tcp_input.c revision 249809
1/*-
2 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
3 *	The Regents of the University of California.  All rights reserved.
4 * Copyright (c) 2007-2008,2010
5 *	Swinburne University of Technology, Melbourne, Australia.
6 * Copyright (c) 2009-2010 Lawrence Stewart <lstewart@freebsd.org>
7 * Copyright (c) 2010 The FreeBSD Foundation
8 * Copyright (c) 2010-2011 Juniper Networks, Inc.
9 * All rights reserved.
10 *
11 * Portions of this software were developed at the Centre for Advanced Internet
12 * Architectures, Swinburne University of Technology, by Lawrence Stewart,
13 * James Healy and David Hayes, made possible in part by a grant from the Cisco
14 * University Research Program Fund at Community Foundation Silicon Valley.
15 *
16 * Portions of this software were developed at the Centre for Advanced
17 * Internet Architectures, Swinburne University of Technology, Melbourne,
18 * Australia by David Hayes under sponsorship from the FreeBSD Foundation.
19 *
20 * Portions of this software were developed by Robert N. M. Watson under
21 * contract to Juniper Networks, Inc.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the above copyright
27 *    notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 *    notice, this list of conditions and the following disclaimer in the
30 *    documentation and/or other materials provided with the distribution.
31 * 4. Neither the name of the University nor the names of its contributors
32 *    may be used to endorse or promote products derived from this software
33 *    without specific prior written permission.
34 *
35 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
36 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
37 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
38 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
39 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
40 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
41 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
42 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
43 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
44 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
45 * SUCH DAMAGE.
46 *
47 *	@(#)tcp_input.c	8.12 (Berkeley) 5/24/95
48 */
49
50#include <sys/cdefs.h>
51__FBSDID("$FreeBSD: head/sys/netinet/tcp_input.c 249809 2013-04-23 14:06:32Z andre $");
52
53#include "opt_ipfw.h"		/* for ipfw_fwd	*/
54#include "opt_inet.h"
55#include "opt_inet6.h"
56#include "opt_ipsec.h"
57#include "opt_tcpdebug.h"
58
59#include <sys/param.h>
60#include <sys/kernel.h>
61#include <sys/hhook.h>
62#include <sys/malloc.h>
63#include <sys/mbuf.h>
64#include <sys/proc.h>		/* for proc0 declaration */
65#include <sys/protosw.h>
66#include <sys/signalvar.h>
67#include <sys/socket.h>
68#include <sys/socketvar.h>
69#include <sys/sysctl.h>
70#include <sys/syslog.h>
71#include <sys/systm.h>
72
73#include <machine/cpu.h>	/* before tcp_seq.h, for tcp_random18() */
74
75#include <vm/uma.h>
76
77#include <net/if.h>
78#include <net/route.h>
79#include <net/vnet.h>
80
81#define TCPSTATES		/* for logging */
82
83#include <netinet/cc.h>
84#include <netinet/in.h>
85#include <netinet/in_pcb.h>
86#include <netinet/in_systm.h>
87#include <netinet/in_var.h>
88#include <netinet/ip.h>
89#include <netinet/ip_icmp.h>	/* required for icmp_var.h */
90#include <netinet/icmp_var.h>	/* for ICMP_BANDLIM */
91#include <netinet/ip_var.h>
92#include <netinet/ip_options.h>
93#include <netinet/ip6.h>
94#include <netinet/icmp6.h>
95#include <netinet6/in6_pcb.h>
96#include <netinet6/ip6_var.h>
97#include <netinet6/nd6.h>
98#include <netinet/tcp_fsm.h>
99#include <netinet/tcp_seq.h>
100#include <netinet/tcp_timer.h>
101#include <netinet/tcp_var.h>
102#include <netinet6/tcp6_var.h>
103#include <netinet/tcpip.h>
104#include <netinet/tcp_syncache.h>
105#ifdef TCPDEBUG
106#include <netinet/tcp_debug.h>
107#endif /* TCPDEBUG */
108#ifdef TCP_OFFLOAD
109#include <netinet/tcp_offload.h>
110#endif
111
112#ifdef IPSEC
113#include <netipsec/ipsec.h>
114#include <netipsec/ipsec6.h>
115#endif /*IPSEC*/
116
117#include <machine/in_cksum.h>
118
119#include <security/mac/mac_framework.h>
120
121const int tcprexmtthresh = 3;
122
123int tcp_log_in_vain = 0;
124SYSCTL_INT(_net_inet_tcp, OID_AUTO, log_in_vain, CTLFLAG_RW,
125    &tcp_log_in_vain, 0,
126    "Log all incoming TCP segments to closed ports");
127
128VNET_DEFINE(int, blackhole) = 0;
129#define	V_blackhole		VNET(blackhole)
130SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, blackhole, CTLFLAG_RW,
131    &VNET_NAME(blackhole), 0,
132    "Do not send RST on segments to closed ports");
133
134VNET_DEFINE(int, tcp_delack_enabled) = 1;
135SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, delayed_ack, CTLFLAG_RW,
136    &VNET_NAME(tcp_delack_enabled), 0,
137    "Delay ACK to try and piggyback it onto a data packet");
138
139VNET_DEFINE(int, drop_synfin) = 0;
140#define	V_drop_synfin		VNET(drop_synfin)
141SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, drop_synfin, CTLFLAG_RW,
142    &VNET_NAME(drop_synfin), 0,
143    "Drop TCP packets with SYN+FIN set");
144
145VNET_DEFINE(int, tcp_do_rfc3042) = 1;
146#define	V_tcp_do_rfc3042	VNET(tcp_do_rfc3042)
147SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, rfc3042, CTLFLAG_RW,
148    &VNET_NAME(tcp_do_rfc3042), 0,
149    "Enable RFC 3042 (Limited Transmit)");
150
151VNET_DEFINE(int, tcp_do_rfc3390) = 1;
152SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, rfc3390, CTLFLAG_RW,
153    &VNET_NAME(tcp_do_rfc3390), 0,
154    "Enable RFC 3390 (Increasing TCP's Initial Congestion Window)");
155
156SYSCTL_NODE(_net_inet_tcp, OID_AUTO, experimental, CTLFLAG_RW, 0,
157    "Experimental TCP extensions");
158
159VNET_DEFINE(int, tcp_do_initcwnd10) = 1;
160SYSCTL_VNET_INT(_net_inet_tcp_experimental, OID_AUTO, initcwnd10, CTLFLAG_RW,
161    &VNET_NAME(tcp_do_initcwnd10), 0,
162    "Enable draft-ietf-tcpm-initcwnd-05 (Increasing initial CWND to 10)");
163
164VNET_DEFINE(int, tcp_do_rfc3465) = 1;
165SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, rfc3465, CTLFLAG_RW,
166    &VNET_NAME(tcp_do_rfc3465), 0,
167    "Enable RFC 3465 (Appropriate Byte Counting)");
168
169VNET_DEFINE(int, tcp_abc_l_var) = 2;
170SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, abc_l_var, CTLFLAG_RW,
171    &VNET_NAME(tcp_abc_l_var), 2,
172    "Cap the max cwnd increment during slow-start to this number of segments");
173
174static SYSCTL_NODE(_net_inet_tcp, OID_AUTO, ecn, CTLFLAG_RW, 0, "TCP ECN");
175
176VNET_DEFINE(int, tcp_do_ecn) = 0;
177SYSCTL_VNET_INT(_net_inet_tcp_ecn, OID_AUTO, enable, CTLFLAG_RW,
178    &VNET_NAME(tcp_do_ecn), 0,
179    "TCP ECN support");
180
181VNET_DEFINE(int, tcp_ecn_maxretries) = 1;
182SYSCTL_VNET_INT(_net_inet_tcp_ecn, OID_AUTO, maxretries, CTLFLAG_RW,
183    &VNET_NAME(tcp_ecn_maxretries), 0,
184    "Max retries before giving up on ECN");
185
186VNET_DEFINE(int, tcp_insecure_rst) = 0;
187#define	V_tcp_insecure_rst	VNET(tcp_insecure_rst)
188SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, insecure_rst, CTLFLAG_RW,
189    &VNET_NAME(tcp_insecure_rst), 0,
190    "Follow the old (insecure) criteria for accepting RST packets");
191
192VNET_DEFINE(int, tcp_recvspace) = 1024*64;
193#define	V_tcp_recvspace	VNET(tcp_recvspace)
194SYSCTL_VNET_INT(_net_inet_tcp, TCPCTL_RECVSPACE, recvspace, CTLFLAG_RW,
195    &VNET_NAME(tcp_recvspace), 0, "Initial receive socket buffer size");
196
197VNET_DEFINE(int, tcp_do_autorcvbuf) = 1;
198#define	V_tcp_do_autorcvbuf	VNET(tcp_do_autorcvbuf)
199SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, recvbuf_auto, CTLFLAG_RW,
200    &VNET_NAME(tcp_do_autorcvbuf), 0,
201    "Enable automatic receive buffer sizing");
202
203VNET_DEFINE(int, tcp_autorcvbuf_inc) = 16*1024;
204#define	V_tcp_autorcvbuf_inc	VNET(tcp_autorcvbuf_inc)
205SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, recvbuf_inc, CTLFLAG_RW,
206    &VNET_NAME(tcp_autorcvbuf_inc), 0,
207    "Incrementor step size of automatic receive buffer");
208
209VNET_DEFINE(int, tcp_autorcvbuf_max) = 2*1024*1024;
210#define	V_tcp_autorcvbuf_max	VNET(tcp_autorcvbuf_max)
211SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, recvbuf_max, CTLFLAG_RW,
212    &VNET_NAME(tcp_autorcvbuf_max), 0,
213    "Max size of automatic receive buffer");
214
215VNET_DEFINE(struct inpcbhead, tcb);
216#define	tcb6	tcb  /* for KAME src sync over BSD*'s */
217VNET_DEFINE(struct inpcbinfo, tcbinfo);
218
219static void	 tcp_dooptions(struct tcpopt *, u_char *, int, int);
220static void	 tcp_do_segment(struct mbuf *, struct tcphdr *,
221		     struct socket *, struct tcpcb *, int, int, uint8_t,
222		     int);
223static void	 tcp_dropwithreset(struct mbuf *, struct tcphdr *,
224		     struct tcpcb *, int, int);
225static void	 tcp_pulloutofband(struct socket *,
226		     struct tcphdr *, struct mbuf *, int);
227static void	 tcp_xmit_timer(struct tcpcb *, int);
228static void	 tcp_newreno_partial_ack(struct tcpcb *, struct tcphdr *);
229static void inline 	tcp_fields_to_host(struct tcphdr *);
230#ifdef TCP_SIGNATURE
231static void inline 	tcp_fields_to_net(struct tcphdr *);
232static int inline	tcp_signature_verify_input(struct mbuf *, int, int,
233			    int, struct tcpopt *, struct tcphdr *, u_int);
234#endif
235static void inline	cc_ack_received(struct tcpcb *tp, struct tcphdr *th,
236			    uint16_t type);
237static void inline	cc_conn_init(struct tcpcb *tp);
238static void inline	cc_post_recovery(struct tcpcb *tp, struct tcphdr *th);
239static void inline	hhook_run_tcp_est_in(struct tcpcb *tp,
240			    struct tcphdr *th, struct tcpopt *to);
241
242/*
243 * TCP statistics are stored in struct tcpstat_p, which is
244 * an "array" of counter(9)s.  Although it isn't a real
245 * array, we treat it as array to reduce code bloat.
246 */
247VNET_DEFINE(struct tcpstat_p, tcpstatp);
248
249static void
250vnet_tcpstatp_init(const void *unused)
251{
252	counter_u64_t *c;
253	int i;
254
255	for (i = 0, c = (counter_u64_t *)&V_tcpstatp;
256	    i < sizeof(V_tcpstatp) / sizeof(counter_u64_t);
257	    i++, c++) {
258		*c = counter_u64_alloc(M_WAITOK);
259		counter_u64_zero(*c);
260	}
261}
262VNET_SYSINIT(vnet_tcpstatp_init, SI_SUB_PROTO_IFATTACHDOMAIN, SI_ORDER_ANY,
263	    vnet_tcpstatp_init, NULL);
264
265#ifdef VIMAGE
266static void
267vnet_tcpstatp_uninit(const void *unused)
268{
269	counter_u64_t *c;
270	int i;
271
272	for (i = 0, c = (counter_u64_t *)&V_tcpstatp;
273	    i < sizeof(V_tcpstatp) / sizeof(counter_u64_t);
274	    i++, c++)
275		counter_u64_free(*c);
276}
277VNET_SYSUNINIT(vnet_tcpstatp_uninit, SI_SUB_PROTO_IFATTACHDOMAIN, SI_ORDER_ANY,
278	    vnet_tcpstatp_uninit, NULL);
279#endif /* VIMAGE */
280
281static int
282tcpstat_sysctl(SYSCTL_HANDLER_ARGS)
283{
284	struct tcpstat tcpstat;
285	counter_u64_t *c;
286	uint64_t *v;
287	int i;
288
289	for (i = 0, c = (counter_u64_t *)&V_tcpstatp, v = (uint64_t *)&tcpstat;
290	    i < sizeof(V_tcpstatp) / sizeof(counter_u64_t);
291	    i++, c++, v++) {
292		*v = counter_u64_fetch(*c);
293		if (req->newptr)
294			counter_u64_zero(*c);
295	}
296
297	return (SYSCTL_OUT(req, &tcpstat, sizeof(tcpstat)));
298}
299
300SYSCTL_VNET_PROC(_net_inet_tcp, TCPCTL_STATS, stats, CTLTYPE_OPAQUE |
301    CTLFLAG_RW, NULL, 0, tcpstat_sysctl, "I",
302    "TCP statistics (struct tcpstat, netinet/tcp_var.h)");
303
304/*
305 * Kernel module interface for updating tcpstat.  The argument is an index
306 * into tcpstat treated as an array.
307 */
308void
309kmod_tcpstat_inc(int statnum)
310{
311
312	counter_u64_add((counter_u64_t )&V_tcpstatp + statnum, 1);
313}
314
315/*
316 * Wrapper for the TCP established input helper hook.
317 */
318static void inline
319hhook_run_tcp_est_in(struct tcpcb *tp, struct tcphdr *th, struct tcpopt *to)
320{
321	struct tcp_hhook_data hhook_data;
322
323	if (V_tcp_hhh[HHOOK_TCP_EST_IN]->hhh_nhooks > 0) {
324		hhook_data.tp = tp;
325		hhook_data.th = th;
326		hhook_data.to = to;
327
328		hhook_run_hooks(V_tcp_hhh[HHOOK_TCP_EST_IN], &hhook_data,
329		    tp->osd);
330	}
331}
332
333/*
334 * CC wrapper hook functions
335 */
336static void inline
337cc_ack_received(struct tcpcb *tp, struct tcphdr *th, uint16_t type)
338{
339	INP_WLOCK_ASSERT(tp->t_inpcb);
340
341	tp->ccv->bytes_this_ack = BYTES_THIS_ACK(tp, th);
342	if (tp->snd_cwnd <= tp->snd_wnd)
343		tp->ccv->flags |= CCF_CWND_LIMITED;
344	else
345		tp->ccv->flags &= ~CCF_CWND_LIMITED;
346
347	if (type == CC_ACK) {
348		if (tp->snd_cwnd > tp->snd_ssthresh) {
349			tp->t_bytes_acked += min(tp->ccv->bytes_this_ack,
350			     V_tcp_abc_l_var * tp->t_maxseg);
351			if (tp->t_bytes_acked >= tp->snd_cwnd) {
352				tp->t_bytes_acked -= tp->snd_cwnd;
353				tp->ccv->flags |= CCF_ABC_SENTAWND;
354			}
355		} else {
356				tp->ccv->flags &= ~CCF_ABC_SENTAWND;
357				tp->t_bytes_acked = 0;
358		}
359	}
360
361	if (CC_ALGO(tp)->ack_received != NULL) {
362		/* XXXLAS: Find a way to live without this */
363		tp->ccv->curack = th->th_ack;
364		CC_ALGO(tp)->ack_received(tp->ccv, type);
365	}
366}
367
368static void inline
369cc_conn_init(struct tcpcb *tp)
370{
371	struct hc_metrics_lite metrics;
372	struct inpcb *inp = tp->t_inpcb;
373	int rtt;
374
375	INP_WLOCK_ASSERT(tp->t_inpcb);
376
377	tcp_hc_get(&inp->inp_inc, &metrics);
378
379	if (tp->t_srtt == 0 && (rtt = metrics.rmx_rtt)) {
380		tp->t_srtt = rtt;
381		tp->t_rttbest = tp->t_srtt + TCP_RTT_SCALE;
382		TCPSTAT_INC(tcps_usedrtt);
383		if (metrics.rmx_rttvar) {
384			tp->t_rttvar = metrics.rmx_rttvar;
385			TCPSTAT_INC(tcps_usedrttvar);
386		} else {
387			/* default variation is +- 1 rtt */
388			tp->t_rttvar =
389			    tp->t_srtt * TCP_RTTVAR_SCALE / TCP_RTT_SCALE;
390		}
391		TCPT_RANGESET(tp->t_rxtcur,
392		    ((tp->t_srtt >> 2) + tp->t_rttvar) >> 1,
393		    tp->t_rttmin, TCPTV_REXMTMAX);
394	}
395	if (metrics.rmx_ssthresh) {
396		/*
397		 * There's some sort of gateway or interface
398		 * buffer limit on the path.  Use this to set
399		 * the slow start threshhold, but set the
400		 * threshold to no less than 2*mss.
401		 */
402		tp->snd_ssthresh = max(2 * tp->t_maxseg, metrics.rmx_ssthresh);
403		TCPSTAT_INC(tcps_usedssthresh);
404	}
405
406	/*
407	 * Set the initial slow-start flight size.
408	 *
409	 * RFC5681 Section 3.1 specifies the default conservative values.
410	 * RFC3390 specifies slightly more aggressive values.
411	 * Draft-ietf-tcpm-initcwnd-05 increases it to ten segments.
412	 *
413	 * If a SYN or SYN/ACK was lost and retransmitted, we have to
414	 * reduce the initial CWND to one segment as congestion is likely
415	 * requiring us to be cautious.
416	 */
417	if (tp->snd_cwnd == 1)
418		tp->snd_cwnd = tp->t_maxseg;		/* SYN(-ACK) lost */
419	else if (V_tcp_do_initcwnd10)
420		tp->snd_cwnd = min(10 * tp->t_maxseg,
421		    max(2 * tp->t_maxseg, 14600));
422	else if (V_tcp_do_rfc3390)
423		tp->snd_cwnd = min(4 * tp->t_maxseg,
424		    max(2 * tp->t_maxseg, 4380));
425	else {
426		/* Per RFC5681 Section 3.1 */
427		if (tp->t_maxseg > 2190)
428			tp->snd_cwnd = 2 * tp->t_maxseg;
429		else if (tp->t_maxseg > 1095)
430			tp->snd_cwnd = 3 * tp->t_maxseg;
431		else
432			tp->snd_cwnd = 4 * tp->t_maxseg;
433	}
434
435	if (CC_ALGO(tp)->conn_init != NULL)
436		CC_ALGO(tp)->conn_init(tp->ccv);
437}
438
439void inline
440cc_cong_signal(struct tcpcb *tp, struct tcphdr *th, uint32_t type)
441{
442	INP_WLOCK_ASSERT(tp->t_inpcb);
443
444	switch(type) {
445	case CC_NDUPACK:
446		if (!IN_FASTRECOVERY(tp->t_flags)) {
447			tp->snd_recover = tp->snd_max;
448			if (tp->t_flags & TF_ECN_PERMIT)
449				tp->t_flags |= TF_ECN_SND_CWR;
450		}
451		break;
452	case CC_ECN:
453		if (!IN_CONGRECOVERY(tp->t_flags)) {
454			TCPSTAT_INC(tcps_ecn_rcwnd);
455			tp->snd_recover = tp->snd_max;
456			if (tp->t_flags & TF_ECN_PERMIT)
457				tp->t_flags |= TF_ECN_SND_CWR;
458		}
459		break;
460	case CC_RTO:
461		tp->t_dupacks = 0;
462		tp->t_bytes_acked = 0;
463		EXIT_RECOVERY(tp->t_flags);
464		tp->snd_ssthresh = max(2, min(tp->snd_wnd, tp->snd_cwnd) / 2 /
465		    tp->t_maxseg) * tp->t_maxseg;
466		tp->snd_cwnd = tp->t_maxseg;
467		break;
468	case CC_RTO_ERR:
469		TCPSTAT_INC(tcps_sndrexmitbad);
470		/* RTO was unnecessary, so reset everything. */
471		tp->snd_cwnd = tp->snd_cwnd_prev;
472		tp->snd_ssthresh = tp->snd_ssthresh_prev;
473		tp->snd_recover = tp->snd_recover_prev;
474		if (tp->t_flags & TF_WASFRECOVERY)
475			ENTER_FASTRECOVERY(tp->t_flags);
476		if (tp->t_flags & TF_WASCRECOVERY)
477			ENTER_CONGRECOVERY(tp->t_flags);
478		tp->snd_nxt = tp->snd_max;
479		tp->t_flags &= ~TF_PREVVALID;
480		tp->t_badrxtwin = 0;
481		break;
482	}
483
484	if (CC_ALGO(tp)->cong_signal != NULL) {
485		if (th != NULL)
486			tp->ccv->curack = th->th_ack;
487		CC_ALGO(tp)->cong_signal(tp->ccv, type);
488	}
489}
490
491static void inline
492cc_post_recovery(struct tcpcb *tp, struct tcphdr *th)
493{
494	INP_WLOCK_ASSERT(tp->t_inpcb);
495
496	/* XXXLAS: KASSERT that we're in recovery? */
497
498	if (CC_ALGO(tp)->post_recovery != NULL) {
499		tp->ccv->curack = th->th_ack;
500		CC_ALGO(tp)->post_recovery(tp->ccv);
501	}
502	/* XXXLAS: EXIT_RECOVERY ? */
503	tp->t_bytes_acked = 0;
504}
505
506static inline void
507tcp_fields_to_host(struct tcphdr *th)
508{
509
510	th->th_seq = ntohl(th->th_seq);
511	th->th_ack = ntohl(th->th_ack);
512	th->th_win = ntohs(th->th_win);
513	th->th_urp = ntohs(th->th_urp);
514}
515
516#ifdef TCP_SIGNATURE
517static inline void
518tcp_fields_to_net(struct tcphdr *th)
519{
520
521	th->th_seq = htonl(th->th_seq);
522	th->th_ack = htonl(th->th_ack);
523	th->th_win = htons(th->th_win);
524	th->th_urp = htons(th->th_urp);
525}
526
527static inline int
528tcp_signature_verify_input(struct mbuf *m, int off0, int tlen, int optlen,
529    struct tcpopt *to, struct tcphdr *th, u_int tcpbflag)
530{
531	int ret;
532
533	tcp_fields_to_net(th);
534	ret = tcp_signature_verify(m, off0, tlen, optlen, to, th, tcpbflag);
535	tcp_fields_to_host(th);
536	return (ret);
537}
538#endif
539
540/* Neighbor Discovery, Neighbor Unreachability Detection Upper layer hint. */
541#ifdef INET6
542#define ND6_HINT(tp) \
543do { \
544	if ((tp) && (tp)->t_inpcb && \
545	    ((tp)->t_inpcb->inp_vflag & INP_IPV6) != 0) \
546		nd6_nud_hint(NULL, NULL, 0); \
547} while (0)
548#else
549#define ND6_HINT(tp)
550#endif
551
552/*
553 * Indicate whether this ack should be delayed.  We can delay the ack if
554 *	- there is no delayed ack timer in progress and
555 *	- our last ack wasn't a 0-sized window.  We never want to delay
556 *	  the ack that opens up a 0-sized window and
557 *		- delayed acks are enabled or
558 *		- this is a half-synchronized T/TCP connection.
559 */
560#define DELAY_ACK(tp)							\
561	((!tcp_timer_active(tp, TT_DELACK) &&				\
562	    (tp->t_flags & TF_RXWIN0SENT) == 0) &&			\
563	    (V_tcp_delack_enabled || (tp->t_flags & TF_NEEDSYN)))
564
565/*
566 * TCP input handling is split into multiple parts:
567 *   tcp6_input is a thin wrapper around tcp_input for the extended
568 *	ip6_protox[] call format in ip6_input
569 *   tcp_input handles primary segment validation, inpcb lookup and
570 *	SYN processing on listen sockets
571 *   tcp_do_segment processes the ACK and text of the segment for
572 *	establishing, established and closing connections
573 */
574#ifdef INET6
575int
576tcp6_input(struct mbuf **mp, int *offp, int proto)
577{
578	struct mbuf *m = *mp;
579	struct in6_ifaddr *ia6;
580
581	IP6_EXTHDR_CHECK(m, *offp, sizeof(struct tcphdr), IPPROTO_DONE);
582
583	/*
584	 * draft-itojun-ipv6-tcp-to-anycast
585	 * better place to put this in?
586	 */
587	ia6 = ip6_getdstifaddr(m);
588	if (ia6 && (ia6->ia6_flags & IN6_IFF_ANYCAST)) {
589		struct ip6_hdr *ip6;
590
591		ifa_free(&ia6->ia_ifa);
592		ip6 = mtod(m, struct ip6_hdr *);
593		icmp6_error(m, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_ADDR,
594			    (caddr_t)&ip6->ip6_dst - (caddr_t)ip6);
595		return IPPROTO_DONE;
596	}
597	if (ia6)
598		ifa_free(&ia6->ia_ifa);
599
600	tcp_input(m, *offp);
601	return IPPROTO_DONE;
602}
603#endif /* INET6 */
604
605void
606tcp_input(struct mbuf *m, int off0)
607{
608	struct tcphdr *th = NULL;
609	struct ip *ip = NULL;
610	struct inpcb *inp = NULL;
611	struct tcpcb *tp = NULL;
612	struct socket *so = NULL;
613	u_char *optp = NULL;
614	int optlen = 0;
615#ifdef INET
616	int len;
617#endif
618	int tlen = 0, off;
619	int drop_hdrlen;
620	int thflags;
621	int rstreason = 0;	/* For badport_bandlim accounting purposes */
622#ifdef TCP_SIGNATURE
623	uint8_t sig_checked = 0;
624#endif
625	uint8_t iptos = 0;
626	struct m_tag *fwd_tag = NULL;
627#ifdef INET6
628	struct ip6_hdr *ip6 = NULL;
629	int isipv6;
630#else
631	const void *ip6 = NULL;
632#endif /* INET6 */
633	struct tcpopt to;		/* options in this segment */
634	char *s = NULL;			/* address and port logging */
635	int ti_locked;
636#define	TI_UNLOCKED	1
637#define	TI_WLOCKED	2
638
639#ifdef TCPDEBUG
640	/*
641	 * The size of tcp_saveipgen must be the size of the max ip header,
642	 * now IPv6.
643	 */
644	u_char tcp_saveipgen[IP6_HDR_LEN];
645	struct tcphdr tcp_savetcp;
646	short ostate = 0;
647#endif
648
649#ifdef INET6
650	isipv6 = (mtod(m, struct ip *)->ip_v == 6) ? 1 : 0;
651#endif
652
653	to.to_flags = 0;
654	TCPSTAT_INC(tcps_rcvtotal);
655
656#ifdef INET6
657	if (isipv6) {
658		/* IP6_EXTHDR_CHECK() is already done at tcp6_input(). */
659
660		if (m->m_len < (sizeof(*ip6) + sizeof(*th))) {
661			m = m_pullup(m, sizeof(*ip6) + sizeof(*th));
662			if (m == NULL) {
663				TCPSTAT_INC(tcps_rcvshort);
664				return;
665			}
666		}
667
668		ip6 = mtod(m, struct ip6_hdr *);
669		th = (struct tcphdr *)((caddr_t)ip6 + off0);
670		tlen = sizeof(*ip6) + ntohs(ip6->ip6_plen) - off0;
671		if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID_IPV6) {
672			if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR)
673				th->th_sum = m->m_pkthdr.csum_data;
674			else
675				th->th_sum = in6_cksum_pseudo(ip6, tlen,
676				    IPPROTO_TCP, m->m_pkthdr.csum_data);
677			th->th_sum ^= 0xffff;
678		} else
679			th->th_sum = in6_cksum(m, IPPROTO_TCP, off0, tlen);
680		if (th->th_sum) {
681			TCPSTAT_INC(tcps_rcvbadsum);
682			goto drop;
683		}
684
685		/*
686		 * Be proactive about unspecified IPv6 address in source.
687		 * As we use all-zero to indicate unbounded/unconnected pcb,
688		 * unspecified IPv6 address can be used to confuse us.
689		 *
690		 * Note that packets with unspecified IPv6 destination is
691		 * already dropped in ip6_input.
692		 */
693		if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) {
694			/* XXX stat */
695			goto drop;
696		}
697	}
698#endif
699#if defined(INET) && defined(INET6)
700	else
701#endif
702#ifdef INET
703	{
704		/*
705		 * Get IP and TCP header together in first mbuf.
706		 * Note: IP leaves IP header in first mbuf.
707		 */
708		if (off0 > sizeof (struct ip)) {
709			ip_stripoptions(m);
710			off0 = sizeof(struct ip);
711		}
712		if (m->m_len < sizeof (struct tcpiphdr)) {
713			if ((m = m_pullup(m, sizeof (struct tcpiphdr)))
714			    == NULL) {
715				TCPSTAT_INC(tcps_rcvshort);
716				return;
717			}
718		}
719		ip = mtod(m, struct ip *);
720		th = (struct tcphdr *)((caddr_t)ip + off0);
721		tlen = ntohs(ip->ip_len) - off0;
722
723		if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) {
724			if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR)
725				th->th_sum = m->m_pkthdr.csum_data;
726			else
727				th->th_sum = in_pseudo(ip->ip_src.s_addr,
728				    ip->ip_dst.s_addr,
729				    htonl(m->m_pkthdr.csum_data + tlen +
730				    IPPROTO_TCP));
731			th->th_sum ^= 0xffff;
732		} else {
733			struct ipovly *ipov = (struct ipovly *)ip;
734
735			/*
736			 * Checksum extended TCP header and data.
737			 */
738			len = off0 + tlen;
739			bzero(ipov->ih_x1, sizeof(ipov->ih_x1));
740			ipov->ih_len = htons(tlen);
741			th->th_sum = in_cksum(m, len);
742		}
743		if (th->th_sum) {
744			TCPSTAT_INC(tcps_rcvbadsum);
745			goto drop;
746		}
747		/* Re-initialization for later version check */
748		ip->ip_v = IPVERSION;
749	}
750#endif /* INET */
751
752#ifdef INET6
753	if (isipv6)
754		iptos = (ntohl(ip6->ip6_flow) >> 20) & 0xff;
755#endif
756#if defined(INET) && defined(INET6)
757	else
758#endif
759#ifdef INET
760		iptos = ip->ip_tos;
761#endif
762
763	/*
764	 * Check that TCP offset makes sense,
765	 * pull out TCP options and adjust length.		XXX
766	 */
767	off = th->th_off << 2;
768	if (off < sizeof (struct tcphdr) || off > tlen) {
769		TCPSTAT_INC(tcps_rcvbadoff);
770		goto drop;
771	}
772	tlen -= off;	/* tlen is used instead of ti->ti_len */
773	if (off > sizeof (struct tcphdr)) {
774#ifdef INET6
775		if (isipv6) {
776			IP6_EXTHDR_CHECK(m, off0, off, );
777			ip6 = mtod(m, struct ip6_hdr *);
778			th = (struct tcphdr *)((caddr_t)ip6 + off0);
779		}
780#endif
781#if defined(INET) && defined(INET6)
782		else
783#endif
784#ifdef INET
785		{
786			if (m->m_len < sizeof(struct ip) + off) {
787				if ((m = m_pullup(m, sizeof (struct ip) + off))
788				    == NULL) {
789					TCPSTAT_INC(tcps_rcvshort);
790					return;
791				}
792				ip = mtod(m, struct ip *);
793				th = (struct tcphdr *)((caddr_t)ip + off0);
794			}
795		}
796#endif
797		optlen = off - sizeof (struct tcphdr);
798		optp = (u_char *)(th + 1);
799	}
800	thflags = th->th_flags;
801
802	/*
803	 * Convert TCP protocol specific fields to host format.
804	 */
805	tcp_fields_to_host(th);
806
807	/*
808	 * Delay dropping TCP, IP headers, IPv6 ext headers, and TCP options.
809	 */
810	drop_hdrlen = off0 + off;
811
812	/*
813	 * Locate pcb for segment; if we're likely to add or remove a
814	 * connection then first acquire pcbinfo lock.  There are two cases
815	 * where we might discover later we need a write lock despite the
816	 * flags: ACKs moving a connection out of the syncache, and ACKs for
817	 * a connection in TIMEWAIT.
818	 */
819	if ((thflags & (TH_SYN | TH_FIN | TH_RST)) != 0) {
820		INP_INFO_WLOCK(&V_tcbinfo);
821		ti_locked = TI_WLOCKED;
822	} else
823		ti_locked = TI_UNLOCKED;
824
825	/*
826	 * Grab info from PACKET_TAG_IPFORWARD tag prepended to the chain.
827	 */
828        if (
829#ifdef INET6
830	    (isipv6 && (m->m_flags & M_IP6_NEXTHOP))
831#ifdef INET
832	    || (!isipv6 && (m->m_flags & M_IP_NEXTHOP))
833#endif
834#endif
835#if defined(INET) && !defined(INET6)
836	    (m->m_flags & M_IP_NEXTHOP)
837#endif
838	    )
839		fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL);
840
841findpcb:
842#ifdef INVARIANTS
843	if (ti_locked == TI_WLOCKED) {
844		INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
845	} else {
846		INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
847	}
848#endif
849#ifdef INET6
850	if (isipv6 && fwd_tag != NULL) {
851		struct sockaddr_in6 *next_hop6;
852
853		next_hop6 = (struct sockaddr_in6 *)(fwd_tag + 1);
854		/*
855		 * Transparently forwarded. Pretend to be the destination.
856		 * Already got one like this?
857		 */
858		inp = in6_pcblookup_mbuf(&V_tcbinfo,
859		    &ip6->ip6_src, th->th_sport, &ip6->ip6_dst, th->th_dport,
860		    INPLOOKUP_WLOCKPCB, m->m_pkthdr.rcvif, m);
861		if (!inp) {
862			/*
863			 * It's new.  Try to find the ambushing socket.
864			 * Because we've rewritten the destination address,
865			 * any hardware-generated hash is ignored.
866			 */
867			inp = in6_pcblookup(&V_tcbinfo, &ip6->ip6_src,
868			    th->th_sport, &next_hop6->sin6_addr,
869			    next_hop6->sin6_port ? ntohs(next_hop6->sin6_port) :
870			    th->th_dport, INPLOOKUP_WILDCARD |
871			    INPLOOKUP_WLOCKPCB, m->m_pkthdr.rcvif);
872		}
873	} else if (isipv6) {
874		inp = in6_pcblookup_mbuf(&V_tcbinfo, &ip6->ip6_src,
875		    th->th_sport, &ip6->ip6_dst, th->th_dport,
876		    INPLOOKUP_WILDCARD | INPLOOKUP_WLOCKPCB,
877		    m->m_pkthdr.rcvif, m);
878	}
879#endif /* INET6 */
880#if defined(INET6) && defined(INET)
881	else
882#endif
883#ifdef INET
884	if (fwd_tag != NULL) {
885		struct sockaddr_in *next_hop;
886
887		next_hop = (struct sockaddr_in *)(fwd_tag+1);
888		/*
889		 * Transparently forwarded. Pretend to be the destination.
890		 * already got one like this?
891		 */
892		inp = in_pcblookup_mbuf(&V_tcbinfo, ip->ip_src, th->th_sport,
893		    ip->ip_dst, th->th_dport, INPLOOKUP_WLOCKPCB,
894		    m->m_pkthdr.rcvif, m);
895		if (!inp) {
896			/*
897			 * It's new.  Try to find the ambushing socket.
898			 * Because we've rewritten the destination address,
899			 * any hardware-generated hash is ignored.
900			 */
901			inp = in_pcblookup(&V_tcbinfo, ip->ip_src,
902			    th->th_sport, next_hop->sin_addr,
903			    next_hop->sin_port ? ntohs(next_hop->sin_port) :
904			    th->th_dport, INPLOOKUP_WILDCARD |
905			    INPLOOKUP_WLOCKPCB, m->m_pkthdr.rcvif);
906		}
907	} else
908		inp = in_pcblookup_mbuf(&V_tcbinfo, ip->ip_src,
909		    th->th_sport, ip->ip_dst, th->th_dport,
910		    INPLOOKUP_WILDCARD | INPLOOKUP_WLOCKPCB,
911		    m->m_pkthdr.rcvif, m);
912#endif /* INET */
913
914	/*
915	 * If the INPCB does not exist then all data in the incoming
916	 * segment is discarded and an appropriate RST is sent back.
917	 * XXX MRT Send RST using which routing table?
918	 */
919	if (inp == NULL) {
920		/*
921		 * Log communication attempts to ports that are not
922		 * in use.
923		 */
924		if ((tcp_log_in_vain == 1 && (thflags & TH_SYN)) ||
925		    tcp_log_in_vain == 2) {
926			if ((s = tcp_log_vain(NULL, th, (void *)ip, ip6)))
927				log(LOG_INFO, "%s; %s: Connection attempt "
928				    "to closed port\n", s, __func__);
929		}
930		/*
931		 * When blackholing do not respond with a RST but
932		 * completely ignore the segment and drop it.
933		 */
934		if ((V_blackhole == 1 && (thflags & TH_SYN)) ||
935		    V_blackhole == 2)
936			goto dropunlock;
937
938		rstreason = BANDLIM_RST_CLOSEDPORT;
939		goto dropwithreset;
940	}
941	INP_WLOCK_ASSERT(inp);
942	if (!(inp->inp_flags & INP_HW_FLOWID)
943	    && (m->m_flags & M_FLOWID)
944	    && ((inp->inp_socket == NULL)
945		|| !(inp->inp_socket->so_options & SO_ACCEPTCONN))) {
946		inp->inp_flags |= INP_HW_FLOWID;
947		inp->inp_flags &= ~INP_SW_FLOWID;
948		inp->inp_flowid = m->m_pkthdr.flowid;
949	}
950#ifdef IPSEC
951#ifdef INET6
952	if (isipv6 && ipsec6_in_reject(m, inp)) {
953		V_ipsec6stat.in_polvio++;
954		goto dropunlock;
955	} else
956#endif /* INET6 */
957	if (ipsec4_in_reject(m, inp) != 0) {
958		V_ipsec4stat.in_polvio++;
959		goto dropunlock;
960	}
961#endif /* IPSEC */
962
963	/*
964	 * Check the minimum TTL for socket.
965	 */
966	if (inp->inp_ip_minttl != 0) {
967#ifdef INET6
968		if (isipv6 && inp->inp_ip_minttl > ip6->ip6_hlim)
969			goto dropunlock;
970		else
971#endif
972		if (inp->inp_ip_minttl > ip->ip_ttl)
973			goto dropunlock;
974	}
975
976	/*
977	 * A previous connection in TIMEWAIT state is supposed to catch stray
978	 * or duplicate segments arriving late.  If this segment was a
979	 * legitimate new connection attempt, the old INPCB gets removed and
980	 * we can try again to find a listening socket.
981	 *
982	 * At this point, due to earlier optimism, we may hold only an inpcb
983	 * lock, and not the inpcbinfo write lock.  If so, we need to try to
984	 * acquire it, or if that fails, acquire a reference on the inpcb,
985	 * drop all locks, acquire a global write lock, and then re-acquire
986	 * the inpcb lock.  We may at that point discover that another thread
987	 * has tried to free the inpcb, in which case we need to loop back
988	 * and try to find a new inpcb to deliver to.
989	 *
990	 * XXXRW: It may be time to rethink timewait locking.
991	 */
992relocked:
993	if (inp->inp_flags & INP_TIMEWAIT) {
994		if (ti_locked == TI_UNLOCKED) {
995			if (INP_INFO_TRY_WLOCK(&V_tcbinfo) == 0) {
996				in_pcbref(inp);
997				INP_WUNLOCK(inp);
998				INP_INFO_WLOCK(&V_tcbinfo);
999				ti_locked = TI_WLOCKED;
1000				INP_WLOCK(inp);
1001				if (in_pcbrele_wlocked(inp)) {
1002					inp = NULL;
1003					goto findpcb;
1004				}
1005			} else
1006				ti_locked = TI_WLOCKED;
1007		}
1008		INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
1009
1010		if (thflags & TH_SYN)
1011			tcp_dooptions(&to, optp, optlen, TO_SYN);
1012		/*
1013		 * NB: tcp_twcheck unlocks the INP and frees the mbuf.
1014		 */
1015		if (tcp_twcheck(inp, &to, th, m, tlen))
1016			goto findpcb;
1017		INP_INFO_WUNLOCK(&V_tcbinfo);
1018		return;
1019	}
1020	/*
1021	 * The TCPCB may no longer exist if the connection is winding
1022	 * down or it is in the CLOSED state.  Either way we drop the
1023	 * segment and send an appropriate response.
1024	 */
1025	tp = intotcpcb(inp);
1026	if (tp == NULL || tp->t_state == TCPS_CLOSED) {
1027		rstreason = BANDLIM_RST_CLOSEDPORT;
1028		goto dropwithreset;
1029	}
1030
1031#ifdef TCP_OFFLOAD
1032	if (tp->t_flags & TF_TOE) {
1033		tcp_offload_input(tp, m);
1034		m = NULL;	/* consumed by the TOE driver */
1035		goto dropunlock;
1036	}
1037#endif
1038
1039	/*
1040	 * We've identified a valid inpcb, but it could be that we need an
1041	 * inpcbinfo write lock but don't hold it.  In this case, attempt to
1042	 * acquire using the same strategy as the TIMEWAIT case above.  If we
1043	 * relock, we have to jump back to 'relocked' as the connection might
1044	 * now be in TIMEWAIT.
1045	 */
1046#ifdef INVARIANTS
1047	if ((thflags & (TH_SYN | TH_FIN | TH_RST)) != 0)
1048		INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
1049#endif
1050	if (tp->t_state != TCPS_ESTABLISHED) {
1051		if (ti_locked == TI_UNLOCKED) {
1052			if (INP_INFO_TRY_WLOCK(&V_tcbinfo) == 0) {
1053				in_pcbref(inp);
1054				INP_WUNLOCK(inp);
1055				INP_INFO_WLOCK(&V_tcbinfo);
1056				ti_locked = TI_WLOCKED;
1057				INP_WLOCK(inp);
1058				if (in_pcbrele_wlocked(inp)) {
1059					inp = NULL;
1060					goto findpcb;
1061				}
1062				goto relocked;
1063			} else
1064				ti_locked = TI_WLOCKED;
1065		}
1066		INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
1067	}
1068
1069#ifdef MAC
1070	INP_WLOCK_ASSERT(inp);
1071	if (mac_inpcb_check_deliver(inp, m))
1072		goto dropunlock;
1073#endif
1074	so = inp->inp_socket;
1075	KASSERT(so != NULL, ("%s: so == NULL", __func__));
1076#ifdef TCPDEBUG
1077	if (so->so_options & SO_DEBUG) {
1078		ostate = tp->t_state;
1079#ifdef INET6
1080		if (isipv6) {
1081			bcopy((char *)ip6, (char *)tcp_saveipgen, sizeof(*ip6));
1082		} else
1083#endif
1084			bcopy((char *)ip, (char *)tcp_saveipgen, sizeof(*ip));
1085		tcp_savetcp = *th;
1086	}
1087#endif /* TCPDEBUG */
1088	/*
1089	 * When the socket is accepting connections (the INPCB is in LISTEN
1090	 * state) we look into the SYN cache if this is a new connection
1091	 * attempt or the completion of a previous one.  Because listen
1092	 * sockets are never in TCPS_ESTABLISHED, the V_tcbinfo lock will be
1093	 * held in this case.
1094	 */
1095	if (so->so_options & SO_ACCEPTCONN) {
1096		struct in_conninfo inc;
1097
1098		KASSERT(tp->t_state == TCPS_LISTEN, ("%s: so accepting but "
1099		    "tp not listening", __func__));
1100		INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
1101
1102		bzero(&inc, sizeof(inc));
1103#ifdef INET6
1104		if (isipv6) {
1105			inc.inc_flags |= INC_ISIPV6;
1106			inc.inc6_faddr = ip6->ip6_src;
1107			inc.inc6_laddr = ip6->ip6_dst;
1108		} else
1109#endif
1110		{
1111			inc.inc_faddr = ip->ip_src;
1112			inc.inc_laddr = ip->ip_dst;
1113		}
1114		inc.inc_fport = th->th_sport;
1115		inc.inc_lport = th->th_dport;
1116		inc.inc_fibnum = so->so_fibnum;
1117
1118		/*
1119		 * Check for an existing connection attempt in syncache if
1120		 * the flag is only ACK.  A successful lookup creates a new
1121		 * socket appended to the listen queue in SYN_RECEIVED state.
1122		 */
1123		if ((thflags & (TH_RST|TH_ACK|TH_SYN)) == TH_ACK) {
1124			/*
1125			 * Parse the TCP options here because
1126			 * syncookies need access to the reflected
1127			 * timestamp.
1128			 */
1129			tcp_dooptions(&to, optp, optlen, 0);
1130			/*
1131			 * NB: syncache_expand() doesn't unlock
1132			 * inp and tcpinfo locks.
1133			 */
1134			if (!syncache_expand(&inc, &to, th, &so, m)) {
1135				/*
1136				 * No syncache entry or ACK was not
1137				 * for our SYN/ACK.  Send a RST.
1138				 * NB: syncache did its own logging
1139				 * of the failure cause.
1140				 */
1141				rstreason = BANDLIM_RST_OPENPORT;
1142				goto dropwithreset;
1143			}
1144			if (so == NULL) {
1145				/*
1146				 * We completed the 3-way handshake
1147				 * but could not allocate a socket
1148				 * either due to memory shortage,
1149				 * listen queue length limits or
1150				 * global socket limits.  Send RST
1151				 * or wait and have the remote end
1152				 * retransmit the ACK for another
1153				 * try.
1154				 */
1155				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1156					log(LOG_DEBUG, "%s; %s: Listen socket: "
1157					    "Socket allocation failed due to "
1158					    "limits or memory shortage, %s\n",
1159					    s, __func__,
1160					    V_tcp_sc_rst_sock_fail ?
1161					    "sending RST" : "try again");
1162				if (V_tcp_sc_rst_sock_fail) {
1163					rstreason = BANDLIM_UNLIMITED;
1164					goto dropwithreset;
1165				} else
1166					goto dropunlock;
1167			}
1168			/*
1169			 * Socket is created in state SYN_RECEIVED.
1170			 * Unlock the listen socket, lock the newly
1171			 * created socket and update the tp variable.
1172			 */
1173			INP_WUNLOCK(inp);	/* listen socket */
1174			inp = sotoinpcb(so);
1175			INP_WLOCK(inp);		/* new connection */
1176			tp = intotcpcb(inp);
1177			KASSERT(tp->t_state == TCPS_SYN_RECEIVED,
1178			    ("%s: ", __func__));
1179#ifdef TCP_SIGNATURE
1180			if (sig_checked == 0)  {
1181				tcp_dooptions(&to, optp, optlen,
1182				    (thflags & TH_SYN) ? TO_SYN : 0);
1183				if (!tcp_signature_verify_input(m, off0, tlen,
1184				    optlen, &to, th, tp->t_flags)) {
1185
1186					/*
1187					 * In SYN_SENT state if it receives an
1188					 * RST, it is allowed for further
1189					 * processing.
1190					 */
1191					if ((thflags & TH_RST) == 0 ||
1192					    (tp->t_state == TCPS_SYN_SENT) == 0)
1193						goto dropunlock;
1194				}
1195				sig_checked = 1;
1196			}
1197#endif
1198
1199			/*
1200			 * Process the segment and the data it
1201			 * contains.  tcp_do_segment() consumes
1202			 * the mbuf chain and unlocks the inpcb.
1203			 */
1204			tcp_do_segment(m, th, so, tp, drop_hdrlen, tlen,
1205			    iptos, ti_locked);
1206			INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
1207			return;
1208		}
1209		/*
1210		 * Segment flag validation for new connection attempts:
1211		 *
1212		 * Our (SYN|ACK) response was rejected.
1213		 * Check with syncache and remove entry to prevent
1214		 * retransmits.
1215		 *
1216		 * NB: syncache_chkrst does its own logging of failure
1217		 * causes.
1218		 */
1219		if (thflags & TH_RST) {
1220			syncache_chkrst(&inc, th);
1221			goto dropunlock;
1222		}
1223		/*
1224		 * We can't do anything without SYN.
1225		 */
1226		if ((thflags & TH_SYN) == 0) {
1227			if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1228				log(LOG_DEBUG, "%s; %s: Listen socket: "
1229				    "SYN is missing, segment ignored\n",
1230				    s, __func__);
1231			TCPSTAT_INC(tcps_badsyn);
1232			goto dropunlock;
1233		}
1234		/*
1235		 * (SYN|ACK) is bogus on a listen socket.
1236		 */
1237		if (thflags & TH_ACK) {
1238			if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1239				log(LOG_DEBUG, "%s; %s: Listen socket: "
1240				    "SYN|ACK invalid, segment rejected\n",
1241				    s, __func__);
1242			syncache_badack(&inc);	/* XXX: Not needed! */
1243			TCPSTAT_INC(tcps_badsyn);
1244			rstreason = BANDLIM_RST_OPENPORT;
1245			goto dropwithreset;
1246		}
1247		/*
1248		 * If the drop_synfin option is enabled, drop all
1249		 * segments with both the SYN and FIN bits set.
1250		 * This prevents e.g. nmap from identifying the
1251		 * TCP/IP stack.
1252		 * XXX: Poor reasoning.  nmap has other methods
1253		 * and is constantly refining its stack detection
1254		 * strategies.
1255		 * XXX: This is a violation of the TCP specification
1256		 * and was used by RFC1644.
1257		 */
1258		if ((thflags & TH_FIN) && V_drop_synfin) {
1259			if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1260				log(LOG_DEBUG, "%s; %s: Listen socket: "
1261				    "SYN|FIN segment ignored (based on "
1262				    "sysctl setting)\n", s, __func__);
1263			TCPSTAT_INC(tcps_badsyn);
1264			goto dropunlock;
1265		}
1266		/*
1267		 * Segment's flags are (SYN) or (SYN|FIN).
1268		 *
1269		 * TH_PUSH, TH_URG, TH_ECE, TH_CWR are ignored
1270		 * as they do not affect the state of the TCP FSM.
1271		 * The data pointed to by TH_URG and th_urp is ignored.
1272		 */
1273		KASSERT((thflags & (TH_RST|TH_ACK)) == 0,
1274		    ("%s: Listen socket: TH_RST or TH_ACK set", __func__));
1275		KASSERT(thflags & (TH_SYN),
1276		    ("%s: Listen socket: TH_SYN not set", __func__));
1277#ifdef INET6
1278		/*
1279		 * If deprecated address is forbidden,
1280		 * we do not accept SYN to deprecated interface
1281		 * address to prevent any new inbound connection from
1282		 * getting established.
1283		 * When we do not accept SYN, we send a TCP RST,
1284		 * with deprecated source address (instead of dropping
1285		 * it).  We compromise it as it is much better for peer
1286		 * to send a RST, and RST will be the final packet
1287		 * for the exchange.
1288		 *
1289		 * If we do not forbid deprecated addresses, we accept
1290		 * the SYN packet.  RFC2462 does not suggest dropping
1291		 * SYN in this case.
1292		 * If we decipher RFC2462 5.5.4, it says like this:
1293		 * 1. use of deprecated addr with existing
1294		 *    communication is okay - "SHOULD continue to be
1295		 *    used"
1296		 * 2. use of it with new communication:
1297		 *   (2a) "SHOULD NOT be used if alternate address
1298		 *        with sufficient scope is available"
1299		 *   (2b) nothing mentioned otherwise.
1300		 * Here we fall into (2b) case as we have no choice in
1301		 * our source address selection - we must obey the peer.
1302		 *
1303		 * The wording in RFC2462 is confusing, and there are
1304		 * multiple description text for deprecated address
1305		 * handling - worse, they are not exactly the same.
1306		 * I believe 5.5.4 is the best one, so we follow 5.5.4.
1307		 */
1308		if (isipv6 && !V_ip6_use_deprecated) {
1309			struct in6_ifaddr *ia6;
1310
1311			ia6 = ip6_getdstifaddr(m);
1312			if (ia6 != NULL &&
1313			    (ia6->ia6_flags & IN6_IFF_DEPRECATED)) {
1314				ifa_free(&ia6->ia_ifa);
1315				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1316				    log(LOG_DEBUG, "%s; %s: Listen socket: "
1317					"Connection attempt to deprecated "
1318					"IPv6 address rejected\n",
1319					s, __func__);
1320				rstreason = BANDLIM_RST_OPENPORT;
1321				goto dropwithreset;
1322			}
1323			if (ia6)
1324				ifa_free(&ia6->ia_ifa);
1325		}
1326#endif /* INET6 */
1327		/*
1328		 * Basic sanity checks on incoming SYN requests:
1329		 *   Don't respond if the destination is a link layer
1330		 *	broadcast according to RFC1122 4.2.3.10, p. 104.
1331		 *   If it is from this socket it must be forged.
1332		 *   Don't respond if the source or destination is a
1333		 *	global or subnet broad- or multicast address.
1334		 *   Note that it is quite possible to receive unicast
1335		 *	link-layer packets with a broadcast IP address. Use
1336		 *	in_broadcast() to find them.
1337		 */
1338		if (m->m_flags & (M_BCAST|M_MCAST)) {
1339			if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1340			    log(LOG_DEBUG, "%s; %s: Listen socket: "
1341				"Connection attempt from broad- or multicast "
1342				"link layer address ignored\n", s, __func__);
1343			goto dropunlock;
1344		}
1345#ifdef INET6
1346		if (isipv6) {
1347			if (th->th_dport == th->th_sport &&
1348			    IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst, &ip6->ip6_src)) {
1349				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1350				    log(LOG_DEBUG, "%s; %s: Listen socket: "
1351					"Connection attempt to/from self "
1352					"ignored\n", s, __func__);
1353				goto dropunlock;
1354			}
1355			if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) ||
1356			    IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) {
1357				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1358				    log(LOG_DEBUG, "%s; %s: Listen socket: "
1359					"Connection attempt from/to multicast "
1360					"address ignored\n", s, __func__);
1361				goto dropunlock;
1362			}
1363		}
1364#endif
1365#if defined(INET) && defined(INET6)
1366		else
1367#endif
1368#ifdef INET
1369		{
1370			if (th->th_dport == th->th_sport &&
1371			    ip->ip_dst.s_addr == ip->ip_src.s_addr) {
1372				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1373				    log(LOG_DEBUG, "%s; %s: Listen socket: "
1374					"Connection attempt from/to self "
1375					"ignored\n", s, __func__);
1376				goto dropunlock;
1377			}
1378			if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
1379			    IN_MULTICAST(ntohl(ip->ip_src.s_addr)) ||
1380			    ip->ip_src.s_addr == htonl(INADDR_BROADCAST) ||
1381			    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif)) {
1382				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1383				    log(LOG_DEBUG, "%s; %s: Listen socket: "
1384					"Connection attempt from/to broad- "
1385					"or multicast address ignored\n",
1386					s, __func__);
1387				goto dropunlock;
1388			}
1389		}
1390#endif
1391		/*
1392		 * SYN appears to be valid.  Create compressed TCP state
1393		 * for syncache.
1394		 */
1395#ifdef TCPDEBUG
1396		if (so->so_options & SO_DEBUG)
1397			tcp_trace(TA_INPUT, ostate, tp,
1398			    (void *)tcp_saveipgen, &tcp_savetcp, 0);
1399#endif
1400		tcp_dooptions(&to, optp, optlen, TO_SYN);
1401		syncache_add(&inc, &to, th, inp, &so, m, NULL, NULL);
1402		/*
1403		 * Entry added to syncache and mbuf consumed.
1404		 * Everything already unlocked by syncache_add().
1405		 */
1406		INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
1407		return;
1408	} else if (tp->t_state == TCPS_LISTEN) {
1409		/*
1410		 * When a listen socket is torn down the SO_ACCEPTCONN
1411		 * flag is removed first while connections are drained
1412		 * from the accept queue in a unlock/lock cycle of the
1413		 * ACCEPT_LOCK, opening a race condition allowing a SYN
1414		 * attempt go through unhandled.
1415		 */
1416		goto dropunlock;
1417	}
1418
1419#ifdef TCP_SIGNATURE
1420	if (sig_checked == 0)  {
1421		tcp_dooptions(&to, optp, optlen,
1422		    (thflags & TH_SYN) ? TO_SYN : 0);
1423		if (!tcp_signature_verify_input(m, off0, tlen, optlen, &to,
1424		    th, tp->t_flags)) {
1425
1426			/*
1427			 * In SYN_SENT state if it receives an RST, it is
1428			 * allowed for further processing.
1429			 */
1430			if ((thflags & TH_RST) == 0 ||
1431			    (tp->t_state == TCPS_SYN_SENT) == 0)
1432				goto dropunlock;
1433		}
1434		sig_checked = 1;
1435	}
1436#endif
1437
1438	/*
1439	 * Segment belongs to a connection in SYN_SENT, ESTABLISHED or later
1440	 * state.  tcp_do_segment() always consumes the mbuf chain, unlocks
1441	 * the inpcb, and unlocks pcbinfo.
1442	 */
1443	tcp_do_segment(m, th, so, tp, drop_hdrlen, tlen, iptos, ti_locked);
1444	INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
1445	return;
1446
1447dropwithreset:
1448	if (ti_locked == TI_WLOCKED) {
1449		INP_INFO_WUNLOCK(&V_tcbinfo);
1450		ti_locked = TI_UNLOCKED;
1451	}
1452#ifdef INVARIANTS
1453	else {
1454		KASSERT(ti_locked == TI_UNLOCKED, ("%s: dropwithreset "
1455		    "ti_locked: %d", __func__, ti_locked));
1456		INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
1457	}
1458#endif
1459
1460	if (inp != NULL) {
1461		tcp_dropwithreset(m, th, tp, tlen, rstreason);
1462		INP_WUNLOCK(inp);
1463	} else
1464		tcp_dropwithreset(m, th, NULL, tlen, rstreason);
1465	m = NULL;	/* mbuf chain got consumed. */
1466	goto drop;
1467
1468dropunlock:
1469	if (ti_locked == TI_WLOCKED) {
1470		INP_INFO_WUNLOCK(&V_tcbinfo);
1471		ti_locked = TI_UNLOCKED;
1472	}
1473#ifdef INVARIANTS
1474	else {
1475		KASSERT(ti_locked == TI_UNLOCKED, ("%s: dropunlock "
1476		    "ti_locked: %d", __func__, ti_locked));
1477		INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
1478	}
1479#endif
1480
1481	if (inp != NULL)
1482		INP_WUNLOCK(inp);
1483
1484drop:
1485	INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
1486	if (s != NULL)
1487		free(s, M_TCPLOG);
1488	if (m != NULL)
1489		m_freem(m);
1490}
1491
1492static void
1493tcp_do_segment(struct mbuf *m, struct tcphdr *th, struct socket *so,
1494    struct tcpcb *tp, int drop_hdrlen, int tlen, uint8_t iptos,
1495    int ti_locked)
1496{
1497	int thflags, acked, ourfinisacked, needoutput = 0;
1498	int rstreason, todrop, win;
1499	u_long tiwin;
1500	struct tcpopt to;
1501
1502#ifdef TCPDEBUG
1503	/*
1504	 * The size of tcp_saveipgen must be the size of the max ip header,
1505	 * now IPv6.
1506	 */
1507	u_char tcp_saveipgen[IP6_HDR_LEN];
1508	struct tcphdr tcp_savetcp;
1509	short ostate = 0;
1510#endif
1511	thflags = th->th_flags;
1512	tp->sackhint.last_sack_ack = 0;
1513
1514	/*
1515	 * If this is either a state-changing packet or current state isn't
1516	 * established, we require a write lock on tcbinfo.  Otherwise, we
1517	 * allow the tcbinfo to be in either alocked or unlocked, as the
1518	 * caller may have unnecessarily acquired a write lock due to a race.
1519	 */
1520	if ((thflags & (TH_SYN | TH_FIN | TH_RST)) != 0 ||
1521	    tp->t_state != TCPS_ESTABLISHED) {
1522		KASSERT(ti_locked == TI_WLOCKED, ("%s ti_locked %d for "
1523		    "SYN/FIN/RST/!EST", __func__, ti_locked));
1524		INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
1525	} else {
1526#ifdef INVARIANTS
1527		if (ti_locked == TI_WLOCKED)
1528			INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
1529		else {
1530			KASSERT(ti_locked == TI_UNLOCKED, ("%s: EST "
1531			    "ti_locked: %d", __func__, ti_locked));
1532			INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
1533		}
1534#endif
1535	}
1536	INP_WLOCK_ASSERT(tp->t_inpcb);
1537	KASSERT(tp->t_state > TCPS_LISTEN, ("%s: TCPS_LISTEN",
1538	    __func__));
1539	KASSERT(tp->t_state != TCPS_TIME_WAIT, ("%s: TCPS_TIME_WAIT",
1540	    __func__));
1541
1542	/*
1543	 * Segment received on connection.
1544	 * Reset idle time and keep-alive timer.
1545	 * XXX: This should be done after segment
1546	 * validation to ignore broken/spoofed segs.
1547	 */
1548	tp->t_rcvtime = ticks;
1549	if (TCPS_HAVEESTABLISHED(tp->t_state))
1550		tcp_timer_activate(tp, TT_KEEP, TP_KEEPIDLE(tp));
1551
1552	/*
1553	 * Unscale the window into a 32-bit value.
1554	 * For the SYN_SENT state the scale is zero.
1555	 */
1556	tiwin = th->th_win << tp->snd_scale;
1557
1558	/*
1559	 * TCP ECN processing.
1560	 */
1561	if (tp->t_flags & TF_ECN_PERMIT) {
1562		if (thflags & TH_CWR)
1563			tp->t_flags &= ~TF_ECN_SND_ECE;
1564		switch (iptos & IPTOS_ECN_MASK) {
1565		case IPTOS_ECN_CE:
1566			tp->t_flags |= TF_ECN_SND_ECE;
1567			TCPSTAT_INC(tcps_ecn_ce);
1568			break;
1569		case IPTOS_ECN_ECT0:
1570			TCPSTAT_INC(tcps_ecn_ect0);
1571			break;
1572		case IPTOS_ECN_ECT1:
1573			TCPSTAT_INC(tcps_ecn_ect1);
1574			break;
1575		}
1576		/* Congestion experienced. */
1577		if (thflags & TH_ECE) {
1578			cc_cong_signal(tp, th, CC_ECN);
1579		}
1580	}
1581
1582	/*
1583	 * Parse options on any incoming segment.
1584	 */
1585	tcp_dooptions(&to, (u_char *)(th + 1),
1586	    (th->th_off << 2) - sizeof(struct tcphdr),
1587	    (thflags & TH_SYN) ? TO_SYN : 0);
1588
1589	/*
1590	 * If echoed timestamp is later than the current time,
1591	 * fall back to non RFC1323 RTT calculation.  Normalize
1592	 * timestamp if syncookies were used when this connection
1593	 * was established.
1594	 */
1595	if ((to.to_flags & TOF_TS) && (to.to_tsecr != 0)) {
1596		to.to_tsecr -= tp->ts_offset;
1597		if (TSTMP_GT(to.to_tsecr, tcp_ts_getticks()))
1598			to.to_tsecr = 0;
1599	}
1600
1601	/*
1602	 * Process options only when we get SYN/ACK back. The SYN case
1603	 * for incoming connections is handled in tcp_syncache.
1604	 * According to RFC1323 the window field in a SYN (i.e., a <SYN>
1605	 * or <SYN,ACK>) segment itself is never scaled.
1606	 * XXX this is traditional behavior, may need to be cleaned up.
1607	 */
1608	if (tp->t_state == TCPS_SYN_SENT && (thflags & TH_SYN)) {
1609		if ((to.to_flags & TOF_SCALE) &&
1610		    (tp->t_flags & TF_REQ_SCALE)) {
1611			tp->t_flags |= TF_RCVD_SCALE;
1612			tp->snd_scale = to.to_wscale;
1613		}
1614		/*
1615		 * Initial send window.  It will be updated with
1616		 * the next incoming segment to the scaled value.
1617		 */
1618		tp->snd_wnd = th->th_win;
1619		if (to.to_flags & TOF_TS) {
1620			tp->t_flags |= TF_RCVD_TSTMP;
1621			tp->ts_recent = to.to_tsval;
1622			tp->ts_recent_age = tcp_ts_getticks();
1623		}
1624		if (to.to_flags & TOF_MSS)
1625			tcp_mss(tp, to.to_mss);
1626		if ((tp->t_flags & TF_SACK_PERMIT) &&
1627		    (to.to_flags & TOF_SACKPERM) == 0)
1628			tp->t_flags &= ~TF_SACK_PERMIT;
1629	}
1630
1631	/*
1632	 * Header prediction: check for the two common cases
1633	 * of a uni-directional data xfer.  If the packet has
1634	 * no control flags, is in-sequence, the window didn't
1635	 * change and we're not retransmitting, it's a
1636	 * candidate.  If the length is zero and the ack moved
1637	 * forward, we're the sender side of the xfer.  Just
1638	 * free the data acked & wake any higher level process
1639	 * that was blocked waiting for space.  If the length
1640	 * is non-zero and the ack didn't move, we're the
1641	 * receiver side.  If we're getting packets in-order
1642	 * (the reassembly queue is empty), add the data to
1643	 * the socket buffer and note that we need a delayed ack.
1644	 * Make sure that the hidden state-flags are also off.
1645	 * Since we check for TCPS_ESTABLISHED first, it can only
1646	 * be TH_NEEDSYN.
1647	 */
1648	if (tp->t_state == TCPS_ESTABLISHED &&
1649	    th->th_seq == tp->rcv_nxt &&
1650	    (thflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK)) == TH_ACK &&
1651	    tp->snd_nxt == tp->snd_max &&
1652	    tiwin && tiwin == tp->snd_wnd &&
1653	    ((tp->t_flags & (TF_NEEDSYN|TF_NEEDFIN)) == 0) &&
1654	    LIST_EMPTY(&tp->t_segq) &&
1655	    ((to.to_flags & TOF_TS) == 0 ||
1656	     TSTMP_GEQ(to.to_tsval, tp->ts_recent)) ) {
1657
1658		/*
1659		 * If last ACK falls within this segment's sequence numbers,
1660		 * record the timestamp.
1661		 * NOTE that the test is modified according to the latest
1662		 * proposal of the tcplw@cray.com list (Braden 1993/04/26).
1663		 */
1664		if ((to.to_flags & TOF_TS) != 0 &&
1665		    SEQ_LEQ(th->th_seq, tp->last_ack_sent)) {
1666			tp->ts_recent_age = tcp_ts_getticks();
1667			tp->ts_recent = to.to_tsval;
1668		}
1669
1670		if (tlen == 0) {
1671			if (SEQ_GT(th->th_ack, tp->snd_una) &&
1672			    SEQ_LEQ(th->th_ack, tp->snd_max) &&
1673			    !IN_RECOVERY(tp->t_flags) &&
1674			    (to.to_flags & TOF_SACK) == 0 &&
1675			    TAILQ_EMPTY(&tp->snd_holes)) {
1676				/*
1677				 * This is a pure ack for outstanding data.
1678				 */
1679				if (ti_locked == TI_WLOCKED)
1680					INP_INFO_WUNLOCK(&V_tcbinfo);
1681				ti_locked = TI_UNLOCKED;
1682
1683				TCPSTAT_INC(tcps_predack);
1684
1685				/*
1686				 * "bad retransmit" recovery.
1687				 */
1688				if (tp->t_rxtshift == 1 &&
1689				    tp->t_flags & TF_PREVVALID &&
1690				    (int)(ticks - tp->t_badrxtwin) < 0) {
1691					cc_cong_signal(tp, th, CC_RTO_ERR);
1692				}
1693
1694				/*
1695				 * Recalculate the transmit timer / rtt.
1696				 *
1697				 * Some boxes send broken timestamp replies
1698				 * during the SYN+ACK phase, ignore
1699				 * timestamps of 0 or we could calculate a
1700				 * huge RTT and blow up the retransmit timer.
1701				 */
1702				if ((to.to_flags & TOF_TS) != 0 &&
1703				    to.to_tsecr) {
1704					u_int t;
1705
1706					t = tcp_ts_getticks() - to.to_tsecr;
1707					if (!tp->t_rttlow || tp->t_rttlow > t)
1708						tp->t_rttlow = t;
1709					tcp_xmit_timer(tp,
1710					    TCP_TS_TO_TICKS(t) + 1);
1711				} else if (tp->t_rtttime &&
1712				    SEQ_GT(th->th_ack, tp->t_rtseq)) {
1713					if (!tp->t_rttlow ||
1714					    tp->t_rttlow > ticks - tp->t_rtttime)
1715						tp->t_rttlow = ticks - tp->t_rtttime;
1716					tcp_xmit_timer(tp,
1717							ticks - tp->t_rtttime);
1718				}
1719				acked = BYTES_THIS_ACK(tp, th);
1720
1721				/* Run HHOOK_TCP_ESTABLISHED_IN helper hooks. */
1722				hhook_run_tcp_est_in(tp, th, &to);
1723
1724				TCPSTAT_INC(tcps_rcvackpack);
1725				TCPSTAT_ADD(tcps_rcvackbyte, acked);
1726				sbdrop(&so->so_snd, acked);
1727				if (SEQ_GT(tp->snd_una, tp->snd_recover) &&
1728				    SEQ_LEQ(th->th_ack, tp->snd_recover))
1729					tp->snd_recover = th->th_ack - 1;
1730
1731				/*
1732				 * Let the congestion control algorithm update
1733				 * congestion control related information. This
1734				 * typically means increasing the congestion
1735				 * window.
1736				 */
1737				cc_ack_received(tp, th, CC_ACK);
1738
1739				tp->snd_una = th->th_ack;
1740				/*
1741				 * Pull snd_wl2 up to prevent seq wrap relative
1742				 * to th_ack.
1743				 */
1744				tp->snd_wl2 = th->th_ack;
1745				tp->t_dupacks = 0;
1746				m_freem(m);
1747				ND6_HINT(tp); /* Some progress has been made. */
1748
1749				/*
1750				 * If all outstanding data are acked, stop
1751				 * retransmit timer, otherwise restart timer
1752				 * using current (possibly backed-off) value.
1753				 * If process is waiting for space,
1754				 * wakeup/selwakeup/signal.  If data
1755				 * are ready to send, let tcp_output
1756				 * decide between more output or persist.
1757				 */
1758#ifdef TCPDEBUG
1759				if (so->so_options & SO_DEBUG)
1760					tcp_trace(TA_INPUT, ostate, tp,
1761					    (void *)tcp_saveipgen,
1762					    &tcp_savetcp, 0);
1763#endif
1764				if (tp->snd_una == tp->snd_max)
1765					tcp_timer_activate(tp, TT_REXMT, 0);
1766				else if (!tcp_timer_active(tp, TT_PERSIST))
1767					tcp_timer_activate(tp, TT_REXMT,
1768						      tp->t_rxtcur);
1769				sowwakeup(so);
1770				if (so->so_snd.sb_cc)
1771					(void) tcp_output(tp);
1772				goto check_delack;
1773			}
1774		} else if (th->th_ack == tp->snd_una &&
1775		    tlen <= sbspace(&so->so_rcv)) {
1776			int newsize = 0;	/* automatic sockbuf scaling */
1777
1778			/*
1779			 * This is a pure, in-sequence data packet with
1780			 * nothing on the reassembly queue and we have enough
1781			 * buffer space to take it.
1782			 */
1783			if (ti_locked == TI_WLOCKED)
1784				INP_INFO_WUNLOCK(&V_tcbinfo);
1785			ti_locked = TI_UNLOCKED;
1786
1787			/* Clean receiver SACK report if present */
1788			if ((tp->t_flags & TF_SACK_PERMIT) && tp->rcv_numsacks)
1789				tcp_clean_sackreport(tp);
1790			TCPSTAT_INC(tcps_preddat);
1791			tp->rcv_nxt += tlen;
1792			/*
1793			 * Pull snd_wl1 up to prevent seq wrap relative to
1794			 * th_seq.
1795			 */
1796			tp->snd_wl1 = th->th_seq;
1797			/*
1798			 * Pull rcv_up up to prevent seq wrap relative to
1799			 * rcv_nxt.
1800			 */
1801			tp->rcv_up = tp->rcv_nxt;
1802			TCPSTAT_INC(tcps_rcvpack);
1803			TCPSTAT_ADD(tcps_rcvbyte, tlen);
1804			ND6_HINT(tp);	/* Some progress has been made */
1805#ifdef TCPDEBUG
1806			if (so->so_options & SO_DEBUG)
1807				tcp_trace(TA_INPUT, ostate, tp,
1808				    (void *)tcp_saveipgen, &tcp_savetcp, 0);
1809#endif
1810		/*
1811		 * Automatic sizing of receive socket buffer.  Often the send
1812		 * buffer size is not optimally adjusted to the actual network
1813		 * conditions at hand (delay bandwidth product).  Setting the
1814		 * buffer size too small limits throughput on links with high
1815		 * bandwidth and high delay (eg. trans-continental/oceanic links).
1816		 *
1817		 * On the receive side the socket buffer memory is only rarely
1818		 * used to any significant extent.  This allows us to be much
1819		 * more aggressive in scaling the receive socket buffer.  For
1820		 * the case that the buffer space is actually used to a large
1821		 * extent and we run out of kernel memory we can simply drop
1822		 * the new segments; TCP on the sender will just retransmit it
1823		 * later.  Setting the buffer size too big may only consume too
1824		 * much kernel memory if the application doesn't read() from
1825		 * the socket or packet loss or reordering makes use of the
1826		 * reassembly queue.
1827		 *
1828		 * The criteria to step up the receive buffer one notch are:
1829		 *  1. the number of bytes received during the time it takes
1830		 *     one timestamp to be reflected back to us (the RTT);
1831		 *  2. received bytes per RTT is within seven eighth of the
1832		 *     current socket buffer size;
1833		 *  3. receive buffer size has not hit maximal automatic size;
1834		 *
1835		 * This algorithm does one step per RTT at most and only if
1836		 * we receive a bulk stream w/o packet losses or reorderings.
1837		 * Shrinking the buffer during idle times is not necessary as
1838		 * it doesn't consume any memory when idle.
1839		 *
1840		 * TODO: Only step up if the application is actually serving
1841		 * the buffer to better manage the socket buffer resources.
1842		 */
1843			if (V_tcp_do_autorcvbuf &&
1844			    to.to_tsecr &&
1845			    (so->so_rcv.sb_flags & SB_AUTOSIZE)) {
1846				if (TSTMP_GT(to.to_tsecr, tp->rfbuf_ts) &&
1847				    to.to_tsecr - tp->rfbuf_ts < hz) {
1848					if (tp->rfbuf_cnt >
1849					    (so->so_rcv.sb_hiwat / 8 * 7) &&
1850					    so->so_rcv.sb_hiwat <
1851					    V_tcp_autorcvbuf_max) {
1852						newsize =
1853						    min(so->so_rcv.sb_hiwat +
1854						    V_tcp_autorcvbuf_inc,
1855						    V_tcp_autorcvbuf_max);
1856					}
1857					/* Start over with next RTT. */
1858					tp->rfbuf_ts = 0;
1859					tp->rfbuf_cnt = 0;
1860				} else
1861					tp->rfbuf_cnt += tlen;	/* add up */
1862			}
1863
1864			/* Add data to socket buffer. */
1865			SOCKBUF_LOCK(&so->so_rcv);
1866			if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
1867				m_freem(m);
1868			} else {
1869				/*
1870				 * Set new socket buffer size.
1871				 * Give up when limit is reached.
1872				 */
1873				if (newsize)
1874					if (!sbreserve_locked(&so->so_rcv,
1875					    newsize, so, NULL))
1876						so->so_rcv.sb_flags &= ~SB_AUTOSIZE;
1877				m_adj(m, drop_hdrlen);	/* delayed header drop */
1878				sbappendstream_locked(&so->so_rcv, m);
1879			}
1880			/* NB: sorwakeup_locked() does an implicit unlock. */
1881			sorwakeup_locked(so);
1882			if (DELAY_ACK(tp)) {
1883				tp->t_flags |= TF_DELACK;
1884			} else {
1885				tp->t_flags |= TF_ACKNOW;
1886				tcp_output(tp);
1887			}
1888			goto check_delack;
1889		}
1890	}
1891
1892	/*
1893	 * Calculate amount of space in receive window,
1894	 * and then do TCP input processing.
1895	 * Receive window is amount of space in rcv queue,
1896	 * but not less than advertised window.
1897	 */
1898	win = sbspace(&so->so_rcv);
1899	if (win < 0)
1900		win = 0;
1901	tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
1902
1903	/* Reset receive buffer auto scaling when not in bulk receive mode. */
1904	tp->rfbuf_ts = 0;
1905	tp->rfbuf_cnt = 0;
1906
1907	switch (tp->t_state) {
1908
1909	/*
1910	 * If the state is SYN_RECEIVED:
1911	 *	if seg contains an ACK, but not for our SYN/ACK, send a RST.
1912	 */
1913	case TCPS_SYN_RECEIVED:
1914		if ((thflags & TH_ACK) &&
1915		    (SEQ_LEQ(th->th_ack, tp->snd_una) ||
1916		     SEQ_GT(th->th_ack, tp->snd_max))) {
1917				rstreason = BANDLIM_RST_OPENPORT;
1918				goto dropwithreset;
1919		}
1920		break;
1921
1922	/*
1923	 * If the state is SYN_SENT:
1924	 *	if seg contains an ACK, but not for our SYN, drop the input.
1925	 *	if seg contains a RST, then drop the connection.
1926	 *	if seg does not contain SYN, then drop it.
1927	 * Otherwise this is an acceptable SYN segment
1928	 *	initialize tp->rcv_nxt and tp->irs
1929	 *	if seg contains ack then advance tp->snd_una
1930	 *	if seg contains an ECE and ECN support is enabled, the stream
1931	 *	    is ECN capable.
1932	 *	if SYN has been acked change to ESTABLISHED else SYN_RCVD state
1933	 *	arrange for segment to be acked (eventually)
1934	 *	continue processing rest of data/controls, beginning with URG
1935	 */
1936	case TCPS_SYN_SENT:
1937		if ((thflags & TH_ACK) &&
1938		    (SEQ_LEQ(th->th_ack, tp->iss) ||
1939		     SEQ_GT(th->th_ack, tp->snd_max))) {
1940			rstreason = BANDLIM_UNLIMITED;
1941			goto dropwithreset;
1942		}
1943		if ((thflags & (TH_ACK|TH_RST)) == (TH_ACK|TH_RST))
1944			tp = tcp_drop(tp, ECONNREFUSED);
1945		if (thflags & TH_RST)
1946			goto drop;
1947		if (!(thflags & TH_SYN))
1948			goto drop;
1949
1950		tp->irs = th->th_seq;
1951		tcp_rcvseqinit(tp);
1952		if (thflags & TH_ACK) {
1953			TCPSTAT_INC(tcps_connects);
1954			soisconnected(so);
1955#ifdef MAC
1956			mac_socketpeer_set_from_mbuf(m, so);
1957#endif
1958			/* Do window scaling on this connection? */
1959			if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
1960				(TF_RCVD_SCALE|TF_REQ_SCALE)) {
1961				tp->rcv_scale = tp->request_r_scale;
1962			}
1963			tp->rcv_adv += imin(tp->rcv_wnd,
1964			    TCP_MAXWIN << tp->rcv_scale);
1965			tp->snd_una++;		/* SYN is acked */
1966			/*
1967			 * If there's data, delay ACK; if there's also a FIN
1968			 * ACKNOW will be turned on later.
1969			 */
1970			if (DELAY_ACK(tp) && tlen != 0)
1971				tcp_timer_activate(tp, TT_DELACK,
1972				    tcp_delacktime);
1973			else
1974				tp->t_flags |= TF_ACKNOW;
1975
1976			if ((thflags & TH_ECE) && V_tcp_do_ecn) {
1977				tp->t_flags |= TF_ECN_PERMIT;
1978				TCPSTAT_INC(tcps_ecn_shs);
1979			}
1980
1981			/*
1982			 * Received <SYN,ACK> in SYN_SENT[*] state.
1983			 * Transitions:
1984			 *	SYN_SENT  --> ESTABLISHED
1985			 *	SYN_SENT* --> FIN_WAIT_1
1986			 */
1987			tp->t_starttime = ticks;
1988			if (tp->t_flags & TF_NEEDFIN) {
1989				tp->t_state = TCPS_FIN_WAIT_1;
1990				tp->t_flags &= ~TF_NEEDFIN;
1991				thflags &= ~TH_SYN;
1992			} else {
1993				tp->t_state = TCPS_ESTABLISHED;
1994				cc_conn_init(tp);
1995				tcp_timer_activate(tp, TT_KEEP,
1996				    TP_KEEPIDLE(tp));
1997			}
1998		} else {
1999			/*
2000			 * Received initial SYN in SYN-SENT[*] state =>
2001			 * simultaneous open.  If segment contains CC option
2002			 * and there is a cached CC, apply TAO test.
2003			 * If it succeeds, connection is * half-synchronized.
2004			 * Otherwise, do 3-way handshake:
2005			 *        SYN-SENT -> SYN-RECEIVED
2006			 *        SYN-SENT* -> SYN-RECEIVED*
2007			 * If there was no CC option, clear cached CC value.
2008			 */
2009			tp->t_flags |= (TF_ACKNOW | TF_NEEDSYN);
2010			tcp_timer_activate(tp, TT_REXMT, 0);
2011			tp->t_state = TCPS_SYN_RECEIVED;
2012		}
2013
2014		KASSERT(ti_locked == TI_WLOCKED, ("%s: trimthenstep6: "
2015		    "ti_locked %d", __func__, ti_locked));
2016		INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
2017		INP_WLOCK_ASSERT(tp->t_inpcb);
2018
2019		/*
2020		 * Advance th->th_seq to correspond to first data byte.
2021		 * If data, trim to stay within window,
2022		 * dropping FIN if necessary.
2023		 */
2024		th->th_seq++;
2025		if (tlen > tp->rcv_wnd) {
2026			todrop = tlen - tp->rcv_wnd;
2027			m_adj(m, -todrop);
2028			tlen = tp->rcv_wnd;
2029			thflags &= ~TH_FIN;
2030			TCPSTAT_INC(tcps_rcvpackafterwin);
2031			TCPSTAT_ADD(tcps_rcvbyteafterwin, todrop);
2032		}
2033		tp->snd_wl1 = th->th_seq - 1;
2034		tp->rcv_up = th->th_seq;
2035		/*
2036		 * Client side of transaction: already sent SYN and data.
2037		 * If the remote host used T/TCP to validate the SYN,
2038		 * our data will be ACK'd; if so, enter normal data segment
2039		 * processing in the middle of step 5, ack processing.
2040		 * Otherwise, goto step 6.
2041		 */
2042		if (thflags & TH_ACK)
2043			goto process_ACK;
2044
2045		goto step6;
2046
2047	/*
2048	 * If the state is LAST_ACK or CLOSING or TIME_WAIT:
2049	 *      do normal processing.
2050	 *
2051	 * NB: Leftover from RFC1644 T/TCP.  Cases to be reused later.
2052	 */
2053	case TCPS_LAST_ACK:
2054	case TCPS_CLOSING:
2055		break;  /* continue normal processing */
2056	}
2057
2058	/*
2059	 * States other than LISTEN or SYN_SENT.
2060	 * First check the RST flag and sequence number since reset segments
2061	 * are exempt from the timestamp and connection count tests.  This
2062	 * fixes a bug introduced by the Stevens, vol. 2, p. 960 bugfix
2063	 * below which allowed reset segments in half the sequence space
2064	 * to fall though and be processed (which gives forged reset
2065	 * segments with a random sequence number a 50 percent chance of
2066	 * killing a connection).
2067	 * Then check timestamp, if present.
2068	 * Then check the connection count, if present.
2069	 * Then check that at least some bytes of segment are within
2070	 * receive window.  If segment begins before rcv_nxt,
2071	 * drop leading data (and SYN); if nothing left, just ack.
2072	 *
2073	 *
2074	 * If the RST bit is set, check the sequence number to see
2075	 * if this is a valid reset segment.
2076	 * RFC 793 page 37:
2077	 *   In all states except SYN-SENT, all reset (RST) segments
2078	 *   are validated by checking their SEQ-fields.  A reset is
2079	 *   valid if its sequence number is in the window.
2080	 * Note: this does not take into account delayed ACKs, so
2081	 *   we should test against last_ack_sent instead of rcv_nxt.
2082	 *   The sequence number in the reset segment is normally an
2083	 *   echo of our outgoing acknowlegement numbers, but some hosts
2084	 *   send a reset with the sequence number at the rightmost edge
2085	 *   of our receive window, and we have to handle this case.
2086	 * Note 2: Paul Watson's paper "Slipping in the Window" has shown
2087	 *   that brute force RST attacks are possible.  To combat this,
2088	 *   we use a much stricter check while in the ESTABLISHED state,
2089	 *   only accepting RSTs where the sequence number is equal to
2090	 *   last_ack_sent.  In all other states (the states in which a
2091	 *   RST is more likely), the more permissive check is used.
2092	 * If we have multiple segments in flight, the initial reset
2093	 * segment sequence numbers will be to the left of last_ack_sent,
2094	 * but they will eventually catch up.
2095	 * In any case, it never made sense to trim reset segments to
2096	 * fit the receive window since RFC 1122 says:
2097	 *   4.2.2.12  RST Segment: RFC-793 Section 3.4
2098	 *
2099	 *    A TCP SHOULD allow a received RST segment to include data.
2100	 *
2101	 *    DISCUSSION
2102	 *         It has been suggested that a RST segment could contain
2103	 *         ASCII text that encoded and explained the cause of the
2104	 *         RST.  No standard has yet been established for such
2105	 *         data.
2106	 *
2107	 * If the reset segment passes the sequence number test examine
2108	 * the state:
2109	 *    SYN_RECEIVED STATE:
2110	 *	If passive open, return to LISTEN state.
2111	 *	If active open, inform user that connection was refused.
2112	 *    ESTABLISHED, FIN_WAIT_1, FIN_WAIT_2, CLOSE_WAIT STATES:
2113	 *	Inform user that connection was reset, and close tcb.
2114	 *    CLOSING, LAST_ACK STATES:
2115	 *	Close the tcb.
2116	 *    TIME_WAIT STATE:
2117	 *	Drop the segment - see Stevens, vol. 2, p. 964 and
2118	 *      RFC 1337.
2119	 */
2120	if (thflags & TH_RST) {
2121		if (SEQ_GEQ(th->th_seq, tp->last_ack_sent - 1) &&
2122		    SEQ_LEQ(th->th_seq, tp->last_ack_sent + tp->rcv_wnd)) {
2123			switch (tp->t_state) {
2124
2125			case TCPS_SYN_RECEIVED:
2126				so->so_error = ECONNREFUSED;
2127				goto close;
2128
2129			case TCPS_ESTABLISHED:
2130				if (V_tcp_insecure_rst == 0 &&
2131				    !(SEQ_GEQ(th->th_seq, tp->rcv_nxt - 1) &&
2132				    SEQ_LEQ(th->th_seq, tp->rcv_nxt + 1)) &&
2133				    !(SEQ_GEQ(th->th_seq, tp->last_ack_sent - 1) &&
2134				    SEQ_LEQ(th->th_seq, tp->last_ack_sent + 1))) {
2135					TCPSTAT_INC(tcps_badrst);
2136					goto drop;
2137				}
2138				/* FALLTHROUGH */
2139			case TCPS_FIN_WAIT_1:
2140			case TCPS_FIN_WAIT_2:
2141			case TCPS_CLOSE_WAIT:
2142				so->so_error = ECONNRESET;
2143			close:
2144				KASSERT(ti_locked == TI_WLOCKED,
2145				    ("tcp_do_segment: TH_RST 1 ti_locked %d",
2146				    ti_locked));
2147				INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
2148
2149				tp->t_state = TCPS_CLOSED;
2150				TCPSTAT_INC(tcps_drops);
2151				tp = tcp_close(tp);
2152				break;
2153
2154			case TCPS_CLOSING:
2155			case TCPS_LAST_ACK:
2156				KASSERT(ti_locked == TI_WLOCKED,
2157				    ("tcp_do_segment: TH_RST 2 ti_locked %d",
2158				    ti_locked));
2159				INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
2160
2161				tp = tcp_close(tp);
2162				break;
2163			}
2164		}
2165		goto drop;
2166	}
2167
2168	/*
2169	 * RFC 1323 PAWS: If we have a timestamp reply on this segment
2170	 * and it's less than ts_recent, drop it.
2171	 */
2172	if ((to.to_flags & TOF_TS) != 0 && tp->ts_recent &&
2173	    TSTMP_LT(to.to_tsval, tp->ts_recent)) {
2174
2175		/* Check to see if ts_recent is over 24 days old.  */
2176		if (tcp_ts_getticks() - tp->ts_recent_age > TCP_PAWS_IDLE) {
2177			/*
2178			 * Invalidate ts_recent.  If this segment updates
2179			 * ts_recent, the age will be reset later and ts_recent
2180			 * will get a valid value.  If it does not, setting
2181			 * ts_recent to zero will at least satisfy the
2182			 * requirement that zero be placed in the timestamp
2183			 * echo reply when ts_recent isn't valid.  The
2184			 * age isn't reset until we get a valid ts_recent
2185			 * because we don't want out-of-order segments to be
2186			 * dropped when ts_recent is old.
2187			 */
2188			tp->ts_recent = 0;
2189		} else {
2190			TCPSTAT_INC(tcps_rcvduppack);
2191			TCPSTAT_ADD(tcps_rcvdupbyte, tlen);
2192			TCPSTAT_INC(tcps_pawsdrop);
2193			if (tlen)
2194				goto dropafterack;
2195			goto drop;
2196		}
2197	}
2198
2199	/*
2200	 * In the SYN-RECEIVED state, validate that the packet belongs to
2201	 * this connection before trimming the data to fit the receive
2202	 * window.  Check the sequence number versus IRS since we know
2203	 * the sequence numbers haven't wrapped.  This is a partial fix
2204	 * for the "LAND" DoS attack.
2205	 */
2206	if (tp->t_state == TCPS_SYN_RECEIVED && SEQ_LT(th->th_seq, tp->irs)) {
2207		rstreason = BANDLIM_RST_OPENPORT;
2208		goto dropwithreset;
2209	}
2210
2211	todrop = tp->rcv_nxt - th->th_seq;
2212	if (todrop > 0) {
2213		/*
2214		 * If this is a duplicate SYN for our current connection,
2215		 * advance over it and pretend and it's not a SYN.
2216		 */
2217		if (thflags & TH_SYN && th->th_seq == tp->irs) {
2218			thflags &= ~TH_SYN;
2219			th->th_seq++;
2220			if (th->th_urp > 1)
2221				th->th_urp--;
2222			else
2223				thflags &= ~TH_URG;
2224			todrop--;
2225		}
2226		/*
2227		 * Following if statement from Stevens, vol. 2, p. 960.
2228		 */
2229		if (todrop > tlen
2230		    || (todrop == tlen && (thflags & TH_FIN) == 0)) {
2231			/*
2232			 * Any valid FIN must be to the left of the window.
2233			 * At this point the FIN must be a duplicate or out
2234			 * of sequence; drop it.
2235			 */
2236			thflags &= ~TH_FIN;
2237
2238			/*
2239			 * Send an ACK to resynchronize and drop any data.
2240			 * But keep on processing for RST or ACK.
2241			 */
2242			tp->t_flags |= TF_ACKNOW;
2243			todrop = tlen;
2244			TCPSTAT_INC(tcps_rcvduppack);
2245			TCPSTAT_ADD(tcps_rcvdupbyte, todrop);
2246		} else {
2247			TCPSTAT_INC(tcps_rcvpartduppack);
2248			TCPSTAT_ADD(tcps_rcvpartdupbyte, todrop);
2249		}
2250		drop_hdrlen += todrop;	/* drop from the top afterwards */
2251		th->th_seq += todrop;
2252		tlen -= todrop;
2253		if (th->th_urp > todrop)
2254			th->th_urp -= todrop;
2255		else {
2256			thflags &= ~TH_URG;
2257			th->th_urp = 0;
2258		}
2259	}
2260
2261	/*
2262	 * If new data are received on a connection after the
2263	 * user processes are gone, then RST the other end.
2264	 */
2265	if ((so->so_state & SS_NOFDREF) &&
2266	    tp->t_state > TCPS_CLOSE_WAIT && tlen) {
2267		char *s;
2268
2269		KASSERT(ti_locked == TI_WLOCKED, ("%s: SS_NOFDEREF && "
2270		    "CLOSE_WAIT && tlen ti_locked %d", __func__, ti_locked));
2271		INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
2272
2273		if ((s = tcp_log_addrs(&tp->t_inpcb->inp_inc, th, NULL, NULL))) {
2274			log(LOG_DEBUG, "%s; %s: %s: Received %d bytes of data after socket "
2275			    "was closed, sending RST and removing tcpcb\n",
2276			    s, __func__, tcpstates[tp->t_state], tlen);
2277			free(s, M_TCPLOG);
2278		}
2279		tp = tcp_close(tp);
2280		TCPSTAT_INC(tcps_rcvafterclose);
2281		rstreason = BANDLIM_UNLIMITED;
2282		goto dropwithreset;
2283	}
2284
2285	/*
2286	 * If segment ends after window, drop trailing data
2287	 * (and PUSH and FIN); if nothing left, just ACK.
2288	 */
2289	todrop = (th->th_seq + tlen) - (tp->rcv_nxt + tp->rcv_wnd);
2290	if (todrop > 0) {
2291		TCPSTAT_INC(tcps_rcvpackafterwin);
2292		if (todrop >= tlen) {
2293			TCPSTAT_ADD(tcps_rcvbyteafterwin, tlen);
2294			/*
2295			 * If window is closed can only take segments at
2296			 * window edge, and have to drop data and PUSH from
2297			 * incoming segments.  Continue processing, but
2298			 * remember to ack.  Otherwise, drop segment
2299			 * and ack.
2300			 */
2301			if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
2302				tp->t_flags |= TF_ACKNOW;
2303				TCPSTAT_INC(tcps_rcvwinprobe);
2304			} else
2305				goto dropafterack;
2306		} else
2307			TCPSTAT_ADD(tcps_rcvbyteafterwin, todrop);
2308		m_adj(m, -todrop);
2309		tlen -= todrop;
2310		thflags &= ~(TH_PUSH|TH_FIN);
2311	}
2312
2313	/*
2314	 * If last ACK falls within this segment's sequence numbers,
2315	 * record its timestamp.
2316	 * NOTE:
2317	 * 1) That the test incorporates suggestions from the latest
2318	 *    proposal of the tcplw@cray.com list (Braden 1993/04/26).
2319	 * 2) That updating only on newer timestamps interferes with
2320	 *    our earlier PAWS tests, so this check should be solely
2321	 *    predicated on the sequence space of this segment.
2322	 * 3) That we modify the segment boundary check to be
2323	 *        Last.ACK.Sent <= SEG.SEQ + SEG.Len
2324	 *    instead of RFC1323's
2325	 *        Last.ACK.Sent < SEG.SEQ + SEG.Len,
2326	 *    This modified check allows us to overcome RFC1323's
2327	 *    limitations as described in Stevens TCP/IP Illustrated
2328	 *    Vol. 2 p.869. In such cases, we can still calculate the
2329	 *    RTT correctly when RCV.NXT == Last.ACK.Sent.
2330	 */
2331	if ((to.to_flags & TOF_TS) != 0 &&
2332	    SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
2333	    SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
2334		((thflags & (TH_SYN|TH_FIN)) != 0))) {
2335		tp->ts_recent_age = tcp_ts_getticks();
2336		tp->ts_recent = to.to_tsval;
2337	}
2338
2339	/*
2340	 * If a SYN is in the window, then this is an
2341	 * error and we send an RST and drop the connection.
2342	 */
2343	if (thflags & TH_SYN) {
2344		KASSERT(ti_locked == TI_WLOCKED,
2345		    ("tcp_do_segment: TH_SYN ti_locked %d", ti_locked));
2346		INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
2347
2348		tp = tcp_drop(tp, ECONNRESET);
2349		rstreason = BANDLIM_UNLIMITED;
2350		goto drop;
2351	}
2352
2353	/*
2354	 * If the ACK bit is off:  if in SYN-RECEIVED state or SENDSYN
2355	 * flag is on (half-synchronized state), then queue data for
2356	 * later processing; else drop segment and return.
2357	 */
2358	if ((thflags & TH_ACK) == 0) {
2359		if (tp->t_state == TCPS_SYN_RECEIVED ||
2360		    (tp->t_flags & TF_NEEDSYN))
2361			goto step6;
2362		else if (tp->t_flags & TF_ACKNOW)
2363			goto dropafterack;
2364		else
2365			goto drop;
2366	}
2367
2368	/*
2369	 * Ack processing.
2370	 */
2371	switch (tp->t_state) {
2372
2373	/*
2374	 * In SYN_RECEIVED state, the ack ACKs our SYN, so enter
2375	 * ESTABLISHED state and continue processing.
2376	 * The ACK was checked above.
2377	 */
2378	case TCPS_SYN_RECEIVED:
2379
2380		TCPSTAT_INC(tcps_connects);
2381		soisconnected(so);
2382		/* Do window scaling? */
2383		if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
2384			(TF_RCVD_SCALE|TF_REQ_SCALE)) {
2385			tp->rcv_scale = tp->request_r_scale;
2386			tp->snd_wnd = tiwin;
2387		}
2388		/*
2389		 * Make transitions:
2390		 *      SYN-RECEIVED  -> ESTABLISHED
2391		 *      SYN-RECEIVED* -> FIN-WAIT-1
2392		 */
2393		tp->t_starttime = ticks;
2394		if (tp->t_flags & TF_NEEDFIN) {
2395			tp->t_state = TCPS_FIN_WAIT_1;
2396			tp->t_flags &= ~TF_NEEDFIN;
2397		} else {
2398			tp->t_state = TCPS_ESTABLISHED;
2399			cc_conn_init(tp);
2400			tcp_timer_activate(tp, TT_KEEP, TP_KEEPIDLE(tp));
2401		}
2402		/*
2403		 * If segment contains data or ACK, will call tcp_reass()
2404		 * later; if not, do so now to pass queued data to user.
2405		 */
2406		if (tlen == 0 && (thflags & TH_FIN) == 0)
2407			(void) tcp_reass(tp, (struct tcphdr *)0, 0,
2408			    (struct mbuf *)0);
2409		tp->snd_wl1 = th->th_seq - 1;
2410		/* FALLTHROUGH */
2411
2412	/*
2413	 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
2414	 * ACKs.  If the ack is in the range
2415	 *	tp->snd_una < th->th_ack <= tp->snd_max
2416	 * then advance tp->snd_una to th->th_ack and drop
2417	 * data from the retransmission queue.  If this ACK reflects
2418	 * more up to date window information we update our window information.
2419	 */
2420	case TCPS_ESTABLISHED:
2421	case TCPS_FIN_WAIT_1:
2422	case TCPS_FIN_WAIT_2:
2423	case TCPS_CLOSE_WAIT:
2424	case TCPS_CLOSING:
2425	case TCPS_LAST_ACK:
2426		if (SEQ_GT(th->th_ack, tp->snd_max)) {
2427			TCPSTAT_INC(tcps_rcvacktoomuch);
2428			goto dropafterack;
2429		}
2430		if ((tp->t_flags & TF_SACK_PERMIT) &&
2431		    ((to.to_flags & TOF_SACK) ||
2432		     !TAILQ_EMPTY(&tp->snd_holes)))
2433			tcp_sack_doack(tp, &to, th->th_ack);
2434
2435		/* Run HHOOK_TCP_ESTABLISHED_IN helper hooks. */
2436		hhook_run_tcp_est_in(tp, th, &to);
2437
2438		if (SEQ_LEQ(th->th_ack, tp->snd_una)) {
2439			if (tlen == 0 && tiwin == tp->snd_wnd) {
2440				TCPSTAT_INC(tcps_rcvdupack);
2441				/*
2442				 * If we have outstanding data (other than
2443				 * a window probe), this is a completely
2444				 * duplicate ack (ie, window info didn't
2445				 * change), the ack is the biggest we've
2446				 * seen and we've seen exactly our rexmt
2447				 * threshhold of them, assume a packet
2448				 * has been dropped and retransmit it.
2449				 * Kludge snd_nxt & the congestion
2450				 * window so we send only this one
2451				 * packet.
2452				 *
2453				 * We know we're losing at the current
2454				 * window size so do congestion avoidance
2455				 * (set ssthresh to half the current window
2456				 * and pull our congestion window back to
2457				 * the new ssthresh).
2458				 *
2459				 * Dup acks mean that packets have left the
2460				 * network (they're now cached at the receiver)
2461				 * so bump cwnd by the amount in the receiver
2462				 * to keep a constant cwnd packets in the
2463				 * network.
2464				 *
2465				 * When using TCP ECN, notify the peer that
2466				 * we reduced the cwnd.
2467				 */
2468				if (!tcp_timer_active(tp, TT_REXMT) ||
2469				    th->th_ack != tp->snd_una)
2470					tp->t_dupacks = 0;
2471				else if (++tp->t_dupacks > tcprexmtthresh ||
2472				     IN_FASTRECOVERY(tp->t_flags)) {
2473					cc_ack_received(tp, th, CC_DUPACK);
2474					if ((tp->t_flags & TF_SACK_PERMIT) &&
2475					    IN_FASTRECOVERY(tp->t_flags)) {
2476						int awnd;
2477
2478						/*
2479						 * Compute the amount of data in flight first.
2480						 * We can inject new data into the pipe iff
2481						 * we have less than 1/2 the original window's
2482						 * worth of data in flight.
2483						 */
2484						awnd = (tp->snd_nxt - tp->snd_fack) +
2485							tp->sackhint.sack_bytes_rexmit;
2486						if (awnd < tp->snd_ssthresh) {
2487							tp->snd_cwnd += tp->t_maxseg;
2488							if (tp->snd_cwnd > tp->snd_ssthresh)
2489								tp->snd_cwnd = tp->snd_ssthresh;
2490						}
2491					} else
2492						tp->snd_cwnd += tp->t_maxseg;
2493					if ((thflags & TH_FIN) &&
2494					    (TCPS_HAVERCVDFIN(tp->t_state) == 0)) {
2495						/*
2496						 * If its a fin we need to process
2497						 * it to avoid a race where both
2498						 * sides enter FIN-WAIT and send FIN|ACK
2499						 * at the same time.
2500						 */
2501						break;
2502					}
2503					(void) tcp_output(tp);
2504					goto drop;
2505				} else if (tp->t_dupacks == tcprexmtthresh) {
2506					tcp_seq onxt = tp->snd_nxt;
2507
2508					/*
2509					 * If we're doing sack, check to
2510					 * see if we're already in sack
2511					 * recovery. If we're not doing sack,
2512					 * check to see if we're in newreno
2513					 * recovery.
2514					 */
2515					if (tp->t_flags & TF_SACK_PERMIT) {
2516						if (IN_FASTRECOVERY(tp->t_flags)) {
2517							tp->t_dupacks = 0;
2518							break;
2519						}
2520					} else {
2521						if (SEQ_LEQ(th->th_ack,
2522						    tp->snd_recover)) {
2523							tp->t_dupacks = 0;
2524							break;
2525						}
2526					}
2527					/* Congestion signal before ack. */
2528					cc_cong_signal(tp, th, CC_NDUPACK);
2529					cc_ack_received(tp, th, CC_DUPACK);
2530					tcp_timer_activate(tp, TT_REXMT, 0);
2531					tp->t_rtttime = 0;
2532					if (tp->t_flags & TF_SACK_PERMIT) {
2533						TCPSTAT_INC(
2534						    tcps_sack_recovery_episode);
2535						tp->sack_newdata = tp->snd_nxt;
2536						tp->snd_cwnd = tp->t_maxseg;
2537						(void) tcp_output(tp);
2538						goto drop;
2539					}
2540					tp->snd_nxt = th->th_ack;
2541					tp->snd_cwnd = tp->t_maxseg;
2542					if ((thflags & TH_FIN) &&
2543					    (TCPS_HAVERCVDFIN(tp->t_state) == 0)) {
2544						/*
2545						 * If its a fin we need to process
2546						 * it to avoid a race where both
2547						 * sides enter FIN-WAIT and send FIN|ACK
2548						 * at the same time.
2549						 */
2550						break;
2551					}
2552					(void) tcp_output(tp);
2553					KASSERT(tp->snd_limited <= 2,
2554					    ("%s: tp->snd_limited too big",
2555					    __func__));
2556					tp->snd_cwnd = tp->snd_ssthresh +
2557					     tp->t_maxseg *
2558					     (tp->t_dupacks - tp->snd_limited);
2559					if (SEQ_GT(onxt, tp->snd_nxt))
2560						tp->snd_nxt = onxt;
2561					goto drop;
2562				} else if (V_tcp_do_rfc3042) {
2563					cc_ack_received(tp, th, CC_DUPACK);
2564					u_long oldcwnd = tp->snd_cwnd;
2565					tcp_seq oldsndmax = tp->snd_max;
2566					u_int sent;
2567					int avail;
2568
2569					KASSERT(tp->t_dupacks == 1 ||
2570					    tp->t_dupacks == 2,
2571					    ("%s: dupacks not 1 or 2",
2572					    __func__));
2573					if (tp->t_dupacks == 1)
2574						tp->snd_limited = 0;
2575					tp->snd_cwnd =
2576					    (tp->snd_nxt - tp->snd_una) +
2577					    (tp->t_dupacks - tp->snd_limited) *
2578					    tp->t_maxseg;
2579					if ((thflags & TH_FIN) &&
2580					    (TCPS_HAVERCVDFIN(tp->t_state) == 0)) {
2581						/*
2582						 * If its a fin we need to process
2583						 * it to avoid a race where both
2584						 * sides enter FIN-WAIT and send FIN|ACK
2585						 * at the same time.
2586						 */
2587						break;
2588					}
2589					/*
2590					 * Only call tcp_output when there
2591					 * is new data available to be sent.
2592					 * Otherwise we would send pure ACKs.
2593					 */
2594					SOCKBUF_LOCK(&so->so_snd);
2595					avail = so->so_snd.sb_cc -
2596					    (tp->snd_nxt - tp->snd_una);
2597					SOCKBUF_UNLOCK(&so->so_snd);
2598					if (avail > 0)
2599						(void) tcp_output(tp);
2600					sent = tp->snd_max - oldsndmax;
2601					if (sent > tp->t_maxseg) {
2602						KASSERT((tp->t_dupacks == 2 &&
2603						    tp->snd_limited == 0) ||
2604						   (sent == tp->t_maxseg + 1 &&
2605						    tp->t_flags & TF_SENTFIN),
2606						    ("%s: sent too much",
2607						    __func__));
2608						tp->snd_limited = 2;
2609					} else if (sent > 0)
2610						++tp->snd_limited;
2611					tp->snd_cwnd = oldcwnd;
2612					goto drop;
2613				}
2614			} else
2615				tp->t_dupacks = 0;
2616			break;
2617		}
2618
2619		KASSERT(SEQ_GT(th->th_ack, tp->snd_una),
2620		    ("%s: th_ack <= snd_una", __func__));
2621
2622		/*
2623		 * If the congestion window was inflated to account
2624		 * for the other side's cached packets, retract it.
2625		 */
2626		if (IN_FASTRECOVERY(tp->t_flags)) {
2627			if (SEQ_LT(th->th_ack, tp->snd_recover)) {
2628				if (tp->t_flags & TF_SACK_PERMIT)
2629					tcp_sack_partialack(tp, th);
2630				else
2631					tcp_newreno_partial_ack(tp, th);
2632			} else
2633				cc_post_recovery(tp, th);
2634		}
2635		tp->t_dupacks = 0;
2636		/*
2637		 * If we reach this point, ACK is not a duplicate,
2638		 *     i.e., it ACKs something we sent.
2639		 */
2640		if (tp->t_flags & TF_NEEDSYN) {
2641			/*
2642			 * T/TCP: Connection was half-synchronized, and our
2643			 * SYN has been ACK'd (so connection is now fully
2644			 * synchronized).  Go to non-starred state,
2645			 * increment snd_una for ACK of SYN, and check if
2646			 * we can do window scaling.
2647			 */
2648			tp->t_flags &= ~TF_NEEDSYN;
2649			tp->snd_una++;
2650			/* Do window scaling? */
2651			if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
2652				(TF_RCVD_SCALE|TF_REQ_SCALE)) {
2653				tp->rcv_scale = tp->request_r_scale;
2654				/* Send window already scaled. */
2655			}
2656		}
2657
2658process_ACK:
2659		INP_WLOCK_ASSERT(tp->t_inpcb);
2660
2661		acked = BYTES_THIS_ACK(tp, th);
2662		TCPSTAT_INC(tcps_rcvackpack);
2663		TCPSTAT_ADD(tcps_rcvackbyte, acked);
2664
2665		/*
2666		 * If we just performed our first retransmit, and the ACK
2667		 * arrives within our recovery window, then it was a mistake
2668		 * to do the retransmit in the first place.  Recover our
2669		 * original cwnd and ssthresh, and proceed to transmit where
2670		 * we left off.
2671		 */
2672		if (tp->t_rxtshift == 1 && tp->t_flags & TF_PREVVALID &&
2673		    (int)(ticks - tp->t_badrxtwin) < 0)
2674			cc_cong_signal(tp, th, CC_RTO_ERR);
2675
2676		/*
2677		 * If we have a timestamp reply, update smoothed
2678		 * round trip time.  If no timestamp is present but
2679		 * transmit timer is running and timed sequence
2680		 * number was acked, update smoothed round trip time.
2681		 * Since we now have an rtt measurement, cancel the
2682		 * timer backoff (cf., Phil Karn's retransmit alg.).
2683		 * Recompute the initial retransmit timer.
2684		 *
2685		 * Some boxes send broken timestamp replies
2686		 * during the SYN+ACK phase, ignore
2687		 * timestamps of 0 or we could calculate a
2688		 * huge RTT and blow up the retransmit timer.
2689		 */
2690		if ((to.to_flags & TOF_TS) != 0 && to.to_tsecr) {
2691			u_int t;
2692
2693			t = tcp_ts_getticks() - to.to_tsecr;
2694			if (!tp->t_rttlow || tp->t_rttlow > t)
2695				tp->t_rttlow = t;
2696			tcp_xmit_timer(tp, TCP_TS_TO_TICKS(t) + 1);
2697		} else if (tp->t_rtttime && SEQ_GT(th->th_ack, tp->t_rtseq)) {
2698			if (!tp->t_rttlow || tp->t_rttlow > ticks - tp->t_rtttime)
2699				tp->t_rttlow = ticks - tp->t_rtttime;
2700			tcp_xmit_timer(tp, ticks - tp->t_rtttime);
2701		}
2702
2703		/*
2704		 * If all outstanding data is acked, stop retransmit
2705		 * timer and remember to restart (more output or persist).
2706		 * If there is more data to be acked, restart retransmit
2707		 * timer, using current (possibly backed-off) value.
2708		 */
2709		if (th->th_ack == tp->snd_max) {
2710			tcp_timer_activate(tp, TT_REXMT, 0);
2711			needoutput = 1;
2712		} else if (!tcp_timer_active(tp, TT_PERSIST))
2713			tcp_timer_activate(tp, TT_REXMT, tp->t_rxtcur);
2714
2715		/*
2716		 * If no data (only SYN) was ACK'd,
2717		 *    skip rest of ACK processing.
2718		 */
2719		if (acked == 0)
2720			goto step6;
2721
2722		/*
2723		 * Let the congestion control algorithm update congestion
2724		 * control related information. This typically means increasing
2725		 * the congestion window.
2726		 */
2727		cc_ack_received(tp, th, CC_ACK);
2728
2729		SOCKBUF_LOCK(&so->so_snd);
2730		if (acked > so->so_snd.sb_cc) {
2731			tp->snd_wnd -= so->so_snd.sb_cc;
2732			sbdrop_locked(&so->so_snd, (int)so->so_snd.sb_cc);
2733			ourfinisacked = 1;
2734		} else {
2735			sbdrop_locked(&so->so_snd, acked);
2736			tp->snd_wnd -= acked;
2737			ourfinisacked = 0;
2738		}
2739		/* NB: sowwakeup_locked() does an implicit unlock. */
2740		sowwakeup_locked(so);
2741		/* Detect una wraparound. */
2742		if (!IN_RECOVERY(tp->t_flags) &&
2743		    SEQ_GT(tp->snd_una, tp->snd_recover) &&
2744		    SEQ_LEQ(th->th_ack, tp->snd_recover))
2745			tp->snd_recover = th->th_ack - 1;
2746		/* XXXLAS: Can this be moved up into cc_post_recovery? */
2747		if (IN_RECOVERY(tp->t_flags) &&
2748		    SEQ_GEQ(th->th_ack, tp->snd_recover)) {
2749			EXIT_RECOVERY(tp->t_flags);
2750		}
2751		tp->snd_una = th->th_ack;
2752		if (tp->t_flags & TF_SACK_PERMIT) {
2753			if (SEQ_GT(tp->snd_una, tp->snd_recover))
2754				tp->snd_recover = tp->snd_una;
2755		}
2756		if (SEQ_LT(tp->snd_nxt, tp->snd_una))
2757			tp->snd_nxt = tp->snd_una;
2758
2759		switch (tp->t_state) {
2760
2761		/*
2762		 * In FIN_WAIT_1 STATE in addition to the processing
2763		 * for the ESTABLISHED state if our FIN is now acknowledged
2764		 * then enter FIN_WAIT_2.
2765		 */
2766		case TCPS_FIN_WAIT_1:
2767			if (ourfinisacked) {
2768				/*
2769				 * If we can't receive any more
2770				 * data, then closing user can proceed.
2771				 * Starting the timer is contrary to the
2772				 * specification, but if we don't get a FIN
2773				 * we'll hang forever.
2774				 *
2775				 * XXXjl:
2776				 * we should release the tp also, and use a
2777				 * compressed state.
2778				 */
2779				if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
2780					soisdisconnected(so);
2781					tcp_timer_activate(tp, TT_2MSL,
2782					    (tcp_fast_finwait2_recycle ?
2783					    tcp_finwait2_timeout :
2784					    TP_MAXIDLE(tp)));
2785				}
2786				tp->t_state = TCPS_FIN_WAIT_2;
2787			}
2788			break;
2789
2790		/*
2791		 * In CLOSING STATE in addition to the processing for
2792		 * the ESTABLISHED state if the ACK acknowledges our FIN
2793		 * then enter the TIME-WAIT state, otherwise ignore
2794		 * the segment.
2795		 */
2796		case TCPS_CLOSING:
2797			if (ourfinisacked) {
2798				INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
2799				tcp_twstart(tp);
2800				INP_INFO_WUNLOCK(&V_tcbinfo);
2801				m_freem(m);
2802				return;
2803			}
2804			break;
2805
2806		/*
2807		 * In LAST_ACK, we may still be waiting for data to drain
2808		 * and/or to be acked, as well as for the ack of our FIN.
2809		 * If our FIN is now acknowledged, delete the TCB,
2810		 * enter the closed state and return.
2811		 */
2812		case TCPS_LAST_ACK:
2813			if (ourfinisacked) {
2814				INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
2815				tp = tcp_close(tp);
2816				goto drop;
2817			}
2818			break;
2819		}
2820	}
2821
2822step6:
2823	INP_WLOCK_ASSERT(tp->t_inpcb);
2824
2825	/*
2826	 * Update window information.
2827	 * Don't look at window if no ACK: TAC's send garbage on first SYN.
2828	 */
2829	if ((thflags & TH_ACK) &&
2830	    (SEQ_LT(tp->snd_wl1, th->th_seq) ||
2831	    (tp->snd_wl1 == th->th_seq && (SEQ_LT(tp->snd_wl2, th->th_ack) ||
2832	     (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))))) {
2833		/* keep track of pure window updates */
2834		if (tlen == 0 &&
2835		    tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)
2836			TCPSTAT_INC(tcps_rcvwinupd);
2837		tp->snd_wnd = tiwin;
2838		tp->snd_wl1 = th->th_seq;
2839		tp->snd_wl2 = th->th_ack;
2840		if (tp->snd_wnd > tp->max_sndwnd)
2841			tp->max_sndwnd = tp->snd_wnd;
2842		needoutput = 1;
2843	}
2844
2845	/*
2846	 * Process segments with URG.
2847	 */
2848	if ((thflags & TH_URG) && th->th_urp &&
2849	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2850		/*
2851		 * This is a kludge, but if we receive and accept
2852		 * random urgent pointers, we'll crash in
2853		 * soreceive.  It's hard to imagine someone
2854		 * actually wanting to send this much urgent data.
2855		 */
2856		SOCKBUF_LOCK(&so->so_rcv);
2857		if (th->th_urp + so->so_rcv.sb_cc > sb_max) {
2858			th->th_urp = 0;			/* XXX */
2859			thflags &= ~TH_URG;		/* XXX */
2860			SOCKBUF_UNLOCK(&so->so_rcv);	/* XXX */
2861			goto dodata;			/* XXX */
2862		}
2863		/*
2864		 * If this segment advances the known urgent pointer,
2865		 * then mark the data stream.  This should not happen
2866		 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
2867		 * a FIN has been received from the remote side.
2868		 * In these states we ignore the URG.
2869		 *
2870		 * According to RFC961 (Assigned Protocols),
2871		 * the urgent pointer points to the last octet
2872		 * of urgent data.  We continue, however,
2873		 * to consider it to indicate the first octet
2874		 * of data past the urgent section as the original
2875		 * spec states (in one of two places).
2876		 */
2877		if (SEQ_GT(th->th_seq+th->th_urp, tp->rcv_up)) {
2878			tp->rcv_up = th->th_seq + th->th_urp;
2879			so->so_oobmark = so->so_rcv.sb_cc +
2880			    (tp->rcv_up - tp->rcv_nxt) - 1;
2881			if (so->so_oobmark == 0)
2882				so->so_rcv.sb_state |= SBS_RCVATMARK;
2883			sohasoutofband(so);
2884			tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
2885		}
2886		SOCKBUF_UNLOCK(&so->so_rcv);
2887		/*
2888		 * Remove out of band data so doesn't get presented to user.
2889		 * This can happen independent of advancing the URG pointer,
2890		 * but if two URG's are pending at once, some out-of-band
2891		 * data may creep in... ick.
2892		 */
2893		if (th->th_urp <= (u_long)tlen &&
2894		    !(so->so_options & SO_OOBINLINE)) {
2895			/* hdr drop is delayed */
2896			tcp_pulloutofband(so, th, m, drop_hdrlen);
2897		}
2898	} else {
2899		/*
2900		 * If no out of band data is expected,
2901		 * pull receive urgent pointer along
2902		 * with the receive window.
2903		 */
2904		if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
2905			tp->rcv_up = tp->rcv_nxt;
2906	}
2907dodata:							/* XXX */
2908	INP_WLOCK_ASSERT(tp->t_inpcb);
2909
2910	/*
2911	 * Process the segment text, merging it into the TCP sequencing queue,
2912	 * and arranging for acknowledgment of receipt if necessary.
2913	 * This process logically involves adjusting tp->rcv_wnd as data
2914	 * is presented to the user (this happens in tcp_usrreq.c,
2915	 * case PRU_RCVD).  If a FIN has already been received on this
2916	 * connection then we just ignore the text.
2917	 */
2918	if ((tlen || (thflags & TH_FIN)) &&
2919	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2920		tcp_seq save_start = th->th_seq;
2921		m_adj(m, drop_hdrlen);	/* delayed header drop */
2922		/*
2923		 * Insert segment which includes th into TCP reassembly queue
2924		 * with control block tp.  Set thflags to whether reassembly now
2925		 * includes a segment with FIN.  This handles the common case
2926		 * inline (segment is the next to be received on an established
2927		 * connection, and the queue is empty), avoiding linkage into
2928		 * and removal from the queue and repetition of various
2929		 * conversions.
2930		 * Set DELACK for segments received in order, but ack
2931		 * immediately when segments are out of order (so
2932		 * fast retransmit can work).
2933		 */
2934		if (th->th_seq == tp->rcv_nxt &&
2935		    LIST_EMPTY(&tp->t_segq) &&
2936		    TCPS_HAVEESTABLISHED(tp->t_state)) {
2937			if (DELAY_ACK(tp))
2938				tp->t_flags |= TF_DELACK;
2939			else
2940				tp->t_flags |= TF_ACKNOW;
2941			tp->rcv_nxt += tlen;
2942			thflags = th->th_flags & TH_FIN;
2943			TCPSTAT_INC(tcps_rcvpack);
2944			TCPSTAT_ADD(tcps_rcvbyte, tlen);
2945			ND6_HINT(tp);
2946			SOCKBUF_LOCK(&so->so_rcv);
2947			if (so->so_rcv.sb_state & SBS_CANTRCVMORE)
2948				m_freem(m);
2949			else
2950				sbappendstream_locked(&so->so_rcv, m);
2951			/* NB: sorwakeup_locked() does an implicit unlock. */
2952			sorwakeup_locked(so);
2953		} else {
2954			/*
2955			 * XXX: Due to the header drop above "th" is
2956			 * theoretically invalid by now.  Fortunately
2957			 * m_adj() doesn't actually frees any mbufs
2958			 * when trimming from the head.
2959			 */
2960			thflags = tcp_reass(tp, th, &tlen, m);
2961			tp->t_flags |= TF_ACKNOW;
2962		}
2963		if (tlen > 0 && (tp->t_flags & TF_SACK_PERMIT))
2964			tcp_update_sack_list(tp, save_start, save_start + tlen);
2965#if 0
2966		/*
2967		 * Note the amount of data that peer has sent into
2968		 * our window, in order to estimate the sender's
2969		 * buffer size.
2970		 * XXX: Unused.
2971		 */
2972		if (SEQ_GT(tp->rcv_adv, tp->rcv_nxt))
2973			len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
2974		else
2975			len = so->so_rcv.sb_hiwat;
2976#endif
2977	} else {
2978		m_freem(m);
2979		thflags &= ~TH_FIN;
2980	}
2981
2982	/*
2983	 * If FIN is received ACK the FIN and let the user know
2984	 * that the connection is closing.
2985	 */
2986	if (thflags & TH_FIN) {
2987		if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2988			socantrcvmore(so);
2989			/*
2990			 * If connection is half-synchronized
2991			 * (ie NEEDSYN flag on) then delay ACK,
2992			 * so it may be piggybacked when SYN is sent.
2993			 * Otherwise, since we received a FIN then no
2994			 * more input can be expected, send ACK now.
2995			 */
2996			if (tp->t_flags & TF_NEEDSYN)
2997				tp->t_flags |= TF_DELACK;
2998			else
2999				tp->t_flags |= TF_ACKNOW;
3000			tp->rcv_nxt++;
3001		}
3002		switch (tp->t_state) {
3003
3004		/*
3005		 * In SYN_RECEIVED and ESTABLISHED STATES
3006		 * enter the CLOSE_WAIT state.
3007		 */
3008		case TCPS_SYN_RECEIVED:
3009			tp->t_starttime = ticks;
3010			/* FALLTHROUGH */
3011		case TCPS_ESTABLISHED:
3012			tp->t_state = TCPS_CLOSE_WAIT;
3013			break;
3014
3015		/*
3016		 * If still in FIN_WAIT_1 STATE FIN has not been acked so
3017		 * enter the CLOSING state.
3018		 */
3019		case TCPS_FIN_WAIT_1:
3020			tp->t_state = TCPS_CLOSING;
3021			break;
3022
3023		/*
3024		 * In FIN_WAIT_2 state enter the TIME_WAIT state,
3025		 * starting the time-wait timer, turning off the other
3026		 * standard timers.
3027		 */
3028		case TCPS_FIN_WAIT_2:
3029			INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
3030			KASSERT(ti_locked == TI_WLOCKED, ("%s: dodata "
3031			    "TCP_FIN_WAIT_2 ti_locked: %d", __func__,
3032			    ti_locked));
3033
3034			tcp_twstart(tp);
3035			INP_INFO_WUNLOCK(&V_tcbinfo);
3036			return;
3037		}
3038	}
3039	if (ti_locked == TI_WLOCKED)
3040		INP_INFO_WUNLOCK(&V_tcbinfo);
3041	ti_locked = TI_UNLOCKED;
3042
3043#ifdef TCPDEBUG
3044	if (so->so_options & SO_DEBUG)
3045		tcp_trace(TA_INPUT, ostate, tp, (void *)tcp_saveipgen,
3046			  &tcp_savetcp, 0);
3047#endif
3048
3049	/*
3050	 * Return any desired output.
3051	 */
3052	if (needoutput || (tp->t_flags & TF_ACKNOW))
3053		(void) tcp_output(tp);
3054
3055check_delack:
3056	KASSERT(ti_locked == TI_UNLOCKED, ("%s: check_delack ti_locked %d",
3057	    __func__, ti_locked));
3058	INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
3059	INP_WLOCK_ASSERT(tp->t_inpcb);
3060
3061	if (tp->t_flags & TF_DELACK) {
3062		tp->t_flags &= ~TF_DELACK;
3063		tcp_timer_activate(tp, TT_DELACK, tcp_delacktime);
3064	}
3065	INP_WUNLOCK(tp->t_inpcb);
3066	return;
3067
3068dropafterack:
3069	/*
3070	 * Generate an ACK dropping incoming segment if it occupies
3071	 * sequence space, where the ACK reflects our state.
3072	 *
3073	 * We can now skip the test for the RST flag since all
3074	 * paths to this code happen after packets containing
3075	 * RST have been dropped.
3076	 *
3077	 * In the SYN-RECEIVED state, don't send an ACK unless the
3078	 * segment we received passes the SYN-RECEIVED ACK test.
3079	 * If it fails send a RST.  This breaks the loop in the
3080	 * "LAND" DoS attack, and also prevents an ACK storm
3081	 * between two listening ports that have been sent forged
3082	 * SYN segments, each with the source address of the other.
3083	 */
3084	if (tp->t_state == TCPS_SYN_RECEIVED && (thflags & TH_ACK) &&
3085	    (SEQ_GT(tp->snd_una, th->th_ack) ||
3086	     SEQ_GT(th->th_ack, tp->snd_max)) ) {
3087		rstreason = BANDLIM_RST_OPENPORT;
3088		goto dropwithreset;
3089	}
3090#ifdef TCPDEBUG
3091	if (so->so_options & SO_DEBUG)
3092		tcp_trace(TA_DROP, ostate, tp, (void *)tcp_saveipgen,
3093			  &tcp_savetcp, 0);
3094#endif
3095	if (ti_locked == TI_WLOCKED)
3096		INP_INFO_WUNLOCK(&V_tcbinfo);
3097	ti_locked = TI_UNLOCKED;
3098
3099	tp->t_flags |= TF_ACKNOW;
3100	(void) tcp_output(tp);
3101	INP_WUNLOCK(tp->t_inpcb);
3102	m_freem(m);
3103	return;
3104
3105dropwithreset:
3106	if (ti_locked == TI_WLOCKED)
3107		INP_INFO_WUNLOCK(&V_tcbinfo);
3108	ti_locked = TI_UNLOCKED;
3109
3110	if (tp != NULL) {
3111		tcp_dropwithreset(m, th, tp, tlen, rstreason);
3112		INP_WUNLOCK(tp->t_inpcb);
3113	} else
3114		tcp_dropwithreset(m, th, NULL, tlen, rstreason);
3115	return;
3116
3117drop:
3118	if (ti_locked == TI_WLOCKED) {
3119		INP_INFO_WUNLOCK(&V_tcbinfo);
3120		ti_locked = TI_UNLOCKED;
3121	}
3122#ifdef INVARIANTS
3123	else
3124		INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
3125#endif
3126
3127	/*
3128	 * Drop space held by incoming segment and return.
3129	 */
3130#ifdef TCPDEBUG
3131	if (tp == NULL || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
3132		tcp_trace(TA_DROP, ostate, tp, (void *)tcp_saveipgen,
3133			  &tcp_savetcp, 0);
3134#endif
3135	if (tp != NULL)
3136		INP_WUNLOCK(tp->t_inpcb);
3137	m_freem(m);
3138}
3139
3140/*
3141 * Issue RST and make ACK acceptable to originator of segment.
3142 * The mbuf must still include the original packet header.
3143 * tp may be NULL.
3144 */
3145static void
3146tcp_dropwithreset(struct mbuf *m, struct tcphdr *th, struct tcpcb *tp,
3147    int tlen, int rstreason)
3148{
3149#ifdef INET
3150	struct ip *ip;
3151#endif
3152#ifdef INET6
3153	struct ip6_hdr *ip6;
3154#endif
3155
3156	if (tp != NULL) {
3157		INP_WLOCK_ASSERT(tp->t_inpcb);
3158	}
3159
3160	/* Don't bother if destination was broadcast/multicast. */
3161	if ((th->th_flags & TH_RST) || m->m_flags & (M_BCAST|M_MCAST))
3162		goto drop;
3163#ifdef INET6
3164	if (mtod(m, struct ip *)->ip_v == 6) {
3165		ip6 = mtod(m, struct ip6_hdr *);
3166		if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) ||
3167		    IN6_IS_ADDR_MULTICAST(&ip6->ip6_src))
3168			goto drop;
3169		/* IPv6 anycast check is done at tcp6_input() */
3170	}
3171#endif
3172#if defined(INET) && defined(INET6)
3173	else
3174#endif
3175#ifdef INET
3176	{
3177		ip = mtod(m, struct ip *);
3178		if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
3179		    IN_MULTICAST(ntohl(ip->ip_src.s_addr)) ||
3180		    ip->ip_src.s_addr == htonl(INADDR_BROADCAST) ||
3181		    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
3182			goto drop;
3183	}
3184#endif
3185
3186	/* Perform bandwidth limiting. */
3187	if (badport_bandlim(rstreason) < 0)
3188		goto drop;
3189
3190	/* tcp_respond consumes the mbuf chain. */
3191	if (th->th_flags & TH_ACK) {
3192		tcp_respond(tp, mtod(m, void *), th, m, (tcp_seq)0,
3193		    th->th_ack, TH_RST);
3194	} else {
3195		if (th->th_flags & TH_SYN)
3196			tlen++;
3197		tcp_respond(tp, mtod(m, void *), th, m, th->th_seq+tlen,
3198		    (tcp_seq)0, TH_RST|TH_ACK);
3199	}
3200	return;
3201drop:
3202	m_freem(m);
3203}
3204
3205/*
3206 * Parse TCP options and place in tcpopt.
3207 */
3208static void
3209tcp_dooptions(struct tcpopt *to, u_char *cp, int cnt, int flags)
3210{
3211	int opt, optlen;
3212
3213	to->to_flags = 0;
3214	for (; cnt > 0; cnt -= optlen, cp += optlen) {
3215		opt = cp[0];
3216		if (opt == TCPOPT_EOL)
3217			break;
3218		if (opt == TCPOPT_NOP)
3219			optlen = 1;
3220		else {
3221			if (cnt < 2)
3222				break;
3223			optlen = cp[1];
3224			if (optlen < 2 || optlen > cnt)
3225				break;
3226		}
3227		switch (opt) {
3228		case TCPOPT_MAXSEG:
3229			if (optlen != TCPOLEN_MAXSEG)
3230				continue;
3231			if (!(flags & TO_SYN))
3232				continue;
3233			to->to_flags |= TOF_MSS;
3234			bcopy((char *)cp + 2,
3235			    (char *)&to->to_mss, sizeof(to->to_mss));
3236			to->to_mss = ntohs(to->to_mss);
3237			break;
3238		case TCPOPT_WINDOW:
3239			if (optlen != TCPOLEN_WINDOW)
3240				continue;
3241			if (!(flags & TO_SYN))
3242				continue;
3243			to->to_flags |= TOF_SCALE;
3244			to->to_wscale = min(cp[2], TCP_MAX_WINSHIFT);
3245			break;
3246		case TCPOPT_TIMESTAMP:
3247			if (optlen != TCPOLEN_TIMESTAMP)
3248				continue;
3249			to->to_flags |= TOF_TS;
3250			bcopy((char *)cp + 2,
3251			    (char *)&to->to_tsval, sizeof(to->to_tsval));
3252			to->to_tsval = ntohl(to->to_tsval);
3253			bcopy((char *)cp + 6,
3254			    (char *)&to->to_tsecr, sizeof(to->to_tsecr));
3255			to->to_tsecr = ntohl(to->to_tsecr);
3256			break;
3257#ifdef TCP_SIGNATURE
3258		/*
3259		 * XXX In order to reply to a host which has set the
3260		 * TCP_SIGNATURE option in its initial SYN, we have to
3261		 * record the fact that the option was observed here
3262		 * for the syncache code to perform the correct response.
3263		 */
3264		case TCPOPT_SIGNATURE:
3265			if (optlen != TCPOLEN_SIGNATURE)
3266				continue;
3267			to->to_flags |= TOF_SIGNATURE;
3268			to->to_signature = cp + 2;
3269			break;
3270#endif
3271		case TCPOPT_SACK_PERMITTED:
3272			if (optlen != TCPOLEN_SACK_PERMITTED)
3273				continue;
3274			if (!(flags & TO_SYN))
3275				continue;
3276			if (!V_tcp_do_sack)
3277				continue;
3278			to->to_flags |= TOF_SACKPERM;
3279			break;
3280		case TCPOPT_SACK:
3281			if (optlen <= 2 || (optlen - 2) % TCPOLEN_SACK != 0)
3282				continue;
3283			if (flags & TO_SYN)
3284				continue;
3285			to->to_flags |= TOF_SACK;
3286			to->to_nsacks = (optlen - 2) / TCPOLEN_SACK;
3287			to->to_sacks = cp + 2;
3288			TCPSTAT_INC(tcps_sack_rcv_blocks);
3289			break;
3290		default:
3291			continue;
3292		}
3293	}
3294}
3295
3296/*
3297 * Pull out of band byte out of a segment so
3298 * it doesn't appear in the user's data queue.
3299 * It is still reflected in the segment length for
3300 * sequencing purposes.
3301 */
3302static void
3303tcp_pulloutofband(struct socket *so, struct tcphdr *th, struct mbuf *m,
3304    int off)
3305{
3306	int cnt = off + th->th_urp - 1;
3307
3308	while (cnt >= 0) {
3309		if (m->m_len > cnt) {
3310			char *cp = mtod(m, caddr_t) + cnt;
3311			struct tcpcb *tp = sototcpcb(so);
3312
3313			INP_WLOCK_ASSERT(tp->t_inpcb);
3314
3315			tp->t_iobc = *cp;
3316			tp->t_oobflags |= TCPOOB_HAVEDATA;
3317			bcopy(cp+1, cp, (unsigned)(m->m_len - cnt - 1));
3318			m->m_len--;
3319			if (m->m_flags & M_PKTHDR)
3320				m->m_pkthdr.len--;
3321			return;
3322		}
3323		cnt -= m->m_len;
3324		m = m->m_next;
3325		if (m == NULL)
3326			break;
3327	}
3328	panic("tcp_pulloutofband");
3329}
3330
3331/*
3332 * Collect new round-trip time estimate
3333 * and update averages and current timeout.
3334 */
3335static void
3336tcp_xmit_timer(struct tcpcb *tp, int rtt)
3337{
3338	int delta;
3339
3340	INP_WLOCK_ASSERT(tp->t_inpcb);
3341
3342	TCPSTAT_INC(tcps_rttupdated);
3343	tp->t_rttupdated++;
3344	if (tp->t_srtt != 0) {
3345		/*
3346		 * srtt is stored as fixed point with 5 bits after the
3347		 * binary point (i.e., scaled by 8).  The following magic
3348		 * is equivalent to the smoothing algorithm in rfc793 with
3349		 * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed
3350		 * point).  Adjust rtt to origin 0.
3351		 */
3352		delta = ((rtt - 1) << TCP_DELTA_SHIFT)
3353			- (tp->t_srtt >> (TCP_RTT_SHIFT - TCP_DELTA_SHIFT));
3354
3355		if ((tp->t_srtt += delta) <= 0)
3356			tp->t_srtt = 1;
3357
3358		/*
3359		 * We accumulate a smoothed rtt variance (actually, a
3360		 * smoothed mean difference), then set the retransmit
3361		 * timer to smoothed rtt + 4 times the smoothed variance.
3362		 * rttvar is stored as fixed point with 4 bits after the
3363		 * binary point (scaled by 16).  The following is
3364		 * equivalent to rfc793 smoothing with an alpha of .75
3365		 * (rttvar = rttvar*3/4 + |delta| / 4).  This replaces
3366		 * rfc793's wired-in beta.
3367		 */
3368		if (delta < 0)
3369			delta = -delta;
3370		delta -= tp->t_rttvar >> (TCP_RTTVAR_SHIFT - TCP_DELTA_SHIFT);
3371		if ((tp->t_rttvar += delta) <= 0)
3372			tp->t_rttvar = 1;
3373		if (tp->t_rttbest > tp->t_srtt + tp->t_rttvar)
3374		    tp->t_rttbest = tp->t_srtt + tp->t_rttvar;
3375	} else {
3376		/*
3377		 * No rtt measurement yet - use the unsmoothed rtt.
3378		 * Set the variance to half the rtt (so our first
3379		 * retransmit happens at 3*rtt).
3380		 */
3381		tp->t_srtt = rtt << TCP_RTT_SHIFT;
3382		tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT - 1);
3383		tp->t_rttbest = tp->t_srtt + tp->t_rttvar;
3384	}
3385	tp->t_rtttime = 0;
3386	tp->t_rxtshift = 0;
3387
3388	/*
3389	 * the retransmit should happen at rtt + 4 * rttvar.
3390	 * Because of the way we do the smoothing, srtt and rttvar
3391	 * will each average +1/2 tick of bias.  When we compute
3392	 * the retransmit timer, we want 1/2 tick of rounding and
3393	 * 1 extra tick because of +-1/2 tick uncertainty in the
3394	 * firing of the timer.  The bias will give us exactly the
3395	 * 1.5 tick we need.  But, because the bias is
3396	 * statistical, we have to test that we don't drop below
3397	 * the minimum feasible timer (which is 2 ticks).
3398	 */
3399	TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
3400		      max(tp->t_rttmin, rtt + 2), TCPTV_REXMTMAX);
3401
3402	/*
3403	 * We received an ack for a packet that wasn't retransmitted;
3404	 * it is probably safe to discard any error indications we've
3405	 * received recently.  This isn't quite right, but close enough
3406	 * for now (a route might have failed after we sent a segment,
3407	 * and the return path might not be symmetrical).
3408	 */
3409	tp->t_softerror = 0;
3410}
3411
3412/*
3413 * Determine a reasonable value for maxseg size.
3414 * If the route is known, check route for mtu.
3415 * If none, use an mss that can be handled on the outgoing interface
3416 * without forcing IP to fragment.  If no route is found, route has no mtu,
3417 * or the destination isn't local, use a default, hopefully conservative
3418 * size (usually 512 or the default IP max size, but no more than the mtu
3419 * of the interface), as we can't discover anything about intervening
3420 * gateways or networks.  We also initialize the congestion/slow start
3421 * window to be a single segment if the destination isn't local.
3422 * While looking at the routing entry, we also initialize other path-dependent
3423 * parameters from pre-set or cached values in the routing entry.
3424 *
3425 * Also take into account the space needed for options that we
3426 * send regularly.  Make maxseg shorter by that amount to assure
3427 * that we can send maxseg amount of data even when the options
3428 * are present.  Store the upper limit of the length of options plus
3429 * data in maxopd.
3430 *
3431 * NOTE that this routine is only called when we process an incoming
3432 * segment, or an ICMP need fragmentation datagram. Outgoing SYN/ACK MSS
3433 * settings are handled in tcp_mssopt().
3434 */
3435void
3436tcp_mss_update(struct tcpcb *tp, int offer, int mtuoffer,
3437    struct hc_metrics_lite *metricptr, int *mtuflags)
3438{
3439	int mss = 0;
3440	u_long maxmtu = 0;
3441	struct inpcb *inp = tp->t_inpcb;
3442	struct hc_metrics_lite metrics;
3443	int origoffer;
3444#ifdef INET6
3445	int isipv6 = ((inp->inp_vflag & INP_IPV6) != 0) ? 1 : 0;
3446	size_t min_protoh = isipv6 ?
3447			    sizeof (struct ip6_hdr) + sizeof (struct tcphdr) :
3448			    sizeof (struct tcpiphdr);
3449#else
3450	const size_t min_protoh = sizeof(struct tcpiphdr);
3451#endif
3452
3453	INP_WLOCK_ASSERT(tp->t_inpcb);
3454
3455	if (mtuoffer != -1) {
3456		KASSERT(offer == -1, ("%s: conflict", __func__));
3457		offer = mtuoffer - min_protoh;
3458	}
3459	origoffer = offer;
3460
3461	/* Initialize. */
3462#ifdef INET6
3463	if (isipv6) {
3464		maxmtu = tcp_maxmtu6(&inp->inp_inc, mtuflags);
3465		tp->t_maxopd = tp->t_maxseg = V_tcp_v6mssdflt;
3466	}
3467#endif
3468#if defined(INET) && defined(INET6)
3469	else
3470#endif
3471#ifdef INET
3472	{
3473		maxmtu = tcp_maxmtu(&inp->inp_inc, mtuflags);
3474		tp->t_maxopd = tp->t_maxseg = V_tcp_mssdflt;
3475	}
3476#endif
3477
3478	/*
3479	 * No route to sender, stay with default mss and return.
3480	 */
3481	if (maxmtu == 0) {
3482		/*
3483		 * In case we return early we need to initialize metrics
3484		 * to a defined state as tcp_hc_get() would do for us
3485		 * if there was no cache hit.
3486		 */
3487		if (metricptr != NULL)
3488			bzero(metricptr, sizeof(struct hc_metrics_lite));
3489		return;
3490	}
3491
3492	/* What have we got? */
3493	switch (offer) {
3494		case 0:
3495			/*
3496			 * Offer == 0 means that there was no MSS on the SYN
3497			 * segment, in this case we use tcp_mssdflt as
3498			 * already assigned to t_maxopd above.
3499			 */
3500			offer = tp->t_maxopd;
3501			break;
3502
3503		case -1:
3504			/*
3505			 * Offer == -1 means that we didn't receive SYN yet.
3506			 */
3507			/* FALLTHROUGH */
3508
3509		default:
3510			/*
3511			 * Prevent DoS attack with too small MSS. Round up
3512			 * to at least minmss.
3513			 */
3514			offer = max(offer, V_tcp_minmss);
3515	}
3516
3517	/*
3518	 * rmx information is now retrieved from tcp_hostcache.
3519	 */
3520	tcp_hc_get(&inp->inp_inc, &metrics);
3521	if (metricptr != NULL)
3522		bcopy(&metrics, metricptr, sizeof(struct hc_metrics_lite));
3523
3524	/*
3525	 * If there's a discovered mtu int tcp hostcache, use it
3526	 * else, use the link mtu.
3527	 */
3528	if (metrics.rmx_mtu)
3529		mss = min(metrics.rmx_mtu, maxmtu) - min_protoh;
3530	else {
3531#ifdef INET6
3532		if (isipv6) {
3533			mss = maxmtu - min_protoh;
3534			if (!V_path_mtu_discovery &&
3535			    !in6_localaddr(&inp->in6p_faddr))
3536				mss = min(mss, V_tcp_v6mssdflt);
3537		}
3538#endif
3539#if defined(INET) && defined(INET6)
3540		else
3541#endif
3542#ifdef INET
3543		{
3544			mss = maxmtu - min_protoh;
3545			if (!V_path_mtu_discovery &&
3546			    !in_localaddr(inp->inp_faddr))
3547				mss = min(mss, V_tcp_mssdflt);
3548		}
3549#endif
3550		/*
3551		 * XXX - The above conditional (mss = maxmtu - min_protoh)
3552		 * probably violates the TCP spec.
3553		 * The problem is that, since we don't know the
3554		 * other end's MSS, we are supposed to use a conservative
3555		 * default.  But, if we do that, then MTU discovery will
3556		 * never actually take place, because the conservative
3557		 * default is much less than the MTUs typically seen
3558		 * on the Internet today.  For the moment, we'll sweep
3559		 * this under the carpet.
3560		 *
3561		 * The conservative default might not actually be a problem
3562		 * if the only case this occurs is when sending an initial
3563		 * SYN with options and data to a host we've never talked
3564		 * to before.  Then, they will reply with an MSS value which
3565		 * will get recorded and the new parameters should get
3566		 * recomputed.  For Further Study.
3567		 */
3568	}
3569	mss = min(mss, offer);
3570
3571	/*
3572	 * Sanity check: make sure that maxopd will be large
3573	 * enough to allow some data on segments even if the
3574	 * all the option space is used (40bytes).  Otherwise
3575	 * funny things may happen in tcp_output.
3576	 */
3577	mss = max(mss, 64);
3578
3579	/*
3580	 * maxopd stores the maximum length of data AND options
3581	 * in a segment; maxseg is the amount of data in a normal
3582	 * segment.  We need to store this value (maxopd) apart
3583	 * from maxseg, because now every segment carries options
3584	 * and thus we normally have somewhat less data in segments.
3585	 */
3586	tp->t_maxopd = mss;
3587
3588	/*
3589	 * origoffer==-1 indicates that no segments were received yet.
3590	 * In this case we just guess.
3591	 */
3592	if ((tp->t_flags & (TF_REQ_TSTMP|TF_NOOPT)) == TF_REQ_TSTMP &&
3593	    (origoffer == -1 ||
3594	     (tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP))
3595		mss -= TCPOLEN_TSTAMP_APPA;
3596
3597	tp->t_maxseg = mss;
3598}
3599
3600void
3601tcp_mss(struct tcpcb *tp, int offer)
3602{
3603	int mss;
3604	u_long bufsize;
3605	struct inpcb *inp;
3606	struct socket *so;
3607	struct hc_metrics_lite metrics;
3608	int mtuflags = 0;
3609
3610	KASSERT(tp != NULL, ("%s: tp == NULL", __func__));
3611
3612	tcp_mss_update(tp, offer, -1, &metrics, &mtuflags);
3613
3614	mss = tp->t_maxseg;
3615	inp = tp->t_inpcb;
3616
3617	/*
3618	 * If there's a pipesize, change the socket buffer to that size,
3619	 * don't change if sb_hiwat is different than default (then it
3620	 * has been changed on purpose with setsockopt).
3621	 * Make the socket buffers an integral number of mss units;
3622	 * if the mss is larger than the socket buffer, decrease the mss.
3623	 */
3624	so = inp->inp_socket;
3625	SOCKBUF_LOCK(&so->so_snd);
3626	if ((so->so_snd.sb_hiwat == V_tcp_sendspace) && metrics.rmx_sendpipe)
3627		bufsize = metrics.rmx_sendpipe;
3628	else
3629		bufsize = so->so_snd.sb_hiwat;
3630	if (bufsize < mss)
3631		mss = bufsize;
3632	else {
3633		bufsize = roundup(bufsize, mss);
3634		if (bufsize > sb_max)
3635			bufsize = sb_max;
3636		if (bufsize > so->so_snd.sb_hiwat)
3637			(void)sbreserve_locked(&so->so_snd, bufsize, so, NULL);
3638	}
3639	SOCKBUF_UNLOCK(&so->so_snd);
3640	tp->t_maxseg = mss;
3641
3642	SOCKBUF_LOCK(&so->so_rcv);
3643	if ((so->so_rcv.sb_hiwat == V_tcp_recvspace) && metrics.rmx_recvpipe)
3644		bufsize = metrics.rmx_recvpipe;
3645	else
3646		bufsize = so->so_rcv.sb_hiwat;
3647	if (bufsize > mss) {
3648		bufsize = roundup(bufsize, mss);
3649		if (bufsize > sb_max)
3650			bufsize = sb_max;
3651		if (bufsize > so->so_rcv.sb_hiwat)
3652			(void)sbreserve_locked(&so->so_rcv, bufsize, so, NULL);
3653	}
3654	SOCKBUF_UNLOCK(&so->so_rcv);
3655
3656	/* Check the interface for TSO capabilities. */
3657	if (mtuflags & CSUM_TSO)
3658		tp->t_flags |= TF_TSO;
3659}
3660
3661/*
3662 * Determine the MSS option to send on an outgoing SYN.
3663 */
3664int
3665tcp_mssopt(struct in_conninfo *inc)
3666{
3667	int mss = 0;
3668	u_long maxmtu = 0;
3669	u_long thcmtu = 0;
3670	size_t min_protoh;
3671
3672	KASSERT(inc != NULL, ("tcp_mssopt with NULL in_conninfo pointer"));
3673
3674#ifdef INET6
3675	if (inc->inc_flags & INC_ISIPV6) {
3676		mss = V_tcp_v6mssdflt;
3677		maxmtu = tcp_maxmtu6(inc, NULL);
3678		min_protoh = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
3679	}
3680#endif
3681#if defined(INET) && defined(INET6)
3682	else
3683#endif
3684#ifdef INET
3685	{
3686		mss = V_tcp_mssdflt;
3687		maxmtu = tcp_maxmtu(inc, NULL);
3688		min_protoh = sizeof(struct tcpiphdr);
3689	}
3690#endif
3691#if defined(INET6) || defined(INET)
3692	thcmtu = tcp_hc_getmtu(inc); /* IPv4 and IPv6 */
3693#endif
3694
3695	if (maxmtu && thcmtu)
3696		mss = min(maxmtu, thcmtu) - min_protoh;
3697	else if (maxmtu || thcmtu)
3698		mss = max(maxmtu, thcmtu) - min_protoh;
3699
3700	return (mss);
3701}
3702
3703
3704/*
3705 * On a partial ack arrives, force the retransmission of the
3706 * next unacknowledged segment.  Do not clear tp->t_dupacks.
3707 * By setting snd_nxt to ti_ack, this forces retransmission timer to
3708 * be started again.
3709 */
3710static void
3711tcp_newreno_partial_ack(struct tcpcb *tp, struct tcphdr *th)
3712{
3713	tcp_seq onxt = tp->snd_nxt;
3714	u_long  ocwnd = tp->snd_cwnd;
3715
3716	INP_WLOCK_ASSERT(tp->t_inpcb);
3717
3718	tcp_timer_activate(tp, TT_REXMT, 0);
3719	tp->t_rtttime = 0;
3720	tp->snd_nxt = th->th_ack;
3721	/*
3722	 * Set snd_cwnd to one segment beyond acknowledged offset.
3723	 * (tp->snd_una has not yet been updated when this function is called.)
3724	 */
3725	tp->snd_cwnd = tp->t_maxseg + BYTES_THIS_ACK(tp, th);
3726	tp->t_flags |= TF_ACKNOW;
3727	(void) tcp_output(tp);
3728	tp->snd_cwnd = ocwnd;
3729	if (SEQ_GT(onxt, tp->snd_nxt))
3730		tp->snd_nxt = onxt;
3731	/*
3732	 * Partial window deflation.  Relies on fact that tp->snd_una
3733	 * not updated yet.
3734	 */
3735	if (tp->snd_cwnd > BYTES_THIS_ACK(tp, th))
3736		tp->snd_cwnd -= BYTES_THIS_ACK(tp, th);
3737	else
3738		tp->snd_cwnd = 0;
3739	tp->snd_cwnd += tp->t_maxseg;
3740}
3741