tcp_input.c revision 253571
1/*-
2 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
3 *	The Regents of the University of California.  All rights reserved.
4 * Copyright (c) 2007-2008,2010
5 *	Swinburne University of Technology, Melbourne, Australia.
6 * Copyright (c) 2009-2010 Lawrence Stewart <lstewart@freebsd.org>
7 * Copyright (c) 2010 The FreeBSD Foundation
8 * Copyright (c) 2010-2011 Juniper Networks, Inc.
9 * All rights reserved.
10 *
11 * Portions of this software were developed at the Centre for Advanced Internet
12 * Architectures, Swinburne University of Technology, by Lawrence Stewart,
13 * James Healy and David Hayes, made possible in part by a grant from the Cisco
14 * University Research Program Fund at Community Foundation Silicon Valley.
15 *
16 * Portions of this software were developed at the Centre for Advanced
17 * Internet Architectures, Swinburne University of Technology, Melbourne,
18 * Australia by David Hayes under sponsorship from the FreeBSD Foundation.
19 *
20 * Portions of this software were developed by Robert N. M. Watson under
21 * contract to Juniper Networks, Inc.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the above copyright
27 *    notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 *    notice, this list of conditions and the following disclaimer in the
30 *    documentation and/or other materials provided with the distribution.
31 * 4. Neither the name of the University nor the names of its contributors
32 *    may be used to endorse or promote products derived from this software
33 *    without specific prior written permission.
34 *
35 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
36 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
37 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
38 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
39 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
40 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
41 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
42 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
43 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
44 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
45 * SUCH DAMAGE.
46 *
47 *	@(#)tcp_input.c	8.12 (Berkeley) 5/24/95
48 */
49
50#include <sys/cdefs.h>
51__FBSDID("$FreeBSD: head/sys/netinet/tcp_input.c 253571 2013-07-23 14:14:24Z ae $");
52
53#include "opt_ipfw.h"		/* for ipfw_fwd	*/
54#include "opt_inet.h"
55#include "opt_inet6.h"
56#include "opt_ipsec.h"
57#include "opt_tcpdebug.h"
58
59#include <sys/param.h>
60#include <sys/kernel.h>
61#include <sys/hhook.h>
62#include <sys/malloc.h>
63#include <sys/mbuf.h>
64#include <sys/proc.h>		/* for proc0 declaration */
65#include <sys/protosw.h>
66#include <sys/signalvar.h>
67#include <sys/socket.h>
68#include <sys/socketvar.h>
69#include <sys/sysctl.h>
70#include <sys/syslog.h>
71#include <sys/systm.h>
72
73#include <machine/cpu.h>	/* before tcp_seq.h, for tcp_random18() */
74
75#include <vm/uma.h>
76
77#include <net/if.h>
78#include <net/route.h>
79#include <net/vnet.h>
80
81#define TCPSTATES		/* for logging */
82
83#include <netinet/cc.h>
84#include <netinet/in.h>
85#include <netinet/in_pcb.h>
86#include <netinet/in_systm.h>
87#include <netinet/in_var.h>
88#include <netinet/ip.h>
89#include <netinet/ip_icmp.h>	/* required for icmp_var.h */
90#include <netinet/icmp_var.h>	/* for ICMP_BANDLIM */
91#include <netinet/ip_var.h>
92#include <netinet/ip_options.h>
93#include <netinet/ip6.h>
94#include <netinet/icmp6.h>
95#include <netinet6/in6_pcb.h>
96#include <netinet6/ip6_var.h>
97#include <netinet6/nd6.h>
98#include <netinet/tcp_fsm.h>
99#include <netinet/tcp_seq.h>
100#include <netinet/tcp_timer.h>
101#include <netinet/tcp_var.h>
102#include <netinet6/tcp6_var.h>
103#include <netinet/tcpip.h>
104#include <netinet/tcp_syncache.h>
105#ifdef TCPDEBUG
106#include <netinet/tcp_debug.h>
107#endif /* TCPDEBUG */
108#ifdef TCP_OFFLOAD
109#include <netinet/tcp_offload.h>
110#endif
111
112#ifdef IPSEC
113#include <netipsec/ipsec.h>
114#include <netipsec/ipsec6.h>
115#endif /*IPSEC*/
116
117#include <machine/in_cksum.h>
118
119#include <security/mac/mac_framework.h>
120
121const int tcprexmtthresh = 3;
122
123int tcp_log_in_vain = 0;
124SYSCTL_INT(_net_inet_tcp, OID_AUTO, log_in_vain, CTLFLAG_RW,
125    &tcp_log_in_vain, 0,
126    "Log all incoming TCP segments to closed ports");
127
128VNET_DEFINE(int, blackhole) = 0;
129#define	V_blackhole		VNET(blackhole)
130SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, blackhole, CTLFLAG_RW,
131    &VNET_NAME(blackhole), 0,
132    "Do not send RST on segments to closed ports");
133
134VNET_DEFINE(int, tcp_delack_enabled) = 1;
135SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, delayed_ack, CTLFLAG_RW,
136    &VNET_NAME(tcp_delack_enabled), 0,
137    "Delay ACK to try and piggyback it onto a data packet");
138
139VNET_DEFINE(int, drop_synfin) = 0;
140#define	V_drop_synfin		VNET(drop_synfin)
141SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, drop_synfin, CTLFLAG_RW,
142    &VNET_NAME(drop_synfin), 0,
143    "Drop TCP packets with SYN+FIN set");
144
145VNET_DEFINE(int, tcp_do_rfc3042) = 1;
146#define	V_tcp_do_rfc3042	VNET(tcp_do_rfc3042)
147SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, rfc3042, CTLFLAG_RW,
148    &VNET_NAME(tcp_do_rfc3042), 0,
149    "Enable RFC 3042 (Limited Transmit)");
150
151VNET_DEFINE(int, tcp_do_rfc3390) = 1;
152SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, rfc3390, CTLFLAG_RW,
153    &VNET_NAME(tcp_do_rfc3390), 0,
154    "Enable RFC 3390 (Increasing TCP's Initial Congestion Window)");
155
156SYSCTL_NODE(_net_inet_tcp, OID_AUTO, experimental, CTLFLAG_RW, 0,
157    "Experimental TCP extensions");
158
159VNET_DEFINE(int, tcp_do_initcwnd10) = 1;
160SYSCTL_VNET_INT(_net_inet_tcp_experimental, OID_AUTO, initcwnd10, CTLFLAG_RW,
161    &VNET_NAME(tcp_do_initcwnd10), 0,
162    "Enable draft-ietf-tcpm-initcwnd-05 (Increasing initial CWND to 10)");
163
164VNET_DEFINE(int, tcp_do_rfc3465) = 1;
165SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, rfc3465, CTLFLAG_RW,
166    &VNET_NAME(tcp_do_rfc3465), 0,
167    "Enable RFC 3465 (Appropriate Byte Counting)");
168
169VNET_DEFINE(int, tcp_abc_l_var) = 2;
170SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, abc_l_var, CTLFLAG_RW,
171    &VNET_NAME(tcp_abc_l_var), 2,
172    "Cap the max cwnd increment during slow-start to this number of segments");
173
174static SYSCTL_NODE(_net_inet_tcp, OID_AUTO, ecn, CTLFLAG_RW, 0, "TCP ECN");
175
176VNET_DEFINE(int, tcp_do_ecn) = 0;
177SYSCTL_VNET_INT(_net_inet_tcp_ecn, OID_AUTO, enable, CTLFLAG_RW,
178    &VNET_NAME(tcp_do_ecn), 0,
179    "TCP ECN support");
180
181VNET_DEFINE(int, tcp_ecn_maxretries) = 1;
182SYSCTL_VNET_INT(_net_inet_tcp_ecn, OID_AUTO, maxretries, CTLFLAG_RW,
183    &VNET_NAME(tcp_ecn_maxretries), 0,
184    "Max retries before giving up on ECN");
185
186VNET_DEFINE(int, tcp_insecure_rst) = 0;
187#define	V_tcp_insecure_rst	VNET(tcp_insecure_rst)
188SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, insecure_rst, CTLFLAG_RW,
189    &VNET_NAME(tcp_insecure_rst), 0,
190    "Follow the old (insecure) criteria for accepting RST packets");
191
192VNET_DEFINE(int, tcp_recvspace) = 1024*64;
193#define	V_tcp_recvspace	VNET(tcp_recvspace)
194SYSCTL_VNET_INT(_net_inet_tcp, TCPCTL_RECVSPACE, recvspace, CTLFLAG_RW,
195    &VNET_NAME(tcp_recvspace), 0, "Initial receive socket buffer size");
196
197VNET_DEFINE(int, tcp_do_autorcvbuf) = 1;
198#define	V_tcp_do_autorcvbuf	VNET(tcp_do_autorcvbuf)
199SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, recvbuf_auto, CTLFLAG_RW,
200    &VNET_NAME(tcp_do_autorcvbuf), 0,
201    "Enable automatic receive buffer sizing");
202
203VNET_DEFINE(int, tcp_autorcvbuf_inc) = 16*1024;
204#define	V_tcp_autorcvbuf_inc	VNET(tcp_autorcvbuf_inc)
205SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, recvbuf_inc, CTLFLAG_RW,
206    &VNET_NAME(tcp_autorcvbuf_inc), 0,
207    "Incrementor step size of automatic receive buffer");
208
209VNET_DEFINE(int, tcp_autorcvbuf_max) = 2*1024*1024;
210#define	V_tcp_autorcvbuf_max	VNET(tcp_autorcvbuf_max)
211SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, recvbuf_max, CTLFLAG_RW,
212    &VNET_NAME(tcp_autorcvbuf_max), 0,
213    "Max size of automatic receive buffer");
214
215VNET_DEFINE(struct inpcbhead, tcb);
216#define	tcb6	tcb  /* for KAME src sync over BSD*'s */
217VNET_DEFINE(struct inpcbinfo, tcbinfo);
218
219static void	 tcp_dooptions(struct tcpopt *, u_char *, int, int);
220static void	 tcp_do_segment(struct mbuf *, struct tcphdr *,
221		     struct socket *, struct tcpcb *, int, int, uint8_t,
222		     int);
223static void	 tcp_dropwithreset(struct mbuf *, struct tcphdr *,
224		     struct tcpcb *, int, int);
225static void	 tcp_pulloutofband(struct socket *,
226		     struct tcphdr *, struct mbuf *, int);
227static void	 tcp_xmit_timer(struct tcpcb *, int);
228static void	 tcp_newreno_partial_ack(struct tcpcb *, struct tcphdr *);
229static void inline 	tcp_fields_to_host(struct tcphdr *);
230#ifdef TCP_SIGNATURE
231static void inline 	tcp_fields_to_net(struct tcphdr *);
232static int inline	tcp_signature_verify_input(struct mbuf *, int, int,
233			    int, struct tcpopt *, struct tcphdr *, u_int);
234#endif
235static void inline	cc_ack_received(struct tcpcb *tp, struct tcphdr *th,
236			    uint16_t type);
237static void inline	cc_conn_init(struct tcpcb *tp);
238static void inline	cc_post_recovery(struct tcpcb *tp, struct tcphdr *th);
239static void inline	hhook_run_tcp_est_in(struct tcpcb *tp,
240			    struct tcphdr *th, struct tcpopt *to);
241
242/*
243 * TCP statistics are stored in an "array" of counter(9)s.
244 */
245VNET_PCPUSTAT_DEFINE(struct tcpstat, tcpstat);
246VNET_PCPUSTAT_SYSINIT(tcpstat);
247SYSCTL_VNET_PCPUSTAT(_net_inet_tcp, TCPCTL_STATS, stats, struct tcpstat,
248    tcpstat, "TCP statistics (struct tcpstat, netinet/tcp_var.h)");
249
250#ifdef VIMAGE
251VNET_PCPUSTAT_SYSUNINIT(tcpstat);
252#endif /* VIMAGE */
253/*
254 * Kernel module interface for updating tcpstat.  The argument is an index
255 * into tcpstat treated as an array.
256 */
257void
258kmod_tcpstat_inc(int statnum)
259{
260
261	counter_u64_add(VNET(tcpstat)[statnum], 1);
262}
263
264/*
265 * Wrapper for the TCP established input helper hook.
266 */
267static void inline
268hhook_run_tcp_est_in(struct tcpcb *tp, struct tcphdr *th, struct tcpopt *to)
269{
270	struct tcp_hhook_data hhook_data;
271
272	if (V_tcp_hhh[HHOOK_TCP_EST_IN]->hhh_nhooks > 0) {
273		hhook_data.tp = tp;
274		hhook_data.th = th;
275		hhook_data.to = to;
276
277		hhook_run_hooks(V_tcp_hhh[HHOOK_TCP_EST_IN], &hhook_data,
278		    tp->osd);
279	}
280}
281
282/*
283 * CC wrapper hook functions
284 */
285static void inline
286cc_ack_received(struct tcpcb *tp, struct tcphdr *th, uint16_t type)
287{
288	INP_WLOCK_ASSERT(tp->t_inpcb);
289
290	tp->ccv->bytes_this_ack = BYTES_THIS_ACK(tp, th);
291	if (tp->snd_cwnd <= tp->snd_wnd)
292		tp->ccv->flags |= CCF_CWND_LIMITED;
293	else
294		tp->ccv->flags &= ~CCF_CWND_LIMITED;
295
296	if (type == CC_ACK) {
297		if (tp->snd_cwnd > tp->snd_ssthresh) {
298			tp->t_bytes_acked += min(tp->ccv->bytes_this_ack,
299			     V_tcp_abc_l_var * tp->t_maxseg);
300			if (tp->t_bytes_acked >= tp->snd_cwnd) {
301				tp->t_bytes_acked -= tp->snd_cwnd;
302				tp->ccv->flags |= CCF_ABC_SENTAWND;
303			}
304		} else {
305				tp->ccv->flags &= ~CCF_ABC_SENTAWND;
306				tp->t_bytes_acked = 0;
307		}
308	}
309
310	if (CC_ALGO(tp)->ack_received != NULL) {
311		/* XXXLAS: Find a way to live without this */
312		tp->ccv->curack = th->th_ack;
313		CC_ALGO(tp)->ack_received(tp->ccv, type);
314	}
315}
316
317static void inline
318cc_conn_init(struct tcpcb *tp)
319{
320	struct hc_metrics_lite metrics;
321	struct inpcb *inp = tp->t_inpcb;
322	int rtt;
323
324	INP_WLOCK_ASSERT(tp->t_inpcb);
325
326	tcp_hc_get(&inp->inp_inc, &metrics);
327
328	if (tp->t_srtt == 0 && (rtt = metrics.rmx_rtt)) {
329		tp->t_srtt = rtt;
330		tp->t_rttbest = tp->t_srtt + TCP_RTT_SCALE;
331		TCPSTAT_INC(tcps_usedrtt);
332		if (metrics.rmx_rttvar) {
333			tp->t_rttvar = metrics.rmx_rttvar;
334			TCPSTAT_INC(tcps_usedrttvar);
335		} else {
336			/* default variation is +- 1 rtt */
337			tp->t_rttvar =
338			    tp->t_srtt * TCP_RTTVAR_SCALE / TCP_RTT_SCALE;
339		}
340		TCPT_RANGESET(tp->t_rxtcur,
341		    ((tp->t_srtt >> 2) + tp->t_rttvar) >> 1,
342		    tp->t_rttmin, TCPTV_REXMTMAX);
343	}
344	if (metrics.rmx_ssthresh) {
345		/*
346		 * There's some sort of gateway or interface
347		 * buffer limit on the path.  Use this to set
348		 * the slow start threshhold, but set the
349		 * threshold to no less than 2*mss.
350		 */
351		tp->snd_ssthresh = max(2 * tp->t_maxseg, metrics.rmx_ssthresh);
352		TCPSTAT_INC(tcps_usedssthresh);
353	}
354
355	/*
356	 * Set the initial slow-start flight size.
357	 *
358	 * RFC5681 Section 3.1 specifies the default conservative values.
359	 * RFC3390 specifies slightly more aggressive values.
360	 * Draft-ietf-tcpm-initcwnd-05 increases it to ten segments.
361	 *
362	 * If a SYN or SYN/ACK was lost and retransmitted, we have to
363	 * reduce the initial CWND to one segment as congestion is likely
364	 * requiring us to be cautious.
365	 */
366	if (tp->snd_cwnd == 1)
367		tp->snd_cwnd = tp->t_maxseg;		/* SYN(-ACK) lost */
368	else if (V_tcp_do_initcwnd10)
369		tp->snd_cwnd = min(10 * tp->t_maxseg,
370		    max(2 * tp->t_maxseg, 14600));
371	else if (V_tcp_do_rfc3390)
372		tp->snd_cwnd = min(4 * tp->t_maxseg,
373		    max(2 * tp->t_maxseg, 4380));
374	else {
375		/* Per RFC5681 Section 3.1 */
376		if (tp->t_maxseg > 2190)
377			tp->snd_cwnd = 2 * tp->t_maxseg;
378		else if (tp->t_maxseg > 1095)
379			tp->snd_cwnd = 3 * tp->t_maxseg;
380		else
381			tp->snd_cwnd = 4 * tp->t_maxseg;
382	}
383
384	if (CC_ALGO(tp)->conn_init != NULL)
385		CC_ALGO(tp)->conn_init(tp->ccv);
386}
387
388void inline
389cc_cong_signal(struct tcpcb *tp, struct tcphdr *th, uint32_t type)
390{
391	INP_WLOCK_ASSERT(tp->t_inpcb);
392
393	switch(type) {
394	case CC_NDUPACK:
395		if (!IN_FASTRECOVERY(tp->t_flags)) {
396			tp->snd_recover = tp->snd_max;
397			if (tp->t_flags & TF_ECN_PERMIT)
398				tp->t_flags |= TF_ECN_SND_CWR;
399		}
400		break;
401	case CC_ECN:
402		if (!IN_CONGRECOVERY(tp->t_flags)) {
403			TCPSTAT_INC(tcps_ecn_rcwnd);
404			tp->snd_recover = tp->snd_max;
405			if (tp->t_flags & TF_ECN_PERMIT)
406				tp->t_flags |= TF_ECN_SND_CWR;
407		}
408		break;
409	case CC_RTO:
410		tp->t_dupacks = 0;
411		tp->t_bytes_acked = 0;
412		EXIT_RECOVERY(tp->t_flags);
413		tp->snd_ssthresh = max(2, min(tp->snd_wnd, tp->snd_cwnd) / 2 /
414		    tp->t_maxseg) * tp->t_maxseg;
415		tp->snd_cwnd = tp->t_maxseg;
416		break;
417	case CC_RTO_ERR:
418		TCPSTAT_INC(tcps_sndrexmitbad);
419		/* RTO was unnecessary, so reset everything. */
420		tp->snd_cwnd = tp->snd_cwnd_prev;
421		tp->snd_ssthresh = tp->snd_ssthresh_prev;
422		tp->snd_recover = tp->snd_recover_prev;
423		if (tp->t_flags & TF_WASFRECOVERY)
424			ENTER_FASTRECOVERY(tp->t_flags);
425		if (tp->t_flags & TF_WASCRECOVERY)
426			ENTER_CONGRECOVERY(tp->t_flags);
427		tp->snd_nxt = tp->snd_max;
428		tp->t_flags &= ~TF_PREVVALID;
429		tp->t_badrxtwin = 0;
430		break;
431	}
432
433	if (CC_ALGO(tp)->cong_signal != NULL) {
434		if (th != NULL)
435			tp->ccv->curack = th->th_ack;
436		CC_ALGO(tp)->cong_signal(tp->ccv, type);
437	}
438}
439
440static void inline
441cc_post_recovery(struct tcpcb *tp, struct tcphdr *th)
442{
443	INP_WLOCK_ASSERT(tp->t_inpcb);
444
445	/* XXXLAS: KASSERT that we're in recovery? */
446
447	if (CC_ALGO(tp)->post_recovery != NULL) {
448		tp->ccv->curack = th->th_ack;
449		CC_ALGO(tp)->post_recovery(tp->ccv);
450	}
451	/* XXXLAS: EXIT_RECOVERY ? */
452	tp->t_bytes_acked = 0;
453}
454
455static inline void
456tcp_fields_to_host(struct tcphdr *th)
457{
458
459	th->th_seq = ntohl(th->th_seq);
460	th->th_ack = ntohl(th->th_ack);
461	th->th_win = ntohs(th->th_win);
462	th->th_urp = ntohs(th->th_urp);
463}
464
465#ifdef TCP_SIGNATURE
466static inline void
467tcp_fields_to_net(struct tcphdr *th)
468{
469
470	th->th_seq = htonl(th->th_seq);
471	th->th_ack = htonl(th->th_ack);
472	th->th_win = htons(th->th_win);
473	th->th_urp = htons(th->th_urp);
474}
475
476static inline int
477tcp_signature_verify_input(struct mbuf *m, int off0, int tlen, int optlen,
478    struct tcpopt *to, struct tcphdr *th, u_int tcpbflag)
479{
480	int ret;
481
482	tcp_fields_to_net(th);
483	ret = tcp_signature_verify(m, off0, tlen, optlen, to, th, tcpbflag);
484	tcp_fields_to_host(th);
485	return (ret);
486}
487#endif
488
489/* Neighbor Discovery, Neighbor Unreachability Detection Upper layer hint. */
490#ifdef INET6
491#define ND6_HINT(tp) \
492do { \
493	if ((tp) && (tp)->t_inpcb && \
494	    ((tp)->t_inpcb->inp_vflag & INP_IPV6) != 0) \
495		nd6_nud_hint(NULL, NULL, 0); \
496} while (0)
497#else
498#define ND6_HINT(tp)
499#endif
500
501/*
502 * Indicate whether this ack should be delayed.  We can delay the ack if
503 *	- there is no delayed ack timer in progress and
504 *	- our last ack wasn't a 0-sized window.  We never want to delay
505 *	  the ack that opens up a 0-sized window and
506 *		- delayed acks are enabled or
507 *		- this is a half-synchronized T/TCP connection.
508 */
509#define DELAY_ACK(tp)							\
510	((!tcp_timer_active(tp, TT_DELACK) &&				\
511	    (tp->t_flags & TF_RXWIN0SENT) == 0) &&			\
512	    (V_tcp_delack_enabled || (tp->t_flags & TF_NEEDSYN)))
513
514/*
515 * TCP input handling is split into multiple parts:
516 *   tcp6_input is a thin wrapper around tcp_input for the extended
517 *	ip6_protox[] call format in ip6_input
518 *   tcp_input handles primary segment validation, inpcb lookup and
519 *	SYN processing on listen sockets
520 *   tcp_do_segment processes the ACK and text of the segment for
521 *	establishing, established and closing connections
522 */
523#ifdef INET6
524int
525tcp6_input(struct mbuf **mp, int *offp, int proto)
526{
527	struct mbuf *m = *mp;
528	struct in6_ifaddr *ia6;
529
530	IP6_EXTHDR_CHECK(m, *offp, sizeof(struct tcphdr), IPPROTO_DONE);
531
532	/*
533	 * draft-itojun-ipv6-tcp-to-anycast
534	 * better place to put this in?
535	 */
536	ia6 = ip6_getdstifaddr(m);
537	if (ia6 && (ia6->ia6_flags & IN6_IFF_ANYCAST)) {
538		struct ip6_hdr *ip6;
539
540		ifa_free(&ia6->ia_ifa);
541		ip6 = mtod(m, struct ip6_hdr *);
542		icmp6_error(m, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_ADDR,
543			    (caddr_t)&ip6->ip6_dst - (caddr_t)ip6);
544		return IPPROTO_DONE;
545	}
546	if (ia6)
547		ifa_free(&ia6->ia_ifa);
548
549	tcp_input(m, *offp);
550	return IPPROTO_DONE;
551}
552#endif /* INET6 */
553
554void
555tcp_input(struct mbuf *m, int off0)
556{
557	struct tcphdr *th = NULL;
558	struct ip *ip = NULL;
559	struct inpcb *inp = NULL;
560	struct tcpcb *tp = NULL;
561	struct socket *so = NULL;
562	u_char *optp = NULL;
563	int optlen = 0;
564#ifdef INET
565	int len;
566#endif
567	int tlen = 0, off;
568	int drop_hdrlen;
569	int thflags;
570	int rstreason = 0;	/* For badport_bandlim accounting purposes */
571#ifdef TCP_SIGNATURE
572	uint8_t sig_checked = 0;
573#endif
574	uint8_t iptos = 0;
575	struct m_tag *fwd_tag = NULL;
576#ifdef INET6
577	struct ip6_hdr *ip6 = NULL;
578	int isipv6;
579#else
580	const void *ip6 = NULL;
581#endif /* INET6 */
582	struct tcpopt to;		/* options in this segment */
583	char *s = NULL;			/* address and port logging */
584	int ti_locked;
585#define	TI_UNLOCKED	1
586#define	TI_WLOCKED	2
587
588#ifdef TCPDEBUG
589	/*
590	 * The size of tcp_saveipgen must be the size of the max ip header,
591	 * now IPv6.
592	 */
593	u_char tcp_saveipgen[IP6_HDR_LEN];
594	struct tcphdr tcp_savetcp;
595	short ostate = 0;
596#endif
597
598#ifdef INET6
599	isipv6 = (mtod(m, struct ip *)->ip_v == 6) ? 1 : 0;
600#endif
601
602	to.to_flags = 0;
603	TCPSTAT_INC(tcps_rcvtotal);
604
605#ifdef INET6
606	if (isipv6) {
607		/* IP6_EXTHDR_CHECK() is already done at tcp6_input(). */
608
609		if (m->m_len < (sizeof(*ip6) + sizeof(*th))) {
610			m = m_pullup(m, sizeof(*ip6) + sizeof(*th));
611			if (m == NULL) {
612				TCPSTAT_INC(tcps_rcvshort);
613				return;
614			}
615		}
616
617		ip6 = mtod(m, struct ip6_hdr *);
618		th = (struct tcphdr *)((caddr_t)ip6 + off0);
619		tlen = sizeof(*ip6) + ntohs(ip6->ip6_plen) - off0;
620		if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID_IPV6) {
621			if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR)
622				th->th_sum = m->m_pkthdr.csum_data;
623			else
624				th->th_sum = in6_cksum_pseudo(ip6, tlen,
625				    IPPROTO_TCP, m->m_pkthdr.csum_data);
626			th->th_sum ^= 0xffff;
627		} else
628			th->th_sum = in6_cksum(m, IPPROTO_TCP, off0, tlen);
629		if (th->th_sum) {
630			TCPSTAT_INC(tcps_rcvbadsum);
631			goto drop;
632		}
633
634		/*
635		 * Be proactive about unspecified IPv6 address in source.
636		 * As we use all-zero to indicate unbounded/unconnected pcb,
637		 * unspecified IPv6 address can be used to confuse us.
638		 *
639		 * Note that packets with unspecified IPv6 destination is
640		 * already dropped in ip6_input.
641		 */
642		if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) {
643			/* XXX stat */
644			goto drop;
645		}
646	}
647#endif
648#if defined(INET) && defined(INET6)
649	else
650#endif
651#ifdef INET
652	{
653		/*
654		 * Get IP and TCP header together in first mbuf.
655		 * Note: IP leaves IP header in first mbuf.
656		 */
657		if (off0 > sizeof (struct ip)) {
658			ip_stripoptions(m);
659			off0 = sizeof(struct ip);
660		}
661		if (m->m_len < sizeof (struct tcpiphdr)) {
662			if ((m = m_pullup(m, sizeof (struct tcpiphdr)))
663			    == NULL) {
664				TCPSTAT_INC(tcps_rcvshort);
665				return;
666			}
667		}
668		ip = mtod(m, struct ip *);
669		th = (struct tcphdr *)((caddr_t)ip + off0);
670		tlen = ntohs(ip->ip_len) - off0;
671
672		if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) {
673			if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR)
674				th->th_sum = m->m_pkthdr.csum_data;
675			else
676				th->th_sum = in_pseudo(ip->ip_src.s_addr,
677				    ip->ip_dst.s_addr,
678				    htonl(m->m_pkthdr.csum_data + tlen +
679				    IPPROTO_TCP));
680			th->th_sum ^= 0xffff;
681		} else {
682			struct ipovly *ipov = (struct ipovly *)ip;
683
684			/*
685			 * Checksum extended TCP header and data.
686			 */
687			len = off0 + tlen;
688			bzero(ipov->ih_x1, sizeof(ipov->ih_x1));
689			ipov->ih_len = htons(tlen);
690			th->th_sum = in_cksum(m, len);
691		}
692		if (th->th_sum) {
693			TCPSTAT_INC(tcps_rcvbadsum);
694			goto drop;
695		}
696		/* Re-initialization for later version check */
697		ip->ip_v = IPVERSION;
698	}
699#endif /* INET */
700
701#ifdef INET6
702	if (isipv6)
703		iptos = (ntohl(ip6->ip6_flow) >> 20) & 0xff;
704#endif
705#if defined(INET) && defined(INET6)
706	else
707#endif
708#ifdef INET
709		iptos = ip->ip_tos;
710#endif
711
712	/*
713	 * Check that TCP offset makes sense,
714	 * pull out TCP options and adjust length.		XXX
715	 */
716	off = th->th_off << 2;
717	if (off < sizeof (struct tcphdr) || off > tlen) {
718		TCPSTAT_INC(tcps_rcvbadoff);
719		goto drop;
720	}
721	tlen -= off;	/* tlen is used instead of ti->ti_len */
722	if (off > sizeof (struct tcphdr)) {
723#ifdef INET6
724		if (isipv6) {
725			IP6_EXTHDR_CHECK(m, off0, off, );
726			ip6 = mtod(m, struct ip6_hdr *);
727			th = (struct tcphdr *)((caddr_t)ip6 + off0);
728		}
729#endif
730#if defined(INET) && defined(INET6)
731		else
732#endif
733#ifdef INET
734		{
735			if (m->m_len < sizeof(struct ip) + off) {
736				if ((m = m_pullup(m, sizeof (struct ip) + off))
737				    == NULL) {
738					TCPSTAT_INC(tcps_rcvshort);
739					return;
740				}
741				ip = mtod(m, struct ip *);
742				th = (struct tcphdr *)((caddr_t)ip + off0);
743			}
744		}
745#endif
746		optlen = off - sizeof (struct tcphdr);
747		optp = (u_char *)(th + 1);
748	}
749	thflags = th->th_flags;
750
751	/*
752	 * Convert TCP protocol specific fields to host format.
753	 */
754	tcp_fields_to_host(th);
755
756	/*
757	 * Delay dropping TCP, IP headers, IPv6 ext headers, and TCP options.
758	 */
759	drop_hdrlen = off0 + off;
760
761	/*
762	 * Locate pcb for segment; if we're likely to add or remove a
763	 * connection then first acquire pcbinfo lock.  There are two cases
764	 * where we might discover later we need a write lock despite the
765	 * flags: ACKs moving a connection out of the syncache, and ACKs for
766	 * a connection in TIMEWAIT.
767	 */
768	if ((thflags & (TH_SYN | TH_FIN | TH_RST)) != 0) {
769		INP_INFO_WLOCK(&V_tcbinfo);
770		ti_locked = TI_WLOCKED;
771	} else
772		ti_locked = TI_UNLOCKED;
773
774	/*
775	 * Grab info from PACKET_TAG_IPFORWARD tag prepended to the chain.
776	 */
777        if (
778#ifdef INET6
779	    (isipv6 && (m->m_flags & M_IP6_NEXTHOP))
780#ifdef INET
781	    || (!isipv6 && (m->m_flags & M_IP_NEXTHOP))
782#endif
783#endif
784#if defined(INET) && !defined(INET6)
785	    (m->m_flags & M_IP_NEXTHOP)
786#endif
787	    )
788		fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL);
789
790findpcb:
791#ifdef INVARIANTS
792	if (ti_locked == TI_WLOCKED) {
793		INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
794	} else {
795		INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
796	}
797#endif
798#ifdef INET6
799	if (isipv6 && fwd_tag != NULL) {
800		struct sockaddr_in6 *next_hop6;
801
802		next_hop6 = (struct sockaddr_in6 *)(fwd_tag + 1);
803		/*
804		 * Transparently forwarded. Pretend to be the destination.
805		 * Already got one like this?
806		 */
807		inp = in6_pcblookup_mbuf(&V_tcbinfo,
808		    &ip6->ip6_src, th->th_sport, &ip6->ip6_dst, th->th_dport,
809		    INPLOOKUP_WLOCKPCB, m->m_pkthdr.rcvif, m);
810		if (!inp) {
811			/*
812			 * It's new.  Try to find the ambushing socket.
813			 * Because we've rewritten the destination address,
814			 * any hardware-generated hash is ignored.
815			 */
816			inp = in6_pcblookup(&V_tcbinfo, &ip6->ip6_src,
817			    th->th_sport, &next_hop6->sin6_addr,
818			    next_hop6->sin6_port ? ntohs(next_hop6->sin6_port) :
819			    th->th_dport, INPLOOKUP_WILDCARD |
820			    INPLOOKUP_WLOCKPCB, m->m_pkthdr.rcvif);
821		}
822	} else if (isipv6) {
823		inp = in6_pcblookup_mbuf(&V_tcbinfo, &ip6->ip6_src,
824		    th->th_sport, &ip6->ip6_dst, th->th_dport,
825		    INPLOOKUP_WILDCARD | INPLOOKUP_WLOCKPCB,
826		    m->m_pkthdr.rcvif, m);
827	}
828#endif /* INET6 */
829#if defined(INET6) && defined(INET)
830	else
831#endif
832#ifdef INET
833	if (fwd_tag != NULL) {
834		struct sockaddr_in *next_hop;
835
836		next_hop = (struct sockaddr_in *)(fwd_tag+1);
837		/*
838		 * Transparently forwarded. Pretend to be the destination.
839		 * already got one like this?
840		 */
841		inp = in_pcblookup_mbuf(&V_tcbinfo, ip->ip_src, th->th_sport,
842		    ip->ip_dst, th->th_dport, INPLOOKUP_WLOCKPCB,
843		    m->m_pkthdr.rcvif, m);
844		if (!inp) {
845			/*
846			 * It's new.  Try to find the ambushing socket.
847			 * Because we've rewritten the destination address,
848			 * any hardware-generated hash is ignored.
849			 */
850			inp = in_pcblookup(&V_tcbinfo, ip->ip_src,
851			    th->th_sport, next_hop->sin_addr,
852			    next_hop->sin_port ? ntohs(next_hop->sin_port) :
853			    th->th_dport, INPLOOKUP_WILDCARD |
854			    INPLOOKUP_WLOCKPCB, m->m_pkthdr.rcvif);
855		}
856	} else
857		inp = in_pcblookup_mbuf(&V_tcbinfo, ip->ip_src,
858		    th->th_sport, ip->ip_dst, th->th_dport,
859		    INPLOOKUP_WILDCARD | INPLOOKUP_WLOCKPCB,
860		    m->m_pkthdr.rcvif, m);
861#endif /* INET */
862
863	/*
864	 * If the INPCB does not exist then all data in the incoming
865	 * segment is discarded and an appropriate RST is sent back.
866	 * XXX MRT Send RST using which routing table?
867	 */
868	if (inp == NULL) {
869		/*
870		 * Log communication attempts to ports that are not
871		 * in use.
872		 */
873		if ((tcp_log_in_vain == 1 && (thflags & TH_SYN)) ||
874		    tcp_log_in_vain == 2) {
875			if ((s = tcp_log_vain(NULL, th, (void *)ip, ip6)))
876				log(LOG_INFO, "%s; %s: Connection attempt "
877				    "to closed port\n", s, __func__);
878		}
879		/*
880		 * When blackholing do not respond with a RST but
881		 * completely ignore the segment and drop it.
882		 */
883		if ((V_blackhole == 1 && (thflags & TH_SYN)) ||
884		    V_blackhole == 2)
885			goto dropunlock;
886
887		rstreason = BANDLIM_RST_CLOSEDPORT;
888		goto dropwithreset;
889	}
890	INP_WLOCK_ASSERT(inp);
891	if (!(inp->inp_flags & INP_HW_FLOWID)
892	    && (m->m_flags & M_FLOWID)
893	    && ((inp->inp_socket == NULL)
894		|| !(inp->inp_socket->so_options & SO_ACCEPTCONN))) {
895		inp->inp_flags |= INP_HW_FLOWID;
896		inp->inp_flags &= ~INP_SW_FLOWID;
897		inp->inp_flowid = m->m_pkthdr.flowid;
898	}
899#ifdef IPSEC
900#ifdef INET6
901	if (isipv6 && ipsec6_in_reject(m, inp)) {
902		IPSEC6STAT_INC(ips_in_polvio);
903		goto dropunlock;
904	} else
905#endif /* INET6 */
906	if (ipsec4_in_reject(m, inp) != 0) {
907		IPSECSTAT_INC(ips_in_polvio);
908		goto dropunlock;
909	}
910#endif /* IPSEC */
911
912	/*
913	 * Check the minimum TTL for socket.
914	 */
915	if (inp->inp_ip_minttl != 0) {
916#ifdef INET6
917		if (isipv6 && inp->inp_ip_minttl > ip6->ip6_hlim)
918			goto dropunlock;
919		else
920#endif
921		if (inp->inp_ip_minttl > ip->ip_ttl)
922			goto dropunlock;
923	}
924
925	/*
926	 * A previous connection in TIMEWAIT state is supposed to catch stray
927	 * or duplicate segments arriving late.  If this segment was a
928	 * legitimate new connection attempt, the old INPCB gets removed and
929	 * we can try again to find a listening socket.
930	 *
931	 * At this point, due to earlier optimism, we may hold only an inpcb
932	 * lock, and not the inpcbinfo write lock.  If so, we need to try to
933	 * acquire it, or if that fails, acquire a reference on the inpcb,
934	 * drop all locks, acquire a global write lock, and then re-acquire
935	 * the inpcb lock.  We may at that point discover that another thread
936	 * has tried to free the inpcb, in which case we need to loop back
937	 * and try to find a new inpcb to deliver to.
938	 *
939	 * XXXRW: It may be time to rethink timewait locking.
940	 */
941relocked:
942	if (inp->inp_flags & INP_TIMEWAIT) {
943		if (ti_locked == TI_UNLOCKED) {
944			if (INP_INFO_TRY_WLOCK(&V_tcbinfo) == 0) {
945				in_pcbref(inp);
946				INP_WUNLOCK(inp);
947				INP_INFO_WLOCK(&V_tcbinfo);
948				ti_locked = TI_WLOCKED;
949				INP_WLOCK(inp);
950				if (in_pcbrele_wlocked(inp)) {
951					inp = NULL;
952					goto findpcb;
953				}
954			} else
955				ti_locked = TI_WLOCKED;
956		}
957		INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
958
959		if (thflags & TH_SYN)
960			tcp_dooptions(&to, optp, optlen, TO_SYN);
961		/*
962		 * NB: tcp_twcheck unlocks the INP and frees the mbuf.
963		 */
964		if (tcp_twcheck(inp, &to, th, m, tlen))
965			goto findpcb;
966		INP_INFO_WUNLOCK(&V_tcbinfo);
967		return;
968	}
969	/*
970	 * The TCPCB may no longer exist if the connection is winding
971	 * down or it is in the CLOSED state.  Either way we drop the
972	 * segment and send an appropriate response.
973	 */
974	tp = intotcpcb(inp);
975	if (tp == NULL || tp->t_state == TCPS_CLOSED) {
976		rstreason = BANDLIM_RST_CLOSEDPORT;
977		goto dropwithreset;
978	}
979
980#ifdef TCP_OFFLOAD
981	if (tp->t_flags & TF_TOE) {
982		tcp_offload_input(tp, m);
983		m = NULL;	/* consumed by the TOE driver */
984		goto dropunlock;
985	}
986#endif
987
988	/*
989	 * We've identified a valid inpcb, but it could be that we need an
990	 * inpcbinfo write lock but don't hold it.  In this case, attempt to
991	 * acquire using the same strategy as the TIMEWAIT case above.  If we
992	 * relock, we have to jump back to 'relocked' as the connection might
993	 * now be in TIMEWAIT.
994	 */
995#ifdef INVARIANTS
996	if ((thflags & (TH_SYN | TH_FIN | TH_RST)) != 0)
997		INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
998#endif
999	if (tp->t_state != TCPS_ESTABLISHED) {
1000		if (ti_locked == TI_UNLOCKED) {
1001			if (INP_INFO_TRY_WLOCK(&V_tcbinfo) == 0) {
1002				in_pcbref(inp);
1003				INP_WUNLOCK(inp);
1004				INP_INFO_WLOCK(&V_tcbinfo);
1005				ti_locked = TI_WLOCKED;
1006				INP_WLOCK(inp);
1007				if (in_pcbrele_wlocked(inp)) {
1008					inp = NULL;
1009					goto findpcb;
1010				}
1011				goto relocked;
1012			} else
1013				ti_locked = TI_WLOCKED;
1014		}
1015		INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
1016	}
1017
1018#ifdef MAC
1019	INP_WLOCK_ASSERT(inp);
1020	if (mac_inpcb_check_deliver(inp, m))
1021		goto dropunlock;
1022#endif
1023	so = inp->inp_socket;
1024	KASSERT(so != NULL, ("%s: so == NULL", __func__));
1025#ifdef TCPDEBUG
1026	if (so->so_options & SO_DEBUG) {
1027		ostate = tp->t_state;
1028#ifdef INET6
1029		if (isipv6) {
1030			bcopy((char *)ip6, (char *)tcp_saveipgen, sizeof(*ip6));
1031		} else
1032#endif
1033			bcopy((char *)ip, (char *)tcp_saveipgen, sizeof(*ip));
1034		tcp_savetcp = *th;
1035	}
1036#endif /* TCPDEBUG */
1037	/*
1038	 * When the socket is accepting connections (the INPCB is in LISTEN
1039	 * state) we look into the SYN cache if this is a new connection
1040	 * attempt or the completion of a previous one.  Because listen
1041	 * sockets are never in TCPS_ESTABLISHED, the V_tcbinfo lock will be
1042	 * held in this case.
1043	 */
1044	if (so->so_options & SO_ACCEPTCONN) {
1045		struct in_conninfo inc;
1046
1047		KASSERT(tp->t_state == TCPS_LISTEN, ("%s: so accepting but "
1048		    "tp not listening", __func__));
1049		INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
1050
1051		bzero(&inc, sizeof(inc));
1052#ifdef INET6
1053		if (isipv6) {
1054			inc.inc_flags |= INC_ISIPV6;
1055			inc.inc6_faddr = ip6->ip6_src;
1056			inc.inc6_laddr = ip6->ip6_dst;
1057		} else
1058#endif
1059		{
1060			inc.inc_faddr = ip->ip_src;
1061			inc.inc_laddr = ip->ip_dst;
1062		}
1063		inc.inc_fport = th->th_sport;
1064		inc.inc_lport = th->th_dport;
1065		inc.inc_fibnum = so->so_fibnum;
1066
1067		/*
1068		 * Check for an existing connection attempt in syncache if
1069		 * the flag is only ACK.  A successful lookup creates a new
1070		 * socket appended to the listen queue in SYN_RECEIVED state.
1071		 */
1072		if ((thflags & (TH_RST|TH_ACK|TH_SYN)) == TH_ACK) {
1073			/*
1074			 * Parse the TCP options here because
1075			 * syncookies need access to the reflected
1076			 * timestamp.
1077			 */
1078			tcp_dooptions(&to, optp, optlen, 0);
1079			/*
1080			 * NB: syncache_expand() doesn't unlock
1081			 * inp and tcpinfo locks.
1082			 */
1083			if (!syncache_expand(&inc, &to, th, &so, m)) {
1084				/*
1085				 * No syncache entry or ACK was not
1086				 * for our SYN/ACK.  Send a RST.
1087				 * NB: syncache did its own logging
1088				 * of the failure cause.
1089				 */
1090				rstreason = BANDLIM_RST_OPENPORT;
1091				goto dropwithreset;
1092			}
1093			if (so == NULL) {
1094				/*
1095				 * We completed the 3-way handshake
1096				 * but could not allocate a socket
1097				 * either due to memory shortage,
1098				 * listen queue length limits or
1099				 * global socket limits.  Send RST
1100				 * or wait and have the remote end
1101				 * retransmit the ACK for another
1102				 * try.
1103				 */
1104				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1105					log(LOG_DEBUG, "%s; %s: Listen socket: "
1106					    "Socket allocation failed due to "
1107					    "limits or memory shortage, %s\n",
1108					    s, __func__,
1109					    V_tcp_sc_rst_sock_fail ?
1110					    "sending RST" : "try again");
1111				if (V_tcp_sc_rst_sock_fail) {
1112					rstreason = BANDLIM_UNLIMITED;
1113					goto dropwithreset;
1114				} else
1115					goto dropunlock;
1116			}
1117			/*
1118			 * Socket is created in state SYN_RECEIVED.
1119			 * Unlock the listen socket, lock the newly
1120			 * created socket and update the tp variable.
1121			 */
1122			INP_WUNLOCK(inp);	/* listen socket */
1123			inp = sotoinpcb(so);
1124			INP_WLOCK(inp);		/* new connection */
1125			tp = intotcpcb(inp);
1126			KASSERT(tp->t_state == TCPS_SYN_RECEIVED,
1127			    ("%s: ", __func__));
1128#ifdef TCP_SIGNATURE
1129			if (sig_checked == 0)  {
1130				tcp_dooptions(&to, optp, optlen,
1131				    (thflags & TH_SYN) ? TO_SYN : 0);
1132				if (!tcp_signature_verify_input(m, off0, tlen,
1133				    optlen, &to, th, tp->t_flags)) {
1134
1135					/*
1136					 * In SYN_SENT state if it receives an
1137					 * RST, it is allowed for further
1138					 * processing.
1139					 */
1140					if ((thflags & TH_RST) == 0 ||
1141					    (tp->t_state == TCPS_SYN_SENT) == 0)
1142						goto dropunlock;
1143				}
1144				sig_checked = 1;
1145			}
1146#endif
1147
1148			/*
1149			 * Process the segment and the data it
1150			 * contains.  tcp_do_segment() consumes
1151			 * the mbuf chain and unlocks the inpcb.
1152			 */
1153			tcp_do_segment(m, th, so, tp, drop_hdrlen, tlen,
1154			    iptos, ti_locked);
1155			INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
1156			return;
1157		}
1158		/*
1159		 * Segment flag validation for new connection attempts:
1160		 *
1161		 * Our (SYN|ACK) response was rejected.
1162		 * Check with syncache and remove entry to prevent
1163		 * retransmits.
1164		 *
1165		 * NB: syncache_chkrst does its own logging of failure
1166		 * causes.
1167		 */
1168		if (thflags & TH_RST) {
1169			syncache_chkrst(&inc, th);
1170			goto dropunlock;
1171		}
1172		/*
1173		 * We can't do anything without SYN.
1174		 */
1175		if ((thflags & TH_SYN) == 0) {
1176			if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1177				log(LOG_DEBUG, "%s; %s: Listen socket: "
1178				    "SYN is missing, segment ignored\n",
1179				    s, __func__);
1180			TCPSTAT_INC(tcps_badsyn);
1181			goto dropunlock;
1182		}
1183		/*
1184		 * (SYN|ACK) is bogus on a listen socket.
1185		 */
1186		if (thflags & TH_ACK) {
1187			if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1188				log(LOG_DEBUG, "%s; %s: Listen socket: "
1189				    "SYN|ACK invalid, segment rejected\n",
1190				    s, __func__);
1191			syncache_badack(&inc);	/* XXX: Not needed! */
1192			TCPSTAT_INC(tcps_badsyn);
1193			rstreason = BANDLIM_RST_OPENPORT;
1194			goto dropwithreset;
1195		}
1196		/*
1197		 * If the drop_synfin option is enabled, drop all
1198		 * segments with both the SYN and FIN bits set.
1199		 * This prevents e.g. nmap from identifying the
1200		 * TCP/IP stack.
1201		 * XXX: Poor reasoning.  nmap has other methods
1202		 * and is constantly refining its stack detection
1203		 * strategies.
1204		 * XXX: This is a violation of the TCP specification
1205		 * and was used by RFC1644.
1206		 */
1207		if ((thflags & TH_FIN) && V_drop_synfin) {
1208			if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1209				log(LOG_DEBUG, "%s; %s: Listen socket: "
1210				    "SYN|FIN segment ignored (based on "
1211				    "sysctl setting)\n", s, __func__);
1212			TCPSTAT_INC(tcps_badsyn);
1213			goto dropunlock;
1214		}
1215		/*
1216		 * Segment's flags are (SYN) or (SYN|FIN).
1217		 *
1218		 * TH_PUSH, TH_URG, TH_ECE, TH_CWR are ignored
1219		 * as they do not affect the state of the TCP FSM.
1220		 * The data pointed to by TH_URG and th_urp is ignored.
1221		 */
1222		KASSERT((thflags & (TH_RST|TH_ACK)) == 0,
1223		    ("%s: Listen socket: TH_RST or TH_ACK set", __func__));
1224		KASSERT(thflags & (TH_SYN),
1225		    ("%s: Listen socket: TH_SYN not set", __func__));
1226#ifdef INET6
1227		/*
1228		 * If deprecated address is forbidden,
1229		 * we do not accept SYN to deprecated interface
1230		 * address to prevent any new inbound connection from
1231		 * getting established.
1232		 * When we do not accept SYN, we send a TCP RST,
1233		 * with deprecated source address (instead of dropping
1234		 * it).  We compromise it as it is much better for peer
1235		 * to send a RST, and RST will be the final packet
1236		 * for the exchange.
1237		 *
1238		 * If we do not forbid deprecated addresses, we accept
1239		 * the SYN packet.  RFC2462 does not suggest dropping
1240		 * SYN in this case.
1241		 * If we decipher RFC2462 5.5.4, it says like this:
1242		 * 1. use of deprecated addr with existing
1243		 *    communication is okay - "SHOULD continue to be
1244		 *    used"
1245		 * 2. use of it with new communication:
1246		 *   (2a) "SHOULD NOT be used if alternate address
1247		 *        with sufficient scope is available"
1248		 *   (2b) nothing mentioned otherwise.
1249		 * Here we fall into (2b) case as we have no choice in
1250		 * our source address selection - we must obey the peer.
1251		 *
1252		 * The wording in RFC2462 is confusing, and there are
1253		 * multiple description text for deprecated address
1254		 * handling - worse, they are not exactly the same.
1255		 * I believe 5.5.4 is the best one, so we follow 5.5.4.
1256		 */
1257		if (isipv6 && !V_ip6_use_deprecated) {
1258			struct in6_ifaddr *ia6;
1259
1260			ia6 = ip6_getdstifaddr(m);
1261			if (ia6 != NULL &&
1262			    (ia6->ia6_flags & IN6_IFF_DEPRECATED)) {
1263				ifa_free(&ia6->ia_ifa);
1264				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1265				    log(LOG_DEBUG, "%s; %s: Listen socket: "
1266					"Connection attempt to deprecated "
1267					"IPv6 address rejected\n",
1268					s, __func__);
1269				rstreason = BANDLIM_RST_OPENPORT;
1270				goto dropwithreset;
1271			}
1272			if (ia6)
1273				ifa_free(&ia6->ia_ifa);
1274		}
1275#endif /* INET6 */
1276		/*
1277		 * Basic sanity checks on incoming SYN requests:
1278		 *   Don't respond if the destination is a link layer
1279		 *	broadcast according to RFC1122 4.2.3.10, p. 104.
1280		 *   If it is from this socket it must be forged.
1281		 *   Don't respond if the source or destination is a
1282		 *	global or subnet broad- or multicast address.
1283		 *   Note that it is quite possible to receive unicast
1284		 *	link-layer packets with a broadcast IP address. Use
1285		 *	in_broadcast() to find them.
1286		 */
1287		if (m->m_flags & (M_BCAST|M_MCAST)) {
1288			if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1289			    log(LOG_DEBUG, "%s; %s: Listen socket: "
1290				"Connection attempt from broad- or multicast "
1291				"link layer address ignored\n", s, __func__);
1292			goto dropunlock;
1293		}
1294#ifdef INET6
1295		if (isipv6) {
1296			if (th->th_dport == th->th_sport &&
1297			    IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst, &ip6->ip6_src)) {
1298				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1299				    log(LOG_DEBUG, "%s; %s: Listen socket: "
1300					"Connection attempt to/from self "
1301					"ignored\n", s, __func__);
1302				goto dropunlock;
1303			}
1304			if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) ||
1305			    IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) {
1306				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1307				    log(LOG_DEBUG, "%s; %s: Listen socket: "
1308					"Connection attempt from/to multicast "
1309					"address ignored\n", s, __func__);
1310				goto dropunlock;
1311			}
1312		}
1313#endif
1314#if defined(INET) && defined(INET6)
1315		else
1316#endif
1317#ifdef INET
1318		{
1319			if (th->th_dport == th->th_sport &&
1320			    ip->ip_dst.s_addr == ip->ip_src.s_addr) {
1321				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1322				    log(LOG_DEBUG, "%s; %s: Listen socket: "
1323					"Connection attempt from/to self "
1324					"ignored\n", s, __func__);
1325				goto dropunlock;
1326			}
1327			if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
1328			    IN_MULTICAST(ntohl(ip->ip_src.s_addr)) ||
1329			    ip->ip_src.s_addr == htonl(INADDR_BROADCAST) ||
1330			    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif)) {
1331				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1332				    log(LOG_DEBUG, "%s; %s: Listen socket: "
1333					"Connection attempt from/to broad- "
1334					"or multicast address ignored\n",
1335					s, __func__);
1336				goto dropunlock;
1337			}
1338		}
1339#endif
1340		/*
1341		 * SYN appears to be valid.  Create compressed TCP state
1342		 * for syncache.
1343		 */
1344#ifdef TCPDEBUG
1345		if (so->so_options & SO_DEBUG)
1346			tcp_trace(TA_INPUT, ostate, tp,
1347			    (void *)tcp_saveipgen, &tcp_savetcp, 0);
1348#endif
1349		tcp_dooptions(&to, optp, optlen, TO_SYN);
1350		syncache_add(&inc, &to, th, inp, &so, m, NULL, NULL);
1351		/*
1352		 * Entry added to syncache and mbuf consumed.
1353		 * Everything already unlocked by syncache_add().
1354		 */
1355		INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
1356		return;
1357	} else if (tp->t_state == TCPS_LISTEN) {
1358		/*
1359		 * When a listen socket is torn down the SO_ACCEPTCONN
1360		 * flag is removed first while connections are drained
1361		 * from the accept queue in a unlock/lock cycle of the
1362		 * ACCEPT_LOCK, opening a race condition allowing a SYN
1363		 * attempt go through unhandled.
1364		 */
1365		goto dropunlock;
1366	}
1367
1368#ifdef TCP_SIGNATURE
1369	if (sig_checked == 0)  {
1370		tcp_dooptions(&to, optp, optlen,
1371		    (thflags & TH_SYN) ? TO_SYN : 0);
1372		if (!tcp_signature_verify_input(m, off0, tlen, optlen, &to,
1373		    th, tp->t_flags)) {
1374
1375			/*
1376			 * In SYN_SENT state if it receives an RST, it is
1377			 * allowed for further processing.
1378			 */
1379			if ((thflags & TH_RST) == 0 ||
1380			    (tp->t_state == TCPS_SYN_SENT) == 0)
1381				goto dropunlock;
1382		}
1383		sig_checked = 1;
1384	}
1385#endif
1386
1387	/*
1388	 * Segment belongs to a connection in SYN_SENT, ESTABLISHED or later
1389	 * state.  tcp_do_segment() always consumes the mbuf chain, unlocks
1390	 * the inpcb, and unlocks pcbinfo.
1391	 */
1392	tcp_do_segment(m, th, so, tp, drop_hdrlen, tlen, iptos, ti_locked);
1393	INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
1394	return;
1395
1396dropwithreset:
1397	if (ti_locked == TI_WLOCKED) {
1398		INP_INFO_WUNLOCK(&V_tcbinfo);
1399		ti_locked = TI_UNLOCKED;
1400	}
1401#ifdef INVARIANTS
1402	else {
1403		KASSERT(ti_locked == TI_UNLOCKED, ("%s: dropwithreset "
1404		    "ti_locked: %d", __func__, ti_locked));
1405		INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
1406	}
1407#endif
1408
1409	if (inp != NULL) {
1410		tcp_dropwithreset(m, th, tp, tlen, rstreason);
1411		INP_WUNLOCK(inp);
1412	} else
1413		tcp_dropwithreset(m, th, NULL, tlen, rstreason);
1414	m = NULL;	/* mbuf chain got consumed. */
1415	goto drop;
1416
1417dropunlock:
1418	if (ti_locked == TI_WLOCKED) {
1419		INP_INFO_WUNLOCK(&V_tcbinfo);
1420		ti_locked = TI_UNLOCKED;
1421	}
1422#ifdef INVARIANTS
1423	else {
1424		KASSERT(ti_locked == TI_UNLOCKED, ("%s: dropunlock "
1425		    "ti_locked: %d", __func__, ti_locked));
1426		INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
1427	}
1428#endif
1429
1430	if (inp != NULL)
1431		INP_WUNLOCK(inp);
1432
1433drop:
1434	INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
1435	if (s != NULL)
1436		free(s, M_TCPLOG);
1437	if (m != NULL)
1438		m_freem(m);
1439}
1440
1441static void
1442tcp_do_segment(struct mbuf *m, struct tcphdr *th, struct socket *so,
1443    struct tcpcb *tp, int drop_hdrlen, int tlen, uint8_t iptos,
1444    int ti_locked)
1445{
1446	int thflags, acked, ourfinisacked, needoutput = 0;
1447	int rstreason, todrop, win;
1448	u_long tiwin;
1449	char *s;
1450	struct in_conninfo *inc;
1451	struct tcpopt to;
1452
1453#ifdef TCPDEBUG
1454	/*
1455	 * The size of tcp_saveipgen must be the size of the max ip header,
1456	 * now IPv6.
1457	 */
1458	u_char tcp_saveipgen[IP6_HDR_LEN];
1459	struct tcphdr tcp_savetcp;
1460	short ostate = 0;
1461#endif
1462	thflags = th->th_flags;
1463	inc = &tp->t_inpcb->inp_inc;
1464	tp->sackhint.last_sack_ack = 0;
1465
1466	/*
1467	 * If this is either a state-changing packet or current state isn't
1468	 * established, we require a write lock on tcbinfo.  Otherwise, we
1469	 * allow the tcbinfo to be in either alocked or unlocked, as the
1470	 * caller may have unnecessarily acquired a write lock due to a race.
1471	 */
1472	if ((thflags & (TH_SYN | TH_FIN | TH_RST)) != 0 ||
1473	    tp->t_state != TCPS_ESTABLISHED) {
1474		KASSERT(ti_locked == TI_WLOCKED, ("%s ti_locked %d for "
1475		    "SYN/FIN/RST/!EST", __func__, ti_locked));
1476		INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
1477	} else {
1478#ifdef INVARIANTS
1479		if (ti_locked == TI_WLOCKED)
1480			INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
1481		else {
1482			KASSERT(ti_locked == TI_UNLOCKED, ("%s: EST "
1483			    "ti_locked: %d", __func__, ti_locked));
1484			INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
1485		}
1486#endif
1487	}
1488	INP_WLOCK_ASSERT(tp->t_inpcb);
1489	KASSERT(tp->t_state > TCPS_LISTEN, ("%s: TCPS_LISTEN",
1490	    __func__));
1491	KASSERT(tp->t_state != TCPS_TIME_WAIT, ("%s: TCPS_TIME_WAIT",
1492	    __func__));
1493
1494	/*
1495	 * Segment received on connection.
1496	 * Reset idle time and keep-alive timer.
1497	 * XXX: This should be done after segment
1498	 * validation to ignore broken/spoofed segs.
1499	 */
1500	tp->t_rcvtime = ticks;
1501	if (TCPS_HAVEESTABLISHED(tp->t_state))
1502		tcp_timer_activate(tp, TT_KEEP, TP_KEEPIDLE(tp));
1503
1504	/*
1505	 * Unscale the window into a 32-bit value.
1506	 * For the SYN_SENT state the scale is zero.
1507	 */
1508	tiwin = th->th_win << tp->snd_scale;
1509
1510	/*
1511	 * TCP ECN processing.
1512	 */
1513	if (tp->t_flags & TF_ECN_PERMIT) {
1514		if (thflags & TH_CWR)
1515			tp->t_flags &= ~TF_ECN_SND_ECE;
1516		switch (iptos & IPTOS_ECN_MASK) {
1517		case IPTOS_ECN_CE:
1518			tp->t_flags |= TF_ECN_SND_ECE;
1519			TCPSTAT_INC(tcps_ecn_ce);
1520			break;
1521		case IPTOS_ECN_ECT0:
1522			TCPSTAT_INC(tcps_ecn_ect0);
1523			break;
1524		case IPTOS_ECN_ECT1:
1525			TCPSTAT_INC(tcps_ecn_ect1);
1526			break;
1527		}
1528		/* Congestion experienced. */
1529		if (thflags & TH_ECE) {
1530			cc_cong_signal(tp, th, CC_ECN);
1531		}
1532	}
1533
1534	/*
1535	 * Parse options on any incoming segment.
1536	 */
1537	tcp_dooptions(&to, (u_char *)(th + 1),
1538	    (th->th_off << 2) - sizeof(struct tcphdr),
1539	    (thflags & TH_SYN) ? TO_SYN : 0);
1540
1541	/*
1542	 * If echoed timestamp is later than the current time,
1543	 * fall back to non RFC1323 RTT calculation.  Normalize
1544	 * timestamp if syncookies were used when this connection
1545	 * was established.
1546	 */
1547	if ((to.to_flags & TOF_TS) && (to.to_tsecr != 0)) {
1548		to.to_tsecr -= tp->ts_offset;
1549		if (TSTMP_GT(to.to_tsecr, tcp_ts_getticks()))
1550			to.to_tsecr = 0;
1551	}
1552	/*
1553	 * If timestamps were negotiated during SYN/ACK they should
1554	 * appear on every segment during this session and vice versa.
1555	 */
1556	if ((tp->t_flags & TF_RCVD_TSTMP) && !(to.to_flags & TOF_TS)) {
1557		if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
1558			log(LOG_DEBUG, "%s; %s: Timestamp missing, "
1559			    "no action\n", s, __func__);
1560			free(s, M_TCPLOG);
1561		}
1562	}
1563	if (!(tp->t_flags & TF_RCVD_TSTMP) && (to.to_flags & TOF_TS)) {
1564		if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
1565			log(LOG_DEBUG, "%s; %s: Timestamp not expected, "
1566			    "no action\n", s, __func__);
1567			free(s, M_TCPLOG);
1568		}
1569	}
1570
1571	/*
1572	 * Process options only when we get SYN/ACK back. The SYN case
1573	 * for incoming connections is handled in tcp_syncache.
1574	 * According to RFC1323 the window field in a SYN (i.e., a <SYN>
1575	 * or <SYN,ACK>) segment itself is never scaled.
1576	 * XXX this is traditional behavior, may need to be cleaned up.
1577	 */
1578	if (tp->t_state == TCPS_SYN_SENT && (thflags & TH_SYN)) {
1579		if ((to.to_flags & TOF_SCALE) &&
1580		    (tp->t_flags & TF_REQ_SCALE)) {
1581			tp->t_flags |= TF_RCVD_SCALE;
1582			tp->snd_scale = to.to_wscale;
1583		}
1584		/*
1585		 * Initial send window.  It will be updated with
1586		 * the next incoming segment to the scaled value.
1587		 */
1588		tp->snd_wnd = th->th_win;
1589		if (to.to_flags & TOF_TS) {
1590			tp->t_flags |= TF_RCVD_TSTMP;
1591			tp->ts_recent = to.to_tsval;
1592			tp->ts_recent_age = tcp_ts_getticks();
1593		}
1594		if (to.to_flags & TOF_MSS)
1595			tcp_mss(tp, to.to_mss);
1596		if ((tp->t_flags & TF_SACK_PERMIT) &&
1597		    (to.to_flags & TOF_SACKPERM) == 0)
1598			tp->t_flags &= ~TF_SACK_PERMIT;
1599	}
1600
1601	/*
1602	 * Header prediction: check for the two common cases
1603	 * of a uni-directional data xfer.  If the packet has
1604	 * no control flags, is in-sequence, the window didn't
1605	 * change and we're not retransmitting, it's a
1606	 * candidate.  If the length is zero and the ack moved
1607	 * forward, we're the sender side of the xfer.  Just
1608	 * free the data acked & wake any higher level process
1609	 * that was blocked waiting for space.  If the length
1610	 * is non-zero and the ack didn't move, we're the
1611	 * receiver side.  If we're getting packets in-order
1612	 * (the reassembly queue is empty), add the data to
1613	 * the socket buffer and note that we need a delayed ack.
1614	 * Make sure that the hidden state-flags are also off.
1615	 * Since we check for TCPS_ESTABLISHED first, it can only
1616	 * be TH_NEEDSYN.
1617	 */
1618	if (tp->t_state == TCPS_ESTABLISHED &&
1619	    th->th_seq == tp->rcv_nxt &&
1620	    (thflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK)) == TH_ACK &&
1621	    tp->snd_nxt == tp->snd_max &&
1622	    tiwin && tiwin == tp->snd_wnd &&
1623	    ((tp->t_flags & (TF_NEEDSYN|TF_NEEDFIN)) == 0) &&
1624	    LIST_EMPTY(&tp->t_segq) &&
1625	    ((to.to_flags & TOF_TS) == 0 ||
1626	     TSTMP_GEQ(to.to_tsval, tp->ts_recent)) ) {
1627
1628		/*
1629		 * If last ACK falls within this segment's sequence numbers,
1630		 * record the timestamp.
1631		 * NOTE that the test is modified according to the latest
1632		 * proposal of the tcplw@cray.com list (Braden 1993/04/26).
1633		 */
1634		if ((to.to_flags & TOF_TS) != 0 &&
1635		    SEQ_LEQ(th->th_seq, tp->last_ack_sent)) {
1636			tp->ts_recent_age = tcp_ts_getticks();
1637			tp->ts_recent = to.to_tsval;
1638		}
1639
1640		if (tlen == 0) {
1641			if (SEQ_GT(th->th_ack, tp->snd_una) &&
1642			    SEQ_LEQ(th->th_ack, tp->snd_max) &&
1643			    !IN_RECOVERY(tp->t_flags) &&
1644			    (to.to_flags & TOF_SACK) == 0 &&
1645			    TAILQ_EMPTY(&tp->snd_holes)) {
1646				/*
1647				 * This is a pure ack for outstanding data.
1648				 */
1649				if (ti_locked == TI_WLOCKED)
1650					INP_INFO_WUNLOCK(&V_tcbinfo);
1651				ti_locked = TI_UNLOCKED;
1652
1653				TCPSTAT_INC(tcps_predack);
1654
1655				/*
1656				 * "bad retransmit" recovery.
1657				 */
1658				if (tp->t_rxtshift == 1 &&
1659				    tp->t_flags & TF_PREVVALID &&
1660				    (int)(ticks - tp->t_badrxtwin) < 0) {
1661					cc_cong_signal(tp, th, CC_RTO_ERR);
1662				}
1663
1664				/*
1665				 * Recalculate the transmit timer / rtt.
1666				 *
1667				 * Some boxes send broken timestamp replies
1668				 * during the SYN+ACK phase, ignore
1669				 * timestamps of 0 or we could calculate a
1670				 * huge RTT and blow up the retransmit timer.
1671				 */
1672				if ((to.to_flags & TOF_TS) != 0 &&
1673				    to.to_tsecr) {
1674					u_int t;
1675
1676					t = tcp_ts_getticks() - to.to_tsecr;
1677					if (!tp->t_rttlow || tp->t_rttlow > t)
1678						tp->t_rttlow = t;
1679					tcp_xmit_timer(tp,
1680					    TCP_TS_TO_TICKS(t) + 1);
1681				} else if (tp->t_rtttime &&
1682				    SEQ_GT(th->th_ack, tp->t_rtseq)) {
1683					if (!tp->t_rttlow ||
1684					    tp->t_rttlow > ticks - tp->t_rtttime)
1685						tp->t_rttlow = ticks - tp->t_rtttime;
1686					tcp_xmit_timer(tp,
1687							ticks - tp->t_rtttime);
1688				}
1689				acked = BYTES_THIS_ACK(tp, th);
1690
1691				/* Run HHOOK_TCP_ESTABLISHED_IN helper hooks. */
1692				hhook_run_tcp_est_in(tp, th, &to);
1693
1694				TCPSTAT_INC(tcps_rcvackpack);
1695				TCPSTAT_ADD(tcps_rcvackbyte, acked);
1696				sbdrop(&so->so_snd, acked);
1697				if (SEQ_GT(tp->snd_una, tp->snd_recover) &&
1698				    SEQ_LEQ(th->th_ack, tp->snd_recover))
1699					tp->snd_recover = th->th_ack - 1;
1700
1701				/*
1702				 * Let the congestion control algorithm update
1703				 * congestion control related information. This
1704				 * typically means increasing the congestion
1705				 * window.
1706				 */
1707				cc_ack_received(tp, th, CC_ACK);
1708
1709				tp->snd_una = th->th_ack;
1710				/*
1711				 * Pull snd_wl2 up to prevent seq wrap relative
1712				 * to th_ack.
1713				 */
1714				tp->snd_wl2 = th->th_ack;
1715				tp->t_dupacks = 0;
1716				m_freem(m);
1717				ND6_HINT(tp); /* Some progress has been made. */
1718
1719				/*
1720				 * If all outstanding data are acked, stop
1721				 * retransmit timer, otherwise restart timer
1722				 * using current (possibly backed-off) value.
1723				 * If process is waiting for space,
1724				 * wakeup/selwakeup/signal.  If data
1725				 * are ready to send, let tcp_output
1726				 * decide between more output or persist.
1727				 */
1728#ifdef TCPDEBUG
1729				if (so->so_options & SO_DEBUG)
1730					tcp_trace(TA_INPUT, ostate, tp,
1731					    (void *)tcp_saveipgen,
1732					    &tcp_savetcp, 0);
1733#endif
1734				if (tp->snd_una == tp->snd_max)
1735					tcp_timer_activate(tp, TT_REXMT, 0);
1736				else if (!tcp_timer_active(tp, TT_PERSIST))
1737					tcp_timer_activate(tp, TT_REXMT,
1738						      tp->t_rxtcur);
1739				sowwakeup(so);
1740				if (so->so_snd.sb_cc)
1741					(void) tcp_output(tp);
1742				goto check_delack;
1743			}
1744		} else if (th->th_ack == tp->snd_una &&
1745		    tlen <= sbspace(&so->so_rcv)) {
1746			int newsize = 0;	/* automatic sockbuf scaling */
1747
1748			/*
1749			 * This is a pure, in-sequence data packet with
1750			 * nothing on the reassembly queue and we have enough
1751			 * buffer space to take it.
1752			 */
1753			if (ti_locked == TI_WLOCKED)
1754				INP_INFO_WUNLOCK(&V_tcbinfo);
1755			ti_locked = TI_UNLOCKED;
1756
1757			/* Clean receiver SACK report if present */
1758			if ((tp->t_flags & TF_SACK_PERMIT) && tp->rcv_numsacks)
1759				tcp_clean_sackreport(tp);
1760			TCPSTAT_INC(tcps_preddat);
1761			tp->rcv_nxt += tlen;
1762			/*
1763			 * Pull snd_wl1 up to prevent seq wrap relative to
1764			 * th_seq.
1765			 */
1766			tp->snd_wl1 = th->th_seq;
1767			/*
1768			 * Pull rcv_up up to prevent seq wrap relative to
1769			 * rcv_nxt.
1770			 */
1771			tp->rcv_up = tp->rcv_nxt;
1772			TCPSTAT_INC(tcps_rcvpack);
1773			TCPSTAT_ADD(tcps_rcvbyte, tlen);
1774			ND6_HINT(tp);	/* Some progress has been made */
1775#ifdef TCPDEBUG
1776			if (so->so_options & SO_DEBUG)
1777				tcp_trace(TA_INPUT, ostate, tp,
1778				    (void *)tcp_saveipgen, &tcp_savetcp, 0);
1779#endif
1780		/*
1781		 * Automatic sizing of receive socket buffer.  Often the send
1782		 * buffer size is not optimally adjusted to the actual network
1783		 * conditions at hand (delay bandwidth product).  Setting the
1784		 * buffer size too small limits throughput on links with high
1785		 * bandwidth and high delay (eg. trans-continental/oceanic links).
1786		 *
1787		 * On the receive side the socket buffer memory is only rarely
1788		 * used to any significant extent.  This allows us to be much
1789		 * more aggressive in scaling the receive socket buffer.  For
1790		 * the case that the buffer space is actually used to a large
1791		 * extent and we run out of kernel memory we can simply drop
1792		 * the new segments; TCP on the sender will just retransmit it
1793		 * later.  Setting the buffer size too big may only consume too
1794		 * much kernel memory if the application doesn't read() from
1795		 * the socket or packet loss or reordering makes use of the
1796		 * reassembly queue.
1797		 *
1798		 * The criteria to step up the receive buffer one notch are:
1799		 *  1. the number of bytes received during the time it takes
1800		 *     one timestamp to be reflected back to us (the RTT);
1801		 *  2. received bytes per RTT is within seven eighth of the
1802		 *     current socket buffer size;
1803		 *  3. receive buffer size has not hit maximal automatic size;
1804		 *
1805		 * This algorithm does one step per RTT at most and only if
1806		 * we receive a bulk stream w/o packet losses or reorderings.
1807		 * Shrinking the buffer during idle times is not necessary as
1808		 * it doesn't consume any memory when idle.
1809		 *
1810		 * TODO: Only step up if the application is actually serving
1811		 * the buffer to better manage the socket buffer resources.
1812		 */
1813			if (V_tcp_do_autorcvbuf &&
1814			    to.to_tsecr &&
1815			    (so->so_rcv.sb_flags & SB_AUTOSIZE)) {
1816				if (TSTMP_GT(to.to_tsecr, tp->rfbuf_ts) &&
1817				    to.to_tsecr - tp->rfbuf_ts < hz) {
1818					if (tp->rfbuf_cnt >
1819					    (so->so_rcv.sb_hiwat / 8 * 7) &&
1820					    so->so_rcv.sb_hiwat <
1821					    V_tcp_autorcvbuf_max) {
1822						newsize =
1823						    min(so->so_rcv.sb_hiwat +
1824						    V_tcp_autorcvbuf_inc,
1825						    V_tcp_autorcvbuf_max);
1826					}
1827					/* Start over with next RTT. */
1828					tp->rfbuf_ts = 0;
1829					tp->rfbuf_cnt = 0;
1830				} else
1831					tp->rfbuf_cnt += tlen;	/* add up */
1832			}
1833
1834			/* Add data to socket buffer. */
1835			SOCKBUF_LOCK(&so->so_rcv);
1836			if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
1837				m_freem(m);
1838			} else {
1839				/*
1840				 * Set new socket buffer size.
1841				 * Give up when limit is reached.
1842				 */
1843				if (newsize)
1844					if (!sbreserve_locked(&so->so_rcv,
1845					    newsize, so, NULL))
1846						so->so_rcv.sb_flags &= ~SB_AUTOSIZE;
1847				m_adj(m, drop_hdrlen);	/* delayed header drop */
1848				sbappendstream_locked(&so->so_rcv, m);
1849			}
1850			/* NB: sorwakeup_locked() does an implicit unlock. */
1851			sorwakeup_locked(so);
1852			if (DELAY_ACK(tp)) {
1853				tp->t_flags |= TF_DELACK;
1854			} else {
1855				tp->t_flags |= TF_ACKNOW;
1856				tcp_output(tp);
1857			}
1858			goto check_delack;
1859		}
1860	}
1861
1862	/*
1863	 * Calculate amount of space in receive window,
1864	 * and then do TCP input processing.
1865	 * Receive window is amount of space in rcv queue,
1866	 * but not less than advertised window.
1867	 */
1868	win = sbspace(&so->so_rcv);
1869	if (win < 0)
1870		win = 0;
1871	tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
1872
1873	/* Reset receive buffer auto scaling when not in bulk receive mode. */
1874	tp->rfbuf_ts = 0;
1875	tp->rfbuf_cnt = 0;
1876
1877	switch (tp->t_state) {
1878
1879	/*
1880	 * If the state is SYN_RECEIVED:
1881	 *	if seg contains an ACK, but not for our SYN/ACK, send a RST.
1882	 */
1883	case TCPS_SYN_RECEIVED:
1884		if ((thflags & TH_ACK) &&
1885		    (SEQ_LEQ(th->th_ack, tp->snd_una) ||
1886		     SEQ_GT(th->th_ack, tp->snd_max))) {
1887				rstreason = BANDLIM_RST_OPENPORT;
1888				goto dropwithreset;
1889		}
1890		break;
1891
1892	/*
1893	 * If the state is SYN_SENT:
1894	 *	if seg contains an ACK, but not for our SYN, drop the input.
1895	 *	if seg contains a RST, then drop the connection.
1896	 *	if seg does not contain SYN, then drop it.
1897	 * Otherwise this is an acceptable SYN segment
1898	 *	initialize tp->rcv_nxt and tp->irs
1899	 *	if seg contains ack then advance tp->snd_una
1900	 *	if seg contains an ECE and ECN support is enabled, the stream
1901	 *	    is ECN capable.
1902	 *	if SYN has been acked change to ESTABLISHED else SYN_RCVD state
1903	 *	arrange for segment to be acked (eventually)
1904	 *	continue processing rest of data/controls, beginning with URG
1905	 */
1906	case TCPS_SYN_SENT:
1907		if ((thflags & TH_ACK) &&
1908		    (SEQ_LEQ(th->th_ack, tp->iss) ||
1909		     SEQ_GT(th->th_ack, tp->snd_max))) {
1910			rstreason = BANDLIM_UNLIMITED;
1911			goto dropwithreset;
1912		}
1913		if ((thflags & (TH_ACK|TH_RST)) == (TH_ACK|TH_RST))
1914			tp = tcp_drop(tp, ECONNREFUSED);
1915		if (thflags & TH_RST)
1916			goto drop;
1917		if (!(thflags & TH_SYN))
1918			goto drop;
1919
1920		tp->irs = th->th_seq;
1921		tcp_rcvseqinit(tp);
1922		if (thflags & TH_ACK) {
1923			TCPSTAT_INC(tcps_connects);
1924			soisconnected(so);
1925#ifdef MAC
1926			mac_socketpeer_set_from_mbuf(m, so);
1927#endif
1928			/* Do window scaling on this connection? */
1929			if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
1930				(TF_RCVD_SCALE|TF_REQ_SCALE)) {
1931				tp->rcv_scale = tp->request_r_scale;
1932			}
1933			tp->rcv_adv += imin(tp->rcv_wnd,
1934			    TCP_MAXWIN << tp->rcv_scale);
1935			tp->snd_una++;		/* SYN is acked */
1936			/*
1937			 * If there's data, delay ACK; if there's also a FIN
1938			 * ACKNOW will be turned on later.
1939			 */
1940			if (DELAY_ACK(tp) && tlen != 0)
1941				tcp_timer_activate(tp, TT_DELACK,
1942				    tcp_delacktime);
1943			else
1944				tp->t_flags |= TF_ACKNOW;
1945
1946			if ((thflags & TH_ECE) && V_tcp_do_ecn) {
1947				tp->t_flags |= TF_ECN_PERMIT;
1948				TCPSTAT_INC(tcps_ecn_shs);
1949			}
1950
1951			/*
1952			 * Received <SYN,ACK> in SYN_SENT[*] state.
1953			 * Transitions:
1954			 *	SYN_SENT  --> ESTABLISHED
1955			 *	SYN_SENT* --> FIN_WAIT_1
1956			 */
1957			tp->t_starttime = ticks;
1958			if (tp->t_flags & TF_NEEDFIN) {
1959				tp->t_state = TCPS_FIN_WAIT_1;
1960				tp->t_flags &= ~TF_NEEDFIN;
1961				thflags &= ~TH_SYN;
1962			} else {
1963				tp->t_state = TCPS_ESTABLISHED;
1964				cc_conn_init(tp);
1965				tcp_timer_activate(tp, TT_KEEP,
1966				    TP_KEEPIDLE(tp));
1967			}
1968		} else {
1969			/*
1970			 * Received initial SYN in SYN-SENT[*] state =>
1971			 * simultaneous open.  If segment contains CC option
1972			 * and there is a cached CC, apply TAO test.
1973			 * If it succeeds, connection is * half-synchronized.
1974			 * Otherwise, do 3-way handshake:
1975			 *        SYN-SENT -> SYN-RECEIVED
1976			 *        SYN-SENT* -> SYN-RECEIVED*
1977			 * If there was no CC option, clear cached CC value.
1978			 */
1979			tp->t_flags |= (TF_ACKNOW | TF_NEEDSYN);
1980			tcp_timer_activate(tp, TT_REXMT, 0);
1981			tp->t_state = TCPS_SYN_RECEIVED;
1982		}
1983
1984		KASSERT(ti_locked == TI_WLOCKED, ("%s: trimthenstep6: "
1985		    "ti_locked %d", __func__, ti_locked));
1986		INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
1987		INP_WLOCK_ASSERT(tp->t_inpcb);
1988
1989		/*
1990		 * Advance th->th_seq to correspond to first data byte.
1991		 * If data, trim to stay within window,
1992		 * dropping FIN if necessary.
1993		 */
1994		th->th_seq++;
1995		if (tlen > tp->rcv_wnd) {
1996			todrop = tlen - tp->rcv_wnd;
1997			m_adj(m, -todrop);
1998			tlen = tp->rcv_wnd;
1999			thflags &= ~TH_FIN;
2000			TCPSTAT_INC(tcps_rcvpackafterwin);
2001			TCPSTAT_ADD(tcps_rcvbyteafterwin, todrop);
2002		}
2003		tp->snd_wl1 = th->th_seq - 1;
2004		tp->rcv_up = th->th_seq;
2005		/*
2006		 * Client side of transaction: already sent SYN and data.
2007		 * If the remote host used T/TCP to validate the SYN,
2008		 * our data will be ACK'd; if so, enter normal data segment
2009		 * processing in the middle of step 5, ack processing.
2010		 * Otherwise, goto step 6.
2011		 */
2012		if (thflags & TH_ACK)
2013			goto process_ACK;
2014
2015		goto step6;
2016
2017	/*
2018	 * If the state is LAST_ACK or CLOSING or TIME_WAIT:
2019	 *      do normal processing.
2020	 *
2021	 * NB: Leftover from RFC1644 T/TCP.  Cases to be reused later.
2022	 */
2023	case TCPS_LAST_ACK:
2024	case TCPS_CLOSING:
2025		break;  /* continue normal processing */
2026	}
2027
2028	/*
2029	 * States other than LISTEN or SYN_SENT.
2030	 * First check the RST flag and sequence number since reset segments
2031	 * are exempt from the timestamp and connection count tests.  This
2032	 * fixes a bug introduced by the Stevens, vol. 2, p. 960 bugfix
2033	 * below which allowed reset segments in half the sequence space
2034	 * to fall though and be processed (which gives forged reset
2035	 * segments with a random sequence number a 50 percent chance of
2036	 * killing a connection).
2037	 * Then check timestamp, if present.
2038	 * Then check the connection count, if present.
2039	 * Then check that at least some bytes of segment are within
2040	 * receive window.  If segment begins before rcv_nxt,
2041	 * drop leading data (and SYN); if nothing left, just ack.
2042	 *
2043	 *
2044	 * If the RST bit is set, check the sequence number to see
2045	 * if this is a valid reset segment.
2046	 * RFC 793 page 37:
2047	 *   In all states except SYN-SENT, all reset (RST) segments
2048	 *   are validated by checking their SEQ-fields.  A reset is
2049	 *   valid if its sequence number is in the window.
2050	 * Note: this does not take into account delayed ACKs, so
2051	 *   we should test against last_ack_sent instead of rcv_nxt.
2052	 *   The sequence number in the reset segment is normally an
2053	 *   echo of our outgoing acknowlegement numbers, but some hosts
2054	 *   send a reset with the sequence number at the rightmost edge
2055	 *   of our receive window, and we have to handle this case.
2056	 * Note 2: Paul Watson's paper "Slipping in the Window" has shown
2057	 *   that brute force RST attacks are possible.  To combat this,
2058	 *   we use a much stricter check while in the ESTABLISHED state,
2059	 *   only accepting RSTs where the sequence number is equal to
2060	 *   last_ack_sent.  In all other states (the states in which a
2061	 *   RST is more likely), the more permissive check is used.
2062	 * If we have multiple segments in flight, the initial reset
2063	 * segment sequence numbers will be to the left of last_ack_sent,
2064	 * but they will eventually catch up.
2065	 * In any case, it never made sense to trim reset segments to
2066	 * fit the receive window since RFC 1122 says:
2067	 *   4.2.2.12  RST Segment: RFC-793 Section 3.4
2068	 *
2069	 *    A TCP SHOULD allow a received RST segment to include data.
2070	 *
2071	 *    DISCUSSION
2072	 *         It has been suggested that a RST segment could contain
2073	 *         ASCII text that encoded and explained the cause of the
2074	 *         RST.  No standard has yet been established for such
2075	 *         data.
2076	 *
2077	 * If the reset segment passes the sequence number test examine
2078	 * the state:
2079	 *    SYN_RECEIVED STATE:
2080	 *	If passive open, return to LISTEN state.
2081	 *	If active open, inform user that connection was refused.
2082	 *    ESTABLISHED, FIN_WAIT_1, FIN_WAIT_2, CLOSE_WAIT STATES:
2083	 *	Inform user that connection was reset, and close tcb.
2084	 *    CLOSING, LAST_ACK STATES:
2085	 *	Close the tcb.
2086	 *    TIME_WAIT STATE:
2087	 *	Drop the segment - see Stevens, vol. 2, p. 964 and
2088	 *      RFC 1337.
2089	 */
2090	if (thflags & TH_RST) {
2091		if (SEQ_GEQ(th->th_seq, tp->last_ack_sent - 1) &&
2092		    SEQ_LEQ(th->th_seq, tp->last_ack_sent + tp->rcv_wnd)) {
2093			switch (tp->t_state) {
2094
2095			case TCPS_SYN_RECEIVED:
2096				so->so_error = ECONNREFUSED;
2097				goto close;
2098
2099			case TCPS_ESTABLISHED:
2100				if (V_tcp_insecure_rst == 0 &&
2101				    !(SEQ_GEQ(th->th_seq, tp->rcv_nxt - 1) &&
2102				    SEQ_LEQ(th->th_seq, tp->rcv_nxt + 1)) &&
2103				    !(SEQ_GEQ(th->th_seq, tp->last_ack_sent - 1) &&
2104				    SEQ_LEQ(th->th_seq, tp->last_ack_sent + 1))) {
2105					TCPSTAT_INC(tcps_badrst);
2106					goto drop;
2107				}
2108				/* FALLTHROUGH */
2109			case TCPS_FIN_WAIT_1:
2110			case TCPS_FIN_WAIT_2:
2111			case TCPS_CLOSE_WAIT:
2112				so->so_error = ECONNRESET;
2113			close:
2114				KASSERT(ti_locked == TI_WLOCKED,
2115				    ("tcp_do_segment: TH_RST 1 ti_locked %d",
2116				    ti_locked));
2117				INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
2118
2119				tp->t_state = TCPS_CLOSED;
2120				TCPSTAT_INC(tcps_drops);
2121				tp = tcp_close(tp);
2122				break;
2123
2124			case TCPS_CLOSING:
2125			case TCPS_LAST_ACK:
2126				KASSERT(ti_locked == TI_WLOCKED,
2127				    ("tcp_do_segment: TH_RST 2 ti_locked %d",
2128				    ti_locked));
2129				INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
2130
2131				tp = tcp_close(tp);
2132				break;
2133			}
2134		}
2135		goto drop;
2136	}
2137
2138	/*
2139	 * RFC 1323 PAWS: If we have a timestamp reply on this segment
2140	 * and it's less than ts_recent, drop it.
2141	 */
2142	if ((to.to_flags & TOF_TS) != 0 && tp->ts_recent &&
2143	    TSTMP_LT(to.to_tsval, tp->ts_recent)) {
2144
2145		/* Check to see if ts_recent is over 24 days old.  */
2146		if (tcp_ts_getticks() - tp->ts_recent_age > TCP_PAWS_IDLE) {
2147			/*
2148			 * Invalidate ts_recent.  If this segment updates
2149			 * ts_recent, the age will be reset later and ts_recent
2150			 * will get a valid value.  If it does not, setting
2151			 * ts_recent to zero will at least satisfy the
2152			 * requirement that zero be placed in the timestamp
2153			 * echo reply when ts_recent isn't valid.  The
2154			 * age isn't reset until we get a valid ts_recent
2155			 * because we don't want out-of-order segments to be
2156			 * dropped when ts_recent is old.
2157			 */
2158			tp->ts_recent = 0;
2159		} else {
2160			TCPSTAT_INC(tcps_rcvduppack);
2161			TCPSTAT_ADD(tcps_rcvdupbyte, tlen);
2162			TCPSTAT_INC(tcps_pawsdrop);
2163			if (tlen)
2164				goto dropafterack;
2165			goto drop;
2166		}
2167	}
2168
2169	/*
2170	 * In the SYN-RECEIVED state, validate that the packet belongs to
2171	 * this connection before trimming the data to fit the receive
2172	 * window.  Check the sequence number versus IRS since we know
2173	 * the sequence numbers haven't wrapped.  This is a partial fix
2174	 * for the "LAND" DoS attack.
2175	 */
2176	if (tp->t_state == TCPS_SYN_RECEIVED && SEQ_LT(th->th_seq, tp->irs)) {
2177		rstreason = BANDLIM_RST_OPENPORT;
2178		goto dropwithreset;
2179	}
2180
2181	todrop = tp->rcv_nxt - th->th_seq;
2182	if (todrop > 0) {
2183		/*
2184		 * If this is a duplicate SYN for our current connection,
2185		 * advance over it and pretend and it's not a SYN.
2186		 */
2187		if (thflags & TH_SYN && th->th_seq == tp->irs) {
2188			thflags &= ~TH_SYN;
2189			th->th_seq++;
2190			if (th->th_urp > 1)
2191				th->th_urp--;
2192			else
2193				thflags &= ~TH_URG;
2194			todrop--;
2195		}
2196		/*
2197		 * Following if statement from Stevens, vol. 2, p. 960.
2198		 */
2199		if (todrop > tlen
2200		    || (todrop == tlen && (thflags & TH_FIN) == 0)) {
2201			/*
2202			 * Any valid FIN must be to the left of the window.
2203			 * At this point the FIN must be a duplicate or out
2204			 * of sequence; drop it.
2205			 */
2206			thflags &= ~TH_FIN;
2207
2208			/*
2209			 * Send an ACK to resynchronize and drop any data.
2210			 * But keep on processing for RST or ACK.
2211			 */
2212			tp->t_flags |= TF_ACKNOW;
2213			todrop = tlen;
2214			TCPSTAT_INC(tcps_rcvduppack);
2215			TCPSTAT_ADD(tcps_rcvdupbyte, todrop);
2216		} else {
2217			TCPSTAT_INC(tcps_rcvpartduppack);
2218			TCPSTAT_ADD(tcps_rcvpartdupbyte, todrop);
2219		}
2220		drop_hdrlen += todrop;	/* drop from the top afterwards */
2221		th->th_seq += todrop;
2222		tlen -= todrop;
2223		if (th->th_urp > todrop)
2224			th->th_urp -= todrop;
2225		else {
2226			thflags &= ~TH_URG;
2227			th->th_urp = 0;
2228		}
2229	}
2230
2231	/*
2232	 * If new data are received on a connection after the
2233	 * user processes are gone, then RST the other end.
2234	 */
2235	if ((so->so_state & SS_NOFDREF) &&
2236	    tp->t_state > TCPS_CLOSE_WAIT && tlen) {
2237		KASSERT(ti_locked == TI_WLOCKED, ("%s: SS_NOFDEREF && "
2238		    "CLOSE_WAIT && tlen ti_locked %d", __func__, ti_locked));
2239		INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
2240
2241		if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
2242			log(LOG_DEBUG, "%s; %s: %s: Received %d bytes of data "
2243			    "after socket was closed, "
2244			    "sending RST and removing tcpcb\n",
2245			    s, __func__, tcpstates[tp->t_state], tlen);
2246			free(s, M_TCPLOG);
2247		}
2248		tp = tcp_close(tp);
2249		TCPSTAT_INC(tcps_rcvafterclose);
2250		rstreason = BANDLIM_UNLIMITED;
2251		goto dropwithreset;
2252	}
2253
2254	/*
2255	 * If segment ends after window, drop trailing data
2256	 * (and PUSH and FIN); if nothing left, just ACK.
2257	 */
2258	todrop = (th->th_seq + tlen) - (tp->rcv_nxt + tp->rcv_wnd);
2259	if (todrop > 0) {
2260		TCPSTAT_INC(tcps_rcvpackafterwin);
2261		if (todrop >= tlen) {
2262			TCPSTAT_ADD(tcps_rcvbyteafterwin, tlen);
2263			/*
2264			 * If window is closed can only take segments at
2265			 * window edge, and have to drop data and PUSH from
2266			 * incoming segments.  Continue processing, but
2267			 * remember to ack.  Otherwise, drop segment
2268			 * and ack.
2269			 */
2270			if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
2271				tp->t_flags |= TF_ACKNOW;
2272				TCPSTAT_INC(tcps_rcvwinprobe);
2273			} else
2274				goto dropafterack;
2275		} else
2276			TCPSTAT_ADD(tcps_rcvbyteafterwin, todrop);
2277		m_adj(m, -todrop);
2278		tlen -= todrop;
2279		thflags &= ~(TH_PUSH|TH_FIN);
2280	}
2281
2282	/*
2283	 * If last ACK falls within this segment's sequence numbers,
2284	 * record its timestamp.
2285	 * NOTE:
2286	 * 1) That the test incorporates suggestions from the latest
2287	 *    proposal of the tcplw@cray.com list (Braden 1993/04/26).
2288	 * 2) That updating only on newer timestamps interferes with
2289	 *    our earlier PAWS tests, so this check should be solely
2290	 *    predicated on the sequence space of this segment.
2291	 * 3) That we modify the segment boundary check to be
2292	 *        Last.ACK.Sent <= SEG.SEQ + SEG.Len
2293	 *    instead of RFC1323's
2294	 *        Last.ACK.Sent < SEG.SEQ + SEG.Len,
2295	 *    This modified check allows us to overcome RFC1323's
2296	 *    limitations as described in Stevens TCP/IP Illustrated
2297	 *    Vol. 2 p.869. In such cases, we can still calculate the
2298	 *    RTT correctly when RCV.NXT == Last.ACK.Sent.
2299	 */
2300	if ((to.to_flags & TOF_TS) != 0 &&
2301	    SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
2302	    SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
2303		((thflags & (TH_SYN|TH_FIN)) != 0))) {
2304		tp->ts_recent_age = tcp_ts_getticks();
2305		tp->ts_recent = to.to_tsval;
2306	}
2307
2308	/*
2309	 * If a SYN is in the window, then this is an
2310	 * error and we send an RST and drop the connection.
2311	 */
2312	if (thflags & TH_SYN) {
2313		KASSERT(ti_locked == TI_WLOCKED,
2314		    ("tcp_do_segment: TH_SYN ti_locked %d", ti_locked));
2315		INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
2316
2317		tp = tcp_drop(tp, ECONNRESET);
2318		rstreason = BANDLIM_UNLIMITED;
2319		goto drop;
2320	}
2321
2322	/*
2323	 * If the ACK bit is off:  if in SYN-RECEIVED state or SENDSYN
2324	 * flag is on (half-synchronized state), then queue data for
2325	 * later processing; else drop segment and return.
2326	 */
2327	if ((thflags & TH_ACK) == 0) {
2328		if (tp->t_state == TCPS_SYN_RECEIVED ||
2329		    (tp->t_flags & TF_NEEDSYN))
2330			goto step6;
2331		else if (tp->t_flags & TF_ACKNOW)
2332			goto dropafterack;
2333		else
2334			goto drop;
2335	}
2336
2337	/*
2338	 * Ack processing.
2339	 */
2340	switch (tp->t_state) {
2341
2342	/*
2343	 * In SYN_RECEIVED state, the ack ACKs our SYN, so enter
2344	 * ESTABLISHED state and continue processing.
2345	 * The ACK was checked above.
2346	 */
2347	case TCPS_SYN_RECEIVED:
2348
2349		TCPSTAT_INC(tcps_connects);
2350		soisconnected(so);
2351		/* Do window scaling? */
2352		if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
2353			(TF_RCVD_SCALE|TF_REQ_SCALE)) {
2354			tp->rcv_scale = tp->request_r_scale;
2355			tp->snd_wnd = tiwin;
2356		}
2357		/*
2358		 * Make transitions:
2359		 *      SYN-RECEIVED  -> ESTABLISHED
2360		 *      SYN-RECEIVED* -> FIN-WAIT-1
2361		 */
2362		tp->t_starttime = ticks;
2363		if (tp->t_flags & TF_NEEDFIN) {
2364			tp->t_state = TCPS_FIN_WAIT_1;
2365			tp->t_flags &= ~TF_NEEDFIN;
2366		} else {
2367			tp->t_state = TCPS_ESTABLISHED;
2368			cc_conn_init(tp);
2369			tcp_timer_activate(tp, TT_KEEP, TP_KEEPIDLE(tp));
2370		}
2371		/*
2372		 * If segment contains data or ACK, will call tcp_reass()
2373		 * later; if not, do so now to pass queued data to user.
2374		 */
2375		if (tlen == 0 && (thflags & TH_FIN) == 0)
2376			(void) tcp_reass(tp, (struct tcphdr *)0, 0,
2377			    (struct mbuf *)0);
2378		tp->snd_wl1 = th->th_seq - 1;
2379		/* FALLTHROUGH */
2380
2381	/*
2382	 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
2383	 * ACKs.  If the ack is in the range
2384	 *	tp->snd_una < th->th_ack <= tp->snd_max
2385	 * then advance tp->snd_una to th->th_ack and drop
2386	 * data from the retransmission queue.  If this ACK reflects
2387	 * more up to date window information we update our window information.
2388	 */
2389	case TCPS_ESTABLISHED:
2390	case TCPS_FIN_WAIT_1:
2391	case TCPS_FIN_WAIT_2:
2392	case TCPS_CLOSE_WAIT:
2393	case TCPS_CLOSING:
2394	case TCPS_LAST_ACK:
2395		if (SEQ_GT(th->th_ack, tp->snd_max)) {
2396			TCPSTAT_INC(tcps_rcvacktoomuch);
2397			goto dropafterack;
2398		}
2399		if ((tp->t_flags & TF_SACK_PERMIT) &&
2400		    ((to.to_flags & TOF_SACK) ||
2401		     !TAILQ_EMPTY(&tp->snd_holes)))
2402			tcp_sack_doack(tp, &to, th->th_ack);
2403
2404		/* Run HHOOK_TCP_ESTABLISHED_IN helper hooks. */
2405		hhook_run_tcp_est_in(tp, th, &to);
2406
2407		if (SEQ_LEQ(th->th_ack, tp->snd_una)) {
2408			if (tlen == 0 && tiwin == tp->snd_wnd) {
2409				TCPSTAT_INC(tcps_rcvdupack);
2410				/*
2411				 * If we have outstanding data (other than
2412				 * a window probe), this is a completely
2413				 * duplicate ack (ie, window info didn't
2414				 * change), the ack is the biggest we've
2415				 * seen and we've seen exactly our rexmt
2416				 * threshhold of them, assume a packet
2417				 * has been dropped and retransmit it.
2418				 * Kludge snd_nxt & the congestion
2419				 * window so we send only this one
2420				 * packet.
2421				 *
2422				 * We know we're losing at the current
2423				 * window size so do congestion avoidance
2424				 * (set ssthresh to half the current window
2425				 * and pull our congestion window back to
2426				 * the new ssthresh).
2427				 *
2428				 * Dup acks mean that packets have left the
2429				 * network (they're now cached at the receiver)
2430				 * so bump cwnd by the amount in the receiver
2431				 * to keep a constant cwnd packets in the
2432				 * network.
2433				 *
2434				 * When using TCP ECN, notify the peer that
2435				 * we reduced the cwnd.
2436				 */
2437				if (!tcp_timer_active(tp, TT_REXMT) ||
2438				    th->th_ack != tp->snd_una)
2439					tp->t_dupacks = 0;
2440				else if (++tp->t_dupacks > tcprexmtthresh ||
2441				     IN_FASTRECOVERY(tp->t_flags)) {
2442					cc_ack_received(tp, th, CC_DUPACK);
2443					if ((tp->t_flags & TF_SACK_PERMIT) &&
2444					    IN_FASTRECOVERY(tp->t_flags)) {
2445						int awnd;
2446
2447						/*
2448						 * Compute the amount of data in flight first.
2449						 * We can inject new data into the pipe iff
2450						 * we have less than 1/2 the original window's
2451						 * worth of data in flight.
2452						 */
2453						awnd = (tp->snd_nxt - tp->snd_fack) +
2454							tp->sackhint.sack_bytes_rexmit;
2455						if (awnd < tp->snd_ssthresh) {
2456							tp->snd_cwnd += tp->t_maxseg;
2457							if (tp->snd_cwnd > tp->snd_ssthresh)
2458								tp->snd_cwnd = tp->snd_ssthresh;
2459						}
2460					} else
2461						tp->snd_cwnd += tp->t_maxseg;
2462					if ((thflags & TH_FIN) &&
2463					    (TCPS_HAVERCVDFIN(tp->t_state) == 0)) {
2464						/*
2465						 * If its a fin we need to process
2466						 * it to avoid a race where both
2467						 * sides enter FIN-WAIT and send FIN|ACK
2468						 * at the same time.
2469						 */
2470						break;
2471					}
2472					(void) tcp_output(tp);
2473					goto drop;
2474				} else if (tp->t_dupacks == tcprexmtthresh) {
2475					tcp_seq onxt = tp->snd_nxt;
2476
2477					/*
2478					 * If we're doing sack, check to
2479					 * see if we're already in sack
2480					 * recovery. If we're not doing sack,
2481					 * check to see if we're in newreno
2482					 * recovery.
2483					 */
2484					if (tp->t_flags & TF_SACK_PERMIT) {
2485						if (IN_FASTRECOVERY(tp->t_flags)) {
2486							tp->t_dupacks = 0;
2487							break;
2488						}
2489					} else {
2490						if (SEQ_LEQ(th->th_ack,
2491						    tp->snd_recover)) {
2492							tp->t_dupacks = 0;
2493							break;
2494						}
2495					}
2496					/* Congestion signal before ack. */
2497					cc_cong_signal(tp, th, CC_NDUPACK);
2498					cc_ack_received(tp, th, CC_DUPACK);
2499					tcp_timer_activate(tp, TT_REXMT, 0);
2500					tp->t_rtttime = 0;
2501					if (tp->t_flags & TF_SACK_PERMIT) {
2502						TCPSTAT_INC(
2503						    tcps_sack_recovery_episode);
2504						tp->sack_newdata = tp->snd_nxt;
2505						tp->snd_cwnd = tp->t_maxseg;
2506						(void) tcp_output(tp);
2507						goto drop;
2508					}
2509					tp->snd_nxt = th->th_ack;
2510					tp->snd_cwnd = tp->t_maxseg;
2511					if ((thflags & TH_FIN) &&
2512					    (TCPS_HAVERCVDFIN(tp->t_state) == 0)) {
2513						/*
2514						 * If its a fin we need to process
2515						 * it to avoid a race where both
2516						 * sides enter FIN-WAIT and send FIN|ACK
2517						 * at the same time.
2518						 */
2519						break;
2520					}
2521					(void) tcp_output(tp);
2522					KASSERT(tp->snd_limited <= 2,
2523					    ("%s: tp->snd_limited too big",
2524					    __func__));
2525					tp->snd_cwnd = tp->snd_ssthresh +
2526					     tp->t_maxseg *
2527					     (tp->t_dupacks - tp->snd_limited);
2528					if (SEQ_GT(onxt, tp->snd_nxt))
2529						tp->snd_nxt = onxt;
2530					goto drop;
2531				} else if (V_tcp_do_rfc3042) {
2532					cc_ack_received(tp, th, CC_DUPACK);
2533					u_long oldcwnd = tp->snd_cwnd;
2534					tcp_seq oldsndmax = tp->snd_max;
2535					u_int sent;
2536					int avail;
2537
2538					KASSERT(tp->t_dupacks == 1 ||
2539					    tp->t_dupacks == 2,
2540					    ("%s: dupacks not 1 or 2",
2541					    __func__));
2542					if (tp->t_dupacks == 1)
2543						tp->snd_limited = 0;
2544					tp->snd_cwnd =
2545					    (tp->snd_nxt - tp->snd_una) +
2546					    (tp->t_dupacks - tp->snd_limited) *
2547					    tp->t_maxseg;
2548					if ((thflags & TH_FIN) &&
2549					    (TCPS_HAVERCVDFIN(tp->t_state) == 0)) {
2550						/*
2551						 * If its a fin we need to process
2552						 * it to avoid a race where both
2553						 * sides enter FIN-WAIT and send FIN|ACK
2554						 * at the same time.
2555						 */
2556						break;
2557					}
2558					/*
2559					 * Only call tcp_output when there
2560					 * is new data available to be sent.
2561					 * Otherwise we would send pure ACKs.
2562					 */
2563					SOCKBUF_LOCK(&so->so_snd);
2564					avail = so->so_snd.sb_cc -
2565					    (tp->snd_nxt - tp->snd_una);
2566					SOCKBUF_UNLOCK(&so->so_snd);
2567					if (avail > 0)
2568						(void) tcp_output(tp);
2569					sent = tp->snd_max - oldsndmax;
2570					if (sent > tp->t_maxseg) {
2571						KASSERT((tp->t_dupacks == 2 &&
2572						    tp->snd_limited == 0) ||
2573						   (sent == tp->t_maxseg + 1 &&
2574						    tp->t_flags & TF_SENTFIN),
2575						    ("%s: sent too much",
2576						    __func__));
2577						tp->snd_limited = 2;
2578					} else if (sent > 0)
2579						++tp->snd_limited;
2580					tp->snd_cwnd = oldcwnd;
2581					goto drop;
2582				}
2583			} else
2584				tp->t_dupacks = 0;
2585			break;
2586		}
2587
2588		KASSERT(SEQ_GT(th->th_ack, tp->snd_una),
2589		    ("%s: th_ack <= snd_una", __func__));
2590
2591		/*
2592		 * If the congestion window was inflated to account
2593		 * for the other side's cached packets, retract it.
2594		 */
2595		if (IN_FASTRECOVERY(tp->t_flags)) {
2596			if (SEQ_LT(th->th_ack, tp->snd_recover)) {
2597				if (tp->t_flags & TF_SACK_PERMIT)
2598					tcp_sack_partialack(tp, th);
2599				else
2600					tcp_newreno_partial_ack(tp, th);
2601			} else
2602				cc_post_recovery(tp, th);
2603		}
2604		tp->t_dupacks = 0;
2605		/*
2606		 * If we reach this point, ACK is not a duplicate,
2607		 *     i.e., it ACKs something we sent.
2608		 */
2609		if (tp->t_flags & TF_NEEDSYN) {
2610			/*
2611			 * T/TCP: Connection was half-synchronized, and our
2612			 * SYN has been ACK'd (so connection is now fully
2613			 * synchronized).  Go to non-starred state,
2614			 * increment snd_una for ACK of SYN, and check if
2615			 * we can do window scaling.
2616			 */
2617			tp->t_flags &= ~TF_NEEDSYN;
2618			tp->snd_una++;
2619			/* Do window scaling? */
2620			if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
2621				(TF_RCVD_SCALE|TF_REQ_SCALE)) {
2622				tp->rcv_scale = tp->request_r_scale;
2623				/* Send window already scaled. */
2624			}
2625		}
2626
2627process_ACK:
2628		INP_WLOCK_ASSERT(tp->t_inpcb);
2629
2630		acked = BYTES_THIS_ACK(tp, th);
2631		TCPSTAT_INC(tcps_rcvackpack);
2632		TCPSTAT_ADD(tcps_rcvackbyte, acked);
2633
2634		/*
2635		 * If we just performed our first retransmit, and the ACK
2636		 * arrives within our recovery window, then it was a mistake
2637		 * to do the retransmit in the first place.  Recover our
2638		 * original cwnd and ssthresh, and proceed to transmit where
2639		 * we left off.
2640		 */
2641		if (tp->t_rxtshift == 1 && tp->t_flags & TF_PREVVALID &&
2642		    (int)(ticks - tp->t_badrxtwin) < 0)
2643			cc_cong_signal(tp, th, CC_RTO_ERR);
2644
2645		/*
2646		 * If we have a timestamp reply, update smoothed
2647		 * round trip time.  If no timestamp is present but
2648		 * transmit timer is running and timed sequence
2649		 * number was acked, update smoothed round trip time.
2650		 * Since we now have an rtt measurement, cancel the
2651		 * timer backoff (cf., Phil Karn's retransmit alg.).
2652		 * Recompute the initial retransmit timer.
2653		 *
2654		 * Some boxes send broken timestamp replies
2655		 * during the SYN+ACK phase, ignore
2656		 * timestamps of 0 or we could calculate a
2657		 * huge RTT and blow up the retransmit timer.
2658		 */
2659		if ((to.to_flags & TOF_TS) != 0 && to.to_tsecr) {
2660			u_int t;
2661
2662			t = tcp_ts_getticks() - to.to_tsecr;
2663			if (!tp->t_rttlow || tp->t_rttlow > t)
2664				tp->t_rttlow = t;
2665			tcp_xmit_timer(tp, TCP_TS_TO_TICKS(t) + 1);
2666		} else if (tp->t_rtttime && SEQ_GT(th->th_ack, tp->t_rtseq)) {
2667			if (!tp->t_rttlow || tp->t_rttlow > ticks - tp->t_rtttime)
2668				tp->t_rttlow = ticks - tp->t_rtttime;
2669			tcp_xmit_timer(tp, ticks - tp->t_rtttime);
2670		}
2671
2672		/*
2673		 * If all outstanding data is acked, stop retransmit
2674		 * timer and remember to restart (more output or persist).
2675		 * If there is more data to be acked, restart retransmit
2676		 * timer, using current (possibly backed-off) value.
2677		 */
2678		if (th->th_ack == tp->snd_max) {
2679			tcp_timer_activate(tp, TT_REXMT, 0);
2680			needoutput = 1;
2681		} else if (!tcp_timer_active(tp, TT_PERSIST))
2682			tcp_timer_activate(tp, TT_REXMT, tp->t_rxtcur);
2683
2684		/*
2685		 * If no data (only SYN) was ACK'd,
2686		 *    skip rest of ACK processing.
2687		 */
2688		if (acked == 0)
2689			goto step6;
2690
2691		/*
2692		 * Let the congestion control algorithm update congestion
2693		 * control related information. This typically means increasing
2694		 * the congestion window.
2695		 */
2696		cc_ack_received(tp, th, CC_ACK);
2697
2698		SOCKBUF_LOCK(&so->so_snd);
2699		if (acked > so->so_snd.sb_cc) {
2700			tp->snd_wnd -= so->so_snd.sb_cc;
2701			sbdrop_locked(&so->so_snd, (int)so->so_snd.sb_cc);
2702			ourfinisacked = 1;
2703		} else {
2704			sbdrop_locked(&so->so_snd, acked);
2705			tp->snd_wnd -= acked;
2706			ourfinisacked = 0;
2707		}
2708		/* NB: sowwakeup_locked() does an implicit unlock. */
2709		sowwakeup_locked(so);
2710		/* Detect una wraparound. */
2711		if (!IN_RECOVERY(tp->t_flags) &&
2712		    SEQ_GT(tp->snd_una, tp->snd_recover) &&
2713		    SEQ_LEQ(th->th_ack, tp->snd_recover))
2714			tp->snd_recover = th->th_ack - 1;
2715		/* XXXLAS: Can this be moved up into cc_post_recovery? */
2716		if (IN_RECOVERY(tp->t_flags) &&
2717		    SEQ_GEQ(th->th_ack, tp->snd_recover)) {
2718			EXIT_RECOVERY(tp->t_flags);
2719		}
2720		tp->snd_una = th->th_ack;
2721		if (tp->t_flags & TF_SACK_PERMIT) {
2722			if (SEQ_GT(tp->snd_una, tp->snd_recover))
2723				tp->snd_recover = tp->snd_una;
2724		}
2725		if (SEQ_LT(tp->snd_nxt, tp->snd_una))
2726			tp->snd_nxt = tp->snd_una;
2727
2728		switch (tp->t_state) {
2729
2730		/*
2731		 * In FIN_WAIT_1 STATE in addition to the processing
2732		 * for the ESTABLISHED state if our FIN is now acknowledged
2733		 * then enter FIN_WAIT_2.
2734		 */
2735		case TCPS_FIN_WAIT_1:
2736			if (ourfinisacked) {
2737				/*
2738				 * If we can't receive any more
2739				 * data, then closing user can proceed.
2740				 * Starting the timer is contrary to the
2741				 * specification, but if we don't get a FIN
2742				 * we'll hang forever.
2743				 *
2744				 * XXXjl:
2745				 * we should release the tp also, and use a
2746				 * compressed state.
2747				 */
2748				if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
2749					soisdisconnected(so);
2750					tcp_timer_activate(tp, TT_2MSL,
2751					    (tcp_fast_finwait2_recycle ?
2752					    tcp_finwait2_timeout :
2753					    TP_MAXIDLE(tp)));
2754				}
2755				tp->t_state = TCPS_FIN_WAIT_2;
2756			}
2757			break;
2758
2759		/*
2760		 * In CLOSING STATE in addition to the processing for
2761		 * the ESTABLISHED state if the ACK acknowledges our FIN
2762		 * then enter the TIME-WAIT state, otherwise ignore
2763		 * the segment.
2764		 */
2765		case TCPS_CLOSING:
2766			if (ourfinisacked) {
2767				INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
2768				tcp_twstart(tp);
2769				INP_INFO_WUNLOCK(&V_tcbinfo);
2770				m_freem(m);
2771				return;
2772			}
2773			break;
2774
2775		/*
2776		 * In LAST_ACK, we may still be waiting for data to drain
2777		 * and/or to be acked, as well as for the ack of our FIN.
2778		 * If our FIN is now acknowledged, delete the TCB,
2779		 * enter the closed state and return.
2780		 */
2781		case TCPS_LAST_ACK:
2782			if (ourfinisacked) {
2783				INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
2784				tp = tcp_close(tp);
2785				goto drop;
2786			}
2787			break;
2788		}
2789	}
2790
2791step6:
2792	INP_WLOCK_ASSERT(tp->t_inpcb);
2793
2794	/*
2795	 * Update window information.
2796	 * Don't look at window if no ACK: TAC's send garbage on first SYN.
2797	 */
2798	if ((thflags & TH_ACK) &&
2799	    (SEQ_LT(tp->snd_wl1, th->th_seq) ||
2800	    (tp->snd_wl1 == th->th_seq && (SEQ_LT(tp->snd_wl2, th->th_ack) ||
2801	     (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))))) {
2802		/* keep track of pure window updates */
2803		if (tlen == 0 &&
2804		    tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)
2805			TCPSTAT_INC(tcps_rcvwinupd);
2806		tp->snd_wnd = tiwin;
2807		tp->snd_wl1 = th->th_seq;
2808		tp->snd_wl2 = th->th_ack;
2809		if (tp->snd_wnd > tp->max_sndwnd)
2810			tp->max_sndwnd = tp->snd_wnd;
2811		needoutput = 1;
2812	}
2813
2814	/*
2815	 * Process segments with URG.
2816	 */
2817	if ((thflags & TH_URG) && th->th_urp &&
2818	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2819		/*
2820		 * This is a kludge, but if we receive and accept
2821		 * random urgent pointers, we'll crash in
2822		 * soreceive.  It's hard to imagine someone
2823		 * actually wanting to send this much urgent data.
2824		 */
2825		SOCKBUF_LOCK(&so->so_rcv);
2826		if (th->th_urp + so->so_rcv.sb_cc > sb_max) {
2827			th->th_urp = 0;			/* XXX */
2828			thflags &= ~TH_URG;		/* XXX */
2829			SOCKBUF_UNLOCK(&so->so_rcv);	/* XXX */
2830			goto dodata;			/* XXX */
2831		}
2832		/*
2833		 * If this segment advances the known urgent pointer,
2834		 * then mark the data stream.  This should not happen
2835		 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
2836		 * a FIN has been received from the remote side.
2837		 * In these states we ignore the URG.
2838		 *
2839		 * According to RFC961 (Assigned Protocols),
2840		 * the urgent pointer points to the last octet
2841		 * of urgent data.  We continue, however,
2842		 * to consider it to indicate the first octet
2843		 * of data past the urgent section as the original
2844		 * spec states (in one of two places).
2845		 */
2846		if (SEQ_GT(th->th_seq+th->th_urp, tp->rcv_up)) {
2847			tp->rcv_up = th->th_seq + th->th_urp;
2848			so->so_oobmark = so->so_rcv.sb_cc +
2849			    (tp->rcv_up - tp->rcv_nxt) - 1;
2850			if (so->so_oobmark == 0)
2851				so->so_rcv.sb_state |= SBS_RCVATMARK;
2852			sohasoutofband(so);
2853			tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
2854		}
2855		SOCKBUF_UNLOCK(&so->so_rcv);
2856		/*
2857		 * Remove out of band data so doesn't get presented to user.
2858		 * This can happen independent of advancing the URG pointer,
2859		 * but if two URG's are pending at once, some out-of-band
2860		 * data may creep in... ick.
2861		 */
2862		if (th->th_urp <= (u_long)tlen &&
2863		    !(so->so_options & SO_OOBINLINE)) {
2864			/* hdr drop is delayed */
2865			tcp_pulloutofband(so, th, m, drop_hdrlen);
2866		}
2867	} else {
2868		/*
2869		 * If no out of band data is expected,
2870		 * pull receive urgent pointer along
2871		 * with the receive window.
2872		 */
2873		if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
2874			tp->rcv_up = tp->rcv_nxt;
2875	}
2876dodata:							/* XXX */
2877	INP_WLOCK_ASSERT(tp->t_inpcb);
2878
2879	/*
2880	 * Process the segment text, merging it into the TCP sequencing queue,
2881	 * and arranging for acknowledgment of receipt if necessary.
2882	 * This process logically involves adjusting tp->rcv_wnd as data
2883	 * is presented to the user (this happens in tcp_usrreq.c,
2884	 * case PRU_RCVD).  If a FIN has already been received on this
2885	 * connection then we just ignore the text.
2886	 */
2887	if ((tlen || (thflags & TH_FIN)) &&
2888	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2889		tcp_seq save_start = th->th_seq;
2890		m_adj(m, drop_hdrlen);	/* delayed header drop */
2891		/*
2892		 * Insert segment which includes th into TCP reassembly queue
2893		 * with control block tp.  Set thflags to whether reassembly now
2894		 * includes a segment with FIN.  This handles the common case
2895		 * inline (segment is the next to be received on an established
2896		 * connection, and the queue is empty), avoiding linkage into
2897		 * and removal from the queue and repetition of various
2898		 * conversions.
2899		 * Set DELACK for segments received in order, but ack
2900		 * immediately when segments are out of order (so
2901		 * fast retransmit can work).
2902		 */
2903		if (th->th_seq == tp->rcv_nxt &&
2904		    LIST_EMPTY(&tp->t_segq) &&
2905		    TCPS_HAVEESTABLISHED(tp->t_state)) {
2906			if (DELAY_ACK(tp))
2907				tp->t_flags |= TF_DELACK;
2908			else
2909				tp->t_flags |= TF_ACKNOW;
2910			tp->rcv_nxt += tlen;
2911			thflags = th->th_flags & TH_FIN;
2912			TCPSTAT_INC(tcps_rcvpack);
2913			TCPSTAT_ADD(tcps_rcvbyte, tlen);
2914			ND6_HINT(tp);
2915			SOCKBUF_LOCK(&so->so_rcv);
2916			if (so->so_rcv.sb_state & SBS_CANTRCVMORE)
2917				m_freem(m);
2918			else
2919				sbappendstream_locked(&so->so_rcv, m);
2920			/* NB: sorwakeup_locked() does an implicit unlock. */
2921			sorwakeup_locked(so);
2922		} else {
2923			/*
2924			 * XXX: Due to the header drop above "th" is
2925			 * theoretically invalid by now.  Fortunately
2926			 * m_adj() doesn't actually frees any mbufs
2927			 * when trimming from the head.
2928			 */
2929			thflags = tcp_reass(tp, th, &tlen, m);
2930			tp->t_flags |= TF_ACKNOW;
2931		}
2932		if (tlen > 0 && (tp->t_flags & TF_SACK_PERMIT))
2933			tcp_update_sack_list(tp, save_start, save_start + tlen);
2934#if 0
2935		/*
2936		 * Note the amount of data that peer has sent into
2937		 * our window, in order to estimate the sender's
2938		 * buffer size.
2939		 * XXX: Unused.
2940		 */
2941		if (SEQ_GT(tp->rcv_adv, tp->rcv_nxt))
2942			len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
2943		else
2944			len = so->so_rcv.sb_hiwat;
2945#endif
2946	} else {
2947		m_freem(m);
2948		thflags &= ~TH_FIN;
2949	}
2950
2951	/*
2952	 * If FIN is received ACK the FIN and let the user know
2953	 * that the connection is closing.
2954	 */
2955	if (thflags & TH_FIN) {
2956		if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2957			socantrcvmore(so);
2958			/*
2959			 * If connection is half-synchronized
2960			 * (ie NEEDSYN flag on) then delay ACK,
2961			 * so it may be piggybacked when SYN is sent.
2962			 * Otherwise, since we received a FIN then no
2963			 * more input can be expected, send ACK now.
2964			 */
2965			if (tp->t_flags & TF_NEEDSYN)
2966				tp->t_flags |= TF_DELACK;
2967			else
2968				tp->t_flags |= TF_ACKNOW;
2969			tp->rcv_nxt++;
2970		}
2971		switch (tp->t_state) {
2972
2973		/*
2974		 * In SYN_RECEIVED and ESTABLISHED STATES
2975		 * enter the CLOSE_WAIT state.
2976		 */
2977		case TCPS_SYN_RECEIVED:
2978			tp->t_starttime = ticks;
2979			/* FALLTHROUGH */
2980		case TCPS_ESTABLISHED:
2981			tp->t_state = TCPS_CLOSE_WAIT;
2982			break;
2983
2984		/*
2985		 * If still in FIN_WAIT_1 STATE FIN has not been acked so
2986		 * enter the CLOSING state.
2987		 */
2988		case TCPS_FIN_WAIT_1:
2989			tp->t_state = TCPS_CLOSING;
2990			break;
2991
2992		/*
2993		 * In FIN_WAIT_2 state enter the TIME_WAIT state,
2994		 * starting the time-wait timer, turning off the other
2995		 * standard timers.
2996		 */
2997		case TCPS_FIN_WAIT_2:
2998			INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
2999			KASSERT(ti_locked == TI_WLOCKED, ("%s: dodata "
3000			    "TCP_FIN_WAIT_2 ti_locked: %d", __func__,
3001			    ti_locked));
3002
3003			tcp_twstart(tp);
3004			INP_INFO_WUNLOCK(&V_tcbinfo);
3005			return;
3006		}
3007	}
3008	if (ti_locked == TI_WLOCKED)
3009		INP_INFO_WUNLOCK(&V_tcbinfo);
3010	ti_locked = TI_UNLOCKED;
3011
3012#ifdef TCPDEBUG
3013	if (so->so_options & SO_DEBUG)
3014		tcp_trace(TA_INPUT, ostate, tp, (void *)tcp_saveipgen,
3015			  &tcp_savetcp, 0);
3016#endif
3017
3018	/*
3019	 * Return any desired output.
3020	 */
3021	if (needoutput || (tp->t_flags & TF_ACKNOW))
3022		(void) tcp_output(tp);
3023
3024check_delack:
3025	KASSERT(ti_locked == TI_UNLOCKED, ("%s: check_delack ti_locked %d",
3026	    __func__, ti_locked));
3027	INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
3028	INP_WLOCK_ASSERT(tp->t_inpcb);
3029
3030	if (tp->t_flags & TF_DELACK) {
3031		tp->t_flags &= ~TF_DELACK;
3032		tcp_timer_activate(tp, TT_DELACK, tcp_delacktime);
3033	}
3034	INP_WUNLOCK(tp->t_inpcb);
3035	return;
3036
3037dropafterack:
3038	/*
3039	 * Generate an ACK dropping incoming segment if it occupies
3040	 * sequence space, where the ACK reflects our state.
3041	 *
3042	 * We can now skip the test for the RST flag since all
3043	 * paths to this code happen after packets containing
3044	 * RST have been dropped.
3045	 *
3046	 * In the SYN-RECEIVED state, don't send an ACK unless the
3047	 * segment we received passes the SYN-RECEIVED ACK test.
3048	 * If it fails send a RST.  This breaks the loop in the
3049	 * "LAND" DoS attack, and also prevents an ACK storm
3050	 * between two listening ports that have been sent forged
3051	 * SYN segments, each with the source address of the other.
3052	 */
3053	if (tp->t_state == TCPS_SYN_RECEIVED && (thflags & TH_ACK) &&
3054	    (SEQ_GT(tp->snd_una, th->th_ack) ||
3055	     SEQ_GT(th->th_ack, tp->snd_max)) ) {
3056		rstreason = BANDLIM_RST_OPENPORT;
3057		goto dropwithreset;
3058	}
3059#ifdef TCPDEBUG
3060	if (so->so_options & SO_DEBUG)
3061		tcp_trace(TA_DROP, ostate, tp, (void *)tcp_saveipgen,
3062			  &tcp_savetcp, 0);
3063#endif
3064	if (ti_locked == TI_WLOCKED)
3065		INP_INFO_WUNLOCK(&V_tcbinfo);
3066	ti_locked = TI_UNLOCKED;
3067
3068	tp->t_flags |= TF_ACKNOW;
3069	(void) tcp_output(tp);
3070	INP_WUNLOCK(tp->t_inpcb);
3071	m_freem(m);
3072	return;
3073
3074dropwithreset:
3075	if (ti_locked == TI_WLOCKED)
3076		INP_INFO_WUNLOCK(&V_tcbinfo);
3077	ti_locked = TI_UNLOCKED;
3078
3079	if (tp != NULL) {
3080		tcp_dropwithreset(m, th, tp, tlen, rstreason);
3081		INP_WUNLOCK(tp->t_inpcb);
3082	} else
3083		tcp_dropwithreset(m, th, NULL, tlen, rstreason);
3084	return;
3085
3086drop:
3087	if (ti_locked == TI_WLOCKED) {
3088		INP_INFO_WUNLOCK(&V_tcbinfo);
3089		ti_locked = TI_UNLOCKED;
3090	}
3091#ifdef INVARIANTS
3092	else
3093		INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
3094#endif
3095
3096	/*
3097	 * Drop space held by incoming segment and return.
3098	 */
3099#ifdef TCPDEBUG
3100	if (tp == NULL || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
3101		tcp_trace(TA_DROP, ostate, tp, (void *)tcp_saveipgen,
3102			  &tcp_savetcp, 0);
3103#endif
3104	if (tp != NULL)
3105		INP_WUNLOCK(tp->t_inpcb);
3106	m_freem(m);
3107}
3108
3109/*
3110 * Issue RST and make ACK acceptable to originator of segment.
3111 * The mbuf must still include the original packet header.
3112 * tp may be NULL.
3113 */
3114static void
3115tcp_dropwithreset(struct mbuf *m, struct tcphdr *th, struct tcpcb *tp,
3116    int tlen, int rstreason)
3117{
3118#ifdef INET
3119	struct ip *ip;
3120#endif
3121#ifdef INET6
3122	struct ip6_hdr *ip6;
3123#endif
3124
3125	if (tp != NULL) {
3126		INP_WLOCK_ASSERT(tp->t_inpcb);
3127	}
3128
3129	/* Don't bother if destination was broadcast/multicast. */
3130	if ((th->th_flags & TH_RST) || m->m_flags & (M_BCAST|M_MCAST))
3131		goto drop;
3132#ifdef INET6
3133	if (mtod(m, struct ip *)->ip_v == 6) {
3134		ip6 = mtod(m, struct ip6_hdr *);
3135		if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) ||
3136		    IN6_IS_ADDR_MULTICAST(&ip6->ip6_src))
3137			goto drop;
3138		/* IPv6 anycast check is done at tcp6_input() */
3139	}
3140#endif
3141#if defined(INET) && defined(INET6)
3142	else
3143#endif
3144#ifdef INET
3145	{
3146		ip = mtod(m, struct ip *);
3147		if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
3148		    IN_MULTICAST(ntohl(ip->ip_src.s_addr)) ||
3149		    ip->ip_src.s_addr == htonl(INADDR_BROADCAST) ||
3150		    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
3151			goto drop;
3152	}
3153#endif
3154
3155	/* Perform bandwidth limiting. */
3156	if (badport_bandlim(rstreason) < 0)
3157		goto drop;
3158
3159	/* tcp_respond consumes the mbuf chain. */
3160	if (th->th_flags & TH_ACK) {
3161		tcp_respond(tp, mtod(m, void *), th, m, (tcp_seq)0,
3162		    th->th_ack, TH_RST);
3163	} else {
3164		if (th->th_flags & TH_SYN)
3165			tlen++;
3166		tcp_respond(tp, mtod(m, void *), th, m, th->th_seq+tlen,
3167		    (tcp_seq)0, TH_RST|TH_ACK);
3168	}
3169	return;
3170drop:
3171	m_freem(m);
3172}
3173
3174/*
3175 * Parse TCP options and place in tcpopt.
3176 */
3177static void
3178tcp_dooptions(struct tcpopt *to, u_char *cp, int cnt, int flags)
3179{
3180	int opt, optlen;
3181
3182	to->to_flags = 0;
3183	for (; cnt > 0; cnt -= optlen, cp += optlen) {
3184		opt = cp[0];
3185		if (opt == TCPOPT_EOL)
3186			break;
3187		if (opt == TCPOPT_NOP)
3188			optlen = 1;
3189		else {
3190			if (cnt < 2)
3191				break;
3192			optlen = cp[1];
3193			if (optlen < 2 || optlen > cnt)
3194				break;
3195		}
3196		switch (opt) {
3197		case TCPOPT_MAXSEG:
3198			if (optlen != TCPOLEN_MAXSEG)
3199				continue;
3200			if (!(flags & TO_SYN))
3201				continue;
3202			to->to_flags |= TOF_MSS;
3203			bcopy((char *)cp + 2,
3204			    (char *)&to->to_mss, sizeof(to->to_mss));
3205			to->to_mss = ntohs(to->to_mss);
3206			break;
3207		case TCPOPT_WINDOW:
3208			if (optlen != TCPOLEN_WINDOW)
3209				continue;
3210			if (!(flags & TO_SYN))
3211				continue;
3212			to->to_flags |= TOF_SCALE;
3213			to->to_wscale = min(cp[2], TCP_MAX_WINSHIFT);
3214			break;
3215		case TCPOPT_TIMESTAMP:
3216			if (optlen != TCPOLEN_TIMESTAMP)
3217				continue;
3218			to->to_flags |= TOF_TS;
3219			bcopy((char *)cp + 2,
3220			    (char *)&to->to_tsval, sizeof(to->to_tsval));
3221			to->to_tsval = ntohl(to->to_tsval);
3222			bcopy((char *)cp + 6,
3223			    (char *)&to->to_tsecr, sizeof(to->to_tsecr));
3224			to->to_tsecr = ntohl(to->to_tsecr);
3225			break;
3226#ifdef TCP_SIGNATURE
3227		/*
3228		 * XXX In order to reply to a host which has set the
3229		 * TCP_SIGNATURE option in its initial SYN, we have to
3230		 * record the fact that the option was observed here
3231		 * for the syncache code to perform the correct response.
3232		 */
3233		case TCPOPT_SIGNATURE:
3234			if (optlen != TCPOLEN_SIGNATURE)
3235				continue;
3236			to->to_flags |= TOF_SIGNATURE;
3237			to->to_signature = cp + 2;
3238			break;
3239#endif
3240		case TCPOPT_SACK_PERMITTED:
3241			if (optlen != TCPOLEN_SACK_PERMITTED)
3242				continue;
3243			if (!(flags & TO_SYN))
3244				continue;
3245			if (!V_tcp_do_sack)
3246				continue;
3247			to->to_flags |= TOF_SACKPERM;
3248			break;
3249		case TCPOPT_SACK:
3250			if (optlen <= 2 || (optlen - 2) % TCPOLEN_SACK != 0)
3251				continue;
3252			if (flags & TO_SYN)
3253				continue;
3254			to->to_flags |= TOF_SACK;
3255			to->to_nsacks = (optlen - 2) / TCPOLEN_SACK;
3256			to->to_sacks = cp + 2;
3257			TCPSTAT_INC(tcps_sack_rcv_blocks);
3258			break;
3259		default:
3260			continue;
3261		}
3262	}
3263}
3264
3265/*
3266 * Pull out of band byte out of a segment so
3267 * it doesn't appear in the user's data queue.
3268 * It is still reflected in the segment length for
3269 * sequencing purposes.
3270 */
3271static void
3272tcp_pulloutofband(struct socket *so, struct tcphdr *th, struct mbuf *m,
3273    int off)
3274{
3275	int cnt = off + th->th_urp - 1;
3276
3277	while (cnt >= 0) {
3278		if (m->m_len > cnt) {
3279			char *cp = mtod(m, caddr_t) + cnt;
3280			struct tcpcb *tp = sototcpcb(so);
3281
3282			INP_WLOCK_ASSERT(tp->t_inpcb);
3283
3284			tp->t_iobc = *cp;
3285			tp->t_oobflags |= TCPOOB_HAVEDATA;
3286			bcopy(cp+1, cp, (unsigned)(m->m_len - cnt - 1));
3287			m->m_len--;
3288			if (m->m_flags & M_PKTHDR)
3289				m->m_pkthdr.len--;
3290			return;
3291		}
3292		cnt -= m->m_len;
3293		m = m->m_next;
3294		if (m == NULL)
3295			break;
3296	}
3297	panic("tcp_pulloutofband");
3298}
3299
3300/*
3301 * Collect new round-trip time estimate
3302 * and update averages and current timeout.
3303 */
3304static void
3305tcp_xmit_timer(struct tcpcb *tp, int rtt)
3306{
3307	int delta;
3308
3309	INP_WLOCK_ASSERT(tp->t_inpcb);
3310
3311	TCPSTAT_INC(tcps_rttupdated);
3312	tp->t_rttupdated++;
3313	if (tp->t_srtt != 0) {
3314		/*
3315		 * srtt is stored as fixed point with 5 bits after the
3316		 * binary point (i.e., scaled by 8).  The following magic
3317		 * is equivalent to the smoothing algorithm in rfc793 with
3318		 * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed
3319		 * point).  Adjust rtt to origin 0.
3320		 */
3321		delta = ((rtt - 1) << TCP_DELTA_SHIFT)
3322			- (tp->t_srtt >> (TCP_RTT_SHIFT - TCP_DELTA_SHIFT));
3323
3324		if ((tp->t_srtt += delta) <= 0)
3325			tp->t_srtt = 1;
3326
3327		/*
3328		 * We accumulate a smoothed rtt variance (actually, a
3329		 * smoothed mean difference), then set the retransmit
3330		 * timer to smoothed rtt + 4 times the smoothed variance.
3331		 * rttvar is stored as fixed point with 4 bits after the
3332		 * binary point (scaled by 16).  The following is
3333		 * equivalent to rfc793 smoothing with an alpha of .75
3334		 * (rttvar = rttvar*3/4 + |delta| / 4).  This replaces
3335		 * rfc793's wired-in beta.
3336		 */
3337		if (delta < 0)
3338			delta = -delta;
3339		delta -= tp->t_rttvar >> (TCP_RTTVAR_SHIFT - TCP_DELTA_SHIFT);
3340		if ((tp->t_rttvar += delta) <= 0)
3341			tp->t_rttvar = 1;
3342		if (tp->t_rttbest > tp->t_srtt + tp->t_rttvar)
3343		    tp->t_rttbest = tp->t_srtt + tp->t_rttvar;
3344	} else {
3345		/*
3346		 * No rtt measurement yet - use the unsmoothed rtt.
3347		 * Set the variance to half the rtt (so our first
3348		 * retransmit happens at 3*rtt).
3349		 */
3350		tp->t_srtt = rtt << TCP_RTT_SHIFT;
3351		tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT - 1);
3352		tp->t_rttbest = tp->t_srtt + tp->t_rttvar;
3353	}
3354	tp->t_rtttime = 0;
3355	tp->t_rxtshift = 0;
3356
3357	/*
3358	 * the retransmit should happen at rtt + 4 * rttvar.
3359	 * Because of the way we do the smoothing, srtt and rttvar
3360	 * will each average +1/2 tick of bias.  When we compute
3361	 * the retransmit timer, we want 1/2 tick of rounding and
3362	 * 1 extra tick because of +-1/2 tick uncertainty in the
3363	 * firing of the timer.  The bias will give us exactly the
3364	 * 1.5 tick we need.  But, because the bias is
3365	 * statistical, we have to test that we don't drop below
3366	 * the minimum feasible timer (which is 2 ticks).
3367	 */
3368	TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
3369		      max(tp->t_rttmin, rtt + 2), TCPTV_REXMTMAX);
3370
3371	/*
3372	 * We received an ack for a packet that wasn't retransmitted;
3373	 * it is probably safe to discard any error indications we've
3374	 * received recently.  This isn't quite right, but close enough
3375	 * for now (a route might have failed after we sent a segment,
3376	 * and the return path might not be symmetrical).
3377	 */
3378	tp->t_softerror = 0;
3379}
3380
3381/*
3382 * Determine a reasonable value for maxseg size.
3383 * If the route is known, check route for mtu.
3384 * If none, use an mss that can be handled on the outgoing interface
3385 * without forcing IP to fragment.  If no route is found, route has no mtu,
3386 * or the destination isn't local, use a default, hopefully conservative
3387 * size (usually 512 or the default IP max size, but no more than the mtu
3388 * of the interface), as we can't discover anything about intervening
3389 * gateways or networks.  We also initialize the congestion/slow start
3390 * window to be a single segment if the destination isn't local.
3391 * While looking at the routing entry, we also initialize other path-dependent
3392 * parameters from pre-set or cached values in the routing entry.
3393 *
3394 * Also take into account the space needed for options that we
3395 * send regularly.  Make maxseg shorter by that amount to assure
3396 * that we can send maxseg amount of data even when the options
3397 * are present.  Store the upper limit of the length of options plus
3398 * data in maxopd.
3399 *
3400 * NOTE that this routine is only called when we process an incoming
3401 * segment, or an ICMP need fragmentation datagram. Outgoing SYN/ACK MSS
3402 * settings are handled in tcp_mssopt().
3403 */
3404void
3405tcp_mss_update(struct tcpcb *tp, int offer, int mtuoffer,
3406    struct hc_metrics_lite *metricptr, struct tcp_ifcap *cap)
3407{
3408	int mss = 0;
3409	u_long maxmtu = 0;
3410	struct inpcb *inp = tp->t_inpcb;
3411	struct hc_metrics_lite metrics;
3412	int origoffer;
3413#ifdef INET6
3414	int isipv6 = ((inp->inp_vflag & INP_IPV6) != 0) ? 1 : 0;
3415	size_t min_protoh = isipv6 ?
3416			    sizeof (struct ip6_hdr) + sizeof (struct tcphdr) :
3417			    sizeof (struct tcpiphdr);
3418#else
3419	const size_t min_protoh = sizeof(struct tcpiphdr);
3420#endif
3421
3422	INP_WLOCK_ASSERT(tp->t_inpcb);
3423
3424	if (mtuoffer != -1) {
3425		KASSERT(offer == -1, ("%s: conflict", __func__));
3426		offer = mtuoffer - min_protoh;
3427	}
3428	origoffer = offer;
3429
3430	/* Initialize. */
3431#ifdef INET6
3432	if (isipv6) {
3433		maxmtu = tcp_maxmtu6(&inp->inp_inc, cap);
3434		tp->t_maxopd = tp->t_maxseg = V_tcp_v6mssdflt;
3435	}
3436#endif
3437#if defined(INET) && defined(INET6)
3438	else
3439#endif
3440#ifdef INET
3441	{
3442		maxmtu = tcp_maxmtu(&inp->inp_inc, cap);
3443		tp->t_maxopd = tp->t_maxseg = V_tcp_mssdflt;
3444	}
3445#endif
3446
3447	/*
3448	 * No route to sender, stay with default mss and return.
3449	 */
3450	if (maxmtu == 0) {
3451		/*
3452		 * In case we return early we need to initialize metrics
3453		 * to a defined state as tcp_hc_get() would do for us
3454		 * if there was no cache hit.
3455		 */
3456		if (metricptr != NULL)
3457			bzero(metricptr, sizeof(struct hc_metrics_lite));
3458		return;
3459	}
3460
3461	/* What have we got? */
3462	switch (offer) {
3463		case 0:
3464			/*
3465			 * Offer == 0 means that there was no MSS on the SYN
3466			 * segment, in this case we use tcp_mssdflt as
3467			 * already assigned to t_maxopd above.
3468			 */
3469			offer = tp->t_maxopd;
3470			break;
3471
3472		case -1:
3473			/*
3474			 * Offer == -1 means that we didn't receive SYN yet.
3475			 */
3476			/* FALLTHROUGH */
3477
3478		default:
3479			/*
3480			 * Prevent DoS attack with too small MSS. Round up
3481			 * to at least minmss.
3482			 */
3483			offer = max(offer, V_tcp_minmss);
3484	}
3485
3486	/*
3487	 * rmx information is now retrieved from tcp_hostcache.
3488	 */
3489	tcp_hc_get(&inp->inp_inc, &metrics);
3490	if (metricptr != NULL)
3491		bcopy(&metrics, metricptr, sizeof(struct hc_metrics_lite));
3492
3493	/*
3494	 * If there's a discovered mtu int tcp hostcache, use it
3495	 * else, use the link mtu.
3496	 */
3497	if (metrics.rmx_mtu)
3498		mss = min(metrics.rmx_mtu, maxmtu) - min_protoh;
3499	else {
3500#ifdef INET6
3501		if (isipv6) {
3502			mss = maxmtu - min_protoh;
3503			if (!V_path_mtu_discovery &&
3504			    !in6_localaddr(&inp->in6p_faddr))
3505				mss = min(mss, V_tcp_v6mssdflt);
3506		}
3507#endif
3508#if defined(INET) && defined(INET6)
3509		else
3510#endif
3511#ifdef INET
3512		{
3513			mss = maxmtu - min_protoh;
3514			if (!V_path_mtu_discovery &&
3515			    !in_localaddr(inp->inp_faddr))
3516				mss = min(mss, V_tcp_mssdflt);
3517		}
3518#endif
3519		/*
3520		 * XXX - The above conditional (mss = maxmtu - min_protoh)
3521		 * probably violates the TCP spec.
3522		 * The problem is that, since we don't know the
3523		 * other end's MSS, we are supposed to use a conservative
3524		 * default.  But, if we do that, then MTU discovery will
3525		 * never actually take place, because the conservative
3526		 * default is much less than the MTUs typically seen
3527		 * on the Internet today.  For the moment, we'll sweep
3528		 * this under the carpet.
3529		 *
3530		 * The conservative default might not actually be a problem
3531		 * if the only case this occurs is when sending an initial
3532		 * SYN with options and data to a host we've never talked
3533		 * to before.  Then, they will reply with an MSS value which
3534		 * will get recorded and the new parameters should get
3535		 * recomputed.  For Further Study.
3536		 */
3537	}
3538	mss = min(mss, offer);
3539
3540	/*
3541	 * Sanity check: make sure that maxopd will be large
3542	 * enough to allow some data on segments even if the
3543	 * all the option space is used (40bytes).  Otherwise
3544	 * funny things may happen in tcp_output.
3545	 */
3546	mss = max(mss, 64);
3547
3548	/*
3549	 * maxopd stores the maximum length of data AND options
3550	 * in a segment; maxseg is the amount of data in a normal
3551	 * segment.  We need to store this value (maxopd) apart
3552	 * from maxseg, because now every segment carries options
3553	 * and thus we normally have somewhat less data in segments.
3554	 */
3555	tp->t_maxopd = mss;
3556
3557	/*
3558	 * origoffer==-1 indicates that no segments were received yet.
3559	 * In this case we just guess.
3560	 */
3561	if ((tp->t_flags & (TF_REQ_TSTMP|TF_NOOPT)) == TF_REQ_TSTMP &&
3562	    (origoffer == -1 ||
3563	     (tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP))
3564		mss -= TCPOLEN_TSTAMP_APPA;
3565
3566	tp->t_maxseg = mss;
3567}
3568
3569void
3570tcp_mss(struct tcpcb *tp, int offer)
3571{
3572	int mss;
3573	u_long bufsize;
3574	struct inpcb *inp;
3575	struct socket *so;
3576	struct hc_metrics_lite metrics;
3577	struct tcp_ifcap cap;
3578
3579	KASSERT(tp != NULL, ("%s: tp == NULL", __func__));
3580
3581	bzero(&cap, sizeof(cap));
3582	tcp_mss_update(tp, offer, -1, &metrics, &cap);
3583
3584	mss = tp->t_maxseg;
3585	inp = tp->t_inpcb;
3586
3587	/*
3588	 * If there's a pipesize, change the socket buffer to that size,
3589	 * don't change if sb_hiwat is different than default (then it
3590	 * has been changed on purpose with setsockopt).
3591	 * Make the socket buffers an integral number of mss units;
3592	 * if the mss is larger than the socket buffer, decrease the mss.
3593	 */
3594	so = inp->inp_socket;
3595	SOCKBUF_LOCK(&so->so_snd);
3596	if ((so->so_snd.sb_hiwat == V_tcp_sendspace) && metrics.rmx_sendpipe)
3597		bufsize = metrics.rmx_sendpipe;
3598	else
3599		bufsize = so->so_snd.sb_hiwat;
3600	if (bufsize < mss)
3601		mss = bufsize;
3602	else {
3603		bufsize = roundup(bufsize, mss);
3604		if (bufsize > sb_max)
3605			bufsize = sb_max;
3606		if (bufsize > so->so_snd.sb_hiwat)
3607			(void)sbreserve_locked(&so->so_snd, bufsize, so, NULL);
3608	}
3609	SOCKBUF_UNLOCK(&so->so_snd);
3610	tp->t_maxseg = mss;
3611
3612	SOCKBUF_LOCK(&so->so_rcv);
3613	if ((so->so_rcv.sb_hiwat == V_tcp_recvspace) && metrics.rmx_recvpipe)
3614		bufsize = metrics.rmx_recvpipe;
3615	else
3616		bufsize = so->so_rcv.sb_hiwat;
3617	if (bufsize > mss) {
3618		bufsize = roundup(bufsize, mss);
3619		if (bufsize > sb_max)
3620			bufsize = sb_max;
3621		if (bufsize > so->so_rcv.sb_hiwat)
3622			(void)sbreserve_locked(&so->so_rcv, bufsize, so, NULL);
3623	}
3624	SOCKBUF_UNLOCK(&so->so_rcv);
3625
3626	/* Check the interface for TSO capabilities. */
3627	if (cap.ifcap & CSUM_TSO) {
3628		tp->t_flags |= TF_TSO;
3629		tp->t_tsomax = cap.tsomax;
3630	}
3631}
3632
3633/*
3634 * Determine the MSS option to send on an outgoing SYN.
3635 */
3636int
3637tcp_mssopt(struct in_conninfo *inc)
3638{
3639	int mss = 0;
3640	u_long maxmtu = 0;
3641	u_long thcmtu = 0;
3642	size_t min_protoh;
3643
3644	KASSERT(inc != NULL, ("tcp_mssopt with NULL in_conninfo pointer"));
3645
3646#ifdef INET6
3647	if (inc->inc_flags & INC_ISIPV6) {
3648		mss = V_tcp_v6mssdflt;
3649		maxmtu = tcp_maxmtu6(inc, NULL);
3650		min_protoh = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
3651	}
3652#endif
3653#if defined(INET) && defined(INET6)
3654	else
3655#endif
3656#ifdef INET
3657	{
3658		mss = V_tcp_mssdflt;
3659		maxmtu = tcp_maxmtu(inc, NULL);
3660		min_protoh = sizeof(struct tcpiphdr);
3661	}
3662#endif
3663#if defined(INET6) || defined(INET)
3664	thcmtu = tcp_hc_getmtu(inc); /* IPv4 and IPv6 */
3665#endif
3666
3667	if (maxmtu && thcmtu)
3668		mss = min(maxmtu, thcmtu) - min_protoh;
3669	else if (maxmtu || thcmtu)
3670		mss = max(maxmtu, thcmtu) - min_protoh;
3671
3672	return (mss);
3673}
3674
3675
3676/*
3677 * On a partial ack arrives, force the retransmission of the
3678 * next unacknowledged segment.  Do not clear tp->t_dupacks.
3679 * By setting snd_nxt to ti_ack, this forces retransmission timer to
3680 * be started again.
3681 */
3682static void
3683tcp_newreno_partial_ack(struct tcpcb *tp, struct tcphdr *th)
3684{
3685	tcp_seq onxt = tp->snd_nxt;
3686	u_long  ocwnd = tp->snd_cwnd;
3687
3688	INP_WLOCK_ASSERT(tp->t_inpcb);
3689
3690	tcp_timer_activate(tp, TT_REXMT, 0);
3691	tp->t_rtttime = 0;
3692	tp->snd_nxt = th->th_ack;
3693	/*
3694	 * Set snd_cwnd to one segment beyond acknowledged offset.
3695	 * (tp->snd_una has not yet been updated when this function is called.)
3696	 */
3697	tp->snd_cwnd = tp->t_maxseg + BYTES_THIS_ACK(tp, th);
3698	tp->t_flags |= TF_ACKNOW;
3699	(void) tcp_output(tp);
3700	tp->snd_cwnd = ocwnd;
3701	if (SEQ_GT(onxt, tp->snd_nxt))
3702		tp->snd_nxt = onxt;
3703	/*
3704	 * Partial window deflation.  Relies on fact that tp->snd_una
3705	 * not updated yet.
3706	 */
3707	if (tp->snd_cwnd > BYTES_THIS_ACK(tp, th))
3708		tp->snd_cwnd -= BYTES_THIS_ACK(tp, th);
3709	else
3710		tp->snd_cwnd = 0;
3711	tp->snd_cwnd += tp->t_maxseg;
3712}
3713