1230		if ((thflags & TH_ACK) &&
1231		    (SEQ_LEQ(th->th_ack, tp->iss) ||
1232		     SEQ_GT(th->th_ack, tp->snd_max))) {
1233			/*
1234			 * If we have a cached CCsent for the remote host,
1235			 * hence we haven't just crashed and restarted,
1236			 * do not send a RST.  This may be a retransmission
1237			 * from the other side after our earlier ACK was lost.
1238			 * Our new SYN, when it arrives, will serve as the
1239			 * needed ACK.
1240			 */
1241			if (taop->tao_ccsent != 0)
1242				goto drop;
1243			else
1244				goto dropwithreset;
1245		}
1246		if (thflags & TH_RST) {
1247			if (thflags & TH_ACK)
1248				tp = tcp_drop(tp, ECONNREFUSED);
1249			goto drop;
1250		}
1251		if ((thflags & TH_SYN) == 0)
1252			goto drop;
1253		tp->snd_wnd = th->th_win;	/* initial send window */
1254		tp->cc_recv = to.to_cc;		/* foreign CC */
1255
1256		tp->irs = th->th_seq;
1257		tcp_rcvseqinit(tp);
1258		if (thflags & TH_ACK) {
1259			/*
1260			 * Our SYN was acked.  If segment contains CC.ECHO
1261			 * option, check it to make sure this segment really
1262			 * matches our SYN.  If not, just drop it as old
1263			 * duplicate, but send an RST if we're still playing
1264			 * by the old rules.  If no CC.ECHO option, make sure
1265			 * we don't get fooled into using T/TCP.
1266			 */
1267			if (to.to_flag & TOF_CCECHO) {
1268				if (tp->cc_send != to.to_ccecho) {
1269					if (taop->tao_ccsent != 0)
1270						goto drop;
1271					else
1272						goto dropwithreset;
1273				}
1274			} else
1275				tp->t_flags &= ~TF_RCVD_CC;
1276			tcpstat.tcps_connects++;
1277			soisconnected(so);
1278			/* Do window scaling on this connection? */
1279			if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
1280				(TF_RCVD_SCALE|TF_REQ_SCALE)) {
1281				tp->snd_scale = tp->requested_s_scale;
1282				tp->rcv_scale = tp->request_r_scale;
1283			}
1284			/* Segment is acceptable, update cache if undefined. */
1285			if (taop->tao_ccsent == 0)
1286				taop->tao_ccsent = to.to_ccecho;
1287
1288			tp->rcv_adv += tp->rcv_wnd;
1289			tp->snd_una++;		/* SYN is acked */
1290			/*
1291			 * If there's data, delay ACK; if there's also a FIN
1292			 * ACKNOW will be turned on later.
1293			 */
1294			if (tcp_delack_enabled && tlen != 0)
1295                                callout_reset(tp->tt_delack, tcp_delacktime,
1296                                    tcp_timer_delack, tp);
1297			else
1298				tp->t_flags |= TF_ACKNOW;
1299			/*
1300			 * Received <SYN,ACK> in SYN_SENT[*] state.
1301			 * Transitions:
1302			 *	SYN_SENT  --> ESTABLISHED
1303			 *	SYN_SENT* --> FIN_WAIT_1
1304			 */
1305			tp->t_starttime = ticks;
1306			if (tp->t_flags & TF_NEEDFIN) {
1307				tp->t_state = TCPS_FIN_WAIT_1;
1308				tp->t_flags &= ~TF_NEEDFIN;
1309				thflags &= ~TH_SYN;
1310			} else {
1311				tp->t_state = TCPS_ESTABLISHED;
1312				callout_reset(tp->tt_keep, tcp_keepidle,
1313					      tcp_timer_keep, tp);
1314			}
1315		} else {
1316		/*
1317		 *  Received initial SYN in SYN-SENT[*] state => simul-
1318		 *  taneous open.  If segment contains CC option and there is
1319		 *  a cached CC, apply TAO test; if it succeeds, connection is
1320		 *  half-synchronized.  Otherwise, do 3-way handshake:
1321		 *        SYN-SENT -> SYN-RECEIVED
1322		 *        SYN-SENT* -> SYN-RECEIVED*
1323		 *  If there was no CC option, clear cached CC value.
1324		 */
1325			tp->t_flags |= TF_ACKNOW;
1326			callout_stop(tp->tt_rexmt);
1327			if (to.to_flag & TOF_CC) {
1328				if (taop->tao_cc != 0 &&
1329				    CC_GT(to.to_cc, taop->tao_cc)) {
1330					/*
1331					 * update cache and make transition:
1332					 *        SYN-SENT -> ESTABLISHED*
1333					 *        SYN-SENT* -> FIN-WAIT-1*
1334					 */
1335					taop->tao_cc = to.to_cc;
1336					tp->t_starttime = ticks;
1337					if (tp->t_flags & TF_NEEDFIN) {
1338						tp->t_state = TCPS_FIN_WAIT_1;
1339						tp->t_flags &= ~TF_NEEDFIN;
1340					} else {
1341						tp->t_state = TCPS_ESTABLISHED;
1342						callout_reset(tp->tt_keep,
1343							      tcp_keepidle,
1344							      tcp_timer_keep,
1345							      tp);
1346					}
1347					tp->t_flags |= TF_NEEDSYN;
1348				} else
1349					tp->t_state = TCPS_SYN_RECEIVED;
1350			} else {
1351				/* CC.NEW or no option => invalidate cache */
1352				taop->tao_cc = 0;
1353				tp->t_state = TCPS_SYN_RECEIVED;
1354			}
1355		}
1356
1357trimthenstep6:
1358		/*
1359		 * Advance th->th_seq to correspond to first data byte.
1360		 * If data, trim to stay within window,
1361		 * dropping FIN if necessary.
1362		 */
1363		th->th_seq++;
1364		if (tlen > tp->rcv_wnd) {
1365			todrop = tlen - tp->rcv_wnd;
1366			m_adj(m, -todrop);
1367			tlen = tp->rcv_wnd;
1368			thflags &= ~TH_FIN;
1369			tcpstat.tcps_rcvpackafterwin++;
1370			tcpstat.tcps_rcvbyteafterwin += todrop;
1371		}
1372		tp->snd_wl1 = th->th_seq - 1;
1373		tp->rcv_up = th->th_seq;
1374		/*
1375		 *  Client side of transaction: already sent SYN and data.
1376		 *  If the remote host used T/TCP to validate the SYN,
1377		 *  our data will be ACK'd; if so, enter normal data segment
1378		 *  processing in the middle of step 5, ack processing.
1379		 *  Otherwise, goto step 6.
1380		 */
1381 		if (thflags & TH_ACK)
1382			goto process_ACK;
1383		goto step6;
1384	/*
1385	 * If the state is LAST_ACK or CLOSING or TIME_WAIT:
1386	 *	if segment contains a SYN and CC [not CC.NEW] option:
1387	 *              if state == TIME_WAIT and connection duration > MSL,
1388	 *                  drop packet and send RST;
1389	 *
1390	 *		if SEG.CC > CCrecv then is new SYN, and can implicitly
1391	 *		    ack the FIN (and data) in retransmission queue.
1392	 *                  Complete close and delete TCPCB.  Then reprocess
1393	 *                  segment, hoping to find new TCPCB in LISTEN state;
1394	 *
1395	 *		else must be old SYN; drop it.
1396	 *      else do normal processing.
1397	 */
1398	case TCPS_LAST_ACK:
1399	case TCPS_CLOSING:
1400	case TCPS_TIME_WAIT:
1401		if ((thflags & TH_SYN) &&
1402		    (to.to_flag & TOF_CC) && tp->cc_recv != 0) {
1403			if (tp->t_state == TCPS_TIME_WAIT &&
1404					(ticks - tp->t_starttime) > tcp_msl)
1405				goto dropwithreset;
1406			if (CC_GT(to.to_cc, tp->cc_recv)) {
1407				tp = tcp_close(tp);
1408				goto findpcb;
1409			}
1410			else
1411				goto drop;
1412		}
1413 		break;  /* continue normal processing */
1414	}
1415
1416	/*
1417	 * States other than LISTEN or SYN_SENT.
1418	 * First check the RST flag and sequence number since reset segments
1419	 * are exempt from the timestamp and connection count tests.  This
1420	 * fixes a bug introduced by the Stevens, vol. 2, p. 960 bugfix
1421	 * below which allowed reset segments in half the sequence space
1422	 * to fall though and be processed (which gives forged reset
1423	 * segments with a random sequence number a 50 percent chance of
1424	 * killing a connection).
1425	 * Then check timestamp, if present.
1426	 * Then check the connection count, if present.
1427	 * Then check that at least some bytes of segment are within
1428	 * receive window.  If segment begins before rcv_nxt,
1429	 * drop leading data (and SYN); if nothing left, just ack.
1430	 *
1431	 *
1432	 * If the RST bit is set, check the sequence number to see
1433	 * if this is a valid reset segment.
1434	 * RFC 793 page 37:
1435	 *   In all states except SYN-SENT, all reset (RST) segments
1436	 *   are validated by checking their SEQ-fields.  A reset is
1437	 *   valid if its sequence number is in the window.
1438	 * Note: this does not take into account delayed ACKs, so
1439	 *   we should test against last_ack_sent instead of rcv_nxt.
1440	 *   The sequence number in the reset segment is normally an
1441	 *   echo of our outgoing acknowlegement numbers, but some hosts
1442	 *   send a reset with the sequence number at the rightmost edge
1443	 *   of our receive window, and we have to handle this case.
1444	 * If we have multiple segments in flight, the intial reset
1445	 * segment sequence numbers will be to the left of last_ack_sent,
1446	 * but they will eventually catch up.
1447	 * In any case, it never made sense to trim reset segments to
1448	 * fit the receive window since RFC 1122 says:
1449	 *   4.2.2.12  RST Segment: RFC-793 Section 3.4
1450	 *
1451	 *    A TCP SHOULD allow a received RST segment to include data.
1452	 *
1453	 *    DISCUSSION
1454	 *         It has been suggested that a RST segment could contain
1455	 *         ASCII text that encoded and explained the cause of the
1456	 *         RST.  No standard has yet been established for such
1457	 *         data.
1458	 *
1459	 * If the reset segment passes the sequence number test examine
1460	 * the state:
1461	 *    SYN_RECEIVED STATE:
1462	 *	If passive open, return to LISTEN state.
1463	 *	If active open, inform user that connection was refused.
1464	 *    ESTABLISHED, FIN_WAIT_1, FIN_WAIT2, CLOSE_WAIT STATES:
1465	 *	Inform user that connection was reset, and close tcb.
1466	 *    CLOSING, LAST_ACK STATES:
1467	 *	Close the tcb.
1468	 *    TIME_WAIT STATE:
1469	 *	Drop the segment - see Stevens, vol. 2, p. 964 and
1470	 *      RFC 1337.
1471	 */
1472	if (thflags & TH_RST) {
1473		if (SEQ_GEQ(th->th_seq, tp->last_ack_sent) &&
1474		    SEQ_LT(th->th_seq, tp->last_ack_sent + tp->rcv_wnd)) {
1475			switch (tp->t_state) {
1476
1477			case TCPS_SYN_RECEIVED:
1478				so->so_error = ECONNREFUSED;
1479				goto close;
1480
1481			case TCPS_ESTABLISHED:
1482			case TCPS_FIN_WAIT_1:
1483			case TCPS_FIN_WAIT_2:
1484			case TCPS_CLOSE_WAIT:
1485				so->so_error = ECONNRESET;
1486			close:
1487				tp->t_state = TCPS_CLOSED;
1488				tcpstat.tcps_drops++;
1489				tp = tcp_close(tp);
1490				break;
1491
1492			case TCPS_CLOSING:
1493			case TCPS_LAST_ACK:
1494				tp = tcp_close(tp);
1495				break;
1496
1497			case TCPS_TIME_WAIT:
1498				break;
1499			}
1500		}
1501		goto drop;
1502	}
1503
1504	/*
1505	 * RFC 1323 PAWS: If we have a timestamp reply on this segment
1506	 * and it's less than ts_recent, drop it.
1507	 */
1508	if ((to.to_flag & TOF_TS) != 0 && tp->ts_recent &&
1509	    TSTMP_LT(to.to_tsval, tp->ts_recent)) {
1510
1511		/* Check to see if ts_recent is over 24 days old.  */
1512		if ((int)(ticks - tp->ts_recent_age) > TCP_PAWS_IDLE) {
1513			/*
1514			 * Invalidate ts_recent.  If this segment updates
1515			 * ts_recent, the age will be reset later and ts_recent
1516			 * will get a valid value.  If it does not, setting
1517			 * ts_recent to zero will at least satisfy the
1518			 * requirement that zero be placed in the timestamp
1519			 * echo reply when ts_recent isn't valid.  The
1520			 * age isn't reset until we get a valid ts_recent
1521			 * because we don't want out-of-order segments to be
1522			 * dropped when ts_recent is old.
1523			 */
1524			tp->ts_recent = 0;
1525		} else {
1526			tcpstat.tcps_rcvduppack++;
1527			tcpstat.tcps_rcvdupbyte += tlen;
1528			tcpstat.tcps_pawsdrop++;
1529			goto dropafterack;
1530		}
1531	}
1532
1533	/*
1534	 * T/TCP mechanism
1535	 *   If T/TCP was negotiated and the segment doesn't have CC,
1536	 *   or if its CC is wrong then drop the segment.
1537	 *   RST segments do not have to comply with this.
1538	 */
1539	if ((tp->t_flags & (TF_REQ_CC|TF_RCVD_CC)) == (TF_REQ_CC|TF_RCVD_CC) &&
1540	    ((to.to_flag & TOF_CC) == 0 || tp->cc_recv != to.to_cc))
1541 		goto dropafterack;
1542
1543	/*
1544	 * In the SYN-RECEIVED state, validate that the packet belongs to
1545	 * this connection before trimming the data to fit the receive
1546	 * window.  Check the sequence number versus IRS since we know
1547	 * the sequence numbers haven't wrapped.  This is a partial fix
1548	 * for the "LAND" DoS attack.
1549	 */
1550	if (tp->t_state == TCPS_SYN_RECEIVED && SEQ_LT(th->th_seq, tp->irs))
1551		goto maybedropwithreset;
1552
1553	todrop = tp->rcv_nxt - th->th_seq;
1554	if (todrop > 0) {
1555		if (thflags & TH_SYN) {
1556			thflags &= ~TH_SYN;
1557			th->th_seq++;
1558			if (th->th_urp > 1)
1559				th->th_urp--;
1560			else
1561				thflags &= ~TH_URG;
1562			todrop--;
1563		}
1564		/*
1565		 * Following if statement from Stevens, vol. 2, p. 960.
1566		 */
1567		if (todrop > tlen
1568		    || (todrop == tlen && (thflags & TH_FIN) == 0)) {
1569			/*
1570			 * Any valid FIN must be to the left of the window.
1571			 * At this point the FIN must be a duplicate or out
1572			 * of sequence; drop it.
1573			 */
1574			thflags &= ~TH_FIN;
1575
1576			/*
1577			 * Send an ACK to resynchronize and drop any data.
1578			 * But keep on processing for RST or ACK.
1579			 */
1580			tp->t_flags |= TF_ACKNOW;
1581			todrop = tlen;
1582			tcpstat.tcps_rcvduppack++;
1583			tcpstat.tcps_rcvdupbyte += todrop;
1584		} else {
1585			tcpstat.tcps_rcvpartduppack++;
1586			tcpstat.tcps_rcvpartdupbyte += todrop;
1587		}
1588		drop_hdrlen += todrop;	/* drop from the top afterwards */
1589		th->th_seq += todrop;
1590		tlen -= todrop;
1591		if (th->th_urp > todrop)
1592			th->th_urp -= todrop;
1593		else {
1594			thflags &= ~TH_URG;
1595			th->th_urp = 0;
1596		}
1597	}
1598
1599	/*
1600	 * If new data are received on a connection after the
1601	 * user processes are gone, then RST the other end.
1602	 */
1603	if ((so->so_state & SS_NOFDREF) &&
1604	    tp->t_state > TCPS_CLOSE_WAIT && tlen) {
1605		tp = tcp_close(tp);
1606		tcpstat.tcps_rcvafterclose++;
1607		goto dropwithreset;
1608	}
1609
1610	/*
1611	 * If segment ends after window, drop trailing data
1612	 * (and PUSH and FIN); if nothing left, just ACK.
1613	 */
1614	todrop = (th->th_seq+tlen) - (tp->rcv_nxt+tp->rcv_wnd);
1615	if (todrop > 0) {
1616		tcpstat.tcps_rcvpackafterwin++;
1617		if (todrop >= tlen) {
1618			tcpstat.tcps_rcvbyteafterwin += tlen;
1619			/*
1620			 * If a new connection request is received
1621			 * while in TIME_WAIT, drop the old connection
1622			 * and start over if the sequence numbers
1623			 * are above the previous ones.
1624			 */
1625			if (thflags & TH_SYN &&
1626			    tp->t_state == TCPS_TIME_WAIT &&
1627			    SEQ_GT(th->th_seq, tp->rcv_nxt)) {
1628				iss = tp->snd_nxt + TCP_ISSINCR;
1629				tp = tcp_close(tp);
1630				goto findpcb;
1631			}
1632			/*
1633			 * If window is closed can only take segments at
1634			 * window edge, and have to drop data and PUSH from
1635			 * incoming segments.  Continue processing, but
1636			 * remember to ack.  Otherwise, drop segment
1637			 * and ack.
1638			 */
1639			if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
1640				tp->t_flags |= TF_ACKNOW;
1641				tcpstat.tcps_rcvwinprobe++;
1642			} else
1643				goto dropafterack;
1644		} else
1645			tcpstat.tcps_rcvbyteafterwin += todrop;
1646		m_adj(m, -todrop);
1647		tlen -= todrop;
1648		thflags &= ~(TH_PUSH|TH_FIN);
1649	}
1650
1651	/*
1652	 * If last ACK falls within this segment's sequence numbers,
1653	 * record its timestamp.
1654	 * NOTE that the test is modified according to the latest
1655	 * proposal of the tcplw@cray.com list (Braden 1993/04/26).
1656	 */
1657	if ((to.to_flag & TOF_TS) != 0 &&
1658	    SEQ_LEQ(th->th_seq, tp->last_ack_sent)) {
1659		tp->ts_recent_age = ticks;
1660		tp->ts_recent = to.to_tsval;
1661	}
1662
1663	/*
1664	 * If a SYN is in the window, then this is an
1665	 * error and we send an RST and drop the connection.
1666	 */
1667	if (thflags & TH_SYN) {
1668		tp = tcp_drop(tp, ECONNRESET);
1669		goto dropwithreset;
1670	}
1671
1672	/*
1673	 * If the ACK bit is off:  if in SYN-RECEIVED state or SENDSYN
1674	 * flag is on (half-synchronized state), then queue data for
1675	 * later processing; else drop segment and return.
1676	 */
1677	if ((thflags & TH_ACK) == 0) {
1678		if (tp->t_state == TCPS_SYN_RECEIVED ||
1679		    (tp->t_flags & TF_NEEDSYN))
1680			goto step6;
1681		else
1682			goto drop;
1683	}
1684
1685	/*
1686	 * Ack processing.
1687	 */
1688	switch (tp->t_state) {
1689
1690	/*
1691	 * In SYN_RECEIVED state, the ack ACKs our SYN, so enter
1692	 * ESTABLISHED state and continue processing.
1693	 * The ACK was checked above.
1694	 */
1695	case TCPS_SYN_RECEIVED:
1696
1697		tcpstat.tcps_connects++;
1698		soisconnected(so);
1699		/* Do window scaling? */
1700		if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
1701			(TF_RCVD_SCALE|TF_REQ_SCALE)) {
1702			tp->snd_scale = tp->requested_s_scale;
1703			tp->rcv_scale = tp->request_r_scale;
1704		}
1705		/*
1706		 * Upon successful completion of 3-way handshake,
1707		 * update cache.CC if it was undefined, pass any queued
1708		 * data to the user, and advance state appropriately.
1709		 */
1710		if ((taop = tcp_gettaocache(inp)) != NULL &&
1711		    taop->tao_cc == 0)
1712			taop->tao_cc = tp->cc_recv;
1713
1714		/*
1715		 * Make transitions:
1716		 *      SYN-RECEIVED  -> ESTABLISHED
1717		 *      SYN-RECEIVED* -> FIN-WAIT-1
1718		 */
1719		tp->t_starttime = ticks;
1720		if (tp->t_flags & TF_NEEDFIN) {
1721			tp->t_state = TCPS_FIN_WAIT_1;
1722			tp->t_flags &= ~TF_NEEDFIN;
1723		} else {
1724			tp->t_state = TCPS_ESTABLISHED;
1725			callout_reset(tp->tt_keep, tcp_keepidle,
1726				      tcp_timer_keep, tp);
1727		}
1728		/*
1729		 * If segment contains data or ACK, will call tcp_reass()
1730		 * later; if not, do so now to pass queued data to user.
1731		 */
1732		if (tlen == 0 && (thflags & TH_FIN) == 0)
1733			(void) tcp_reass(tp, (struct tcphdr *)0, 0,
1734			    (struct mbuf *)0);
1735		tp->snd_wl1 = th->th_seq - 1;
1736		/* fall into ... */
1737
1738	/*
1739	 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
1740	 * ACKs.  If the ack is in the range
1741	 *	tp->snd_una < th->th_ack <= tp->snd_max
1742	 * then advance tp->snd_una to th->th_ack and drop
1743	 * data from the retransmission queue.  If this ACK reflects
1744	 * more up to date window information we update our window information.
1745	 */
1746	case TCPS_ESTABLISHED:
1747	case TCPS_FIN_WAIT_1:
1748	case TCPS_FIN_WAIT_2:
1749	case TCPS_CLOSE_WAIT:
1750	case TCPS_CLOSING:
1751	case TCPS_LAST_ACK:
1752	case TCPS_TIME_WAIT:
1753
1754		if (SEQ_LEQ(th->th_ack, tp->snd_una)) {
1755			if (tlen == 0 && tiwin == tp->snd_wnd) {
1756				tcpstat.tcps_rcvdupack++;
1757				/*
1758				 * If we have outstanding data (other than
1759				 * a window probe), this is a completely
1760				 * duplicate ack (ie, window info didn't
1761				 * change), the ack is the biggest we've
1762				 * seen and we've seen exactly our rexmt
1763				 * threshhold of them, assume a packet
1764				 * has been dropped and retransmit it.
1765				 * Kludge snd_nxt & the congestion
1766				 * window so we send only this one
1767				 * packet.
1768				 *
1769				 * We know we're losing at the current
1770				 * window size so do congestion avoidance
1771				 * (set ssthresh to half the current window
1772				 * and pull our congestion window back to
1773				 * the new ssthresh).
1774				 *
1775				 * Dup acks mean that packets have left the
1776				 * network (they're now cached at the receiver)
1777				 * so bump cwnd by the amount in the receiver
1778				 * to keep a constant cwnd packets in the
1779				 * network.
1780				 */
1781				if (!callout_active(tp->tt_rexmt) ||
1782				    th->th_ack != tp->snd_una)
1783					tp->t_dupacks = 0;
1784				else if (++tp->t_dupacks == tcprexmtthresh) {
1785					tcp_seq onxt = tp->snd_nxt;
1786					u_int win =
1787					    min(tp->snd_wnd, tp->snd_cwnd) / 2 /
1788						tp->t_maxseg;
1789					if (tcp_do_newreno && SEQ_LT(th->th_ack,
1790					    tp->snd_recover)) {
1791						/* False retransmit, should not
1792						 * cut window
1793						 */
1794						tp->snd_cwnd += tp->t_maxseg;
1795						tp->t_dupacks = 0;
1796						(void) tcp_output(tp);
1797						goto drop;
1798					}
1799					if (win < 2)
1800						win = 2;
1801					tp->snd_ssthresh = win * tp->t_maxseg;
1802					tp->snd_recover = tp->snd_max;
1803					callout_stop(tp->tt_rexmt);
1804					tp->t_rtttime = 0;
1805					tp->snd_nxt = th->th_ack;
1806					tp->snd_cwnd = tp->t_maxseg;
1807					(void) tcp_output(tp);
1808					tp->snd_cwnd = tp->snd_ssthresh +
1809					       tp->t_maxseg * tp->t_dupacks;
1810					if (SEQ_GT(onxt, tp->snd_nxt))
1811						tp->snd_nxt = onxt;
1812					goto drop;
1813				} else if (tp->t_dupacks > tcprexmtthresh) {
1814					tp->snd_cwnd += tp->t_maxseg;
1815					(void) tcp_output(tp);
1816					goto drop;
1817				}
1818			} else
1819				tp->t_dupacks = 0;
1820			break;
1821		}
1822		/*
1823		 * If the congestion window was inflated to account
1824		 * for the other side's cached packets, retract it.
1825		 */
1826		if (tcp_do_newreno == 0) {
1827                        if (tp->t_dupacks >= tcprexmtthresh &&
1828                                tp->snd_cwnd > tp->snd_ssthresh)
1829                                tp->snd_cwnd = tp->snd_ssthresh;
1830                        tp->t_dupacks = 0;
1831                } else if (tp->t_dupacks >= tcprexmtthresh &&
1832		    !tcp_newreno(tp, th)) {
1833                        /*
1834                         * Window inflation should have left us with approx.
1835                         * snd_ssthresh outstanding data.  But in case we
1836                         * would be inclined to send a burst, better to do
1837                         * it via the slow start mechanism.
1838                         */
1839			if (SEQ_GT(th->th_ack + tp->snd_ssthresh, tp->snd_max))
1840                                tp->snd_cwnd =
1841				    tp->snd_max - th->th_ack + tp->t_maxseg;
1842			else
1843                        	tp->snd_cwnd = tp->snd_ssthresh;
1844                        tp->t_dupacks = 0;
1845                }
1846		if (SEQ_GT(th->th_ack, tp->snd_max)) {
1847			tcpstat.tcps_rcvacktoomuch++;
1848			goto dropafterack;
1849		}
1850		/*
1851		 *  If we reach this point, ACK is not a duplicate,
1852		 *     i.e., it ACKs something we sent.
1853		 */
1854		if (tp->t_flags & TF_NEEDSYN) {
1855			/*
1856			 * T/TCP: Connection was half-synchronized, and our
1857			 * SYN has been ACK'd (so connection is now fully
1858			 * synchronized).  Go to non-starred state,
1859			 * increment snd_una for ACK of SYN, and check if
1860			 * we can do window scaling.
1861			 */
1862			tp->t_flags &= ~TF_NEEDSYN;
1863			tp->snd_una++;
1864			/* Do window scaling? */
1865			if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
1866				(TF_RCVD_SCALE|TF_REQ_SCALE)) {
1867				tp->snd_scale = tp->requested_s_scale;
1868				tp->rcv_scale = tp->request_r_scale;
1869			}
1870		}
1871
1872process_ACK:
1873		acked = th->th_ack - tp->snd_una;
1874		tcpstat.tcps_rcvackpack++;
1875		tcpstat.tcps_rcvackbyte += acked;
1876
1877		/*
1878		 * If we just performed our first retransmit, and the ACK
1879		 * arrives within our recovery window, then it was a mistake
1880		 * to do the retransmit in the first place.  Recover our
1881		 * original cwnd and ssthresh, and proceed to transmit where
1882		 * we left off.
1883		 */
1884		if (tp->t_rxtshift == 1 && ticks < tp->t_badrxtwin) {
1885			tp->snd_cwnd = tp->snd_cwnd_prev;
1886			tp->snd_ssthresh = tp->snd_ssthresh_prev;
1887			tp->snd_nxt = tp->snd_max;
1888			tp->t_badrxtwin = 0;	/* XXX probably not required */
1889		}
1890
1891		/*
1892		 * If we have a timestamp reply, update smoothed
1893		 * round trip time.  If no timestamp is present but
1894		 * transmit timer is running and timed sequence
1895		 * number was acked, update smoothed round trip time.
1896		 * Since we now have an rtt measurement, cancel the
1897		 * timer backoff (cf., Phil Karn's retransmit alg.).
1898		 * Recompute the initial retransmit timer.
1899		 */
1900		if (to.to_flag & TOF_TS)
1901			tcp_xmit_timer(tp, ticks - to.to_tsecr + 1);
1902		else if (tp->t_rtttime && SEQ_GT(th->th_ack, tp->t_rtseq))
1903			tcp_xmit_timer(tp, ticks - tp->t_rtttime);
1904
1905		/*
1906		 * If all outstanding data is acked, stop retransmit
1907		 * timer and remember to restart (more output or persist).
1908		 * If there is more data to be acked, restart retransmit
1909		 * timer, using current (possibly backed-off) value.
1910		 */
1911		if (th->th_ack == tp->snd_max) {
1912			callout_stop(tp->tt_rexmt);
1913			needoutput = 1;
1914		} else if (!callout_active(tp->tt_persist))
1915			callout_reset(tp->tt_rexmt, tp->t_rxtcur,
1916				      tcp_timer_rexmt, tp);
1917
1918		/*
1919		 * If no data (only SYN) was ACK'd,
1920		 *    skip rest of ACK processing.
1921		 */
1922		if (acked == 0)
1923			goto step6;
1924
1925		/*
1926		 * When new data is acked, open the congestion window.
1927		 * If the window gives us less than ssthresh packets
1928		 * in flight, open exponentially (maxseg per packet).
1929		 * Otherwise open linearly: maxseg per window
1930		 * (maxseg^2 / cwnd per packet).
1931		 */
1932		{
1933		register u_int cw = tp->snd_cwnd;
1934		register u_int incr = tp->t_maxseg;
1935
1936		if (cw > tp->snd_ssthresh)
1937			incr = incr * incr / cw;
1938		/*
1939		 * If t_dupacks != 0 here, it indicates that we are still
1940		 * in NewReno fast recovery mode, so we leave the congestion
1941		 * window alone.
1942		 */
1943		if (tcp_do_newreno == 0 || tp->t_dupacks == 0)
1944			tp->snd_cwnd = min(cw + incr,TCP_MAXWIN<<tp->snd_scale);
1945		}
1946		if (acked > so->so_snd.sb_cc) {
1947			tp->snd_wnd -= so->so_snd.sb_cc;
1948			sbdrop(&so->so_snd, (int)so->so_snd.sb_cc);
1949			ourfinisacked = 1;
1950		} else {
1951			sbdrop(&so->so_snd, acked);
1952			tp->snd_wnd -= acked;
1953			ourfinisacked = 0;
1954		}
1955		sowwakeup(so);
1956		tp->snd_una = th->th_ack;
1957		if (SEQ_LT(tp->snd_nxt, tp->snd_una))
1958			tp->snd_nxt = tp->snd_una;
1959
1960		switch (tp->t_state) {
1961
1962		/*
1963		 * In FIN_WAIT_1 STATE in addition to the processing
1964		 * for the ESTABLISHED state if our FIN is now acknowledged
1965		 * then enter FIN_WAIT_2.
1966		 */
1967		case TCPS_FIN_WAIT_1:
1968			if (ourfinisacked) {
1969				/*
1970				 * If we can't receive any more
1971				 * data, then closing user can proceed.
1972				 * Starting the timer is contrary to the
1973				 * specification, but if we don't get a FIN
1974				 * we'll hang forever.
1975				 */
1976				if (so->so_state & SS_CANTRCVMORE) {
1977					soisdisconnected(so);
1978					callout_reset(tp->tt_2msl, tcp_maxidle,
1979						      tcp_timer_2msl, tp);
1980				}
1981				tp->t_state = TCPS_FIN_WAIT_2;
1982			}
1983			break;
1984
1985	 	/*
1986		 * In CLOSING STATE in addition to the processing for
1987		 * the ESTABLISHED state if the ACK acknowledges our FIN
1988		 * then enter the TIME-WAIT state, otherwise ignore
1989		 * the segment.
1990		 */
1991		case TCPS_CLOSING:
1992			if (ourfinisacked) {
1993				tp->t_state = TCPS_TIME_WAIT;
1994				tcp_canceltimers(tp);
1995				/* Shorten TIME_WAIT [RFC-1644, p.28] */
1996				if (tp->cc_recv != 0 &&
1997				    (ticks - tp->t_starttime) < tcp_msl)
1998					callout_reset(tp->tt_2msl,
1999						      tp->t_rxtcur *
2000						      TCPTV_TWTRUNC,
2001						      tcp_timer_2msl, tp);
2002				else
2003					callout_reset(tp->tt_2msl, 2 * tcp_msl,
2004						      tcp_timer_2msl, tp);
2005				soisdisconnected(so);
2006			}
2007			break;
2008
2009		/*
2010		 * In LAST_ACK, we may still be waiting for data to drain
2011		 * and/or to be acked, as well as for the ack of our FIN.
2012		 * If our FIN is now acknowledged, delete the TCB,
2013		 * enter the closed state and return.
2014		 */
2015		case TCPS_LAST_ACK:
2016			if (ourfinisacked) {
2017				tp = tcp_close(tp);
2018				goto drop;
2019			}
2020			break;
2021
2022		/*
2023		 * In TIME_WAIT state the only thing that should arrive
2024		 * is a retransmission of the remote FIN.  Acknowledge
2025		 * it and restart the finack timer.
2026		 */
2027		case TCPS_TIME_WAIT:
2028			callout_reset(tp->tt_2msl, 2 * tcp_msl,
2029				      tcp_timer_2msl, tp);
2030			goto dropafterack;
2031		}
2032	}
2033
2034step6:
2035	/*
2036	 * Update window information.
2037	 * Don't look at window if no ACK: TAC's send garbage on first SYN.
2038	 */
2039	if ((thflags & TH_ACK) &&
2040	    (SEQ_LT(tp->snd_wl1, th->th_seq) ||
2041	    (tp->snd_wl1 == th->th_seq && (SEQ_LT(tp->snd_wl2, th->th_ack) ||
2042	     (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))))) {
2043		/* keep track of pure window updates */
2044		if (tlen == 0 &&
2045		    tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)
2046			tcpstat.tcps_rcvwinupd++;
2047		tp->snd_wnd = tiwin;
2048		tp->snd_wl1 = th->th_seq;
2049		tp->snd_wl2 = th->th_ack;
2050		if (tp->snd_wnd > tp->max_sndwnd)
2051			tp->max_sndwnd = tp->snd_wnd;
2052		needoutput = 1;
2053	}
2054
2055	/*
2056	 * Process segments with URG.
2057	 */
2058	if ((thflags & TH_URG) && th->th_urp &&
2059	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2060		/*
2061		 * This is a kludge, but if we receive and accept
2062		 * random urgent pointers, we'll crash in
2063		 * soreceive.  It's hard to imagine someone
2064		 * actually wanting to send this much urgent data.
2065		 */
2066		if (th->th_urp + so->so_rcv.sb_cc > sb_max) {
2067			th->th_urp = 0;			/* XXX */
2068			thflags &= ~TH_URG;		/* XXX */
2069			goto dodata;			/* XXX */
2070		}
2071		/*
2072		 * If this segment advances the known urgent pointer,
2073		 * then mark the data stream.  This should not happen
2074		 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
2075		 * a FIN has been received from the remote side.
2076		 * In these states we ignore the URG.
2077		 *
2078		 * According to RFC961 (Assigned Protocols),
2079		 * the urgent pointer points to the last octet
2080		 * of urgent data.  We continue, however,
2081		 * to consider it to indicate the first octet
2082		 * of data past the urgent section as the original
2083		 * spec states (in one of two places).
2084		 */
2085		if (SEQ_GT(th->th_seq+th->th_urp, tp->rcv_up)) {
2086			tp->rcv_up = th->th_seq + th->th_urp;
2087			so->so_oobmark = so->so_rcv.sb_cc +
2088			    (tp->rcv_up - tp->rcv_nxt) - 1;
2089			if (so->so_oobmark == 0)
2090				so->so_state |= SS_RCVATMARK;
2091			sohasoutofband(so);
2092			tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
2093		}
2094		/*
2095		 * Remove out of band data so doesn't get presented to user.
2096		 * This can happen independent of advancing the URG pointer,
2097		 * but if two URG's are pending at once, some out-of-band
2098		 * data may creep in... ick.
2099		 */
2100		if (th->th_urp <= (u_long)tlen
2101#ifdef SO_OOBINLINE
2102		     && (so->so_options & SO_OOBINLINE) == 0
2103#endif
2104		     )
2105			tcp_pulloutofband(so, th, m,
2106				drop_hdrlen);	/* hdr drop is delayed */
2107	} else
2108		/*
2109		 * If no out of band data is expected,
2110		 * pull receive urgent pointer along
2111		 * with the receive window.
2112		 */
2113		if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
2114			tp->rcv_up = tp->rcv_nxt;
2115dodata:							/* XXX */
2116
2117	/*
2118	 * Process the segment text, merging it into the TCP sequencing queue,
2119	 * and arranging for acknowledgment of receipt if necessary.
2120	 * This process logically involves adjusting tp->rcv_wnd as data
2121	 * is presented to the user (this happens in tcp_usrreq.c,
2122	 * case PRU_RCVD).  If a FIN has already been received on this
2123	 * connection then we just ignore the text.
2124	 */
2125	if ((tlen || (thflags&TH_FIN)) &&
2126	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2127		m_adj(m, drop_hdrlen);	/* delayed header drop */
2128		TCP_REASS(tp, th, &tlen, m, so, thflags);
2129		/*
2130		 * Note the amount of data that peer has sent into
2131		 * our window, in order to estimate the sender's
2132		 * buffer size.
2133		 */
2134		len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
2135	} else {
2136		m_freem(m);
2137		thflags &= ~TH_FIN;
2138	}
2139
2140	/*
2141	 * If FIN is received ACK the FIN and let the user know
2142	 * that the connection is closing.
2143	 */
2144	if (thflags & TH_FIN) {
2145		if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2146			socantrcvmore(so);
2147			/*
2148			 *  If connection is half-synchronized
2149			 *  (ie NEEDSYN flag on) then delay ACK,
2150			 *  so it may be piggybacked when SYN is sent.
2151			 *  Otherwise, since we received a FIN then no
2152			 *  more input can be expected, send ACK now.
2153			 */
2154			if (tcp_delack_enabled && (tp->t_flags & TF_NEEDSYN))
2155                                callout_reset(tp->tt_delack, tcp_delacktime,
2156                                    tcp_timer_delack, tp);
2157			else
2158				tp->t_flags |= TF_ACKNOW;
2159			tp->rcv_nxt++;
2160		}
2161		switch (tp->t_state) {
2162
2163	 	/*
2164		 * In SYN_RECEIVED and ESTABLISHED STATES
2165		 * enter the CLOSE_WAIT state.
2166		 */
2167		case TCPS_SYN_RECEIVED:
2168			tp->t_starttime = ticks;
2169			/*FALLTHROUGH*/
2170		case TCPS_ESTABLISHED:
2171			tp->t_state = TCPS_CLOSE_WAIT;
2172			break;
2173
2174	 	/*
2175		 * If still in FIN_WAIT_1 STATE FIN has not been acked so
2176		 * enter the CLOSING state.
2177		 */
2178		case TCPS_FIN_WAIT_1:
2179			tp->t_state = TCPS_CLOSING;
2180			break;
2181
2182	 	/*
2183		 * In FIN_WAIT_2 state enter the TIME_WAIT state,
2184		 * starting the time-wait timer, turning off the other
2185		 * standard timers.
2186		 */
2187		case TCPS_FIN_WAIT_2:
2188			tp->t_state = TCPS_TIME_WAIT;
2189			tcp_canceltimers(tp);
2190			/* Shorten TIME_WAIT [RFC-1644, p.28] */
2191			if (tp->cc_recv != 0 &&
2192			    (ticks - tp->t_starttime) < tcp_msl) {
2193				callout_reset(tp->tt_2msl,
2194					      tp->t_rxtcur * TCPTV_TWTRUNC,
2195					      tcp_timer_2msl, tp);
2196				/* For transaction client, force ACK now. */
2197				tp->t_flags |= TF_ACKNOW;
2198			}
2199			else
2200				callout_reset(tp->tt_2msl, 2 * tcp_msl,
2201					      tcp_timer_2msl, tp);
2202			soisdisconnected(so);
2203			break;
2204
2205		/*
2206		 * In TIME_WAIT state restart the 2 MSL time_wait timer.
2207		 */
2208		case TCPS_TIME_WAIT:
2209			callout_reset(tp->tt_2msl, 2 * tcp_msl,
2210				      tcp_timer_2msl, tp);
2211			break;
2212		}
2213	}
2214#ifdef TCPDEBUG
2215	if (so->so_options & SO_DEBUG)
2216		tcp_trace(TA_INPUT, ostate, tp, (void *)tcp_saveipgen,
2217			  &tcp_savetcp, 0);
2218#endif
2219
2220	/*
2221	 * Return any desired output.
2222	 */
2223	if (needoutput || (tp->t_flags & TF_ACKNOW))
2224		(void) tcp_output(tp);
2225	return;
2226
2227dropafterack:
2228	/*
2229	 * Generate an ACK dropping incoming segment if it occupies
2230	 * sequence space, where the ACK reflects our state.
2231	 *
2232	 * We can now skip the test for the RST flag since all
2233	 * paths to this code happen after packets containing
2234	 * RST have been dropped.
2235	 *
2236	 * In the SYN-RECEIVED state, don't send an ACK unless the
2237	 * segment we received passes the SYN-RECEIVED ACK test.
2238	 * If it fails send a RST.  This breaks the loop in the
2239	 * "LAND" DoS attack, and also prevents an ACK storm
2240	 * between two listening ports that have been sent forged
2241	 * SYN segments, each with the source address of the other.
2242	 */
2243	if (tp->t_state == TCPS_SYN_RECEIVED && (thflags & TH_ACK) &&
2244	    (SEQ_GT(tp->snd_una, th->th_ack) ||
2245	     SEQ_GT(th->th_ack, tp->snd_max)) )
2246		goto maybedropwithreset;
2247#ifdef TCPDEBUG
2248	if (so->so_options & SO_DEBUG)
2249		tcp_trace(TA_DROP, ostate, tp, (void *)tcp_saveipgen,
2250			  &tcp_savetcp, 0);
2251#endif
2252	m_freem(m);
2253	tp->t_flags |= TF_ACKNOW;
2254	(void) tcp_output(tp);
2255	return;
2256
2257
2258	/*
2259	 * Conditionally drop with reset or just drop depending on whether
2260	 * we think we are under attack or not.
2261	 */
2262maybedropwithreset:
2263	if (badport_bandlim(1) < 0)
2264		goto drop;
2265	/* fall through */
2266dropwithreset:
2267#ifdef TCP_RESTRICT_RST
2268	if (restrict_rst)
2269		goto drop;
2270#endif
2271	/*
2272	 * Generate a RST, dropping incoming segment.
2273	 * Make ACK acceptable to originator of segment.
2274	 * Don't bother to respond if destination was broadcast/multicast.
2275	 */
2276	if ((thflags & TH_RST) || m->m_flags & (M_BCAST|M_MCAST))
2277		goto drop;
2278#ifdef INET6
2279	if (isipv6) {
2280		if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) ||
2281		    IN6_IS_ADDR_MULTICAST(&ip6->ip6_src))
2282			goto drop;
2283	} else
2284#endif /* INET6 */
2285	if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
2286	    IN_MULTICAST(ntohl(ip->ip_src.s_addr)) ||
2287	    ip->ip_src.s_addr == htonl(INADDR_BROADCAST))
2288		goto drop;
2289	/* IPv6 anycast check is done at tcp6_input() */
2290#ifdef TCPDEBUG
2291	if (tp == 0 || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
2292		tcp_trace(TA_DROP, ostate, tp, (void *)tcp_saveipgen,
2293			  &tcp_savetcp, 0);
2294#endif
2295	if (thflags & TH_ACK)
2296		/* mtod() below is safe as long as hdr dropping is delayed */
2297		tcp_respond(tp, mtod(m, void *), th, m, (tcp_seq)0, th->th_ack,
2298			    TH_RST);
2299	else {
2300		if (thflags & TH_SYN)
2301			tlen++;
2302		/* mtod() below is safe as long as hdr dropping is delayed */
2303		tcp_respond(tp, mtod(m, void *), th, m, th->th_seq+tlen,
2304			    (tcp_seq)0, TH_RST|TH_ACK);
2305	}
2306	/* destroy temporarily created socket */
2307	if (dropsocket)
2308		(void) soabort(so);
2309	return;
2310
2311drop:
2312	/*
2313	 * Drop space held by incoming segment and return.
2314	 */
2315#ifdef TCPDEBUG
2316	if (tp == 0 || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
2317		tcp_trace(TA_DROP, ostate, tp, (void *)tcp_saveipgen,
2318			  &tcp_savetcp, 0);
2319#endif
2320	m_freem(m);
2321	/* destroy temporarily created socket */
2322	if (dropsocket)
2323		(void) soabort(so);
2324	return;
2325}
2326
2327static void
2328tcp_dooptions(tp, cp, cnt, th, to)
2329	struct tcpcb *tp;
2330	u_char *cp;
2331	int cnt;
2332	struct tcphdr *th;
2333	struct tcpopt *to;
2334{
2335	u_short mss = 0;
2336	int opt, optlen;
2337
2338	for (; cnt > 0; cnt -= optlen, cp += optlen) {
2339		opt = cp[0];
2340		if (opt == TCPOPT_EOL)
2341			break;
2342		if (opt == TCPOPT_NOP)
2343			optlen = 1;
2344		else {
2345			if (cnt < 2)
2346				break;
2347			optlen = cp[1];
2348			if (optlen < 2 || optlen > cnt)
2349				break;
2350		}
2351		switch (opt) {
2352
2353		default:
2354			continue;
2355
2356		case TCPOPT_MAXSEG:
2357			if (optlen != TCPOLEN_MAXSEG)
2358				continue;
2359			if (!(th->th_flags & TH_SYN))
2360				continue;
2361			bcopy((char *) cp + 2, (char *) &mss, sizeof(mss));
2362			NTOHS(mss);
2363			break;
2364
2365		case TCPOPT_WINDOW:
2366			if (optlen != TCPOLEN_WINDOW)
2367				continue;
2368			if (!(th->th_flags & TH_SYN))
2369				continue;
2370			tp->t_flags |= TF_RCVD_SCALE;
2371			tp->requested_s_scale = min(cp[2], TCP_MAX_WINSHIFT);
2372			break;
2373
2374		case TCPOPT_TIMESTAMP:
2375			if (optlen != TCPOLEN_TIMESTAMP)
2376				continue;
2377			to->to_flag |= TOF_TS;
2378			bcopy((char *)cp + 2,
2379			    (char *)&to->to_tsval, sizeof(to->to_tsval));
2380			NTOHL(to->to_tsval);
2381			bcopy((char *)cp + 6,
2382			    (char *)&to->to_tsecr, sizeof(to->to_tsecr));
2383			NTOHL(to->to_tsecr);
2384
2385			/*
2386			 * A timestamp received in a SYN makes
2387			 * it ok to send timestamp requests and replies.
2388			 */
2389			if (th->th_flags & TH_SYN) {
2390				tp->t_flags |= TF_RCVD_TSTMP;
2391				tp->ts_recent = to->to_tsval;
2392				tp->ts_recent_age = ticks;
2393			}
2394			break;
2395		case TCPOPT_CC:
2396			if (optlen != TCPOLEN_CC)
2397				continue;
2398			to->to_flag |= TOF_CC;
2399			bcopy((char *)cp + 2,
2400			    (char *)&to->to_cc, sizeof(to->to_cc));
2401			NTOHL(to->to_cc);
2402			/*
2403			 * A CC or CC.new option received in a SYN makes
2404			 * it ok to send CC in subsequent segments.
2405			 */
2406			if (th->th_flags & TH_SYN)
2407				tp->t_flags |= TF_RCVD_CC;
2408			break;
2409		case TCPOPT_CCNEW:
2410			if (optlen != TCPOLEN_CC)
2411				continue;
2412			if (!(th->th_flags & TH_SYN))
2413				continue;
2414			to->to_flag |= TOF_CCNEW;
2415			bcopy((char *)cp + 2,
2416			    (char *)&to->to_cc, sizeof(to->to_cc));
2417			NTOHL(to->to_cc);
2418			/*
2419			 * A CC or CC.new option received in a SYN makes
2420			 * it ok to send CC in subsequent segments.
2421			 */
2422			tp->t_flags |= TF_RCVD_CC;
2423			break;
2424		case TCPOPT_CCECHO:
2425			if (optlen != TCPOLEN_CC)
2426				continue;
2427			if (!(th->th_flags & TH_SYN))
2428				continue;
2429			to->to_flag |= TOF_CCECHO;
2430			bcopy((char *)cp + 2,
2431			    (char *)&to->to_ccecho, sizeof(to->to_ccecho));
2432			NTOHL(to->to_ccecho);
2433			break;
2434		}
2435	}
2436	if (th->th_flags & TH_SYN)
2437		tcp_mss(tp, mss);	/* sets t_maxseg */
2438}
2439
2440/*
2441 * Pull out of band byte out of a segment so
2442 * it doesn't appear in the user's data queue.
2443 * It is still reflected in the segment length for
2444 * sequencing purposes.
2445 */
2446static void
2447tcp_pulloutofband(so, th, m, off)
2448	struct socket *so;
2449	struct tcphdr *th;
2450	register struct mbuf *m;
2451	int off;		/* delayed to be droped hdrlen */
2452{
2453	int cnt = off + th->th_urp - 1;
2454
2455	while (cnt >= 0) {
2456		if (m->m_len > cnt) {
2457			char *cp = mtod(m, caddr_t) + cnt;
2458			struct tcpcb *tp = sototcpcb(so);
2459
2460			tp->t_iobc = *cp;
2461			tp->t_oobflags |= TCPOOB_HAVEDATA;
2462			bcopy(cp+1, cp, (unsigned)(m->m_len - cnt - 1));
2463			m->m_len--;
2464			if (m->m_flags & M_PKTHDR)
2465				m->m_pkthdr.len--;
2466			return;
2467		}
2468		cnt -= m->m_len;
2469		m = m->m_next;
2470		if (m == 0)
2471			break;
2472	}
2473	panic("tcp_pulloutofband");
2474}
2475
2476/*
2477 * Collect new round-trip time estimate
2478 * and update averages and current timeout.
2479 */
2480static void
2481tcp_xmit_timer(tp, rtt)
2482	register struct tcpcb *tp;
2483	int rtt;
2484{
2485	register int delta;
2486
2487	tcpstat.tcps_rttupdated++;
2488	tp->t_rttupdated++;
2489	if (tp->t_srtt != 0) {
2490		/*
2491		 * srtt is stored as fixed point with 5 bits after the
2492		 * binary point (i.e., scaled by 8).  The following magic
2493		 * is equivalent to the smoothing algorithm in rfc793 with
2494		 * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed
2495		 * point).  Adjust rtt to origin 0.
2496		 */
2497		delta = ((rtt - 1) << TCP_DELTA_SHIFT)
2498			- (tp->t_srtt >> (TCP_RTT_SHIFT - TCP_DELTA_SHIFT));
2499
2500		if ((tp->t_srtt += delta) <= 0)
2501			tp->t_srtt = 1;
2502
2503		/*
2504		 * We accumulate a smoothed rtt variance (actually, a
2505		 * smoothed mean difference), then set the retransmit
2506		 * timer to smoothed rtt + 4 times the smoothed variance.
2507		 * rttvar is stored as fixed point with 4 bits after the
2508		 * binary point (scaled by 16).  The following is
2509		 * equivalent to rfc793 smoothing with an alpha of .75
2510		 * (rttvar = rttvar*3/4 + |delta| / 4).  This replaces
2511		 * rfc793's wired-in beta.
2512		 */
2513		if (delta < 0)
2514			delta = -delta;
2515		delta -= tp->t_rttvar >> (TCP_RTTVAR_SHIFT - TCP_DELTA_SHIFT);
2516		if ((tp->t_rttvar += delta) <= 0)
2517			tp->t_rttvar = 1;
2518	} else {
2519		/*
2520		 * No rtt measurement yet - use the unsmoothed rtt.
2521		 * Set the variance to half the rtt (so our first
2522		 * retransmit happens at 3*rtt).
2523		 */
2524		tp->t_srtt = rtt << TCP_RTT_SHIFT;
2525		tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT - 1);
2526	}
2527	tp->t_rtttime = 0;
2528	tp->t_rxtshift = 0;
2529
2530	/*
2531	 * the retransmit should happen at rtt + 4 * rttvar.
2532	 * Because of the way we do the smoothing, srtt and rttvar
2533	 * will each average +1/2 tick of bias.  When we compute
2534	 * the retransmit timer, we want 1/2 tick of rounding and
2535	 * 1 extra tick because of +-1/2 tick uncertainty in the
2536	 * firing of the timer.  The bias will give us exactly the
2537	 * 1.5 tick we need.  But, because the bias is
2538	 * statistical, we have to test that we don't drop below
2539	 * the minimum feasible timer (which is 2 ticks).
2540	 */
2541	TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
2542		      max(tp->t_rttmin, rtt + 2), TCPTV_REXMTMAX);
2543
2544	/*
2545	 * We received an ack for a packet that wasn't retransmitted;
2546	 * it is probably safe to discard any error indications we've
2547	 * received recently.  This isn't quite right, but close enough
2548	 * for now (a route might have failed after we sent a segment,
2549	 * and the return path might not be symmetrical).
2550	 */
2551	tp->t_softerror = 0;
2552}
2553
2554/*
2555 * Determine a reasonable value for maxseg size.
2556 * If the route is known, check route for mtu.
2557 * If none, use an mss that can be handled on the outgoing
2558 * interface without forcing IP to fragment; if bigger than
2559 * an mbuf cluster (MCLBYTES), round down to nearest multiple of MCLBYTES
2560 * to utilize large mbufs.  If no route is found, route has no mtu,
2561 * or the destination isn't local, use a default, hopefully conservative
2562 * size (usually 512 or the default IP max size, but no more than the mtu
2563 * of the interface), as we can't discover anything about intervening
2564 * gateways or networks.  We also initialize the congestion/slow start
2565 * window to be a single segment if the destination isn't local.
2566 * While looking at the routing entry, we also initialize other path-dependent
2567 * parameters from pre-set or cached values in the routing entry.
2568 *
2569 * Also take into account the space needed for options that we
2570 * send regularly.  Make maxseg shorter by that amount to assure
2571 * that we can send maxseg amount of data even when the options
2572 * are present.  Store the upper limit of the length of options plus
2573 * data in maxopd.
2574 *
2575 * NOTE that this routine is only called when we process an incoming
2576 * segment, for outgoing segments only tcp_mssopt is called.
2577 *
2578 * In case of T/TCP, we call this routine during implicit connection
2579 * setup as well (offer = -1), to initialize maxseg from the cached
2580 * MSS of our peer.
2581 */
2582void
2583tcp_mss(tp, offer)
2584	struct tcpcb *tp;
2585	int offer;
2586{
2587	register struct rtentry *rt;
2588	struct ifnet *ifp;
2589	register int rtt, mss;
2590	u_long bufsize;
2591	struct inpcb *inp;
2592	struct socket *so;
2593	struct rmxp_tao *taop;
2594	int origoffer = offer;
2595#ifdef INET6
2596	int isipv6;
2597	int min_protoh;
2598#endif
2599
2600	inp = tp->t_inpcb;
2601#ifdef INET6
2602	isipv6 = ((inp->inp_vflag & INP_IPV6) != 0) ? 1 : 0;
2603	min_protoh = isipv6 ? sizeof (struct ip6_hdr) + sizeof (struct tcphdr)
2604			    : sizeof (struct tcpiphdr);
2605#else
2606#define min_protoh  (sizeof (struct tcpiphdr))
2607#endif
2608#ifdef INET6
2609	if (isipv6)
2610		rt = tcp_rtlookup6(inp);
2611	else
2612#endif
2613	rt = tcp_rtlookup(inp);
2614	if (rt == NULL) {
2615		tp->t_maxopd = tp->t_maxseg =
2616#ifdef INET6
2617		isipv6 ? tcp_v6mssdflt :
2618#endif /* INET6 */
2619		tcp_mssdflt;
2620		return;
2621	}
2622	ifp = rt->rt_ifp;
2623	so = inp->inp_socket;
2624
2625	taop = rmx_taop(rt->rt_rmx);
2626	/*
2627	 * Offer == -1 means that we didn't receive SYN yet,
2628	 * use cached value in that case;
2629	 */
2630	if (offer == -1)
2631		offer = taop->tao_mssopt;
2632	/*
2633	 * Offer == 0 means that there was no MSS on the SYN segment,
2634	 * in this case we use tcp_mssdflt.
2635	 */
2636	if (offer == 0)
2637		offer =
2638#ifdef INET6
2639			isipv6 ? tcp_v6mssdflt :
2640#endif /* INET6 */
2641			tcp_mssdflt;
2642	else
2643		/*
2644		 * Sanity check: make sure that maxopd will be large
2645		 * enough to allow some data on segments even is the
2646		 * all the option space is used (40bytes).  Otherwise
2647		 * funny things may happen in tcp_output.
2648		 */
2649		offer = max(offer, 64);
2650	taop->tao_mssopt = offer;
2651
2652	/*
2653	 * While we're here, check if there's an initial rtt
2654	 * or rttvar.  Convert from the route-table units
2655	 * to scaled multiples of the slow timeout timer.
2656	 */
2657	if (tp->t_srtt == 0 && (rtt = rt->rt_rmx.rmx_rtt)) {
2658		/*
2659		 * XXX the lock bit for RTT indicates that the value
2660		 * is also a minimum value; this is subject to time.
2661		 */
2662		if (rt->rt_rmx.rmx_locks & RTV_RTT)
2663			tp->t_rttmin = rtt / (RTM_RTTUNIT / hz);
2664		tp->t_srtt = rtt / (RTM_RTTUNIT / (hz * TCP_RTT_SCALE));
2665		tcpstat.tcps_usedrtt++;
2666		if (rt->rt_rmx.rmx_rttvar) {
2667			tp->t_rttvar = rt->rt_rmx.rmx_rttvar /
2668			    (RTM_RTTUNIT / (hz * TCP_RTTVAR_SCALE));
2669			tcpstat.tcps_usedrttvar++;
2670		} else {
2671			/* default variation is +- 1 rtt */
2672			tp->t_rttvar =
2673			    tp->t_srtt * TCP_RTTVAR_SCALE / TCP_RTT_SCALE;
2674		}
2675		TCPT_RANGESET(tp->t_rxtcur,
2676			      ((tp->t_srtt >> 2) + tp->t_rttvar) >> 1,
2677			      tp->t_rttmin, TCPTV_REXMTMAX);
2678	}
2679	/*
2680	 * if there's an mtu associated with the route, use it
2681	 * else, use the link mtu.
2682	 */
2683	if (rt->rt_rmx.rmx_mtu)
2684		mss = rt->rt_rmx.rmx_mtu - min_protoh;
2685	else
2686	{
2687		mss =
2688#ifdef INET6
2689			(isipv6 ? nd_ifinfo[rt->rt_ifp->if_index].linkmtu :
2690#endif
2691			 ifp->if_mtu
2692#ifdef INET6
2693			 )
2694#endif
2695			- min_protoh;
2696#ifdef INET6
2697		if (isipv6) {
2698			if (!in6_localaddr(&inp->in6p_faddr))
2699				mss = min(mss, tcp_v6mssdflt);
2700		} else
2701#endif
2702		if (!in_localaddr(inp->inp_faddr))
2703			mss = min(mss, tcp_mssdflt);
2704	}
2705	mss = min(mss, offer);
2706	/*
2707	 * maxopd stores the maximum length of data AND options
2708	 * in a segment; maxseg is the amount of data in a normal
2709	 * segment.  We need to store this value (maxopd) apart
2710	 * from maxseg, because now every segment carries options
2711	 * and thus we normally have somewhat less data in segments.
2712	 */
2713	tp->t_maxopd = mss;
2714
2715	/*
2716	 * In case of T/TCP, origoffer==-1 indicates, that no segments
2717	 * were received yet.  In this case we just guess, otherwise
2718	 * we do the same as before T/TCP.
2719	 */
2720 	if ((tp->t_flags & (TF_REQ_TSTMP|TF_NOOPT)) == TF_REQ_TSTMP &&
2721	    (origoffer == -1 ||
2722	     (tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP))
2723		mss -= TCPOLEN_TSTAMP_APPA;
2724 	if ((tp->t_flags & (TF_REQ_CC|TF_NOOPT)) == TF_REQ_CC &&
2725	    (origoffer == -1 ||
2726	     (tp->t_flags & TF_RCVD_CC) == TF_RCVD_CC))
2727		mss -= TCPOLEN_CC_APPA;
2728
2729#if	(MCLBYTES & (MCLBYTES - 1)) == 0
2730		if (mss > MCLBYTES)
2731			mss &= ~(MCLBYTES-1);
2732#else
2733		if (mss > MCLBYTES)
2734			mss = mss / MCLBYTES * MCLBYTES;
2735#endif
2736	/*
2737	 * If there's a pipesize, change the socket buffer
2738	 * to that size.  Make the socket buffers an integral
2739	 * number of mss units; if the mss is larger than
2740	 * the socket buffer, decrease the mss.
2741	 */
2742#ifdef RTV_SPIPE
2743	if ((bufsize = rt->rt_rmx.rmx_sendpipe) == 0)
2744#endif
2745		bufsize = so->so_snd.sb_hiwat;
2746	if (bufsize < mss)
2747		mss = bufsize;
2748	else {
2749		bufsize = roundup(bufsize, mss);
2750		if (bufsize > sb_max)
2751			bufsize = sb_max;
2752		(void)sbreserve(&so->so_snd, bufsize, so, NULL);
2753	}
2754	tp->t_maxseg = mss;
2755
2756#ifdef RTV_RPIPE
2757	if ((bufsize = rt->rt_rmx.rmx_recvpipe) == 0)
2758#endif
2759		bufsize = so->so_rcv.sb_hiwat;
2760	if (bufsize > mss) {
2761		bufsize = roundup(bufsize, mss);
2762		if (bufsize > sb_max)
2763			bufsize = sb_max;
2764		(void)sbreserve(&so->so_rcv, bufsize, so, NULL);
2765	}
2766
2767	/*
2768	 * Set the slow-start flight size depending on whether this
2769	 * is a local network or not.
2770	 */
2771	if (
2772#ifdef INET6
2773	    (isipv6 && in6_localaddr(&inp->in6p_faddr)) ||
2774	    (!isipv6 &&
2775#endif
2776	     in_localaddr(inp->inp_faddr)
2777#ifdef INET6
2778	     )
2779#endif
2780	    )
2781		tp->snd_cwnd = mss * ss_fltsz_local;
2782	else
2783		tp->snd_cwnd = mss * ss_fltsz;
2784
2785	if (rt->rt_rmx.rmx_ssthresh) {
2786		/*
2787		 * There's some sort of gateway or interface
2788		 * buffer limit on the path.  Use this to set
2789		 * the slow start threshhold, but set the
2790		 * threshold to no less than 2*mss.
2791		 */
2792		tp->snd_ssthresh = max(2 * mss, rt->rt_rmx.rmx_ssthresh);
2793		tcpstat.tcps_usedssthresh++;
2794	}
2795}
2796
2797/*
2798 * Determine the MSS option to send on an outgoing SYN.
2799 */
2800int
2801tcp_mssopt(tp)
2802	struct tcpcb *tp;
2803{
2804	struct rtentry *rt;
2805#ifdef INET6
2806	int isipv6;
2807	int min_protoh;
2808#endif
2809
2810#ifdef INET6
2811	isipv6 = ((tp->t_inpcb->inp_vflag & INP_IPV6) != 0) ? 1 : 0;
2812	min_protoh = isipv6 ? sizeof (struct ip6_hdr) + sizeof (struct tcphdr)
2813			    : sizeof (struct tcpiphdr);
2814#else
2815#define min_protoh  (sizeof (struct tcpiphdr))
2816#endif
2817#ifdef INET6
2818	if (isipv6)
2819		rt = tcp_rtlookup6(tp->t_inpcb);
2820	else
2821#endif /* INET6 */
2822	rt = tcp_rtlookup(tp->t_inpcb);
2823	if (rt == NULL)
2824		return
2825#ifdef INET6
2826			isipv6 ? tcp_v6mssdflt :
2827#endif /* INET6 */
2828			tcp_mssdflt;
2829
2830	return rt->rt_ifp->if_mtu - min_protoh;
2831}
2832
2833
2834/*
2835 * Checks for partial ack.  If partial ack arrives, force the retransmission
2836 * of the next unacknowledged segment, do not clear tp->t_dupacks, and return
2837 * 1.  By setting snd_nxt to ti_ack, this forces retransmission timer to
2838 * be started again.  If the ack advances at least to tp->snd_recover, return 0.
2839 */
2840static int
2841tcp_newreno(tp, th)
2842	struct tcpcb *tp;
2843	struct tcphdr *th;
2844{
2845	if (SEQ_LT(th->th_ack, tp->snd_recover)) {
2846		tcp_seq onxt = tp->snd_nxt;
2847		u_long  ocwnd = tp->snd_cwnd;
2848
2849		callout_stop(tp->tt_rexmt);
2850		tp->t_rtttime = 0;
2851		tp->snd_nxt = th->th_ack;
2852		/*
2853		 * Set snd_cwnd to one segment beyond acknowledged offset
2854		 * (tp->snd_una has not yet been updated when this function
2855		 *  is called)
2856		 */
2857		tp->snd_cwnd = tp->t_maxseg + (th->th_ack - tp->snd_una);
2858		(void) tcp_output(tp);
2859		tp->snd_cwnd = ocwnd;
2860		if (SEQ_GT(onxt, tp->snd_nxt))
2861			tp->snd_nxt = onxt;
2862		/*
2863		 * Partial window deflation.  Relies on fact that tp->snd_una
2864		 * not updated yet.
2865		 */
2866		tp->snd_cwnd -= (th->th_ack - tp->snd_una - tp->t_maxseg);
2867		return (1);
2868	}
2869	return (0);
2870}
2871