tcp_input.c revision 271667
1/*-
2 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
3 *	The Regents of the University of California.  All rights reserved.
4 * Copyright (c) 2007-2008,2010
5 *	Swinburne University of Technology, Melbourne, Australia.
6 * Copyright (c) 2009-2010 Lawrence Stewart <lstewart@freebsd.org>
7 * Copyright (c) 2010 The FreeBSD Foundation
8 * Copyright (c) 2010-2011 Juniper Networks, Inc.
9 * All rights reserved.
10 *
11 * Portions of this software were developed at the Centre for Advanced Internet
12 * Architectures, Swinburne University of Technology, by Lawrence Stewart,
13 * James Healy and David Hayes, made possible in part by a grant from the Cisco
14 * University Research Program Fund at Community Foundation Silicon Valley.
15 *
16 * Portions of this software were developed at the Centre for Advanced
17 * Internet Architectures, Swinburne University of Technology, Melbourne,
18 * Australia by David Hayes under sponsorship from the FreeBSD Foundation.
19 *
20 * Portions of this software were developed by Robert N. M. Watson under
21 * contract to Juniper Networks, Inc.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the above copyright
27 *    notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 *    notice, this list of conditions and the following disclaimer in the
30 *    documentation and/or other materials provided with the distribution.
31 * 4. Neither the name of the University nor the names of its contributors
32 *    may be used to endorse or promote products derived from this software
33 *    without specific prior written permission.
34 *
35 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
36 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
37 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
38 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
39 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
40 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
41 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
42 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
43 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
44 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
45 * SUCH DAMAGE.
46 *
47 *	@(#)tcp_input.c	8.12 (Berkeley) 5/24/95
48 */
49
50#include <sys/cdefs.h>
51__FBSDID("$FreeBSD: stable/10/sys/netinet/tcp_input.c 271667 2014-09-16 09:48:35Z delphij $");
52
53#include "opt_ipfw.h"		/* for ipfw_fwd	*/
54#include "opt_inet.h"
55#include "opt_inet6.h"
56#include "opt_ipsec.h"
57#include "opt_kdtrace.h"
58#include "opt_tcpdebug.h"
59
60#include <sys/param.h>
61#include <sys/kernel.h>
62#include <sys/hhook.h>
63#include <sys/malloc.h>
64#include <sys/mbuf.h>
65#include <sys/proc.h>		/* for proc0 declaration */
66#include <sys/protosw.h>
67#include <sys/sdt.h>
68#include <sys/signalvar.h>
69#include <sys/socket.h>
70#include <sys/socketvar.h>
71#include <sys/sysctl.h>
72#include <sys/syslog.h>
73#include <sys/systm.h>
74
75#include <machine/cpu.h>	/* before tcp_seq.h, for tcp_random18() */
76
77#include <vm/uma.h>
78
79#include <net/if.h>
80#include <net/route.h>
81#include <net/vnet.h>
82
83#define TCPSTATES		/* for logging */
84
85#include <netinet/cc.h>
86#include <netinet/in.h>
87#include <netinet/in_kdtrace.h>
88#include <netinet/in_pcb.h>
89#include <netinet/in_systm.h>
90#include <netinet/in_var.h>
91#include <netinet/ip.h>
92#include <netinet/ip_icmp.h>	/* required for icmp_var.h */
93#include <netinet/icmp_var.h>	/* for ICMP_BANDLIM */
94#include <netinet/ip_var.h>
95#include <netinet/ip_options.h>
96#include <netinet/ip6.h>
97#include <netinet/icmp6.h>
98#include <netinet6/in6_pcb.h>
99#include <netinet6/ip6_var.h>
100#include <netinet6/nd6.h>
101#include <netinet/tcp_fsm.h>
102#include <netinet/tcp_seq.h>
103#include <netinet/tcp_timer.h>
104#include <netinet/tcp_var.h>
105#include <netinet6/tcp6_var.h>
106#include <netinet/tcpip.h>
107#include <netinet/tcp_syncache.h>
108#ifdef TCPDEBUG
109#include <netinet/tcp_debug.h>
110#endif /* TCPDEBUG */
111#ifdef TCP_OFFLOAD
112#include <netinet/tcp_offload.h>
113#endif
114
115#ifdef IPSEC
116#include <netipsec/ipsec.h>
117#include <netipsec/ipsec6.h>
118#endif /*IPSEC*/
119
120#include <machine/in_cksum.h>
121
122#include <security/mac/mac_framework.h>
123
124const int tcprexmtthresh = 3;
125
126int tcp_log_in_vain = 0;
127SYSCTL_INT(_net_inet_tcp, OID_AUTO, log_in_vain, CTLFLAG_RW,
128    &tcp_log_in_vain, 0,
129    "Log all incoming TCP segments to closed ports");
130
131VNET_DEFINE(int, blackhole) = 0;
132#define	V_blackhole		VNET(blackhole)
133SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, blackhole, CTLFLAG_RW,
134    &VNET_NAME(blackhole), 0,
135    "Do not send RST on segments to closed ports");
136
137VNET_DEFINE(int, tcp_delack_enabled) = 1;
138SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, delayed_ack, CTLFLAG_RW,
139    &VNET_NAME(tcp_delack_enabled), 0,
140    "Delay ACK to try and piggyback it onto a data packet");
141
142VNET_DEFINE(int, drop_synfin) = 0;
143#define	V_drop_synfin		VNET(drop_synfin)
144SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, drop_synfin, CTLFLAG_RW,
145    &VNET_NAME(drop_synfin), 0,
146    "Drop TCP packets with SYN+FIN set");
147
148VNET_DEFINE(int, tcp_do_rfc3042) = 1;
149#define	V_tcp_do_rfc3042	VNET(tcp_do_rfc3042)
150SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, rfc3042, CTLFLAG_RW,
151    &VNET_NAME(tcp_do_rfc3042), 0,
152    "Enable RFC 3042 (Limited Transmit)");
153
154VNET_DEFINE(int, tcp_do_rfc3390) = 1;
155SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, rfc3390, CTLFLAG_RW,
156    &VNET_NAME(tcp_do_rfc3390), 0,
157    "Enable RFC 3390 (Increasing TCP's Initial Congestion Window)");
158
159SYSCTL_NODE(_net_inet_tcp, OID_AUTO, experimental, CTLFLAG_RW, 0,
160    "Experimental TCP extensions");
161
162VNET_DEFINE(int, tcp_do_initcwnd10) = 1;
163SYSCTL_VNET_INT(_net_inet_tcp_experimental, OID_AUTO, initcwnd10, CTLFLAG_RW,
164    &VNET_NAME(tcp_do_initcwnd10), 0,
165    "Enable RFC 6928 (Increasing initial CWND to 10)");
166
167VNET_DEFINE(int, tcp_do_rfc3465) = 1;
168SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, rfc3465, CTLFLAG_RW,
169    &VNET_NAME(tcp_do_rfc3465), 0,
170    "Enable RFC 3465 (Appropriate Byte Counting)");
171
172VNET_DEFINE(int, tcp_abc_l_var) = 2;
173SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, abc_l_var, CTLFLAG_RW,
174    &VNET_NAME(tcp_abc_l_var), 2,
175    "Cap the max cwnd increment during slow-start to this number of segments");
176
177static SYSCTL_NODE(_net_inet_tcp, OID_AUTO, ecn, CTLFLAG_RW, 0, "TCP ECN");
178
179VNET_DEFINE(int, tcp_do_ecn) = 0;
180SYSCTL_VNET_INT(_net_inet_tcp_ecn, OID_AUTO, enable, CTLFLAG_RW,
181    &VNET_NAME(tcp_do_ecn), 0,
182    "TCP ECN support");
183
184VNET_DEFINE(int, tcp_ecn_maxretries) = 1;
185SYSCTL_VNET_INT(_net_inet_tcp_ecn, OID_AUTO, maxretries, CTLFLAG_RW,
186    &VNET_NAME(tcp_ecn_maxretries), 0,
187    "Max retries before giving up on ECN");
188
189VNET_DEFINE(int, tcp_insecure_rst) = 0;
190#define	V_tcp_insecure_rst	VNET(tcp_insecure_rst)
191SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, insecure_rst, CTLFLAG_RW,
192    &VNET_NAME(tcp_insecure_rst), 0,
193    "Follow the old (insecure) criteria for accepting RST packets");
194
195VNET_DEFINE(int, tcp_recvspace) = 1024*64;
196#define	V_tcp_recvspace	VNET(tcp_recvspace)
197SYSCTL_VNET_INT(_net_inet_tcp, TCPCTL_RECVSPACE, recvspace, CTLFLAG_RW,
198    &VNET_NAME(tcp_recvspace), 0, "Initial receive socket buffer size");
199
200VNET_DEFINE(int, tcp_do_autorcvbuf) = 1;
201#define	V_tcp_do_autorcvbuf	VNET(tcp_do_autorcvbuf)
202SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, recvbuf_auto, CTLFLAG_RW,
203    &VNET_NAME(tcp_do_autorcvbuf), 0,
204    "Enable automatic receive buffer sizing");
205
206VNET_DEFINE(int, tcp_autorcvbuf_inc) = 16*1024;
207#define	V_tcp_autorcvbuf_inc	VNET(tcp_autorcvbuf_inc)
208SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, recvbuf_inc, CTLFLAG_RW,
209    &VNET_NAME(tcp_autorcvbuf_inc), 0,
210    "Incrementor step size of automatic receive buffer");
211
212VNET_DEFINE(int, tcp_autorcvbuf_max) = 2*1024*1024;
213#define	V_tcp_autorcvbuf_max	VNET(tcp_autorcvbuf_max)
214SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, recvbuf_max, CTLFLAG_RW,
215    &VNET_NAME(tcp_autorcvbuf_max), 0,
216    "Max size of automatic receive buffer");
217
218VNET_DEFINE(struct inpcbhead, tcb);
219#define	tcb6	tcb  /* for KAME src sync over BSD*'s */
220VNET_DEFINE(struct inpcbinfo, tcbinfo);
221
222static void	 tcp_dooptions(struct tcpopt *, u_char *, int, int);
223static void	 tcp_do_segment(struct mbuf *, struct tcphdr *,
224		     struct socket *, struct tcpcb *, int, int, uint8_t,
225		     int);
226static void	 tcp_dropwithreset(struct mbuf *, struct tcphdr *,
227		     struct tcpcb *, int, int);
228static void	 tcp_pulloutofband(struct socket *,
229		     struct tcphdr *, struct mbuf *, int);
230static void	 tcp_xmit_timer(struct tcpcb *, int);
231static void	 tcp_newreno_partial_ack(struct tcpcb *, struct tcphdr *);
232static void inline	cc_ack_received(struct tcpcb *tp, struct tcphdr *th,
233			    uint16_t type);
234static void inline	cc_conn_init(struct tcpcb *tp);
235static void inline	cc_post_recovery(struct tcpcb *tp, struct tcphdr *th);
236static void inline	hhook_run_tcp_est_in(struct tcpcb *tp,
237			    struct tcphdr *th, struct tcpopt *to);
238
239/*
240 * TCP statistics are stored in an "array" of counter(9)s.
241 */
242VNET_PCPUSTAT_DEFINE(struct tcpstat, tcpstat);
243VNET_PCPUSTAT_SYSINIT(tcpstat);
244SYSCTL_VNET_PCPUSTAT(_net_inet_tcp, TCPCTL_STATS, stats, struct tcpstat,
245    tcpstat, "TCP statistics (struct tcpstat, netinet/tcp_var.h)");
246
247#ifdef VIMAGE
248VNET_PCPUSTAT_SYSUNINIT(tcpstat);
249#endif /* VIMAGE */
250/*
251 * Kernel module interface for updating tcpstat.  The argument is an index
252 * into tcpstat treated as an array.
253 */
254void
255kmod_tcpstat_inc(int statnum)
256{
257
258	counter_u64_add(VNET(tcpstat)[statnum], 1);
259}
260
261/*
262 * Wrapper for the TCP established input helper hook.
263 */
264static void inline
265hhook_run_tcp_est_in(struct tcpcb *tp, struct tcphdr *th, struct tcpopt *to)
266{
267	struct tcp_hhook_data hhook_data;
268
269	if (V_tcp_hhh[HHOOK_TCP_EST_IN]->hhh_nhooks > 0) {
270		hhook_data.tp = tp;
271		hhook_data.th = th;
272		hhook_data.to = to;
273
274		hhook_run_hooks(V_tcp_hhh[HHOOK_TCP_EST_IN], &hhook_data,
275		    tp->osd);
276	}
277}
278
279/*
280 * CC wrapper hook functions
281 */
282static void inline
283cc_ack_received(struct tcpcb *tp, struct tcphdr *th, uint16_t type)
284{
285	INP_WLOCK_ASSERT(tp->t_inpcb);
286
287	tp->ccv->bytes_this_ack = BYTES_THIS_ACK(tp, th);
288	if (tp->snd_cwnd <= tp->snd_wnd)
289		tp->ccv->flags |= CCF_CWND_LIMITED;
290	else
291		tp->ccv->flags &= ~CCF_CWND_LIMITED;
292
293	if (type == CC_ACK) {
294		if (tp->snd_cwnd > tp->snd_ssthresh) {
295			tp->t_bytes_acked += min(tp->ccv->bytes_this_ack,
296			     V_tcp_abc_l_var * tp->t_maxseg);
297			if (tp->t_bytes_acked >= tp->snd_cwnd) {
298				tp->t_bytes_acked -= tp->snd_cwnd;
299				tp->ccv->flags |= CCF_ABC_SENTAWND;
300			}
301		} else {
302				tp->ccv->flags &= ~CCF_ABC_SENTAWND;
303				tp->t_bytes_acked = 0;
304		}
305	}
306
307	if (CC_ALGO(tp)->ack_received != NULL) {
308		/* XXXLAS: Find a way to live without this */
309		tp->ccv->curack = th->th_ack;
310		CC_ALGO(tp)->ack_received(tp->ccv, type);
311	}
312}
313
314static void inline
315cc_conn_init(struct tcpcb *tp)
316{
317	struct hc_metrics_lite metrics;
318	struct inpcb *inp = tp->t_inpcb;
319	int rtt;
320
321	INP_WLOCK_ASSERT(tp->t_inpcb);
322
323	tcp_hc_get(&inp->inp_inc, &metrics);
324
325	if (tp->t_srtt == 0 && (rtt = metrics.rmx_rtt)) {
326		tp->t_srtt = rtt;
327		tp->t_rttbest = tp->t_srtt + TCP_RTT_SCALE;
328		TCPSTAT_INC(tcps_usedrtt);
329		if (metrics.rmx_rttvar) {
330			tp->t_rttvar = metrics.rmx_rttvar;
331			TCPSTAT_INC(tcps_usedrttvar);
332		} else {
333			/* default variation is +- 1 rtt */
334			tp->t_rttvar =
335			    tp->t_srtt * TCP_RTTVAR_SCALE / TCP_RTT_SCALE;
336		}
337		TCPT_RANGESET(tp->t_rxtcur,
338		    ((tp->t_srtt >> 2) + tp->t_rttvar) >> 1,
339		    tp->t_rttmin, TCPTV_REXMTMAX);
340	}
341	if (metrics.rmx_ssthresh) {
342		/*
343		 * There's some sort of gateway or interface
344		 * buffer limit on the path.  Use this to set
345		 * the slow start threshhold, but set the
346		 * threshold to no less than 2*mss.
347		 */
348		tp->snd_ssthresh = max(2 * tp->t_maxseg, metrics.rmx_ssthresh);
349		TCPSTAT_INC(tcps_usedssthresh);
350	}
351
352	/*
353	 * Set the initial slow-start flight size.
354	 *
355	 * RFC5681 Section 3.1 specifies the default conservative values.
356	 * RFC3390 specifies slightly more aggressive values.
357	 * RFC6928 increases it to ten segments.
358	 *
359	 * If a SYN or SYN/ACK was lost and retransmitted, we have to
360	 * reduce the initial CWND to one segment as congestion is likely
361	 * requiring us to be cautious.
362	 */
363	if (tp->snd_cwnd == 1)
364		tp->snd_cwnd = tp->t_maxseg;		/* SYN(-ACK) lost */
365	else if (V_tcp_do_initcwnd10)
366		tp->snd_cwnd = min(10 * tp->t_maxseg,
367		    max(2 * tp->t_maxseg, 14600));
368	else if (V_tcp_do_rfc3390)
369		tp->snd_cwnd = min(4 * tp->t_maxseg,
370		    max(2 * tp->t_maxseg, 4380));
371	else {
372		/* Per RFC5681 Section 3.1 */
373		if (tp->t_maxseg > 2190)
374			tp->snd_cwnd = 2 * tp->t_maxseg;
375		else if (tp->t_maxseg > 1095)
376			tp->snd_cwnd = 3 * tp->t_maxseg;
377		else
378			tp->snd_cwnd = 4 * tp->t_maxseg;
379	}
380
381	if (CC_ALGO(tp)->conn_init != NULL)
382		CC_ALGO(tp)->conn_init(tp->ccv);
383}
384
385void inline
386cc_cong_signal(struct tcpcb *tp, struct tcphdr *th, uint32_t type)
387{
388	INP_WLOCK_ASSERT(tp->t_inpcb);
389
390	switch(type) {
391	case CC_NDUPACK:
392		if (!IN_FASTRECOVERY(tp->t_flags)) {
393			tp->snd_recover = tp->snd_max;
394			if (tp->t_flags & TF_ECN_PERMIT)
395				tp->t_flags |= TF_ECN_SND_CWR;
396		}
397		break;
398	case CC_ECN:
399		if (!IN_CONGRECOVERY(tp->t_flags)) {
400			TCPSTAT_INC(tcps_ecn_rcwnd);
401			tp->snd_recover = tp->snd_max;
402			if (tp->t_flags & TF_ECN_PERMIT)
403				tp->t_flags |= TF_ECN_SND_CWR;
404		}
405		break;
406	case CC_RTO:
407		tp->t_dupacks = 0;
408		tp->t_bytes_acked = 0;
409		EXIT_RECOVERY(tp->t_flags);
410		tp->snd_ssthresh = max(2, min(tp->snd_wnd, tp->snd_cwnd) / 2 /
411		    tp->t_maxseg) * tp->t_maxseg;
412		tp->snd_cwnd = tp->t_maxseg;
413		break;
414	case CC_RTO_ERR:
415		TCPSTAT_INC(tcps_sndrexmitbad);
416		/* RTO was unnecessary, so reset everything. */
417		tp->snd_cwnd = tp->snd_cwnd_prev;
418		tp->snd_ssthresh = tp->snd_ssthresh_prev;
419		tp->snd_recover = tp->snd_recover_prev;
420		if (tp->t_flags & TF_WASFRECOVERY)
421			ENTER_FASTRECOVERY(tp->t_flags);
422		if (tp->t_flags & TF_WASCRECOVERY)
423			ENTER_CONGRECOVERY(tp->t_flags);
424		tp->snd_nxt = tp->snd_max;
425		tp->t_flags &= ~TF_PREVVALID;
426		tp->t_badrxtwin = 0;
427		break;
428	}
429
430	if (CC_ALGO(tp)->cong_signal != NULL) {
431		if (th != NULL)
432			tp->ccv->curack = th->th_ack;
433		CC_ALGO(tp)->cong_signal(tp->ccv, type);
434	}
435}
436
437static void inline
438cc_post_recovery(struct tcpcb *tp, struct tcphdr *th)
439{
440	INP_WLOCK_ASSERT(tp->t_inpcb);
441
442	/* XXXLAS: KASSERT that we're in recovery? */
443
444	if (CC_ALGO(tp)->post_recovery != NULL) {
445		tp->ccv->curack = th->th_ack;
446		CC_ALGO(tp)->post_recovery(tp->ccv);
447	}
448	/* XXXLAS: EXIT_RECOVERY ? */
449	tp->t_bytes_acked = 0;
450}
451
452#ifdef TCP_SIGNATURE
453static inline int
454tcp_signature_verify_input(struct mbuf *m, int off0, int tlen, int optlen,
455    struct tcpopt *to, struct tcphdr *th, u_int tcpbflag)
456{
457	int ret;
458
459	tcp_fields_to_net(th);
460	ret = tcp_signature_verify(m, off0, tlen, optlen, to, th, tcpbflag);
461	tcp_fields_to_host(th);
462	return (ret);
463}
464#endif
465
466/* Neighbor Discovery, Neighbor Unreachability Detection Upper layer hint. */
467#ifdef INET6
468#define ND6_HINT(tp) \
469do { \
470	if ((tp) && (tp)->t_inpcb && \
471	    ((tp)->t_inpcb->inp_vflag & INP_IPV6) != 0) \
472		nd6_nud_hint(NULL, NULL, 0); \
473} while (0)
474#else
475#define ND6_HINT(tp)
476#endif
477
478/*
479 * Indicate whether this ack should be delayed.  We can delay the ack if
480 *	- there is no delayed ack timer in progress and
481 *	- our last ack wasn't a 0-sized window.  We never want to delay
482 *	  the ack that opens up a 0-sized window and
483 *		- delayed acks are enabled or
484 *		- this is a half-synchronized T/TCP connection.
485 *	- the segment size is not larger than the MSS and LRO wasn't used
486 *	  for this segment.
487 */
488#define DELAY_ACK(tp, tlen)						\
489	((!tcp_timer_active(tp, TT_DELACK) &&				\
490	    (tp->t_flags & TF_RXWIN0SENT) == 0) &&			\
491	    (tlen <= tp->t_maxopd) &&					\
492	    (V_tcp_delack_enabled || (tp->t_flags & TF_NEEDSYN)))
493
494/*
495 * TCP input handling is split into multiple parts:
496 *   tcp6_input is a thin wrapper around tcp_input for the extended
497 *	ip6_protox[] call format in ip6_input
498 *   tcp_input handles primary segment validation, inpcb lookup and
499 *	SYN processing on listen sockets
500 *   tcp_do_segment processes the ACK and text of the segment for
501 *	establishing, established and closing connections
502 */
503#ifdef INET6
504int
505tcp6_input(struct mbuf **mp, int *offp, int proto)
506{
507	struct mbuf *m = *mp;
508	struct in6_ifaddr *ia6;
509
510	IP6_EXTHDR_CHECK(m, *offp, sizeof(struct tcphdr), IPPROTO_DONE);
511
512	/*
513	 * draft-itojun-ipv6-tcp-to-anycast
514	 * better place to put this in?
515	 */
516	ia6 = ip6_getdstifaddr(m);
517	if (ia6 && (ia6->ia6_flags & IN6_IFF_ANYCAST)) {
518		struct ip6_hdr *ip6;
519
520		ifa_free(&ia6->ia_ifa);
521		ip6 = mtod(m, struct ip6_hdr *);
522		icmp6_error(m, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_ADDR,
523			    (caddr_t)&ip6->ip6_dst - (caddr_t)ip6);
524		return IPPROTO_DONE;
525	}
526	if (ia6)
527		ifa_free(&ia6->ia_ifa);
528
529	tcp_input(m, *offp);
530	return IPPROTO_DONE;
531}
532#endif /* INET6 */
533
534void
535tcp_input(struct mbuf *m, int off0)
536{
537	struct tcphdr *th = NULL;
538	struct ip *ip = NULL;
539	struct inpcb *inp = NULL;
540	struct tcpcb *tp = NULL;
541	struct socket *so = NULL;
542	u_char *optp = NULL;
543	int optlen = 0;
544#ifdef INET
545	int len;
546#endif
547	int tlen = 0, off;
548	int drop_hdrlen;
549	int thflags;
550	int rstreason = 0;	/* For badport_bandlim accounting purposes */
551#ifdef TCP_SIGNATURE
552	uint8_t sig_checked = 0;
553#endif
554	uint8_t iptos = 0;
555	struct m_tag *fwd_tag = NULL;
556#ifdef INET6
557	struct ip6_hdr *ip6 = NULL;
558	int isipv6;
559#else
560	const void *ip6 = NULL;
561#endif /* INET6 */
562	struct tcpopt to;		/* options in this segment */
563	char *s = NULL;			/* address and port logging */
564	int ti_locked;
565#define	TI_UNLOCKED	1
566#define	TI_WLOCKED	2
567
568#ifdef TCPDEBUG
569	/*
570	 * The size of tcp_saveipgen must be the size of the max ip header,
571	 * now IPv6.
572	 */
573	u_char tcp_saveipgen[IP6_HDR_LEN];
574	struct tcphdr tcp_savetcp;
575	short ostate = 0;
576#endif
577
578#ifdef INET6
579	isipv6 = (mtod(m, struct ip *)->ip_v == 6) ? 1 : 0;
580#endif
581
582	to.to_flags = 0;
583	TCPSTAT_INC(tcps_rcvtotal);
584
585#ifdef INET6
586	if (isipv6) {
587		/* IP6_EXTHDR_CHECK() is already done at tcp6_input(). */
588
589		if (m->m_len < (sizeof(*ip6) + sizeof(*th))) {
590			m = m_pullup(m, sizeof(*ip6) + sizeof(*th));
591			if (m == NULL) {
592				TCPSTAT_INC(tcps_rcvshort);
593				return;
594			}
595		}
596
597		ip6 = mtod(m, struct ip6_hdr *);
598		th = (struct tcphdr *)((caddr_t)ip6 + off0);
599		tlen = sizeof(*ip6) + ntohs(ip6->ip6_plen) - off0;
600		if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID_IPV6) {
601			if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR)
602				th->th_sum = m->m_pkthdr.csum_data;
603			else
604				th->th_sum = in6_cksum_pseudo(ip6, tlen,
605				    IPPROTO_TCP, m->m_pkthdr.csum_data);
606			th->th_sum ^= 0xffff;
607		} else
608			th->th_sum = in6_cksum(m, IPPROTO_TCP, off0, tlen);
609		if (th->th_sum) {
610			TCPSTAT_INC(tcps_rcvbadsum);
611			goto drop;
612		}
613
614		/*
615		 * Be proactive about unspecified IPv6 address in source.
616		 * As we use all-zero to indicate unbounded/unconnected pcb,
617		 * unspecified IPv6 address can be used to confuse us.
618		 *
619		 * Note that packets with unspecified IPv6 destination is
620		 * already dropped in ip6_input.
621		 */
622		if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) {
623			/* XXX stat */
624			goto drop;
625		}
626	}
627#endif
628#if defined(INET) && defined(INET6)
629	else
630#endif
631#ifdef INET
632	{
633		/*
634		 * Get IP and TCP header together in first mbuf.
635		 * Note: IP leaves IP header in first mbuf.
636		 */
637		if (off0 > sizeof (struct ip)) {
638			ip_stripoptions(m);
639			off0 = sizeof(struct ip);
640		}
641		if (m->m_len < sizeof (struct tcpiphdr)) {
642			if ((m = m_pullup(m, sizeof (struct tcpiphdr)))
643			    == NULL) {
644				TCPSTAT_INC(tcps_rcvshort);
645				return;
646			}
647		}
648		ip = mtod(m, struct ip *);
649		th = (struct tcphdr *)((caddr_t)ip + off0);
650		tlen = ntohs(ip->ip_len) - off0;
651
652		if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) {
653			if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR)
654				th->th_sum = m->m_pkthdr.csum_data;
655			else
656				th->th_sum = in_pseudo(ip->ip_src.s_addr,
657				    ip->ip_dst.s_addr,
658				    htonl(m->m_pkthdr.csum_data + tlen +
659				    IPPROTO_TCP));
660			th->th_sum ^= 0xffff;
661		} else {
662			struct ipovly *ipov = (struct ipovly *)ip;
663
664			/*
665			 * Checksum extended TCP header and data.
666			 */
667			len = off0 + tlen;
668			bzero(ipov->ih_x1, sizeof(ipov->ih_x1));
669			ipov->ih_len = htons(tlen);
670			th->th_sum = in_cksum(m, len);
671			/* Reset length for SDT probes. */
672			ip->ip_len = htons(tlen + off0);
673		}
674
675		if (th->th_sum) {
676			TCPSTAT_INC(tcps_rcvbadsum);
677			goto drop;
678		}
679		/* Re-initialization for later version check */
680		ip->ip_v = IPVERSION;
681	}
682#endif /* INET */
683
684#ifdef INET6
685	if (isipv6)
686		iptos = (ntohl(ip6->ip6_flow) >> 20) & 0xff;
687#endif
688#if defined(INET) && defined(INET6)
689	else
690#endif
691#ifdef INET
692		iptos = ip->ip_tos;
693#endif
694
695	/*
696	 * Check that TCP offset makes sense,
697	 * pull out TCP options and adjust length.		XXX
698	 */
699	off = th->th_off << 2;
700	if (off < sizeof (struct tcphdr) || off > tlen) {
701		TCPSTAT_INC(tcps_rcvbadoff);
702		goto drop;
703	}
704	tlen -= off;	/* tlen is used instead of ti->ti_len */
705	if (off > sizeof (struct tcphdr)) {
706#ifdef INET6
707		if (isipv6) {
708			IP6_EXTHDR_CHECK(m, off0, off, );
709			ip6 = mtod(m, struct ip6_hdr *);
710			th = (struct tcphdr *)((caddr_t)ip6 + off0);
711		}
712#endif
713#if defined(INET) && defined(INET6)
714		else
715#endif
716#ifdef INET
717		{
718			if (m->m_len < sizeof(struct ip) + off) {
719				if ((m = m_pullup(m, sizeof (struct ip) + off))
720				    == NULL) {
721					TCPSTAT_INC(tcps_rcvshort);
722					return;
723				}
724				ip = mtod(m, struct ip *);
725				th = (struct tcphdr *)((caddr_t)ip + off0);
726			}
727		}
728#endif
729		optlen = off - sizeof (struct tcphdr);
730		optp = (u_char *)(th + 1);
731	}
732	thflags = th->th_flags;
733
734	/*
735	 * Convert TCP protocol specific fields to host format.
736	 */
737	tcp_fields_to_host(th);
738
739	/*
740	 * Delay dropping TCP, IP headers, IPv6 ext headers, and TCP options.
741	 */
742	drop_hdrlen = off0 + off;
743
744	/*
745	 * Locate pcb for segment; if we're likely to add or remove a
746	 * connection then first acquire pcbinfo lock.  There are two cases
747	 * where we might discover later we need a write lock despite the
748	 * flags: ACKs moving a connection out of the syncache, and ACKs for
749	 * a connection in TIMEWAIT.
750	 */
751	if ((thflags & (TH_SYN | TH_FIN | TH_RST)) != 0) {
752		INP_INFO_WLOCK(&V_tcbinfo);
753		ti_locked = TI_WLOCKED;
754	} else
755		ti_locked = TI_UNLOCKED;
756
757	/*
758	 * Grab info from PACKET_TAG_IPFORWARD tag prepended to the chain.
759	 */
760        if (
761#ifdef INET6
762	    (isipv6 && (m->m_flags & M_IP6_NEXTHOP))
763#ifdef INET
764	    || (!isipv6 && (m->m_flags & M_IP_NEXTHOP))
765#endif
766#endif
767#if defined(INET) && !defined(INET6)
768	    (m->m_flags & M_IP_NEXTHOP)
769#endif
770	    )
771		fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL);
772
773findpcb:
774#ifdef INVARIANTS
775	if (ti_locked == TI_WLOCKED) {
776		INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
777	} else {
778		INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
779	}
780#endif
781#ifdef INET6
782	if (isipv6 && fwd_tag != NULL) {
783		struct sockaddr_in6 *next_hop6;
784
785		next_hop6 = (struct sockaddr_in6 *)(fwd_tag + 1);
786		/*
787		 * Transparently forwarded. Pretend to be the destination.
788		 * Already got one like this?
789		 */
790		inp = in6_pcblookup_mbuf(&V_tcbinfo,
791		    &ip6->ip6_src, th->th_sport, &ip6->ip6_dst, th->th_dport,
792		    INPLOOKUP_WLOCKPCB, m->m_pkthdr.rcvif, m);
793		if (!inp) {
794			/*
795			 * It's new.  Try to find the ambushing socket.
796			 * Because we've rewritten the destination address,
797			 * any hardware-generated hash is ignored.
798			 */
799			inp = in6_pcblookup(&V_tcbinfo, &ip6->ip6_src,
800			    th->th_sport, &next_hop6->sin6_addr,
801			    next_hop6->sin6_port ? ntohs(next_hop6->sin6_port) :
802			    th->th_dport, INPLOOKUP_WILDCARD |
803			    INPLOOKUP_WLOCKPCB, m->m_pkthdr.rcvif);
804		}
805	} else if (isipv6) {
806		inp = in6_pcblookup_mbuf(&V_tcbinfo, &ip6->ip6_src,
807		    th->th_sport, &ip6->ip6_dst, th->th_dport,
808		    INPLOOKUP_WILDCARD | INPLOOKUP_WLOCKPCB,
809		    m->m_pkthdr.rcvif, m);
810	}
811#endif /* INET6 */
812#if defined(INET6) && defined(INET)
813	else
814#endif
815#ifdef INET
816	if (fwd_tag != NULL) {
817		struct sockaddr_in *next_hop;
818
819		next_hop = (struct sockaddr_in *)(fwd_tag+1);
820		/*
821		 * Transparently forwarded. Pretend to be the destination.
822		 * already got one like this?
823		 */
824		inp = in_pcblookup_mbuf(&V_tcbinfo, ip->ip_src, th->th_sport,
825		    ip->ip_dst, th->th_dport, INPLOOKUP_WLOCKPCB,
826		    m->m_pkthdr.rcvif, m);
827		if (!inp) {
828			/*
829			 * It's new.  Try to find the ambushing socket.
830			 * Because we've rewritten the destination address,
831			 * any hardware-generated hash is ignored.
832			 */
833			inp = in_pcblookup(&V_tcbinfo, ip->ip_src,
834			    th->th_sport, next_hop->sin_addr,
835			    next_hop->sin_port ? ntohs(next_hop->sin_port) :
836			    th->th_dport, INPLOOKUP_WILDCARD |
837			    INPLOOKUP_WLOCKPCB, m->m_pkthdr.rcvif);
838		}
839	} else
840		inp = in_pcblookup_mbuf(&V_tcbinfo, ip->ip_src,
841		    th->th_sport, ip->ip_dst, th->th_dport,
842		    INPLOOKUP_WILDCARD | INPLOOKUP_WLOCKPCB,
843		    m->m_pkthdr.rcvif, m);
844#endif /* INET */
845
846	/*
847	 * If the INPCB does not exist then all data in the incoming
848	 * segment is discarded and an appropriate RST is sent back.
849	 * XXX MRT Send RST using which routing table?
850	 */
851	if (inp == NULL) {
852		/*
853		 * Log communication attempts to ports that are not
854		 * in use.
855		 */
856		if ((tcp_log_in_vain == 1 && (thflags & TH_SYN)) ||
857		    tcp_log_in_vain == 2) {
858			if ((s = tcp_log_vain(NULL, th, (void *)ip, ip6)))
859				log(LOG_INFO, "%s; %s: Connection attempt "
860				    "to closed port\n", s, __func__);
861		}
862		/*
863		 * When blackholing do not respond with a RST but
864		 * completely ignore the segment and drop it.
865		 */
866		if ((V_blackhole == 1 && (thflags & TH_SYN)) ||
867		    V_blackhole == 2)
868			goto dropunlock;
869
870		rstreason = BANDLIM_RST_CLOSEDPORT;
871		goto dropwithreset;
872	}
873	INP_WLOCK_ASSERT(inp);
874	if (!(inp->inp_flags & INP_HW_FLOWID)
875	    && (m->m_flags & M_FLOWID)
876	    && ((inp->inp_socket == NULL)
877		|| !(inp->inp_socket->so_options & SO_ACCEPTCONN))) {
878		inp->inp_flags |= INP_HW_FLOWID;
879		inp->inp_flags &= ~INP_SW_FLOWID;
880		inp->inp_flowid = m->m_pkthdr.flowid;
881	}
882#ifdef IPSEC
883#ifdef INET6
884	if (isipv6 && ipsec6_in_reject(m, inp)) {
885		IPSEC6STAT_INC(ips_in_polvio);
886		goto dropunlock;
887	} else
888#endif /* INET6 */
889	if (ipsec4_in_reject(m, inp) != 0) {
890		IPSECSTAT_INC(ips_in_polvio);
891		goto dropunlock;
892	}
893#endif /* IPSEC */
894
895	/*
896	 * Check the minimum TTL for socket.
897	 */
898	if (inp->inp_ip_minttl != 0) {
899#ifdef INET6
900		if (isipv6 && inp->inp_ip_minttl > ip6->ip6_hlim)
901			goto dropunlock;
902		else
903#endif
904		if (inp->inp_ip_minttl > ip->ip_ttl)
905			goto dropunlock;
906	}
907
908	/*
909	 * A previous connection in TIMEWAIT state is supposed to catch stray
910	 * or duplicate segments arriving late.  If this segment was a
911	 * legitimate new connection attempt, the old INPCB gets removed and
912	 * we can try again to find a listening socket.
913	 *
914	 * At this point, due to earlier optimism, we may hold only an inpcb
915	 * lock, and not the inpcbinfo write lock.  If so, we need to try to
916	 * acquire it, or if that fails, acquire a reference on the inpcb,
917	 * drop all locks, acquire a global write lock, and then re-acquire
918	 * the inpcb lock.  We may at that point discover that another thread
919	 * has tried to free the inpcb, in which case we need to loop back
920	 * and try to find a new inpcb to deliver to.
921	 *
922	 * XXXRW: It may be time to rethink timewait locking.
923	 */
924relocked:
925	if (inp->inp_flags & INP_TIMEWAIT) {
926		if (ti_locked == TI_UNLOCKED) {
927			if (INP_INFO_TRY_WLOCK(&V_tcbinfo) == 0) {
928				in_pcbref(inp);
929				INP_WUNLOCK(inp);
930				INP_INFO_WLOCK(&V_tcbinfo);
931				ti_locked = TI_WLOCKED;
932				INP_WLOCK(inp);
933				if (in_pcbrele_wlocked(inp)) {
934					inp = NULL;
935					goto findpcb;
936				}
937			} else
938				ti_locked = TI_WLOCKED;
939		}
940		INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
941
942		if (thflags & TH_SYN)
943			tcp_dooptions(&to, optp, optlen, TO_SYN);
944		/*
945		 * NB: tcp_twcheck unlocks the INP and frees the mbuf.
946		 */
947		if (tcp_twcheck(inp, &to, th, m, tlen))
948			goto findpcb;
949		INP_INFO_WUNLOCK(&V_tcbinfo);
950		return;
951	}
952	/*
953	 * The TCPCB may no longer exist if the connection is winding
954	 * down or it is in the CLOSED state.  Either way we drop the
955	 * segment and send an appropriate response.
956	 */
957	tp = intotcpcb(inp);
958	if (tp == NULL || tp->t_state == TCPS_CLOSED) {
959		rstreason = BANDLIM_RST_CLOSEDPORT;
960		goto dropwithreset;
961	}
962
963#ifdef TCP_OFFLOAD
964	if (tp->t_flags & TF_TOE) {
965		tcp_offload_input(tp, m);
966		m = NULL;	/* consumed by the TOE driver */
967		goto dropunlock;
968	}
969#endif
970
971	/*
972	 * We've identified a valid inpcb, but it could be that we need an
973	 * inpcbinfo write lock but don't hold it.  In this case, attempt to
974	 * acquire using the same strategy as the TIMEWAIT case above.  If we
975	 * relock, we have to jump back to 'relocked' as the connection might
976	 * now be in TIMEWAIT.
977	 */
978#ifdef INVARIANTS
979	if ((thflags & (TH_SYN | TH_FIN | TH_RST)) != 0)
980		INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
981#endif
982	if (tp->t_state != TCPS_ESTABLISHED) {
983		if (ti_locked == TI_UNLOCKED) {
984			if (INP_INFO_TRY_WLOCK(&V_tcbinfo) == 0) {
985				in_pcbref(inp);
986				INP_WUNLOCK(inp);
987				INP_INFO_WLOCK(&V_tcbinfo);
988				ti_locked = TI_WLOCKED;
989				INP_WLOCK(inp);
990				if (in_pcbrele_wlocked(inp)) {
991					inp = NULL;
992					goto findpcb;
993				}
994				goto relocked;
995			} else
996				ti_locked = TI_WLOCKED;
997		}
998		INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
999	}
1000
1001#ifdef MAC
1002	INP_WLOCK_ASSERT(inp);
1003	if (mac_inpcb_check_deliver(inp, m))
1004		goto dropunlock;
1005#endif
1006	so = inp->inp_socket;
1007	KASSERT(so != NULL, ("%s: so == NULL", __func__));
1008#ifdef TCPDEBUG
1009	if (so->so_options & SO_DEBUG) {
1010		ostate = tp->t_state;
1011#ifdef INET6
1012		if (isipv6) {
1013			bcopy((char *)ip6, (char *)tcp_saveipgen, sizeof(*ip6));
1014		} else
1015#endif
1016			bcopy((char *)ip, (char *)tcp_saveipgen, sizeof(*ip));
1017		tcp_savetcp = *th;
1018	}
1019#endif /* TCPDEBUG */
1020	/*
1021	 * When the socket is accepting connections (the INPCB is in LISTEN
1022	 * state) we look into the SYN cache if this is a new connection
1023	 * attempt or the completion of a previous one.  Because listen
1024	 * sockets are never in TCPS_ESTABLISHED, the V_tcbinfo lock will be
1025	 * held in this case.
1026	 */
1027	if (so->so_options & SO_ACCEPTCONN) {
1028		struct in_conninfo inc;
1029
1030		KASSERT(tp->t_state == TCPS_LISTEN, ("%s: so accepting but "
1031		    "tp not listening", __func__));
1032		INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
1033
1034		bzero(&inc, sizeof(inc));
1035#ifdef INET6
1036		if (isipv6) {
1037			inc.inc_flags |= INC_ISIPV6;
1038			inc.inc6_faddr = ip6->ip6_src;
1039			inc.inc6_laddr = ip6->ip6_dst;
1040		} else
1041#endif
1042		{
1043			inc.inc_faddr = ip->ip_src;
1044			inc.inc_laddr = ip->ip_dst;
1045		}
1046		inc.inc_fport = th->th_sport;
1047		inc.inc_lport = th->th_dport;
1048		inc.inc_fibnum = so->so_fibnum;
1049
1050		/*
1051		 * Check for an existing connection attempt in syncache if
1052		 * the flag is only ACK.  A successful lookup creates a new
1053		 * socket appended to the listen queue in SYN_RECEIVED state.
1054		 */
1055		if ((thflags & (TH_RST|TH_ACK|TH_SYN)) == TH_ACK) {
1056			/*
1057			 * Parse the TCP options here because
1058			 * syncookies need access to the reflected
1059			 * timestamp.
1060			 */
1061			tcp_dooptions(&to, optp, optlen, 0);
1062			/*
1063			 * NB: syncache_expand() doesn't unlock
1064			 * inp and tcpinfo locks.
1065			 */
1066			if (!syncache_expand(&inc, &to, th, &so, m)) {
1067				/*
1068				 * No syncache entry or ACK was not
1069				 * for our SYN/ACK.  Send a RST.
1070				 * NB: syncache did its own logging
1071				 * of the failure cause.
1072				 */
1073				rstreason = BANDLIM_RST_OPENPORT;
1074				goto dropwithreset;
1075			}
1076			if (so == NULL) {
1077				/*
1078				 * We completed the 3-way handshake
1079				 * but could not allocate a socket
1080				 * either due to memory shortage,
1081				 * listen queue length limits or
1082				 * global socket limits.  Send RST
1083				 * or wait and have the remote end
1084				 * retransmit the ACK for another
1085				 * try.
1086				 */
1087				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1088					log(LOG_DEBUG, "%s; %s: Listen socket: "
1089					    "Socket allocation failed due to "
1090					    "limits or memory shortage, %s\n",
1091					    s, __func__,
1092					    V_tcp_sc_rst_sock_fail ?
1093					    "sending RST" : "try again");
1094				if (V_tcp_sc_rst_sock_fail) {
1095					rstreason = BANDLIM_UNLIMITED;
1096					goto dropwithreset;
1097				} else
1098					goto dropunlock;
1099			}
1100			/*
1101			 * Socket is created in state SYN_RECEIVED.
1102			 * Unlock the listen socket, lock the newly
1103			 * created socket and update the tp variable.
1104			 */
1105			INP_WUNLOCK(inp);	/* listen socket */
1106			inp = sotoinpcb(so);
1107			INP_WLOCK(inp);		/* new connection */
1108			tp = intotcpcb(inp);
1109			KASSERT(tp->t_state == TCPS_SYN_RECEIVED,
1110			    ("%s: ", __func__));
1111#ifdef TCP_SIGNATURE
1112			if (sig_checked == 0)  {
1113				tcp_dooptions(&to, optp, optlen,
1114				    (thflags & TH_SYN) ? TO_SYN : 0);
1115				if (!tcp_signature_verify_input(m, off0, tlen,
1116				    optlen, &to, th, tp->t_flags)) {
1117
1118					/*
1119					 * In SYN_SENT state if it receives an
1120					 * RST, it is allowed for further
1121					 * processing.
1122					 */
1123					if ((thflags & TH_RST) == 0 ||
1124					    (tp->t_state == TCPS_SYN_SENT) == 0)
1125						goto dropunlock;
1126				}
1127				sig_checked = 1;
1128			}
1129#endif
1130
1131			/*
1132			 * Process the segment and the data it
1133			 * contains.  tcp_do_segment() consumes
1134			 * the mbuf chain and unlocks the inpcb.
1135			 */
1136			tcp_do_segment(m, th, so, tp, drop_hdrlen, tlen,
1137			    iptos, ti_locked);
1138			INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
1139			return;
1140		}
1141		/*
1142		 * Segment flag validation for new connection attempts:
1143		 *
1144		 * Our (SYN|ACK) response was rejected.
1145		 * Check with syncache and remove entry to prevent
1146		 * retransmits.
1147		 *
1148		 * NB: syncache_chkrst does its own logging of failure
1149		 * causes.
1150		 */
1151		if (thflags & TH_RST) {
1152			syncache_chkrst(&inc, th);
1153			goto dropunlock;
1154		}
1155		/*
1156		 * We can't do anything without SYN.
1157		 */
1158		if ((thflags & TH_SYN) == 0) {
1159			if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1160				log(LOG_DEBUG, "%s; %s: Listen socket: "
1161				    "SYN is missing, segment ignored\n",
1162				    s, __func__);
1163			TCPSTAT_INC(tcps_badsyn);
1164			goto dropunlock;
1165		}
1166		/*
1167		 * (SYN|ACK) is bogus on a listen socket.
1168		 */
1169		if (thflags & TH_ACK) {
1170			if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1171				log(LOG_DEBUG, "%s; %s: Listen socket: "
1172				    "SYN|ACK invalid, segment rejected\n",
1173				    s, __func__);
1174			syncache_badack(&inc);	/* XXX: Not needed! */
1175			TCPSTAT_INC(tcps_badsyn);
1176			rstreason = BANDLIM_RST_OPENPORT;
1177			goto dropwithreset;
1178		}
1179		/*
1180		 * If the drop_synfin option is enabled, drop all
1181		 * segments with both the SYN and FIN bits set.
1182		 * This prevents e.g. nmap from identifying the
1183		 * TCP/IP stack.
1184		 * XXX: Poor reasoning.  nmap has other methods
1185		 * and is constantly refining its stack detection
1186		 * strategies.
1187		 * XXX: This is a violation of the TCP specification
1188		 * and was used by RFC1644.
1189		 */
1190		if ((thflags & TH_FIN) && V_drop_synfin) {
1191			if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1192				log(LOG_DEBUG, "%s; %s: Listen socket: "
1193				    "SYN|FIN segment ignored (based on "
1194				    "sysctl setting)\n", s, __func__);
1195			TCPSTAT_INC(tcps_badsyn);
1196			goto dropunlock;
1197		}
1198		/*
1199		 * Segment's flags are (SYN) or (SYN|FIN).
1200		 *
1201		 * TH_PUSH, TH_URG, TH_ECE, TH_CWR are ignored
1202		 * as they do not affect the state of the TCP FSM.
1203		 * The data pointed to by TH_URG and th_urp is ignored.
1204		 */
1205		KASSERT((thflags & (TH_RST|TH_ACK)) == 0,
1206		    ("%s: Listen socket: TH_RST or TH_ACK set", __func__));
1207		KASSERT(thflags & (TH_SYN),
1208		    ("%s: Listen socket: TH_SYN not set", __func__));
1209#ifdef INET6
1210		/*
1211		 * If deprecated address is forbidden,
1212		 * we do not accept SYN to deprecated interface
1213		 * address to prevent any new inbound connection from
1214		 * getting established.
1215		 * When we do not accept SYN, we send a TCP RST,
1216		 * with deprecated source address (instead of dropping
1217		 * it).  We compromise it as it is much better for peer
1218		 * to send a RST, and RST will be the final packet
1219		 * for the exchange.
1220		 *
1221		 * If we do not forbid deprecated addresses, we accept
1222		 * the SYN packet.  RFC2462 does not suggest dropping
1223		 * SYN in this case.
1224		 * If we decipher RFC2462 5.5.4, it says like this:
1225		 * 1. use of deprecated addr with existing
1226		 *    communication is okay - "SHOULD continue to be
1227		 *    used"
1228		 * 2. use of it with new communication:
1229		 *   (2a) "SHOULD NOT be used if alternate address
1230		 *        with sufficient scope is available"
1231		 *   (2b) nothing mentioned otherwise.
1232		 * Here we fall into (2b) case as we have no choice in
1233		 * our source address selection - we must obey the peer.
1234		 *
1235		 * The wording in RFC2462 is confusing, and there are
1236		 * multiple description text for deprecated address
1237		 * handling - worse, they are not exactly the same.
1238		 * I believe 5.5.4 is the best one, so we follow 5.5.4.
1239		 */
1240		if (isipv6 && !V_ip6_use_deprecated) {
1241			struct in6_ifaddr *ia6;
1242
1243			ia6 = ip6_getdstifaddr(m);
1244			if (ia6 != NULL &&
1245			    (ia6->ia6_flags & IN6_IFF_DEPRECATED)) {
1246				ifa_free(&ia6->ia_ifa);
1247				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1248				    log(LOG_DEBUG, "%s; %s: Listen socket: "
1249					"Connection attempt to deprecated "
1250					"IPv6 address rejected\n",
1251					s, __func__);
1252				rstreason = BANDLIM_RST_OPENPORT;
1253				goto dropwithreset;
1254			}
1255			if (ia6)
1256				ifa_free(&ia6->ia_ifa);
1257		}
1258#endif /* INET6 */
1259		/*
1260		 * Basic sanity checks on incoming SYN requests:
1261		 *   Don't respond if the destination is a link layer
1262		 *	broadcast according to RFC1122 4.2.3.10, p. 104.
1263		 *   If it is from this socket it must be forged.
1264		 *   Don't respond if the source or destination is a
1265		 *	global or subnet broad- or multicast address.
1266		 *   Note that it is quite possible to receive unicast
1267		 *	link-layer packets with a broadcast IP address. Use
1268		 *	in_broadcast() to find them.
1269		 */
1270		if (m->m_flags & (M_BCAST|M_MCAST)) {
1271			if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1272			    log(LOG_DEBUG, "%s; %s: Listen socket: "
1273				"Connection attempt from broad- or multicast "
1274				"link layer address ignored\n", s, __func__);
1275			goto dropunlock;
1276		}
1277#ifdef INET6
1278		if (isipv6) {
1279			if (th->th_dport == th->th_sport &&
1280			    IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst, &ip6->ip6_src)) {
1281				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1282				    log(LOG_DEBUG, "%s; %s: Listen socket: "
1283					"Connection attempt to/from self "
1284					"ignored\n", s, __func__);
1285				goto dropunlock;
1286			}
1287			if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) ||
1288			    IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) {
1289				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1290				    log(LOG_DEBUG, "%s; %s: Listen socket: "
1291					"Connection attempt from/to multicast "
1292					"address ignored\n", s, __func__);
1293				goto dropunlock;
1294			}
1295		}
1296#endif
1297#if defined(INET) && defined(INET6)
1298		else
1299#endif
1300#ifdef INET
1301		{
1302			if (th->th_dport == th->th_sport &&
1303			    ip->ip_dst.s_addr == ip->ip_src.s_addr) {
1304				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1305				    log(LOG_DEBUG, "%s; %s: Listen socket: "
1306					"Connection attempt from/to self "
1307					"ignored\n", s, __func__);
1308				goto dropunlock;
1309			}
1310			if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
1311			    IN_MULTICAST(ntohl(ip->ip_src.s_addr)) ||
1312			    ip->ip_src.s_addr == htonl(INADDR_BROADCAST) ||
1313			    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif)) {
1314				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1315				    log(LOG_DEBUG, "%s; %s: Listen socket: "
1316					"Connection attempt from/to broad- "
1317					"or multicast address ignored\n",
1318					s, __func__);
1319				goto dropunlock;
1320			}
1321		}
1322#endif
1323		/*
1324		 * SYN appears to be valid.  Create compressed TCP state
1325		 * for syncache.
1326		 */
1327#ifdef TCPDEBUG
1328		if (so->so_options & SO_DEBUG)
1329			tcp_trace(TA_INPUT, ostate, tp,
1330			    (void *)tcp_saveipgen, &tcp_savetcp, 0);
1331#endif
1332		tcp_dooptions(&to, optp, optlen, TO_SYN);
1333		syncache_add(&inc, &to, th, inp, &so, m, NULL, NULL);
1334		/*
1335		 * Entry added to syncache and mbuf consumed.
1336		 * Everything already unlocked by syncache_add().
1337		 */
1338		INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
1339		return;
1340	} else if (tp->t_state == TCPS_LISTEN) {
1341		/*
1342		 * When a listen socket is torn down the SO_ACCEPTCONN
1343		 * flag is removed first while connections are drained
1344		 * from the accept queue in a unlock/lock cycle of the
1345		 * ACCEPT_LOCK, opening a race condition allowing a SYN
1346		 * attempt go through unhandled.
1347		 */
1348		goto dropunlock;
1349	}
1350
1351#ifdef TCP_SIGNATURE
1352	if (sig_checked == 0)  {
1353		tcp_dooptions(&to, optp, optlen,
1354		    (thflags & TH_SYN) ? TO_SYN : 0);
1355		if (!tcp_signature_verify_input(m, off0, tlen, optlen, &to,
1356		    th, tp->t_flags)) {
1357
1358			/*
1359			 * In SYN_SENT state if it receives an RST, it is
1360			 * allowed for further processing.
1361			 */
1362			if ((thflags & TH_RST) == 0 ||
1363			    (tp->t_state == TCPS_SYN_SENT) == 0)
1364				goto dropunlock;
1365		}
1366		sig_checked = 1;
1367	}
1368#endif
1369
1370	TCP_PROBE5(receive, NULL, tp, mtod(m, const char *), tp, th);
1371
1372	/*
1373	 * Segment belongs to a connection in SYN_SENT, ESTABLISHED or later
1374	 * state.  tcp_do_segment() always consumes the mbuf chain, unlocks
1375	 * the inpcb, and unlocks pcbinfo.
1376	 */
1377	tcp_do_segment(m, th, so, tp, drop_hdrlen, tlen, iptos, ti_locked);
1378	INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
1379	return;
1380
1381dropwithreset:
1382	TCP_PROBE5(receive, NULL, tp, mtod(m, const char *), tp, th);
1383
1384	if (ti_locked == TI_WLOCKED) {
1385		INP_INFO_WUNLOCK(&V_tcbinfo);
1386		ti_locked = TI_UNLOCKED;
1387	}
1388#ifdef INVARIANTS
1389	else {
1390		KASSERT(ti_locked == TI_UNLOCKED, ("%s: dropwithreset "
1391		    "ti_locked: %d", __func__, ti_locked));
1392		INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
1393	}
1394#endif
1395
1396	if (inp != NULL) {
1397		tcp_dropwithreset(m, th, tp, tlen, rstreason);
1398		INP_WUNLOCK(inp);
1399	} else
1400		tcp_dropwithreset(m, th, NULL, tlen, rstreason);
1401	m = NULL;	/* mbuf chain got consumed. */
1402	goto drop;
1403
1404dropunlock:
1405	if (m != NULL)
1406		TCP_PROBE5(receive, NULL, tp, mtod(m, const char *), tp, th);
1407
1408	if (ti_locked == TI_WLOCKED) {
1409		INP_INFO_WUNLOCK(&V_tcbinfo);
1410		ti_locked = TI_UNLOCKED;
1411	}
1412#ifdef INVARIANTS
1413	else {
1414		KASSERT(ti_locked == TI_UNLOCKED, ("%s: dropunlock "
1415		    "ti_locked: %d", __func__, ti_locked));
1416		INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
1417	}
1418#endif
1419
1420	if (inp != NULL)
1421		INP_WUNLOCK(inp);
1422
1423drop:
1424	INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
1425	if (s != NULL)
1426		free(s, M_TCPLOG);
1427	if (m != NULL)
1428		m_freem(m);
1429}
1430
1431static void
1432tcp_do_segment(struct mbuf *m, struct tcphdr *th, struct socket *so,
1433    struct tcpcb *tp, int drop_hdrlen, int tlen, uint8_t iptos,
1434    int ti_locked)
1435{
1436	int thflags, acked, ourfinisacked, needoutput = 0;
1437	int rstreason, todrop, win;
1438	u_long tiwin;
1439	char *s;
1440	struct in_conninfo *inc;
1441	struct mbuf *mfree;
1442	struct tcpopt to;
1443
1444#ifdef TCPDEBUG
1445	/*
1446	 * The size of tcp_saveipgen must be the size of the max ip header,
1447	 * now IPv6.
1448	 */
1449	u_char tcp_saveipgen[IP6_HDR_LEN];
1450	struct tcphdr tcp_savetcp;
1451	short ostate = 0;
1452#endif
1453	thflags = th->th_flags;
1454	inc = &tp->t_inpcb->inp_inc;
1455	tp->sackhint.last_sack_ack = 0;
1456
1457	/*
1458	 * If this is either a state-changing packet or current state isn't
1459	 * established, we require a write lock on tcbinfo.  Otherwise, we
1460	 * allow the tcbinfo to be in either alocked or unlocked, as the
1461	 * caller may have unnecessarily acquired a write lock due to a race.
1462	 */
1463	if ((thflags & (TH_SYN | TH_FIN | TH_RST)) != 0 ||
1464	    tp->t_state != TCPS_ESTABLISHED) {
1465		KASSERT(ti_locked == TI_WLOCKED, ("%s ti_locked %d for "
1466		    "SYN/FIN/RST/!EST", __func__, ti_locked));
1467		INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
1468	} else {
1469#ifdef INVARIANTS
1470		if (ti_locked == TI_WLOCKED)
1471			INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
1472		else {
1473			KASSERT(ti_locked == TI_UNLOCKED, ("%s: EST "
1474			    "ti_locked: %d", __func__, ti_locked));
1475			INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
1476		}
1477#endif
1478	}
1479	INP_WLOCK_ASSERT(tp->t_inpcb);
1480	KASSERT(tp->t_state > TCPS_LISTEN, ("%s: TCPS_LISTEN",
1481	    __func__));
1482	KASSERT(tp->t_state != TCPS_TIME_WAIT, ("%s: TCPS_TIME_WAIT",
1483	    __func__));
1484
1485	/*
1486	 * Segment received on connection.
1487	 * Reset idle time and keep-alive timer.
1488	 * XXX: This should be done after segment
1489	 * validation to ignore broken/spoofed segs.
1490	 */
1491	tp->t_rcvtime = ticks;
1492	if (TCPS_HAVEESTABLISHED(tp->t_state))
1493		tcp_timer_activate(tp, TT_KEEP, TP_KEEPIDLE(tp));
1494
1495	/*
1496	 * Unscale the window into a 32-bit value.
1497	 * For the SYN_SENT state the scale is zero.
1498	 */
1499	tiwin = th->th_win << tp->snd_scale;
1500
1501	/*
1502	 * TCP ECN processing.
1503	 */
1504	if (tp->t_flags & TF_ECN_PERMIT) {
1505		if (thflags & TH_CWR)
1506			tp->t_flags &= ~TF_ECN_SND_ECE;
1507		switch (iptos & IPTOS_ECN_MASK) {
1508		case IPTOS_ECN_CE:
1509			tp->t_flags |= TF_ECN_SND_ECE;
1510			TCPSTAT_INC(tcps_ecn_ce);
1511			break;
1512		case IPTOS_ECN_ECT0:
1513			TCPSTAT_INC(tcps_ecn_ect0);
1514			break;
1515		case IPTOS_ECN_ECT1:
1516			TCPSTAT_INC(tcps_ecn_ect1);
1517			break;
1518		}
1519		/* Congestion experienced. */
1520		if (thflags & TH_ECE) {
1521			cc_cong_signal(tp, th, CC_ECN);
1522		}
1523	}
1524
1525	/*
1526	 * Parse options on any incoming segment.
1527	 */
1528	tcp_dooptions(&to, (u_char *)(th + 1),
1529	    (th->th_off << 2) - sizeof(struct tcphdr),
1530	    (thflags & TH_SYN) ? TO_SYN : 0);
1531
1532	/*
1533	 * If echoed timestamp is later than the current time,
1534	 * fall back to non RFC1323 RTT calculation.  Normalize
1535	 * timestamp if syncookies were used when this connection
1536	 * was established.
1537	 */
1538	if ((to.to_flags & TOF_TS) && (to.to_tsecr != 0)) {
1539		to.to_tsecr -= tp->ts_offset;
1540		if (TSTMP_GT(to.to_tsecr, tcp_ts_getticks()))
1541			to.to_tsecr = 0;
1542	}
1543	/*
1544	 * If timestamps were negotiated during SYN/ACK they should
1545	 * appear on every segment during this session and vice versa.
1546	 */
1547	if ((tp->t_flags & TF_RCVD_TSTMP) && !(to.to_flags & TOF_TS)) {
1548		if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
1549			log(LOG_DEBUG, "%s; %s: Timestamp missing, "
1550			    "no action\n", s, __func__);
1551			free(s, M_TCPLOG);
1552		}
1553	}
1554	if (!(tp->t_flags & TF_RCVD_TSTMP) && (to.to_flags & TOF_TS)) {
1555		if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
1556			log(LOG_DEBUG, "%s; %s: Timestamp not expected, "
1557			    "no action\n", s, __func__);
1558			free(s, M_TCPLOG);
1559		}
1560	}
1561
1562	/*
1563	 * Process options only when we get SYN/ACK back. The SYN case
1564	 * for incoming connections is handled in tcp_syncache.
1565	 * According to RFC1323 the window field in a SYN (i.e., a <SYN>
1566	 * or <SYN,ACK>) segment itself is never scaled.
1567	 * XXX this is traditional behavior, may need to be cleaned up.
1568	 */
1569	if (tp->t_state == TCPS_SYN_SENT && (thflags & TH_SYN)) {
1570		if ((to.to_flags & TOF_SCALE) &&
1571		    (tp->t_flags & TF_REQ_SCALE)) {
1572			tp->t_flags |= TF_RCVD_SCALE;
1573			tp->snd_scale = to.to_wscale;
1574		}
1575		/*
1576		 * Initial send window.  It will be updated with
1577		 * the next incoming segment to the scaled value.
1578		 */
1579		tp->snd_wnd = th->th_win;
1580		if (to.to_flags & TOF_TS) {
1581			tp->t_flags |= TF_RCVD_TSTMP;
1582			tp->ts_recent = to.to_tsval;
1583			tp->ts_recent_age = tcp_ts_getticks();
1584		}
1585		if (to.to_flags & TOF_MSS)
1586			tcp_mss(tp, to.to_mss);
1587		if ((tp->t_flags & TF_SACK_PERMIT) &&
1588		    (to.to_flags & TOF_SACKPERM) == 0)
1589			tp->t_flags &= ~TF_SACK_PERMIT;
1590	}
1591
1592	/*
1593	 * Header prediction: check for the two common cases
1594	 * of a uni-directional data xfer.  If the packet has
1595	 * no control flags, is in-sequence, the window didn't
1596	 * change and we're not retransmitting, it's a
1597	 * candidate.  If the length is zero and the ack moved
1598	 * forward, we're the sender side of the xfer.  Just
1599	 * free the data acked & wake any higher level process
1600	 * that was blocked waiting for space.  If the length
1601	 * is non-zero and the ack didn't move, we're the
1602	 * receiver side.  If we're getting packets in-order
1603	 * (the reassembly queue is empty), add the data to
1604	 * the socket buffer and note that we need a delayed ack.
1605	 * Make sure that the hidden state-flags are also off.
1606	 * Since we check for TCPS_ESTABLISHED first, it can only
1607	 * be TH_NEEDSYN.
1608	 */
1609	if (tp->t_state == TCPS_ESTABLISHED &&
1610	    th->th_seq == tp->rcv_nxt &&
1611	    (thflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK)) == TH_ACK &&
1612	    tp->snd_nxt == tp->snd_max &&
1613	    tiwin && tiwin == tp->snd_wnd &&
1614	    ((tp->t_flags & (TF_NEEDSYN|TF_NEEDFIN)) == 0) &&
1615	    LIST_EMPTY(&tp->t_segq) &&
1616	    ((to.to_flags & TOF_TS) == 0 ||
1617	     TSTMP_GEQ(to.to_tsval, tp->ts_recent)) ) {
1618
1619		/*
1620		 * If last ACK falls within this segment's sequence numbers,
1621		 * record the timestamp.
1622		 * NOTE that the test is modified according to the latest
1623		 * proposal of the tcplw@cray.com list (Braden 1993/04/26).
1624		 */
1625		if ((to.to_flags & TOF_TS) != 0 &&
1626		    SEQ_LEQ(th->th_seq, tp->last_ack_sent)) {
1627			tp->ts_recent_age = tcp_ts_getticks();
1628			tp->ts_recent = to.to_tsval;
1629		}
1630
1631		if (tlen == 0) {
1632			if (SEQ_GT(th->th_ack, tp->snd_una) &&
1633			    SEQ_LEQ(th->th_ack, tp->snd_max) &&
1634			    !IN_RECOVERY(tp->t_flags) &&
1635			    (to.to_flags & TOF_SACK) == 0 &&
1636			    TAILQ_EMPTY(&tp->snd_holes)) {
1637				/*
1638				 * This is a pure ack for outstanding data.
1639				 */
1640				if (ti_locked == TI_WLOCKED)
1641					INP_INFO_WUNLOCK(&V_tcbinfo);
1642				ti_locked = TI_UNLOCKED;
1643
1644				TCPSTAT_INC(tcps_predack);
1645
1646				/*
1647				 * "bad retransmit" recovery.
1648				 */
1649				if (tp->t_rxtshift == 1 &&
1650				    tp->t_flags & TF_PREVVALID &&
1651				    (int)(ticks - tp->t_badrxtwin) < 0) {
1652					cc_cong_signal(tp, th, CC_RTO_ERR);
1653				}
1654
1655				/*
1656				 * Recalculate the transmit timer / rtt.
1657				 *
1658				 * Some boxes send broken timestamp replies
1659				 * during the SYN+ACK phase, ignore
1660				 * timestamps of 0 or we could calculate a
1661				 * huge RTT and blow up the retransmit timer.
1662				 */
1663				if ((to.to_flags & TOF_TS) != 0 &&
1664				    to.to_tsecr) {
1665					u_int t;
1666
1667					t = tcp_ts_getticks() - to.to_tsecr;
1668					if (!tp->t_rttlow || tp->t_rttlow > t)
1669						tp->t_rttlow = t;
1670					tcp_xmit_timer(tp,
1671					    TCP_TS_TO_TICKS(t) + 1);
1672				} else if (tp->t_rtttime &&
1673				    SEQ_GT(th->th_ack, tp->t_rtseq)) {
1674					if (!tp->t_rttlow ||
1675					    tp->t_rttlow > ticks - tp->t_rtttime)
1676						tp->t_rttlow = ticks - tp->t_rtttime;
1677					tcp_xmit_timer(tp,
1678							ticks - tp->t_rtttime);
1679				}
1680				acked = BYTES_THIS_ACK(tp, th);
1681
1682				/* Run HHOOK_TCP_ESTABLISHED_IN helper hooks. */
1683				hhook_run_tcp_est_in(tp, th, &to);
1684
1685				TCPSTAT_INC(tcps_rcvackpack);
1686				TCPSTAT_ADD(tcps_rcvackbyte, acked);
1687				sbdrop(&so->so_snd, acked);
1688				if (SEQ_GT(tp->snd_una, tp->snd_recover) &&
1689				    SEQ_LEQ(th->th_ack, tp->snd_recover))
1690					tp->snd_recover = th->th_ack - 1;
1691
1692				/*
1693				 * Let the congestion control algorithm update
1694				 * congestion control related information. This
1695				 * typically means increasing the congestion
1696				 * window.
1697				 */
1698				cc_ack_received(tp, th, CC_ACK);
1699
1700				tp->snd_una = th->th_ack;
1701				/*
1702				 * Pull snd_wl2 up to prevent seq wrap relative
1703				 * to th_ack.
1704				 */
1705				tp->snd_wl2 = th->th_ack;
1706				tp->t_dupacks = 0;
1707				m_freem(m);
1708				ND6_HINT(tp); /* Some progress has been made. */
1709
1710				/*
1711				 * If all outstanding data are acked, stop
1712				 * retransmit timer, otherwise restart timer
1713				 * using current (possibly backed-off) value.
1714				 * If process is waiting for space,
1715				 * wakeup/selwakeup/signal.  If data
1716				 * are ready to send, let tcp_output
1717				 * decide between more output or persist.
1718				 */
1719#ifdef TCPDEBUG
1720				if (so->so_options & SO_DEBUG)
1721					tcp_trace(TA_INPUT, ostate, tp,
1722					    (void *)tcp_saveipgen,
1723					    &tcp_savetcp, 0);
1724#endif
1725				if (tp->snd_una == tp->snd_max)
1726					tcp_timer_activate(tp, TT_REXMT, 0);
1727				else if (!tcp_timer_active(tp, TT_PERSIST))
1728					tcp_timer_activate(tp, TT_REXMT,
1729						      tp->t_rxtcur);
1730				sowwakeup(so);
1731				if (so->so_snd.sb_cc)
1732					(void) tcp_output(tp);
1733				goto check_delack;
1734			}
1735		} else if (th->th_ack == tp->snd_una &&
1736		    tlen <= sbspace(&so->so_rcv)) {
1737			int newsize = 0;	/* automatic sockbuf scaling */
1738
1739			/*
1740			 * This is a pure, in-sequence data packet with
1741			 * nothing on the reassembly queue and we have enough
1742			 * buffer space to take it.
1743			 */
1744			if (ti_locked == TI_WLOCKED)
1745				INP_INFO_WUNLOCK(&V_tcbinfo);
1746			ti_locked = TI_UNLOCKED;
1747
1748			/* Clean receiver SACK report if present */
1749			if ((tp->t_flags & TF_SACK_PERMIT) && tp->rcv_numsacks)
1750				tcp_clean_sackreport(tp);
1751			TCPSTAT_INC(tcps_preddat);
1752			tp->rcv_nxt += tlen;
1753			/*
1754			 * Pull snd_wl1 up to prevent seq wrap relative to
1755			 * th_seq.
1756			 */
1757			tp->snd_wl1 = th->th_seq;
1758			/*
1759			 * Pull rcv_up up to prevent seq wrap relative to
1760			 * rcv_nxt.
1761			 */
1762			tp->rcv_up = tp->rcv_nxt;
1763			TCPSTAT_INC(tcps_rcvpack);
1764			TCPSTAT_ADD(tcps_rcvbyte, tlen);
1765			ND6_HINT(tp);	/* Some progress has been made */
1766#ifdef TCPDEBUG
1767			if (so->so_options & SO_DEBUG)
1768				tcp_trace(TA_INPUT, ostate, tp,
1769				    (void *)tcp_saveipgen, &tcp_savetcp, 0);
1770#endif
1771		/*
1772		 * Automatic sizing of receive socket buffer.  Often the send
1773		 * buffer size is not optimally adjusted to the actual network
1774		 * conditions at hand (delay bandwidth product).  Setting the
1775		 * buffer size too small limits throughput on links with high
1776		 * bandwidth and high delay (eg. trans-continental/oceanic links).
1777		 *
1778		 * On the receive side the socket buffer memory is only rarely
1779		 * used to any significant extent.  This allows us to be much
1780		 * more aggressive in scaling the receive socket buffer.  For
1781		 * the case that the buffer space is actually used to a large
1782		 * extent and we run out of kernel memory we can simply drop
1783		 * the new segments; TCP on the sender will just retransmit it
1784		 * later.  Setting the buffer size too big may only consume too
1785		 * much kernel memory if the application doesn't read() from
1786		 * the socket or packet loss or reordering makes use of the
1787		 * reassembly queue.
1788		 *
1789		 * The criteria to step up the receive buffer one notch are:
1790		 *  1. the number of bytes received during the time it takes
1791		 *     one timestamp to be reflected back to us (the RTT);
1792		 *  2. received bytes per RTT is within seven eighth of the
1793		 *     current socket buffer size;
1794		 *  3. receive buffer size has not hit maximal automatic size;
1795		 *
1796		 * This algorithm does one step per RTT at most and only if
1797		 * we receive a bulk stream w/o packet losses or reorderings.
1798		 * Shrinking the buffer during idle times is not necessary as
1799		 * it doesn't consume any memory when idle.
1800		 *
1801		 * TODO: Only step up if the application is actually serving
1802		 * the buffer to better manage the socket buffer resources.
1803		 */
1804			if (V_tcp_do_autorcvbuf &&
1805			    to.to_tsecr &&
1806			    (so->so_rcv.sb_flags & SB_AUTOSIZE)) {
1807				if (TSTMP_GT(to.to_tsecr, tp->rfbuf_ts) &&
1808				    to.to_tsecr - tp->rfbuf_ts < hz) {
1809					if (tp->rfbuf_cnt >
1810					    (so->so_rcv.sb_hiwat / 8 * 7) &&
1811					    so->so_rcv.sb_hiwat <
1812					    V_tcp_autorcvbuf_max) {
1813						newsize =
1814						    min(so->so_rcv.sb_hiwat +
1815						    V_tcp_autorcvbuf_inc,
1816						    V_tcp_autorcvbuf_max);
1817					}
1818					/* Start over with next RTT. */
1819					tp->rfbuf_ts = 0;
1820					tp->rfbuf_cnt = 0;
1821				} else
1822					tp->rfbuf_cnt += tlen;	/* add up */
1823			}
1824
1825			/* Add data to socket buffer. */
1826			SOCKBUF_LOCK(&so->so_rcv);
1827			if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
1828				m_freem(m);
1829			} else {
1830				/*
1831				 * Set new socket buffer size.
1832				 * Give up when limit is reached.
1833				 */
1834				if (newsize)
1835					if (!sbreserve_locked(&so->so_rcv,
1836					    newsize, so, NULL))
1837						so->so_rcv.sb_flags &= ~SB_AUTOSIZE;
1838				m_adj(m, drop_hdrlen);	/* delayed header drop */
1839				sbappendstream_locked(&so->so_rcv, m);
1840			}
1841			/* NB: sorwakeup_locked() does an implicit unlock. */
1842			sorwakeup_locked(so);
1843			if (DELAY_ACK(tp, tlen)) {
1844				tp->t_flags |= TF_DELACK;
1845			} else {
1846				tp->t_flags |= TF_ACKNOW;
1847				tcp_output(tp);
1848			}
1849			goto check_delack;
1850		}
1851	}
1852
1853	/*
1854	 * Calculate amount of space in receive window,
1855	 * and then do TCP input processing.
1856	 * Receive window is amount of space in rcv queue,
1857	 * but not less than advertised window.
1858	 */
1859	win = sbspace(&so->so_rcv);
1860	if (win < 0)
1861		win = 0;
1862	tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
1863
1864	/* Reset receive buffer auto scaling when not in bulk receive mode. */
1865	tp->rfbuf_ts = 0;
1866	tp->rfbuf_cnt = 0;
1867
1868	switch (tp->t_state) {
1869
1870	/*
1871	 * If the state is SYN_RECEIVED:
1872	 *	if seg contains an ACK, but not for our SYN/ACK, send a RST.
1873	 */
1874	case TCPS_SYN_RECEIVED:
1875		if ((thflags & TH_ACK) &&
1876		    (SEQ_LEQ(th->th_ack, tp->snd_una) ||
1877		     SEQ_GT(th->th_ack, tp->snd_max))) {
1878				rstreason = BANDLIM_RST_OPENPORT;
1879				goto dropwithreset;
1880		}
1881		break;
1882
1883	/*
1884	 * If the state is SYN_SENT:
1885	 *	if seg contains an ACK, but not for our SYN, drop the input.
1886	 *	if seg contains a RST, then drop the connection.
1887	 *	if seg does not contain SYN, then drop it.
1888	 * Otherwise this is an acceptable SYN segment
1889	 *	initialize tp->rcv_nxt and tp->irs
1890	 *	if seg contains ack then advance tp->snd_una
1891	 *	if seg contains an ECE and ECN support is enabled, the stream
1892	 *	    is ECN capable.
1893	 *	if SYN has been acked change to ESTABLISHED else SYN_RCVD state
1894	 *	arrange for segment to be acked (eventually)
1895	 *	continue processing rest of data/controls, beginning with URG
1896	 */
1897	case TCPS_SYN_SENT:
1898		if ((thflags & TH_ACK) &&
1899		    (SEQ_LEQ(th->th_ack, tp->iss) ||
1900		     SEQ_GT(th->th_ack, tp->snd_max))) {
1901			rstreason = BANDLIM_UNLIMITED;
1902			goto dropwithreset;
1903		}
1904		if ((thflags & (TH_ACK|TH_RST)) == (TH_ACK|TH_RST)) {
1905			TCP_PROBE5(connect__refused, NULL, tp,
1906			    mtod(m, const char *), tp, th);
1907			tp = tcp_drop(tp, ECONNREFUSED);
1908		}
1909		if (thflags & TH_RST)
1910			goto drop;
1911		if (!(thflags & TH_SYN))
1912			goto drop;
1913
1914		tp->irs = th->th_seq;
1915		tcp_rcvseqinit(tp);
1916		if (thflags & TH_ACK) {
1917			TCPSTAT_INC(tcps_connects);
1918			soisconnected(so);
1919#ifdef MAC
1920			mac_socketpeer_set_from_mbuf(m, so);
1921#endif
1922			/* Do window scaling on this connection? */
1923			if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
1924				(TF_RCVD_SCALE|TF_REQ_SCALE)) {
1925				tp->rcv_scale = tp->request_r_scale;
1926			}
1927			tp->rcv_adv += imin(tp->rcv_wnd,
1928			    TCP_MAXWIN << tp->rcv_scale);
1929			tp->snd_una++;		/* SYN is acked */
1930			/*
1931			 * If there's data, delay ACK; if there's also a FIN
1932			 * ACKNOW will be turned on later.
1933			 */
1934			if (DELAY_ACK(tp, tlen) && tlen != 0)
1935				tcp_timer_activate(tp, TT_DELACK,
1936				    tcp_delacktime);
1937			else
1938				tp->t_flags |= TF_ACKNOW;
1939
1940			if ((thflags & TH_ECE) && V_tcp_do_ecn) {
1941				tp->t_flags |= TF_ECN_PERMIT;
1942				TCPSTAT_INC(tcps_ecn_shs);
1943			}
1944
1945			/*
1946			 * Received <SYN,ACK> in SYN_SENT[*] state.
1947			 * Transitions:
1948			 *	SYN_SENT  --> ESTABLISHED
1949			 *	SYN_SENT* --> FIN_WAIT_1
1950			 */
1951			tp->t_starttime = ticks;
1952			if (tp->t_flags & TF_NEEDFIN) {
1953				tcp_state_change(tp, TCPS_FIN_WAIT_1);
1954				tp->t_flags &= ~TF_NEEDFIN;
1955				thflags &= ~TH_SYN;
1956			} else {
1957				tcp_state_change(tp, TCPS_ESTABLISHED);
1958				TCP_PROBE5(connect__established, NULL, tp,
1959				    mtod(m, const char *), tp, th);
1960				cc_conn_init(tp);
1961				tcp_timer_activate(tp, TT_KEEP,
1962				    TP_KEEPIDLE(tp));
1963			}
1964		} else {
1965			/*
1966			 * Received initial SYN in SYN-SENT[*] state =>
1967			 * simultaneous open.  If segment contains CC option
1968			 * and there is a cached CC, apply TAO test.
1969			 * If it succeeds, connection is * half-synchronized.
1970			 * Otherwise, do 3-way handshake:
1971			 *        SYN-SENT -> SYN-RECEIVED
1972			 *        SYN-SENT* -> SYN-RECEIVED*
1973			 * If there was no CC option, clear cached CC value.
1974			 */
1975			tp->t_flags |= (TF_ACKNOW | TF_NEEDSYN);
1976			tcp_timer_activate(tp, TT_REXMT, 0);
1977			tcp_state_change(tp, TCPS_SYN_RECEIVED);
1978		}
1979
1980		KASSERT(ti_locked == TI_WLOCKED, ("%s: trimthenstep6: "
1981		    "ti_locked %d", __func__, ti_locked));
1982		INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
1983		INP_WLOCK_ASSERT(tp->t_inpcb);
1984
1985		/*
1986		 * Advance th->th_seq to correspond to first data byte.
1987		 * If data, trim to stay within window,
1988		 * dropping FIN if necessary.
1989		 */
1990		th->th_seq++;
1991		if (tlen > tp->rcv_wnd) {
1992			todrop = tlen - tp->rcv_wnd;
1993			m_adj(m, -todrop);
1994			tlen = tp->rcv_wnd;
1995			thflags &= ~TH_FIN;
1996			TCPSTAT_INC(tcps_rcvpackafterwin);
1997			TCPSTAT_ADD(tcps_rcvbyteafterwin, todrop);
1998		}
1999		tp->snd_wl1 = th->th_seq - 1;
2000		tp->rcv_up = th->th_seq;
2001		/*
2002		 * Client side of transaction: already sent SYN and data.
2003		 * If the remote host used T/TCP to validate the SYN,
2004		 * our data will be ACK'd; if so, enter normal data segment
2005		 * processing in the middle of step 5, ack processing.
2006		 * Otherwise, goto step 6.
2007		 */
2008		if (thflags & TH_ACK)
2009			goto process_ACK;
2010
2011		goto step6;
2012
2013	/*
2014	 * If the state is LAST_ACK or CLOSING or TIME_WAIT:
2015	 *      do normal processing.
2016	 *
2017	 * NB: Leftover from RFC1644 T/TCP.  Cases to be reused later.
2018	 */
2019	case TCPS_LAST_ACK:
2020	case TCPS_CLOSING:
2021		break;  /* continue normal processing */
2022	}
2023
2024	/*
2025	 * States other than LISTEN or SYN_SENT.
2026	 * First check the RST flag and sequence number since reset segments
2027	 * are exempt from the timestamp and connection count tests.  This
2028	 * fixes a bug introduced by the Stevens, vol. 2, p. 960 bugfix
2029	 * below which allowed reset segments in half the sequence space
2030	 * to fall though and be processed (which gives forged reset
2031	 * segments with a random sequence number a 50 percent chance of
2032	 * killing a connection).
2033	 * Then check timestamp, if present.
2034	 * Then check the connection count, if present.
2035	 * Then check that at least some bytes of segment are within
2036	 * receive window.  If segment begins before rcv_nxt,
2037	 * drop leading data (and SYN); if nothing left, just ack.
2038	 *
2039	 *
2040	 * If the RST bit is set, check the sequence number to see
2041	 * if this is a valid reset segment.
2042	 * RFC 793 page 37:
2043	 *   In all states except SYN-SENT, all reset (RST) segments
2044	 *   are validated by checking their SEQ-fields.  A reset is
2045	 *   valid if its sequence number is in the window.
2046	 * Note: this does not take into account delayed ACKs, so
2047	 *   we should test against last_ack_sent instead of rcv_nxt.
2048	 *   The sequence number in the reset segment is normally an
2049	 *   echo of our outgoing acknowlegement numbers, but some hosts
2050	 *   send a reset with the sequence number at the rightmost edge
2051	 *   of our receive window, and we have to handle this case.
2052	 * Note 2: Paul Watson's paper "Slipping in the Window" has shown
2053	 *   that brute force RST attacks are possible.  To combat this,
2054	 *   we use a much stricter check while in the ESTABLISHED state,
2055	 *   only accepting RSTs where the sequence number is equal to
2056	 *   last_ack_sent.  In all other states (the states in which a
2057	 *   RST is more likely), the more permissive check is used.
2058	 * If we have multiple segments in flight, the initial reset
2059	 * segment sequence numbers will be to the left of last_ack_sent,
2060	 * but they will eventually catch up.
2061	 * In any case, it never made sense to trim reset segments to
2062	 * fit the receive window since RFC 1122 says:
2063	 *   4.2.2.12  RST Segment: RFC-793 Section 3.4
2064	 *
2065	 *    A TCP SHOULD allow a received RST segment to include data.
2066	 *
2067	 *    DISCUSSION
2068	 *         It has been suggested that a RST segment could contain
2069	 *         ASCII text that encoded and explained the cause of the
2070	 *         RST.  No standard has yet been established for such
2071	 *         data.
2072	 *
2073	 * If the reset segment passes the sequence number test examine
2074	 * the state:
2075	 *    SYN_RECEIVED STATE:
2076	 *	If passive open, return to LISTEN state.
2077	 *	If active open, inform user that connection was refused.
2078	 *    ESTABLISHED, FIN_WAIT_1, FIN_WAIT_2, CLOSE_WAIT STATES:
2079	 *	Inform user that connection was reset, and close tcb.
2080	 *    CLOSING, LAST_ACK STATES:
2081	 *	Close the tcb.
2082	 *    TIME_WAIT STATE:
2083	 *	Drop the segment - see Stevens, vol. 2, p. 964 and
2084	 *      RFC 1337.
2085	 */
2086	if (thflags & TH_RST) {
2087		if (SEQ_GEQ(th->th_seq, tp->last_ack_sent - 1) &&
2088		    SEQ_LEQ(th->th_seq, tp->last_ack_sent + tp->rcv_wnd)) {
2089			switch (tp->t_state) {
2090
2091			case TCPS_SYN_RECEIVED:
2092				so->so_error = ECONNREFUSED;
2093				goto close;
2094
2095			case TCPS_ESTABLISHED:
2096				if (V_tcp_insecure_rst == 0 &&
2097				    !(SEQ_GEQ(th->th_seq, tp->rcv_nxt - 1) &&
2098				    SEQ_LEQ(th->th_seq, tp->rcv_nxt + 1)) &&
2099				    !(SEQ_GEQ(th->th_seq, tp->last_ack_sent - 1) &&
2100				    SEQ_LEQ(th->th_seq, tp->last_ack_sent + 1))) {
2101					TCPSTAT_INC(tcps_badrst);
2102					goto drop;
2103				}
2104				/* FALLTHROUGH */
2105			case TCPS_FIN_WAIT_1:
2106			case TCPS_FIN_WAIT_2:
2107			case TCPS_CLOSE_WAIT:
2108				so->so_error = ECONNRESET;
2109			close:
2110				KASSERT(ti_locked == TI_WLOCKED,
2111				    ("tcp_do_segment: TH_RST 1 ti_locked %d",
2112				    ti_locked));
2113				INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
2114
2115				tcp_state_change(tp, TCPS_CLOSED);
2116				TCPSTAT_INC(tcps_drops);
2117				tp = tcp_close(tp);
2118				break;
2119
2120			case TCPS_CLOSING:
2121			case TCPS_LAST_ACK:
2122				KASSERT(ti_locked == TI_WLOCKED,
2123				    ("tcp_do_segment: TH_RST 2 ti_locked %d",
2124				    ti_locked));
2125				INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
2126
2127				tp = tcp_close(tp);
2128				break;
2129			}
2130		}
2131		goto drop;
2132	}
2133
2134	/*
2135	 * RFC 1323 PAWS: If we have a timestamp reply on this segment
2136	 * and it's less than ts_recent, drop it.
2137	 */
2138	if ((to.to_flags & TOF_TS) != 0 && tp->ts_recent &&
2139	    TSTMP_LT(to.to_tsval, tp->ts_recent)) {
2140
2141		/* Check to see if ts_recent is over 24 days old.  */
2142		if (tcp_ts_getticks() - tp->ts_recent_age > TCP_PAWS_IDLE) {
2143			/*
2144			 * Invalidate ts_recent.  If this segment updates
2145			 * ts_recent, the age will be reset later and ts_recent
2146			 * will get a valid value.  If it does not, setting
2147			 * ts_recent to zero will at least satisfy the
2148			 * requirement that zero be placed in the timestamp
2149			 * echo reply when ts_recent isn't valid.  The
2150			 * age isn't reset until we get a valid ts_recent
2151			 * because we don't want out-of-order segments to be
2152			 * dropped when ts_recent is old.
2153			 */
2154			tp->ts_recent = 0;
2155		} else {
2156			TCPSTAT_INC(tcps_rcvduppack);
2157			TCPSTAT_ADD(tcps_rcvdupbyte, tlen);
2158			TCPSTAT_INC(tcps_pawsdrop);
2159			if (tlen)
2160				goto dropafterack;
2161			goto drop;
2162		}
2163	}
2164
2165	/*
2166	 * In the SYN-RECEIVED state, validate that the packet belongs to
2167	 * this connection before trimming the data to fit the receive
2168	 * window.  Check the sequence number versus IRS since we know
2169	 * the sequence numbers haven't wrapped.  This is a partial fix
2170	 * for the "LAND" DoS attack.
2171	 */
2172	if (tp->t_state == TCPS_SYN_RECEIVED && SEQ_LT(th->th_seq, tp->irs)) {
2173		rstreason = BANDLIM_RST_OPENPORT;
2174		goto dropwithreset;
2175	}
2176
2177	todrop = tp->rcv_nxt - th->th_seq;
2178	if (todrop > 0) {
2179		if (thflags & TH_SYN) {
2180			thflags &= ~TH_SYN;
2181			th->th_seq++;
2182			if (th->th_urp > 1)
2183				th->th_urp--;
2184			else
2185				thflags &= ~TH_URG;
2186			todrop--;
2187		}
2188		/*
2189		 * Following if statement from Stevens, vol. 2, p. 960.
2190		 */
2191		if (todrop > tlen
2192		    || (todrop == tlen && (thflags & TH_FIN) == 0)) {
2193			/*
2194			 * Any valid FIN must be to the left of the window.
2195			 * At this point the FIN must be a duplicate or out
2196			 * of sequence; drop it.
2197			 */
2198			thflags &= ~TH_FIN;
2199
2200			/*
2201			 * Send an ACK to resynchronize and drop any data.
2202			 * But keep on processing for RST or ACK.
2203			 */
2204			tp->t_flags |= TF_ACKNOW;
2205			todrop = tlen;
2206			TCPSTAT_INC(tcps_rcvduppack);
2207			TCPSTAT_ADD(tcps_rcvdupbyte, todrop);
2208		} else {
2209			TCPSTAT_INC(tcps_rcvpartduppack);
2210			TCPSTAT_ADD(tcps_rcvpartdupbyte, todrop);
2211		}
2212		drop_hdrlen += todrop;	/* drop from the top afterwards */
2213		th->th_seq += todrop;
2214		tlen -= todrop;
2215		if (th->th_urp > todrop)
2216			th->th_urp -= todrop;
2217		else {
2218			thflags &= ~TH_URG;
2219			th->th_urp = 0;
2220		}
2221	}
2222
2223	/*
2224	 * If new data are received on a connection after the
2225	 * user processes are gone, then RST the other end.
2226	 */
2227	if ((so->so_state & SS_NOFDREF) &&
2228	    tp->t_state > TCPS_CLOSE_WAIT && tlen) {
2229		KASSERT(ti_locked == TI_WLOCKED, ("%s: SS_NOFDEREF && "
2230		    "CLOSE_WAIT && tlen ti_locked %d", __func__, ti_locked));
2231		INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
2232
2233		if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
2234			log(LOG_DEBUG, "%s; %s: %s: Received %d bytes of data "
2235			    "after socket was closed, "
2236			    "sending RST and removing tcpcb\n",
2237			    s, __func__, tcpstates[tp->t_state], tlen);
2238			free(s, M_TCPLOG);
2239		}
2240		tp = tcp_close(tp);
2241		TCPSTAT_INC(tcps_rcvafterclose);
2242		rstreason = BANDLIM_UNLIMITED;
2243		goto dropwithreset;
2244	}
2245
2246	/*
2247	 * If segment ends after window, drop trailing data
2248	 * (and PUSH and FIN); if nothing left, just ACK.
2249	 */
2250	todrop = (th->th_seq + tlen) - (tp->rcv_nxt + tp->rcv_wnd);
2251	if (todrop > 0) {
2252		TCPSTAT_INC(tcps_rcvpackafterwin);
2253		if (todrop >= tlen) {
2254			TCPSTAT_ADD(tcps_rcvbyteafterwin, tlen);
2255			/*
2256			 * If window is closed can only take segments at
2257			 * window edge, and have to drop data and PUSH from
2258			 * incoming segments.  Continue processing, but
2259			 * remember to ack.  Otherwise, drop segment
2260			 * and ack.
2261			 */
2262			if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
2263				tp->t_flags |= TF_ACKNOW;
2264				TCPSTAT_INC(tcps_rcvwinprobe);
2265			} else
2266				goto dropafterack;
2267		} else
2268			TCPSTAT_ADD(tcps_rcvbyteafterwin, todrop);
2269		m_adj(m, -todrop);
2270		tlen -= todrop;
2271		thflags &= ~(TH_PUSH|TH_FIN);
2272	}
2273
2274	/*
2275	 * If last ACK falls within this segment's sequence numbers,
2276	 * record its timestamp.
2277	 * NOTE:
2278	 * 1) That the test incorporates suggestions from the latest
2279	 *    proposal of the tcplw@cray.com list (Braden 1993/04/26).
2280	 * 2) That updating only on newer timestamps interferes with
2281	 *    our earlier PAWS tests, so this check should be solely
2282	 *    predicated on the sequence space of this segment.
2283	 * 3) That we modify the segment boundary check to be
2284	 *        Last.ACK.Sent <= SEG.SEQ + SEG.Len
2285	 *    instead of RFC1323's
2286	 *        Last.ACK.Sent < SEG.SEQ + SEG.Len,
2287	 *    This modified check allows us to overcome RFC1323's
2288	 *    limitations as described in Stevens TCP/IP Illustrated
2289	 *    Vol. 2 p.869. In such cases, we can still calculate the
2290	 *    RTT correctly when RCV.NXT == Last.ACK.Sent.
2291	 */
2292	if ((to.to_flags & TOF_TS) != 0 &&
2293	    SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
2294	    SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
2295		((thflags & (TH_SYN|TH_FIN)) != 0))) {
2296		tp->ts_recent_age = tcp_ts_getticks();
2297		tp->ts_recent = to.to_tsval;
2298	}
2299
2300	/*
2301	 * If a SYN is in the window, then this is an
2302	 * error and we send an RST and drop the connection.
2303	 */
2304	if (thflags & TH_SYN) {
2305		KASSERT(ti_locked == TI_WLOCKED,
2306		    ("tcp_do_segment: TH_SYN ti_locked %d", ti_locked));
2307		INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
2308
2309		tp = tcp_drop(tp, ECONNRESET);
2310		rstreason = BANDLIM_UNLIMITED;
2311		goto drop;
2312	}
2313
2314	/*
2315	 * If the ACK bit is off:  if in SYN-RECEIVED state or SENDSYN
2316	 * flag is on (half-synchronized state), then queue data for
2317	 * later processing; else drop segment and return.
2318	 */
2319	if ((thflags & TH_ACK) == 0) {
2320		if (tp->t_state == TCPS_SYN_RECEIVED ||
2321		    (tp->t_flags & TF_NEEDSYN))
2322			goto step6;
2323		else if (tp->t_flags & TF_ACKNOW)
2324			goto dropafterack;
2325		else
2326			goto drop;
2327	}
2328
2329	/*
2330	 * Ack processing.
2331	 */
2332	switch (tp->t_state) {
2333
2334	/*
2335	 * In SYN_RECEIVED state, the ack ACKs our SYN, so enter
2336	 * ESTABLISHED state and continue processing.
2337	 * The ACK was checked above.
2338	 */
2339	case TCPS_SYN_RECEIVED:
2340
2341		TCPSTAT_INC(tcps_connects);
2342		soisconnected(so);
2343		/* Do window scaling? */
2344		if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
2345			(TF_RCVD_SCALE|TF_REQ_SCALE)) {
2346			tp->rcv_scale = tp->request_r_scale;
2347			tp->snd_wnd = tiwin;
2348		}
2349		/*
2350		 * Make transitions:
2351		 *      SYN-RECEIVED  -> ESTABLISHED
2352		 *      SYN-RECEIVED* -> FIN-WAIT-1
2353		 */
2354		tp->t_starttime = ticks;
2355		if (tp->t_flags & TF_NEEDFIN) {
2356			tcp_state_change(tp, TCPS_FIN_WAIT_1);
2357			tp->t_flags &= ~TF_NEEDFIN;
2358		} else {
2359			tcp_state_change(tp, TCPS_ESTABLISHED);
2360			TCP_PROBE5(accept__established, NULL, tp,
2361			    mtod(m, const char *), tp, th);
2362			cc_conn_init(tp);
2363			tcp_timer_activate(tp, TT_KEEP, TP_KEEPIDLE(tp));
2364		}
2365		/*
2366		 * If segment contains data or ACK, will call tcp_reass()
2367		 * later; if not, do so now to pass queued data to user.
2368		 */
2369		if (tlen == 0 && (thflags & TH_FIN) == 0)
2370			(void) tcp_reass(tp, (struct tcphdr *)0, 0,
2371			    (struct mbuf *)0);
2372		tp->snd_wl1 = th->th_seq - 1;
2373		/* FALLTHROUGH */
2374
2375	/*
2376	 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
2377	 * ACKs.  If the ack is in the range
2378	 *	tp->snd_una < th->th_ack <= tp->snd_max
2379	 * then advance tp->snd_una to th->th_ack and drop
2380	 * data from the retransmission queue.  If this ACK reflects
2381	 * more up to date window information we update our window information.
2382	 */
2383	case TCPS_ESTABLISHED:
2384	case TCPS_FIN_WAIT_1:
2385	case TCPS_FIN_WAIT_2:
2386	case TCPS_CLOSE_WAIT:
2387	case TCPS_CLOSING:
2388	case TCPS_LAST_ACK:
2389		if (SEQ_GT(th->th_ack, tp->snd_max)) {
2390			TCPSTAT_INC(tcps_rcvacktoomuch);
2391			goto dropafterack;
2392		}
2393		if ((tp->t_flags & TF_SACK_PERMIT) &&
2394		    ((to.to_flags & TOF_SACK) ||
2395		     !TAILQ_EMPTY(&tp->snd_holes)))
2396			tcp_sack_doack(tp, &to, th->th_ack);
2397
2398		/* Run HHOOK_TCP_ESTABLISHED_IN helper hooks. */
2399		hhook_run_tcp_est_in(tp, th, &to);
2400
2401		if (SEQ_LEQ(th->th_ack, tp->snd_una)) {
2402			if (tlen == 0 && tiwin == tp->snd_wnd) {
2403				TCPSTAT_INC(tcps_rcvdupack);
2404				/*
2405				 * If we have outstanding data (other than
2406				 * a window probe), this is a completely
2407				 * duplicate ack (ie, window info didn't
2408				 * change), the ack is the biggest we've
2409				 * seen and we've seen exactly our rexmt
2410				 * threshhold of them, assume a packet
2411				 * has been dropped and retransmit it.
2412				 * Kludge snd_nxt & the congestion
2413				 * window so we send only this one
2414				 * packet.
2415				 *
2416				 * We know we're losing at the current
2417				 * window size so do congestion avoidance
2418				 * (set ssthresh to half the current window
2419				 * and pull our congestion window back to
2420				 * the new ssthresh).
2421				 *
2422				 * Dup acks mean that packets have left the
2423				 * network (they're now cached at the receiver)
2424				 * so bump cwnd by the amount in the receiver
2425				 * to keep a constant cwnd packets in the
2426				 * network.
2427				 *
2428				 * When using TCP ECN, notify the peer that
2429				 * we reduced the cwnd.
2430				 */
2431				if (!tcp_timer_active(tp, TT_REXMT) ||
2432				    th->th_ack != tp->snd_una)
2433					tp->t_dupacks = 0;
2434				else if (++tp->t_dupacks > tcprexmtthresh ||
2435				     IN_FASTRECOVERY(tp->t_flags)) {
2436					cc_ack_received(tp, th, CC_DUPACK);
2437					if ((tp->t_flags & TF_SACK_PERMIT) &&
2438					    IN_FASTRECOVERY(tp->t_flags)) {
2439						int awnd;
2440
2441						/*
2442						 * Compute the amount of data in flight first.
2443						 * We can inject new data into the pipe iff
2444						 * we have less than 1/2 the original window's
2445						 * worth of data in flight.
2446						 */
2447						awnd = (tp->snd_nxt - tp->snd_fack) +
2448							tp->sackhint.sack_bytes_rexmit;
2449						if (awnd < tp->snd_ssthresh) {
2450							tp->snd_cwnd += tp->t_maxseg;
2451							if (tp->snd_cwnd > tp->snd_ssthresh)
2452								tp->snd_cwnd = tp->snd_ssthresh;
2453						}
2454					} else
2455						tp->snd_cwnd += tp->t_maxseg;
2456					if ((thflags & TH_FIN) &&
2457					    (TCPS_HAVERCVDFIN(tp->t_state) == 0)) {
2458						/*
2459						 * If its a fin we need to process
2460						 * it to avoid a race where both
2461						 * sides enter FIN-WAIT and send FIN|ACK
2462						 * at the same time.
2463						 */
2464						break;
2465					}
2466					(void) tcp_output(tp);
2467					goto drop;
2468				} else if (tp->t_dupacks == tcprexmtthresh) {
2469					tcp_seq onxt = tp->snd_nxt;
2470
2471					/*
2472					 * If we're doing sack, check to
2473					 * see if we're already in sack
2474					 * recovery. If we're not doing sack,
2475					 * check to see if we're in newreno
2476					 * recovery.
2477					 */
2478					if (tp->t_flags & TF_SACK_PERMIT) {
2479						if (IN_FASTRECOVERY(tp->t_flags)) {
2480							tp->t_dupacks = 0;
2481							break;
2482						}
2483					} else {
2484						if (SEQ_LEQ(th->th_ack,
2485						    tp->snd_recover)) {
2486							tp->t_dupacks = 0;
2487							break;
2488						}
2489					}
2490					/* Congestion signal before ack. */
2491					cc_cong_signal(tp, th, CC_NDUPACK);
2492					cc_ack_received(tp, th, CC_DUPACK);
2493					tcp_timer_activate(tp, TT_REXMT, 0);
2494					tp->t_rtttime = 0;
2495					if (tp->t_flags & TF_SACK_PERMIT) {
2496						TCPSTAT_INC(
2497						    tcps_sack_recovery_episode);
2498						tp->sack_newdata = tp->snd_nxt;
2499						tp->snd_cwnd = tp->t_maxseg;
2500						(void) tcp_output(tp);
2501						goto drop;
2502					}
2503					tp->snd_nxt = th->th_ack;
2504					tp->snd_cwnd = tp->t_maxseg;
2505					if ((thflags & TH_FIN) &&
2506					    (TCPS_HAVERCVDFIN(tp->t_state) == 0)) {
2507						/*
2508						 * If its a fin we need to process
2509						 * it to avoid a race where both
2510						 * sides enter FIN-WAIT and send FIN|ACK
2511						 * at the same time.
2512						 */
2513						break;
2514					}
2515					(void) tcp_output(tp);
2516					KASSERT(tp->snd_limited <= 2,
2517					    ("%s: tp->snd_limited too big",
2518					    __func__));
2519					tp->snd_cwnd = tp->snd_ssthresh +
2520					     tp->t_maxseg *
2521					     (tp->t_dupacks - tp->snd_limited);
2522					if (SEQ_GT(onxt, tp->snd_nxt))
2523						tp->snd_nxt = onxt;
2524					goto drop;
2525				} else if (V_tcp_do_rfc3042) {
2526					cc_ack_received(tp, th, CC_DUPACK);
2527					u_long oldcwnd = tp->snd_cwnd;
2528					tcp_seq oldsndmax = tp->snd_max;
2529					u_int sent;
2530					int avail;
2531
2532					KASSERT(tp->t_dupacks == 1 ||
2533					    tp->t_dupacks == 2,
2534					    ("%s: dupacks not 1 or 2",
2535					    __func__));
2536					if (tp->t_dupacks == 1)
2537						tp->snd_limited = 0;
2538					tp->snd_cwnd =
2539					    (tp->snd_nxt - tp->snd_una) +
2540					    (tp->t_dupacks - tp->snd_limited) *
2541					    tp->t_maxseg;
2542					if ((thflags & TH_FIN) &&
2543					    (TCPS_HAVERCVDFIN(tp->t_state) == 0)) {
2544						/*
2545						 * If its a fin we need to process
2546						 * it to avoid a race where both
2547						 * sides enter FIN-WAIT and send FIN|ACK
2548						 * at the same time.
2549						 */
2550						break;
2551					}
2552					/*
2553					 * Only call tcp_output when there
2554					 * is new data available to be sent.
2555					 * Otherwise we would send pure ACKs.
2556					 */
2557					SOCKBUF_LOCK(&so->so_snd);
2558					avail = so->so_snd.sb_cc -
2559					    (tp->snd_nxt - tp->snd_una);
2560					SOCKBUF_UNLOCK(&so->so_snd);
2561					if (avail > 0)
2562						(void) tcp_output(tp);
2563					sent = tp->snd_max - oldsndmax;
2564					if (sent > tp->t_maxseg) {
2565						KASSERT((tp->t_dupacks == 2 &&
2566						    tp->snd_limited == 0) ||
2567						   (sent == tp->t_maxseg + 1 &&
2568						    tp->t_flags & TF_SENTFIN),
2569						    ("%s: sent too much",
2570						    __func__));
2571						tp->snd_limited = 2;
2572					} else if (sent > 0)
2573						++tp->snd_limited;
2574					tp->snd_cwnd = oldcwnd;
2575					goto drop;
2576				}
2577			} else
2578				tp->t_dupacks = 0;
2579			break;
2580		}
2581
2582		KASSERT(SEQ_GT(th->th_ack, tp->snd_una),
2583		    ("%s: th_ack <= snd_una", __func__));
2584
2585		/*
2586		 * If the congestion window was inflated to account
2587		 * for the other side's cached packets, retract it.
2588		 */
2589		if (IN_FASTRECOVERY(tp->t_flags)) {
2590			if (SEQ_LT(th->th_ack, tp->snd_recover)) {
2591				if (tp->t_flags & TF_SACK_PERMIT)
2592					tcp_sack_partialack(tp, th);
2593				else
2594					tcp_newreno_partial_ack(tp, th);
2595			} else
2596				cc_post_recovery(tp, th);
2597		}
2598		tp->t_dupacks = 0;
2599		/*
2600		 * If we reach this point, ACK is not a duplicate,
2601		 *     i.e., it ACKs something we sent.
2602		 */
2603		if (tp->t_flags & TF_NEEDSYN) {
2604			/*
2605			 * T/TCP: Connection was half-synchronized, and our
2606			 * SYN has been ACK'd (so connection is now fully
2607			 * synchronized).  Go to non-starred state,
2608			 * increment snd_una for ACK of SYN, and check if
2609			 * we can do window scaling.
2610			 */
2611			tp->t_flags &= ~TF_NEEDSYN;
2612			tp->snd_una++;
2613			/* Do window scaling? */
2614			if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
2615				(TF_RCVD_SCALE|TF_REQ_SCALE)) {
2616				tp->rcv_scale = tp->request_r_scale;
2617				/* Send window already scaled. */
2618			}
2619		}
2620
2621process_ACK:
2622		INP_WLOCK_ASSERT(tp->t_inpcb);
2623
2624		acked = BYTES_THIS_ACK(tp, th);
2625		TCPSTAT_INC(tcps_rcvackpack);
2626		TCPSTAT_ADD(tcps_rcvackbyte, acked);
2627
2628		/*
2629		 * If we just performed our first retransmit, and the ACK
2630		 * arrives within our recovery window, then it was a mistake
2631		 * to do the retransmit in the first place.  Recover our
2632		 * original cwnd and ssthresh, and proceed to transmit where
2633		 * we left off.
2634		 */
2635		if (tp->t_rxtshift == 1 && tp->t_flags & TF_PREVVALID &&
2636		    (int)(ticks - tp->t_badrxtwin) < 0)
2637			cc_cong_signal(tp, th, CC_RTO_ERR);
2638
2639		/*
2640		 * If we have a timestamp reply, update smoothed
2641		 * round trip time.  If no timestamp is present but
2642		 * transmit timer is running and timed sequence
2643		 * number was acked, update smoothed round trip time.
2644		 * Since we now have an rtt measurement, cancel the
2645		 * timer backoff (cf., Phil Karn's retransmit alg.).
2646		 * Recompute the initial retransmit timer.
2647		 *
2648		 * Some boxes send broken timestamp replies
2649		 * during the SYN+ACK phase, ignore
2650		 * timestamps of 0 or we could calculate a
2651		 * huge RTT and blow up the retransmit timer.
2652		 */
2653		if ((to.to_flags & TOF_TS) != 0 && to.to_tsecr) {
2654			u_int t;
2655
2656			t = tcp_ts_getticks() - to.to_tsecr;
2657			if (!tp->t_rttlow || tp->t_rttlow > t)
2658				tp->t_rttlow = t;
2659			tcp_xmit_timer(tp, TCP_TS_TO_TICKS(t) + 1);
2660		} else if (tp->t_rtttime && SEQ_GT(th->th_ack, tp->t_rtseq)) {
2661			if (!tp->t_rttlow || tp->t_rttlow > ticks - tp->t_rtttime)
2662				tp->t_rttlow = ticks - tp->t_rtttime;
2663			tcp_xmit_timer(tp, ticks - tp->t_rtttime);
2664		}
2665
2666		/*
2667		 * If all outstanding data is acked, stop retransmit
2668		 * timer and remember to restart (more output or persist).
2669		 * If there is more data to be acked, restart retransmit
2670		 * timer, using current (possibly backed-off) value.
2671		 */
2672		if (th->th_ack == tp->snd_max) {
2673			tcp_timer_activate(tp, TT_REXMT, 0);
2674			needoutput = 1;
2675		} else if (!tcp_timer_active(tp, TT_PERSIST))
2676			tcp_timer_activate(tp, TT_REXMT, tp->t_rxtcur);
2677
2678		/*
2679		 * If no data (only SYN) was ACK'd,
2680		 *    skip rest of ACK processing.
2681		 */
2682		if (acked == 0)
2683			goto step6;
2684
2685		/*
2686		 * Let the congestion control algorithm update congestion
2687		 * control related information. This typically means increasing
2688		 * the congestion window.
2689		 */
2690		cc_ack_received(tp, th, CC_ACK);
2691
2692		SOCKBUF_LOCK(&so->so_snd);
2693		if (acked > so->so_snd.sb_cc) {
2694			tp->snd_wnd -= so->so_snd.sb_cc;
2695			mfree = sbcut_locked(&so->so_snd,
2696			    (int)so->so_snd.sb_cc);
2697			ourfinisacked = 1;
2698		} else {
2699			mfree = sbcut_locked(&so->so_snd, acked);
2700			tp->snd_wnd -= acked;
2701			ourfinisacked = 0;
2702		}
2703		/* NB: sowwakeup_locked() does an implicit unlock. */
2704		sowwakeup_locked(so);
2705		m_freem(mfree);
2706		/* Detect una wraparound. */
2707		if (!IN_RECOVERY(tp->t_flags) &&
2708		    SEQ_GT(tp->snd_una, tp->snd_recover) &&
2709		    SEQ_LEQ(th->th_ack, tp->snd_recover))
2710			tp->snd_recover = th->th_ack - 1;
2711		/* XXXLAS: Can this be moved up into cc_post_recovery? */
2712		if (IN_RECOVERY(tp->t_flags) &&
2713		    SEQ_GEQ(th->th_ack, tp->snd_recover)) {
2714			EXIT_RECOVERY(tp->t_flags);
2715		}
2716		tp->snd_una = th->th_ack;
2717		if (tp->t_flags & TF_SACK_PERMIT) {
2718			if (SEQ_GT(tp->snd_una, tp->snd_recover))
2719				tp->snd_recover = tp->snd_una;
2720		}
2721		if (SEQ_LT(tp->snd_nxt, tp->snd_una))
2722			tp->snd_nxt = tp->snd_una;
2723
2724		switch (tp->t_state) {
2725
2726		/*
2727		 * In FIN_WAIT_1 STATE in addition to the processing
2728		 * for the ESTABLISHED state if our FIN is now acknowledged
2729		 * then enter FIN_WAIT_2.
2730		 */
2731		case TCPS_FIN_WAIT_1:
2732			if (ourfinisacked) {
2733				/*
2734				 * If we can't receive any more
2735				 * data, then closing user can proceed.
2736				 * Starting the timer is contrary to the
2737				 * specification, but if we don't get a FIN
2738				 * we'll hang forever.
2739				 *
2740				 * XXXjl:
2741				 * we should release the tp also, and use a
2742				 * compressed state.
2743				 */
2744				if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
2745					soisdisconnected(so);
2746					tcp_timer_activate(tp, TT_2MSL,
2747					    (tcp_fast_finwait2_recycle ?
2748					    tcp_finwait2_timeout :
2749					    TP_MAXIDLE(tp)));
2750				}
2751				tcp_state_change(tp, TCPS_FIN_WAIT_2);
2752			}
2753			break;
2754
2755		/*
2756		 * In CLOSING STATE in addition to the processing for
2757		 * the ESTABLISHED state if the ACK acknowledges our FIN
2758		 * then enter the TIME-WAIT state, otherwise ignore
2759		 * the segment.
2760		 */
2761		case TCPS_CLOSING:
2762			if (ourfinisacked) {
2763				INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
2764				tcp_twstart(tp);
2765				INP_INFO_WUNLOCK(&V_tcbinfo);
2766				m_freem(m);
2767				return;
2768			}
2769			break;
2770
2771		/*
2772		 * In LAST_ACK, we may still be waiting for data to drain
2773		 * and/or to be acked, as well as for the ack of our FIN.
2774		 * If our FIN is now acknowledged, delete the TCB,
2775		 * enter the closed state and return.
2776		 */
2777		case TCPS_LAST_ACK:
2778			if (ourfinisacked) {
2779				INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
2780				tp = tcp_close(tp);
2781				goto drop;
2782			}
2783			break;
2784		}
2785	}
2786
2787step6:
2788	INP_WLOCK_ASSERT(tp->t_inpcb);
2789
2790	/*
2791	 * Update window information.
2792	 * Don't look at window if no ACK: TAC's send garbage on first SYN.
2793	 */
2794	if ((thflags & TH_ACK) &&
2795	    (SEQ_LT(tp->snd_wl1, th->th_seq) ||
2796	    (tp->snd_wl1 == th->th_seq && (SEQ_LT(tp->snd_wl2, th->th_ack) ||
2797	     (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))))) {
2798		/* keep track of pure window updates */
2799		if (tlen == 0 &&
2800		    tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)
2801			TCPSTAT_INC(tcps_rcvwinupd);
2802		tp->snd_wnd = tiwin;
2803		tp->snd_wl1 = th->th_seq;
2804		tp->snd_wl2 = th->th_ack;
2805		if (tp->snd_wnd > tp->max_sndwnd)
2806			tp->max_sndwnd = tp->snd_wnd;
2807		needoutput = 1;
2808	}
2809
2810	/*
2811	 * Process segments with URG.
2812	 */
2813	if ((thflags & TH_URG) && th->th_urp &&
2814	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2815		/*
2816		 * This is a kludge, but if we receive and accept
2817		 * random urgent pointers, we'll crash in
2818		 * soreceive.  It's hard to imagine someone
2819		 * actually wanting to send this much urgent data.
2820		 */
2821		SOCKBUF_LOCK(&so->so_rcv);
2822		if (th->th_urp + so->so_rcv.sb_cc > sb_max) {
2823			th->th_urp = 0;			/* XXX */
2824			thflags &= ~TH_URG;		/* XXX */
2825			SOCKBUF_UNLOCK(&so->so_rcv);	/* XXX */
2826			goto dodata;			/* XXX */
2827		}
2828		/*
2829		 * If this segment advances the known urgent pointer,
2830		 * then mark the data stream.  This should not happen
2831		 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
2832		 * a FIN has been received from the remote side.
2833		 * In these states we ignore the URG.
2834		 *
2835		 * According to RFC961 (Assigned Protocols),
2836		 * the urgent pointer points to the last octet
2837		 * of urgent data.  We continue, however,
2838		 * to consider it to indicate the first octet
2839		 * of data past the urgent section as the original
2840		 * spec states (in one of two places).
2841		 */
2842		if (SEQ_GT(th->th_seq+th->th_urp, tp->rcv_up)) {
2843			tp->rcv_up = th->th_seq + th->th_urp;
2844			so->so_oobmark = so->so_rcv.sb_cc +
2845			    (tp->rcv_up - tp->rcv_nxt) - 1;
2846			if (so->so_oobmark == 0)
2847				so->so_rcv.sb_state |= SBS_RCVATMARK;
2848			sohasoutofband(so);
2849			tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
2850		}
2851		SOCKBUF_UNLOCK(&so->so_rcv);
2852		/*
2853		 * Remove out of band data so doesn't get presented to user.
2854		 * This can happen independent of advancing the URG pointer,
2855		 * but if two URG's are pending at once, some out-of-band
2856		 * data may creep in... ick.
2857		 */
2858		if (th->th_urp <= (u_long)tlen &&
2859		    !(so->so_options & SO_OOBINLINE)) {
2860			/* hdr drop is delayed */
2861			tcp_pulloutofband(so, th, m, drop_hdrlen);
2862		}
2863	} else {
2864		/*
2865		 * If no out of band data is expected,
2866		 * pull receive urgent pointer along
2867		 * with the receive window.
2868		 */
2869		if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
2870			tp->rcv_up = tp->rcv_nxt;
2871	}
2872dodata:							/* XXX */
2873	INP_WLOCK_ASSERT(tp->t_inpcb);
2874
2875	/*
2876	 * Process the segment text, merging it into the TCP sequencing queue,
2877	 * and arranging for acknowledgment of receipt if necessary.
2878	 * This process logically involves adjusting tp->rcv_wnd as data
2879	 * is presented to the user (this happens in tcp_usrreq.c,
2880	 * case PRU_RCVD).  If a FIN has already been received on this
2881	 * connection then we just ignore the text.
2882	 */
2883	if ((tlen || (thflags & TH_FIN)) &&
2884	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2885		tcp_seq save_start = th->th_seq;
2886		m_adj(m, drop_hdrlen);	/* delayed header drop */
2887		/*
2888		 * Insert segment which includes th into TCP reassembly queue
2889		 * with control block tp.  Set thflags to whether reassembly now
2890		 * includes a segment with FIN.  This handles the common case
2891		 * inline (segment is the next to be received on an established
2892		 * connection, and the queue is empty), avoiding linkage into
2893		 * and removal from the queue and repetition of various
2894		 * conversions.
2895		 * Set DELACK for segments received in order, but ack
2896		 * immediately when segments are out of order (so
2897		 * fast retransmit can work).
2898		 */
2899		if (th->th_seq == tp->rcv_nxt &&
2900		    LIST_EMPTY(&tp->t_segq) &&
2901		    TCPS_HAVEESTABLISHED(tp->t_state)) {
2902			if (DELAY_ACK(tp, tlen))
2903				tp->t_flags |= TF_DELACK;
2904			else
2905				tp->t_flags |= TF_ACKNOW;
2906			tp->rcv_nxt += tlen;
2907			thflags = th->th_flags & TH_FIN;
2908			TCPSTAT_INC(tcps_rcvpack);
2909			TCPSTAT_ADD(tcps_rcvbyte, tlen);
2910			ND6_HINT(tp);
2911			SOCKBUF_LOCK(&so->so_rcv);
2912			if (so->so_rcv.sb_state & SBS_CANTRCVMORE)
2913				m_freem(m);
2914			else
2915				sbappendstream_locked(&so->so_rcv, m);
2916			/* NB: sorwakeup_locked() does an implicit unlock. */
2917			sorwakeup_locked(so);
2918		} else {
2919			/*
2920			 * XXX: Due to the header drop above "th" is
2921			 * theoretically invalid by now.  Fortunately
2922			 * m_adj() doesn't actually frees any mbufs
2923			 * when trimming from the head.
2924			 */
2925			thflags = tcp_reass(tp, th, &tlen, m);
2926			tp->t_flags |= TF_ACKNOW;
2927		}
2928		if (tlen > 0 && (tp->t_flags & TF_SACK_PERMIT))
2929			tcp_update_sack_list(tp, save_start, save_start + tlen);
2930#if 0
2931		/*
2932		 * Note the amount of data that peer has sent into
2933		 * our window, in order to estimate the sender's
2934		 * buffer size.
2935		 * XXX: Unused.
2936		 */
2937		if (SEQ_GT(tp->rcv_adv, tp->rcv_nxt))
2938			len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
2939		else
2940			len = so->so_rcv.sb_hiwat;
2941#endif
2942	} else {
2943		m_freem(m);
2944		thflags &= ~TH_FIN;
2945	}
2946
2947	/*
2948	 * If FIN is received ACK the FIN and let the user know
2949	 * that the connection is closing.
2950	 */
2951	if (thflags & TH_FIN) {
2952		if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2953			socantrcvmore(so);
2954			/*
2955			 * If connection is half-synchronized
2956			 * (ie NEEDSYN flag on) then delay ACK,
2957			 * so it may be piggybacked when SYN is sent.
2958			 * Otherwise, since we received a FIN then no
2959			 * more input can be expected, send ACK now.
2960			 */
2961			if (tp->t_flags & TF_NEEDSYN)
2962				tp->t_flags |= TF_DELACK;
2963			else
2964				tp->t_flags |= TF_ACKNOW;
2965			tp->rcv_nxt++;
2966		}
2967		switch (tp->t_state) {
2968
2969		/*
2970		 * In SYN_RECEIVED and ESTABLISHED STATES
2971		 * enter the CLOSE_WAIT state.
2972		 */
2973		case TCPS_SYN_RECEIVED:
2974			tp->t_starttime = ticks;
2975			/* FALLTHROUGH */
2976		case TCPS_ESTABLISHED:
2977			tcp_state_change(tp, TCPS_CLOSE_WAIT);
2978			break;
2979
2980		/*
2981		 * If still in FIN_WAIT_1 STATE FIN has not been acked so
2982		 * enter the CLOSING state.
2983		 */
2984		case TCPS_FIN_WAIT_1:
2985			tcp_state_change(tp, TCPS_CLOSING);
2986			break;
2987
2988		/*
2989		 * In FIN_WAIT_2 state enter the TIME_WAIT state,
2990		 * starting the time-wait timer, turning off the other
2991		 * standard timers.
2992		 */
2993		case TCPS_FIN_WAIT_2:
2994			INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
2995			KASSERT(ti_locked == TI_WLOCKED, ("%s: dodata "
2996			    "TCP_FIN_WAIT_2 ti_locked: %d", __func__,
2997			    ti_locked));
2998
2999			tcp_twstart(tp);
3000			INP_INFO_WUNLOCK(&V_tcbinfo);
3001			return;
3002		}
3003	}
3004	if (ti_locked == TI_WLOCKED)
3005		INP_INFO_WUNLOCK(&V_tcbinfo);
3006	ti_locked = TI_UNLOCKED;
3007
3008#ifdef TCPDEBUG
3009	if (so->so_options & SO_DEBUG)
3010		tcp_trace(TA_INPUT, ostate, tp, (void *)tcp_saveipgen,
3011			  &tcp_savetcp, 0);
3012#endif
3013
3014	/*
3015	 * Return any desired output.
3016	 */
3017	if (needoutput || (tp->t_flags & TF_ACKNOW))
3018		(void) tcp_output(tp);
3019
3020check_delack:
3021	KASSERT(ti_locked == TI_UNLOCKED, ("%s: check_delack ti_locked %d",
3022	    __func__, ti_locked));
3023	INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
3024	INP_WLOCK_ASSERT(tp->t_inpcb);
3025
3026	if (tp->t_flags & TF_DELACK) {
3027		tp->t_flags &= ~TF_DELACK;
3028		tcp_timer_activate(tp, TT_DELACK, tcp_delacktime);
3029	}
3030	INP_WUNLOCK(tp->t_inpcb);
3031	return;
3032
3033dropafterack:
3034	/*
3035	 * Generate an ACK dropping incoming segment if it occupies
3036	 * sequence space, where the ACK reflects our state.
3037	 *
3038	 * We can now skip the test for the RST flag since all
3039	 * paths to this code happen after packets containing
3040	 * RST have been dropped.
3041	 *
3042	 * In the SYN-RECEIVED state, don't send an ACK unless the
3043	 * segment we received passes the SYN-RECEIVED ACK test.
3044	 * If it fails send a RST.  This breaks the loop in the
3045	 * "LAND" DoS attack, and also prevents an ACK storm
3046	 * between two listening ports that have been sent forged
3047	 * SYN segments, each with the source address of the other.
3048	 */
3049	if (tp->t_state == TCPS_SYN_RECEIVED && (thflags & TH_ACK) &&
3050	    (SEQ_GT(tp->snd_una, th->th_ack) ||
3051	     SEQ_GT(th->th_ack, tp->snd_max)) ) {
3052		rstreason = BANDLIM_RST_OPENPORT;
3053		goto dropwithreset;
3054	}
3055#ifdef TCPDEBUG
3056	if (so->so_options & SO_DEBUG)
3057		tcp_trace(TA_DROP, ostate, tp, (void *)tcp_saveipgen,
3058			  &tcp_savetcp, 0);
3059#endif
3060	if (ti_locked == TI_WLOCKED)
3061		INP_INFO_WUNLOCK(&V_tcbinfo);
3062	ti_locked = TI_UNLOCKED;
3063
3064	tp->t_flags |= TF_ACKNOW;
3065	(void) tcp_output(tp);
3066	INP_WUNLOCK(tp->t_inpcb);
3067	m_freem(m);
3068	return;
3069
3070dropwithreset:
3071	if (ti_locked == TI_WLOCKED)
3072		INP_INFO_WUNLOCK(&V_tcbinfo);
3073	ti_locked = TI_UNLOCKED;
3074
3075	if (tp != NULL) {
3076		tcp_dropwithreset(m, th, tp, tlen, rstreason);
3077		INP_WUNLOCK(tp->t_inpcb);
3078	} else
3079		tcp_dropwithreset(m, th, NULL, tlen, rstreason);
3080	return;
3081
3082drop:
3083	if (ti_locked == TI_WLOCKED) {
3084		INP_INFO_WUNLOCK(&V_tcbinfo);
3085		ti_locked = TI_UNLOCKED;
3086	}
3087#ifdef INVARIANTS
3088	else
3089		INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
3090#endif
3091
3092	/*
3093	 * Drop space held by incoming segment and return.
3094	 */
3095#ifdef TCPDEBUG
3096	if (tp == NULL || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
3097		tcp_trace(TA_DROP, ostate, tp, (void *)tcp_saveipgen,
3098			  &tcp_savetcp, 0);
3099#endif
3100	if (tp != NULL)
3101		INP_WUNLOCK(tp->t_inpcb);
3102	m_freem(m);
3103}
3104
3105/*
3106 * Issue RST and make ACK acceptable to originator of segment.
3107 * The mbuf must still include the original packet header.
3108 * tp may be NULL.
3109 */
3110static void
3111tcp_dropwithreset(struct mbuf *m, struct tcphdr *th, struct tcpcb *tp,
3112    int tlen, int rstreason)
3113{
3114#ifdef INET
3115	struct ip *ip;
3116#endif
3117#ifdef INET6
3118	struct ip6_hdr *ip6;
3119#endif
3120
3121	if (tp != NULL) {
3122		INP_WLOCK_ASSERT(tp->t_inpcb);
3123	}
3124
3125	/* Don't bother if destination was broadcast/multicast. */
3126	if ((th->th_flags & TH_RST) || m->m_flags & (M_BCAST|M_MCAST))
3127		goto drop;
3128#ifdef INET6
3129	if (mtod(m, struct ip *)->ip_v == 6) {
3130		ip6 = mtod(m, struct ip6_hdr *);
3131		if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) ||
3132		    IN6_IS_ADDR_MULTICAST(&ip6->ip6_src))
3133			goto drop;
3134		/* IPv6 anycast check is done at tcp6_input() */
3135	}
3136#endif
3137#if defined(INET) && defined(INET6)
3138	else
3139#endif
3140#ifdef INET
3141	{
3142		ip = mtod(m, struct ip *);
3143		if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
3144		    IN_MULTICAST(ntohl(ip->ip_src.s_addr)) ||
3145		    ip->ip_src.s_addr == htonl(INADDR_BROADCAST) ||
3146		    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
3147			goto drop;
3148	}
3149#endif
3150
3151	/* Perform bandwidth limiting. */
3152	if (badport_bandlim(rstreason) < 0)
3153		goto drop;
3154
3155	/* tcp_respond consumes the mbuf chain. */
3156	if (th->th_flags & TH_ACK) {
3157		tcp_respond(tp, mtod(m, void *), th, m, (tcp_seq)0,
3158		    th->th_ack, TH_RST);
3159	} else {
3160		if (th->th_flags & TH_SYN)
3161			tlen++;
3162		tcp_respond(tp, mtod(m, void *), th, m, th->th_seq+tlen,
3163		    (tcp_seq)0, TH_RST|TH_ACK);
3164	}
3165	return;
3166drop:
3167	m_freem(m);
3168}
3169
3170/*
3171 * Parse TCP options and place in tcpopt.
3172 */
3173static void
3174tcp_dooptions(struct tcpopt *to, u_char *cp, int cnt, int flags)
3175{
3176	int opt, optlen;
3177
3178	to->to_flags = 0;
3179	for (; cnt > 0; cnt -= optlen, cp += optlen) {
3180		opt = cp[0];
3181		if (opt == TCPOPT_EOL)
3182			break;
3183		if (opt == TCPOPT_NOP)
3184			optlen = 1;
3185		else {
3186			if (cnt < 2)
3187				break;
3188			optlen = cp[1];
3189			if (optlen < 2 || optlen > cnt)
3190				break;
3191		}
3192		switch (opt) {
3193		case TCPOPT_MAXSEG:
3194			if (optlen != TCPOLEN_MAXSEG)
3195				continue;
3196			if (!(flags & TO_SYN))
3197				continue;
3198			to->to_flags |= TOF_MSS;
3199			bcopy((char *)cp + 2,
3200			    (char *)&to->to_mss, sizeof(to->to_mss));
3201			to->to_mss = ntohs(to->to_mss);
3202			break;
3203		case TCPOPT_WINDOW:
3204			if (optlen != TCPOLEN_WINDOW)
3205				continue;
3206			if (!(flags & TO_SYN))
3207				continue;
3208			to->to_flags |= TOF_SCALE;
3209			to->to_wscale = min(cp[2], TCP_MAX_WINSHIFT);
3210			break;
3211		case TCPOPT_TIMESTAMP:
3212			if (optlen != TCPOLEN_TIMESTAMP)
3213				continue;
3214			to->to_flags |= TOF_TS;
3215			bcopy((char *)cp + 2,
3216			    (char *)&to->to_tsval, sizeof(to->to_tsval));
3217			to->to_tsval = ntohl(to->to_tsval);
3218			bcopy((char *)cp + 6,
3219			    (char *)&to->to_tsecr, sizeof(to->to_tsecr));
3220			to->to_tsecr = ntohl(to->to_tsecr);
3221			break;
3222#ifdef TCP_SIGNATURE
3223		/*
3224		 * XXX In order to reply to a host which has set the
3225		 * TCP_SIGNATURE option in its initial SYN, we have to
3226		 * record the fact that the option was observed here
3227		 * for the syncache code to perform the correct response.
3228		 */
3229		case TCPOPT_SIGNATURE:
3230			if (optlen != TCPOLEN_SIGNATURE)
3231				continue;
3232			to->to_flags |= TOF_SIGNATURE;
3233			to->to_signature = cp + 2;
3234			break;
3235#endif
3236		case TCPOPT_SACK_PERMITTED:
3237			if (optlen != TCPOLEN_SACK_PERMITTED)
3238				continue;
3239			if (!(flags & TO_SYN))
3240				continue;
3241			if (!V_tcp_do_sack)
3242				continue;
3243			to->to_flags |= TOF_SACKPERM;
3244			break;
3245		case TCPOPT_SACK:
3246			if (optlen <= 2 || (optlen - 2) % TCPOLEN_SACK != 0)
3247				continue;
3248			if (flags & TO_SYN)
3249				continue;
3250			to->to_flags |= TOF_SACK;
3251			to->to_nsacks = (optlen - 2) / TCPOLEN_SACK;
3252			to->to_sacks = cp + 2;
3253			TCPSTAT_INC(tcps_sack_rcv_blocks);
3254			break;
3255		default:
3256			continue;
3257		}
3258	}
3259}
3260
3261/*
3262 * Pull out of band byte out of a segment so
3263 * it doesn't appear in the user's data queue.
3264 * It is still reflected in the segment length for
3265 * sequencing purposes.
3266 */
3267static void
3268tcp_pulloutofband(struct socket *so, struct tcphdr *th, struct mbuf *m,
3269    int off)
3270{
3271	int cnt = off + th->th_urp - 1;
3272
3273	while (cnt >= 0) {
3274		if (m->m_len > cnt) {
3275			char *cp = mtod(m, caddr_t) + cnt;
3276			struct tcpcb *tp = sototcpcb(so);
3277
3278			INP_WLOCK_ASSERT(tp->t_inpcb);
3279
3280			tp->t_iobc = *cp;
3281			tp->t_oobflags |= TCPOOB_HAVEDATA;
3282			bcopy(cp+1, cp, (unsigned)(m->m_len - cnt - 1));
3283			m->m_len--;
3284			if (m->m_flags & M_PKTHDR)
3285				m->m_pkthdr.len--;
3286			return;
3287		}
3288		cnt -= m->m_len;
3289		m = m->m_next;
3290		if (m == NULL)
3291			break;
3292	}
3293	panic("tcp_pulloutofband");
3294}
3295
3296/*
3297 * Collect new round-trip time estimate
3298 * and update averages and current timeout.
3299 */
3300static void
3301tcp_xmit_timer(struct tcpcb *tp, int rtt)
3302{
3303	int delta;
3304
3305	INP_WLOCK_ASSERT(tp->t_inpcb);
3306
3307	TCPSTAT_INC(tcps_rttupdated);
3308	tp->t_rttupdated++;
3309	if (tp->t_srtt != 0) {
3310		/*
3311		 * srtt is stored as fixed point with 5 bits after the
3312		 * binary point (i.e., scaled by 8).  The following magic
3313		 * is equivalent to the smoothing algorithm in rfc793 with
3314		 * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed
3315		 * point).  Adjust rtt to origin 0.
3316		 */
3317		delta = ((rtt - 1) << TCP_DELTA_SHIFT)
3318			- (tp->t_srtt >> (TCP_RTT_SHIFT - TCP_DELTA_SHIFT));
3319
3320		if ((tp->t_srtt += delta) <= 0)
3321			tp->t_srtt = 1;
3322
3323		/*
3324		 * We accumulate a smoothed rtt variance (actually, a
3325		 * smoothed mean difference), then set the retransmit
3326		 * timer to smoothed rtt + 4 times the smoothed variance.
3327		 * rttvar is stored as fixed point with 4 bits after the
3328		 * binary point (scaled by 16).  The following is
3329		 * equivalent to rfc793 smoothing with an alpha of .75
3330		 * (rttvar = rttvar*3/4 + |delta| / 4).  This replaces
3331		 * rfc793's wired-in beta.
3332		 */
3333		if (delta < 0)
3334			delta = -delta;
3335		delta -= tp->t_rttvar >> (TCP_RTTVAR_SHIFT - TCP_DELTA_SHIFT);
3336		if ((tp->t_rttvar += delta) <= 0)
3337			tp->t_rttvar = 1;
3338		if (tp->t_rttbest > tp->t_srtt + tp->t_rttvar)
3339		    tp->t_rttbest = tp->t_srtt + tp->t_rttvar;
3340	} else {
3341		/*
3342		 * No rtt measurement yet - use the unsmoothed rtt.
3343		 * Set the variance to half the rtt (so our first
3344		 * retransmit happens at 3*rtt).
3345		 */
3346		tp->t_srtt = rtt << TCP_RTT_SHIFT;
3347		tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT - 1);
3348		tp->t_rttbest = tp->t_srtt + tp->t_rttvar;
3349	}
3350	tp->t_rtttime = 0;
3351	tp->t_rxtshift = 0;
3352
3353	/*
3354	 * the retransmit should happen at rtt + 4 * rttvar.
3355	 * Because of the way we do the smoothing, srtt and rttvar
3356	 * will each average +1/2 tick of bias.  When we compute
3357	 * the retransmit timer, we want 1/2 tick of rounding and
3358	 * 1 extra tick because of +-1/2 tick uncertainty in the
3359	 * firing of the timer.  The bias will give us exactly the
3360	 * 1.5 tick we need.  But, because the bias is
3361	 * statistical, we have to test that we don't drop below
3362	 * the minimum feasible timer (which is 2 ticks).
3363	 */
3364	TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
3365		      max(tp->t_rttmin, rtt + 2), TCPTV_REXMTMAX);
3366
3367	/*
3368	 * We received an ack for a packet that wasn't retransmitted;
3369	 * it is probably safe to discard any error indications we've
3370	 * received recently.  This isn't quite right, but close enough
3371	 * for now (a route might have failed after we sent a segment,
3372	 * and the return path might not be symmetrical).
3373	 */
3374	tp->t_softerror = 0;
3375}
3376
3377/*
3378 * Determine a reasonable value for maxseg size.
3379 * If the route is known, check route for mtu.
3380 * If none, use an mss that can be handled on the outgoing interface
3381 * without forcing IP to fragment.  If no route is found, route has no mtu,
3382 * or the destination isn't local, use a default, hopefully conservative
3383 * size (usually 512 or the default IP max size, but no more than the mtu
3384 * of the interface), as we can't discover anything about intervening
3385 * gateways or networks.  We also initialize the congestion/slow start
3386 * window to be a single segment if the destination isn't local.
3387 * While looking at the routing entry, we also initialize other path-dependent
3388 * parameters from pre-set or cached values in the routing entry.
3389 *
3390 * Also take into account the space needed for options that we
3391 * send regularly.  Make maxseg shorter by that amount to assure
3392 * that we can send maxseg amount of data even when the options
3393 * are present.  Store the upper limit of the length of options plus
3394 * data in maxopd.
3395 *
3396 * NOTE that this routine is only called when we process an incoming
3397 * segment, or an ICMP need fragmentation datagram. Outgoing SYN/ACK MSS
3398 * settings are handled in tcp_mssopt().
3399 */
3400void
3401tcp_mss_update(struct tcpcb *tp, int offer, int mtuoffer,
3402    struct hc_metrics_lite *metricptr, struct tcp_ifcap *cap)
3403{
3404	int mss = 0;
3405	u_long maxmtu = 0;
3406	struct inpcb *inp = tp->t_inpcb;
3407	struct hc_metrics_lite metrics;
3408	int origoffer;
3409#ifdef INET6
3410	int isipv6 = ((inp->inp_vflag & INP_IPV6) != 0) ? 1 : 0;
3411	size_t min_protoh = isipv6 ?
3412			    sizeof (struct ip6_hdr) + sizeof (struct tcphdr) :
3413			    sizeof (struct tcpiphdr);
3414#else
3415	const size_t min_protoh = sizeof(struct tcpiphdr);
3416#endif
3417
3418	INP_WLOCK_ASSERT(tp->t_inpcb);
3419
3420	if (mtuoffer != -1) {
3421		KASSERT(offer == -1, ("%s: conflict", __func__));
3422		offer = mtuoffer - min_protoh;
3423	}
3424	origoffer = offer;
3425
3426	/* Initialize. */
3427#ifdef INET6
3428	if (isipv6) {
3429		maxmtu = tcp_maxmtu6(&inp->inp_inc, cap);
3430		tp->t_maxopd = tp->t_maxseg = V_tcp_v6mssdflt;
3431	}
3432#endif
3433#if defined(INET) && defined(INET6)
3434	else
3435#endif
3436#ifdef INET
3437	{
3438		maxmtu = tcp_maxmtu(&inp->inp_inc, cap);
3439		tp->t_maxopd = tp->t_maxseg = V_tcp_mssdflt;
3440	}
3441#endif
3442
3443	/*
3444	 * No route to sender, stay with default mss and return.
3445	 */
3446	if (maxmtu == 0) {
3447		/*
3448		 * In case we return early we need to initialize metrics
3449		 * to a defined state as tcp_hc_get() would do for us
3450		 * if there was no cache hit.
3451		 */
3452		if (metricptr != NULL)
3453			bzero(metricptr, sizeof(struct hc_metrics_lite));
3454		return;
3455	}
3456
3457	/* What have we got? */
3458	switch (offer) {
3459		case 0:
3460			/*
3461			 * Offer == 0 means that there was no MSS on the SYN
3462			 * segment, in this case we use tcp_mssdflt as
3463			 * already assigned to t_maxopd above.
3464			 */
3465			offer = tp->t_maxopd;
3466			break;
3467
3468		case -1:
3469			/*
3470			 * Offer == -1 means that we didn't receive SYN yet.
3471			 */
3472			/* FALLTHROUGH */
3473
3474		default:
3475			/*
3476			 * Prevent DoS attack with too small MSS. Round up
3477			 * to at least minmss.
3478			 */
3479			offer = max(offer, V_tcp_minmss);
3480	}
3481
3482	/*
3483	 * rmx information is now retrieved from tcp_hostcache.
3484	 */
3485	tcp_hc_get(&inp->inp_inc, &metrics);
3486	if (metricptr != NULL)
3487		bcopy(&metrics, metricptr, sizeof(struct hc_metrics_lite));
3488
3489	/*
3490	 * If there's a discovered mtu int tcp hostcache, use it
3491	 * else, use the link mtu.
3492	 */
3493	if (metrics.rmx_mtu)
3494		mss = min(metrics.rmx_mtu, maxmtu) - min_protoh;
3495	else {
3496#ifdef INET6
3497		if (isipv6) {
3498			mss = maxmtu - min_protoh;
3499			if (!V_path_mtu_discovery &&
3500			    !in6_localaddr(&inp->in6p_faddr))
3501				mss = min(mss, V_tcp_v6mssdflt);
3502		}
3503#endif
3504#if defined(INET) && defined(INET6)
3505		else
3506#endif
3507#ifdef INET
3508		{
3509			mss = maxmtu - min_protoh;
3510			if (!V_path_mtu_discovery &&
3511			    !in_localaddr(inp->inp_faddr))
3512				mss = min(mss, V_tcp_mssdflt);
3513		}
3514#endif
3515		/*
3516		 * XXX - The above conditional (mss = maxmtu - min_protoh)
3517		 * probably violates the TCP spec.
3518		 * The problem is that, since we don't know the
3519		 * other end's MSS, we are supposed to use a conservative
3520		 * default.  But, if we do that, then MTU discovery will
3521		 * never actually take place, because the conservative
3522		 * default is much less than the MTUs typically seen
3523		 * on the Internet today.  For the moment, we'll sweep
3524		 * this under the carpet.
3525		 *
3526		 * The conservative default might not actually be a problem
3527		 * if the only case this occurs is when sending an initial
3528		 * SYN with options and data to a host we've never talked
3529		 * to before.  Then, they will reply with an MSS value which
3530		 * will get recorded and the new parameters should get
3531		 * recomputed.  For Further Study.
3532		 */
3533	}
3534	mss = min(mss, offer);
3535
3536	/*
3537	 * Sanity check: make sure that maxopd will be large
3538	 * enough to allow some data on segments even if the
3539	 * all the option space is used (40bytes).  Otherwise
3540	 * funny things may happen in tcp_output.
3541	 */
3542	mss = max(mss, 64);
3543
3544	/*
3545	 * maxopd stores the maximum length of data AND options
3546	 * in a segment; maxseg is the amount of data in a normal
3547	 * segment.  We need to store this value (maxopd) apart
3548	 * from maxseg, because now every segment carries options
3549	 * and thus we normally have somewhat less data in segments.
3550	 */
3551	tp->t_maxopd = mss;
3552
3553	/*
3554	 * origoffer==-1 indicates that no segments were received yet.
3555	 * In this case we just guess.
3556	 */
3557	if ((tp->t_flags & (TF_REQ_TSTMP|TF_NOOPT)) == TF_REQ_TSTMP &&
3558	    (origoffer == -1 ||
3559	     (tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP))
3560		mss -= TCPOLEN_TSTAMP_APPA;
3561
3562	tp->t_maxseg = mss;
3563}
3564
3565void
3566tcp_mss(struct tcpcb *tp, int offer)
3567{
3568	int mss;
3569	u_long bufsize;
3570	struct inpcb *inp;
3571	struct socket *so;
3572	struct hc_metrics_lite metrics;
3573	struct tcp_ifcap cap;
3574
3575	KASSERT(tp != NULL, ("%s: tp == NULL", __func__));
3576
3577	bzero(&cap, sizeof(cap));
3578	tcp_mss_update(tp, offer, -1, &metrics, &cap);
3579
3580	mss = tp->t_maxseg;
3581	inp = tp->t_inpcb;
3582
3583	/*
3584	 * If there's a pipesize, change the socket buffer to that size,
3585	 * don't change if sb_hiwat is different than default (then it
3586	 * has been changed on purpose with setsockopt).
3587	 * Make the socket buffers an integral number of mss units;
3588	 * if the mss is larger than the socket buffer, decrease the mss.
3589	 */
3590	so = inp->inp_socket;
3591	SOCKBUF_LOCK(&so->so_snd);
3592	if ((so->so_snd.sb_hiwat == V_tcp_sendspace) && metrics.rmx_sendpipe)
3593		bufsize = metrics.rmx_sendpipe;
3594	else
3595		bufsize = so->so_snd.sb_hiwat;
3596	if (bufsize < mss)
3597		mss = bufsize;
3598	else {
3599		bufsize = roundup(bufsize, mss);
3600		if (bufsize > sb_max)
3601			bufsize = sb_max;
3602		if (bufsize > so->so_snd.sb_hiwat)
3603			(void)sbreserve_locked(&so->so_snd, bufsize, so, NULL);
3604	}
3605	SOCKBUF_UNLOCK(&so->so_snd);
3606	tp->t_maxseg = mss;
3607
3608	SOCKBUF_LOCK(&so->so_rcv);
3609	if ((so->so_rcv.sb_hiwat == V_tcp_recvspace) && metrics.rmx_recvpipe)
3610		bufsize = metrics.rmx_recvpipe;
3611	else
3612		bufsize = so->so_rcv.sb_hiwat;
3613	if (bufsize > mss) {
3614		bufsize = roundup(bufsize, mss);
3615		if (bufsize > sb_max)
3616			bufsize = sb_max;
3617		if (bufsize > so->so_rcv.sb_hiwat)
3618			(void)sbreserve_locked(&so->so_rcv, bufsize, so, NULL);
3619	}
3620	SOCKBUF_UNLOCK(&so->so_rcv);
3621
3622	/* Check the interface for TSO capabilities. */
3623	if (cap.ifcap & CSUM_TSO) {
3624		tp->t_flags |= TF_TSO;
3625		tp->t_tsomax = cap.tsomax;
3626	}
3627}
3628
3629/*
3630 * Determine the MSS option to send on an outgoing SYN.
3631 */
3632int
3633tcp_mssopt(struct in_conninfo *inc)
3634{
3635	int mss = 0;
3636	u_long maxmtu = 0;
3637	u_long thcmtu = 0;
3638	size_t min_protoh;
3639
3640	KASSERT(inc != NULL, ("tcp_mssopt with NULL in_conninfo pointer"));
3641
3642#ifdef INET6
3643	if (inc->inc_flags & INC_ISIPV6) {
3644		mss = V_tcp_v6mssdflt;
3645		maxmtu = tcp_maxmtu6(inc, NULL);
3646		min_protoh = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
3647	}
3648#endif
3649#if defined(INET) && defined(INET6)
3650	else
3651#endif
3652#ifdef INET
3653	{
3654		mss = V_tcp_mssdflt;
3655		maxmtu = tcp_maxmtu(inc, NULL);
3656		min_protoh = sizeof(struct tcpiphdr);
3657	}
3658#endif
3659#if defined(INET6) || defined(INET)
3660	thcmtu = tcp_hc_getmtu(inc); /* IPv4 and IPv6 */
3661#endif
3662
3663	if (maxmtu && thcmtu)
3664		mss = min(maxmtu, thcmtu) - min_protoh;
3665	else if (maxmtu || thcmtu)
3666		mss = max(maxmtu, thcmtu) - min_protoh;
3667
3668	return (mss);
3669}
3670
3671
3672/*
3673 * On a partial ack arrives, force the retransmission of the
3674 * next unacknowledged segment.  Do not clear tp->t_dupacks.
3675 * By setting snd_nxt to ti_ack, this forces retransmission timer to
3676 * be started again.
3677 */
3678static void
3679tcp_newreno_partial_ack(struct tcpcb *tp, struct tcphdr *th)
3680{
3681	tcp_seq onxt = tp->snd_nxt;
3682	u_long  ocwnd = tp->snd_cwnd;
3683
3684	INP_WLOCK_ASSERT(tp->t_inpcb);
3685
3686	tcp_timer_activate(tp, TT_REXMT, 0);
3687	tp->t_rtttime = 0;
3688	tp->snd_nxt = th->th_ack;
3689	/*
3690	 * Set snd_cwnd to one segment beyond acknowledged offset.
3691	 * (tp->snd_una has not yet been updated when this function is called.)
3692	 */
3693	tp->snd_cwnd = tp->t_maxseg + BYTES_THIS_ACK(tp, th);
3694	tp->t_flags |= TF_ACKNOW;
3695	(void) tcp_output(tp);
3696	tp->snd_cwnd = ocwnd;
3697	if (SEQ_GT(onxt, tp->snd_nxt))
3698		tp->snd_nxt = onxt;
3699	/*
3700	 * Partial window deflation.  Relies on fact that tp->snd_una
3701	 * not updated yet.
3702	 */
3703	if (tp->snd_cwnd > BYTES_THIS_ACK(tp, th))
3704		tp->snd_cwnd -= BYTES_THIS_ACK(tp, th);
3705	else
3706		tp->snd_cwnd = 0;
3707	tp->snd_cwnd += tp->t_maxseg;
3708}
3709