tcp_input.c revision 226060
1/*-
2 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
3 *	The Regents of the University of California.  All rights reserved.
4 * Copyright (c) 2007-2008,2010
5 *	Swinburne University of Technology, Melbourne, Australia.
6 * Copyright (c) 2009-2010 Lawrence Stewart <lstewart@freebsd.org>
7 * Copyright (c) 2010 The FreeBSD Foundation
8 * Copyright (c) 2010-2011 Juniper Networks, Inc.
9 * All rights reserved.
10 *
11 * Portions of this software were developed at the Centre for Advanced Internet
12 * Architectures, Swinburne University of Technology, by Lawrence Stewart,
13 * James Healy and David Hayes, made possible in part by a grant from the Cisco
14 * University Research Program Fund at Community Foundation Silicon Valley.
15 *
16 * Portions of this software were developed at the Centre for Advanced
17 * Internet Architectures, Swinburne University of Technology, Melbourne,
18 * Australia by David Hayes under sponsorship from the FreeBSD Foundation.
19 *
20 * Portions of this software were developed by Robert N. M. Watson under
21 * contract to Juniper Networks, Inc.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the above copyright
27 *    notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 *    notice, this list of conditions and the following disclaimer in the
30 *    documentation and/or other materials provided with the distribution.
31 * 4. Neither the name of the University nor the names of its contributors
32 *    may be used to endorse or promote products derived from this software
33 *    without specific prior written permission.
34 *
35 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
36 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
37 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
38 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
39 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
40 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
41 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
42 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
43 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
44 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
45 * SUCH DAMAGE.
46 *
47 *	@(#)tcp_input.c	8.12 (Berkeley) 5/24/95
48 */
49
50#include <sys/cdefs.h>
51__FBSDID("$FreeBSD: head/sys/netinet/tcp_input.c 226060 2011-10-06 14:29:38Z attilio $");
52
53#include "opt_ipfw.h"		/* for ipfw_fwd	*/
54#include "opt_inet.h"
55#include "opt_inet6.h"
56#include "opt_ipsec.h"
57#include "opt_tcpdebug.h"
58
59#include <sys/param.h>
60#include <sys/kernel.h>
61#include <sys/hhook.h>
62#include <sys/malloc.h>
63#include <sys/mbuf.h>
64#include <sys/proc.h>		/* for proc0 declaration */
65#include <sys/protosw.h>
66#include <sys/signalvar.h>
67#include <sys/socket.h>
68#include <sys/socketvar.h>
69#include <sys/sysctl.h>
70#include <sys/syslog.h>
71#include <sys/systm.h>
72
73#include <machine/cpu.h>	/* before tcp_seq.h, for tcp_random18() */
74
75#include <vm/uma.h>
76
77#include <net/if.h>
78#include <net/route.h>
79#include <net/vnet.h>
80
81#define TCPSTATES		/* for logging */
82
83#include <netinet/cc.h>
84#include <netinet/in.h>
85#include <netinet/in_pcb.h>
86#include <netinet/in_systm.h>
87#include <netinet/in_var.h>
88#include <netinet/ip.h>
89#include <netinet/ip_icmp.h>	/* required for icmp_var.h */
90#include <netinet/icmp_var.h>	/* for ICMP_BANDLIM */
91#include <netinet/ip_var.h>
92#include <netinet/ip_options.h>
93#include <netinet/ip6.h>
94#include <netinet/icmp6.h>
95#include <netinet6/in6_pcb.h>
96#include <netinet6/ip6_var.h>
97#include <netinet6/nd6.h>
98#include <netinet/tcp_fsm.h>
99#include <netinet/tcp_seq.h>
100#include <netinet/tcp_timer.h>
101#include <netinet/tcp_var.h>
102#include <netinet6/tcp6_var.h>
103#include <netinet/tcpip.h>
104#include <netinet/tcp_syncache.h>
105#ifdef TCPDEBUG
106#include <netinet/tcp_debug.h>
107#endif /* TCPDEBUG */
108
109#ifdef IPSEC
110#include <netipsec/ipsec.h>
111#include <netipsec/ipsec6.h>
112#endif /*IPSEC*/
113
114#include <machine/in_cksum.h>
115
116#include <security/mac/mac_framework.h>
117
118const int tcprexmtthresh = 3;
119
120VNET_DEFINE(struct tcpstat, tcpstat);
121SYSCTL_VNET_STRUCT(_net_inet_tcp, TCPCTL_STATS, stats, CTLFLAG_RW,
122    &VNET_NAME(tcpstat), tcpstat,
123    "TCP statistics (struct tcpstat, netinet/tcp_var.h)");
124
125int tcp_log_in_vain = 0;
126SYSCTL_INT(_net_inet_tcp, OID_AUTO, log_in_vain, CTLFLAG_RW,
127    &tcp_log_in_vain, 0,
128    "Log all incoming TCP segments to closed ports");
129
130VNET_DEFINE(int, blackhole) = 0;
131#define	V_blackhole		VNET(blackhole)
132SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, blackhole, CTLFLAG_RW,
133    &VNET_NAME(blackhole), 0,
134    "Do not send RST on segments to closed ports");
135
136VNET_DEFINE(int, tcp_delack_enabled) = 1;
137SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, delayed_ack, CTLFLAG_RW,
138    &VNET_NAME(tcp_delack_enabled), 0,
139    "Delay ACK to try and piggyback it onto a data packet");
140
141VNET_DEFINE(int, drop_synfin) = 0;
142#define	V_drop_synfin		VNET(drop_synfin)
143SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, drop_synfin, CTLFLAG_RW,
144    &VNET_NAME(drop_synfin), 0,
145    "Drop TCP packets with SYN+FIN set");
146
147VNET_DEFINE(int, tcp_do_rfc3042) = 1;
148#define	V_tcp_do_rfc3042	VNET(tcp_do_rfc3042)
149SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, rfc3042, CTLFLAG_RW,
150    &VNET_NAME(tcp_do_rfc3042), 0,
151    "Enable RFC 3042 (Limited Transmit)");
152
153VNET_DEFINE(int, tcp_do_rfc3390) = 1;
154SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, rfc3390, CTLFLAG_RW,
155    &VNET_NAME(tcp_do_rfc3390), 0,
156    "Enable RFC 3390 (Increasing TCP's Initial Congestion Window)");
157
158VNET_DEFINE(int, tcp_do_rfc3465) = 1;
159SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, rfc3465, CTLFLAG_RW,
160    &VNET_NAME(tcp_do_rfc3465), 0,
161    "Enable RFC 3465 (Appropriate Byte Counting)");
162
163VNET_DEFINE(int, tcp_abc_l_var) = 2;
164SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, abc_l_var, CTLFLAG_RW,
165    &VNET_NAME(tcp_abc_l_var), 2,
166    "Cap the max cwnd increment during slow-start to this number of segments");
167
168SYSCTL_NODE(_net_inet_tcp, OID_AUTO, ecn, CTLFLAG_RW, 0, "TCP ECN");
169
170VNET_DEFINE(int, tcp_do_ecn) = 0;
171SYSCTL_VNET_INT(_net_inet_tcp_ecn, OID_AUTO, enable, CTLFLAG_RW,
172    &VNET_NAME(tcp_do_ecn), 0,
173    "TCP ECN support");
174
175VNET_DEFINE(int, tcp_ecn_maxretries) = 1;
176SYSCTL_VNET_INT(_net_inet_tcp_ecn, OID_AUTO, maxretries, CTLFLAG_RW,
177    &VNET_NAME(tcp_ecn_maxretries), 0,
178    "Max retries before giving up on ECN");
179
180VNET_DEFINE(int, tcp_insecure_rst) = 0;
181#define	V_tcp_insecure_rst	VNET(tcp_insecure_rst)
182SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, insecure_rst, CTLFLAG_RW,
183    &VNET_NAME(tcp_insecure_rst), 0,
184    "Follow the old (insecure) criteria for accepting RST packets");
185
186VNET_DEFINE(int, tcp_do_autorcvbuf) = 1;
187#define	V_tcp_do_autorcvbuf	VNET(tcp_do_autorcvbuf)
188SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, recvbuf_auto, CTLFLAG_RW,
189    &VNET_NAME(tcp_do_autorcvbuf), 0,
190    "Enable automatic receive buffer sizing");
191
192VNET_DEFINE(int, tcp_autorcvbuf_inc) = 16*1024;
193#define	V_tcp_autorcvbuf_inc	VNET(tcp_autorcvbuf_inc)
194SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, recvbuf_inc, CTLFLAG_RW,
195    &VNET_NAME(tcp_autorcvbuf_inc), 0,
196    "Incrementor step size of automatic receive buffer");
197
198VNET_DEFINE(int, tcp_autorcvbuf_max) = 2*1024*1024;
199#define	V_tcp_autorcvbuf_max	VNET(tcp_autorcvbuf_max)
200SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, recvbuf_max, CTLFLAG_RW,
201    &VNET_NAME(tcp_autorcvbuf_max), 0,
202    "Max size of automatic receive buffer");
203
204VNET_DEFINE(struct inpcbhead, tcb);
205#define	tcb6	tcb  /* for KAME src sync over BSD*'s */
206VNET_DEFINE(struct inpcbinfo, tcbinfo);
207
208static void	 tcp_dooptions(struct tcpopt *, u_char *, int, int);
209static void	 tcp_do_segment(struct mbuf *, struct tcphdr *,
210		     struct socket *, struct tcpcb *, int, int, uint8_t,
211		     int);
212static void	 tcp_dropwithreset(struct mbuf *, struct tcphdr *,
213		     struct tcpcb *, int, int);
214static void	 tcp_pulloutofband(struct socket *,
215		     struct tcphdr *, struct mbuf *, int);
216static void	 tcp_xmit_timer(struct tcpcb *, int);
217static void	 tcp_newreno_partial_ack(struct tcpcb *, struct tcphdr *);
218static void inline 	tcp_fields_to_host(struct tcphdr *);
219#ifdef TCP_SIGNATURE
220static void inline 	tcp_fields_to_net(struct tcphdr *);
221static int inline	tcp_signature_verify_input(struct mbuf *, int, int,
222			    int, struct tcpopt *, struct tcphdr *, u_int);
223#endif
224static void inline	cc_ack_received(struct tcpcb *tp, struct tcphdr *th,
225			    uint16_t type);
226static void inline	cc_conn_init(struct tcpcb *tp);
227static void inline	cc_post_recovery(struct tcpcb *tp, struct tcphdr *th);
228static void inline	hhook_run_tcp_est_in(struct tcpcb *tp,
229			    struct tcphdr *th, struct tcpopt *to);
230
231/*
232 * Kernel module interface for updating tcpstat.  The argument is an index
233 * into tcpstat treated as an array of u_long.  While this encodes the
234 * general layout of tcpstat into the caller, it doesn't encode its location,
235 * so that future changes to add, for example, per-CPU stats support won't
236 * cause binary compatibility problems for kernel modules.
237 */
238void
239kmod_tcpstat_inc(int statnum)
240{
241
242	(*((u_long *)&V_tcpstat + statnum))++;
243}
244
245/*
246 * Wrapper for the TCP established input helper hook.
247 */
248static void inline
249hhook_run_tcp_est_in(struct tcpcb *tp, struct tcphdr *th, struct tcpopt *to)
250{
251	struct tcp_hhook_data hhook_data;
252
253	if (V_tcp_hhh[HHOOK_TCP_EST_IN]->hhh_nhooks > 0) {
254		hhook_data.tp = tp;
255		hhook_data.th = th;
256		hhook_data.to = to;
257
258		hhook_run_hooks(V_tcp_hhh[HHOOK_TCP_EST_IN], &hhook_data,
259		    tp->osd);
260	}
261}
262
263/*
264 * CC wrapper hook functions
265 */
266static void inline
267cc_ack_received(struct tcpcb *tp, struct tcphdr *th, uint16_t type)
268{
269	INP_WLOCK_ASSERT(tp->t_inpcb);
270
271	tp->ccv->bytes_this_ack = BYTES_THIS_ACK(tp, th);
272	if (tp->snd_cwnd == min(tp->snd_cwnd, tp->snd_wnd))
273		tp->ccv->flags |= CCF_CWND_LIMITED;
274	else
275		tp->ccv->flags &= ~CCF_CWND_LIMITED;
276
277	if (type == CC_ACK) {
278		if (tp->snd_cwnd > tp->snd_ssthresh) {
279			tp->t_bytes_acked += min(tp->ccv->bytes_this_ack,
280			     V_tcp_abc_l_var * tp->t_maxseg);
281			if (tp->t_bytes_acked >= tp->snd_cwnd) {
282				tp->t_bytes_acked -= tp->snd_cwnd;
283				tp->ccv->flags |= CCF_ABC_SENTAWND;
284			}
285		} else {
286				tp->ccv->flags &= ~CCF_ABC_SENTAWND;
287				tp->t_bytes_acked = 0;
288		}
289	}
290
291	if (CC_ALGO(tp)->ack_received != NULL) {
292		/* XXXLAS: Find a way to live without this */
293		tp->ccv->curack = th->th_ack;
294		CC_ALGO(tp)->ack_received(tp->ccv, type);
295	}
296}
297
298static void inline
299cc_conn_init(struct tcpcb *tp)
300{
301	struct hc_metrics_lite metrics;
302	struct inpcb *inp = tp->t_inpcb;
303	int rtt;
304#ifdef INET6
305	int isipv6 = ((inp->inp_vflag & INP_IPV6) != 0) ? 1 : 0;
306#endif
307
308	INP_WLOCK_ASSERT(tp->t_inpcb);
309
310	tcp_hc_get(&inp->inp_inc, &metrics);
311
312	if (tp->t_srtt == 0 && (rtt = metrics.rmx_rtt)) {
313		tp->t_srtt = rtt;
314		tp->t_rttbest = tp->t_srtt + TCP_RTT_SCALE;
315		TCPSTAT_INC(tcps_usedrtt);
316		if (metrics.rmx_rttvar) {
317			tp->t_rttvar = metrics.rmx_rttvar;
318			TCPSTAT_INC(tcps_usedrttvar);
319		} else {
320			/* default variation is +- 1 rtt */
321			tp->t_rttvar =
322			    tp->t_srtt * TCP_RTTVAR_SCALE / TCP_RTT_SCALE;
323		}
324		TCPT_RANGESET(tp->t_rxtcur,
325		    ((tp->t_srtt >> 2) + tp->t_rttvar) >> 1,
326		    tp->t_rttmin, TCPTV_REXMTMAX);
327	}
328	if (metrics.rmx_ssthresh) {
329		/*
330		 * There's some sort of gateway or interface
331		 * buffer limit on the path.  Use this to set
332		 * the slow start threshhold, but set the
333		 * threshold to no less than 2*mss.
334		 */
335		tp->snd_ssthresh = max(2 * tp->t_maxseg, metrics.rmx_ssthresh);
336		TCPSTAT_INC(tcps_usedssthresh);
337	}
338
339	/*
340	 * Set the slow-start flight size depending on whether this
341	 * is a local network or not.
342	 *
343	 * Extend this so we cache the cwnd too and retrieve it here.
344	 * Make cwnd even bigger than RFC3390 suggests but only if we
345	 * have previous experience with the remote host. Be careful
346	 * not make cwnd bigger than remote receive window or our own
347	 * send socket buffer. Maybe put some additional upper bound
348	 * on the retrieved cwnd. Should do incremental updates to
349	 * hostcache when cwnd collapses so next connection doesn't
350	 * overloads the path again.
351	 *
352	 * XXXAO: Initializing the CWND from the hostcache is broken
353	 * and in its current form not RFC conformant.  It is disabled
354	 * until fixed or removed entirely.
355	 *
356	 * RFC3390 says only do this if SYN or SYN/ACK didn't got lost.
357	 * We currently check only in syncache_socket for that.
358	 */
359/* #define TCP_METRICS_CWND */
360#ifdef TCP_METRICS_CWND
361	if (metrics.rmx_cwnd)
362		tp->snd_cwnd = max(tp->t_maxseg, min(metrics.rmx_cwnd / 2,
363		    min(tp->snd_wnd, so->so_snd.sb_hiwat)));
364	else
365#endif
366	if (V_tcp_do_rfc3390)
367		tp->snd_cwnd = min(4 * tp->t_maxseg,
368		    max(2 * tp->t_maxseg, 4380));
369#ifdef INET6
370	else if (isipv6 && in6_localaddr(&inp->in6p_faddr))
371		tp->snd_cwnd = tp->t_maxseg * V_ss_fltsz_local;
372#endif
373#if defined(INET) && defined(INET6)
374	else if (!isipv6 && in_localaddr(inp->inp_faddr))
375		tp->snd_cwnd = tp->t_maxseg * V_ss_fltsz_local;
376#endif
377#ifdef INET
378	else if (in_localaddr(inp->inp_faddr))
379		tp->snd_cwnd = tp->t_maxseg * V_ss_fltsz_local;
380#endif
381	else
382		tp->snd_cwnd = tp->t_maxseg * V_ss_fltsz;
383
384	if (CC_ALGO(tp)->conn_init != NULL)
385		CC_ALGO(tp)->conn_init(tp->ccv);
386}
387
388void inline
389cc_cong_signal(struct tcpcb *tp, struct tcphdr *th, uint32_t type)
390{
391	INP_WLOCK_ASSERT(tp->t_inpcb);
392
393	switch(type) {
394	case CC_NDUPACK:
395		if (!IN_FASTRECOVERY(tp->t_flags)) {
396			tp->snd_recover = tp->snd_max;
397			if (tp->t_flags & TF_ECN_PERMIT)
398				tp->t_flags |= TF_ECN_SND_CWR;
399		}
400		break;
401	case CC_ECN:
402		if (!IN_CONGRECOVERY(tp->t_flags)) {
403			TCPSTAT_INC(tcps_ecn_rcwnd);
404			tp->snd_recover = tp->snd_max;
405			if (tp->t_flags & TF_ECN_PERMIT)
406				tp->t_flags |= TF_ECN_SND_CWR;
407		}
408		break;
409	case CC_RTO:
410		tp->t_dupacks = 0;
411		tp->t_bytes_acked = 0;
412		EXIT_RECOVERY(tp->t_flags);
413		tp->snd_ssthresh = max(2, min(tp->snd_wnd, tp->snd_cwnd) / 2 /
414		    tp->t_maxseg) * tp->t_maxseg;
415		tp->snd_cwnd = tp->t_maxseg;
416		break;
417	case CC_RTO_ERR:
418		TCPSTAT_INC(tcps_sndrexmitbad);
419		/* RTO was unnecessary, so reset everything. */
420		tp->snd_cwnd = tp->snd_cwnd_prev;
421		tp->snd_ssthresh = tp->snd_ssthresh_prev;
422		tp->snd_recover = tp->snd_recover_prev;
423		if (tp->t_flags & TF_WASFRECOVERY)
424			ENTER_FASTRECOVERY(tp->t_flags);
425		if (tp->t_flags & TF_WASCRECOVERY)
426			ENTER_CONGRECOVERY(tp->t_flags);
427		tp->snd_nxt = tp->snd_max;
428		tp->t_flags &= ~TF_PREVVALID;
429		tp->t_badrxtwin = 0;
430		break;
431	}
432
433	if (CC_ALGO(tp)->cong_signal != NULL) {
434		if (th != NULL)
435			tp->ccv->curack = th->th_ack;
436		CC_ALGO(tp)->cong_signal(tp->ccv, type);
437	}
438}
439
440static void inline
441cc_post_recovery(struct tcpcb *tp, struct tcphdr *th)
442{
443	INP_WLOCK_ASSERT(tp->t_inpcb);
444
445	/* XXXLAS: KASSERT that we're in recovery? */
446
447	if (CC_ALGO(tp)->post_recovery != NULL) {
448		tp->ccv->curack = th->th_ack;
449		CC_ALGO(tp)->post_recovery(tp->ccv);
450	}
451	/* XXXLAS: EXIT_RECOVERY ? */
452	tp->t_bytes_acked = 0;
453}
454
455static inline void
456tcp_fields_to_host(struct tcphdr *th)
457{
458
459	th->th_seq = ntohl(th->th_seq);
460	th->th_ack = ntohl(th->th_ack);
461	th->th_win = ntohs(th->th_win);
462	th->th_urp = ntohs(th->th_urp);
463}
464
465#ifdef TCP_SIGNATURE
466static inline void
467tcp_fields_to_net(struct tcphdr *th)
468{
469
470	th->th_seq = htonl(th->th_seq);
471	th->th_ack = htonl(th->th_ack);
472	th->th_win = htons(th->th_win);
473	th->th_urp = htons(th->th_urp);
474}
475
476static inline int
477tcp_signature_verify_input(struct mbuf *m, int off0, int tlen, int optlen,
478    struct tcpopt *to, struct tcphdr *th, u_int tcpbflag)
479{
480	int ret;
481
482	tcp_fields_to_net(th);
483	ret = tcp_signature_verify(m, off0, tlen, optlen, to, th, tcpbflag);
484	tcp_fields_to_host(th);
485	return (ret);
486}
487#endif
488
489/* Neighbor Discovery, Neighbor Unreachability Detection Upper layer hint. */
490#ifdef INET6
491#define ND6_HINT(tp) \
492do { \
493	if ((tp) && (tp)->t_inpcb && \
494	    ((tp)->t_inpcb->inp_vflag & INP_IPV6) != 0) \
495		nd6_nud_hint(NULL, NULL, 0); \
496} while (0)
497#else
498#define ND6_HINT(tp)
499#endif
500
501/*
502 * Indicate whether this ack should be delayed.  We can delay the ack if
503 *	- there is no delayed ack timer in progress and
504 *	- our last ack wasn't a 0-sized window.  We never want to delay
505 *	  the ack that opens up a 0-sized window and
506 *		- delayed acks are enabled or
507 *		- this is a half-synchronized T/TCP connection.
508 */
509#define DELAY_ACK(tp)							\
510	((!tcp_timer_active(tp, TT_DELACK) &&				\
511	    (tp->t_flags & TF_RXWIN0SENT) == 0) &&			\
512	    (V_tcp_delack_enabled || (tp->t_flags & TF_NEEDSYN)))
513
514/*
515 * TCP input handling is split into multiple parts:
516 *   tcp6_input is a thin wrapper around tcp_input for the extended
517 *	ip6_protox[] call format in ip6_input
518 *   tcp_input handles primary segment validation, inpcb lookup and
519 *	SYN processing on listen sockets
520 *   tcp_do_segment processes the ACK and text of the segment for
521 *	establishing, established and closing connections
522 */
523#ifdef INET6
524int
525tcp6_input(struct mbuf **mp, int *offp, int proto)
526{
527	struct mbuf *m = *mp;
528	struct in6_ifaddr *ia6;
529
530	IP6_EXTHDR_CHECK(m, *offp, sizeof(struct tcphdr), IPPROTO_DONE);
531
532	/*
533	 * draft-itojun-ipv6-tcp-to-anycast
534	 * better place to put this in?
535	 */
536	ia6 = ip6_getdstifaddr(m);
537	if (ia6 && (ia6->ia6_flags & IN6_IFF_ANYCAST)) {
538		struct ip6_hdr *ip6;
539
540		ifa_free(&ia6->ia_ifa);
541		ip6 = mtod(m, struct ip6_hdr *);
542		icmp6_error(m, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_ADDR,
543			    (caddr_t)&ip6->ip6_dst - (caddr_t)ip6);
544		return IPPROTO_DONE;
545	}
546
547	tcp_input(m, *offp);
548	return IPPROTO_DONE;
549}
550#endif /* INET6 */
551
552void
553tcp_input(struct mbuf *m, int off0)
554{
555	struct tcphdr *th = NULL;
556	struct ip *ip = NULL;
557#ifdef INET
558	struct ipovly *ipov;
559#endif
560	struct inpcb *inp = NULL;
561	struct tcpcb *tp = NULL;
562	struct socket *so = NULL;
563	u_char *optp = NULL;
564	int optlen = 0;
565#ifdef INET
566	int len;
567#endif
568	int tlen = 0, off;
569	int drop_hdrlen;
570	int thflags;
571	int rstreason = 0;	/* For badport_bandlim accounting purposes */
572#ifdef TCP_SIGNATURE
573	uint8_t sig_checked = 0;
574#endif
575	uint8_t iptos = 0;
576#ifdef IPFIREWALL_FORWARD
577	struct m_tag *fwd_tag;
578#endif
579#ifdef INET6
580	struct ip6_hdr *ip6 = NULL;
581	int isipv6;
582#else
583	const void *ip6 = NULL;
584#endif /* INET6 */
585	struct tcpopt to;		/* options in this segment */
586	char *s = NULL;			/* address and port logging */
587	int ti_locked;
588#define	TI_UNLOCKED	1
589#define	TI_WLOCKED	2
590
591#ifdef TCPDEBUG
592	/*
593	 * The size of tcp_saveipgen must be the size of the max ip header,
594	 * now IPv6.
595	 */
596	u_char tcp_saveipgen[IP6_HDR_LEN];
597	struct tcphdr tcp_savetcp;
598	short ostate = 0;
599#endif
600
601#ifdef INET6
602	isipv6 = (mtod(m, struct ip *)->ip_v == 6) ? 1 : 0;
603#endif
604
605	to.to_flags = 0;
606	TCPSTAT_INC(tcps_rcvtotal);
607
608#ifdef INET6
609	if (isipv6) {
610		/* IP6_EXTHDR_CHECK() is already done at tcp6_input(). */
611		ip6 = mtod(m, struct ip6_hdr *);
612		tlen = sizeof(*ip6) + ntohs(ip6->ip6_plen) - off0;
613		if (in6_cksum(m, IPPROTO_TCP, off0, tlen)) {
614			TCPSTAT_INC(tcps_rcvbadsum);
615			goto drop;
616		}
617		th = (struct tcphdr *)((caddr_t)ip6 + off0);
618
619		/*
620		 * Be proactive about unspecified IPv6 address in source.
621		 * As we use all-zero to indicate unbounded/unconnected pcb,
622		 * unspecified IPv6 address can be used to confuse us.
623		 *
624		 * Note that packets with unspecified IPv6 destination is
625		 * already dropped in ip6_input.
626		 */
627		if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) {
628			/* XXX stat */
629			goto drop;
630		}
631	}
632#endif
633#if defined(INET) && defined(INET6)
634	else
635#endif
636#ifdef INET
637	{
638		/*
639		 * Get IP and TCP header together in first mbuf.
640		 * Note: IP leaves IP header in first mbuf.
641		 */
642		if (off0 > sizeof (struct ip)) {
643			ip_stripoptions(m, (struct mbuf *)0);
644			off0 = sizeof(struct ip);
645		}
646		if (m->m_len < sizeof (struct tcpiphdr)) {
647			if ((m = m_pullup(m, sizeof (struct tcpiphdr)))
648			    == NULL) {
649				TCPSTAT_INC(tcps_rcvshort);
650				return;
651			}
652		}
653		ip = mtod(m, struct ip *);
654		ipov = (struct ipovly *)ip;
655		th = (struct tcphdr *)((caddr_t)ip + off0);
656		tlen = ip->ip_len;
657
658		if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) {
659			if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR)
660				th->th_sum = m->m_pkthdr.csum_data;
661			else
662				th->th_sum = in_pseudo(ip->ip_src.s_addr,
663						ip->ip_dst.s_addr,
664						htonl(m->m_pkthdr.csum_data +
665							ip->ip_len +
666							IPPROTO_TCP));
667			th->th_sum ^= 0xffff;
668#ifdef TCPDEBUG
669			ipov->ih_len = (u_short)tlen;
670			ipov->ih_len = htons(ipov->ih_len);
671#endif
672		} else {
673			/*
674			 * Checksum extended TCP header and data.
675			 */
676			len = sizeof (struct ip) + tlen;
677			bzero(ipov->ih_x1, sizeof(ipov->ih_x1));
678			ipov->ih_len = (u_short)tlen;
679			ipov->ih_len = htons(ipov->ih_len);
680			th->th_sum = in_cksum(m, len);
681		}
682		if (th->th_sum) {
683			TCPSTAT_INC(tcps_rcvbadsum);
684			goto drop;
685		}
686		/* Re-initialization for later version check */
687		ip->ip_v = IPVERSION;
688	}
689#endif /* INET */
690
691#ifdef INET6
692	if (isipv6)
693		iptos = (ntohl(ip6->ip6_flow) >> 20) & 0xff;
694#endif
695#if defined(INET) && defined(INET6)
696	else
697#endif
698#ifdef INET
699		iptos = ip->ip_tos;
700#endif
701
702	/*
703	 * Check that TCP offset makes sense,
704	 * pull out TCP options and adjust length.		XXX
705	 */
706	off = th->th_off << 2;
707	if (off < sizeof (struct tcphdr) || off > tlen) {
708		TCPSTAT_INC(tcps_rcvbadoff);
709		goto drop;
710	}
711	tlen -= off;	/* tlen is used instead of ti->ti_len */
712	if (off > sizeof (struct tcphdr)) {
713#ifdef INET6
714		if (isipv6) {
715			IP6_EXTHDR_CHECK(m, off0, off, );
716			ip6 = mtod(m, struct ip6_hdr *);
717			th = (struct tcphdr *)((caddr_t)ip6 + off0);
718		}
719#endif
720#if defined(INET) && defined(INET6)
721		else
722#endif
723#ifdef INET
724		{
725			if (m->m_len < sizeof(struct ip) + off) {
726				if ((m = m_pullup(m, sizeof (struct ip) + off))
727				    == NULL) {
728					TCPSTAT_INC(tcps_rcvshort);
729					return;
730				}
731				ip = mtod(m, struct ip *);
732				ipov = (struct ipovly *)ip;
733				th = (struct tcphdr *)((caddr_t)ip + off0);
734			}
735		}
736#endif
737		optlen = off - sizeof (struct tcphdr);
738		optp = (u_char *)(th + 1);
739	}
740	thflags = th->th_flags;
741
742	/*
743	 * Convert TCP protocol specific fields to host format.
744	 */
745	tcp_fields_to_host(th);
746
747	/*
748	 * Delay dropping TCP, IP headers, IPv6 ext headers, and TCP options.
749	 */
750	drop_hdrlen = off0 + off;
751
752	/*
753	 * Locate pcb for segment; if we're likely to add or remove a
754	 * connection then first acquire pcbinfo lock.  There are two cases
755	 * where we might discover later we need a write lock despite the
756	 * flags: ACKs moving a connection out of the syncache, and ACKs for
757	 * a connection in TIMEWAIT.
758	 */
759	if ((thflags & (TH_SYN | TH_FIN | TH_RST)) != 0) {
760		INP_INFO_WLOCK(&V_tcbinfo);
761		ti_locked = TI_WLOCKED;
762	} else
763		ti_locked = TI_UNLOCKED;
764
765findpcb:
766#ifdef INVARIANTS
767	if (ti_locked == TI_WLOCKED) {
768		INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
769	} else {
770		INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
771	}
772#endif
773
774#ifdef IPFIREWALL_FORWARD
775	/*
776	 * Grab info from PACKET_TAG_IPFORWARD tag prepended to the chain.
777	 */
778	fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL);
779#endif /* IPFIREWALL_FORWARD */
780
781#ifdef INET6
782#ifdef IPFIREWALL_FORWARD
783	if (isipv6 && fwd_tag != NULL) {
784		struct sockaddr_in6 *next_hop6;
785
786		next_hop6 = (struct sockaddr_in6 *)(fwd_tag + 1);
787		/*
788		 * Transparently forwarded. Pretend to be the destination.
789		 * Already got one like this?
790		 */
791		inp = in6_pcblookup_mbuf(&V_tcbinfo,
792		    &ip6->ip6_src, th->th_sport, &ip6->ip6_dst, th->th_dport,
793		    INPLOOKUP_WLOCKPCB, m->m_pkthdr.rcvif, m);
794		if (!inp) {
795			/*
796			 * It's new.  Try to find the ambushing socket.
797			 * Because we've rewritten the destination address,
798			 * any hardware-generated hash is ignored.
799			 */
800			inp = in6_pcblookup(&V_tcbinfo, &ip6->ip6_src,
801			    th->th_sport, &next_hop6->sin6_addr,
802			    next_hop6->sin6_port ? ntohs(next_hop6->sin6_port) :
803			    th->th_dport, INPLOOKUP_WILDCARD |
804			    INPLOOKUP_WLOCKPCB, m->m_pkthdr.rcvif);
805		}
806		/* Remove the tag from the packet.  We don't need it anymore. */
807		m_tag_delete(m, fwd_tag);
808	} else
809#endif /* IPFIREWALL_FORWARD */
810	if (isipv6) {
811		inp = in6_pcblookup_mbuf(&V_tcbinfo, &ip6->ip6_src,
812		    th->th_sport, &ip6->ip6_dst, th->th_dport,
813		    INPLOOKUP_WILDCARD | INPLOOKUP_WLOCKPCB,
814		    m->m_pkthdr.rcvif, m);
815	}
816#endif /* INET6 */
817#if defined(INET6) && defined(INET)
818	else
819#endif
820#ifdef INET
821#ifdef IPFIREWALL_FORWARD
822	if (fwd_tag != NULL) {
823		struct sockaddr_in *next_hop;
824
825		next_hop = (struct sockaddr_in *)(fwd_tag+1);
826		/*
827		 * Transparently forwarded. Pretend to be the destination.
828		 * already got one like this?
829		 */
830		inp = in_pcblookup_mbuf(&V_tcbinfo, ip->ip_src, th->th_sport,
831		    ip->ip_dst, th->th_dport, INPLOOKUP_WLOCKPCB,
832		    m->m_pkthdr.rcvif, m);
833		if (!inp) {
834			/*
835			 * It's new.  Try to find the ambushing socket.
836			 * Because we've rewritten the destination address,
837			 * any hardware-generated hash is ignored.
838			 */
839			inp = in_pcblookup(&V_tcbinfo, ip->ip_src,
840			    th->th_sport, next_hop->sin_addr,
841			    next_hop->sin_port ? ntohs(next_hop->sin_port) :
842			    th->th_dport, INPLOOKUP_WILDCARD |
843			    INPLOOKUP_WLOCKPCB, m->m_pkthdr.rcvif);
844		}
845		/* Remove the tag from the packet.  We don't need it anymore. */
846		m_tag_delete(m, fwd_tag);
847	} else
848#endif /* IPFIREWALL_FORWARD */
849		inp = in_pcblookup_mbuf(&V_tcbinfo, ip->ip_src,
850		    th->th_sport, ip->ip_dst, th->th_dport,
851		    INPLOOKUP_WILDCARD | INPLOOKUP_WLOCKPCB,
852		    m->m_pkthdr.rcvif, m);
853#endif /* INET */
854
855	/*
856	 * If the INPCB does not exist then all data in the incoming
857	 * segment is discarded and an appropriate RST is sent back.
858	 * XXX MRT Send RST using which routing table?
859	 */
860	if (inp == NULL) {
861		/*
862		 * Log communication attempts to ports that are not
863		 * in use.
864		 */
865		if ((tcp_log_in_vain == 1 && (thflags & TH_SYN)) ||
866		    tcp_log_in_vain == 2) {
867			if ((s = tcp_log_vain(NULL, th, (void *)ip, ip6)))
868				log(LOG_INFO, "%s; %s: Connection attempt "
869				    "to closed port\n", s, __func__);
870		}
871		/*
872		 * When blackholing do not respond with a RST but
873		 * completely ignore the segment and drop it.
874		 */
875		if ((V_blackhole == 1 && (thflags & TH_SYN)) ||
876		    V_blackhole == 2)
877			goto dropunlock;
878
879		rstreason = BANDLIM_RST_CLOSEDPORT;
880		goto dropwithreset;
881	}
882	INP_WLOCK_ASSERT(inp);
883	if (!(inp->inp_flags & INP_HW_FLOWID)
884	    && (m->m_flags & M_FLOWID)
885	    && ((inp->inp_socket == NULL)
886		|| !(inp->inp_socket->so_options & SO_ACCEPTCONN))) {
887		inp->inp_flags |= INP_HW_FLOWID;
888		inp->inp_flags &= ~INP_SW_FLOWID;
889		inp->inp_flowid = m->m_pkthdr.flowid;
890	}
891#ifdef IPSEC
892#ifdef INET6
893	if (isipv6 && ipsec6_in_reject(m, inp)) {
894		V_ipsec6stat.in_polvio++;
895		goto dropunlock;
896	} else
897#endif /* INET6 */
898	if (ipsec4_in_reject(m, inp) != 0) {
899		V_ipsec4stat.in_polvio++;
900		goto dropunlock;
901	}
902#endif /* IPSEC */
903
904	/*
905	 * Check the minimum TTL for socket.
906	 */
907	if (inp->inp_ip_minttl != 0) {
908#ifdef INET6
909		if (isipv6 && inp->inp_ip_minttl > ip6->ip6_hlim)
910			goto dropunlock;
911		else
912#endif
913		if (inp->inp_ip_minttl > ip->ip_ttl)
914			goto dropunlock;
915	}
916
917	/*
918	 * A previous connection in TIMEWAIT state is supposed to catch stray
919	 * or duplicate segments arriving late.  If this segment was a
920	 * legitimate new connection attempt the old INPCB gets removed and
921	 * we can try again to find a listening socket.
922	 *
923	 * At this point, due to earlier optimism, we may hold only an inpcb
924	 * lock, and not the inpcbinfo write lock.  If so, we need to try to
925	 * acquire it, or if that fails, acquire a reference on the inpcb,
926	 * drop all locks, acquire a global write lock, and then re-acquire
927	 * the inpcb lock.  We may at that point discover that another thread
928	 * has tried to free the inpcb, in which case we need to loop back
929	 * and try to find a new inpcb to deliver to.
930	 *
931	 * XXXRW: It may be time to rethink timewait locking.
932	 */
933relocked:
934	if (inp->inp_flags & INP_TIMEWAIT) {
935		if (ti_locked == TI_UNLOCKED) {
936			if (INP_INFO_TRY_WLOCK(&V_tcbinfo) == 0) {
937				in_pcbref(inp);
938				INP_WUNLOCK(inp);
939				INP_INFO_WLOCK(&V_tcbinfo);
940				ti_locked = TI_WLOCKED;
941				INP_WLOCK(inp);
942				if (in_pcbrele_wlocked(inp)) {
943					inp = NULL;
944					goto findpcb;
945				}
946			} else
947				ti_locked = TI_WLOCKED;
948		}
949		INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
950
951		if (thflags & TH_SYN)
952			tcp_dooptions(&to, optp, optlen, TO_SYN);
953		/*
954		 * NB: tcp_twcheck unlocks the INP and frees the mbuf.
955		 */
956		if (tcp_twcheck(inp, &to, th, m, tlen))
957			goto findpcb;
958		INP_INFO_WUNLOCK(&V_tcbinfo);
959		return;
960	}
961	/*
962	 * The TCPCB may no longer exist if the connection is winding
963	 * down or it is in the CLOSED state.  Either way we drop the
964	 * segment and send an appropriate response.
965	 */
966	tp = intotcpcb(inp);
967	if (tp == NULL || tp->t_state == TCPS_CLOSED) {
968		rstreason = BANDLIM_RST_CLOSEDPORT;
969		goto dropwithreset;
970	}
971
972	/*
973	 * We've identified a valid inpcb, but it could be that we need an
974	 * inpcbinfo write lock but don't hold it.  In this case, attempt to
975	 * acquire using the same strategy as the TIMEWAIT case above.  If we
976	 * relock, we have to jump back to 'relocked' as the connection might
977	 * now be in TIMEWAIT.
978	 */
979#ifdef INVARIANTS
980	if ((thflags & (TH_SYN | TH_FIN | TH_RST)) != 0)
981		INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
982#endif
983	if (tp->t_state != TCPS_ESTABLISHED) {
984		if (ti_locked == TI_UNLOCKED) {
985			if (INP_INFO_TRY_WLOCK(&V_tcbinfo) == 0) {
986				in_pcbref(inp);
987				INP_WUNLOCK(inp);
988				INP_INFO_WLOCK(&V_tcbinfo);
989				ti_locked = TI_WLOCKED;
990				INP_WLOCK(inp);
991				if (in_pcbrele_wlocked(inp)) {
992					inp = NULL;
993					goto findpcb;
994				}
995				goto relocked;
996			} else
997				ti_locked = TI_WLOCKED;
998		}
999		INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
1000	}
1001
1002#ifdef MAC
1003	INP_WLOCK_ASSERT(inp);
1004	if (mac_inpcb_check_deliver(inp, m))
1005		goto dropunlock;
1006#endif
1007	so = inp->inp_socket;
1008	KASSERT(so != NULL, ("%s: so == NULL", __func__));
1009#ifdef TCPDEBUG
1010	if (so->so_options & SO_DEBUG) {
1011		ostate = tp->t_state;
1012#ifdef INET6
1013		if (isipv6) {
1014			bcopy((char *)ip6, (char *)tcp_saveipgen, sizeof(*ip6));
1015		} else
1016#endif
1017			bcopy((char *)ip, (char *)tcp_saveipgen, sizeof(*ip));
1018		tcp_savetcp = *th;
1019	}
1020#endif /* TCPDEBUG */
1021	/*
1022	 * When the socket is accepting connections (the INPCB is in LISTEN
1023	 * state) we look into the SYN cache if this is a new connection
1024	 * attempt or the completion of a previous one.  Because listen
1025	 * sockets are never in TCPS_ESTABLISHED, the V_tcbinfo lock will be
1026	 * held in this case.
1027	 */
1028	if (so->so_options & SO_ACCEPTCONN) {
1029		struct in_conninfo inc;
1030
1031		KASSERT(tp->t_state == TCPS_LISTEN, ("%s: so accepting but "
1032		    "tp not listening", __func__));
1033		INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
1034
1035		bzero(&inc, sizeof(inc));
1036#ifdef INET6
1037		if (isipv6) {
1038			inc.inc_flags |= INC_ISIPV6;
1039			inc.inc6_faddr = ip6->ip6_src;
1040			inc.inc6_laddr = ip6->ip6_dst;
1041		} else
1042#endif
1043		{
1044			inc.inc_faddr = ip->ip_src;
1045			inc.inc_laddr = ip->ip_dst;
1046		}
1047		inc.inc_fport = th->th_sport;
1048		inc.inc_lport = th->th_dport;
1049		inc.inc_fibnum = so->so_fibnum;
1050
1051		/*
1052		 * Check for an existing connection attempt in syncache if
1053		 * the flag is only ACK.  A successful lookup creates a new
1054		 * socket appended to the listen queue in SYN_RECEIVED state.
1055		 */
1056		if ((thflags & (TH_RST|TH_ACK|TH_SYN)) == TH_ACK) {
1057			/*
1058			 * Parse the TCP options here because
1059			 * syncookies need access to the reflected
1060			 * timestamp.
1061			 */
1062			tcp_dooptions(&to, optp, optlen, 0);
1063			/*
1064			 * NB: syncache_expand() doesn't unlock
1065			 * inp and tcpinfo locks.
1066			 */
1067			if (!syncache_expand(&inc, &to, th, &so, m)) {
1068				/*
1069				 * No syncache entry or ACK was not
1070				 * for our SYN/ACK.  Send a RST.
1071				 * NB: syncache did its own logging
1072				 * of the failure cause.
1073				 */
1074				rstreason = BANDLIM_RST_OPENPORT;
1075				goto dropwithreset;
1076			}
1077			if (so == NULL) {
1078				/*
1079				 * We completed the 3-way handshake
1080				 * but could not allocate a socket
1081				 * either due to memory shortage,
1082				 * listen queue length limits or
1083				 * global socket limits.  Send RST
1084				 * or wait and have the remote end
1085				 * retransmit the ACK for another
1086				 * try.
1087				 */
1088				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1089					log(LOG_DEBUG, "%s; %s: Listen socket: "
1090					    "Socket allocation failed due to "
1091					    "limits or memory shortage, %s\n",
1092					    s, __func__,
1093					    V_tcp_sc_rst_sock_fail ?
1094					    "sending RST" : "try again");
1095				if (V_tcp_sc_rst_sock_fail) {
1096					rstreason = BANDLIM_UNLIMITED;
1097					goto dropwithreset;
1098				} else
1099					goto dropunlock;
1100			}
1101			/*
1102			 * Socket is created in state SYN_RECEIVED.
1103			 * Unlock the listen socket, lock the newly
1104			 * created socket and update the tp variable.
1105			 */
1106			INP_WUNLOCK(inp);	/* listen socket */
1107			inp = sotoinpcb(so);
1108			INP_WLOCK(inp);		/* new connection */
1109			tp = intotcpcb(inp);
1110			KASSERT(tp->t_state == TCPS_SYN_RECEIVED,
1111			    ("%s: ", __func__));
1112#ifdef TCP_SIGNATURE
1113			if (sig_checked == 0)  {
1114				tcp_dooptions(&to, optp, optlen,
1115				    (thflags & TH_SYN) ? TO_SYN : 0);
1116				if (!tcp_signature_verify_input(m, off0, tlen,
1117				    optlen, &to, th, tp->t_flags)) {
1118
1119					/*
1120					 * In SYN_SENT state if it receives an
1121					 * RST, it is allowed for further
1122					 * processing.
1123					 */
1124					if ((thflags & TH_RST) == 0 ||
1125					    (tp->t_state == TCPS_SYN_SENT) == 0)
1126						goto dropunlock;
1127				}
1128				sig_checked = 1;
1129			}
1130#endif
1131
1132			/*
1133			 * Process the segment and the data it
1134			 * contains.  tcp_do_segment() consumes
1135			 * the mbuf chain and unlocks the inpcb.
1136			 */
1137			tcp_do_segment(m, th, so, tp, drop_hdrlen, tlen,
1138			    iptos, ti_locked);
1139			INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
1140			return;
1141		}
1142		/*
1143		 * Segment flag validation for new connection attempts:
1144		 *
1145		 * Our (SYN|ACK) response was rejected.
1146		 * Check with syncache and remove entry to prevent
1147		 * retransmits.
1148		 *
1149		 * NB: syncache_chkrst does its own logging of failure
1150		 * causes.
1151		 */
1152		if (thflags & TH_RST) {
1153			syncache_chkrst(&inc, th);
1154			goto dropunlock;
1155		}
1156		/*
1157		 * We can't do anything without SYN.
1158		 */
1159		if ((thflags & TH_SYN) == 0) {
1160			if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1161				log(LOG_DEBUG, "%s; %s: Listen socket: "
1162				    "SYN is missing, segment ignored\n",
1163				    s, __func__);
1164			TCPSTAT_INC(tcps_badsyn);
1165			goto dropunlock;
1166		}
1167		/*
1168		 * (SYN|ACK) is bogus on a listen socket.
1169		 */
1170		if (thflags & TH_ACK) {
1171			if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1172				log(LOG_DEBUG, "%s; %s: Listen socket: "
1173				    "SYN|ACK invalid, segment rejected\n",
1174				    s, __func__);
1175			syncache_badack(&inc);	/* XXX: Not needed! */
1176			TCPSTAT_INC(tcps_badsyn);
1177			rstreason = BANDLIM_RST_OPENPORT;
1178			goto dropwithreset;
1179		}
1180		/*
1181		 * If the drop_synfin option is enabled, drop all
1182		 * segments with both the SYN and FIN bits set.
1183		 * This prevents e.g. nmap from identifying the
1184		 * TCP/IP stack.
1185		 * XXX: Poor reasoning.  nmap has other methods
1186		 * and is constantly refining its stack detection
1187		 * strategies.
1188		 * XXX: This is a violation of the TCP specification
1189		 * and was used by RFC1644.
1190		 */
1191		if ((thflags & TH_FIN) && V_drop_synfin) {
1192			if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1193				log(LOG_DEBUG, "%s; %s: Listen socket: "
1194				    "SYN|FIN segment ignored (based on "
1195				    "sysctl setting)\n", s, __func__);
1196			TCPSTAT_INC(tcps_badsyn);
1197			goto dropunlock;
1198		}
1199		/*
1200		 * Segment's flags are (SYN) or (SYN|FIN).
1201		 *
1202		 * TH_PUSH, TH_URG, TH_ECE, TH_CWR are ignored
1203		 * as they do not affect the state of the TCP FSM.
1204		 * The data pointed to by TH_URG and th_urp is ignored.
1205		 */
1206		KASSERT((thflags & (TH_RST|TH_ACK)) == 0,
1207		    ("%s: Listen socket: TH_RST or TH_ACK set", __func__));
1208		KASSERT(thflags & (TH_SYN),
1209		    ("%s: Listen socket: TH_SYN not set", __func__));
1210#ifdef INET6
1211		/*
1212		 * If deprecated address is forbidden,
1213		 * we do not accept SYN to deprecated interface
1214		 * address to prevent any new inbound connection from
1215		 * getting established.
1216		 * When we do not accept SYN, we send a TCP RST,
1217		 * with deprecated source address (instead of dropping
1218		 * it).  We compromise it as it is much better for peer
1219		 * to send a RST, and RST will be the final packet
1220		 * for the exchange.
1221		 *
1222		 * If we do not forbid deprecated addresses, we accept
1223		 * the SYN packet.  RFC2462 does not suggest dropping
1224		 * SYN in this case.
1225		 * If we decipher RFC2462 5.5.4, it says like this:
1226		 * 1. use of deprecated addr with existing
1227		 *    communication is okay - "SHOULD continue to be
1228		 *    used"
1229		 * 2. use of it with new communication:
1230		 *   (2a) "SHOULD NOT be used if alternate address
1231		 *        with sufficient scope is available"
1232		 *   (2b) nothing mentioned otherwise.
1233		 * Here we fall into (2b) case as we have no choice in
1234		 * our source address selection - we must obey the peer.
1235		 *
1236		 * The wording in RFC2462 is confusing, and there are
1237		 * multiple description text for deprecated address
1238		 * handling - worse, they are not exactly the same.
1239		 * I believe 5.5.4 is the best one, so we follow 5.5.4.
1240		 */
1241		if (isipv6 && !V_ip6_use_deprecated) {
1242			struct in6_ifaddr *ia6;
1243
1244			ia6 = ip6_getdstifaddr(m);
1245			if (ia6 != NULL &&
1246			    (ia6->ia6_flags & IN6_IFF_DEPRECATED)) {
1247				ifa_free(&ia6->ia_ifa);
1248				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1249				    log(LOG_DEBUG, "%s; %s: Listen socket: "
1250					"Connection attempt to deprecated "
1251					"IPv6 address rejected\n",
1252					s, __func__);
1253				rstreason = BANDLIM_RST_OPENPORT;
1254				goto dropwithreset;
1255			}
1256			ifa_free(&ia6->ia_ifa);
1257		}
1258#endif /* INET6 */
1259		/*
1260		 * Basic sanity checks on incoming SYN requests:
1261		 *   Don't respond if the destination is a link layer
1262		 *	broadcast according to RFC1122 4.2.3.10, p. 104.
1263		 *   If it is from this socket it must be forged.
1264		 *   Don't respond if the source or destination is a
1265		 *	global or subnet broad- or multicast address.
1266		 *   Note that it is quite possible to receive unicast
1267		 *	link-layer packets with a broadcast IP address. Use
1268		 *	in_broadcast() to find them.
1269		 */
1270		if (m->m_flags & (M_BCAST|M_MCAST)) {
1271			if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1272			    log(LOG_DEBUG, "%s; %s: Listen socket: "
1273				"Connection attempt from broad- or multicast "
1274				"link layer address ignored\n", s, __func__);
1275			goto dropunlock;
1276		}
1277#ifdef INET6
1278		if (isipv6) {
1279			if (th->th_dport == th->th_sport &&
1280			    IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst, &ip6->ip6_src)) {
1281				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1282				    log(LOG_DEBUG, "%s; %s: Listen socket: "
1283					"Connection attempt to/from self "
1284					"ignored\n", s, __func__);
1285				goto dropunlock;
1286			}
1287			if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) ||
1288			    IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) {
1289				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1290				    log(LOG_DEBUG, "%s; %s: Listen socket: "
1291					"Connection attempt from/to multicast "
1292					"address ignored\n", s, __func__);
1293				goto dropunlock;
1294			}
1295		}
1296#endif
1297#if defined(INET) && defined(INET6)
1298		else
1299#endif
1300#ifdef INET
1301		{
1302			if (th->th_dport == th->th_sport &&
1303			    ip->ip_dst.s_addr == ip->ip_src.s_addr) {
1304				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1305				    log(LOG_DEBUG, "%s; %s: Listen socket: "
1306					"Connection attempt from/to self "
1307					"ignored\n", s, __func__);
1308				goto dropunlock;
1309			}
1310			if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
1311			    IN_MULTICAST(ntohl(ip->ip_src.s_addr)) ||
1312			    ip->ip_src.s_addr == htonl(INADDR_BROADCAST) ||
1313			    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif)) {
1314				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1315				    log(LOG_DEBUG, "%s; %s: Listen socket: "
1316					"Connection attempt from/to broad- "
1317					"or multicast address ignored\n",
1318					s, __func__);
1319				goto dropunlock;
1320			}
1321		}
1322#endif
1323		/*
1324		 * SYN appears to be valid.  Create compressed TCP state
1325		 * for syncache.
1326		 */
1327#ifdef TCPDEBUG
1328		if (so->so_options & SO_DEBUG)
1329			tcp_trace(TA_INPUT, ostate, tp,
1330			    (void *)tcp_saveipgen, &tcp_savetcp, 0);
1331#endif
1332		tcp_dooptions(&to, optp, optlen, TO_SYN);
1333		syncache_add(&inc, &to, th, inp, &so, m);
1334		/*
1335		 * Entry added to syncache and mbuf consumed.
1336		 * Everything already unlocked by syncache_add().
1337		 */
1338		INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
1339		return;
1340	}
1341
1342#ifdef TCP_SIGNATURE
1343	if (sig_checked == 0)  {
1344		tcp_dooptions(&to, optp, optlen,
1345		    (thflags & TH_SYN) ? TO_SYN : 0);
1346		if (!tcp_signature_verify_input(m, off0, tlen, optlen, &to,
1347		    th, tp->t_flags)) {
1348
1349			/*
1350			 * In SYN_SENT state if it receives an RST, it is
1351			 * allowed for further processing.
1352			 */
1353			if ((thflags & TH_RST) == 0 ||
1354			    (tp->t_state == TCPS_SYN_SENT) == 0)
1355				goto dropunlock;
1356		}
1357		sig_checked = 1;
1358	}
1359#endif
1360
1361	/*
1362	 * Segment belongs to a connection in SYN_SENT, ESTABLISHED or later
1363	 * state.  tcp_do_segment() always consumes the mbuf chain, unlocks
1364	 * the inpcb, and unlocks pcbinfo.
1365	 */
1366	tcp_do_segment(m, th, so, tp, drop_hdrlen, tlen, iptos, ti_locked);
1367	INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
1368	return;
1369
1370dropwithreset:
1371	if (ti_locked == TI_WLOCKED) {
1372		INP_INFO_WUNLOCK(&V_tcbinfo);
1373		ti_locked = TI_UNLOCKED;
1374	}
1375#ifdef INVARIANTS
1376	else {
1377		KASSERT(ti_locked == TI_UNLOCKED, ("%s: dropwithreset "
1378		    "ti_locked: %d", __func__, ti_locked));
1379		INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
1380	}
1381#endif
1382
1383	if (inp != NULL) {
1384		tcp_dropwithreset(m, th, tp, tlen, rstreason);
1385		INP_WUNLOCK(inp);
1386	} else
1387		tcp_dropwithreset(m, th, NULL, tlen, rstreason);
1388	m = NULL;	/* mbuf chain got consumed. */
1389	goto drop;
1390
1391dropunlock:
1392	if (ti_locked == TI_WLOCKED) {
1393		INP_INFO_WUNLOCK(&V_tcbinfo);
1394		ti_locked = TI_UNLOCKED;
1395	}
1396#ifdef INVARIANTS
1397	else {
1398		KASSERT(ti_locked == TI_UNLOCKED, ("%s: dropunlock "
1399		    "ti_locked: %d", __func__, ti_locked));
1400		INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
1401	}
1402#endif
1403
1404	if (inp != NULL)
1405		INP_WUNLOCK(inp);
1406
1407drop:
1408	INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
1409	if (s != NULL)
1410		free(s, M_TCPLOG);
1411	if (m != NULL)
1412		m_freem(m);
1413}
1414
1415static void
1416tcp_do_segment(struct mbuf *m, struct tcphdr *th, struct socket *so,
1417    struct tcpcb *tp, int drop_hdrlen, int tlen, uint8_t iptos,
1418    int ti_locked)
1419{
1420	int thflags, acked, ourfinisacked, needoutput = 0;
1421	int rstreason, todrop, win;
1422	u_long tiwin;
1423	struct tcpopt to;
1424
1425#ifdef TCPDEBUG
1426	/*
1427	 * The size of tcp_saveipgen must be the size of the max ip header,
1428	 * now IPv6.
1429	 */
1430	u_char tcp_saveipgen[IP6_HDR_LEN];
1431	struct tcphdr tcp_savetcp;
1432	short ostate = 0;
1433#endif
1434	thflags = th->th_flags;
1435	tp->sackhint.last_sack_ack = 0;
1436
1437	/*
1438	 * If this is either a state-changing packet or current state isn't
1439	 * established, we require a write lock on tcbinfo.  Otherwise, we
1440	 * allow either a read lock or a write lock, as we may have acquired
1441	 * a write lock due to a race.
1442	 *
1443	 * Require a global write lock for SYN/FIN/RST segments or
1444	 * non-established connections; otherwise accept either a read or
1445	 * write lock, as we may have conservatively acquired a write lock in
1446	 * certain cases in tcp_input() (is this still true?).  Currently we
1447	 * will never enter with no lock, so we try to drop it quickly in the
1448	 * common pure ack/pure data cases.
1449	 */
1450	if ((thflags & (TH_SYN | TH_FIN | TH_RST)) != 0 ||
1451	    tp->t_state != TCPS_ESTABLISHED) {
1452		KASSERT(ti_locked == TI_WLOCKED, ("%s ti_locked %d for "
1453		    "SYN/FIN/RST/!EST", __func__, ti_locked));
1454		INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
1455	} else {
1456#ifdef INVARIANTS
1457		if (ti_locked == TI_WLOCKED)
1458			INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
1459		else {
1460			KASSERT(ti_locked == TI_UNLOCKED, ("%s: EST "
1461			    "ti_locked: %d", __func__, ti_locked));
1462			INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
1463		}
1464#endif
1465	}
1466	INP_WLOCK_ASSERT(tp->t_inpcb);
1467	KASSERT(tp->t_state > TCPS_LISTEN, ("%s: TCPS_LISTEN",
1468	    __func__));
1469	KASSERT(tp->t_state != TCPS_TIME_WAIT, ("%s: TCPS_TIME_WAIT",
1470	    __func__));
1471
1472	/*
1473	 * Segment received on connection.
1474	 * Reset idle time and keep-alive timer.
1475	 * XXX: This should be done after segment
1476	 * validation to ignore broken/spoofed segs.
1477	 */
1478	tp->t_rcvtime = ticks;
1479	if (TCPS_HAVEESTABLISHED(tp->t_state))
1480		tcp_timer_activate(tp, TT_KEEP, tcp_keepidle);
1481
1482	/*
1483	 * Unscale the window into a 32-bit value.
1484	 * For the SYN_SENT state the scale is zero.
1485	 */
1486	tiwin = th->th_win << tp->snd_scale;
1487
1488	/*
1489	 * TCP ECN processing.
1490	 */
1491	if (tp->t_flags & TF_ECN_PERMIT) {
1492		if (thflags & TH_CWR)
1493			tp->t_flags &= ~TF_ECN_SND_ECE;
1494		switch (iptos & IPTOS_ECN_MASK) {
1495		case IPTOS_ECN_CE:
1496			tp->t_flags |= TF_ECN_SND_ECE;
1497			TCPSTAT_INC(tcps_ecn_ce);
1498			break;
1499		case IPTOS_ECN_ECT0:
1500			TCPSTAT_INC(tcps_ecn_ect0);
1501			break;
1502		case IPTOS_ECN_ECT1:
1503			TCPSTAT_INC(tcps_ecn_ect1);
1504			break;
1505		}
1506		/* Congestion experienced. */
1507		if (thflags & TH_ECE) {
1508			cc_cong_signal(tp, th, CC_ECN);
1509		}
1510	}
1511
1512	/*
1513	 * Parse options on any incoming segment.
1514	 */
1515	tcp_dooptions(&to, (u_char *)(th + 1),
1516	    (th->th_off << 2) - sizeof(struct tcphdr),
1517	    (thflags & TH_SYN) ? TO_SYN : 0);
1518
1519	/*
1520	 * If echoed timestamp is later than the current time,
1521	 * fall back to non RFC1323 RTT calculation.  Normalize
1522	 * timestamp if syncookies were used when this connection
1523	 * was established.
1524	 */
1525	if ((to.to_flags & TOF_TS) && (to.to_tsecr != 0)) {
1526		to.to_tsecr -= tp->ts_offset;
1527		if (TSTMP_GT(to.to_tsecr, ticks))
1528			to.to_tsecr = 0;
1529	}
1530
1531	/*
1532	 * Process options only when we get SYN/ACK back. The SYN case
1533	 * for incoming connections is handled in tcp_syncache.
1534	 * According to RFC1323 the window field in a SYN (i.e., a <SYN>
1535	 * or <SYN,ACK>) segment itself is never scaled.
1536	 * XXX this is traditional behavior, may need to be cleaned up.
1537	 */
1538	if (tp->t_state == TCPS_SYN_SENT && (thflags & TH_SYN)) {
1539		if ((to.to_flags & TOF_SCALE) &&
1540		    (tp->t_flags & TF_REQ_SCALE)) {
1541			tp->t_flags |= TF_RCVD_SCALE;
1542			tp->snd_scale = to.to_wscale;
1543		}
1544		/*
1545		 * Initial send window.  It will be updated with
1546		 * the next incoming segment to the scaled value.
1547		 */
1548		tp->snd_wnd = th->th_win;
1549		if (to.to_flags & TOF_TS) {
1550			tp->t_flags |= TF_RCVD_TSTMP;
1551			tp->ts_recent = to.to_tsval;
1552			tp->ts_recent_age = ticks;
1553		}
1554		if (to.to_flags & TOF_MSS)
1555			tcp_mss(tp, to.to_mss);
1556		if ((tp->t_flags & TF_SACK_PERMIT) &&
1557		    (to.to_flags & TOF_SACKPERM) == 0)
1558			tp->t_flags &= ~TF_SACK_PERMIT;
1559	}
1560
1561	/*
1562	 * Header prediction: check for the two common cases
1563	 * of a uni-directional data xfer.  If the packet has
1564	 * no control flags, is in-sequence, the window didn't
1565	 * change and we're not retransmitting, it's a
1566	 * candidate.  If the length is zero and the ack moved
1567	 * forward, we're the sender side of the xfer.  Just
1568	 * free the data acked & wake any higher level process
1569	 * that was blocked waiting for space.  If the length
1570	 * is non-zero and the ack didn't move, we're the
1571	 * receiver side.  If we're getting packets in-order
1572	 * (the reassembly queue is empty), add the data to
1573	 * the socket buffer and note that we need a delayed ack.
1574	 * Make sure that the hidden state-flags are also off.
1575	 * Since we check for TCPS_ESTABLISHED first, it can only
1576	 * be TH_NEEDSYN.
1577	 */
1578	if (tp->t_state == TCPS_ESTABLISHED &&
1579	    th->th_seq == tp->rcv_nxt &&
1580	    (thflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK)) == TH_ACK &&
1581	    tp->snd_nxt == tp->snd_max &&
1582	    tiwin && tiwin == tp->snd_wnd &&
1583	    ((tp->t_flags & (TF_NEEDSYN|TF_NEEDFIN)) == 0) &&
1584	    LIST_EMPTY(&tp->t_segq) &&
1585	    ((to.to_flags & TOF_TS) == 0 ||
1586	     TSTMP_GEQ(to.to_tsval, tp->ts_recent)) ) {
1587
1588		/*
1589		 * If last ACK falls within this segment's sequence numbers,
1590		 * record the timestamp.
1591		 * NOTE that the test is modified according to the latest
1592		 * proposal of the tcplw@cray.com list (Braden 1993/04/26).
1593		 */
1594		if ((to.to_flags & TOF_TS) != 0 &&
1595		    SEQ_LEQ(th->th_seq, tp->last_ack_sent)) {
1596			tp->ts_recent_age = ticks;
1597			tp->ts_recent = to.to_tsval;
1598		}
1599
1600		if (tlen == 0) {
1601			if (SEQ_GT(th->th_ack, tp->snd_una) &&
1602			    SEQ_LEQ(th->th_ack, tp->snd_max) &&
1603			    !IN_RECOVERY(tp->t_flags) &&
1604			    (to.to_flags & TOF_SACK) == 0 &&
1605			    TAILQ_EMPTY(&tp->snd_holes)) {
1606				/*
1607				 * This is a pure ack for outstanding data.
1608				 */
1609				if (ti_locked == TI_WLOCKED)
1610					INP_INFO_WUNLOCK(&V_tcbinfo);
1611				ti_locked = TI_UNLOCKED;
1612
1613				TCPSTAT_INC(tcps_predack);
1614
1615				/*
1616				 * "bad retransmit" recovery.
1617				 */
1618				if (tp->t_rxtshift == 1 &&
1619				    tp->t_flags & TF_PREVVALID &&
1620				    (int)(ticks - tp->t_badrxtwin) < 0) {
1621					cc_cong_signal(tp, th, CC_RTO_ERR);
1622				}
1623
1624				/*
1625				 * Recalculate the transmit timer / rtt.
1626				 *
1627				 * Some boxes send broken timestamp replies
1628				 * during the SYN+ACK phase, ignore
1629				 * timestamps of 0 or we could calculate a
1630				 * huge RTT and blow up the retransmit timer.
1631				 */
1632				if ((to.to_flags & TOF_TS) != 0 &&
1633				    to.to_tsecr) {
1634					if (!tp->t_rttlow ||
1635					    tp->t_rttlow > ticks - to.to_tsecr)
1636						tp->t_rttlow = ticks - to.to_tsecr;
1637					tcp_xmit_timer(tp,
1638					    ticks - to.to_tsecr + 1);
1639				} else if (tp->t_rtttime &&
1640				    SEQ_GT(th->th_ack, tp->t_rtseq)) {
1641					if (!tp->t_rttlow ||
1642					    tp->t_rttlow > ticks - tp->t_rtttime)
1643						tp->t_rttlow = ticks - tp->t_rtttime;
1644					tcp_xmit_timer(tp,
1645							ticks - tp->t_rtttime);
1646				}
1647				acked = BYTES_THIS_ACK(tp, th);
1648
1649				/* Run HHOOK_TCP_ESTABLISHED_IN helper hooks. */
1650				hhook_run_tcp_est_in(tp, th, &to);
1651
1652				TCPSTAT_INC(tcps_rcvackpack);
1653				TCPSTAT_ADD(tcps_rcvackbyte, acked);
1654				sbdrop(&so->so_snd, acked);
1655				if (SEQ_GT(tp->snd_una, tp->snd_recover) &&
1656				    SEQ_LEQ(th->th_ack, tp->snd_recover))
1657					tp->snd_recover = th->th_ack - 1;
1658
1659				/*
1660				 * Let the congestion control algorithm update
1661				 * congestion control related information. This
1662				 * typically means increasing the congestion
1663				 * window.
1664				 */
1665				cc_ack_received(tp, th, CC_ACK);
1666
1667				tp->snd_una = th->th_ack;
1668				/*
1669				 * Pull snd_wl2 up to prevent seq wrap relative
1670				 * to th_ack.
1671				 */
1672				tp->snd_wl2 = th->th_ack;
1673				tp->t_dupacks = 0;
1674				m_freem(m);
1675				ND6_HINT(tp); /* Some progress has been made. */
1676
1677				/*
1678				 * If all outstanding data are acked, stop
1679				 * retransmit timer, otherwise restart timer
1680				 * using current (possibly backed-off) value.
1681				 * If process is waiting for space,
1682				 * wakeup/selwakeup/signal.  If data
1683				 * are ready to send, let tcp_output
1684				 * decide between more output or persist.
1685				 */
1686#ifdef TCPDEBUG
1687				if (so->so_options & SO_DEBUG)
1688					tcp_trace(TA_INPUT, ostate, tp,
1689					    (void *)tcp_saveipgen,
1690					    &tcp_savetcp, 0);
1691#endif
1692				if (tp->snd_una == tp->snd_max)
1693					tcp_timer_activate(tp, TT_REXMT, 0);
1694				else if (!tcp_timer_active(tp, TT_PERSIST))
1695					tcp_timer_activate(tp, TT_REXMT,
1696						      tp->t_rxtcur);
1697				sowwakeup(so);
1698				if (so->so_snd.sb_cc)
1699					(void) tcp_output(tp);
1700				goto check_delack;
1701			}
1702		} else if (th->th_ack == tp->snd_una &&
1703		    tlen <= sbspace(&so->so_rcv)) {
1704			int newsize = 0;	/* automatic sockbuf scaling */
1705
1706			/*
1707			 * This is a pure, in-sequence data packet with
1708			 * nothing on the reassembly queue and we have enough
1709			 * buffer space to take it.
1710			 */
1711			if (ti_locked == TI_WLOCKED)
1712				INP_INFO_WUNLOCK(&V_tcbinfo);
1713			ti_locked = TI_UNLOCKED;
1714
1715			/* Clean receiver SACK report if present */
1716			if ((tp->t_flags & TF_SACK_PERMIT) && tp->rcv_numsacks)
1717				tcp_clean_sackreport(tp);
1718			TCPSTAT_INC(tcps_preddat);
1719			tp->rcv_nxt += tlen;
1720			/*
1721			 * Pull snd_wl1 up to prevent seq wrap relative to
1722			 * th_seq.
1723			 */
1724			tp->snd_wl1 = th->th_seq;
1725			/*
1726			 * Pull rcv_up up to prevent seq wrap relative to
1727			 * rcv_nxt.
1728			 */
1729			tp->rcv_up = tp->rcv_nxt;
1730			TCPSTAT_INC(tcps_rcvpack);
1731			TCPSTAT_ADD(tcps_rcvbyte, tlen);
1732			ND6_HINT(tp);	/* Some progress has been made */
1733#ifdef TCPDEBUG
1734			if (so->so_options & SO_DEBUG)
1735				tcp_trace(TA_INPUT, ostate, tp,
1736				    (void *)tcp_saveipgen, &tcp_savetcp, 0);
1737#endif
1738		/*
1739		 * Automatic sizing of receive socket buffer.  Often the send
1740		 * buffer size is not optimally adjusted to the actual network
1741		 * conditions at hand (delay bandwidth product).  Setting the
1742		 * buffer size too small limits throughput on links with high
1743		 * bandwidth and high delay (eg. trans-continental/oceanic links).
1744		 *
1745		 * On the receive side the socket buffer memory is only rarely
1746		 * used to any significant extent.  This allows us to be much
1747		 * more aggressive in scaling the receive socket buffer.  For
1748		 * the case that the buffer space is actually used to a large
1749		 * extent and we run out of kernel memory we can simply drop
1750		 * the new segments; TCP on the sender will just retransmit it
1751		 * later.  Setting the buffer size too big may only consume too
1752		 * much kernel memory if the application doesn't read() from
1753		 * the socket or packet loss or reordering makes use of the
1754		 * reassembly queue.
1755		 *
1756		 * The criteria to step up the receive buffer one notch are:
1757		 *  1. the number of bytes received during the time it takes
1758		 *     one timestamp to be reflected back to us (the RTT);
1759		 *  2. received bytes per RTT is within seven eighth of the
1760		 *     current socket buffer size;
1761		 *  3. receive buffer size has not hit maximal automatic size;
1762		 *
1763		 * This algorithm does one step per RTT at most and only if
1764		 * we receive a bulk stream w/o packet losses or reorderings.
1765		 * Shrinking the buffer during idle times is not necessary as
1766		 * it doesn't consume any memory when idle.
1767		 *
1768		 * TODO: Only step up if the application is actually serving
1769		 * the buffer to better manage the socket buffer resources.
1770		 */
1771			if (V_tcp_do_autorcvbuf &&
1772			    to.to_tsecr &&
1773			    (so->so_rcv.sb_flags & SB_AUTOSIZE)) {
1774				if (TSTMP_GT(to.to_tsecr, tp->rfbuf_ts) &&
1775				    to.to_tsecr - tp->rfbuf_ts < hz) {
1776					if (tp->rfbuf_cnt >
1777					    (so->so_rcv.sb_hiwat / 8 * 7) &&
1778					    so->so_rcv.sb_hiwat <
1779					    V_tcp_autorcvbuf_max) {
1780						newsize =
1781						    min(so->so_rcv.sb_hiwat +
1782						    V_tcp_autorcvbuf_inc,
1783						    V_tcp_autorcvbuf_max);
1784					}
1785					/* Start over with next RTT. */
1786					tp->rfbuf_ts = 0;
1787					tp->rfbuf_cnt = 0;
1788				} else
1789					tp->rfbuf_cnt += tlen;	/* add up */
1790			}
1791
1792			/* Add data to socket buffer. */
1793			SOCKBUF_LOCK(&so->so_rcv);
1794			if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
1795				m_freem(m);
1796			} else {
1797				/*
1798				 * Set new socket buffer size.
1799				 * Give up when limit is reached.
1800				 */
1801				if (newsize)
1802					if (!sbreserve_locked(&so->so_rcv,
1803					    newsize, so, NULL))
1804						so->so_rcv.sb_flags &= ~SB_AUTOSIZE;
1805				m_adj(m, drop_hdrlen);	/* delayed header drop */
1806				sbappendstream_locked(&so->so_rcv, m);
1807			}
1808			/* NB: sorwakeup_locked() does an implicit unlock. */
1809			sorwakeup_locked(so);
1810			if (DELAY_ACK(tp)) {
1811				tp->t_flags |= TF_DELACK;
1812			} else {
1813				tp->t_flags |= TF_ACKNOW;
1814				tcp_output(tp);
1815			}
1816			goto check_delack;
1817		}
1818	}
1819
1820	/*
1821	 * Calculate amount of space in receive window,
1822	 * and then do TCP input processing.
1823	 * Receive window is amount of space in rcv queue,
1824	 * but not less than advertised window.
1825	 */
1826	win = sbspace(&so->so_rcv);
1827	if (win < 0)
1828		win = 0;
1829	KASSERT(SEQ_GEQ(tp->rcv_adv, tp->rcv_nxt),
1830	    ("tcp_input negative window: tp %p rcv_nxt %u rcv_adv %u", tp,
1831	    tp->rcv_nxt, tp->rcv_adv));
1832	tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
1833
1834	/* Reset receive buffer auto scaling when not in bulk receive mode. */
1835	tp->rfbuf_ts = 0;
1836	tp->rfbuf_cnt = 0;
1837
1838	switch (tp->t_state) {
1839
1840	/*
1841	 * If the state is SYN_RECEIVED:
1842	 *	if seg contains an ACK, but not for our SYN/ACK, send a RST.
1843	 */
1844	case TCPS_SYN_RECEIVED:
1845		if ((thflags & TH_ACK) &&
1846		    (SEQ_LEQ(th->th_ack, tp->snd_una) ||
1847		     SEQ_GT(th->th_ack, tp->snd_max))) {
1848				rstreason = BANDLIM_RST_OPENPORT;
1849				goto dropwithreset;
1850		}
1851		break;
1852
1853	/*
1854	 * If the state is SYN_SENT:
1855	 *	if seg contains an ACK, but not for our SYN, drop the input.
1856	 *	if seg contains a RST, then drop the connection.
1857	 *	if seg does not contain SYN, then drop it.
1858	 * Otherwise this is an acceptable SYN segment
1859	 *	initialize tp->rcv_nxt and tp->irs
1860	 *	if seg contains ack then advance tp->snd_una
1861	 *	if seg contains an ECE and ECN support is enabled, the stream
1862	 *	    is ECN capable.
1863	 *	if SYN has been acked change to ESTABLISHED else SYN_RCVD state
1864	 *	arrange for segment to be acked (eventually)
1865	 *	continue processing rest of data/controls, beginning with URG
1866	 */
1867	case TCPS_SYN_SENT:
1868		if ((thflags & TH_ACK) &&
1869		    (SEQ_LEQ(th->th_ack, tp->iss) ||
1870		     SEQ_GT(th->th_ack, tp->snd_max))) {
1871			rstreason = BANDLIM_UNLIMITED;
1872			goto dropwithreset;
1873		}
1874		if ((thflags & (TH_ACK|TH_RST)) == (TH_ACK|TH_RST))
1875			tp = tcp_drop(tp, ECONNREFUSED);
1876		if (thflags & TH_RST)
1877			goto drop;
1878		if (!(thflags & TH_SYN))
1879			goto drop;
1880
1881		tp->irs = th->th_seq;
1882		tcp_rcvseqinit(tp);
1883		if (thflags & TH_ACK) {
1884			TCPSTAT_INC(tcps_connects);
1885			soisconnected(so);
1886#ifdef MAC
1887			mac_socketpeer_set_from_mbuf(m, so);
1888#endif
1889			/* Do window scaling on this connection? */
1890			if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
1891				(TF_RCVD_SCALE|TF_REQ_SCALE)) {
1892				tp->rcv_scale = tp->request_r_scale;
1893			}
1894			tp->rcv_adv += imin(tp->rcv_wnd,
1895			    TCP_MAXWIN << tp->rcv_scale);
1896			tp->snd_una++;		/* SYN is acked */
1897			/*
1898			 * If there's data, delay ACK; if there's also a FIN
1899			 * ACKNOW will be turned on later.
1900			 */
1901			if (DELAY_ACK(tp) && tlen != 0)
1902				tcp_timer_activate(tp, TT_DELACK,
1903				    tcp_delacktime);
1904			else
1905				tp->t_flags |= TF_ACKNOW;
1906
1907			if ((thflags & TH_ECE) && V_tcp_do_ecn) {
1908				tp->t_flags |= TF_ECN_PERMIT;
1909				TCPSTAT_INC(tcps_ecn_shs);
1910			}
1911
1912			/*
1913			 * Received <SYN,ACK> in SYN_SENT[*] state.
1914			 * Transitions:
1915			 *	SYN_SENT  --> ESTABLISHED
1916			 *	SYN_SENT* --> FIN_WAIT_1
1917			 */
1918			tp->t_starttime = ticks;
1919			if (tp->t_flags & TF_NEEDFIN) {
1920				tp->t_state = TCPS_FIN_WAIT_1;
1921				tp->t_flags &= ~TF_NEEDFIN;
1922				thflags &= ~TH_SYN;
1923			} else {
1924				tp->t_state = TCPS_ESTABLISHED;
1925				cc_conn_init(tp);
1926				tcp_timer_activate(tp, TT_KEEP, tcp_keepidle);
1927			}
1928		} else {
1929			/*
1930			 * Received initial SYN in SYN-SENT[*] state =>
1931			 * simultaneous open.  If segment contains CC option
1932			 * and there is a cached CC, apply TAO test.
1933			 * If it succeeds, connection is * half-synchronized.
1934			 * Otherwise, do 3-way handshake:
1935			 *        SYN-SENT -> SYN-RECEIVED
1936			 *        SYN-SENT* -> SYN-RECEIVED*
1937			 * If there was no CC option, clear cached CC value.
1938			 */
1939			tp->t_flags |= (TF_ACKNOW | TF_NEEDSYN);
1940			tcp_timer_activate(tp, TT_REXMT, 0);
1941			tp->t_state = TCPS_SYN_RECEIVED;
1942		}
1943
1944		KASSERT(ti_locked == TI_WLOCKED, ("%s: trimthenstep6: "
1945		    "ti_locked %d", __func__, ti_locked));
1946		INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
1947		INP_WLOCK_ASSERT(tp->t_inpcb);
1948
1949		/*
1950		 * Advance th->th_seq to correspond to first data byte.
1951		 * If data, trim to stay within window,
1952		 * dropping FIN if necessary.
1953		 */
1954		th->th_seq++;
1955		if (tlen > tp->rcv_wnd) {
1956			todrop = tlen - tp->rcv_wnd;
1957			m_adj(m, -todrop);
1958			tlen = tp->rcv_wnd;
1959			thflags &= ~TH_FIN;
1960			TCPSTAT_INC(tcps_rcvpackafterwin);
1961			TCPSTAT_ADD(tcps_rcvbyteafterwin, todrop);
1962		}
1963		tp->snd_wl1 = th->th_seq - 1;
1964		tp->rcv_up = th->th_seq;
1965		/*
1966		 * Client side of transaction: already sent SYN and data.
1967		 * If the remote host used T/TCP to validate the SYN,
1968		 * our data will be ACK'd; if so, enter normal data segment
1969		 * processing in the middle of step 5, ack processing.
1970		 * Otherwise, goto step 6.
1971		 */
1972		if (thflags & TH_ACK)
1973			goto process_ACK;
1974
1975		goto step6;
1976
1977	/*
1978	 * If the state is LAST_ACK or CLOSING or TIME_WAIT:
1979	 *      do normal processing.
1980	 *
1981	 * NB: Leftover from RFC1644 T/TCP.  Cases to be reused later.
1982	 */
1983	case TCPS_LAST_ACK:
1984	case TCPS_CLOSING:
1985		break;  /* continue normal processing */
1986	}
1987
1988	/*
1989	 * States other than LISTEN or SYN_SENT.
1990	 * First check the RST flag and sequence number since reset segments
1991	 * are exempt from the timestamp and connection count tests.  This
1992	 * fixes a bug introduced by the Stevens, vol. 2, p. 960 bugfix
1993	 * below which allowed reset segments in half the sequence space
1994	 * to fall though and be processed (which gives forged reset
1995	 * segments with a random sequence number a 50 percent chance of
1996	 * killing a connection).
1997	 * Then check timestamp, if present.
1998	 * Then check the connection count, if present.
1999	 * Then check that at least some bytes of segment are within
2000	 * receive window.  If segment begins before rcv_nxt,
2001	 * drop leading data (and SYN); if nothing left, just ack.
2002	 *
2003	 *
2004	 * If the RST bit is set, check the sequence number to see
2005	 * if this is a valid reset segment.
2006	 * RFC 793 page 37:
2007	 *   In all states except SYN-SENT, all reset (RST) segments
2008	 *   are validated by checking their SEQ-fields.  A reset is
2009	 *   valid if its sequence number is in the window.
2010	 * Note: this does not take into account delayed ACKs, so
2011	 *   we should test against last_ack_sent instead of rcv_nxt.
2012	 *   The sequence number in the reset segment is normally an
2013	 *   echo of our outgoing acknowlegement numbers, but some hosts
2014	 *   send a reset with the sequence number at the rightmost edge
2015	 *   of our receive window, and we have to handle this case.
2016	 * Note 2: Paul Watson's paper "Slipping in the Window" has shown
2017	 *   that brute force RST attacks are possible.  To combat this,
2018	 *   we use a much stricter check while in the ESTABLISHED state,
2019	 *   only accepting RSTs where the sequence number is equal to
2020	 *   last_ack_sent.  In all other states (the states in which a
2021	 *   RST is more likely), the more permissive check is used.
2022	 * If we have multiple segments in flight, the initial reset
2023	 * segment sequence numbers will be to the left of last_ack_sent,
2024	 * but they will eventually catch up.
2025	 * In any case, it never made sense to trim reset segments to
2026	 * fit the receive window since RFC 1122 says:
2027	 *   4.2.2.12  RST Segment: RFC-793 Section 3.4
2028	 *
2029	 *    A TCP SHOULD allow a received RST segment to include data.
2030	 *
2031	 *    DISCUSSION
2032	 *         It has been suggested that a RST segment could contain
2033	 *         ASCII text that encoded and explained the cause of the
2034	 *         RST.  No standard has yet been established for such
2035	 *         data.
2036	 *
2037	 * If the reset segment passes the sequence number test examine
2038	 * the state:
2039	 *    SYN_RECEIVED STATE:
2040	 *	If passive open, return to LISTEN state.
2041	 *	If active open, inform user that connection was refused.
2042	 *    ESTABLISHED, FIN_WAIT_1, FIN_WAIT_2, CLOSE_WAIT STATES:
2043	 *	Inform user that connection was reset, and close tcb.
2044	 *    CLOSING, LAST_ACK STATES:
2045	 *	Close the tcb.
2046	 *    TIME_WAIT STATE:
2047	 *	Drop the segment - see Stevens, vol. 2, p. 964 and
2048	 *      RFC 1337.
2049	 */
2050	if (thflags & TH_RST) {
2051		if (SEQ_GEQ(th->th_seq, tp->last_ack_sent - 1) &&
2052		    SEQ_LEQ(th->th_seq, tp->last_ack_sent + tp->rcv_wnd)) {
2053			switch (tp->t_state) {
2054
2055			case TCPS_SYN_RECEIVED:
2056				so->so_error = ECONNREFUSED;
2057				goto close;
2058
2059			case TCPS_ESTABLISHED:
2060				if (V_tcp_insecure_rst == 0 &&
2061				    !(SEQ_GEQ(th->th_seq, tp->rcv_nxt - 1) &&
2062				    SEQ_LEQ(th->th_seq, tp->rcv_nxt + 1)) &&
2063				    !(SEQ_GEQ(th->th_seq, tp->last_ack_sent - 1) &&
2064				    SEQ_LEQ(th->th_seq, tp->last_ack_sent + 1))) {
2065					TCPSTAT_INC(tcps_badrst);
2066					goto drop;
2067				}
2068				/* FALLTHROUGH */
2069			case TCPS_FIN_WAIT_1:
2070			case TCPS_FIN_WAIT_2:
2071			case TCPS_CLOSE_WAIT:
2072				so->so_error = ECONNRESET;
2073			close:
2074				KASSERT(ti_locked == TI_WLOCKED,
2075				    ("tcp_do_segment: TH_RST 1 ti_locked %d",
2076				    ti_locked));
2077				INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
2078
2079				tp->t_state = TCPS_CLOSED;
2080				TCPSTAT_INC(tcps_drops);
2081				tp = tcp_close(tp);
2082				break;
2083
2084			case TCPS_CLOSING:
2085			case TCPS_LAST_ACK:
2086				KASSERT(ti_locked == TI_WLOCKED,
2087				    ("tcp_do_segment: TH_RST 2 ti_locked %d",
2088				    ti_locked));
2089				INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
2090
2091				tp = tcp_close(tp);
2092				break;
2093			}
2094		}
2095		goto drop;
2096	}
2097
2098	/*
2099	 * RFC 1323 PAWS: If we have a timestamp reply on this segment
2100	 * and it's less than ts_recent, drop it.
2101	 */
2102	if ((to.to_flags & TOF_TS) != 0 && tp->ts_recent &&
2103	    TSTMP_LT(to.to_tsval, tp->ts_recent)) {
2104
2105		/* Check to see if ts_recent is over 24 days old.  */
2106		if (ticks - tp->ts_recent_age > TCP_PAWS_IDLE) {
2107			/*
2108			 * Invalidate ts_recent.  If this segment updates
2109			 * ts_recent, the age will be reset later and ts_recent
2110			 * will get a valid value.  If it does not, setting
2111			 * ts_recent to zero will at least satisfy the
2112			 * requirement that zero be placed in the timestamp
2113			 * echo reply when ts_recent isn't valid.  The
2114			 * age isn't reset until we get a valid ts_recent
2115			 * because we don't want out-of-order segments to be
2116			 * dropped when ts_recent is old.
2117			 */
2118			tp->ts_recent = 0;
2119		} else {
2120			TCPSTAT_INC(tcps_rcvduppack);
2121			TCPSTAT_ADD(tcps_rcvdupbyte, tlen);
2122			TCPSTAT_INC(tcps_pawsdrop);
2123			if (tlen)
2124				goto dropafterack;
2125			goto drop;
2126		}
2127	}
2128
2129	/*
2130	 * In the SYN-RECEIVED state, validate that the packet belongs to
2131	 * this connection before trimming the data to fit the receive
2132	 * window.  Check the sequence number versus IRS since we know
2133	 * the sequence numbers haven't wrapped.  This is a partial fix
2134	 * for the "LAND" DoS attack.
2135	 */
2136	if (tp->t_state == TCPS_SYN_RECEIVED && SEQ_LT(th->th_seq, tp->irs)) {
2137		rstreason = BANDLIM_RST_OPENPORT;
2138		goto dropwithreset;
2139	}
2140
2141	todrop = tp->rcv_nxt - th->th_seq;
2142	if (todrop > 0) {
2143		/*
2144		 * If this is a duplicate SYN for our current connection,
2145		 * advance over it and pretend and it's not a SYN.
2146		 */
2147		if (thflags & TH_SYN && th->th_seq == tp->irs) {
2148			thflags &= ~TH_SYN;
2149			th->th_seq++;
2150			if (th->th_urp > 1)
2151				th->th_urp--;
2152			else
2153				thflags &= ~TH_URG;
2154			todrop--;
2155		}
2156		/*
2157		 * Following if statement from Stevens, vol. 2, p. 960.
2158		 */
2159		if (todrop > tlen
2160		    || (todrop == tlen && (thflags & TH_FIN) == 0)) {
2161			/*
2162			 * Any valid FIN must be to the left of the window.
2163			 * At this point the FIN must be a duplicate or out
2164			 * of sequence; drop it.
2165			 */
2166			thflags &= ~TH_FIN;
2167
2168			/*
2169			 * Send an ACK to resynchronize and drop any data.
2170			 * But keep on processing for RST or ACK.
2171			 */
2172			tp->t_flags |= TF_ACKNOW;
2173			todrop = tlen;
2174			TCPSTAT_INC(tcps_rcvduppack);
2175			TCPSTAT_ADD(tcps_rcvdupbyte, todrop);
2176		} else {
2177			TCPSTAT_INC(tcps_rcvpartduppack);
2178			TCPSTAT_ADD(tcps_rcvpartdupbyte, todrop);
2179		}
2180		drop_hdrlen += todrop;	/* drop from the top afterwards */
2181		th->th_seq += todrop;
2182		tlen -= todrop;
2183		if (th->th_urp > todrop)
2184			th->th_urp -= todrop;
2185		else {
2186			thflags &= ~TH_URG;
2187			th->th_urp = 0;
2188		}
2189	}
2190
2191	/*
2192	 * If new data are received on a connection after the
2193	 * user processes are gone, then RST the other end.
2194	 */
2195	if ((so->so_state & SS_NOFDREF) &&
2196	    tp->t_state > TCPS_CLOSE_WAIT && tlen) {
2197		char *s;
2198
2199		KASSERT(ti_locked == TI_WLOCKED, ("%s: SS_NOFDEREF && "
2200		    "CLOSE_WAIT && tlen ti_locked %d", __func__, ti_locked));
2201		INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
2202
2203		if ((s = tcp_log_addrs(&tp->t_inpcb->inp_inc, th, NULL, NULL))) {
2204			log(LOG_DEBUG, "%s; %s: %s: Received %d bytes of data after socket "
2205			    "was closed, sending RST and removing tcpcb\n",
2206			    s, __func__, tcpstates[tp->t_state], tlen);
2207			free(s, M_TCPLOG);
2208		}
2209		tp = tcp_close(tp);
2210		TCPSTAT_INC(tcps_rcvafterclose);
2211		rstreason = BANDLIM_UNLIMITED;
2212		goto dropwithreset;
2213	}
2214
2215	/*
2216	 * If segment ends after window, drop trailing data
2217	 * (and PUSH and FIN); if nothing left, just ACK.
2218	 */
2219	todrop = (th->th_seq + tlen) - (tp->rcv_nxt + tp->rcv_wnd);
2220	if (todrop > 0) {
2221		TCPSTAT_INC(tcps_rcvpackafterwin);
2222		if (todrop >= tlen) {
2223			TCPSTAT_ADD(tcps_rcvbyteafterwin, tlen);
2224			/*
2225			 * If window is closed can only take segments at
2226			 * window edge, and have to drop data and PUSH from
2227			 * incoming segments.  Continue processing, but
2228			 * remember to ack.  Otherwise, drop segment
2229			 * and ack.
2230			 */
2231			if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
2232				tp->t_flags |= TF_ACKNOW;
2233				TCPSTAT_INC(tcps_rcvwinprobe);
2234			} else
2235				goto dropafterack;
2236		} else
2237			TCPSTAT_ADD(tcps_rcvbyteafterwin, todrop);
2238		m_adj(m, -todrop);
2239		tlen -= todrop;
2240		thflags &= ~(TH_PUSH|TH_FIN);
2241	}
2242
2243	/*
2244	 * If last ACK falls within this segment's sequence numbers,
2245	 * record its timestamp.
2246	 * NOTE:
2247	 * 1) That the test incorporates suggestions from the latest
2248	 *    proposal of the tcplw@cray.com list (Braden 1993/04/26).
2249	 * 2) That updating only on newer timestamps interferes with
2250	 *    our earlier PAWS tests, so this check should be solely
2251	 *    predicated on the sequence space of this segment.
2252	 * 3) That we modify the segment boundary check to be
2253	 *        Last.ACK.Sent <= SEG.SEQ + SEG.Len
2254	 *    instead of RFC1323's
2255	 *        Last.ACK.Sent < SEG.SEQ + SEG.Len,
2256	 *    This modified check allows us to overcome RFC1323's
2257	 *    limitations as described in Stevens TCP/IP Illustrated
2258	 *    Vol. 2 p.869. In such cases, we can still calculate the
2259	 *    RTT correctly when RCV.NXT == Last.ACK.Sent.
2260	 */
2261	if ((to.to_flags & TOF_TS) != 0 &&
2262	    SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
2263	    SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
2264		((thflags & (TH_SYN|TH_FIN)) != 0))) {
2265		tp->ts_recent_age = ticks;
2266		tp->ts_recent = to.to_tsval;
2267	}
2268
2269	/*
2270	 * If a SYN is in the window, then this is an
2271	 * error and we send an RST and drop the connection.
2272	 */
2273	if (thflags & TH_SYN) {
2274		KASSERT(ti_locked == TI_WLOCKED,
2275		    ("tcp_do_segment: TH_SYN ti_locked %d", ti_locked));
2276		INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
2277
2278		tp = tcp_drop(tp, ECONNRESET);
2279		rstreason = BANDLIM_UNLIMITED;
2280		goto drop;
2281	}
2282
2283	/*
2284	 * If the ACK bit is off:  if in SYN-RECEIVED state or SENDSYN
2285	 * flag is on (half-synchronized state), then queue data for
2286	 * later processing; else drop segment and return.
2287	 */
2288	if ((thflags & TH_ACK) == 0) {
2289		if (tp->t_state == TCPS_SYN_RECEIVED ||
2290		    (tp->t_flags & TF_NEEDSYN))
2291			goto step6;
2292		else if (tp->t_flags & TF_ACKNOW)
2293			goto dropafterack;
2294		else
2295			goto drop;
2296	}
2297
2298	/*
2299	 * Ack processing.
2300	 */
2301	switch (tp->t_state) {
2302
2303	/*
2304	 * In SYN_RECEIVED state, the ack ACKs our SYN, so enter
2305	 * ESTABLISHED state and continue processing.
2306	 * The ACK was checked above.
2307	 */
2308	case TCPS_SYN_RECEIVED:
2309
2310		TCPSTAT_INC(tcps_connects);
2311		soisconnected(so);
2312		/* Do window scaling? */
2313		if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
2314			(TF_RCVD_SCALE|TF_REQ_SCALE)) {
2315			tp->rcv_scale = tp->request_r_scale;
2316			tp->snd_wnd = tiwin;
2317		}
2318		/*
2319		 * Make transitions:
2320		 *      SYN-RECEIVED  -> ESTABLISHED
2321		 *      SYN-RECEIVED* -> FIN-WAIT-1
2322		 */
2323		tp->t_starttime = ticks;
2324		if (tp->t_flags & TF_NEEDFIN) {
2325			tp->t_state = TCPS_FIN_WAIT_1;
2326			tp->t_flags &= ~TF_NEEDFIN;
2327		} else {
2328			tp->t_state = TCPS_ESTABLISHED;
2329			cc_conn_init(tp);
2330			tcp_timer_activate(tp, TT_KEEP, tcp_keepidle);
2331		}
2332		/*
2333		 * If segment contains data or ACK, will call tcp_reass()
2334		 * later; if not, do so now to pass queued data to user.
2335		 */
2336		if (tlen == 0 && (thflags & TH_FIN) == 0)
2337			(void) tcp_reass(tp, (struct tcphdr *)0, 0,
2338			    (struct mbuf *)0);
2339		tp->snd_wl1 = th->th_seq - 1;
2340		/* FALLTHROUGH */
2341
2342	/*
2343	 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
2344	 * ACKs.  If the ack is in the range
2345	 *	tp->snd_una < th->th_ack <= tp->snd_max
2346	 * then advance tp->snd_una to th->th_ack and drop
2347	 * data from the retransmission queue.  If this ACK reflects
2348	 * more up to date window information we update our window information.
2349	 */
2350	case TCPS_ESTABLISHED:
2351	case TCPS_FIN_WAIT_1:
2352	case TCPS_FIN_WAIT_2:
2353	case TCPS_CLOSE_WAIT:
2354	case TCPS_CLOSING:
2355	case TCPS_LAST_ACK:
2356		if (SEQ_GT(th->th_ack, tp->snd_max)) {
2357			TCPSTAT_INC(tcps_rcvacktoomuch);
2358			goto dropafterack;
2359		}
2360		if ((tp->t_flags & TF_SACK_PERMIT) &&
2361		    ((to.to_flags & TOF_SACK) ||
2362		     !TAILQ_EMPTY(&tp->snd_holes)))
2363			tcp_sack_doack(tp, &to, th->th_ack);
2364
2365		/* Run HHOOK_TCP_ESTABLISHED_IN helper hooks. */
2366		hhook_run_tcp_est_in(tp, th, &to);
2367
2368		if (SEQ_LEQ(th->th_ack, tp->snd_una)) {
2369			if (tlen == 0 && tiwin == tp->snd_wnd) {
2370				TCPSTAT_INC(tcps_rcvdupack);
2371				/*
2372				 * If we have outstanding data (other than
2373				 * a window probe), this is a completely
2374				 * duplicate ack (ie, window info didn't
2375				 * change), the ack is the biggest we've
2376				 * seen and we've seen exactly our rexmt
2377				 * threshhold of them, assume a packet
2378				 * has been dropped and retransmit it.
2379				 * Kludge snd_nxt & the congestion
2380				 * window so we send only this one
2381				 * packet.
2382				 *
2383				 * We know we're losing at the current
2384				 * window size so do congestion avoidance
2385				 * (set ssthresh to half the current window
2386				 * and pull our congestion window back to
2387				 * the new ssthresh).
2388				 *
2389				 * Dup acks mean that packets have left the
2390				 * network (they're now cached at the receiver)
2391				 * so bump cwnd by the amount in the receiver
2392				 * to keep a constant cwnd packets in the
2393				 * network.
2394				 *
2395				 * When using TCP ECN, notify the peer that
2396				 * we reduced the cwnd.
2397				 */
2398				if (!tcp_timer_active(tp, TT_REXMT) ||
2399				    th->th_ack != tp->snd_una)
2400					tp->t_dupacks = 0;
2401				else if (++tp->t_dupacks > tcprexmtthresh ||
2402				     IN_FASTRECOVERY(tp->t_flags)) {
2403					cc_ack_received(tp, th, CC_DUPACK);
2404					if ((tp->t_flags & TF_SACK_PERMIT) &&
2405					    IN_FASTRECOVERY(tp->t_flags)) {
2406						int awnd;
2407
2408						/*
2409						 * Compute the amount of data in flight first.
2410						 * We can inject new data into the pipe iff
2411						 * we have less than 1/2 the original window's
2412						 * worth of data in flight.
2413						 */
2414						awnd = (tp->snd_nxt - tp->snd_fack) +
2415							tp->sackhint.sack_bytes_rexmit;
2416						if (awnd < tp->snd_ssthresh) {
2417							tp->snd_cwnd += tp->t_maxseg;
2418							if (tp->snd_cwnd > tp->snd_ssthresh)
2419								tp->snd_cwnd = tp->snd_ssthresh;
2420						}
2421					} else
2422						tp->snd_cwnd += tp->t_maxseg;
2423					(void) tcp_output(tp);
2424					goto drop;
2425				} else if (tp->t_dupacks == tcprexmtthresh) {
2426					tcp_seq onxt = tp->snd_nxt;
2427
2428					/*
2429					 * If we're doing sack, check to
2430					 * see if we're already in sack
2431					 * recovery. If we're not doing sack,
2432					 * check to see if we're in newreno
2433					 * recovery.
2434					 */
2435					if (tp->t_flags & TF_SACK_PERMIT) {
2436						if (IN_FASTRECOVERY(tp->t_flags)) {
2437							tp->t_dupacks = 0;
2438							break;
2439						}
2440					} else {
2441						if (SEQ_LEQ(th->th_ack,
2442						    tp->snd_recover)) {
2443							tp->t_dupacks = 0;
2444							break;
2445						}
2446					}
2447					/* Congestion signal before ack. */
2448					cc_cong_signal(tp, th, CC_NDUPACK);
2449					cc_ack_received(tp, th, CC_DUPACK);
2450					tcp_timer_activate(tp, TT_REXMT, 0);
2451					tp->t_rtttime = 0;
2452					if (tp->t_flags & TF_SACK_PERMIT) {
2453						TCPSTAT_INC(
2454						    tcps_sack_recovery_episode);
2455						tp->sack_newdata = tp->snd_nxt;
2456						tp->snd_cwnd = tp->t_maxseg;
2457						(void) tcp_output(tp);
2458						goto drop;
2459					}
2460					tp->snd_nxt = th->th_ack;
2461					tp->snd_cwnd = tp->t_maxseg;
2462					(void) tcp_output(tp);
2463					KASSERT(tp->snd_limited <= 2,
2464					    ("%s: tp->snd_limited too big",
2465					    __func__));
2466					tp->snd_cwnd = tp->snd_ssthresh +
2467					     tp->t_maxseg *
2468					     (tp->t_dupacks - tp->snd_limited);
2469					if (SEQ_GT(onxt, tp->snd_nxt))
2470						tp->snd_nxt = onxt;
2471					goto drop;
2472				} else if (V_tcp_do_rfc3042) {
2473					cc_ack_received(tp, th, CC_DUPACK);
2474					u_long oldcwnd = tp->snd_cwnd;
2475					tcp_seq oldsndmax = tp->snd_max;
2476					u_int sent;
2477
2478					KASSERT(tp->t_dupacks == 1 ||
2479					    tp->t_dupacks == 2,
2480					    ("%s: dupacks not 1 or 2",
2481					    __func__));
2482					if (tp->t_dupacks == 1)
2483						tp->snd_limited = 0;
2484					tp->snd_cwnd =
2485					    (tp->snd_nxt - tp->snd_una) +
2486					    (tp->t_dupacks - tp->snd_limited) *
2487					    tp->t_maxseg;
2488					(void) tcp_output(tp);
2489					sent = tp->snd_max - oldsndmax;
2490					if (sent > tp->t_maxseg) {
2491						KASSERT((tp->t_dupacks == 2 &&
2492						    tp->snd_limited == 0) ||
2493						   (sent == tp->t_maxseg + 1 &&
2494						    tp->t_flags & TF_SENTFIN),
2495						    ("%s: sent too much",
2496						    __func__));
2497						tp->snd_limited = 2;
2498					} else if (sent > 0)
2499						++tp->snd_limited;
2500					tp->snd_cwnd = oldcwnd;
2501					goto drop;
2502				}
2503			} else
2504				tp->t_dupacks = 0;
2505			break;
2506		}
2507
2508		KASSERT(SEQ_GT(th->th_ack, tp->snd_una),
2509		    ("%s: th_ack <= snd_una", __func__));
2510
2511		/*
2512		 * If the congestion window was inflated to account
2513		 * for the other side's cached packets, retract it.
2514		 */
2515		if (IN_FASTRECOVERY(tp->t_flags)) {
2516			if (SEQ_LT(th->th_ack, tp->snd_recover)) {
2517				if (tp->t_flags & TF_SACK_PERMIT)
2518					tcp_sack_partialack(tp, th);
2519				else
2520					tcp_newreno_partial_ack(tp, th);
2521			} else
2522				cc_post_recovery(tp, th);
2523		}
2524		tp->t_dupacks = 0;
2525		/*
2526		 * If we reach this point, ACK is not a duplicate,
2527		 *     i.e., it ACKs something we sent.
2528		 */
2529		if (tp->t_flags & TF_NEEDSYN) {
2530			/*
2531			 * T/TCP: Connection was half-synchronized, and our
2532			 * SYN has been ACK'd (so connection is now fully
2533			 * synchronized).  Go to non-starred state,
2534			 * increment snd_una for ACK of SYN, and check if
2535			 * we can do window scaling.
2536			 */
2537			tp->t_flags &= ~TF_NEEDSYN;
2538			tp->snd_una++;
2539			/* Do window scaling? */
2540			if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
2541				(TF_RCVD_SCALE|TF_REQ_SCALE)) {
2542				tp->rcv_scale = tp->request_r_scale;
2543				/* Send window already scaled. */
2544			}
2545		}
2546
2547process_ACK:
2548		INP_WLOCK_ASSERT(tp->t_inpcb);
2549
2550		acked = BYTES_THIS_ACK(tp, th);
2551		TCPSTAT_INC(tcps_rcvackpack);
2552		TCPSTAT_ADD(tcps_rcvackbyte, acked);
2553
2554		/*
2555		 * If we just performed our first retransmit, and the ACK
2556		 * arrives within our recovery window, then it was a mistake
2557		 * to do the retransmit in the first place.  Recover our
2558		 * original cwnd and ssthresh, and proceed to transmit where
2559		 * we left off.
2560		 */
2561		if (tp->t_rxtshift == 1 && tp->t_flags & TF_PREVVALID &&
2562		    (int)(ticks - tp->t_badrxtwin) < 0)
2563			cc_cong_signal(tp, th, CC_RTO_ERR);
2564
2565		/*
2566		 * If we have a timestamp reply, update smoothed
2567		 * round trip time.  If no timestamp is present but
2568		 * transmit timer is running and timed sequence
2569		 * number was acked, update smoothed round trip time.
2570		 * Since we now have an rtt measurement, cancel the
2571		 * timer backoff (cf., Phil Karn's retransmit alg.).
2572		 * Recompute the initial retransmit timer.
2573		 *
2574		 * Some boxes send broken timestamp replies
2575		 * during the SYN+ACK phase, ignore
2576		 * timestamps of 0 or we could calculate a
2577		 * huge RTT and blow up the retransmit timer.
2578		 */
2579		if ((to.to_flags & TOF_TS) != 0 &&
2580		    to.to_tsecr) {
2581			if (!tp->t_rttlow || tp->t_rttlow > ticks - to.to_tsecr)
2582				tp->t_rttlow = ticks - to.to_tsecr;
2583			tcp_xmit_timer(tp, ticks - to.to_tsecr + 1);
2584		} else if (tp->t_rtttime && SEQ_GT(th->th_ack, tp->t_rtseq)) {
2585			if (!tp->t_rttlow || tp->t_rttlow > ticks - tp->t_rtttime)
2586				tp->t_rttlow = ticks - tp->t_rtttime;
2587			tcp_xmit_timer(tp, ticks - tp->t_rtttime);
2588		}
2589
2590		/*
2591		 * If all outstanding data is acked, stop retransmit
2592		 * timer and remember to restart (more output or persist).
2593		 * If there is more data to be acked, restart retransmit
2594		 * timer, using current (possibly backed-off) value.
2595		 */
2596		if (th->th_ack == tp->snd_max) {
2597			tcp_timer_activate(tp, TT_REXMT, 0);
2598			needoutput = 1;
2599		} else if (!tcp_timer_active(tp, TT_PERSIST))
2600			tcp_timer_activate(tp, TT_REXMT, tp->t_rxtcur);
2601
2602		/*
2603		 * If no data (only SYN) was ACK'd,
2604		 *    skip rest of ACK processing.
2605		 */
2606		if (acked == 0)
2607			goto step6;
2608
2609		/*
2610		 * Let the congestion control algorithm update congestion
2611		 * control related information. This typically means increasing
2612		 * the congestion window.
2613		 */
2614		cc_ack_received(tp, th, CC_ACK);
2615
2616		SOCKBUF_LOCK(&so->so_snd);
2617		if (acked > so->so_snd.sb_cc) {
2618			tp->snd_wnd -= so->so_snd.sb_cc;
2619			sbdrop_locked(&so->so_snd, (int)so->so_snd.sb_cc);
2620			ourfinisacked = 1;
2621		} else {
2622			sbdrop_locked(&so->so_snd, acked);
2623			tp->snd_wnd -= acked;
2624			ourfinisacked = 0;
2625		}
2626		/* NB: sowwakeup_locked() does an implicit unlock. */
2627		sowwakeup_locked(so);
2628		/* Detect una wraparound. */
2629		if (!IN_RECOVERY(tp->t_flags) &&
2630		    SEQ_GT(tp->snd_una, tp->snd_recover) &&
2631		    SEQ_LEQ(th->th_ack, tp->snd_recover))
2632			tp->snd_recover = th->th_ack - 1;
2633		/* XXXLAS: Can this be moved up into cc_post_recovery? */
2634		if (IN_RECOVERY(tp->t_flags) &&
2635		    SEQ_GEQ(th->th_ack, tp->snd_recover)) {
2636			EXIT_RECOVERY(tp->t_flags);
2637		}
2638		tp->snd_una = th->th_ack;
2639		if (tp->t_flags & TF_SACK_PERMIT) {
2640			if (SEQ_GT(tp->snd_una, tp->snd_recover))
2641				tp->snd_recover = tp->snd_una;
2642		}
2643		if (SEQ_LT(tp->snd_nxt, tp->snd_una))
2644			tp->snd_nxt = tp->snd_una;
2645
2646		switch (tp->t_state) {
2647
2648		/*
2649		 * In FIN_WAIT_1 STATE in addition to the processing
2650		 * for the ESTABLISHED state if our FIN is now acknowledged
2651		 * then enter FIN_WAIT_2.
2652		 */
2653		case TCPS_FIN_WAIT_1:
2654			if (ourfinisacked) {
2655				/*
2656				 * If we can't receive any more
2657				 * data, then closing user can proceed.
2658				 * Starting the timer is contrary to the
2659				 * specification, but if we don't get a FIN
2660				 * we'll hang forever.
2661				 *
2662				 * XXXjl:
2663				 * we should release the tp also, and use a
2664				 * compressed state.
2665				 */
2666				if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
2667					int timeout;
2668
2669					soisdisconnected(so);
2670					timeout = (tcp_fast_finwait2_recycle) ?
2671						tcp_finwait2_timeout : tcp_maxidle;
2672					tcp_timer_activate(tp, TT_2MSL, timeout);
2673				}
2674				tp->t_state = TCPS_FIN_WAIT_2;
2675			}
2676			break;
2677
2678		/*
2679		 * In CLOSING STATE in addition to the processing for
2680		 * the ESTABLISHED state if the ACK acknowledges our FIN
2681		 * then enter the TIME-WAIT state, otherwise ignore
2682		 * the segment.
2683		 */
2684		case TCPS_CLOSING:
2685			if (ourfinisacked) {
2686				INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
2687				tcp_twstart(tp);
2688				INP_INFO_WUNLOCK(&V_tcbinfo);
2689				m_freem(m);
2690				return;
2691			}
2692			break;
2693
2694		/*
2695		 * In LAST_ACK, we may still be waiting for data to drain
2696		 * and/or to be acked, as well as for the ack of our FIN.
2697		 * If our FIN is now acknowledged, delete the TCB,
2698		 * enter the closed state and return.
2699		 */
2700		case TCPS_LAST_ACK:
2701			if (ourfinisacked) {
2702				INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
2703				tp = tcp_close(tp);
2704				goto drop;
2705			}
2706			break;
2707		}
2708	}
2709
2710step6:
2711	INP_WLOCK_ASSERT(tp->t_inpcb);
2712
2713	/*
2714	 * Update window information.
2715	 * Don't look at window if no ACK: TAC's send garbage on first SYN.
2716	 */
2717	if ((thflags & TH_ACK) &&
2718	    (SEQ_LT(tp->snd_wl1, th->th_seq) ||
2719	    (tp->snd_wl1 == th->th_seq && (SEQ_LT(tp->snd_wl2, th->th_ack) ||
2720	     (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))))) {
2721		/* keep track of pure window updates */
2722		if (tlen == 0 &&
2723		    tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)
2724			TCPSTAT_INC(tcps_rcvwinupd);
2725		tp->snd_wnd = tiwin;
2726		tp->snd_wl1 = th->th_seq;
2727		tp->snd_wl2 = th->th_ack;
2728		if (tp->snd_wnd > tp->max_sndwnd)
2729			tp->max_sndwnd = tp->snd_wnd;
2730		needoutput = 1;
2731	}
2732
2733	/*
2734	 * Process segments with URG.
2735	 */
2736	if ((thflags & TH_URG) && th->th_urp &&
2737	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2738		/*
2739		 * This is a kludge, but if we receive and accept
2740		 * random urgent pointers, we'll crash in
2741		 * soreceive.  It's hard to imagine someone
2742		 * actually wanting to send this much urgent data.
2743		 */
2744		SOCKBUF_LOCK(&so->so_rcv);
2745		if (th->th_urp + so->so_rcv.sb_cc > sb_max) {
2746			th->th_urp = 0;			/* XXX */
2747			thflags &= ~TH_URG;		/* XXX */
2748			SOCKBUF_UNLOCK(&so->so_rcv);	/* XXX */
2749			goto dodata;			/* XXX */
2750		}
2751		/*
2752		 * If this segment advances the known urgent pointer,
2753		 * then mark the data stream.  This should not happen
2754		 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
2755		 * a FIN has been received from the remote side.
2756		 * In these states we ignore the URG.
2757		 *
2758		 * According to RFC961 (Assigned Protocols),
2759		 * the urgent pointer points to the last octet
2760		 * of urgent data.  We continue, however,
2761		 * to consider it to indicate the first octet
2762		 * of data past the urgent section as the original
2763		 * spec states (in one of two places).
2764		 */
2765		if (SEQ_GT(th->th_seq+th->th_urp, tp->rcv_up)) {
2766			tp->rcv_up = th->th_seq + th->th_urp;
2767			so->so_oobmark = so->so_rcv.sb_cc +
2768			    (tp->rcv_up - tp->rcv_nxt) - 1;
2769			if (so->so_oobmark == 0)
2770				so->so_rcv.sb_state |= SBS_RCVATMARK;
2771			sohasoutofband(so);
2772			tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
2773		}
2774		SOCKBUF_UNLOCK(&so->so_rcv);
2775		/*
2776		 * Remove out of band data so doesn't get presented to user.
2777		 * This can happen independent of advancing the URG pointer,
2778		 * but if two URG's are pending at once, some out-of-band
2779		 * data may creep in... ick.
2780		 */
2781		if (th->th_urp <= (u_long)tlen &&
2782		    !(so->so_options & SO_OOBINLINE)) {
2783			/* hdr drop is delayed */
2784			tcp_pulloutofband(so, th, m, drop_hdrlen);
2785		}
2786	} else {
2787		/*
2788		 * If no out of band data is expected,
2789		 * pull receive urgent pointer along
2790		 * with the receive window.
2791		 */
2792		if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
2793			tp->rcv_up = tp->rcv_nxt;
2794	}
2795dodata:							/* XXX */
2796	INP_WLOCK_ASSERT(tp->t_inpcb);
2797
2798	/*
2799	 * Process the segment text, merging it into the TCP sequencing queue,
2800	 * and arranging for acknowledgment of receipt if necessary.
2801	 * This process logically involves adjusting tp->rcv_wnd as data
2802	 * is presented to the user (this happens in tcp_usrreq.c,
2803	 * case PRU_RCVD).  If a FIN has already been received on this
2804	 * connection then we just ignore the text.
2805	 */
2806	if ((tlen || (thflags & TH_FIN)) &&
2807	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2808		tcp_seq save_start = th->th_seq;
2809		m_adj(m, drop_hdrlen);	/* delayed header drop */
2810		/*
2811		 * Insert segment which includes th into TCP reassembly queue
2812		 * with control block tp.  Set thflags to whether reassembly now
2813		 * includes a segment with FIN.  This handles the common case
2814		 * inline (segment is the next to be received on an established
2815		 * connection, and the queue is empty), avoiding linkage into
2816		 * and removal from the queue and repetition of various
2817		 * conversions.
2818		 * Set DELACK for segments received in order, but ack
2819		 * immediately when segments are out of order (so
2820		 * fast retransmit can work).
2821		 */
2822		if (th->th_seq == tp->rcv_nxt &&
2823		    LIST_EMPTY(&tp->t_segq) &&
2824		    TCPS_HAVEESTABLISHED(tp->t_state)) {
2825			if (DELAY_ACK(tp))
2826				tp->t_flags |= TF_DELACK;
2827			else
2828				tp->t_flags |= TF_ACKNOW;
2829			tp->rcv_nxt += tlen;
2830			thflags = th->th_flags & TH_FIN;
2831			TCPSTAT_INC(tcps_rcvpack);
2832			TCPSTAT_ADD(tcps_rcvbyte, tlen);
2833			ND6_HINT(tp);
2834			SOCKBUF_LOCK(&so->so_rcv);
2835			if (so->so_rcv.sb_state & SBS_CANTRCVMORE)
2836				m_freem(m);
2837			else
2838				sbappendstream_locked(&so->so_rcv, m);
2839			/* NB: sorwakeup_locked() does an implicit unlock. */
2840			sorwakeup_locked(so);
2841		} else {
2842			/*
2843			 * XXX: Due to the header drop above "th" is
2844			 * theoretically invalid by now.  Fortunately
2845			 * m_adj() doesn't actually frees any mbufs
2846			 * when trimming from the head.
2847			 */
2848			thflags = tcp_reass(tp, th, &tlen, m);
2849			tp->t_flags |= TF_ACKNOW;
2850		}
2851		if (tlen > 0 && (tp->t_flags & TF_SACK_PERMIT))
2852			tcp_update_sack_list(tp, save_start, save_start + tlen);
2853#if 0
2854		/*
2855		 * Note the amount of data that peer has sent into
2856		 * our window, in order to estimate the sender's
2857		 * buffer size.
2858		 * XXX: Unused.
2859		 */
2860		if (SEQ_GT(tp->rcv_adv, tp->rcv_nxt))
2861			len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
2862		else
2863			len = so->so_rcv.sb_hiwat;
2864#endif
2865	} else {
2866		m_freem(m);
2867		thflags &= ~TH_FIN;
2868	}
2869
2870	/*
2871	 * If FIN is received ACK the FIN and let the user know
2872	 * that the connection is closing.
2873	 */
2874	if (thflags & TH_FIN) {
2875		if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2876			socantrcvmore(so);
2877			/*
2878			 * If connection is half-synchronized
2879			 * (ie NEEDSYN flag on) then delay ACK,
2880			 * so it may be piggybacked when SYN is sent.
2881			 * Otherwise, since we received a FIN then no
2882			 * more input can be expected, send ACK now.
2883			 */
2884			if (tp->t_flags & TF_NEEDSYN)
2885				tp->t_flags |= TF_DELACK;
2886			else
2887				tp->t_flags |= TF_ACKNOW;
2888			tp->rcv_nxt++;
2889		}
2890		switch (tp->t_state) {
2891
2892		/*
2893		 * In SYN_RECEIVED and ESTABLISHED STATES
2894		 * enter the CLOSE_WAIT state.
2895		 */
2896		case TCPS_SYN_RECEIVED:
2897			tp->t_starttime = ticks;
2898			/* FALLTHROUGH */
2899		case TCPS_ESTABLISHED:
2900			tp->t_state = TCPS_CLOSE_WAIT;
2901			break;
2902
2903		/*
2904		 * If still in FIN_WAIT_1 STATE FIN has not been acked so
2905		 * enter the CLOSING state.
2906		 */
2907		case TCPS_FIN_WAIT_1:
2908			tp->t_state = TCPS_CLOSING;
2909			break;
2910
2911		/*
2912		 * In FIN_WAIT_2 state enter the TIME_WAIT state,
2913		 * starting the time-wait timer, turning off the other
2914		 * standard timers.
2915		 */
2916		case TCPS_FIN_WAIT_2:
2917			INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
2918			KASSERT(ti_locked == TI_WLOCKED, ("%s: dodata "
2919			    "TCP_FIN_WAIT_2 ti_locked: %d", __func__,
2920			    ti_locked));
2921
2922			tcp_twstart(tp);
2923			INP_INFO_WUNLOCK(&V_tcbinfo);
2924			return;
2925		}
2926	}
2927	if (ti_locked == TI_WLOCKED)
2928		INP_INFO_WUNLOCK(&V_tcbinfo);
2929	ti_locked = TI_UNLOCKED;
2930
2931#ifdef TCPDEBUG
2932	if (so->so_options & SO_DEBUG)
2933		tcp_trace(TA_INPUT, ostate, tp, (void *)tcp_saveipgen,
2934			  &tcp_savetcp, 0);
2935#endif
2936
2937	/*
2938	 * Return any desired output.
2939	 */
2940	if (needoutput || (tp->t_flags & TF_ACKNOW))
2941		(void) tcp_output(tp);
2942
2943check_delack:
2944	KASSERT(ti_locked == TI_UNLOCKED, ("%s: check_delack ti_locked %d",
2945	    __func__, ti_locked));
2946	INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
2947	INP_WLOCK_ASSERT(tp->t_inpcb);
2948
2949	if (tp->t_flags & TF_DELACK) {
2950		tp->t_flags &= ~TF_DELACK;
2951		tcp_timer_activate(tp, TT_DELACK, tcp_delacktime);
2952	}
2953	INP_WUNLOCK(tp->t_inpcb);
2954	return;
2955
2956dropafterack:
2957	/*
2958	 * Generate an ACK dropping incoming segment if it occupies
2959	 * sequence space, where the ACK reflects our state.
2960	 *
2961	 * We can now skip the test for the RST flag since all
2962	 * paths to this code happen after packets containing
2963	 * RST have been dropped.
2964	 *
2965	 * In the SYN-RECEIVED state, don't send an ACK unless the
2966	 * segment we received passes the SYN-RECEIVED ACK test.
2967	 * If it fails send a RST.  This breaks the loop in the
2968	 * "LAND" DoS attack, and also prevents an ACK storm
2969	 * between two listening ports that have been sent forged
2970	 * SYN segments, each with the source address of the other.
2971	 */
2972	if (tp->t_state == TCPS_SYN_RECEIVED && (thflags & TH_ACK) &&
2973	    (SEQ_GT(tp->snd_una, th->th_ack) ||
2974	     SEQ_GT(th->th_ack, tp->snd_max)) ) {
2975		rstreason = BANDLIM_RST_OPENPORT;
2976		goto dropwithreset;
2977	}
2978#ifdef TCPDEBUG
2979	if (so->so_options & SO_DEBUG)
2980		tcp_trace(TA_DROP, ostate, tp, (void *)tcp_saveipgen,
2981			  &tcp_savetcp, 0);
2982#endif
2983	if (ti_locked == TI_WLOCKED)
2984		INP_INFO_WUNLOCK(&V_tcbinfo);
2985	ti_locked = TI_UNLOCKED;
2986
2987	tp->t_flags |= TF_ACKNOW;
2988	(void) tcp_output(tp);
2989	INP_WUNLOCK(tp->t_inpcb);
2990	m_freem(m);
2991	return;
2992
2993dropwithreset:
2994	if (ti_locked == TI_WLOCKED)
2995		INP_INFO_WUNLOCK(&V_tcbinfo);
2996	ti_locked = TI_UNLOCKED;
2997
2998	if (tp != NULL) {
2999		tcp_dropwithreset(m, th, tp, tlen, rstreason);
3000		INP_WUNLOCK(tp->t_inpcb);
3001	} else
3002		tcp_dropwithreset(m, th, NULL, tlen, rstreason);
3003	return;
3004
3005drop:
3006	if (ti_locked == TI_WLOCKED) {
3007		INP_INFO_WUNLOCK(&V_tcbinfo);
3008		ti_locked = TI_UNLOCKED;
3009	}
3010#ifdef INVARIANTS
3011	else
3012		INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
3013#endif
3014
3015	/*
3016	 * Drop space held by incoming segment and return.
3017	 */
3018#ifdef TCPDEBUG
3019	if (tp == NULL || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
3020		tcp_trace(TA_DROP, ostate, tp, (void *)tcp_saveipgen,
3021			  &tcp_savetcp, 0);
3022#endif
3023	if (tp != NULL)
3024		INP_WUNLOCK(tp->t_inpcb);
3025	m_freem(m);
3026}
3027
3028/*
3029 * Issue RST and make ACK acceptable to originator of segment.
3030 * The mbuf must still include the original packet header.
3031 * tp may be NULL.
3032 */
3033static void
3034tcp_dropwithreset(struct mbuf *m, struct tcphdr *th, struct tcpcb *tp,
3035    int tlen, int rstreason)
3036{
3037#ifdef INET
3038	struct ip *ip;
3039#endif
3040#ifdef INET6
3041	struct ip6_hdr *ip6;
3042#endif
3043
3044	if (tp != NULL) {
3045		INP_WLOCK_ASSERT(tp->t_inpcb);
3046	}
3047
3048	/* Don't bother if destination was broadcast/multicast. */
3049	if ((th->th_flags & TH_RST) || m->m_flags & (M_BCAST|M_MCAST))
3050		goto drop;
3051#ifdef INET6
3052	if (mtod(m, struct ip *)->ip_v == 6) {
3053		ip6 = mtod(m, struct ip6_hdr *);
3054		if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) ||
3055		    IN6_IS_ADDR_MULTICAST(&ip6->ip6_src))
3056			goto drop;
3057		/* IPv6 anycast check is done at tcp6_input() */
3058	}
3059#endif
3060#if defined(INET) && defined(INET6)
3061	else
3062#endif
3063#ifdef INET
3064	{
3065		ip = mtod(m, struct ip *);
3066		if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
3067		    IN_MULTICAST(ntohl(ip->ip_src.s_addr)) ||
3068		    ip->ip_src.s_addr == htonl(INADDR_BROADCAST) ||
3069		    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
3070			goto drop;
3071	}
3072#endif
3073
3074	/* Perform bandwidth limiting. */
3075	if (badport_bandlim(rstreason) < 0)
3076		goto drop;
3077
3078	/* tcp_respond consumes the mbuf chain. */
3079	if (th->th_flags & TH_ACK) {
3080		tcp_respond(tp, mtod(m, void *), th, m, (tcp_seq)0,
3081		    th->th_ack, TH_RST);
3082	} else {
3083		if (th->th_flags & TH_SYN)
3084			tlen++;
3085		tcp_respond(tp, mtod(m, void *), th, m, th->th_seq+tlen,
3086		    (tcp_seq)0, TH_RST|TH_ACK);
3087	}
3088	return;
3089drop:
3090	m_freem(m);
3091}
3092
3093/*
3094 * Parse TCP options and place in tcpopt.
3095 */
3096static void
3097tcp_dooptions(struct tcpopt *to, u_char *cp, int cnt, int flags)
3098{
3099	int opt, optlen;
3100
3101	to->to_flags = 0;
3102	for (; cnt > 0; cnt -= optlen, cp += optlen) {
3103		opt = cp[0];
3104		if (opt == TCPOPT_EOL)
3105			break;
3106		if (opt == TCPOPT_NOP)
3107			optlen = 1;
3108		else {
3109			if (cnt < 2)
3110				break;
3111			optlen = cp[1];
3112			if (optlen < 2 || optlen > cnt)
3113				break;
3114		}
3115		switch (opt) {
3116		case TCPOPT_MAXSEG:
3117			if (optlen != TCPOLEN_MAXSEG)
3118				continue;
3119			if (!(flags & TO_SYN))
3120				continue;
3121			to->to_flags |= TOF_MSS;
3122			bcopy((char *)cp + 2,
3123			    (char *)&to->to_mss, sizeof(to->to_mss));
3124			to->to_mss = ntohs(to->to_mss);
3125			break;
3126		case TCPOPT_WINDOW:
3127			if (optlen != TCPOLEN_WINDOW)
3128				continue;
3129			if (!(flags & TO_SYN))
3130				continue;
3131			to->to_flags |= TOF_SCALE;
3132			to->to_wscale = min(cp[2], TCP_MAX_WINSHIFT);
3133			break;
3134		case TCPOPT_TIMESTAMP:
3135			if (optlen != TCPOLEN_TIMESTAMP)
3136				continue;
3137			to->to_flags |= TOF_TS;
3138			bcopy((char *)cp + 2,
3139			    (char *)&to->to_tsval, sizeof(to->to_tsval));
3140			to->to_tsval = ntohl(to->to_tsval);
3141			bcopy((char *)cp + 6,
3142			    (char *)&to->to_tsecr, sizeof(to->to_tsecr));
3143			to->to_tsecr = ntohl(to->to_tsecr);
3144			break;
3145#ifdef TCP_SIGNATURE
3146		/*
3147		 * XXX In order to reply to a host which has set the
3148		 * TCP_SIGNATURE option in its initial SYN, we have to
3149		 * record the fact that the option was observed here
3150		 * for the syncache code to perform the correct response.
3151		 */
3152		case TCPOPT_SIGNATURE:
3153			if (optlen != TCPOLEN_SIGNATURE)
3154				continue;
3155			to->to_flags |= TOF_SIGNATURE;
3156			to->to_signature = cp + 2;
3157			break;
3158#endif
3159		case TCPOPT_SACK_PERMITTED:
3160			if (optlen != TCPOLEN_SACK_PERMITTED)
3161				continue;
3162			if (!(flags & TO_SYN))
3163				continue;
3164			if (!V_tcp_do_sack)
3165				continue;
3166			to->to_flags |= TOF_SACKPERM;
3167			break;
3168		case TCPOPT_SACK:
3169			if (optlen <= 2 || (optlen - 2) % TCPOLEN_SACK != 0)
3170				continue;
3171			if (flags & TO_SYN)
3172				continue;
3173			to->to_flags |= TOF_SACK;
3174			to->to_nsacks = (optlen - 2) / TCPOLEN_SACK;
3175			to->to_sacks = cp + 2;
3176			TCPSTAT_INC(tcps_sack_rcv_blocks);
3177			break;
3178		default:
3179			continue;
3180		}
3181	}
3182}
3183
3184/*
3185 * Pull out of band byte out of a segment so
3186 * it doesn't appear in the user's data queue.
3187 * It is still reflected in the segment length for
3188 * sequencing purposes.
3189 */
3190static void
3191tcp_pulloutofband(struct socket *so, struct tcphdr *th, struct mbuf *m,
3192    int off)
3193{
3194	int cnt = off + th->th_urp - 1;
3195
3196	while (cnt >= 0) {
3197		if (m->m_len > cnt) {
3198			char *cp = mtod(m, caddr_t) + cnt;
3199			struct tcpcb *tp = sototcpcb(so);
3200
3201			INP_WLOCK_ASSERT(tp->t_inpcb);
3202
3203			tp->t_iobc = *cp;
3204			tp->t_oobflags |= TCPOOB_HAVEDATA;
3205			bcopy(cp+1, cp, (unsigned)(m->m_len - cnt - 1));
3206			m->m_len--;
3207			if (m->m_flags & M_PKTHDR)
3208				m->m_pkthdr.len--;
3209			return;
3210		}
3211		cnt -= m->m_len;
3212		m = m->m_next;
3213		if (m == NULL)
3214			break;
3215	}
3216	panic("tcp_pulloutofband");
3217}
3218
3219/*
3220 * Collect new round-trip time estimate
3221 * and update averages and current timeout.
3222 */
3223static void
3224tcp_xmit_timer(struct tcpcb *tp, int rtt)
3225{
3226	int delta;
3227
3228	INP_WLOCK_ASSERT(tp->t_inpcb);
3229
3230	TCPSTAT_INC(tcps_rttupdated);
3231	tp->t_rttupdated++;
3232	if (tp->t_srtt != 0) {
3233		/*
3234		 * srtt is stored as fixed point with 5 bits after the
3235		 * binary point (i.e., scaled by 8).  The following magic
3236		 * is equivalent to the smoothing algorithm in rfc793 with
3237		 * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed
3238		 * point).  Adjust rtt to origin 0.
3239		 */
3240		delta = ((rtt - 1) << TCP_DELTA_SHIFT)
3241			- (tp->t_srtt >> (TCP_RTT_SHIFT - TCP_DELTA_SHIFT));
3242
3243		if ((tp->t_srtt += delta) <= 0)
3244			tp->t_srtt = 1;
3245
3246		/*
3247		 * We accumulate a smoothed rtt variance (actually, a
3248		 * smoothed mean difference), then set the retransmit
3249		 * timer to smoothed rtt + 4 times the smoothed variance.
3250		 * rttvar is stored as fixed point with 4 bits after the
3251		 * binary point (scaled by 16).  The following is
3252		 * equivalent to rfc793 smoothing with an alpha of .75
3253		 * (rttvar = rttvar*3/4 + |delta| / 4).  This replaces
3254		 * rfc793's wired-in beta.
3255		 */
3256		if (delta < 0)
3257			delta = -delta;
3258		delta -= tp->t_rttvar >> (TCP_RTTVAR_SHIFT - TCP_DELTA_SHIFT);
3259		if ((tp->t_rttvar += delta) <= 0)
3260			tp->t_rttvar = 1;
3261		if (tp->t_rttbest > tp->t_srtt + tp->t_rttvar)
3262		    tp->t_rttbest = tp->t_srtt + tp->t_rttvar;
3263	} else {
3264		/*
3265		 * No rtt measurement yet - use the unsmoothed rtt.
3266		 * Set the variance to half the rtt (so our first
3267		 * retransmit happens at 3*rtt).
3268		 */
3269		tp->t_srtt = rtt << TCP_RTT_SHIFT;
3270		tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT - 1);
3271		tp->t_rttbest = tp->t_srtt + tp->t_rttvar;
3272	}
3273	tp->t_rtttime = 0;
3274	tp->t_rxtshift = 0;
3275
3276	/*
3277	 * the retransmit should happen at rtt + 4 * rttvar.
3278	 * Because of the way we do the smoothing, srtt and rttvar
3279	 * will each average +1/2 tick of bias.  When we compute
3280	 * the retransmit timer, we want 1/2 tick of rounding and
3281	 * 1 extra tick because of +-1/2 tick uncertainty in the
3282	 * firing of the timer.  The bias will give us exactly the
3283	 * 1.5 tick we need.  But, because the bias is
3284	 * statistical, we have to test that we don't drop below
3285	 * the minimum feasible timer (which is 2 ticks).
3286	 */
3287	TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
3288		      max(tp->t_rttmin, rtt + 2), TCPTV_REXMTMAX);
3289
3290	/*
3291	 * We received an ack for a packet that wasn't retransmitted;
3292	 * it is probably safe to discard any error indications we've
3293	 * received recently.  This isn't quite right, but close enough
3294	 * for now (a route might have failed after we sent a segment,
3295	 * and the return path might not be symmetrical).
3296	 */
3297	tp->t_softerror = 0;
3298}
3299
3300/*
3301 * Determine a reasonable value for maxseg size.
3302 * If the route is known, check route for mtu.
3303 * If none, use an mss that can be handled on the outgoing
3304 * interface without forcing IP to fragment; if bigger than
3305 * an mbuf cluster (MCLBYTES), round down to nearest multiple of MCLBYTES
3306 * to utilize large mbufs.  If no route is found, route has no mtu,
3307 * or the destination isn't local, use a default, hopefully conservative
3308 * size (usually 512 or the default IP max size, but no more than the mtu
3309 * of the interface), as we can't discover anything about intervening
3310 * gateways or networks.  We also initialize the congestion/slow start
3311 * window to be a single segment if the destination isn't local.
3312 * While looking at the routing entry, we also initialize other path-dependent
3313 * parameters from pre-set or cached values in the routing entry.
3314 *
3315 * Also take into account the space needed for options that we
3316 * send regularly.  Make maxseg shorter by that amount to assure
3317 * that we can send maxseg amount of data even when the options
3318 * are present.  Store the upper limit of the length of options plus
3319 * data in maxopd.
3320 *
3321 * In case of T/TCP, we call this routine during implicit connection
3322 * setup as well (offer = -1), to initialize maxseg from the cached
3323 * MSS of our peer.
3324 *
3325 * NOTE that this routine is only called when we process an incoming
3326 * segment. Outgoing SYN/ACK MSS settings are handled in tcp_mssopt().
3327 */
3328void
3329tcp_mss_update(struct tcpcb *tp, int offer,
3330    struct hc_metrics_lite *metricptr, int *mtuflags)
3331{
3332	int mss = 0;
3333	u_long maxmtu = 0;
3334	struct inpcb *inp = tp->t_inpcb;
3335	struct hc_metrics_lite metrics;
3336	int origoffer = offer;
3337#ifdef INET6
3338	int isipv6 = ((inp->inp_vflag & INP_IPV6) != 0) ? 1 : 0;
3339	size_t min_protoh = isipv6 ?
3340			    sizeof (struct ip6_hdr) + sizeof (struct tcphdr) :
3341			    sizeof (struct tcpiphdr);
3342#else
3343	const size_t min_protoh = sizeof(struct tcpiphdr);
3344#endif
3345
3346	INP_WLOCK_ASSERT(tp->t_inpcb);
3347
3348	/* Initialize. */
3349#ifdef INET6
3350	if (isipv6) {
3351		maxmtu = tcp_maxmtu6(&inp->inp_inc, mtuflags);
3352		tp->t_maxopd = tp->t_maxseg = V_tcp_v6mssdflt;
3353	}
3354#endif
3355#if defined(INET) && defined(INET6)
3356	else
3357#endif
3358#ifdef INET
3359	{
3360		maxmtu = tcp_maxmtu(&inp->inp_inc, mtuflags);
3361		tp->t_maxopd = tp->t_maxseg = V_tcp_mssdflt;
3362	}
3363#endif
3364
3365	/*
3366	 * No route to sender, stay with default mss and return.
3367	 */
3368	if (maxmtu == 0) {
3369		/*
3370		 * In case we return early we need to initialize metrics
3371		 * to a defined state as tcp_hc_get() would do for us
3372		 * if there was no cache hit.
3373		 */
3374		if (metricptr != NULL)
3375			bzero(metricptr, sizeof(struct hc_metrics_lite));
3376		return;
3377	}
3378
3379	/* What have we got? */
3380	switch (offer) {
3381		case 0:
3382			/*
3383			 * Offer == 0 means that there was no MSS on the SYN
3384			 * segment, in this case we use tcp_mssdflt as
3385			 * already assigned to t_maxopd above.
3386			 */
3387			offer = tp->t_maxopd;
3388			break;
3389
3390		case -1:
3391			/*
3392			 * Offer == -1 means that we didn't receive SYN yet.
3393			 */
3394			/* FALLTHROUGH */
3395
3396		default:
3397			/*
3398			 * Prevent DoS attack with too small MSS. Round up
3399			 * to at least minmss.
3400			 */
3401			offer = max(offer, V_tcp_minmss);
3402	}
3403
3404	/*
3405	 * rmx information is now retrieved from tcp_hostcache.
3406	 */
3407	tcp_hc_get(&inp->inp_inc, &metrics);
3408	if (metricptr != NULL)
3409		bcopy(&metrics, metricptr, sizeof(struct hc_metrics_lite));
3410
3411	/*
3412	 * If there's a discovered mtu int tcp hostcache, use it
3413	 * else, use the link mtu.
3414	 */
3415	if (metrics.rmx_mtu)
3416		mss = min(metrics.rmx_mtu, maxmtu) - min_protoh;
3417	else {
3418#ifdef INET6
3419		if (isipv6) {
3420			mss = maxmtu - min_protoh;
3421			if (!V_path_mtu_discovery &&
3422			    !in6_localaddr(&inp->in6p_faddr))
3423				mss = min(mss, V_tcp_v6mssdflt);
3424		}
3425#endif
3426#if defined(INET) && defined(INET6)
3427		else
3428#endif
3429#ifdef INET
3430		{
3431			mss = maxmtu - min_protoh;
3432			if (!V_path_mtu_discovery &&
3433			    !in_localaddr(inp->inp_faddr))
3434				mss = min(mss, V_tcp_mssdflt);
3435		}
3436#endif
3437		/*
3438		 * XXX - The above conditional (mss = maxmtu - min_protoh)
3439		 * probably violates the TCP spec.
3440		 * The problem is that, since we don't know the
3441		 * other end's MSS, we are supposed to use a conservative
3442		 * default.  But, if we do that, then MTU discovery will
3443		 * never actually take place, because the conservative
3444		 * default is much less than the MTUs typically seen
3445		 * on the Internet today.  For the moment, we'll sweep
3446		 * this under the carpet.
3447		 *
3448		 * The conservative default might not actually be a problem
3449		 * if the only case this occurs is when sending an initial
3450		 * SYN with options and data to a host we've never talked
3451		 * to before.  Then, they will reply with an MSS value which
3452		 * will get recorded and the new parameters should get
3453		 * recomputed.  For Further Study.
3454		 */
3455	}
3456	mss = min(mss, offer);
3457
3458	/*
3459	 * Sanity check: make sure that maxopd will be large
3460	 * enough to allow some data on segments even if the
3461	 * all the option space is used (40bytes).  Otherwise
3462	 * funny things may happen in tcp_output.
3463	 */
3464	mss = max(mss, 64);
3465
3466	/*
3467	 * maxopd stores the maximum length of data AND options
3468	 * in a segment; maxseg is the amount of data in a normal
3469	 * segment.  We need to store this value (maxopd) apart
3470	 * from maxseg, because now every segment carries options
3471	 * and thus we normally have somewhat less data in segments.
3472	 */
3473	tp->t_maxopd = mss;
3474
3475	/*
3476	 * origoffer==-1 indicates that no segments were received yet.
3477	 * In this case we just guess.
3478	 */
3479	if ((tp->t_flags & (TF_REQ_TSTMP|TF_NOOPT)) == TF_REQ_TSTMP &&
3480	    (origoffer == -1 ||
3481	     (tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP))
3482		mss -= TCPOLEN_TSTAMP_APPA;
3483
3484#if	(MCLBYTES & (MCLBYTES - 1)) == 0
3485	if (mss > MCLBYTES)
3486		mss &= ~(MCLBYTES-1);
3487#else
3488	if (mss > MCLBYTES)
3489		mss = mss / MCLBYTES * MCLBYTES;
3490#endif
3491	tp->t_maxseg = mss;
3492}
3493
3494void
3495tcp_mss(struct tcpcb *tp, int offer)
3496{
3497	int mss;
3498	u_long bufsize;
3499	struct inpcb *inp;
3500	struct socket *so;
3501	struct hc_metrics_lite metrics;
3502	int mtuflags = 0;
3503
3504	KASSERT(tp != NULL, ("%s: tp == NULL", __func__));
3505
3506	tcp_mss_update(tp, offer, &metrics, &mtuflags);
3507
3508	mss = tp->t_maxseg;
3509	inp = tp->t_inpcb;
3510
3511	/*
3512	 * If there's a pipesize, change the socket buffer to that size,
3513	 * don't change if sb_hiwat is different than default (then it
3514	 * has been changed on purpose with setsockopt).
3515	 * Make the socket buffers an integral number of mss units;
3516	 * if the mss is larger than the socket buffer, decrease the mss.
3517	 */
3518	so = inp->inp_socket;
3519	SOCKBUF_LOCK(&so->so_snd);
3520	if ((so->so_snd.sb_hiwat == tcp_sendspace) && metrics.rmx_sendpipe)
3521		bufsize = metrics.rmx_sendpipe;
3522	else
3523		bufsize = so->so_snd.sb_hiwat;
3524	if (bufsize < mss)
3525		mss = bufsize;
3526	else {
3527		bufsize = roundup(bufsize, mss);
3528		if (bufsize > sb_max)
3529			bufsize = sb_max;
3530		if (bufsize > so->so_snd.sb_hiwat)
3531			(void)sbreserve_locked(&so->so_snd, bufsize, so, NULL);
3532	}
3533	SOCKBUF_UNLOCK(&so->so_snd);
3534	tp->t_maxseg = mss;
3535
3536	SOCKBUF_LOCK(&so->so_rcv);
3537	if ((so->so_rcv.sb_hiwat == tcp_recvspace) && metrics.rmx_recvpipe)
3538		bufsize = metrics.rmx_recvpipe;
3539	else
3540		bufsize = so->so_rcv.sb_hiwat;
3541	if (bufsize > mss) {
3542		bufsize = roundup(bufsize, mss);
3543		if (bufsize > sb_max)
3544			bufsize = sb_max;
3545		if (bufsize > so->so_rcv.sb_hiwat)
3546			(void)sbreserve_locked(&so->so_rcv, bufsize, so, NULL);
3547	}
3548	SOCKBUF_UNLOCK(&so->so_rcv);
3549
3550	/* Check the interface for TSO capabilities. */
3551	if (mtuflags & CSUM_TSO)
3552		tp->t_flags |= TF_TSO;
3553}
3554
3555/*
3556 * Determine the MSS option to send on an outgoing SYN.
3557 */
3558int
3559tcp_mssopt(struct in_conninfo *inc)
3560{
3561	int mss = 0;
3562	u_long maxmtu = 0;
3563	u_long thcmtu = 0;
3564	size_t min_protoh;
3565
3566	KASSERT(inc != NULL, ("tcp_mssopt with NULL in_conninfo pointer"));
3567
3568#ifdef INET6
3569	if (inc->inc_flags & INC_ISIPV6) {
3570		mss = V_tcp_v6mssdflt;
3571		maxmtu = tcp_maxmtu6(inc, NULL);
3572		thcmtu = tcp_hc_getmtu(inc); /* IPv4 and IPv6 */
3573		min_protoh = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
3574	}
3575#endif
3576#if defined(INET) && defined(INET6)
3577	else
3578#endif
3579#ifdef INET
3580	{
3581		mss = V_tcp_mssdflt;
3582		maxmtu = tcp_maxmtu(inc, NULL);
3583		thcmtu = tcp_hc_getmtu(inc); /* IPv4 and IPv6 */
3584		min_protoh = sizeof(struct tcpiphdr);
3585	}
3586#endif
3587	if (maxmtu && thcmtu)
3588		mss = min(maxmtu, thcmtu) - min_protoh;
3589	else if (maxmtu || thcmtu)
3590		mss = max(maxmtu, thcmtu) - min_protoh;
3591
3592	return (mss);
3593}
3594
3595
3596/*
3597 * On a partial ack arrives, force the retransmission of the
3598 * next unacknowledged segment.  Do not clear tp->t_dupacks.
3599 * By setting snd_nxt to ti_ack, this forces retransmission timer to
3600 * be started again.
3601 */
3602static void
3603tcp_newreno_partial_ack(struct tcpcb *tp, struct tcphdr *th)
3604{
3605	tcp_seq onxt = tp->snd_nxt;
3606	u_long  ocwnd = tp->snd_cwnd;
3607
3608	INP_WLOCK_ASSERT(tp->t_inpcb);
3609
3610	tcp_timer_activate(tp, TT_REXMT, 0);
3611	tp->t_rtttime = 0;
3612	tp->snd_nxt = th->th_ack;
3613	/*
3614	 * Set snd_cwnd to one segment beyond acknowledged offset.
3615	 * (tp->snd_una has not yet been updated when this function is called.)
3616	 */
3617	tp->snd_cwnd = tp->t_maxseg + BYTES_THIS_ACK(tp, th);
3618	tp->t_flags |= TF_ACKNOW;
3619	(void) tcp_output(tp);
3620	tp->snd_cwnd = ocwnd;
3621	if (SEQ_GT(onxt, tp->snd_nxt))
3622		tp->snd_nxt = onxt;
3623	/*
3624	 * Partial window deflation.  Relies on fact that tp->snd_una
3625	 * not updated yet.
3626	 */
3627	if (tp->snd_cwnd > BYTES_THIS_ACK(tp, th))
3628		tp->snd_cwnd -= BYTES_THIS_ACK(tp, th);
3629	else
3630		tp->snd_cwnd = 0;
3631	tp->snd_cwnd += tp->t_maxseg;
3632}
3633