tcp_input.c revision 216103
1/*-
2 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
3 *	The Regents of the University of California.  All rights reserved.
4 * Copyright (c) 2007-2008,2010
5 *	Swinburne University of Technology, Melbourne, Australia.
6 * Copyright (c) 2009-2010 Lawrence Stewart <lstewart@freebsd.org>
7 * Copyright (c) 2010 The FreeBSD Foundation
8 * All rights reserved.
9 *
10 * Portions of this software were developed at the Centre for Advanced Internet
11 * Architectures, Swinburne University, by Lawrence Stewart, James Healy and
12 * David Hayes, made possible in part by a grant from the Cisco University
13 * Research Program Fund at Community Foundation Silicon Valley.
14 *
15 * Portions of this software were developed at the Centre for Advanced
16 * Internet Architectures, Swinburne University of Technology, Melbourne,
17 * Australia by David Hayes under sponsorship from the FreeBSD Foundation.
18 *
19 * Redistribution and use in source and binary forms, with or without
20 * modification, are permitted provided that the following conditions
21 * are met:
22 * 1. Redistributions of source code must retain the above copyright
23 *    notice, this list of conditions and the following disclaimer.
24 * 2. Redistributions in binary form must reproduce the above copyright
25 *    notice, this list of conditions and the following disclaimer in the
26 *    documentation and/or other materials provided with the distribution.
27 * 4. Neither the name of the University nor the names of its contributors
28 *    may be used to endorse or promote products derived from this software
29 *    without specific prior written permission.
30 *
31 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
32 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
33 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
34 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
35 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
39 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
40 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
41 * SUCH DAMAGE.
42 *
43 *	@(#)tcp_input.c	8.12 (Berkeley) 5/24/95
44 */
45
46#include <sys/cdefs.h>
47__FBSDID("$FreeBSD: head/sys/netinet/tcp_input.c 216103 2010-12-02 01:01:37Z lstewart $");
48
49#include "opt_ipfw.h"		/* for ipfw_fwd	*/
50#include "opt_inet.h"
51#include "opt_inet6.h"
52#include "opt_ipsec.h"
53#include "opt_tcpdebug.h"
54
55#include <sys/param.h>
56#include <sys/kernel.h>
57#include <sys/malloc.h>
58#include <sys/mbuf.h>
59#include <sys/proc.h>		/* for proc0 declaration */
60#include <sys/protosw.h>
61#include <sys/signalvar.h>
62#include <sys/socket.h>
63#include <sys/socketvar.h>
64#include <sys/sysctl.h>
65#include <sys/syslog.h>
66#include <sys/systm.h>
67
68#include <machine/cpu.h>	/* before tcp_seq.h, for tcp_random18() */
69
70#include <vm/uma.h>
71
72#include <net/if.h>
73#include <net/route.h>
74#include <net/vnet.h>
75
76#define TCPSTATES		/* for logging */
77
78#include <netinet/cc.h>
79#include <netinet/in.h>
80#include <netinet/in_pcb.h>
81#include <netinet/in_systm.h>
82#include <netinet/in_var.h>
83#include <netinet/ip.h>
84#include <netinet/ip_icmp.h>	/* required for icmp_var.h */
85#include <netinet/icmp_var.h>	/* for ICMP_BANDLIM */
86#include <netinet/ip_var.h>
87#include <netinet/ip_options.h>
88#include <netinet/ip6.h>
89#include <netinet/icmp6.h>
90#include <netinet6/in6_pcb.h>
91#include <netinet6/ip6_var.h>
92#include <netinet6/nd6.h>
93#include <netinet/tcp_fsm.h>
94#include <netinet/tcp_seq.h>
95#include <netinet/tcp_timer.h>
96#include <netinet/tcp_var.h>
97#include <netinet6/tcp6_var.h>
98#include <netinet/tcpip.h>
99#include <netinet/tcp_syncache.h>
100#ifdef TCPDEBUG
101#include <netinet/tcp_debug.h>
102#endif /* TCPDEBUG */
103
104#ifdef IPSEC
105#include <netipsec/ipsec.h>
106#include <netipsec/ipsec6.h>
107#endif /*IPSEC*/
108
109#include <machine/in_cksum.h>
110
111#include <security/mac/mac_framework.h>
112
113const int tcprexmtthresh = 3;
114
115VNET_DEFINE(struct tcpstat, tcpstat);
116SYSCTL_VNET_STRUCT(_net_inet_tcp, TCPCTL_STATS, stats, CTLFLAG_RW,
117    &VNET_NAME(tcpstat), tcpstat,
118    "TCP statistics (struct tcpstat, netinet/tcp_var.h)");
119
120int tcp_log_in_vain = 0;
121SYSCTL_INT(_net_inet_tcp, OID_AUTO, log_in_vain, CTLFLAG_RW,
122    &tcp_log_in_vain, 0,
123    "Log all incoming TCP segments to closed ports");
124
125VNET_DEFINE(int, blackhole) = 0;
126#define	V_blackhole		VNET(blackhole)
127SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, blackhole, CTLFLAG_RW,
128    &VNET_NAME(blackhole), 0,
129    "Do not send RST on segments to closed ports");
130
131VNET_DEFINE(int, tcp_delack_enabled) = 1;
132SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, delayed_ack, CTLFLAG_RW,
133    &VNET_NAME(tcp_delack_enabled), 0,
134    "Delay ACK to try and piggyback it onto a data packet");
135
136VNET_DEFINE(int, drop_synfin) = 0;
137#define	V_drop_synfin		VNET(drop_synfin)
138SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, drop_synfin, CTLFLAG_RW,
139    &VNET_NAME(drop_synfin), 0,
140    "Drop TCP packets with SYN+FIN set");
141
142VNET_DEFINE(int, tcp_do_rfc3042) = 1;
143#define	V_tcp_do_rfc3042	VNET(tcp_do_rfc3042)
144SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, rfc3042, CTLFLAG_RW,
145    &VNET_NAME(tcp_do_rfc3042), 0,
146    "Enable RFC 3042 (Limited Transmit)");
147
148VNET_DEFINE(int, tcp_do_rfc3390) = 1;
149SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, rfc3390, CTLFLAG_RW,
150    &VNET_NAME(tcp_do_rfc3390), 0,
151    "Enable RFC 3390 (Increasing TCP's Initial Congestion Window)");
152
153VNET_DEFINE(int, tcp_do_rfc3465) = 1;
154SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, rfc3465, CTLFLAG_RW,
155    &VNET_NAME(tcp_do_rfc3465), 0,
156    "Enable RFC 3465 (Appropriate Byte Counting)");
157
158VNET_DEFINE(int, tcp_abc_l_var) = 2;
159SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, abc_l_var, CTLFLAG_RW,
160    &VNET_NAME(tcp_abc_l_var), 2,
161    "Cap the max cwnd increment during slow-start to this number of segments");
162
163SYSCTL_NODE(_net_inet_tcp, OID_AUTO, ecn, CTLFLAG_RW, 0, "TCP ECN");
164
165VNET_DEFINE(int, tcp_do_ecn) = 0;
166SYSCTL_VNET_INT(_net_inet_tcp_ecn, OID_AUTO, enable, CTLFLAG_RW,
167    &VNET_NAME(tcp_do_ecn), 0,
168    "TCP ECN support");
169
170VNET_DEFINE(int, tcp_ecn_maxretries) = 1;
171SYSCTL_VNET_INT(_net_inet_tcp_ecn, OID_AUTO, maxretries, CTLFLAG_RW,
172    &VNET_NAME(tcp_ecn_maxretries), 0,
173    "Max retries before giving up on ECN");
174
175VNET_DEFINE(int, tcp_insecure_rst) = 0;
176#define	V_tcp_insecure_rst	VNET(tcp_insecure_rst)
177SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, insecure_rst, CTLFLAG_RW,
178    &VNET_NAME(tcp_insecure_rst), 0,
179    "Follow the old (insecure) criteria for accepting RST packets");
180
181VNET_DEFINE(int, tcp_do_autorcvbuf) = 1;
182#define	V_tcp_do_autorcvbuf	VNET(tcp_do_autorcvbuf)
183SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, recvbuf_auto, CTLFLAG_RW,
184    &VNET_NAME(tcp_do_autorcvbuf), 0,
185    "Enable automatic receive buffer sizing");
186
187VNET_DEFINE(int, tcp_autorcvbuf_inc) = 16*1024;
188#define	V_tcp_autorcvbuf_inc	VNET(tcp_autorcvbuf_inc)
189SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, recvbuf_inc, CTLFLAG_RW,
190    &VNET_NAME(tcp_autorcvbuf_inc), 0,
191    "Incrementor step size of automatic receive buffer");
192
193VNET_DEFINE(int, tcp_autorcvbuf_max) = 256*1024;
194#define	V_tcp_autorcvbuf_max	VNET(tcp_autorcvbuf_max)
195SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, recvbuf_max, CTLFLAG_RW,
196    &VNET_NAME(tcp_autorcvbuf_max), 0,
197    "Max size of automatic receive buffer");
198
199int	tcp_read_locking = 1;
200SYSCTL_INT(_net_inet_tcp, OID_AUTO, read_locking, CTLFLAG_RW,
201    &tcp_read_locking, 0, "Enable read locking strategy");
202
203VNET_DEFINE(struct inpcbhead, tcb);
204#define	tcb6	tcb  /* for KAME src sync over BSD*'s */
205VNET_DEFINE(struct inpcbinfo, tcbinfo);
206
207static void	 tcp_dooptions(struct tcpopt *, u_char *, int, int);
208static void	 tcp_do_segment(struct mbuf *, struct tcphdr *,
209		     struct socket *, struct tcpcb *, int, int, uint8_t,
210		     int);
211static void	 tcp_dropwithreset(struct mbuf *, struct tcphdr *,
212		     struct tcpcb *, int, int);
213static void	 tcp_pulloutofband(struct socket *,
214		     struct tcphdr *, struct mbuf *, int);
215static void	 tcp_xmit_timer(struct tcpcb *, int);
216static void	 tcp_newreno_partial_ack(struct tcpcb *, struct tcphdr *);
217static void inline	cc_ack_received(struct tcpcb *tp, struct tcphdr *th,
218			    uint16_t type);
219static void inline	cc_conn_init(struct tcpcb *tp);
220static void inline	cc_post_recovery(struct tcpcb *tp, struct tcphdr *th);
221
222/*
223 * Kernel module interface for updating tcpstat.  The argument is an index
224 * into tcpstat treated as an array of u_long.  While this encodes the
225 * general layout of tcpstat into the caller, it doesn't encode its location,
226 * so that future changes to add, for example, per-CPU stats support won't
227 * cause binary compatibility problems for kernel modules.
228 */
229void
230kmod_tcpstat_inc(int statnum)
231{
232
233	(*((u_long *)&V_tcpstat + statnum))++;
234}
235
236/*
237 * CC wrapper hook functions
238 */
239static void inline
240cc_ack_received(struct tcpcb *tp, struct tcphdr *th, uint16_t type)
241{
242	INP_WLOCK_ASSERT(tp->t_inpcb);
243
244	tp->ccv->bytes_this_ack = BYTES_THIS_ACK(tp, th);
245	if (tp->snd_cwnd == min(tp->snd_cwnd, tp->snd_wnd))
246		tp->ccv->flags |= CCF_CWND_LIMITED;
247	else
248		tp->ccv->flags &= ~CCF_CWND_LIMITED;
249
250	if (type == CC_ACK) {
251		if (tp->snd_cwnd > tp->snd_ssthresh) {
252			tp->t_bytes_acked += min(tp->ccv->bytes_this_ack,
253			     V_tcp_abc_l_var * tp->t_maxseg);
254			if (tp->t_bytes_acked >= tp->snd_cwnd) {
255				tp->t_bytes_acked -= tp->snd_cwnd;
256				tp->ccv->flags |= CCF_ABC_SENTAWND;
257			}
258		} else {
259				tp->ccv->flags &= ~CCF_ABC_SENTAWND;
260				tp->t_bytes_acked = 0;
261		}
262	}
263
264	if (CC_ALGO(tp)->ack_received != NULL) {
265		/* XXXLAS: Find a way to live without this */
266		tp->ccv->curack = th->th_ack;
267		CC_ALGO(tp)->ack_received(tp->ccv, type);
268	}
269}
270
271static void inline
272cc_conn_init(struct tcpcb *tp)
273{
274	struct hc_metrics_lite metrics;
275	struct inpcb *inp = tp->t_inpcb;
276	int rtt;
277#ifdef INET6
278	int isipv6 = ((inp->inp_vflag & INP_IPV6) != 0) ? 1 : 0;
279#endif
280
281	INP_WLOCK_ASSERT(tp->t_inpcb);
282
283	tcp_hc_get(&inp->inp_inc, &metrics);
284
285	if (tp->t_srtt == 0 && (rtt = metrics.rmx_rtt)) {
286		tp->t_srtt = rtt;
287		tp->t_rttbest = tp->t_srtt + TCP_RTT_SCALE;
288		TCPSTAT_INC(tcps_usedrtt);
289		if (metrics.rmx_rttvar) {
290			tp->t_rttvar = metrics.rmx_rttvar;
291			TCPSTAT_INC(tcps_usedrttvar);
292		} else {
293			/* default variation is +- 1 rtt */
294			tp->t_rttvar =
295			    tp->t_srtt * TCP_RTTVAR_SCALE / TCP_RTT_SCALE;
296		}
297		TCPT_RANGESET(tp->t_rxtcur,
298		    ((tp->t_srtt >> 2) + tp->t_rttvar) >> 1,
299		    tp->t_rttmin, TCPTV_REXMTMAX);
300	}
301	if (metrics.rmx_ssthresh) {
302		/*
303		 * There's some sort of gateway or interface
304		 * buffer limit on the path.  Use this to set
305		 * the slow start threshhold, but set the
306		 * threshold to no less than 2*mss.
307		 */
308		tp->snd_ssthresh = max(2 * tp->t_maxseg, metrics.rmx_ssthresh);
309		TCPSTAT_INC(tcps_usedssthresh);
310	}
311
312	/*
313	 * Set the slow-start flight size depending on whether this
314	 * is a local network or not.
315	 *
316	 * Extend this so we cache the cwnd too and retrieve it here.
317	 * Make cwnd even bigger than RFC3390 suggests but only if we
318	 * have previous experience with the remote host. Be careful
319	 * not make cwnd bigger than remote receive window or our own
320	 * send socket buffer. Maybe put some additional upper bound
321	 * on the retrieved cwnd. Should do incremental updates to
322	 * hostcache when cwnd collapses so next connection doesn't
323	 * overloads the path again.
324	 *
325	 * XXXAO: Initializing the CWND from the hostcache is broken
326	 * and in its current form not RFC conformant.  It is disabled
327	 * until fixed or removed entirely.
328	 *
329	 * RFC3390 says only do this if SYN or SYN/ACK didn't got lost.
330	 * We currently check only in syncache_socket for that.
331	 */
332/* #define TCP_METRICS_CWND */
333#ifdef TCP_METRICS_CWND
334	if (metrics.rmx_cwnd)
335		tp->snd_cwnd = max(tp->t_maxseg, min(metrics.rmx_cwnd / 2,
336		    min(tp->snd_wnd, so->so_snd.sb_hiwat)));
337	else
338#endif
339	if (V_tcp_do_rfc3390)
340		tp->snd_cwnd = min(4 * tp->t_maxseg,
341		    max(2 * tp->t_maxseg, 4380));
342#ifdef INET6
343	else if ((isipv6 && in6_localaddr(&inp->in6p_faddr)) ||
344		 (!isipv6 && in_localaddr(inp->inp_faddr)))
345#else
346	else if (in_localaddr(inp->inp_faddr))
347#endif
348		tp->snd_cwnd = tp->t_maxseg * V_ss_fltsz_local;
349	else
350		tp->snd_cwnd = tp->t_maxseg * V_ss_fltsz;
351
352	if (CC_ALGO(tp)->conn_init != NULL)
353		CC_ALGO(tp)->conn_init(tp->ccv);
354}
355
356void inline
357cc_cong_signal(struct tcpcb *tp, struct tcphdr *th, uint32_t type)
358{
359	INP_WLOCK_ASSERT(tp->t_inpcb);
360
361	switch(type) {
362	case CC_NDUPACK:
363		if (!IN_FASTRECOVERY(tp->t_flags)) {
364			tp->snd_recover = tp->snd_max;
365			if (tp->t_flags & TF_ECN_PERMIT)
366				tp->t_flags |= TF_ECN_SND_CWR;
367		}
368		break;
369	case CC_ECN:
370		if (!IN_CONGRECOVERY(tp->t_flags)) {
371			TCPSTAT_INC(tcps_ecn_rcwnd);
372			tp->snd_recover = tp->snd_max;
373			if (tp->t_flags & TF_ECN_PERMIT)
374				tp->t_flags |= TF_ECN_SND_CWR;
375		}
376		break;
377	case CC_RTO:
378		tp->t_dupacks = 0;
379		tp->t_bytes_acked = 0;
380		EXIT_RECOVERY(tp->t_flags);
381		tp->snd_ssthresh = max(2, min(tp->snd_wnd, tp->snd_cwnd) / 2 /
382		    tp->t_maxseg) * tp->t_maxseg;
383		tp->snd_cwnd = tp->t_maxseg;
384		break;
385	case CC_RTO_ERR:
386		TCPSTAT_INC(tcps_sndrexmitbad);
387		/* RTO was unnecessary, so reset everything. */
388		tp->snd_cwnd = tp->snd_cwnd_prev;
389		tp->snd_ssthresh = tp->snd_ssthresh_prev;
390		tp->snd_recover = tp->snd_recover_prev;
391		if (tp->t_flags & TF_WASFRECOVERY)
392			ENTER_FASTRECOVERY(tp->t_flags);
393		if (tp->t_flags & TF_WASCRECOVERY)
394			ENTER_CONGRECOVERY(tp->t_flags);
395		tp->snd_nxt = tp->snd_max;
396		tp->t_badrxtwin = 0;
397		break;
398	}
399
400	if (CC_ALGO(tp)->cong_signal != NULL) {
401		if (th != NULL)
402			tp->ccv->curack = th->th_ack;
403		CC_ALGO(tp)->cong_signal(tp->ccv, type);
404	}
405}
406
407static void inline
408cc_post_recovery(struct tcpcb *tp, struct tcphdr *th)
409{
410	INP_WLOCK_ASSERT(tp->t_inpcb);
411
412	/* XXXLAS: KASSERT that we're in recovery? */
413
414	if (CC_ALGO(tp)->post_recovery != NULL) {
415		tp->ccv->curack = th->th_ack;
416		CC_ALGO(tp)->post_recovery(tp->ccv);
417	}
418	/* XXXLAS: EXIT_RECOVERY ? */
419	tp->t_bytes_acked = 0;
420}
421
422/* Neighbor Discovery, Neighbor Unreachability Detection Upper layer hint. */
423#ifdef INET6
424#define ND6_HINT(tp) \
425do { \
426	if ((tp) && (tp)->t_inpcb && \
427	    ((tp)->t_inpcb->inp_vflag & INP_IPV6) != 0) \
428		nd6_nud_hint(NULL, NULL, 0); \
429} while (0)
430#else
431#define ND6_HINT(tp)
432#endif
433
434/*
435 * Indicate whether this ack should be delayed.  We can delay the ack if
436 *	- there is no delayed ack timer in progress and
437 *	- our last ack wasn't a 0-sized window.  We never want to delay
438 *	  the ack that opens up a 0-sized window and
439 *		- delayed acks are enabled or
440 *		- this is a half-synchronized T/TCP connection.
441 */
442#define DELAY_ACK(tp)							\
443	((!tcp_timer_active(tp, TT_DELACK) &&				\
444	    (tp->t_flags & TF_RXWIN0SENT) == 0) &&			\
445	    (V_tcp_delack_enabled || (tp->t_flags & TF_NEEDSYN)))
446
447/*
448 * TCP input handling is split into multiple parts:
449 *   tcp6_input is a thin wrapper around tcp_input for the extended
450 *	ip6_protox[] call format in ip6_input
451 *   tcp_input handles primary segment validation, inpcb lookup and
452 *	SYN processing on listen sockets
453 *   tcp_do_segment processes the ACK and text of the segment for
454 *	establishing, established and closing connections
455 */
456#ifdef INET6
457int
458tcp6_input(struct mbuf **mp, int *offp, int proto)
459{
460	struct mbuf *m = *mp;
461	struct in6_ifaddr *ia6;
462
463	IP6_EXTHDR_CHECK(m, *offp, sizeof(struct tcphdr), IPPROTO_DONE);
464
465	/*
466	 * draft-itojun-ipv6-tcp-to-anycast
467	 * better place to put this in?
468	 */
469	ia6 = ip6_getdstifaddr(m);
470	if (ia6 && (ia6->ia6_flags & IN6_IFF_ANYCAST)) {
471		struct ip6_hdr *ip6;
472
473		ifa_free(&ia6->ia_ifa);
474		ip6 = mtod(m, struct ip6_hdr *);
475		icmp6_error(m, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_ADDR,
476			    (caddr_t)&ip6->ip6_dst - (caddr_t)ip6);
477		return IPPROTO_DONE;
478	}
479
480	tcp_input(m, *offp);
481	return IPPROTO_DONE;
482}
483#endif
484
485void
486tcp_input(struct mbuf *m, int off0)
487{
488	struct tcphdr *th;
489	struct ip *ip = NULL;
490	struct ipovly *ipov;
491	struct inpcb *inp = NULL;
492	struct tcpcb *tp = NULL;
493	struct socket *so = NULL;
494	u_char *optp = NULL;
495	int optlen = 0;
496	int len, tlen, off;
497	int drop_hdrlen;
498	int thflags;
499	int rstreason = 0;	/* For badport_bandlim accounting purposes */
500	uint8_t iptos;
501#ifdef IPFIREWALL_FORWARD
502	struct m_tag *fwd_tag;
503#endif
504#ifdef INET6
505	struct ip6_hdr *ip6 = NULL;
506	int isipv6;
507#else
508	const void *ip6 = NULL;
509	const int isipv6 = 0;
510#endif
511	struct tcpopt to;		/* options in this segment */
512	char *s = NULL;			/* address and port logging */
513	int ti_locked;
514#define	TI_UNLOCKED	1
515#define	TI_RLOCKED	2
516#define	TI_WLOCKED	3
517
518#ifdef TCPDEBUG
519	/*
520	 * The size of tcp_saveipgen must be the size of the max ip header,
521	 * now IPv6.
522	 */
523	u_char tcp_saveipgen[IP6_HDR_LEN];
524	struct tcphdr tcp_savetcp;
525	short ostate = 0;
526#endif
527
528#ifdef INET6
529	isipv6 = (mtod(m, struct ip *)->ip_v == 6) ? 1 : 0;
530#endif
531
532	to.to_flags = 0;
533	TCPSTAT_INC(tcps_rcvtotal);
534
535	if (isipv6) {
536#ifdef INET6
537		/* IP6_EXTHDR_CHECK() is already done at tcp6_input(). */
538		ip6 = mtod(m, struct ip6_hdr *);
539		tlen = sizeof(*ip6) + ntohs(ip6->ip6_plen) - off0;
540		if (in6_cksum(m, IPPROTO_TCP, off0, tlen)) {
541			TCPSTAT_INC(tcps_rcvbadsum);
542			goto drop;
543		}
544		th = (struct tcphdr *)((caddr_t)ip6 + off0);
545
546		/*
547		 * Be proactive about unspecified IPv6 address in source.
548		 * As we use all-zero to indicate unbounded/unconnected pcb,
549		 * unspecified IPv6 address can be used to confuse us.
550		 *
551		 * Note that packets with unspecified IPv6 destination is
552		 * already dropped in ip6_input.
553		 */
554		if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) {
555			/* XXX stat */
556			goto drop;
557		}
558#else
559		th = NULL;		/* XXX: Avoid compiler warning. */
560#endif
561	} else {
562		/*
563		 * Get IP and TCP header together in first mbuf.
564		 * Note: IP leaves IP header in first mbuf.
565		 */
566		if (off0 > sizeof (struct ip)) {
567			ip_stripoptions(m, (struct mbuf *)0);
568			off0 = sizeof(struct ip);
569		}
570		if (m->m_len < sizeof (struct tcpiphdr)) {
571			if ((m = m_pullup(m, sizeof (struct tcpiphdr)))
572			    == NULL) {
573				TCPSTAT_INC(tcps_rcvshort);
574				return;
575			}
576		}
577		ip = mtod(m, struct ip *);
578		ipov = (struct ipovly *)ip;
579		th = (struct tcphdr *)((caddr_t)ip + off0);
580		tlen = ip->ip_len;
581
582		if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) {
583			if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR)
584				th->th_sum = m->m_pkthdr.csum_data;
585			else
586				th->th_sum = in_pseudo(ip->ip_src.s_addr,
587						ip->ip_dst.s_addr,
588						htonl(m->m_pkthdr.csum_data +
589							ip->ip_len +
590							IPPROTO_TCP));
591			th->th_sum ^= 0xffff;
592#ifdef TCPDEBUG
593			ipov->ih_len = (u_short)tlen;
594			ipov->ih_len = htons(ipov->ih_len);
595#endif
596		} else {
597			/*
598			 * Checksum extended TCP header and data.
599			 */
600			len = sizeof (struct ip) + tlen;
601			bzero(ipov->ih_x1, sizeof(ipov->ih_x1));
602			ipov->ih_len = (u_short)tlen;
603			ipov->ih_len = htons(ipov->ih_len);
604			th->th_sum = in_cksum(m, len);
605		}
606		if (th->th_sum) {
607			TCPSTAT_INC(tcps_rcvbadsum);
608			goto drop;
609		}
610		/* Re-initialization for later version check */
611		ip->ip_v = IPVERSION;
612	}
613
614#ifdef INET6
615	if (isipv6)
616		iptos = (ntohl(ip6->ip6_flow) >> 20) & 0xff;
617	else
618#endif
619		iptos = ip->ip_tos;
620
621	/*
622	 * Check that TCP offset makes sense,
623	 * pull out TCP options and adjust length.		XXX
624	 */
625	off = th->th_off << 2;
626	if (off < sizeof (struct tcphdr) || off > tlen) {
627		TCPSTAT_INC(tcps_rcvbadoff);
628		goto drop;
629	}
630	tlen -= off;	/* tlen is used instead of ti->ti_len */
631	if (off > sizeof (struct tcphdr)) {
632		if (isipv6) {
633#ifdef INET6
634			IP6_EXTHDR_CHECK(m, off0, off, );
635			ip6 = mtod(m, struct ip6_hdr *);
636			th = (struct tcphdr *)((caddr_t)ip6 + off0);
637#endif
638		} else {
639			if (m->m_len < sizeof(struct ip) + off) {
640				if ((m = m_pullup(m, sizeof (struct ip) + off))
641				    == NULL) {
642					TCPSTAT_INC(tcps_rcvshort);
643					return;
644				}
645				ip = mtod(m, struct ip *);
646				ipov = (struct ipovly *)ip;
647				th = (struct tcphdr *)((caddr_t)ip + off0);
648			}
649		}
650		optlen = off - sizeof (struct tcphdr);
651		optp = (u_char *)(th + 1);
652	}
653	thflags = th->th_flags;
654
655	/*
656	 * Convert TCP protocol specific fields to host format.
657	 */
658	th->th_seq = ntohl(th->th_seq);
659	th->th_ack = ntohl(th->th_ack);
660	th->th_win = ntohs(th->th_win);
661	th->th_urp = ntohs(th->th_urp);
662
663	/*
664	 * Delay dropping TCP, IP headers, IPv6 ext headers, and TCP options.
665	 */
666	drop_hdrlen = off0 + off;
667
668	/*
669	 * Locate pcb for segment, which requires a lock on tcbinfo.
670	 * Optimisticaly acquire a global read lock rather than a write lock
671	 * unless header flags necessarily imply a state change.  There are
672	 * two cases where we might discover later we need a write lock
673	 * despite the flags: ACKs moving a connection out of the syncache,
674	 * and ACKs for a connection in TIMEWAIT.
675	 */
676	if ((thflags & (TH_SYN | TH_FIN | TH_RST)) != 0 ||
677	    tcp_read_locking == 0) {
678		INP_INFO_WLOCK(&V_tcbinfo);
679		ti_locked = TI_WLOCKED;
680	} else {
681		INP_INFO_RLOCK(&V_tcbinfo);
682		ti_locked = TI_RLOCKED;
683	}
684
685findpcb:
686#ifdef INVARIANTS
687	if (ti_locked == TI_RLOCKED)
688		INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
689	else if (ti_locked == TI_WLOCKED)
690		INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
691	else
692		panic("%s: findpcb ti_locked %d\n", __func__, ti_locked);
693#endif
694
695#ifdef IPFIREWALL_FORWARD
696	/*
697	 * Grab info from PACKET_TAG_IPFORWARD tag prepended to the chain.
698	 */
699	fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL);
700
701	if (fwd_tag != NULL && isipv6 == 0) {	/* IPv6 support is not yet */
702		struct sockaddr_in *next_hop;
703
704		next_hop = (struct sockaddr_in *)(fwd_tag+1);
705		/*
706		 * Transparently forwarded. Pretend to be the destination.
707		 * already got one like this?
708		 */
709		inp = in_pcblookup_hash(&V_tcbinfo,
710					ip->ip_src, th->th_sport,
711					ip->ip_dst, th->th_dport,
712					0, m->m_pkthdr.rcvif);
713		if (!inp) {
714			/* It's new.  Try to find the ambushing socket. */
715			inp = in_pcblookup_hash(&V_tcbinfo,
716						ip->ip_src, th->th_sport,
717						next_hop->sin_addr,
718						next_hop->sin_port ?
719						    ntohs(next_hop->sin_port) :
720						    th->th_dport,
721						INPLOOKUP_WILDCARD,
722						m->m_pkthdr.rcvif);
723		}
724		/* Remove the tag from the packet.  We don't need it anymore. */
725		m_tag_delete(m, fwd_tag);
726	} else
727#endif /* IPFIREWALL_FORWARD */
728	{
729		if (isipv6) {
730#ifdef INET6
731			inp = in6_pcblookup_hash(&V_tcbinfo,
732						 &ip6->ip6_src, th->th_sport,
733						 &ip6->ip6_dst, th->th_dport,
734						 INPLOOKUP_WILDCARD,
735						 m->m_pkthdr.rcvif);
736#endif
737		} else
738			inp = in_pcblookup_hash(&V_tcbinfo,
739						ip->ip_src, th->th_sport,
740						ip->ip_dst, th->th_dport,
741						INPLOOKUP_WILDCARD,
742						m->m_pkthdr.rcvif);
743	}
744
745	/*
746	 * If the INPCB does not exist then all data in the incoming
747	 * segment is discarded and an appropriate RST is sent back.
748	 * XXX MRT Send RST using which routing table?
749	 */
750	if (inp == NULL) {
751		/*
752		 * Log communication attempts to ports that are not
753		 * in use.
754		 */
755		if ((tcp_log_in_vain == 1 && (thflags & TH_SYN)) ||
756		    tcp_log_in_vain == 2) {
757			if ((s = tcp_log_vain(NULL, th, (void *)ip, ip6)))
758				log(LOG_INFO, "%s; %s: Connection attempt "
759				    "to closed port\n", s, __func__);
760		}
761		/*
762		 * When blackholing do not respond with a RST but
763		 * completely ignore the segment and drop it.
764		 */
765		if ((V_blackhole == 1 && (thflags & TH_SYN)) ||
766		    V_blackhole == 2)
767			goto dropunlock;
768
769		rstreason = BANDLIM_RST_CLOSEDPORT;
770		goto dropwithreset;
771	}
772	INP_WLOCK(inp);
773	if (!(inp->inp_flags & INP_HW_FLOWID)
774	    && (m->m_flags & M_FLOWID)
775	    && ((inp->inp_socket == NULL)
776		|| !(inp->inp_socket->so_options & SO_ACCEPTCONN))) {
777		inp->inp_flags |= INP_HW_FLOWID;
778		inp->inp_flags &= ~INP_SW_FLOWID;
779		inp->inp_flowid = m->m_pkthdr.flowid;
780	}
781#ifdef IPSEC
782#ifdef INET6
783	if (isipv6 && ipsec6_in_reject(m, inp)) {
784		V_ipsec6stat.in_polvio++;
785		goto dropunlock;
786	} else
787#endif /* INET6 */
788	if (ipsec4_in_reject(m, inp) != 0) {
789		V_ipsec4stat.in_polvio++;
790		goto dropunlock;
791	}
792#endif /* IPSEC */
793
794	/*
795	 * Check the minimum TTL for socket.
796	 */
797	if (inp->inp_ip_minttl != 0) {
798#ifdef INET6
799		if (isipv6 && inp->inp_ip_minttl > ip6->ip6_hlim)
800			goto dropunlock;
801		else
802#endif
803		if (inp->inp_ip_minttl > ip->ip_ttl)
804			goto dropunlock;
805	}
806
807	/*
808	 * A previous connection in TIMEWAIT state is supposed to catch stray
809	 * or duplicate segments arriving late.  If this segment was a
810	 * legitimate new connection attempt the old INPCB gets removed and
811	 * we can try again to find a listening socket.
812	 *
813	 * At this point, due to earlier optimism, we may hold a read lock on
814	 * the inpcbinfo, rather than a write lock.  If so, we need to
815	 * upgrade, or if that fails, acquire a reference on the inpcb, drop
816	 * all locks, acquire a global write lock, and then re-acquire the
817	 * inpcb lock.  We may at that point discover that another thread has
818	 * tried to free the inpcb, in which case we need to loop back and
819	 * try to find a new inpcb to deliver to.
820	 */
821relocked:
822	if (inp->inp_flags & INP_TIMEWAIT) {
823		KASSERT(ti_locked == TI_RLOCKED || ti_locked == TI_WLOCKED,
824		    ("%s: INP_TIMEWAIT ti_locked %d", __func__, ti_locked));
825
826		if (ti_locked == TI_RLOCKED) {
827			if (INP_INFO_TRY_UPGRADE(&V_tcbinfo) == 0) {
828				in_pcbref(inp);
829				INP_WUNLOCK(inp);
830				INP_INFO_RUNLOCK(&V_tcbinfo);
831				INP_INFO_WLOCK(&V_tcbinfo);
832				ti_locked = TI_WLOCKED;
833				INP_WLOCK(inp);
834				if (in_pcbrele(inp)) {
835					inp = NULL;
836					goto findpcb;
837				}
838			} else
839				ti_locked = TI_WLOCKED;
840		}
841		INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
842
843		if (thflags & TH_SYN)
844			tcp_dooptions(&to, optp, optlen, TO_SYN);
845		/*
846		 * NB: tcp_twcheck unlocks the INP and frees the mbuf.
847		 */
848		if (tcp_twcheck(inp, &to, th, m, tlen))
849			goto findpcb;
850		INP_INFO_WUNLOCK(&V_tcbinfo);
851		return;
852	}
853	/*
854	 * The TCPCB may no longer exist if the connection is winding
855	 * down or it is in the CLOSED state.  Either way we drop the
856	 * segment and send an appropriate response.
857	 */
858	tp = intotcpcb(inp);
859	if (tp == NULL || tp->t_state == TCPS_CLOSED) {
860		rstreason = BANDLIM_RST_CLOSEDPORT;
861		goto dropwithreset;
862	}
863
864	/*
865	 * We've identified a valid inpcb, but it could be that we need an
866	 * inpcbinfo write lock and have only a read lock.  In this case,
867	 * attempt to upgrade/relock using the same strategy as the TIMEWAIT
868	 * case above.  If we relock, we have to jump back to 'relocked' as
869	 * the connection might now be in TIMEWAIT.
870	 */
871	if (tp->t_state != TCPS_ESTABLISHED ||
872	    (thflags & (TH_SYN | TH_FIN | TH_RST)) != 0 ||
873	    tcp_read_locking == 0) {
874		KASSERT(ti_locked == TI_RLOCKED || ti_locked == TI_WLOCKED,
875		    ("%s: upgrade check ti_locked %d", __func__, ti_locked));
876
877		if (ti_locked == TI_RLOCKED) {
878			if (INP_INFO_TRY_UPGRADE(&V_tcbinfo) == 0) {
879				in_pcbref(inp);
880				INP_WUNLOCK(inp);
881				INP_INFO_RUNLOCK(&V_tcbinfo);
882				INP_INFO_WLOCK(&V_tcbinfo);
883				ti_locked = TI_WLOCKED;
884				INP_WLOCK(inp);
885				if (in_pcbrele(inp)) {
886					inp = NULL;
887					goto findpcb;
888				}
889				goto relocked;
890			} else
891				ti_locked = TI_WLOCKED;
892		}
893		INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
894	}
895
896#ifdef MAC
897	INP_WLOCK_ASSERT(inp);
898	if (mac_inpcb_check_deliver(inp, m))
899		goto dropunlock;
900#endif
901	so = inp->inp_socket;
902	KASSERT(so != NULL, ("%s: so == NULL", __func__));
903#ifdef TCPDEBUG
904	if (so->so_options & SO_DEBUG) {
905		ostate = tp->t_state;
906		if (isipv6) {
907#ifdef INET6
908			bcopy((char *)ip6, (char *)tcp_saveipgen, sizeof(*ip6));
909#endif
910		} else
911			bcopy((char *)ip, (char *)tcp_saveipgen, sizeof(*ip));
912		tcp_savetcp = *th;
913	}
914#endif
915	/*
916	 * When the socket is accepting connections (the INPCB is in LISTEN
917	 * state) we look into the SYN cache if this is a new connection
918	 * attempt or the completion of a previous one.
919	 */
920	if (so->so_options & SO_ACCEPTCONN) {
921		struct in_conninfo inc;
922
923		KASSERT(tp->t_state == TCPS_LISTEN, ("%s: so accepting but "
924		    "tp not listening", __func__));
925
926		bzero(&inc, sizeof(inc));
927#ifdef INET6
928		if (isipv6) {
929			inc.inc_flags |= INC_ISIPV6;
930			inc.inc6_faddr = ip6->ip6_src;
931			inc.inc6_laddr = ip6->ip6_dst;
932		} else
933#endif
934		{
935			inc.inc_faddr = ip->ip_src;
936			inc.inc_laddr = ip->ip_dst;
937		}
938		inc.inc_fport = th->th_sport;
939		inc.inc_lport = th->th_dport;
940		inc.inc_fibnum = so->so_fibnum;
941
942		/*
943		 * Check for an existing connection attempt in syncache if
944		 * the flag is only ACK.  A successful lookup creates a new
945		 * socket appended to the listen queue in SYN_RECEIVED state.
946		 */
947		if ((thflags & (TH_RST|TH_ACK|TH_SYN)) == TH_ACK) {
948			/*
949			 * Parse the TCP options here because
950			 * syncookies need access to the reflected
951			 * timestamp.
952			 */
953			tcp_dooptions(&to, optp, optlen, 0);
954			/*
955			 * NB: syncache_expand() doesn't unlock
956			 * inp and tcpinfo locks.
957			 */
958			if (!syncache_expand(&inc, &to, th, &so, m)) {
959				/*
960				 * No syncache entry or ACK was not
961				 * for our SYN/ACK.  Send a RST.
962				 * NB: syncache did its own logging
963				 * of the failure cause.
964				 */
965				rstreason = BANDLIM_RST_OPENPORT;
966				goto dropwithreset;
967			}
968			if (so == NULL) {
969				/*
970				 * We completed the 3-way handshake
971				 * but could not allocate a socket
972				 * either due to memory shortage,
973				 * listen queue length limits or
974				 * global socket limits.  Send RST
975				 * or wait and have the remote end
976				 * retransmit the ACK for another
977				 * try.
978				 */
979				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
980					log(LOG_DEBUG, "%s; %s: Listen socket: "
981					    "Socket allocation failed due to "
982					    "limits or memory shortage, %s\n",
983					    s, __func__,
984					    V_tcp_sc_rst_sock_fail ?
985					    "sending RST" : "try again");
986				if (V_tcp_sc_rst_sock_fail) {
987					rstreason = BANDLIM_UNLIMITED;
988					goto dropwithreset;
989				} else
990					goto dropunlock;
991			}
992			/*
993			 * Socket is created in state SYN_RECEIVED.
994			 * Unlock the listen socket, lock the newly
995			 * created socket and update the tp variable.
996			 */
997			INP_WUNLOCK(inp);	/* listen socket */
998			inp = sotoinpcb(so);
999			INP_WLOCK(inp);		/* new connection */
1000			tp = intotcpcb(inp);
1001			KASSERT(tp->t_state == TCPS_SYN_RECEIVED,
1002			    ("%s: ", __func__));
1003			/*
1004			 * Process the segment and the data it
1005			 * contains.  tcp_do_segment() consumes
1006			 * the mbuf chain and unlocks the inpcb.
1007			 */
1008			tcp_do_segment(m, th, so, tp, drop_hdrlen, tlen,
1009			    iptos, ti_locked);
1010			INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
1011			return;
1012		}
1013		/*
1014		 * Segment flag validation for new connection attempts:
1015		 *
1016		 * Our (SYN|ACK) response was rejected.
1017		 * Check with syncache and remove entry to prevent
1018		 * retransmits.
1019		 *
1020		 * NB: syncache_chkrst does its own logging of failure
1021		 * causes.
1022		 */
1023		if (thflags & TH_RST) {
1024			syncache_chkrst(&inc, th);
1025			goto dropunlock;
1026		}
1027		/*
1028		 * We can't do anything without SYN.
1029		 */
1030		if ((thflags & TH_SYN) == 0) {
1031			if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1032				log(LOG_DEBUG, "%s; %s: Listen socket: "
1033				    "SYN is missing, segment ignored\n",
1034				    s, __func__);
1035			TCPSTAT_INC(tcps_badsyn);
1036			goto dropunlock;
1037		}
1038		/*
1039		 * (SYN|ACK) is bogus on a listen socket.
1040		 */
1041		if (thflags & TH_ACK) {
1042			if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1043				log(LOG_DEBUG, "%s; %s: Listen socket: "
1044				    "SYN|ACK invalid, segment rejected\n",
1045				    s, __func__);
1046			syncache_badack(&inc);	/* XXX: Not needed! */
1047			TCPSTAT_INC(tcps_badsyn);
1048			rstreason = BANDLIM_RST_OPENPORT;
1049			goto dropwithreset;
1050		}
1051		/*
1052		 * If the drop_synfin option is enabled, drop all
1053		 * segments with both the SYN and FIN bits set.
1054		 * This prevents e.g. nmap from identifying the
1055		 * TCP/IP stack.
1056		 * XXX: Poor reasoning.  nmap has other methods
1057		 * and is constantly refining its stack detection
1058		 * strategies.
1059		 * XXX: This is a violation of the TCP specification
1060		 * and was used by RFC1644.
1061		 */
1062		if ((thflags & TH_FIN) && V_drop_synfin) {
1063			if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1064				log(LOG_DEBUG, "%s; %s: Listen socket: "
1065				    "SYN|FIN segment ignored (based on "
1066				    "sysctl setting)\n", s, __func__);
1067			TCPSTAT_INC(tcps_badsyn);
1068                	goto dropunlock;
1069		}
1070		/*
1071		 * Segment's flags are (SYN) or (SYN|FIN).
1072		 *
1073		 * TH_PUSH, TH_URG, TH_ECE, TH_CWR are ignored
1074		 * as they do not affect the state of the TCP FSM.
1075		 * The data pointed to by TH_URG and th_urp is ignored.
1076		 */
1077		KASSERT((thflags & (TH_RST|TH_ACK)) == 0,
1078		    ("%s: Listen socket: TH_RST or TH_ACK set", __func__));
1079		KASSERT(thflags & (TH_SYN),
1080		    ("%s: Listen socket: TH_SYN not set", __func__));
1081#ifdef INET6
1082		/*
1083		 * If deprecated address is forbidden,
1084		 * we do not accept SYN to deprecated interface
1085		 * address to prevent any new inbound connection from
1086		 * getting established.
1087		 * When we do not accept SYN, we send a TCP RST,
1088		 * with deprecated source address (instead of dropping
1089		 * it).  We compromise it as it is much better for peer
1090		 * to send a RST, and RST will be the final packet
1091		 * for the exchange.
1092		 *
1093		 * If we do not forbid deprecated addresses, we accept
1094		 * the SYN packet.  RFC2462 does not suggest dropping
1095		 * SYN in this case.
1096		 * If we decipher RFC2462 5.5.4, it says like this:
1097		 * 1. use of deprecated addr with existing
1098		 *    communication is okay - "SHOULD continue to be
1099		 *    used"
1100		 * 2. use of it with new communication:
1101		 *   (2a) "SHOULD NOT be used if alternate address
1102		 *        with sufficient scope is available"
1103		 *   (2b) nothing mentioned otherwise.
1104		 * Here we fall into (2b) case as we have no choice in
1105		 * our source address selection - we must obey the peer.
1106		 *
1107		 * The wording in RFC2462 is confusing, and there are
1108		 * multiple description text for deprecated address
1109		 * handling - worse, they are not exactly the same.
1110		 * I believe 5.5.4 is the best one, so we follow 5.5.4.
1111		 */
1112		if (isipv6 && !V_ip6_use_deprecated) {
1113			struct in6_ifaddr *ia6;
1114
1115			ia6 = ip6_getdstifaddr(m);
1116			if (ia6 != NULL &&
1117			    (ia6->ia6_flags & IN6_IFF_DEPRECATED)) {
1118				ifa_free(&ia6->ia_ifa);
1119				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1120				    log(LOG_DEBUG, "%s; %s: Listen socket: "
1121					"Connection attempt to deprecated "
1122					"IPv6 address rejected\n",
1123					s, __func__);
1124				rstreason = BANDLIM_RST_OPENPORT;
1125				goto dropwithreset;
1126			}
1127			ifa_free(&ia6->ia_ifa);
1128		}
1129#endif
1130		/*
1131		 * Basic sanity checks on incoming SYN requests:
1132		 *   Don't respond if the destination is a link layer
1133		 *	broadcast according to RFC1122 4.2.3.10, p. 104.
1134		 *   If it is from this socket it must be forged.
1135		 *   Don't respond if the source or destination is a
1136		 *	global or subnet broad- or multicast address.
1137		 *   Note that it is quite possible to receive unicast
1138		 *	link-layer packets with a broadcast IP address. Use
1139		 *	in_broadcast() to find them.
1140		 */
1141		if (m->m_flags & (M_BCAST|M_MCAST)) {
1142			if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1143			    log(LOG_DEBUG, "%s; %s: Listen socket: "
1144				"Connection attempt from broad- or multicast "
1145				"link layer address ignored\n", s, __func__);
1146			goto dropunlock;
1147		}
1148		if (isipv6) {
1149#ifdef INET6
1150			if (th->th_dport == th->th_sport &&
1151			    IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst, &ip6->ip6_src)) {
1152				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1153				    log(LOG_DEBUG, "%s; %s: Listen socket: "
1154					"Connection attempt to/from self "
1155					"ignored\n", s, __func__);
1156				goto dropunlock;
1157			}
1158			if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) ||
1159			    IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) {
1160				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1161				    log(LOG_DEBUG, "%s; %s: Listen socket: "
1162					"Connection attempt from/to multicast "
1163					"address ignored\n", s, __func__);
1164				goto dropunlock;
1165			}
1166#endif
1167		} else {
1168			if (th->th_dport == th->th_sport &&
1169			    ip->ip_dst.s_addr == ip->ip_src.s_addr) {
1170				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1171				    log(LOG_DEBUG, "%s; %s: Listen socket: "
1172					"Connection attempt from/to self "
1173					"ignored\n", s, __func__);
1174				goto dropunlock;
1175			}
1176			if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
1177			    IN_MULTICAST(ntohl(ip->ip_src.s_addr)) ||
1178			    ip->ip_src.s_addr == htonl(INADDR_BROADCAST) ||
1179			    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif)) {
1180				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1181				    log(LOG_DEBUG, "%s; %s: Listen socket: "
1182					"Connection attempt from/to broad- "
1183					"or multicast address ignored\n",
1184					s, __func__);
1185				goto dropunlock;
1186			}
1187		}
1188		/*
1189		 * SYN appears to be valid.  Create compressed TCP state
1190		 * for syncache.
1191		 */
1192#ifdef TCPDEBUG
1193		if (so->so_options & SO_DEBUG)
1194			tcp_trace(TA_INPUT, ostate, tp,
1195			    (void *)tcp_saveipgen, &tcp_savetcp, 0);
1196#endif
1197		tcp_dooptions(&to, optp, optlen, TO_SYN);
1198		syncache_add(&inc, &to, th, inp, &so, m);
1199		/*
1200		 * Entry added to syncache and mbuf consumed.
1201		 * Everything already unlocked by syncache_add().
1202		 */
1203		INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
1204		return;
1205	}
1206
1207	/*
1208	 * Segment belongs to a connection in SYN_SENT, ESTABLISHED or later
1209	 * state.  tcp_do_segment() always consumes the mbuf chain, unlocks
1210	 * the inpcb, and unlocks pcbinfo.
1211	 */
1212	tcp_do_segment(m, th, so, tp, drop_hdrlen, tlen, iptos, ti_locked);
1213	INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
1214	return;
1215
1216dropwithreset:
1217	if (ti_locked == TI_RLOCKED)
1218		INP_INFO_RUNLOCK(&V_tcbinfo);
1219	else if (ti_locked == TI_WLOCKED)
1220		INP_INFO_WUNLOCK(&V_tcbinfo);
1221	else
1222		panic("%s: dropwithreset ti_locked %d", __func__, ti_locked);
1223	ti_locked = TI_UNLOCKED;
1224
1225	if (inp != NULL) {
1226		tcp_dropwithreset(m, th, tp, tlen, rstreason);
1227		INP_WUNLOCK(inp);
1228	} else
1229		tcp_dropwithreset(m, th, NULL, tlen, rstreason);
1230	m = NULL;	/* mbuf chain got consumed. */
1231	goto drop;
1232
1233dropunlock:
1234	if (ti_locked == TI_RLOCKED)
1235		INP_INFO_RUNLOCK(&V_tcbinfo);
1236	else if (ti_locked == TI_WLOCKED)
1237		INP_INFO_WUNLOCK(&V_tcbinfo);
1238	else
1239		panic("%s: dropunlock ti_locked %d", __func__, ti_locked);
1240	ti_locked = TI_UNLOCKED;
1241
1242	if (inp != NULL)
1243		INP_WUNLOCK(inp);
1244
1245drop:
1246	INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
1247	if (s != NULL)
1248		free(s, M_TCPLOG);
1249	if (m != NULL)
1250		m_freem(m);
1251}
1252
1253static void
1254tcp_do_segment(struct mbuf *m, struct tcphdr *th, struct socket *so,
1255    struct tcpcb *tp, int drop_hdrlen, int tlen, uint8_t iptos,
1256    int ti_locked)
1257{
1258	int thflags, acked, ourfinisacked, needoutput = 0;
1259	int rstreason, todrop, win;
1260	u_long tiwin;
1261	struct tcpopt to;
1262
1263#ifdef TCPDEBUG
1264	/*
1265	 * The size of tcp_saveipgen must be the size of the max ip header,
1266	 * now IPv6.
1267	 */
1268	u_char tcp_saveipgen[IP6_HDR_LEN];
1269	struct tcphdr tcp_savetcp;
1270	short ostate = 0;
1271#endif
1272	thflags = th->th_flags;
1273
1274	/*
1275	 * If this is either a state-changing packet or current state isn't
1276	 * established, we require a write lock on tcbinfo.  Otherwise, we
1277	 * allow either a read lock or a write lock, as we may have acquired
1278	 * a write lock due to a race.
1279	 *
1280	 * Require a global write lock for SYN/FIN/RST segments or
1281	 * non-established connections; otherwise accept either a read or
1282	 * write lock, as we may have conservatively acquired a write lock in
1283	 * certain cases in tcp_input() (is this still true?).  Currently we
1284	 * will never enter with no lock, so we try to drop it quickly in the
1285	 * common pure ack/pure data cases.
1286	 */
1287	if ((thflags & (TH_SYN | TH_FIN | TH_RST)) != 0 ||
1288	    tp->t_state != TCPS_ESTABLISHED) {
1289		KASSERT(ti_locked == TI_WLOCKED, ("%s ti_locked %d for "
1290		    "SYN/FIN/RST/!EST", __func__, ti_locked));
1291		INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
1292	} else {
1293#ifdef INVARIANTS
1294		if (ti_locked == TI_RLOCKED)
1295			INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
1296		else if (ti_locked == TI_WLOCKED)
1297			INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
1298		else
1299			panic("%s: ti_locked %d for EST", __func__,
1300			    ti_locked);
1301#endif
1302	}
1303	INP_WLOCK_ASSERT(tp->t_inpcb);
1304	KASSERT(tp->t_state > TCPS_LISTEN, ("%s: TCPS_LISTEN",
1305	    __func__));
1306	KASSERT(tp->t_state != TCPS_TIME_WAIT, ("%s: TCPS_TIME_WAIT",
1307	    __func__));
1308
1309	/*
1310	 * Segment received on connection.
1311	 * Reset idle time and keep-alive timer.
1312	 * XXX: This should be done after segment
1313	 * validation to ignore broken/spoofed segs.
1314	 */
1315	tp->t_rcvtime = ticks;
1316	if (TCPS_HAVEESTABLISHED(tp->t_state))
1317		tcp_timer_activate(tp, TT_KEEP, tcp_keepidle);
1318
1319	/*
1320	 * Unscale the window into a 32-bit value.
1321	 * For the SYN_SENT state the scale is zero.
1322	 */
1323	tiwin = th->th_win << tp->snd_scale;
1324
1325	/*
1326	 * TCP ECN processing.
1327	 */
1328	if (tp->t_flags & TF_ECN_PERMIT) {
1329		if (thflags & TH_CWR)
1330			tp->t_flags &= ~TF_ECN_SND_ECE;
1331		switch (iptos & IPTOS_ECN_MASK) {
1332		case IPTOS_ECN_CE:
1333			tp->t_flags |= TF_ECN_SND_ECE;
1334			TCPSTAT_INC(tcps_ecn_ce);
1335			break;
1336		case IPTOS_ECN_ECT0:
1337			TCPSTAT_INC(tcps_ecn_ect0);
1338			break;
1339		case IPTOS_ECN_ECT1:
1340			TCPSTAT_INC(tcps_ecn_ect1);
1341			break;
1342		}
1343		/* Congestion experienced. */
1344		if (thflags & TH_ECE) {
1345			cc_cong_signal(tp, th, CC_ECN);
1346		}
1347	}
1348
1349	/*
1350	 * Parse options on any incoming segment.
1351	 */
1352	tcp_dooptions(&to, (u_char *)(th + 1),
1353	    (th->th_off << 2) - sizeof(struct tcphdr),
1354	    (thflags & TH_SYN) ? TO_SYN : 0);
1355
1356	/*
1357	 * If echoed timestamp is later than the current time,
1358	 * fall back to non RFC1323 RTT calculation.  Normalize
1359	 * timestamp if syncookies were used when this connection
1360	 * was established.
1361	 */
1362	if ((to.to_flags & TOF_TS) && (to.to_tsecr != 0)) {
1363		to.to_tsecr -= tp->ts_offset;
1364		if (TSTMP_GT(to.to_tsecr, ticks))
1365			to.to_tsecr = 0;
1366	}
1367
1368	/*
1369	 * Process options only when we get SYN/ACK back. The SYN case
1370	 * for incoming connections is handled in tcp_syncache.
1371	 * According to RFC1323 the window field in a SYN (i.e., a <SYN>
1372	 * or <SYN,ACK>) segment itself is never scaled.
1373	 * XXX this is traditional behavior, may need to be cleaned up.
1374	 */
1375	if (tp->t_state == TCPS_SYN_SENT && (thflags & TH_SYN)) {
1376		if ((to.to_flags & TOF_SCALE) &&
1377		    (tp->t_flags & TF_REQ_SCALE)) {
1378			tp->t_flags |= TF_RCVD_SCALE;
1379			tp->snd_scale = to.to_wscale;
1380		}
1381		/*
1382		 * Initial send window.  It will be updated with
1383		 * the next incoming segment to the scaled value.
1384		 */
1385		tp->snd_wnd = th->th_win;
1386		if (to.to_flags & TOF_TS) {
1387			tp->t_flags |= TF_RCVD_TSTMP;
1388			tp->ts_recent = to.to_tsval;
1389			tp->ts_recent_age = ticks;
1390		}
1391		if (to.to_flags & TOF_MSS)
1392			tcp_mss(tp, to.to_mss);
1393		if ((tp->t_flags & TF_SACK_PERMIT) &&
1394		    (to.to_flags & TOF_SACKPERM) == 0)
1395			tp->t_flags &= ~TF_SACK_PERMIT;
1396	}
1397
1398	/*
1399	 * Header prediction: check for the two common cases
1400	 * of a uni-directional data xfer.  If the packet has
1401	 * no control flags, is in-sequence, the window didn't
1402	 * change and we're not retransmitting, it's a
1403	 * candidate.  If the length is zero and the ack moved
1404	 * forward, we're the sender side of the xfer.  Just
1405	 * free the data acked & wake any higher level process
1406	 * that was blocked waiting for space.  If the length
1407	 * is non-zero and the ack didn't move, we're the
1408	 * receiver side.  If we're getting packets in-order
1409	 * (the reassembly queue is empty), add the data to
1410	 * the socket buffer and note that we need a delayed ack.
1411	 * Make sure that the hidden state-flags are also off.
1412	 * Since we check for TCPS_ESTABLISHED first, it can only
1413	 * be TH_NEEDSYN.
1414	 */
1415	if (tp->t_state == TCPS_ESTABLISHED &&
1416	    th->th_seq == tp->rcv_nxt &&
1417	    (thflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK)) == TH_ACK &&
1418	    tp->snd_nxt == tp->snd_max &&
1419	    tiwin && tiwin == tp->snd_wnd &&
1420	    ((tp->t_flags & (TF_NEEDSYN|TF_NEEDFIN)) == 0) &&
1421	    LIST_EMPTY(&tp->t_segq) &&
1422	    ((to.to_flags & TOF_TS) == 0 ||
1423	     TSTMP_GEQ(to.to_tsval, tp->ts_recent)) ) {
1424
1425		/*
1426		 * If last ACK falls within this segment's sequence numbers,
1427		 * record the timestamp.
1428		 * NOTE that the test is modified according to the latest
1429		 * proposal of the tcplw@cray.com list (Braden 1993/04/26).
1430		 */
1431		if ((to.to_flags & TOF_TS) != 0 &&
1432		    SEQ_LEQ(th->th_seq, tp->last_ack_sent)) {
1433			tp->ts_recent_age = ticks;
1434			tp->ts_recent = to.to_tsval;
1435		}
1436
1437		if (tlen == 0) {
1438			if (SEQ_GT(th->th_ack, tp->snd_una) &&
1439			    SEQ_LEQ(th->th_ack, tp->snd_max) &&
1440			    !IN_RECOVERY(tp->t_flags) &&
1441			    (to.to_flags & TOF_SACK) == 0 &&
1442			    TAILQ_EMPTY(&tp->snd_holes)) {
1443				/*
1444				 * This is a pure ack for outstanding data.
1445				 */
1446				if (ti_locked == TI_RLOCKED)
1447					INP_INFO_RUNLOCK(&V_tcbinfo);
1448				else if (ti_locked == TI_WLOCKED)
1449					INP_INFO_WUNLOCK(&V_tcbinfo);
1450				else
1451					panic("%s: ti_locked %d on pure ACK",
1452					    __func__, ti_locked);
1453				ti_locked = TI_UNLOCKED;
1454
1455				TCPSTAT_INC(tcps_predack);
1456
1457				/*
1458				 * "bad retransmit" recovery.
1459				 */
1460				if (tp->t_rxtshift == 1 &&
1461				    (int)(ticks - tp->t_badrxtwin) < 0) {
1462					cc_cong_signal(tp, th, CC_RTO_ERR);
1463				}
1464
1465				/*
1466				 * Recalculate the transmit timer / rtt.
1467				 *
1468				 * Some boxes send broken timestamp replies
1469				 * during the SYN+ACK phase, ignore
1470				 * timestamps of 0 or we could calculate a
1471				 * huge RTT and blow up the retransmit timer.
1472				 */
1473				if ((to.to_flags & TOF_TS) != 0 &&
1474				    to.to_tsecr) {
1475					if (!tp->t_rttlow ||
1476					    tp->t_rttlow > ticks - to.to_tsecr)
1477						tp->t_rttlow = ticks - to.to_tsecr;
1478					tcp_xmit_timer(tp,
1479					    ticks - to.to_tsecr + 1);
1480				} else if (tp->t_rtttime &&
1481				    SEQ_GT(th->th_ack, tp->t_rtseq)) {
1482					if (!tp->t_rttlow ||
1483					    tp->t_rttlow > ticks - tp->t_rtttime)
1484						tp->t_rttlow = ticks - tp->t_rtttime;
1485					tcp_xmit_timer(tp,
1486							ticks - tp->t_rtttime);
1487				}
1488				acked = BYTES_THIS_ACK(tp, th);
1489				TCPSTAT_INC(tcps_rcvackpack);
1490				TCPSTAT_ADD(tcps_rcvackbyte, acked);
1491				sbdrop(&so->so_snd, acked);
1492				if (SEQ_GT(tp->snd_una, tp->snd_recover) &&
1493				    SEQ_LEQ(th->th_ack, tp->snd_recover))
1494					tp->snd_recover = th->th_ack - 1;
1495
1496				/*
1497				 * Let the congestion control algorithm update
1498				 * congestion control related information. This
1499				 * typically means increasing the congestion
1500				 * window.
1501				 */
1502				cc_ack_received(tp, th, CC_ACK);
1503
1504				tp->snd_una = th->th_ack;
1505				/*
1506				 * Pull snd_wl2 up to prevent seq wrap relative
1507				 * to th_ack.
1508				 */
1509				tp->snd_wl2 = th->th_ack;
1510				tp->t_dupacks = 0;
1511				m_freem(m);
1512				ND6_HINT(tp); /* Some progress has been made. */
1513
1514				/*
1515				 * If all outstanding data are acked, stop
1516				 * retransmit timer, otherwise restart timer
1517				 * using current (possibly backed-off) value.
1518				 * If process is waiting for space,
1519				 * wakeup/selwakeup/signal.  If data
1520				 * are ready to send, let tcp_output
1521				 * decide between more output or persist.
1522				 */
1523#ifdef TCPDEBUG
1524				if (so->so_options & SO_DEBUG)
1525					tcp_trace(TA_INPUT, ostate, tp,
1526					    (void *)tcp_saveipgen,
1527					    &tcp_savetcp, 0);
1528#endif
1529				if (tp->snd_una == tp->snd_max)
1530					tcp_timer_activate(tp, TT_REXMT, 0);
1531				else if (!tcp_timer_active(tp, TT_PERSIST))
1532					tcp_timer_activate(tp, TT_REXMT,
1533						      tp->t_rxtcur);
1534				sowwakeup(so);
1535				if (so->so_snd.sb_cc)
1536					(void) tcp_output(tp);
1537				goto check_delack;
1538			}
1539		} else if (th->th_ack == tp->snd_una &&
1540		    tlen <= sbspace(&so->so_rcv)) {
1541			int newsize = 0;	/* automatic sockbuf scaling */
1542
1543			/*
1544			 * This is a pure, in-sequence data packet with
1545			 * nothing on the reassembly queue and we have enough
1546			 * buffer space to take it.
1547			 */
1548			if (ti_locked == TI_RLOCKED)
1549				INP_INFO_RUNLOCK(&V_tcbinfo);
1550			else if (ti_locked == TI_WLOCKED)
1551				INP_INFO_WUNLOCK(&V_tcbinfo);
1552			else
1553				panic("%s: ti_locked %d on pure data "
1554				    "segment", __func__, ti_locked);
1555			ti_locked = TI_UNLOCKED;
1556
1557			/* Clean receiver SACK report if present */
1558			if ((tp->t_flags & TF_SACK_PERMIT) && tp->rcv_numsacks)
1559				tcp_clean_sackreport(tp);
1560			TCPSTAT_INC(tcps_preddat);
1561			tp->rcv_nxt += tlen;
1562			/*
1563			 * Pull snd_wl1 up to prevent seq wrap relative to
1564			 * th_seq.
1565			 */
1566			tp->snd_wl1 = th->th_seq;
1567			/*
1568			 * Pull rcv_up up to prevent seq wrap relative to
1569			 * rcv_nxt.
1570			 */
1571			tp->rcv_up = tp->rcv_nxt;
1572			TCPSTAT_INC(tcps_rcvpack);
1573			TCPSTAT_ADD(tcps_rcvbyte, tlen);
1574			ND6_HINT(tp);	/* Some progress has been made */
1575#ifdef TCPDEBUG
1576			if (so->so_options & SO_DEBUG)
1577				tcp_trace(TA_INPUT, ostate, tp,
1578				    (void *)tcp_saveipgen, &tcp_savetcp, 0);
1579#endif
1580		/*
1581		 * Automatic sizing of receive socket buffer.  Often the send
1582		 * buffer size is not optimally adjusted to the actual network
1583		 * conditions at hand (delay bandwidth product).  Setting the
1584		 * buffer size too small limits throughput on links with high
1585		 * bandwidth and high delay (eg. trans-continental/oceanic links).
1586		 *
1587		 * On the receive side the socket buffer memory is only rarely
1588		 * used to any significant extent.  This allows us to be much
1589		 * more aggressive in scaling the receive socket buffer.  For
1590		 * the case that the buffer space is actually used to a large
1591		 * extent and we run out of kernel memory we can simply drop
1592		 * the new segments; TCP on the sender will just retransmit it
1593		 * later.  Setting the buffer size too big may only consume too
1594		 * much kernel memory if the application doesn't read() from
1595		 * the socket or packet loss or reordering makes use of the
1596		 * reassembly queue.
1597		 *
1598		 * The criteria to step up the receive buffer one notch are:
1599		 *  1. the number of bytes received during the time it takes
1600		 *     one timestamp to be reflected back to us (the RTT);
1601		 *  2. received bytes per RTT is within seven eighth of the
1602		 *     current socket buffer size;
1603		 *  3. receive buffer size has not hit maximal automatic size;
1604		 *
1605		 * This algorithm does one step per RTT at most and only if
1606		 * we receive a bulk stream w/o packet losses or reorderings.
1607		 * Shrinking the buffer during idle times is not necessary as
1608		 * it doesn't consume any memory when idle.
1609		 *
1610		 * TODO: Only step up if the application is actually serving
1611		 * the buffer to better manage the socket buffer resources.
1612		 */
1613			if (V_tcp_do_autorcvbuf &&
1614			    to.to_tsecr &&
1615			    (so->so_rcv.sb_flags & SB_AUTOSIZE)) {
1616				if (TSTMP_GT(to.to_tsecr, tp->rfbuf_ts) &&
1617				    to.to_tsecr - tp->rfbuf_ts < hz) {
1618					if (tp->rfbuf_cnt >
1619					    (so->so_rcv.sb_hiwat / 8 * 7) &&
1620					    so->so_rcv.sb_hiwat <
1621					    V_tcp_autorcvbuf_max) {
1622						newsize =
1623						    min(so->so_rcv.sb_hiwat +
1624						    V_tcp_autorcvbuf_inc,
1625						    V_tcp_autorcvbuf_max);
1626					}
1627					/* Start over with next RTT. */
1628					tp->rfbuf_ts = 0;
1629					tp->rfbuf_cnt = 0;
1630				} else
1631					tp->rfbuf_cnt += tlen;	/* add up */
1632			}
1633
1634			/* Add data to socket buffer. */
1635			SOCKBUF_LOCK(&so->so_rcv);
1636			if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
1637				m_freem(m);
1638			} else {
1639				/*
1640				 * Set new socket buffer size.
1641				 * Give up when limit is reached.
1642				 */
1643				if (newsize)
1644					if (!sbreserve_locked(&so->so_rcv,
1645					    newsize, so, NULL))
1646						so->so_rcv.sb_flags &= ~SB_AUTOSIZE;
1647				m_adj(m, drop_hdrlen);	/* delayed header drop */
1648				sbappendstream_locked(&so->so_rcv, m);
1649			}
1650			/* NB: sorwakeup_locked() does an implicit unlock. */
1651			sorwakeup_locked(so);
1652			if (DELAY_ACK(tp)) {
1653				tp->t_flags |= TF_DELACK;
1654			} else {
1655				tp->t_flags |= TF_ACKNOW;
1656				tcp_output(tp);
1657			}
1658			goto check_delack;
1659		}
1660	}
1661
1662	/*
1663	 * Calculate amount of space in receive window,
1664	 * and then do TCP input processing.
1665	 * Receive window is amount of space in rcv queue,
1666	 * but not less than advertised window.
1667	 */
1668	win = sbspace(&so->so_rcv);
1669	if (win < 0)
1670		win = 0;
1671	tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
1672
1673	/* Reset receive buffer auto scaling when not in bulk receive mode. */
1674	tp->rfbuf_ts = 0;
1675	tp->rfbuf_cnt = 0;
1676
1677	switch (tp->t_state) {
1678
1679	/*
1680	 * If the state is SYN_RECEIVED:
1681	 *	if seg contains an ACK, but not for our SYN/ACK, send a RST.
1682	 */
1683	case TCPS_SYN_RECEIVED:
1684		if ((thflags & TH_ACK) &&
1685		    (SEQ_LEQ(th->th_ack, tp->snd_una) ||
1686		     SEQ_GT(th->th_ack, tp->snd_max))) {
1687				rstreason = BANDLIM_RST_OPENPORT;
1688				goto dropwithreset;
1689		}
1690		break;
1691
1692	/*
1693	 * If the state is SYN_SENT:
1694	 *	if seg contains an ACK, but not for our SYN, drop the input.
1695	 *	if seg contains a RST, then drop the connection.
1696	 *	if seg does not contain SYN, then drop it.
1697	 * Otherwise this is an acceptable SYN segment
1698	 *	initialize tp->rcv_nxt and tp->irs
1699	 *	if seg contains ack then advance tp->snd_una
1700	 *	if seg contains an ECE and ECN support is enabled, the stream
1701	 *	    is ECN capable.
1702	 *	if SYN has been acked change to ESTABLISHED else SYN_RCVD state
1703	 *	arrange for segment to be acked (eventually)
1704	 *	continue processing rest of data/controls, beginning with URG
1705	 */
1706	case TCPS_SYN_SENT:
1707		if ((thflags & TH_ACK) &&
1708		    (SEQ_LEQ(th->th_ack, tp->iss) ||
1709		     SEQ_GT(th->th_ack, tp->snd_max))) {
1710			rstreason = BANDLIM_UNLIMITED;
1711			goto dropwithreset;
1712		}
1713		if ((thflags & (TH_ACK|TH_RST)) == (TH_ACK|TH_RST))
1714			tp = tcp_drop(tp, ECONNREFUSED);
1715		if (thflags & TH_RST)
1716			goto drop;
1717		if (!(thflags & TH_SYN))
1718			goto drop;
1719
1720		tp->irs = th->th_seq;
1721		tcp_rcvseqinit(tp);
1722		if (thflags & TH_ACK) {
1723			TCPSTAT_INC(tcps_connects);
1724			soisconnected(so);
1725#ifdef MAC
1726			mac_socketpeer_set_from_mbuf(m, so);
1727#endif
1728			/* Do window scaling on this connection? */
1729			if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
1730				(TF_RCVD_SCALE|TF_REQ_SCALE)) {
1731				tp->rcv_scale = tp->request_r_scale;
1732			}
1733			tp->rcv_adv += tp->rcv_wnd;
1734			tp->snd_una++;		/* SYN is acked */
1735			/*
1736			 * If there's data, delay ACK; if there's also a FIN
1737			 * ACKNOW will be turned on later.
1738			 */
1739			if (DELAY_ACK(tp) && tlen != 0)
1740				tcp_timer_activate(tp, TT_DELACK,
1741				    tcp_delacktime);
1742			else
1743				tp->t_flags |= TF_ACKNOW;
1744
1745			if ((thflags & TH_ECE) && V_tcp_do_ecn) {
1746				tp->t_flags |= TF_ECN_PERMIT;
1747				TCPSTAT_INC(tcps_ecn_shs);
1748			}
1749
1750			/*
1751			 * Received <SYN,ACK> in SYN_SENT[*] state.
1752			 * Transitions:
1753			 *	SYN_SENT  --> ESTABLISHED
1754			 *	SYN_SENT* --> FIN_WAIT_1
1755			 */
1756			tp->t_starttime = ticks;
1757			if (tp->t_flags & TF_NEEDFIN) {
1758				tp->t_state = TCPS_FIN_WAIT_1;
1759				tp->t_flags &= ~TF_NEEDFIN;
1760				thflags &= ~TH_SYN;
1761			} else {
1762				tp->t_state = TCPS_ESTABLISHED;
1763				cc_conn_init(tp);
1764				tcp_timer_activate(tp, TT_KEEP, tcp_keepidle);
1765			}
1766		} else {
1767			/*
1768			 * Received initial SYN in SYN-SENT[*] state =>
1769			 * simultaneous open.  If segment contains CC option
1770			 * and there is a cached CC, apply TAO test.
1771			 * If it succeeds, connection is * half-synchronized.
1772			 * Otherwise, do 3-way handshake:
1773			 *        SYN-SENT -> SYN-RECEIVED
1774			 *        SYN-SENT* -> SYN-RECEIVED*
1775			 * If there was no CC option, clear cached CC value.
1776			 */
1777			tp->t_flags |= (TF_ACKNOW | TF_NEEDSYN);
1778			tcp_timer_activate(tp, TT_REXMT, 0);
1779			tp->t_state = TCPS_SYN_RECEIVED;
1780		}
1781
1782		KASSERT(ti_locked == TI_WLOCKED, ("%s: trimthenstep6: "
1783		    "ti_locked %d", __func__, ti_locked));
1784		INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
1785		INP_WLOCK_ASSERT(tp->t_inpcb);
1786
1787		/*
1788		 * Advance th->th_seq to correspond to first data byte.
1789		 * If data, trim to stay within window,
1790		 * dropping FIN if necessary.
1791		 */
1792		th->th_seq++;
1793		if (tlen > tp->rcv_wnd) {
1794			todrop = tlen - tp->rcv_wnd;
1795			m_adj(m, -todrop);
1796			tlen = tp->rcv_wnd;
1797			thflags &= ~TH_FIN;
1798			TCPSTAT_INC(tcps_rcvpackafterwin);
1799			TCPSTAT_ADD(tcps_rcvbyteafterwin, todrop);
1800		}
1801		tp->snd_wl1 = th->th_seq - 1;
1802		tp->rcv_up = th->th_seq;
1803		/*
1804		 * Client side of transaction: already sent SYN and data.
1805		 * If the remote host used T/TCP to validate the SYN,
1806		 * our data will be ACK'd; if so, enter normal data segment
1807		 * processing in the middle of step 5, ack processing.
1808		 * Otherwise, goto step 6.
1809		 */
1810		if (thflags & TH_ACK)
1811			goto process_ACK;
1812
1813		goto step6;
1814
1815	/*
1816	 * If the state is LAST_ACK or CLOSING or TIME_WAIT:
1817	 *      do normal processing.
1818	 *
1819	 * NB: Leftover from RFC1644 T/TCP.  Cases to be reused later.
1820	 */
1821	case TCPS_LAST_ACK:
1822	case TCPS_CLOSING:
1823		break;  /* continue normal processing */
1824	}
1825
1826	/*
1827	 * States other than LISTEN or SYN_SENT.
1828	 * First check the RST flag and sequence number since reset segments
1829	 * are exempt from the timestamp and connection count tests.  This
1830	 * fixes a bug introduced by the Stevens, vol. 2, p. 960 bugfix
1831	 * below which allowed reset segments in half the sequence space
1832	 * to fall though and be processed (which gives forged reset
1833	 * segments with a random sequence number a 50 percent chance of
1834	 * killing a connection).
1835	 * Then check timestamp, if present.
1836	 * Then check the connection count, if present.
1837	 * Then check that at least some bytes of segment are within
1838	 * receive window.  If segment begins before rcv_nxt,
1839	 * drop leading data (and SYN); if nothing left, just ack.
1840	 *
1841	 *
1842	 * If the RST bit is set, check the sequence number to see
1843	 * if this is a valid reset segment.
1844	 * RFC 793 page 37:
1845	 *   In all states except SYN-SENT, all reset (RST) segments
1846	 *   are validated by checking their SEQ-fields.  A reset is
1847	 *   valid if its sequence number is in the window.
1848	 * Note: this does not take into account delayed ACKs, so
1849	 *   we should test against last_ack_sent instead of rcv_nxt.
1850	 *   The sequence number in the reset segment is normally an
1851	 *   echo of our outgoing acknowlegement numbers, but some hosts
1852	 *   send a reset with the sequence number at the rightmost edge
1853	 *   of our receive window, and we have to handle this case.
1854	 * Note 2: Paul Watson's paper "Slipping in the Window" has shown
1855	 *   that brute force RST attacks are possible.  To combat this,
1856	 *   we use a much stricter check while in the ESTABLISHED state,
1857	 *   only accepting RSTs where the sequence number is equal to
1858	 *   last_ack_sent.  In all other states (the states in which a
1859	 *   RST is more likely), the more permissive check is used.
1860	 * If we have multiple segments in flight, the initial reset
1861	 * segment sequence numbers will be to the left of last_ack_sent,
1862	 * but they will eventually catch up.
1863	 * In any case, it never made sense to trim reset segments to
1864	 * fit the receive window since RFC 1122 says:
1865	 *   4.2.2.12  RST Segment: RFC-793 Section 3.4
1866	 *
1867	 *    A TCP SHOULD allow a received RST segment to include data.
1868	 *
1869	 *    DISCUSSION
1870	 *         It has been suggested that a RST segment could contain
1871	 *         ASCII text that encoded and explained the cause of the
1872	 *         RST.  No standard has yet been established for such
1873	 *         data.
1874	 *
1875	 * If the reset segment passes the sequence number test examine
1876	 * the state:
1877	 *    SYN_RECEIVED STATE:
1878	 *	If passive open, return to LISTEN state.
1879	 *	If active open, inform user that connection was refused.
1880	 *    ESTABLISHED, FIN_WAIT_1, FIN_WAIT_2, CLOSE_WAIT STATES:
1881	 *	Inform user that connection was reset, and close tcb.
1882	 *    CLOSING, LAST_ACK STATES:
1883	 *	Close the tcb.
1884	 *    TIME_WAIT STATE:
1885	 *	Drop the segment - see Stevens, vol. 2, p. 964 and
1886	 *      RFC 1337.
1887	 */
1888	if (thflags & TH_RST) {
1889		if (SEQ_GEQ(th->th_seq, tp->last_ack_sent - 1) &&
1890		    SEQ_LEQ(th->th_seq, tp->last_ack_sent + tp->rcv_wnd)) {
1891			switch (tp->t_state) {
1892
1893			case TCPS_SYN_RECEIVED:
1894				so->so_error = ECONNREFUSED;
1895				goto close;
1896
1897			case TCPS_ESTABLISHED:
1898				if (V_tcp_insecure_rst == 0 &&
1899				    !(SEQ_GEQ(th->th_seq, tp->rcv_nxt - 1) &&
1900				    SEQ_LEQ(th->th_seq, tp->rcv_nxt + 1)) &&
1901				    !(SEQ_GEQ(th->th_seq, tp->last_ack_sent - 1) &&
1902				    SEQ_LEQ(th->th_seq, tp->last_ack_sent + 1))) {
1903					TCPSTAT_INC(tcps_badrst);
1904					goto drop;
1905				}
1906				/* FALLTHROUGH */
1907			case TCPS_FIN_WAIT_1:
1908			case TCPS_FIN_WAIT_2:
1909			case TCPS_CLOSE_WAIT:
1910				so->so_error = ECONNRESET;
1911			close:
1912				KASSERT(ti_locked == TI_WLOCKED,
1913				    ("tcp_do_segment: TH_RST 1 ti_locked %d",
1914				    ti_locked));
1915				INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
1916
1917				tp->t_state = TCPS_CLOSED;
1918				TCPSTAT_INC(tcps_drops);
1919				tp = tcp_close(tp);
1920				break;
1921
1922			case TCPS_CLOSING:
1923			case TCPS_LAST_ACK:
1924				KASSERT(ti_locked == TI_WLOCKED,
1925				    ("tcp_do_segment: TH_RST 2 ti_locked %d",
1926				    ti_locked));
1927				INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
1928
1929				tp = tcp_close(tp);
1930				break;
1931			}
1932		}
1933		goto drop;
1934	}
1935
1936	/*
1937	 * RFC 1323 PAWS: If we have a timestamp reply on this segment
1938	 * and it's less than ts_recent, drop it.
1939	 */
1940	if ((to.to_flags & TOF_TS) != 0 && tp->ts_recent &&
1941	    TSTMP_LT(to.to_tsval, tp->ts_recent)) {
1942
1943		/* Check to see if ts_recent is over 24 days old.  */
1944		if (ticks - tp->ts_recent_age > TCP_PAWS_IDLE) {
1945			/*
1946			 * Invalidate ts_recent.  If this segment updates
1947			 * ts_recent, the age will be reset later and ts_recent
1948			 * will get a valid value.  If it does not, setting
1949			 * ts_recent to zero will at least satisfy the
1950			 * requirement that zero be placed in the timestamp
1951			 * echo reply when ts_recent isn't valid.  The
1952			 * age isn't reset until we get a valid ts_recent
1953			 * because we don't want out-of-order segments to be
1954			 * dropped when ts_recent is old.
1955			 */
1956			tp->ts_recent = 0;
1957		} else {
1958			TCPSTAT_INC(tcps_rcvduppack);
1959			TCPSTAT_ADD(tcps_rcvdupbyte, tlen);
1960			TCPSTAT_INC(tcps_pawsdrop);
1961			if (tlen)
1962				goto dropafterack;
1963			goto drop;
1964		}
1965	}
1966
1967	/*
1968	 * In the SYN-RECEIVED state, validate that the packet belongs to
1969	 * this connection before trimming the data to fit the receive
1970	 * window.  Check the sequence number versus IRS since we know
1971	 * the sequence numbers haven't wrapped.  This is a partial fix
1972	 * for the "LAND" DoS attack.
1973	 */
1974	if (tp->t_state == TCPS_SYN_RECEIVED && SEQ_LT(th->th_seq, tp->irs)) {
1975		rstreason = BANDLIM_RST_OPENPORT;
1976		goto dropwithreset;
1977	}
1978
1979	todrop = tp->rcv_nxt - th->th_seq;
1980	if (todrop > 0) {
1981		/*
1982		 * If this is a duplicate SYN for our current connection,
1983		 * advance over it and pretend and it's not a SYN.
1984		 */
1985		if (thflags & TH_SYN && th->th_seq == tp->irs) {
1986			thflags &= ~TH_SYN;
1987			th->th_seq++;
1988			if (th->th_urp > 1)
1989				th->th_urp--;
1990			else
1991				thflags &= ~TH_URG;
1992			todrop--;
1993		}
1994		/*
1995		 * Following if statement from Stevens, vol. 2, p. 960.
1996		 */
1997		if (todrop > tlen
1998		    || (todrop == tlen && (thflags & TH_FIN) == 0)) {
1999			/*
2000			 * Any valid FIN must be to the left of the window.
2001			 * At this point the FIN must be a duplicate or out
2002			 * of sequence; drop it.
2003			 */
2004			thflags &= ~TH_FIN;
2005
2006			/*
2007			 * Send an ACK to resynchronize and drop any data.
2008			 * But keep on processing for RST or ACK.
2009			 */
2010			tp->t_flags |= TF_ACKNOW;
2011			todrop = tlen;
2012			TCPSTAT_INC(tcps_rcvduppack);
2013			TCPSTAT_ADD(tcps_rcvdupbyte, todrop);
2014		} else {
2015			TCPSTAT_INC(tcps_rcvpartduppack);
2016			TCPSTAT_ADD(tcps_rcvpartdupbyte, todrop);
2017		}
2018		drop_hdrlen += todrop;	/* drop from the top afterwards */
2019		th->th_seq += todrop;
2020		tlen -= todrop;
2021		if (th->th_urp > todrop)
2022			th->th_urp -= todrop;
2023		else {
2024			thflags &= ~TH_URG;
2025			th->th_urp = 0;
2026		}
2027	}
2028
2029	/*
2030	 * If new data are received on a connection after the
2031	 * user processes are gone, then RST the other end.
2032	 */
2033	if ((so->so_state & SS_NOFDREF) &&
2034	    tp->t_state > TCPS_CLOSE_WAIT && tlen) {
2035		char *s;
2036
2037		KASSERT(ti_locked == TI_WLOCKED, ("%s: SS_NOFDEREF && "
2038		    "CLOSE_WAIT && tlen ti_locked %d", __func__, ti_locked));
2039		INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
2040
2041		if ((s = tcp_log_addrs(&tp->t_inpcb->inp_inc, th, NULL, NULL))) {
2042			log(LOG_DEBUG, "%s; %s: %s: Received %d bytes of data after socket "
2043			    "was closed, sending RST and removing tcpcb\n",
2044			    s, __func__, tcpstates[tp->t_state], tlen);
2045			free(s, M_TCPLOG);
2046		}
2047		tp = tcp_close(tp);
2048		TCPSTAT_INC(tcps_rcvafterclose);
2049		rstreason = BANDLIM_UNLIMITED;
2050		goto dropwithreset;
2051	}
2052
2053	/*
2054	 * If segment ends after window, drop trailing data
2055	 * (and PUSH and FIN); if nothing left, just ACK.
2056	 */
2057	todrop = (th->th_seq + tlen) - (tp->rcv_nxt + tp->rcv_wnd);
2058	if (todrop > 0) {
2059		TCPSTAT_INC(tcps_rcvpackafterwin);
2060		if (todrop >= tlen) {
2061			TCPSTAT_ADD(tcps_rcvbyteafterwin, tlen);
2062			/*
2063			 * If window is closed can only take segments at
2064			 * window edge, and have to drop data and PUSH from
2065			 * incoming segments.  Continue processing, but
2066			 * remember to ack.  Otherwise, drop segment
2067			 * and ack.
2068			 */
2069			if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
2070				tp->t_flags |= TF_ACKNOW;
2071				TCPSTAT_INC(tcps_rcvwinprobe);
2072			} else
2073				goto dropafterack;
2074		} else
2075			TCPSTAT_ADD(tcps_rcvbyteafterwin, todrop);
2076		m_adj(m, -todrop);
2077		tlen -= todrop;
2078		thflags &= ~(TH_PUSH|TH_FIN);
2079	}
2080
2081	/*
2082	 * If last ACK falls within this segment's sequence numbers,
2083	 * record its timestamp.
2084	 * NOTE:
2085	 * 1) That the test incorporates suggestions from the latest
2086	 *    proposal of the tcplw@cray.com list (Braden 1993/04/26).
2087	 * 2) That updating only on newer timestamps interferes with
2088	 *    our earlier PAWS tests, so this check should be solely
2089	 *    predicated on the sequence space of this segment.
2090	 * 3) That we modify the segment boundary check to be
2091	 *        Last.ACK.Sent <= SEG.SEQ + SEG.Len
2092	 *    instead of RFC1323's
2093	 *        Last.ACK.Sent < SEG.SEQ + SEG.Len,
2094	 *    This modified check allows us to overcome RFC1323's
2095	 *    limitations as described in Stevens TCP/IP Illustrated
2096	 *    Vol. 2 p.869. In such cases, we can still calculate the
2097	 *    RTT correctly when RCV.NXT == Last.ACK.Sent.
2098	 */
2099	if ((to.to_flags & TOF_TS) != 0 &&
2100	    SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
2101	    SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
2102		((thflags & (TH_SYN|TH_FIN)) != 0))) {
2103		tp->ts_recent_age = ticks;
2104		tp->ts_recent = to.to_tsval;
2105	}
2106
2107	/*
2108	 * If a SYN is in the window, then this is an
2109	 * error and we send an RST and drop the connection.
2110	 */
2111	if (thflags & TH_SYN) {
2112		KASSERT(ti_locked == TI_WLOCKED,
2113		    ("tcp_do_segment: TH_SYN ti_locked %d", ti_locked));
2114		INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
2115
2116		tp = tcp_drop(tp, ECONNRESET);
2117		rstreason = BANDLIM_UNLIMITED;
2118		goto drop;
2119	}
2120
2121	/*
2122	 * If the ACK bit is off:  if in SYN-RECEIVED state or SENDSYN
2123	 * flag is on (half-synchronized state), then queue data for
2124	 * later processing; else drop segment and return.
2125	 */
2126	if ((thflags & TH_ACK) == 0) {
2127		if (tp->t_state == TCPS_SYN_RECEIVED ||
2128		    (tp->t_flags & TF_NEEDSYN))
2129			goto step6;
2130		else if (tp->t_flags & TF_ACKNOW)
2131			goto dropafterack;
2132		else
2133			goto drop;
2134	}
2135
2136	/*
2137	 * Ack processing.
2138	 */
2139	switch (tp->t_state) {
2140
2141	/*
2142	 * In SYN_RECEIVED state, the ack ACKs our SYN, so enter
2143	 * ESTABLISHED state and continue processing.
2144	 * The ACK was checked above.
2145	 */
2146	case TCPS_SYN_RECEIVED:
2147
2148		TCPSTAT_INC(tcps_connects);
2149		soisconnected(so);
2150		/* Do window scaling? */
2151		if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
2152			(TF_RCVD_SCALE|TF_REQ_SCALE)) {
2153			tp->rcv_scale = tp->request_r_scale;
2154			tp->snd_wnd = tiwin;
2155		}
2156		/*
2157		 * Make transitions:
2158		 *      SYN-RECEIVED  -> ESTABLISHED
2159		 *      SYN-RECEIVED* -> FIN-WAIT-1
2160		 */
2161		tp->t_starttime = ticks;
2162		if (tp->t_flags & TF_NEEDFIN) {
2163			tp->t_state = TCPS_FIN_WAIT_1;
2164			tp->t_flags &= ~TF_NEEDFIN;
2165		} else {
2166			tp->t_state = TCPS_ESTABLISHED;
2167			cc_conn_init(tp);
2168			tcp_timer_activate(tp, TT_KEEP, tcp_keepidle);
2169		}
2170		/*
2171		 * If segment contains data or ACK, will call tcp_reass()
2172		 * later; if not, do so now to pass queued data to user.
2173		 */
2174		if (tlen == 0 && (thflags & TH_FIN) == 0)
2175			(void) tcp_reass(tp, (struct tcphdr *)0, 0,
2176			    (struct mbuf *)0);
2177		tp->snd_wl1 = th->th_seq - 1;
2178		/* FALLTHROUGH */
2179
2180	/*
2181	 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
2182	 * ACKs.  If the ack is in the range
2183	 *	tp->snd_una < th->th_ack <= tp->snd_max
2184	 * then advance tp->snd_una to th->th_ack and drop
2185	 * data from the retransmission queue.  If this ACK reflects
2186	 * more up to date window information we update our window information.
2187	 */
2188	case TCPS_ESTABLISHED:
2189	case TCPS_FIN_WAIT_1:
2190	case TCPS_FIN_WAIT_2:
2191	case TCPS_CLOSE_WAIT:
2192	case TCPS_CLOSING:
2193	case TCPS_LAST_ACK:
2194		if (SEQ_GT(th->th_ack, tp->snd_max)) {
2195			TCPSTAT_INC(tcps_rcvacktoomuch);
2196			goto dropafterack;
2197		}
2198		if ((tp->t_flags & TF_SACK_PERMIT) &&
2199		    ((to.to_flags & TOF_SACK) ||
2200		     !TAILQ_EMPTY(&tp->snd_holes)))
2201			tcp_sack_doack(tp, &to, th->th_ack);
2202		if (SEQ_LEQ(th->th_ack, tp->snd_una)) {
2203			if (tlen == 0 && tiwin == tp->snd_wnd) {
2204				TCPSTAT_INC(tcps_rcvdupack);
2205				/*
2206				 * If we have outstanding data (other than
2207				 * a window probe), this is a completely
2208				 * duplicate ack (ie, window info didn't
2209				 * change), the ack is the biggest we've
2210				 * seen and we've seen exactly our rexmt
2211				 * threshhold of them, assume a packet
2212				 * has been dropped and retransmit it.
2213				 * Kludge snd_nxt & the congestion
2214				 * window so we send only this one
2215				 * packet.
2216				 *
2217				 * We know we're losing at the current
2218				 * window size so do congestion avoidance
2219				 * (set ssthresh to half the current window
2220				 * and pull our congestion window back to
2221				 * the new ssthresh).
2222				 *
2223				 * Dup acks mean that packets have left the
2224				 * network (they're now cached at the receiver)
2225				 * so bump cwnd by the amount in the receiver
2226				 * to keep a constant cwnd packets in the
2227				 * network.
2228				 *
2229				 * When using TCP ECN, notify the peer that
2230				 * we reduced the cwnd.
2231				 */
2232				if (!tcp_timer_active(tp, TT_REXMT) ||
2233				    th->th_ack != tp->snd_una)
2234					tp->t_dupacks = 0;
2235				else if (++tp->t_dupacks > tcprexmtthresh ||
2236				     IN_FASTRECOVERY(tp->t_flags)) {
2237					cc_ack_received(tp, th, CC_DUPACK);
2238					if ((tp->t_flags & TF_SACK_PERMIT) &&
2239					    IN_FASTRECOVERY(tp->t_flags)) {
2240						int awnd;
2241
2242						/*
2243						 * Compute the amount of data in flight first.
2244						 * We can inject new data into the pipe iff
2245						 * we have less than 1/2 the original window's
2246						 * worth of data in flight.
2247						 */
2248						awnd = (tp->snd_nxt - tp->snd_fack) +
2249							tp->sackhint.sack_bytes_rexmit;
2250						if (awnd < tp->snd_ssthresh) {
2251							tp->snd_cwnd += tp->t_maxseg;
2252							if (tp->snd_cwnd > tp->snd_ssthresh)
2253								tp->snd_cwnd = tp->snd_ssthresh;
2254						}
2255					} else
2256						tp->snd_cwnd += tp->t_maxseg;
2257					(void) tcp_output(tp);
2258					goto drop;
2259				} else if (tp->t_dupacks == tcprexmtthresh) {
2260					tcp_seq onxt = tp->snd_nxt;
2261
2262					/*
2263					 * If we're doing sack, check to
2264					 * see if we're already in sack
2265					 * recovery. If we're not doing sack,
2266					 * check to see if we're in newreno
2267					 * recovery.
2268					 */
2269					if (tp->t_flags & TF_SACK_PERMIT) {
2270						if (IN_FASTRECOVERY(tp->t_flags)) {
2271							tp->t_dupacks = 0;
2272							break;
2273						}
2274					} else {
2275						if (SEQ_LEQ(th->th_ack,
2276						    tp->snd_recover)) {
2277							tp->t_dupacks = 0;
2278							break;
2279						}
2280					}
2281					/* Congestion signal before ack. */
2282					cc_cong_signal(tp, th, CC_NDUPACK);
2283					cc_ack_received(tp, th, CC_DUPACK);
2284					tcp_timer_activate(tp, TT_REXMT, 0);
2285					tp->t_rtttime = 0;
2286					if (tp->t_flags & TF_SACK_PERMIT) {
2287						TCPSTAT_INC(
2288						    tcps_sack_recovery_episode);
2289						tp->sack_newdata = tp->snd_nxt;
2290						tp->snd_cwnd = tp->t_maxseg;
2291						(void) tcp_output(tp);
2292						goto drop;
2293					}
2294					tp->snd_nxt = th->th_ack;
2295					tp->snd_cwnd = tp->t_maxseg;
2296					(void) tcp_output(tp);
2297					KASSERT(tp->snd_limited <= 2,
2298					    ("%s: tp->snd_limited too big",
2299					    __func__));
2300					tp->snd_cwnd = tp->snd_ssthresh +
2301					     tp->t_maxseg *
2302					     (tp->t_dupacks - tp->snd_limited);
2303					if (SEQ_GT(onxt, tp->snd_nxt))
2304						tp->snd_nxt = onxt;
2305					goto drop;
2306				} else if (V_tcp_do_rfc3042) {
2307					cc_ack_received(tp, th, CC_DUPACK);
2308					u_long oldcwnd = tp->snd_cwnd;
2309					tcp_seq oldsndmax = tp->snd_max;
2310					u_int sent;
2311
2312					KASSERT(tp->t_dupacks == 1 ||
2313					    tp->t_dupacks == 2,
2314					    ("%s: dupacks not 1 or 2",
2315					    __func__));
2316					if (tp->t_dupacks == 1)
2317						tp->snd_limited = 0;
2318					tp->snd_cwnd =
2319					    (tp->snd_nxt - tp->snd_una) +
2320					    (tp->t_dupacks - tp->snd_limited) *
2321					    tp->t_maxseg;
2322					(void) tcp_output(tp);
2323					sent = tp->snd_max - oldsndmax;
2324					if (sent > tp->t_maxseg) {
2325						KASSERT((tp->t_dupacks == 2 &&
2326						    tp->snd_limited == 0) ||
2327						   (sent == tp->t_maxseg + 1 &&
2328						    tp->t_flags & TF_SENTFIN),
2329						    ("%s: sent too much",
2330						    __func__));
2331						tp->snd_limited = 2;
2332					} else if (sent > 0)
2333						++tp->snd_limited;
2334					tp->snd_cwnd = oldcwnd;
2335					goto drop;
2336				}
2337			} else
2338				tp->t_dupacks = 0;
2339			break;
2340		}
2341
2342		KASSERT(SEQ_GT(th->th_ack, tp->snd_una),
2343		    ("%s: th_ack <= snd_una", __func__));
2344
2345		/*
2346		 * If the congestion window was inflated to account
2347		 * for the other side's cached packets, retract it.
2348		 */
2349		if (IN_FASTRECOVERY(tp->t_flags)) {
2350			if (SEQ_LT(th->th_ack, tp->snd_recover)) {
2351				if (tp->t_flags & TF_SACK_PERMIT)
2352					tcp_sack_partialack(tp, th);
2353				else
2354					tcp_newreno_partial_ack(tp, th);
2355			} else
2356				cc_post_recovery(tp, th);
2357		}
2358		tp->t_dupacks = 0;
2359		/*
2360		 * If we reach this point, ACK is not a duplicate,
2361		 *     i.e., it ACKs something we sent.
2362		 */
2363		if (tp->t_flags & TF_NEEDSYN) {
2364			/*
2365			 * T/TCP: Connection was half-synchronized, and our
2366			 * SYN has been ACK'd (so connection is now fully
2367			 * synchronized).  Go to non-starred state,
2368			 * increment snd_una for ACK of SYN, and check if
2369			 * we can do window scaling.
2370			 */
2371			tp->t_flags &= ~TF_NEEDSYN;
2372			tp->snd_una++;
2373			/* Do window scaling? */
2374			if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
2375				(TF_RCVD_SCALE|TF_REQ_SCALE)) {
2376				tp->rcv_scale = tp->request_r_scale;
2377				/* Send window already scaled. */
2378			}
2379		}
2380
2381process_ACK:
2382		INP_INFO_LOCK_ASSERT(&V_tcbinfo);
2383		KASSERT(ti_locked == TI_RLOCKED || ti_locked == TI_WLOCKED,
2384		    ("tcp_input: process_ACK ti_locked %d", ti_locked));
2385		INP_WLOCK_ASSERT(tp->t_inpcb);
2386
2387		acked = BYTES_THIS_ACK(tp, th);
2388		TCPSTAT_INC(tcps_rcvackpack);
2389		TCPSTAT_ADD(tcps_rcvackbyte, acked);
2390
2391		/*
2392		 * If we just performed our first retransmit, and the ACK
2393		 * arrives within our recovery window, then it was a mistake
2394		 * to do the retransmit in the first place.  Recover our
2395		 * original cwnd and ssthresh, and proceed to transmit where
2396		 * we left off.
2397		 */
2398		if (tp->t_rxtshift == 1 && (int)(ticks - tp->t_badrxtwin) < 0)
2399			cc_cong_signal(tp, th, CC_RTO_ERR);
2400
2401		/*
2402		 * If we have a timestamp reply, update smoothed
2403		 * round trip time.  If no timestamp is present but
2404		 * transmit timer is running and timed sequence
2405		 * number was acked, update smoothed round trip time.
2406		 * Since we now have an rtt measurement, cancel the
2407		 * timer backoff (cf., Phil Karn's retransmit alg.).
2408		 * Recompute the initial retransmit timer.
2409		 *
2410		 * Some boxes send broken timestamp replies
2411		 * during the SYN+ACK phase, ignore
2412		 * timestamps of 0 or we could calculate a
2413		 * huge RTT and blow up the retransmit timer.
2414		 */
2415		if ((to.to_flags & TOF_TS) != 0 &&
2416		    to.to_tsecr) {
2417			if (!tp->t_rttlow || tp->t_rttlow > ticks - to.to_tsecr)
2418				tp->t_rttlow = ticks - to.to_tsecr;
2419			tcp_xmit_timer(tp, ticks - to.to_tsecr + 1);
2420		} else if (tp->t_rtttime && SEQ_GT(th->th_ack, tp->t_rtseq)) {
2421			if (!tp->t_rttlow || tp->t_rttlow > ticks - tp->t_rtttime)
2422				tp->t_rttlow = ticks - tp->t_rtttime;
2423			tcp_xmit_timer(tp, ticks - tp->t_rtttime);
2424		}
2425
2426		/*
2427		 * If all outstanding data is acked, stop retransmit
2428		 * timer and remember to restart (more output or persist).
2429		 * If there is more data to be acked, restart retransmit
2430		 * timer, using current (possibly backed-off) value.
2431		 */
2432		if (th->th_ack == tp->snd_max) {
2433			tcp_timer_activate(tp, TT_REXMT, 0);
2434			needoutput = 1;
2435		} else if (!tcp_timer_active(tp, TT_PERSIST))
2436			tcp_timer_activate(tp, TT_REXMT, tp->t_rxtcur);
2437
2438		/*
2439		 * If no data (only SYN) was ACK'd,
2440		 *    skip rest of ACK processing.
2441		 */
2442		if (acked == 0)
2443			goto step6;
2444
2445		/*
2446		 * Let the congestion control algorithm update congestion
2447		 * control related information. This typically means increasing
2448		 * the congestion window.
2449		 */
2450		cc_ack_received(tp, th, CC_ACK);
2451
2452		SOCKBUF_LOCK(&so->so_snd);
2453		if (acked > so->so_snd.sb_cc) {
2454			tp->snd_wnd -= so->so_snd.sb_cc;
2455			sbdrop_locked(&so->so_snd, (int)so->so_snd.sb_cc);
2456			ourfinisacked = 1;
2457		} else {
2458			sbdrop_locked(&so->so_snd, acked);
2459			tp->snd_wnd -= acked;
2460			ourfinisacked = 0;
2461		}
2462		/* NB: sowwakeup_locked() does an implicit unlock. */
2463		sowwakeup_locked(so);
2464		/* Detect una wraparound. */
2465		if (!IN_RECOVERY(tp->t_flags) &&
2466		    SEQ_GT(tp->snd_una, tp->snd_recover) &&
2467		    SEQ_LEQ(th->th_ack, tp->snd_recover))
2468			tp->snd_recover = th->th_ack - 1;
2469		/* XXXLAS: Can this be moved up into cc_post_recovery? */
2470		if (IN_RECOVERY(tp->t_flags) &&
2471		    SEQ_GEQ(th->th_ack, tp->snd_recover)) {
2472			EXIT_RECOVERY(tp->t_flags);
2473		}
2474		tp->snd_una = th->th_ack;
2475		if (tp->t_flags & TF_SACK_PERMIT) {
2476			if (SEQ_GT(tp->snd_una, tp->snd_recover))
2477				tp->snd_recover = tp->snd_una;
2478		}
2479		if (SEQ_LT(tp->snd_nxt, tp->snd_una))
2480			tp->snd_nxt = tp->snd_una;
2481
2482		switch (tp->t_state) {
2483
2484		/*
2485		 * In FIN_WAIT_1 STATE in addition to the processing
2486		 * for the ESTABLISHED state if our FIN is now acknowledged
2487		 * then enter FIN_WAIT_2.
2488		 */
2489		case TCPS_FIN_WAIT_1:
2490			if (ourfinisacked) {
2491				/*
2492				 * If we can't receive any more
2493				 * data, then closing user can proceed.
2494				 * Starting the timer is contrary to the
2495				 * specification, but if we don't get a FIN
2496				 * we'll hang forever.
2497				 *
2498				 * XXXjl:
2499				 * we should release the tp also, and use a
2500				 * compressed state.
2501				 */
2502				if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
2503					int timeout;
2504
2505					soisdisconnected(so);
2506					timeout = (tcp_fast_finwait2_recycle) ?
2507						tcp_finwait2_timeout : tcp_maxidle;
2508					tcp_timer_activate(tp, TT_2MSL, timeout);
2509				}
2510				tp->t_state = TCPS_FIN_WAIT_2;
2511			}
2512			break;
2513
2514		/*
2515		 * In CLOSING STATE in addition to the processing for
2516		 * the ESTABLISHED state if the ACK acknowledges our FIN
2517		 * then enter the TIME-WAIT state, otherwise ignore
2518		 * the segment.
2519		 */
2520		case TCPS_CLOSING:
2521			if (ourfinisacked) {
2522				INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
2523				tcp_twstart(tp);
2524				INP_INFO_WUNLOCK(&V_tcbinfo);
2525				m_freem(m);
2526				return;
2527			}
2528			break;
2529
2530		/*
2531		 * In LAST_ACK, we may still be waiting for data to drain
2532		 * and/or to be acked, as well as for the ack of our FIN.
2533		 * If our FIN is now acknowledged, delete the TCB,
2534		 * enter the closed state and return.
2535		 */
2536		case TCPS_LAST_ACK:
2537			if (ourfinisacked) {
2538				INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
2539				tp = tcp_close(tp);
2540				goto drop;
2541			}
2542			break;
2543		}
2544	}
2545
2546step6:
2547	INP_INFO_LOCK_ASSERT(&V_tcbinfo);
2548	KASSERT(ti_locked == TI_RLOCKED || ti_locked == TI_WLOCKED,
2549	    ("tcp_do_segment: step6 ti_locked %d", ti_locked));
2550	INP_WLOCK_ASSERT(tp->t_inpcb);
2551
2552	/*
2553	 * Update window information.
2554	 * Don't look at window if no ACK: TAC's send garbage on first SYN.
2555	 */
2556	if ((thflags & TH_ACK) &&
2557	    (SEQ_LT(tp->snd_wl1, th->th_seq) ||
2558	    (tp->snd_wl1 == th->th_seq && (SEQ_LT(tp->snd_wl2, th->th_ack) ||
2559	     (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))))) {
2560		/* keep track of pure window updates */
2561		if (tlen == 0 &&
2562		    tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)
2563			TCPSTAT_INC(tcps_rcvwinupd);
2564		tp->snd_wnd = tiwin;
2565		tp->snd_wl1 = th->th_seq;
2566		tp->snd_wl2 = th->th_ack;
2567		if (tp->snd_wnd > tp->max_sndwnd)
2568			tp->max_sndwnd = tp->snd_wnd;
2569		needoutput = 1;
2570	}
2571
2572	/*
2573	 * Process segments with URG.
2574	 */
2575	if ((thflags & TH_URG) && th->th_urp &&
2576	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2577		/*
2578		 * This is a kludge, but if we receive and accept
2579		 * random urgent pointers, we'll crash in
2580		 * soreceive.  It's hard to imagine someone
2581		 * actually wanting to send this much urgent data.
2582		 */
2583		SOCKBUF_LOCK(&so->so_rcv);
2584		if (th->th_urp + so->so_rcv.sb_cc > sb_max) {
2585			th->th_urp = 0;			/* XXX */
2586			thflags &= ~TH_URG;		/* XXX */
2587			SOCKBUF_UNLOCK(&so->so_rcv);	/* XXX */
2588			goto dodata;			/* XXX */
2589		}
2590		/*
2591		 * If this segment advances the known urgent pointer,
2592		 * then mark the data stream.  This should not happen
2593		 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
2594		 * a FIN has been received from the remote side.
2595		 * In these states we ignore the URG.
2596		 *
2597		 * According to RFC961 (Assigned Protocols),
2598		 * the urgent pointer points to the last octet
2599		 * of urgent data.  We continue, however,
2600		 * to consider it to indicate the first octet
2601		 * of data past the urgent section as the original
2602		 * spec states (in one of two places).
2603		 */
2604		if (SEQ_GT(th->th_seq+th->th_urp, tp->rcv_up)) {
2605			tp->rcv_up = th->th_seq + th->th_urp;
2606			so->so_oobmark = so->so_rcv.sb_cc +
2607			    (tp->rcv_up - tp->rcv_nxt) - 1;
2608			if (so->so_oobmark == 0)
2609				so->so_rcv.sb_state |= SBS_RCVATMARK;
2610			sohasoutofband(so);
2611			tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
2612		}
2613		SOCKBUF_UNLOCK(&so->so_rcv);
2614		/*
2615		 * Remove out of band data so doesn't get presented to user.
2616		 * This can happen independent of advancing the URG pointer,
2617		 * but if two URG's are pending at once, some out-of-band
2618		 * data may creep in... ick.
2619		 */
2620		if (th->th_urp <= (u_long)tlen &&
2621		    !(so->so_options & SO_OOBINLINE)) {
2622			/* hdr drop is delayed */
2623			tcp_pulloutofband(so, th, m, drop_hdrlen);
2624		}
2625	} else {
2626		/*
2627		 * If no out of band data is expected,
2628		 * pull receive urgent pointer along
2629		 * with the receive window.
2630		 */
2631		if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
2632			tp->rcv_up = tp->rcv_nxt;
2633	}
2634dodata:							/* XXX */
2635	INP_INFO_LOCK_ASSERT(&V_tcbinfo);
2636	KASSERT(ti_locked == TI_RLOCKED || ti_locked == TI_WLOCKED,
2637	    ("tcp_do_segment: dodata ti_locked %d", ti_locked));
2638	INP_WLOCK_ASSERT(tp->t_inpcb);
2639
2640	/*
2641	 * Process the segment text, merging it into the TCP sequencing queue,
2642	 * and arranging for acknowledgment of receipt if necessary.
2643	 * This process logically involves adjusting tp->rcv_wnd as data
2644	 * is presented to the user (this happens in tcp_usrreq.c,
2645	 * case PRU_RCVD).  If a FIN has already been received on this
2646	 * connection then we just ignore the text.
2647	 */
2648	if ((tlen || (thflags & TH_FIN)) &&
2649	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2650		tcp_seq save_start = th->th_seq;
2651		m_adj(m, drop_hdrlen);	/* delayed header drop */
2652		/*
2653		 * Insert segment which includes th into TCP reassembly queue
2654		 * with control block tp.  Set thflags to whether reassembly now
2655		 * includes a segment with FIN.  This handles the common case
2656		 * inline (segment is the next to be received on an established
2657		 * connection, and the queue is empty), avoiding linkage into
2658		 * and removal from the queue and repetition of various
2659		 * conversions.
2660		 * Set DELACK for segments received in order, but ack
2661		 * immediately when segments are out of order (so
2662		 * fast retransmit can work).
2663		 */
2664		if (th->th_seq == tp->rcv_nxt &&
2665		    LIST_EMPTY(&tp->t_segq) &&
2666		    TCPS_HAVEESTABLISHED(tp->t_state)) {
2667			if (DELAY_ACK(tp))
2668				tp->t_flags |= TF_DELACK;
2669			else
2670				tp->t_flags |= TF_ACKNOW;
2671			tp->rcv_nxt += tlen;
2672			thflags = th->th_flags & TH_FIN;
2673			TCPSTAT_INC(tcps_rcvpack);
2674			TCPSTAT_ADD(tcps_rcvbyte, tlen);
2675			ND6_HINT(tp);
2676			SOCKBUF_LOCK(&so->so_rcv);
2677			if (so->so_rcv.sb_state & SBS_CANTRCVMORE)
2678				m_freem(m);
2679			else
2680				sbappendstream_locked(&so->so_rcv, m);
2681			/* NB: sorwakeup_locked() does an implicit unlock. */
2682			sorwakeup_locked(so);
2683		} else {
2684			/*
2685			 * XXX: Due to the header drop above "th" is
2686			 * theoretically invalid by now.  Fortunately
2687			 * m_adj() doesn't actually frees any mbufs
2688			 * when trimming from the head.
2689			 */
2690			thflags = tcp_reass(tp, th, &tlen, m);
2691			tp->t_flags |= TF_ACKNOW;
2692		}
2693		if (tlen > 0 && (tp->t_flags & TF_SACK_PERMIT))
2694			tcp_update_sack_list(tp, save_start, save_start + tlen);
2695#if 0
2696		/*
2697		 * Note the amount of data that peer has sent into
2698		 * our window, in order to estimate the sender's
2699		 * buffer size.
2700		 * XXX: Unused.
2701		 */
2702		len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
2703#endif
2704	} else {
2705		m_freem(m);
2706		thflags &= ~TH_FIN;
2707	}
2708
2709	/*
2710	 * If FIN is received ACK the FIN and let the user know
2711	 * that the connection is closing.
2712	 */
2713	if (thflags & TH_FIN) {
2714		if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2715			socantrcvmore(so);
2716			/*
2717			 * If connection is half-synchronized
2718			 * (ie NEEDSYN flag on) then delay ACK,
2719			 * so it may be piggybacked when SYN is sent.
2720			 * Otherwise, since we received a FIN then no
2721			 * more input can be expected, send ACK now.
2722			 */
2723			if (tp->t_flags & TF_NEEDSYN)
2724				tp->t_flags |= TF_DELACK;
2725			else
2726				tp->t_flags |= TF_ACKNOW;
2727			tp->rcv_nxt++;
2728		}
2729		switch (tp->t_state) {
2730
2731		/*
2732		 * In SYN_RECEIVED and ESTABLISHED STATES
2733		 * enter the CLOSE_WAIT state.
2734		 */
2735		case TCPS_SYN_RECEIVED:
2736			tp->t_starttime = ticks;
2737			/* FALLTHROUGH */
2738		case TCPS_ESTABLISHED:
2739			tp->t_state = TCPS_CLOSE_WAIT;
2740			break;
2741
2742		/*
2743		 * If still in FIN_WAIT_1 STATE FIN has not been acked so
2744		 * enter the CLOSING state.
2745		 */
2746		case TCPS_FIN_WAIT_1:
2747			tp->t_state = TCPS_CLOSING;
2748			break;
2749
2750		/*
2751		 * In FIN_WAIT_2 state enter the TIME_WAIT state,
2752		 * starting the time-wait timer, turning off the other
2753		 * standard timers.
2754		 */
2755		case TCPS_FIN_WAIT_2:
2756			INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
2757			KASSERT(ti_locked == TI_WLOCKED, ("%s: dodata "
2758			    "TCP_FIN_WAIT_2 ti_locked: %d", __func__,
2759			    ti_locked));
2760
2761			tcp_twstart(tp);
2762			INP_INFO_WUNLOCK(&V_tcbinfo);
2763			return;
2764		}
2765	}
2766	if (ti_locked == TI_RLOCKED)
2767		INP_INFO_RUNLOCK(&V_tcbinfo);
2768	else if (ti_locked == TI_WLOCKED)
2769		INP_INFO_WUNLOCK(&V_tcbinfo);
2770	else
2771		panic("%s: dodata epilogue ti_locked %d", __func__,
2772		    ti_locked);
2773	ti_locked = TI_UNLOCKED;
2774
2775#ifdef TCPDEBUG
2776	if (so->so_options & SO_DEBUG)
2777		tcp_trace(TA_INPUT, ostate, tp, (void *)tcp_saveipgen,
2778			  &tcp_savetcp, 0);
2779#endif
2780
2781	/*
2782	 * Return any desired output.
2783	 */
2784	if (needoutput || (tp->t_flags & TF_ACKNOW))
2785		(void) tcp_output(tp);
2786
2787check_delack:
2788	KASSERT(ti_locked == TI_UNLOCKED, ("%s: check_delack ti_locked %d",
2789	    __func__, ti_locked));
2790	INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
2791	INP_WLOCK_ASSERT(tp->t_inpcb);
2792
2793	if (tp->t_flags & TF_DELACK) {
2794		tp->t_flags &= ~TF_DELACK;
2795		tcp_timer_activate(tp, TT_DELACK, tcp_delacktime);
2796	}
2797	INP_WUNLOCK(tp->t_inpcb);
2798	return;
2799
2800dropafterack:
2801	KASSERT(ti_locked == TI_RLOCKED || ti_locked == TI_WLOCKED,
2802	    ("tcp_do_segment: dropafterack ti_locked %d", ti_locked));
2803
2804	/*
2805	 * Generate an ACK dropping incoming segment if it occupies
2806	 * sequence space, where the ACK reflects our state.
2807	 *
2808	 * We can now skip the test for the RST flag since all
2809	 * paths to this code happen after packets containing
2810	 * RST have been dropped.
2811	 *
2812	 * In the SYN-RECEIVED state, don't send an ACK unless the
2813	 * segment we received passes the SYN-RECEIVED ACK test.
2814	 * If it fails send a RST.  This breaks the loop in the
2815	 * "LAND" DoS attack, and also prevents an ACK storm
2816	 * between two listening ports that have been sent forged
2817	 * SYN segments, each with the source address of the other.
2818	 */
2819	if (tp->t_state == TCPS_SYN_RECEIVED && (thflags & TH_ACK) &&
2820	    (SEQ_GT(tp->snd_una, th->th_ack) ||
2821	     SEQ_GT(th->th_ack, tp->snd_max)) ) {
2822		rstreason = BANDLIM_RST_OPENPORT;
2823		goto dropwithreset;
2824	}
2825#ifdef TCPDEBUG
2826	if (so->so_options & SO_DEBUG)
2827		tcp_trace(TA_DROP, ostate, tp, (void *)tcp_saveipgen,
2828			  &tcp_savetcp, 0);
2829#endif
2830	if (ti_locked == TI_RLOCKED)
2831		INP_INFO_RUNLOCK(&V_tcbinfo);
2832	else if (ti_locked == TI_WLOCKED)
2833		INP_INFO_WUNLOCK(&V_tcbinfo);
2834	else
2835		panic("%s: dropafterack epilogue ti_locked %d", __func__,
2836		    ti_locked);
2837	ti_locked = TI_UNLOCKED;
2838
2839	tp->t_flags |= TF_ACKNOW;
2840	(void) tcp_output(tp);
2841	INP_WUNLOCK(tp->t_inpcb);
2842	m_freem(m);
2843	return;
2844
2845dropwithreset:
2846	if (ti_locked == TI_RLOCKED)
2847		INP_INFO_RUNLOCK(&V_tcbinfo);
2848	else if (ti_locked == TI_WLOCKED)
2849		INP_INFO_WUNLOCK(&V_tcbinfo);
2850	else
2851		panic("%s: dropwithreset ti_locked %d", __func__, ti_locked);
2852	ti_locked = TI_UNLOCKED;
2853
2854	if (tp != NULL) {
2855		tcp_dropwithreset(m, th, tp, tlen, rstreason);
2856		INP_WUNLOCK(tp->t_inpcb);
2857	} else
2858		tcp_dropwithreset(m, th, NULL, tlen, rstreason);
2859	return;
2860
2861drop:
2862	if (ti_locked == TI_RLOCKED)
2863		INP_INFO_RUNLOCK(&V_tcbinfo);
2864	else if (ti_locked == TI_WLOCKED)
2865		INP_INFO_WUNLOCK(&V_tcbinfo);
2866#ifdef INVARIANTS
2867	else
2868		INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
2869#endif
2870	ti_locked = TI_UNLOCKED;
2871
2872	/*
2873	 * Drop space held by incoming segment and return.
2874	 */
2875#ifdef TCPDEBUG
2876	if (tp == NULL || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
2877		tcp_trace(TA_DROP, ostate, tp, (void *)tcp_saveipgen,
2878			  &tcp_savetcp, 0);
2879#endif
2880	if (tp != NULL)
2881		INP_WUNLOCK(tp->t_inpcb);
2882	m_freem(m);
2883}
2884
2885/*
2886 * Issue RST and make ACK acceptable to originator of segment.
2887 * The mbuf must still include the original packet header.
2888 * tp may be NULL.
2889 */
2890static void
2891tcp_dropwithreset(struct mbuf *m, struct tcphdr *th, struct tcpcb *tp,
2892    int tlen, int rstreason)
2893{
2894	struct ip *ip;
2895#ifdef INET6
2896	struct ip6_hdr *ip6;
2897#endif
2898
2899	if (tp != NULL) {
2900		INP_WLOCK_ASSERT(tp->t_inpcb);
2901	}
2902
2903	/* Don't bother if destination was broadcast/multicast. */
2904	if ((th->th_flags & TH_RST) || m->m_flags & (M_BCAST|M_MCAST))
2905		goto drop;
2906#ifdef INET6
2907	if (mtod(m, struct ip *)->ip_v == 6) {
2908		ip6 = mtod(m, struct ip6_hdr *);
2909		if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) ||
2910		    IN6_IS_ADDR_MULTICAST(&ip6->ip6_src))
2911			goto drop;
2912		/* IPv6 anycast check is done at tcp6_input() */
2913	} else
2914#endif
2915	{
2916		ip = mtod(m, struct ip *);
2917		if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
2918		    IN_MULTICAST(ntohl(ip->ip_src.s_addr)) ||
2919		    ip->ip_src.s_addr == htonl(INADDR_BROADCAST) ||
2920		    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
2921			goto drop;
2922	}
2923
2924	/* Perform bandwidth limiting. */
2925	if (badport_bandlim(rstreason) < 0)
2926		goto drop;
2927
2928	/* tcp_respond consumes the mbuf chain. */
2929	if (th->th_flags & TH_ACK) {
2930		tcp_respond(tp, mtod(m, void *), th, m, (tcp_seq)0,
2931		    th->th_ack, TH_RST);
2932	} else {
2933		if (th->th_flags & TH_SYN)
2934			tlen++;
2935		tcp_respond(tp, mtod(m, void *), th, m, th->th_seq+tlen,
2936		    (tcp_seq)0, TH_RST|TH_ACK);
2937	}
2938	return;
2939drop:
2940	m_freem(m);
2941}
2942
2943/*
2944 * Parse TCP options and place in tcpopt.
2945 */
2946static void
2947tcp_dooptions(struct tcpopt *to, u_char *cp, int cnt, int flags)
2948{
2949	int opt, optlen;
2950
2951	to->to_flags = 0;
2952	for (; cnt > 0; cnt -= optlen, cp += optlen) {
2953		opt = cp[0];
2954		if (opt == TCPOPT_EOL)
2955			break;
2956		if (opt == TCPOPT_NOP)
2957			optlen = 1;
2958		else {
2959			if (cnt < 2)
2960				break;
2961			optlen = cp[1];
2962			if (optlen < 2 || optlen > cnt)
2963				break;
2964		}
2965		switch (opt) {
2966		case TCPOPT_MAXSEG:
2967			if (optlen != TCPOLEN_MAXSEG)
2968				continue;
2969			if (!(flags & TO_SYN))
2970				continue;
2971			to->to_flags |= TOF_MSS;
2972			bcopy((char *)cp + 2,
2973			    (char *)&to->to_mss, sizeof(to->to_mss));
2974			to->to_mss = ntohs(to->to_mss);
2975			break;
2976		case TCPOPT_WINDOW:
2977			if (optlen != TCPOLEN_WINDOW)
2978				continue;
2979			if (!(flags & TO_SYN))
2980				continue;
2981			to->to_flags |= TOF_SCALE;
2982			to->to_wscale = min(cp[2], TCP_MAX_WINSHIFT);
2983			break;
2984		case TCPOPT_TIMESTAMP:
2985			if (optlen != TCPOLEN_TIMESTAMP)
2986				continue;
2987			to->to_flags |= TOF_TS;
2988			bcopy((char *)cp + 2,
2989			    (char *)&to->to_tsval, sizeof(to->to_tsval));
2990			to->to_tsval = ntohl(to->to_tsval);
2991			bcopy((char *)cp + 6,
2992			    (char *)&to->to_tsecr, sizeof(to->to_tsecr));
2993			to->to_tsecr = ntohl(to->to_tsecr);
2994			break;
2995#ifdef TCP_SIGNATURE
2996		/*
2997		 * XXX In order to reply to a host which has set the
2998		 * TCP_SIGNATURE option in its initial SYN, we have to
2999		 * record the fact that the option was observed here
3000		 * for the syncache code to perform the correct response.
3001		 */
3002		case TCPOPT_SIGNATURE:
3003			if (optlen != TCPOLEN_SIGNATURE)
3004				continue;
3005			to->to_flags |= TOF_SIGNATURE;
3006			to->to_signature = cp + 2;
3007			break;
3008#endif
3009		case TCPOPT_SACK_PERMITTED:
3010			if (optlen != TCPOLEN_SACK_PERMITTED)
3011				continue;
3012			if (!(flags & TO_SYN))
3013				continue;
3014			if (!V_tcp_do_sack)
3015				continue;
3016			to->to_flags |= TOF_SACKPERM;
3017			break;
3018		case TCPOPT_SACK:
3019			if (optlen <= 2 || (optlen - 2) % TCPOLEN_SACK != 0)
3020				continue;
3021			if (flags & TO_SYN)
3022				continue;
3023			to->to_flags |= TOF_SACK;
3024			to->to_nsacks = (optlen - 2) / TCPOLEN_SACK;
3025			to->to_sacks = cp + 2;
3026			TCPSTAT_INC(tcps_sack_rcv_blocks);
3027			break;
3028		default:
3029			continue;
3030		}
3031	}
3032}
3033
3034/*
3035 * Pull out of band byte out of a segment so
3036 * it doesn't appear in the user's data queue.
3037 * It is still reflected in the segment length for
3038 * sequencing purposes.
3039 */
3040static void
3041tcp_pulloutofband(struct socket *so, struct tcphdr *th, struct mbuf *m,
3042    int off)
3043{
3044	int cnt = off + th->th_urp - 1;
3045
3046	while (cnt >= 0) {
3047		if (m->m_len > cnt) {
3048			char *cp = mtod(m, caddr_t) + cnt;
3049			struct tcpcb *tp = sototcpcb(so);
3050
3051			INP_WLOCK_ASSERT(tp->t_inpcb);
3052
3053			tp->t_iobc = *cp;
3054			tp->t_oobflags |= TCPOOB_HAVEDATA;
3055			bcopy(cp+1, cp, (unsigned)(m->m_len - cnt - 1));
3056			m->m_len--;
3057			if (m->m_flags & M_PKTHDR)
3058				m->m_pkthdr.len--;
3059			return;
3060		}
3061		cnt -= m->m_len;
3062		m = m->m_next;
3063		if (m == NULL)
3064			break;
3065	}
3066	panic("tcp_pulloutofband");
3067}
3068
3069/*
3070 * Collect new round-trip time estimate
3071 * and update averages and current timeout.
3072 */
3073static void
3074tcp_xmit_timer(struct tcpcb *tp, int rtt)
3075{
3076	int delta;
3077
3078	INP_WLOCK_ASSERT(tp->t_inpcb);
3079
3080	TCPSTAT_INC(tcps_rttupdated);
3081	tp->t_rttupdated++;
3082	if (tp->t_srtt != 0) {
3083		/*
3084		 * srtt is stored as fixed point with 5 bits after the
3085		 * binary point (i.e., scaled by 8).  The following magic
3086		 * is equivalent to the smoothing algorithm in rfc793 with
3087		 * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed
3088		 * point).  Adjust rtt to origin 0.
3089		 */
3090		delta = ((rtt - 1) << TCP_DELTA_SHIFT)
3091			- (tp->t_srtt >> (TCP_RTT_SHIFT - TCP_DELTA_SHIFT));
3092
3093		if ((tp->t_srtt += delta) <= 0)
3094			tp->t_srtt = 1;
3095
3096		/*
3097		 * We accumulate a smoothed rtt variance (actually, a
3098		 * smoothed mean difference), then set the retransmit
3099		 * timer to smoothed rtt + 4 times the smoothed variance.
3100		 * rttvar is stored as fixed point with 4 bits after the
3101		 * binary point (scaled by 16).  The following is
3102		 * equivalent to rfc793 smoothing with an alpha of .75
3103		 * (rttvar = rttvar*3/4 + |delta| / 4).  This replaces
3104		 * rfc793's wired-in beta.
3105		 */
3106		if (delta < 0)
3107			delta = -delta;
3108		delta -= tp->t_rttvar >> (TCP_RTTVAR_SHIFT - TCP_DELTA_SHIFT);
3109		if ((tp->t_rttvar += delta) <= 0)
3110			tp->t_rttvar = 1;
3111		if (tp->t_rttbest > tp->t_srtt + tp->t_rttvar)
3112		    tp->t_rttbest = tp->t_srtt + tp->t_rttvar;
3113	} else {
3114		/*
3115		 * No rtt measurement yet - use the unsmoothed rtt.
3116		 * Set the variance to half the rtt (so our first
3117		 * retransmit happens at 3*rtt).
3118		 */
3119		tp->t_srtt = rtt << TCP_RTT_SHIFT;
3120		tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT - 1);
3121		tp->t_rttbest = tp->t_srtt + tp->t_rttvar;
3122	}
3123	tp->t_rtttime = 0;
3124	tp->t_rxtshift = 0;
3125
3126	/*
3127	 * the retransmit should happen at rtt + 4 * rttvar.
3128	 * Because of the way we do the smoothing, srtt and rttvar
3129	 * will each average +1/2 tick of bias.  When we compute
3130	 * the retransmit timer, we want 1/2 tick of rounding and
3131	 * 1 extra tick because of +-1/2 tick uncertainty in the
3132	 * firing of the timer.  The bias will give us exactly the
3133	 * 1.5 tick we need.  But, because the bias is
3134	 * statistical, we have to test that we don't drop below
3135	 * the minimum feasible timer (which is 2 ticks).
3136	 */
3137	TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
3138		      max(tp->t_rttmin, rtt + 2), TCPTV_REXMTMAX);
3139
3140	/*
3141	 * We received an ack for a packet that wasn't retransmitted;
3142	 * it is probably safe to discard any error indications we've
3143	 * received recently.  This isn't quite right, but close enough
3144	 * for now (a route might have failed after we sent a segment,
3145	 * and the return path might not be symmetrical).
3146	 */
3147	tp->t_softerror = 0;
3148}
3149
3150/*
3151 * Determine a reasonable value for maxseg size.
3152 * If the route is known, check route for mtu.
3153 * If none, use an mss that can be handled on the outgoing
3154 * interface without forcing IP to fragment; if bigger than
3155 * an mbuf cluster (MCLBYTES), round down to nearest multiple of MCLBYTES
3156 * to utilize large mbufs.  If no route is found, route has no mtu,
3157 * or the destination isn't local, use a default, hopefully conservative
3158 * size (usually 512 or the default IP max size, but no more than the mtu
3159 * of the interface), as we can't discover anything about intervening
3160 * gateways or networks.  We also initialize the congestion/slow start
3161 * window to be a single segment if the destination isn't local.
3162 * While looking at the routing entry, we also initialize other path-dependent
3163 * parameters from pre-set or cached values in the routing entry.
3164 *
3165 * Also take into account the space needed for options that we
3166 * send regularly.  Make maxseg shorter by that amount to assure
3167 * that we can send maxseg amount of data even when the options
3168 * are present.  Store the upper limit of the length of options plus
3169 * data in maxopd.
3170 *
3171 * In case of T/TCP, we call this routine during implicit connection
3172 * setup as well (offer = -1), to initialize maxseg from the cached
3173 * MSS of our peer.
3174 *
3175 * NOTE that this routine is only called when we process an incoming
3176 * segment. Outgoing SYN/ACK MSS settings are handled in tcp_mssopt().
3177 */
3178void
3179tcp_mss_update(struct tcpcb *tp, int offer,
3180    struct hc_metrics_lite *metricptr, int *mtuflags)
3181{
3182	int mss;
3183	u_long maxmtu;
3184	struct inpcb *inp = tp->t_inpcb;
3185	struct hc_metrics_lite metrics;
3186	int origoffer = offer;
3187#ifdef INET6
3188	int isipv6 = ((inp->inp_vflag & INP_IPV6) != 0) ? 1 : 0;
3189	size_t min_protoh = isipv6 ?
3190			    sizeof (struct ip6_hdr) + sizeof (struct tcphdr) :
3191			    sizeof (struct tcpiphdr);
3192#else
3193	const size_t min_protoh = sizeof(struct tcpiphdr);
3194#endif
3195
3196	INP_WLOCK_ASSERT(tp->t_inpcb);
3197
3198	/* Initialize. */
3199#ifdef INET6
3200	if (isipv6) {
3201		maxmtu = tcp_maxmtu6(&inp->inp_inc, mtuflags);
3202		tp->t_maxopd = tp->t_maxseg = V_tcp_v6mssdflt;
3203	} else
3204#endif
3205	{
3206		maxmtu = tcp_maxmtu(&inp->inp_inc, mtuflags);
3207		tp->t_maxopd = tp->t_maxseg = V_tcp_mssdflt;
3208	}
3209
3210	/*
3211	 * No route to sender, stay with default mss and return.
3212	 */
3213	if (maxmtu == 0) {
3214		/*
3215		 * In case we return early we need to initialize metrics
3216		 * to a defined state as tcp_hc_get() would do for us
3217		 * if there was no cache hit.
3218		 */
3219		if (metricptr != NULL)
3220			bzero(metricptr, sizeof(struct hc_metrics_lite));
3221		return;
3222	}
3223
3224	/* What have we got? */
3225	switch (offer) {
3226		case 0:
3227			/*
3228			 * Offer == 0 means that there was no MSS on the SYN
3229			 * segment, in this case we use tcp_mssdflt as
3230			 * already assigned to t_maxopd above.
3231			 */
3232			offer = tp->t_maxopd;
3233			break;
3234
3235		case -1:
3236			/*
3237			 * Offer == -1 means that we didn't receive SYN yet.
3238			 */
3239			/* FALLTHROUGH */
3240
3241		default:
3242			/*
3243			 * Prevent DoS attack with too small MSS. Round up
3244			 * to at least minmss.
3245			 */
3246			offer = max(offer, V_tcp_minmss);
3247	}
3248
3249	/*
3250	 * rmx information is now retrieved from tcp_hostcache.
3251	 */
3252	tcp_hc_get(&inp->inp_inc, &metrics);
3253	if (metricptr != NULL)
3254		bcopy(&metrics, metricptr, sizeof(struct hc_metrics_lite));
3255
3256	/*
3257	 * If there's a discovered mtu int tcp hostcache, use it
3258	 * else, use the link mtu.
3259	 */
3260	if (metrics.rmx_mtu)
3261		mss = min(metrics.rmx_mtu, maxmtu) - min_protoh;
3262	else {
3263#ifdef INET6
3264		if (isipv6) {
3265			mss = maxmtu - min_protoh;
3266			if (!V_path_mtu_discovery &&
3267			    !in6_localaddr(&inp->in6p_faddr))
3268				mss = min(mss, V_tcp_v6mssdflt);
3269		} else
3270#endif
3271		{
3272			mss = maxmtu - min_protoh;
3273			if (!V_path_mtu_discovery &&
3274			    !in_localaddr(inp->inp_faddr))
3275				mss = min(mss, V_tcp_mssdflt);
3276		}
3277		/*
3278		 * XXX - The above conditional (mss = maxmtu - min_protoh)
3279		 * probably violates the TCP spec.
3280		 * The problem is that, since we don't know the
3281		 * other end's MSS, we are supposed to use a conservative
3282		 * default.  But, if we do that, then MTU discovery will
3283		 * never actually take place, because the conservative
3284		 * default is much less than the MTUs typically seen
3285		 * on the Internet today.  For the moment, we'll sweep
3286		 * this under the carpet.
3287		 *
3288		 * The conservative default might not actually be a problem
3289		 * if the only case this occurs is when sending an initial
3290		 * SYN with options and data to a host we've never talked
3291		 * to before.  Then, they will reply with an MSS value which
3292		 * will get recorded and the new parameters should get
3293		 * recomputed.  For Further Study.
3294		 */
3295	}
3296	mss = min(mss, offer);
3297
3298	/*
3299	 * Sanity check: make sure that maxopd will be large
3300	 * enough to allow some data on segments even if the
3301	 * all the option space is used (40bytes).  Otherwise
3302	 * funny things may happen in tcp_output.
3303	 */
3304	mss = max(mss, 64);
3305
3306	/*
3307	 * maxopd stores the maximum length of data AND options
3308	 * in a segment; maxseg is the amount of data in a normal
3309	 * segment.  We need to store this value (maxopd) apart
3310	 * from maxseg, because now every segment carries options
3311	 * and thus we normally have somewhat less data in segments.
3312	 */
3313	tp->t_maxopd = mss;
3314
3315	/*
3316	 * origoffer==-1 indicates that no segments were received yet.
3317	 * In this case we just guess.
3318	 */
3319	if ((tp->t_flags & (TF_REQ_TSTMP|TF_NOOPT)) == TF_REQ_TSTMP &&
3320	    (origoffer == -1 ||
3321	     (tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP))
3322		mss -= TCPOLEN_TSTAMP_APPA;
3323
3324#if	(MCLBYTES & (MCLBYTES - 1)) == 0
3325	if (mss > MCLBYTES)
3326		mss &= ~(MCLBYTES-1);
3327#else
3328	if (mss > MCLBYTES)
3329		mss = mss / MCLBYTES * MCLBYTES;
3330#endif
3331	tp->t_maxseg = mss;
3332}
3333
3334void
3335tcp_mss(struct tcpcb *tp, int offer)
3336{
3337	int mss;
3338	u_long bufsize;
3339	struct inpcb *inp;
3340	struct socket *so;
3341	struct hc_metrics_lite metrics;
3342	int mtuflags = 0;
3343
3344	KASSERT(tp != NULL, ("%s: tp == NULL", __func__));
3345
3346	tcp_mss_update(tp, offer, &metrics, &mtuflags);
3347
3348	mss = tp->t_maxseg;
3349	inp = tp->t_inpcb;
3350
3351	/*
3352	 * If there's a pipesize, change the socket buffer to that size,
3353	 * don't change if sb_hiwat is different than default (then it
3354	 * has been changed on purpose with setsockopt).
3355	 * Make the socket buffers an integral number of mss units;
3356	 * if the mss is larger than the socket buffer, decrease the mss.
3357	 */
3358	so = inp->inp_socket;
3359	SOCKBUF_LOCK(&so->so_snd);
3360	if ((so->so_snd.sb_hiwat == tcp_sendspace) && metrics.rmx_sendpipe)
3361		bufsize = metrics.rmx_sendpipe;
3362	else
3363		bufsize = so->so_snd.sb_hiwat;
3364	if (bufsize < mss)
3365		mss = bufsize;
3366	else {
3367		bufsize = roundup(bufsize, mss);
3368		if (bufsize > sb_max)
3369			bufsize = sb_max;
3370		if (bufsize > so->so_snd.sb_hiwat)
3371			(void)sbreserve_locked(&so->so_snd, bufsize, so, NULL);
3372	}
3373	SOCKBUF_UNLOCK(&so->so_snd);
3374	tp->t_maxseg = mss;
3375
3376	SOCKBUF_LOCK(&so->so_rcv);
3377	if ((so->so_rcv.sb_hiwat == tcp_recvspace) && metrics.rmx_recvpipe)
3378		bufsize = metrics.rmx_recvpipe;
3379	else
3380		bufsize = so->so_rcv.sb_hiwat;
3381	if (bufsize > mss) {
3382		bufsize = roundup(bufsize, mss);
3383		if (bufsize > sb_max)
3384			bufsize = sb_max;
3385		if (bufsize > so->so_rcv.sb_hiwat)
3386			(void)sbreserve_locked(&so->so_rcv, bufsize, so, NULL);
3387	}
3388	SOCKBUF_UNLOCK(&so->so_rcv);
3389
3390	/* Check the interface for TSO capabilities. */
3391	if (mtuflags & CSUM_TSO)
3392		tp->t_flags |= TF_TSO;
3393}
3394
3395/*
3396 * Determine the MSS option to send on an outgoing SYN.
3397 */
3398int
3399tcp_mssopt(struct in_conninfo *inc)
3400{
3401	int mss = 0;
3402	u_long maxmtu = 0;
3403	u_long thcmtu = 0;
3404	size_t min_protoh;
3405
3406	KASSERT(inc != NULL, ("tcp_mssopt with NULL in_conninfo pointer"));
3407
3408#ifdef INET6
3409	if (inc->inc_flags & INC_ISIPV6) {
3410		mss = V_tcp_v6mssdflt;
3411		maxmtu = tcp_maxmtu6(inc, NULL);
3412		thcmtu = tcp_hc_getmtu(inc); /* IPv4 and IPv6 */
3413		min_protoh = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
3414	} else
3415#endif
3416	{
3417		mss = V_tcp_mssdflt;
3418		maxmtu = tcp_maxmtu(inc, NULL);
3419		thcmtu = tcp_hc_getmtu(inc); /* IPv4 and IPv6 */
3420		min_protoh = sizeof(struct tcpiphdr);
3421	}
3422	if (maxmtu && thcmtu)
3423		mss = min(maxmtu, thcmtu) - min_protoh;
3424	else if (maxmtu || thcmtu)
3425		mss = max(maxmtu, thcmtu) - min_protoh;
3426
3427	return (mss);
3428}
3429
3430
3431/*
3432 * On a partial ack arrives, force the retransmission of the
3433 * next unacknowledged segment.  Do not clear tp->t_dupacks.
3434 * By setting snd_nxt to ti_ack, this forces retransmission timer to
3435 * be started again.
3436 */
3437static void
3438tcp_newreno_partial_ack(struct tcpcb *tp, struct tcphdr *th)
3439{
3440	tcp_seq onxt = tp->snd_nxt;
3441	u_long  ocwnd = tp->snd_cwnd;
3442
3443	INP_WLOCK_ASSERT(tp->t_inpcb);
3444
3445	tcp_timer_activate(tp, TT_REXMT, 0);
3446	tp->t_rtttime = 0;
3447	tp->snd_nxt = th->th_ack;
3448	/*
3449	 * Set snd_cwnd to one segment beyond acknowledged offset.
3450	 * (tp->snd_una has not yet been updated when this function is called.)
3451	 */
3452	tp->snd_cwnd = tp->t_maxseg + BYTES_THIS_ACK(tp, th);
3453	tp->t_flags |= TF_ACKNOW;
3454	(void) tcp_output(tp);
3455	tp->snd_cwnd = ocwnd;
3456	if (SEQ_GT(onxt, tp->snd_nxt))
3457		tp->snd_nxt = onxt;
3458	/*
3459	 * Partial window deflation.  Relies on fact that tp->snd_una
3460	 * not updated yet.
3461	 */
3462	if (tp->snd_cwnd > BYTES_THIS_ACK(tp, th))
3463		tp->snd_cwnd -= BYTES_THIS_ACK(tp, th);
3464	else
3465		tp->snd_cwnd = 0;
3466	tp->snd_cwnd += tp->t_maxseg;
3467}
3468