tcp_input.c revision 192912
1/*-
2 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 4. Neither the name of the University nor the names of its contributors
14 *    may be used to endorse or promote products derived from this software
15 *    without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 *
29 *	@(#)tcp_input.c	8.12 (Berkeley) 5/24/95
30 */
31
32#include <sys/cdefs.h>
33__FBSDID("$FreeBSD: head/sys/netinet/tcp_input.c 192912 2009-05-27 17:02:10Z zml $");
34
35#include "opt_ipfw.h"		/* for ipfw_fwd	*/
36#include "opt_inet.h"
37#include "opt_inet6.h"
38#include "opt_ipsec.h"
39#include "opt_mac.h"
40#include "opt_tcpdebug.h"
41
42#include <sys/param.h>
43#include <sys/kernel.h>
44#include <sys/malloc.h>
45#include <sys/mbuf.h>
46#include <sys/proc.h>		/* for proc0 declaration */
47#include <sys/protosw.h>
48#include <sys/signalvar.h>
49#include <sys/socket.h>
50#include <sys/socketvar.h>
51#include <sys/sysctl.h>
52#include <sys/syslog.h>
53#include <sys/systm.h>
54#include <sys/vimage.h>
55
56#include <machine/cpu.h>	/* before tcp_seq.h, for tcp_random18() */
57
58#include <vm/uma.h>
59
60#include <net/if.h>
61#include <net/route.h>
62
63#define TCPSTATES		/* for logging */
64
65#include <netinet/in.h>
66#include <netinet/in_pcb.h>
67#include <netinet/in_systm.h>
68#include <netinet/in_var.h>
69#include <netinet/ip.h>
70#include <netinet/ip_icmp.h>	/* required for icmp_var.h */
71#include <netinet/icmp_var.h>	/* for ICMP_BANDLIM */
72#include <netinet/ip_var.h>
73#include <netinet/ip_options.h>
74#include <netinet/ip6.h>
75#include <netinet/icmp6.h>
76#include <netinet6/in6_pcb.h>
77#include <netinet6/ip6_var.h>
78#include <netinet6/nd6.h>
79#include <netinet/tcp.h>
80#include <netinet/tcp_fsm.h>
81#include <netinet/tcp_seq.h>
82#include <netinet/tcp_timer.h>
83#include <netinet/tcp_var.h>
84#include <netinet6/tcp6_var.h>
85#include <netinet/tcpip.h>
86#include <netinet/tcp_syncache.h>
87#ifdef TCPDEBUG
88#include <netinet/tcp_debug.h>
89#endif /* TCPDEBUG */
90#include <netinet/vinet.h>
91
92#ifdef INET6
93#include <netinet6/vinet6.h>
94#endif
95
96#ifdef IPSEC
97#include <netipsec/ipsec.h>
98#include <netipsec/ipsec6.h>
99#endif /*IPSEC*/
100
101#include <machine/in_cksum.h>
102
103#include <security/mac/mac_framework.h>
104
105static const int tcprexmtthresh = 3;
106
107#ifdef VIMAGE_GLOBALS
108struct	tcpstat tcpstat;
109int	blackhole;
110int	tcp_delack_enabled;
111int	drop_synfin;
112int	tcp_do_rfc3042;
113int	tcp_do_rfc3390;
114int	tcp_do_ecn;
115int	tcp_ecn_maxretries;
116int	tcp_insecure_rst;
117int	tcp_do_autorcvbuf;
118int	tcp_autorcvbuf_inc;
119int	tcp_autorcvbuf_max;
120int	tcp_do_rfc3465;
121int	tcp_abc_l_var;
122#endif
123
124SYSCTL_V_STRUCT(V_NET, vnet_inet, _net_inet_tcp, TCPCTL_STATS, stats,
125    CTLFLAG_RW, tcpstat , tcpstat,
126    "TCP statistics (struct tcpstat, netinet/tcp_var.h)");
127
128int tcp_log_in_vain = 0;
129SYSCTL_INT(_net_inet_tcp, OID_AUTO, log_in_vain, CTLFLAG_RW,
130    &tcp_log_in_vain, 0, "Log all incoming TCP segments to closed ports");
131
132SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_tcp, OID_AUTO, blackhole, CTLFLAG_RW,
133    blackhole, 0, "Do not send RST on segments to closed ports");
134
135SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_tcp, OID_AUTO, delayed_ack,
136    CTLFLAG_RW, tcp_delack_enabled, 0,
137    "Delay ACK to try and piggyback it onto a data packet");
138
139SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_tcp, OID_AUTO, drop_synfin,
140    CTLFLAG_RW, drop_synfin, 0, "Drop TCP packets with SYN+FIN set");
141
142SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_tcp, OID_AUTO, rfc3042, CTLFLAG_RW,
143    tcp_do_rfc3042, 0, "Enable RFC 3042 (Limited Transmit)");
144
145SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_tcp, OID_AUTO, rfc3390, CTLFLAG_RW,
146    tcp_do_rfc3390, 0,
147    "Enable RFC 3390 (Increasing TCP's Initial Congestion Window)");
148
149SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_tcp, OID_AUTO, rfc3465, CTLFLAG_RW,
150    tcp_do_rfc3465, 0,
151    "Enable RFC 3465 (Appropriate Byte Counting)");
152SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_tcp, OID_AUTO, abc_l_var, CTLFLAG_RW,
153    tcp_abc_l_var, 2,
154    "Cap the max cwnd increment during slow-start to this number of segments");
155
156SYSCTL_NODE(_net_inet_tcp, OID_AUTO, ecn, CTLFLAG_RW, 0, "TCP ECN");
157SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_tcp_ecn, OID_AUTO, enable,
158    CTLFLAG_RW, tcp_do_ecn, 0, "TCP ECN support");
159SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_tcp_ecn, OID_AUTO, maxretries,
160    CTLFLAG_RW, tcp_ecn_maxretries, 0, "Max retries before giving up on ECN");
161
162SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_tcp, OID_AUTO, insecure_rst,
163    CTLFLAG_RW, tcp_insecure_rst, 0,
164    "Follow the old (insecure) criteria for accepting RST packets");
165
166SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_tcp, OID_AUTO, recvbuf_auto,
167    CTLFLAG_RW, tcp_do_autorcvbuf, 0,
168    "Enable automatic receive buffer sizing");
169
170SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_tcp, OID_AUTO, recvbuf_inc,
171    CTLFLAG_RW, tcp_autorcvbuf_inc, 0,
172    "Incrementor step size of automatic receive buffer");
173
174SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_tcp, OID_AUTO, recvbuf_max,
175    CTLFLAG_RW, tcp_autorcvbuf_max, 0,
176    "Max size of automatic receive buffer");
177
178int	tcp_read_locking = 1;
179SYSCTL_INT(_net_inet_tcp, OID_AUTO, read_locking, CTLFLAG_RW,
180    &tcp_read_locking, 0, "Enable read locking strategy");
181
182int	tcp_rlock_atfirst;
183SYSCTL_INT(_net_inet_tcp, OID_AUTO, rlock_atfirst, CTLFLAG_RD,
184    &tcp_rlock_atfirst, 0, "");
185
186int	tcp_wlock_atfirst;
187SYSCTL_INT(_net_inet_tcp, OID_AUTO, tcp_wlock_atfirst, CTLFLAG_RD,
188    &tcp_wlock_atfirst, 0, "");
189
190int	tcp_wlock_upgraded;
191SYSCTL_INT(_net_inet_tcp, OID_AUTO, wlock_upgraded, CTLFLAG_RD,
192    &tcp_wlock_upgraded, 0, "");
193
194int	tcp_wlock_relocked;
195SYSCTL_INT(_net_inet_tcp, OID_AUTO, wlock_relocked, CTLFLAG_RD,
196    &tcp_wlock_relocked, 0, "");
197
198int	tcp_wlock_looped;
199SYSCTL_INT(_net_inet_tcp, OID_AUTO, wlock_looped, CTLFLAG_RD,
200    &tcp_wlock_looped, 0, "");
201
202#ifdef VIMAGE_GLOBALS
203struct inpcbhead tcb;
204struct inpcbinfo tcbinfo;
205#endif
206#define	tcb6	tcb  /* for KAME src sync over BSD*'s */
207
208static void	 tcp_dooptions(struct tcpopt *, u_char *, int, int);
209static void	 tcp_do_segment(struct mbuf *, struct tcphdr *,
210		     struct socket *, struct tcpcb *, int, int, uint8_t,
211		     int);
212static void	 tcp_dropwithreset(struct mbuf *, struct tcphdr *,
213		     struct tcpcb *, int, int);
214static void	 tcp_pulloutofband(struct socket *,
215		     struct tcphdr *, struct mbuf *, int);
216static void	 tcp_xmit_timer(struct tcpcb *, int);
217static void	 tcp_newreno_partial_ack(struct tcpcb *, struct tcphdr *);
218static void inline
219		 tcp_congestion_exp(struct tcpcb *);
220
221static void inline
222tcp_congestion_exp(struct tcpcb *tp)
223{
224	u_int win;
225
226	win = min(tp->snd_wnd, tp->snd_cwnd) /
227	    2 / tp->t_maxseg;
228	if (win < 2)
229		win = 2;
230	tp->snd_ssthresh = win * tp->t_maxseg;
231	ENTER_FASTRECOVERY(tp);
232	tp->snd_recover = tp->snd_max;
233	if (tp->t_flags & TF_ECN_PERMIT)
234		tp->t_flags |= TF_ECN_SND_CWR;
235}
236
237/* Neighbor Discovery, Neighbor Unreachability Detection Upper layer hint. */
238#ifdef INET6
239#define ND6_HINT(tp) \
240do { \
241	if ((tp) && (tp)->t_inpcb && \
242	    ((tp)->t_inpcb->inp_vflag & INP_IPV6) != 0) \
243		nd6_nud_hint(NULL, NULL, 0); \
244} while (0)
245#else
246#define ND6_HINT(tp)
247#endif
248
249/*
250 * Indicate whether this ack should be delayed.  We can delay the ack if
251 *	- there is no delayed ack timer in progress and
252 *	- our last ack wasn't a 0-sized window.  We never want to delay
253 *	  the ack that opens up a 0-sized window and
254 *		- delayed acks are enabled or
255 *		- this is a half-synchronized T/TCP connection.
256 */
257#define DELAY_ACK(tp)							\
258	((!tcp_timer_active(tp, TT_DELACK) &&				\
259	    (tp->t_flags & TF_RXWIN0SENT) == 0) &&			\
260	    (V_tcp_delack_enabled || (tp->t_flags & TF_NEEDSYN)))
261
262/*
263 * TCP input handling is split into multiple parts:
264 *   tcp6_input is a thin wrapper around tcp_input for the extended
265 *	ip6_protox[] call format in ip6_input
266 *   tcp_input handles primary segment validation, inpcb lookup and
267 *	SYN processing on listen sockets
268 *   tcp_do_segment processes the ACK and text of the segment for
269 *	establishing, established and closing connections
270 */
271#ifdef INET6
272int
273tcp6_input(struct mbuf **mp, int *offp, int proto)
274{
275	INIT_VNET_INET6(curvnet);
276	struct mbuf *m = *mp;
277	struct in6_ifaddr *ia6;
278
279	IP6_EXTHDR_CHECK(m, *offp, sizeof(struct tcphdr), IPPROTO_DONE);
280
281	/*
282	 * draft-itojun-ipv6-tcp-to-anycast
283	 * better place to put this in?
284	 */
285	ia6 = ip6_getdstifaddr(m);
286	if (ia6 && (ia6->ia6_flags & IN6_IFF_ANYCAST)) {
287		struct ip6_hdr *ip6;
288
289		ip6 = mtod(m, struct ip6_hdr *);
290		icmp6_error(m, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_ADDR,
291			    (caddr_t)&ip6->ip6_dst - (caddr_t)ip6);
292		return IPPROTO_DONE;
293	}
294
295	tcp_input(m, *offp);
296	return IPPROTO_DONE;
297}
298#endif
299
300void
301tcp_input(struct mbuf *m, int off0)
302{
303	INIT_VNET_INET(curvnet);
304#ifdef INET6
305	INIT_VNET_INET6(curvnet);
306#endif
307#ifdef IPSEC
308	INIT_VNET_IPSEC(curvnet);
309#endif
310	struct tcphdr *th;
311	struct ip *ip = NULL;
312	struct ipovly *ipov;
313	struct inpcb *inp = NULL;
314	struct tcpcb *tp = NULL;
315	struct socket *so = NULL;
316	u_char *optp = NULL;
317	int optlen = 0;
318	int len, tlen, off;
319	int drop_hdrlen;
320	int thflags;
321	int rstreason = 0;	/* For badport_bandlim accounting purposes */
322	uint8_t iptos;
323#ifdef IPFIREWALL_FORWARD
324	struct m_tag *fwd_tag;
325#endif
326#ifdef INET6
327	struct ip6_hdr *ip6 = NULL;
328	int isipv6;
329#else
330	const void *ip6 = NULL;
331	const int isipv6 = 0;
332#endif
333	struct tcpopt to;		/* options in this segment */
334	char *s = NULL;			/* address and port logging */
335	int ti_locked;
336#define	TI_UNLOCKED	1
337#define	TI_RLOCKED	2
338#define	TI_WLOCKED	3
339
340#ifdef TCPDEBUG
341	/*
342	 * The size of tcp_saveipgen must be the size of the max ip header,
343	 * now IPv6.
344	 */
345	u_char tcp_saveipgen[IP6_HDR_LEN];
346	struct tcphdr tcp_savetcp;
347	short ostate = 0;
348#endif
349
350#ifdef INET6
351	isipv6 = (mtod(m, struct ip *)->ip_v == 6) ? 1 : 0;
352#endif
353
354	to.to_flags = 0;
355	TCPSTAT_INC(tcps_rcvtotal);
356
357	if (isipv6) {
358#ifdef INET6
359		/* IP6_EXTHDR_CHECK() is already done at tcp6_input(). */
360		ip6 = mtod(m, struct ip6_hdr *);
361		tlen = sizeof(*ip6) + ntohs(ip6->ip6_plen) - off0;
362		if (in6_cksum(m, IPPROTO_TCP, off0, tlen)) {
363			TCPSTAT_INC(tcps_rcvbadsum);
364			goto drop;
365		}
366		th = (struct tcphdr *)((caddr_t)ip6 + off0);
367
368		/*
369		 * Be proactive about unspecified IPv6 address in source.
370		 * As we use all-zero to indicate unbounded/unconnected pcb,
371		 * unspecified IPv6 address can be used to confuse us.
372		 *
373		 * Note that packets with unspecified IPv6 destination is
374		 * already dropped in ip6_input.
375		 */
376		if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) {
377			/* XXX stat */
378			goto drop;
379		}
380#else
381		th = NULL;		/* XXX: Avoid compiler warning. */
382#endif
383	} else {
384		/*
385		 * Get IP and TCP header together in first mbuf.
386		 * Note: IP leaves IP header in first mbuf.
387		 */
388		if (off0 > sizeof (struct ip)) {
389			ip_stripoptions(m, (struct mbuf *)0);
390			off0 = sizeof(struct ip);
391		}
392		if (m->m_len < sizeof (struct tcpiphdr)) {
393			if ((m = m_pullup(m, sizeof (struct tcpiphdr)))
394			    == NULL) {
395				TCPSTAT_INC(tcps_rcvshort);
396				return;
397			}
398		}
399		ip = mtod(m, struct ip *);
400		ipov = (struct ipovly *)ip;
401		th = (struct tcphdr *)((caddr_t)ip + off0);
402		tlen = ip->ip_len;
403
404		if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) {
405			if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR)
406				th->th_sum = m->m_pkthdr.csum_data;
407			else
408				th->th_sum = in_pseudo(ip->ip_src.s_addr,
409						ip->ip_dst.s_addr,
410						htonl(m->m_pkthdr.csum_data +
411							ip->ip_len +
412							IPPROTO_TCP));
413			th->th_sum ^= 0xffff;
414#ifdef TCPDEBUG
415			ipov->ih_len = (u_short)tlen;
416			ipov->ih_len = htons(ipov->ih_len);
417#endif
418		} else {
419			/*
420			 * Checksum extended TCP header and data.
421			 */
422			len = sizeof (struct ip) + tlen;
423			bzero(ipov->ih_x1, sizeof(ipov->ih_x1));
424			ipov->ih_len = (u_short)tlen;
425			ipov->ih_len = htons(ipov->ih_len);
426			th->th_sum = in_cksum(m, len);
427		}
428		if (th->th_sum) {
429			TCPSTAT_INC(tcps_rcvbadsum);
430			goto drop;
431		}
432		/* Re-initialization for later version check */
433		ip->ip_v = IPVERSION;
434	}
435
436#ifdef INET6
437	if (isipv6)
438		iptos = (ntohl(ip6->ip6_flow) >> 20) & 0xff;
439	else
440#endif
441		iptos = ip->ip_tos;
442
443	/*
444	 * Check that TCP offset makes sense,
445	 * pull out TCP options and adjust length.		XXX
446	 */
447	off = th->th_off << 2;
448	if (off < sizeof (struct tcphdr) || off > tlen) {
449		TCPSTAT_INC(tcps_rcvbadoff);
450		goto drop;
451	}
452	tlen -= off;	/* tlen is used instead of ti->ti_len */
453	if (off > sizeof (struct tcphdr)) {
454		if (isipv6) {
455#ifdef INET6
456			IP6_EXTHDR_CHECK(m, off0, off, );
457			ip6 = mtod(m, struct ip6_hdr *);
458			th = (struct tcphdr *)((caddr_t)ip6 + off0);
459#endif
460		} else {
461			if (m->m_len < sizeof(struct ip) + off) {
462				if ((m = m_pullup(m, sizeof (struct ip) + off))
463				    == NULL) {
464					TCPSTAT_INC(tcps_rcvshort);
465					return;
466				}
467				ip = mtod(m, struct ip *);
468				ipov = (struct ipovly *)ip;
469				th = (struct tcphdr *)((caddr_t)ip + off0);
470			}
471		}
472		optlen = off - sizeof (struct tcphdr);
473		optp = (u_char *)(th + 1);
474	}
475	thflags = th->th_flags;
476
477	/*
478	 * Convert TCP protocol specific fields to host format.
479	 */
480	th->th_seq = ntohl(th->th_seq);
481	th->th_ack = ntohl(th->th_ack);
482	th->th_win = ntohs(th->th_win);
483	th->th_urp = ntohs(th->th_urp);
484
485	/*
486	 * Delay dropping TCP, IP headers, IPv6 ext headers, and TCP options.
487	 */
488	drop_hdrlen = off0 + off;
489
490	/*
491	 * Locate pcb for segment, which requires a lock on tcbinfo.
492	 * Optimisticaly acquire a global read lock rather than a write lock
493	 * unless header flags necessarily imply a state change.  There are
494	 * two cases where we might discover later we need a write lock
495	 * despite the flags: ACKs moving a connection out of the syncache,
496	 * and ACKs for a connection in TIMEWAIT.
497	 */
498	if ((thflags & (TH_SYN | TH_FIN | TH_RST)) != 0 ||
499	    tcp_read_locking == 0) {
500		INP_INFO_WLOCK(&V_tcbinfo);
501		ti_locked = TI_WLOCKED;
502		tcp_wlock_atfirst++;
503	} else {
504		INP_INFO_RLOCK(&V_tcbinfo);
505		ti_locked = TI_RLOCKED;
506		tcp_rlock_atfirst++;
507	}
508
509findpcb:
510#ifdef INVARIANTS
511	if (ti_locked == TI_RLOCKED)
512		INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
513	else if (ti_locked == TI_WLOCKED)
514		INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
515	else
516		panic("%s: findpcb ti_locked %d\n", __func__, ti_locked);
517#endif
518
519#ifdef IPFIREWALL_FORWARD
520	/*
521	 * Grab info from PACKET_TAG_IPFORWARD tag prepended to the chain.
522	 */
523	fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL);
524
525	if (fwd_tag != NULL && isipv6 == 0) {	/* IPv6 support is not yet */
526		struct sockaddr_in *next_hop;
527
528		next_hop = (struct sockaddr_in *)(fwd_tag+1);
529		/*
530		 * Transparently forwarded. Pretend to be the destination.
531		 * already got one like this?
532		 */
533		inp = in_pcblookup_hash(&V_tcbinfo,
534					ip->ip_src, th->th_sport,
535					ip->ip_dst, th->th_dport,
536					0, m->m_pkthdr.rcvif);
537		if (!inp) {
538			/* It's new.  Try to find the ambushing socket. */
539			inp = in_pcblookup_hash(&V_tcbinfo,
540						ip->ip_src, th->th_sport,
541						next_hop->sin_addr,
542						next_hop->sin_port ?
543						    ntohs(next_hop->sin_port) :
544						    th->th_dport,
545						INPLOOKUP_WILDCARD,
546						m->m_pkthdr.rcvif);
547		}
548		/* Remove the tag from the packet.  We don't need it anymore. */
549		m_tag_delete(m, fwd_tag);
550	} else
551#endif /* IPFIREWALL_FORWARD */
552	{
553		if (isipv6) {
554#ifdef INET6
555			inp = in6_pcblookup_hash(&V_tcbinfo,
556						 &ip6->ip6_src, th->th_sport,
557						 &ip6->ip6_dst, th->th_dport,
558						 INPLOOKUP_WILDCARD,
559						 m->m_pkthdr.rcvif);
560#endif
561		} else
562			inp = in_pcblookup_hash(&V_tcbinfo,
563						ip->ip_src, th->th_sport,
564						ip->ip_dst, th->th_dport,
565						INPLOOKUP_WILDCARD,
566						m->m_pkthdr.rcvif);
567	}
568
569	/*
570	 * If the INPCB does not exist then all data in the incoming
571	 * segment is discarded and an appropriate RST is sent back.
572	 * XXX MRT Send RST using which routing table?
573	 */
574	if (inp == NULL) {
575		/*
576		 * Log communication attempts to ports that are not
577		 * in use.
578		 */
579		if ((tcp_log_in_vain == 1 && (thflags & TH_SYN)) ||
580		    tcp_log_in_vain == 2) {
581			if ((s = tcp_log_addrs(NULL, th, (void *)ip, ip6)))
582				log(LOG_INFO, "%s; %s: Connection attempt "
583				    "to closed port\n", s, __func__);
584		}
585		/*
586		 * When blackholing do not respond with a RST but
587		 * completely ignore the segment and drop it.
588		 */
589		if ((V_blackhole == 1 && (thflags & TH_SYN)) ||
590		    V_blackhole == 2)
591			goto dropunlock;
592
593		rstreason = BANDLIM_RST_CLOSEDPORT;
594		goto dropwithreset;
595	}
596	INP_WLOCK(inp);
597	if (!(inp->inp_flags & INP_HW_FLOWID)
598	    && (m->m_flags & M_FLOWID)
599	    && ((inp->inp_socket == NULL)
600		|| !(inp->inp_socket->so_options & SO_ACCEPTCONN))) {
601		inp->inp_flags |= INP_HW_FLOWID;
602		inp->inp_flags &= ~INP_SW_FLOWID;
603		inp->inp_flowid = m->m_pkthdr.flowid;
604	}
605#ifdef IPSEC
606#ifdef INET6
607	if (isipv6 && ipsec6_in_reject(m, inp)) {
608		V_ipsec6stat.in_polvio++;
609		goto dropunlock;
610	} else
611#endif /* INET6 */
612	if (ipsec4_in_reject(m, inp) != 0) {
613		V_ipsec4stat.in_polvio++;
614		goto dropunlock;
615	}
616#endif /* IPSEC */
617
618	/*
619	 * Check the minimum TTL for socket.
620	 */
621	if (inp->inp_ip_minttl != 0) {
622#ifdef INET6
623		if (isipv6 && inp->inp_ip_minttl > ip6->ip6_hlim)
624			goto dropunlock;
625		else
626#endif
627		if (inp->inp_ip_minttl > ip->ip_ttl)
628			goto dropunlock;
629	}
630
631	/*
632	 * A previous connection in TIMEWAIT state is supposed to catch stray
633	 * or duplicate segments arriving late.  If this segment was a
634	 * legitimate new connection attempt the old INPCB gets removed and
635	 * we can try again to find a listening socket.
636	 *
637	 * At this point, due to earlier optimism, we may hold a read lock on
638	 * the inpcbinfo, rather than a write lock.  If so, we need to
639	 * upgrade, or if that fails, acquire a reference on the inpcb, drop
640	 * all locks, acquire a global write lock, and then re-acquire the
641	 * inpcb lock.  We may at that point discover that another thread has
642	 * tried to free the inpcb, in which case we need to loop back and
643	 * try to find a new inpcb to deliver to.
644	 */
645	if (inp->inp_flags & INP_TIMEWAIT) {
646		KASSERT(ti_locked == TI_RLOCKED || ti_locked == TI_WLOCKED,
647		    ("%s: INP_TIMEWAIT ti_locked %d", __func__, ti_locked));
648
649		if (ti_locked == TI_RLOCKED) {
650			if (rw_try_upgrade(&V_tcbinfo.ipi_lock) == 0) {
651				in_pcbref(inp);
652				INP_WUNLOCK(inp);
653				INP_INFO_RUNLOCK(&V_tcbinfo);
654				INP_INFO_WLOCK(&V_tcbinfo);
655				ti_locked = TI_WLOCKED;
656				INP_WLOCK(inp);
657				if (in_pcbrele(inp)) {
658					tcp_wlock_looped++;
659					inp = NULL;
660					goto findpcb;
661				}
662				tcp_wlock_relocked++;
663			} else {
664				ti_locked = TI_WLOCKED;
665				tcp_wlock_upgraded++;
666			}
667		}
668		INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
669
670		if (thflags & TH_SYN)
671			tcp_dooptions(&to, optp, optlen, TO_SYN);
672		/*
673		 * NB: tcp_twcheck unlocks the INP and frees the mbuf.
674		 */
675		if (tcp_twcheck(inp, &to, th, m, tlen))
676			goto findpcb;
677		INP_INFO_WUNLOCK(&V_tcbinfo);
678		return;
679	}
680	/*
681	 * The TCPCB may no longer exist if the connection is winding
682	 * down or it is in the CLOSED state.  Either way we drop the
683	 * segment and send an appropriate response.
684	 */
685	tp = intotcpcb(inp);
686	if (tp == NULL || tp->t_state == TCPS_CLOSED) {
687		rstreason = BANDLIM_RST_CLOSEDPORT;
688		goto dropwithreset;
689	}
690
691	/*
692	 * We've identified a valid inpcb, but it could be that we need an
693	 * inpcbinfo write lock and have only a read lock.  In this case,
694	 * attempt to upgrade/relock using the same strategy as the TIMEWAIT
695	 * case above.
696	 */
697	if (tp->t_state != TCPS_ESTABLISHED ||
698	    (thflags & (TH_SYN | TH_FIN | TH_RST)) != 0 ||
699	    tcp_read_locking == 0) {
700		KASSERT(ti_locked == TI_RLOCKED || ti_locked == TI_WLOCKED,
701		    ("%s: upgrade check ti_locked %d", __func__, ti_locked));
702
703		if (ti_locked == TI_RLOCKED) {
704			if (rw_try_upgrade(&V_tcbinfo.ipi_lock) == 0) {
705				in_pcbref(inp);
706				INP_WUNLOCK(inp);
707				INP_INFO_RUNLOCK(&V_tcbinfo);
708				INP_INFO_WLOCK(&V_tcbinfo);
709				ti_locked = TI_WLOCKED;
710				INP_WLOCK(inp);
711				if (in_pcbrele(inp)) {
712					tcp_wlock_looped++;
713					inp = NULL;
714					goto findpcb;
715				}
716				tcp_wlock_relocked++;
717			} else {
718				ti_locked = TI_WLOCKED;
719				tcp_wlock_upgraded++;
720			}
721		}
722		INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
723	}
724
725#ifdef MAC
726	INP_WLOCK_ASSERT(inp);
727	if (mac_inpcb_check_deliver(inp, m))
728		goto dropunlock;
729#endif
730	so = inp->inp_socket;
731	KASSERT(so != NULL, ("%s: so == NULL", __func__));
732#ifdef TCPDEBUG
733	if (so->so_options & SO_DEBUG) {
734		ostate = tp->t_state;
735		if (isipv6) {
736#ifdef INET6
737			bcopy((char *)ip6, (char *)tcp_saveipgen, sizeof(*ip6));
738#endif
739		} else
740			bcopy((char *)ip, (char *)tcp_saveipgen, sizeof(*ip));
741		tcp_savetcp = *th;
742	}
743#endif
744	/*
745	 * When the socket is accepting connections (the INPCB is in LISTEN
746	 * state) we look into the SYN cache if this is a new connection
747	 * attempt or the completion of a previous one.
748	 */
749	if (so->so_options & SO_ACCEPTCONN) {
750		struct in_conninfo inc;
751
752		KASSERT(tp->t_state == TCPS_LISTEN, ("%s: so accepting but "
753		    "tp not listening", __func__));
754
755		bzero(&inc, sizeof(inc));
756#ifdef INET6
757		if (isipv6) {
758			inc.inc_flags |= INC_ISIPV6;
759			inc.inc6_faddr = ip6->ip6_src;
760			inc.inc6_laddr = ip6->ip6_dst;
761		} else
762#endif
763		{
764			inc.inc_faddr = ip->ip_src;
765			inc.inc_laddr = ip->ip_dst;
766		}
767		inc.inc_fport = th->th_sport;
768		inc.inc_lport = th->th_dport;
769
770		/*
771		 * Check for an existing connection attempt in syncache if
772		 * the flag is only ACK.  A successful lookup creates a new
773		 * socket appended to the listen queue in SYN_RECEIVED state.
774		 */
775		if ((thflags & (TH_RST|TH_ACK|TH_SYN)) == TH_ACK) {
776			/*
777			 * Parse the TCP options here because
778			 * syncookies need access to the reflected
779			 * timestamp.
780			 */
781			tcp_dooptions(&to, optp, optlen, 0);
782			/*
783			 * NB: syncache_expand() doesn't unlock
784			 * inp and tcpinfo locks.
785			 */
786			if (!syncache_expand(&inc, &to, th, &so, m)) {
787				/*
788				 * No syncache entry or ACK was not
789				 * for our SYN/ACK.  Send a RST.
790				 * NB: syncache did its own logging
791				 * of the failure cause.
792				 */
793				rstreason = BANDLIM_RST_OPENPORT;
794				goto dropwithreset;
795			}
796			if (so == NULL) {
797				/*
798				 * We completed the 3-way handshake
799				 * but could not allocate a socket
800				 * either due to memory shortage,
801				 * listen queue length limits or
802				 * global socket limits.  Send RST
803				 * or wait and have the remote end
804				 * retransmit the ACK for another
805				 * try.
806				 */
807				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
808					log(LOG_DEBUG, "%s; %s: Listen socket: "
809					    "Socket allocation failed due to "
810					    "limits or memory shortage, %s\n",
811					    s, __func__,
812					    V_tcp_sc_rst_sock_fail ?
813					    "sending RST" : "try again");
814				if (V_tcp_sc_rst_sock_fail) {
815					rstreason = BANDLIM_UNLIMITED;
816					goto dropwithreset;
817				} else
818					goto dropunlock;
819			}
820			/*
821			 * Socket is created in state SYN_RECEIVED.
822			 * Unlock the listen socket, lock the newly
823			 * created socket and update the tp variable.
824			 */
825			INP_WUNLOCK(inp);	/* listen socket */
826			inp = sotoinpcb(so);
827			INP_WLOCK(inp);		/* new connection */
828			tp = intotcpcb(inp);
829			KASSERT(tp->t_state == TCPS_SYN_RECEIVED,
830			    ("%s: ", __func__));
831			/*
832			 * Process the segment and the data it
833			 * contains.  tcp_do_segment() consumes
834			 * the mbuf chain and unlocks the inpcb.
835			 */
836			tcp_do_segment(m, th, so, tp, drop_hdrlen, tlen,
837			    iptos, ti_locked);
838			INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
839			return;
840		}
841		/*
842		 * Segment flag validation for new connection attempts:
843		 *
844		 * Our (SYN|ACK) response was rejected.
845		 * Check with syncache and remove entry to prevent
846		 * retransmits.
847		 *
848		 * NB: syncache_chkrst does its own logging of failure
849		 * causes.
850		 */
851		if (thflags & TH_RST) {
852			syncache_chkrst(&inc, th);
853			goto dropunlock;
854		}
855		/*
856		 * We can't do anything without SYN.
857		 */
858		if ((thflags & TH_SYN) == 0) {
859			if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
860				log(LOG_DEBUG, "%s; %s: Listen socket: "
861				    "SYN is missing, segment ignored\n",
862				    s, __func__);
863			TCPSTAT_INC(tcps_badsyn);
864			goto dropunlock;
865		}
866		/*
867		 * (SYN|ACK) is bogus on a listen socket.
868		 */
869		if (thflags & TH_ACK) {
870			if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
871				log(LOG_DEBUG, "%s; %s: Listen socket: "
872				    "SYN|ACK invalid, segment rejected\n",
873				    s, __func__);
874			syncache_badack(&inc);	/* XXX: Not needed! */
875			TCPSTAT_INC(tcps_badsyn);
876			rstreason = BANDLIM_RST_OPENPORT;
877			goto dropwithreset;
878		}
879		/*
880		 * If the drop_synfin option is enabled, drop all
881		 * segments with both the SYN and FIN bits set.
882		 * This prevents e.g. nmap from identifying the
883		 * TCP/IP stack.
884		 * XXX: Poor reasoning.  nmap has other methods
885		 * and is constantly refining its stack detection
886		 * strategies.
887		 * XXX: This is a violation of the TCP specification
888		 * and was used by RFC1644.
889		 */
890		if ((thflags & TH_FIN) && V_drop_synfin) {
891			if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
892				log(LOG_DEBUG, "%s; %s: Listen socket: "
893				    "SYN|FIN segment ignored (based on "
894				    "sysctl setting)\n", s, __func__);
895			TCPSTAT_INC(tcps_badsyn);
896                	goto dropunlock;
897		}
898		/*
899		 * Segment's flags are (SYN) or (SYN|FIN).
900		 *
901		 * TH_PUSH, TH_URG, TH_ECE, TH_CWR are ignored
902		 * as they do not affect the state of the TCP FSM.
903		 * The data pointed to by TH_URG and th_urp is ignored.
904		 */
905		KASSERT((thflags & (TH_RST|TH_ACK)) == 0,
906		    ("%s: Listen socket: TH_RST or TH_ACK set", __func__));
907		KASSERT(thflags & (TH_SYN),
908		    ("%s: Listen socket: TH_SYN not set", __func__));
909#ifdef INET6
910		/*
911		 * If deprecated address is forbidden,
912		 * we do not accept SYN to deprecated interface
913		 * address to prevent any new inbound connection from
914		 * getting established.
915		 * When we do not accept SYN, we send a TCP RST,
916		 * with deprecated source address (instead of dropping
917		 * it).  We compromise it as it is much better for peer
918		 * to send a RST, and RST will be the final packet
919		 * for the exchange.
920		 *
921		 * If we do not forbid deprecated addresses, we accept
922		 * the SYN packet.  RFC2462 does not suggest dropping
923		 * SYN in this case.
924		 * If we decipher RFC2462 5.5.4, it says like this:
925		 * 1. use of deprecated addr with existing
926		 *    communication is okay - "SHOULD continue to be
927		 *    used"
928		 * 2. use of it with new communication:
929		 *   (2a) "SHOULD NOT be used if alternate address
930		 *        with sufficient scope is available"
931		 *   (2b) nothing mentioned otherwise.
932		 * Here we fall into (2b) case as we have no choice in
933		 * our source address selection - we must obey the peer.
934		 *
935		 * The wording in RFC2462 is confusing, and there are
936		 * multiple description text for deprecated address
937		 * handling - worse, they are not exactly the same.
938		 * I believe 5.5.4 is the best one, so we follow 5.5.4.
939		 */
940		if (isipv6 && !V_ip6_use_deprecated) {
941			struct in6_ifaddr *ia6;
942
943			if ((ia6 = ip6_getdstifaddr(m)) &&
944			    (ia6->ia6_flags & IN6_IFF_DEPRECATED)) {
945				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
946				    log(LOG_DEBUG, "%s; %s: Listen socket: "
947					"Connection attempt to deprecated "
948					"IPv6 address rejected\n",
949					s, __func__);
950				rstreason = BANDLIM_RST_OPENPORT;
951				goto dropwithreset;
952			}
953		}
954#endif
955		/*
956		 * Basic sanity checks on incoming SYN requests:
957		 *   Don't respond if the destination is a link layer
958		 *	broadcast according to RFC1122 4.2.3.10, p. 104.
959		 *   If it is from this socket it must be forged.
960		 *   Don't respond if the source or destination is a
961		 *	global or subnet broad- or multicast address.
962		 *   Note that it is quite possible to receive unicast
963		 *	link-layer packets with a broadcast IP address. Use
964		 *	in_broadcast() to find them.
965		 */
966		if (m->m_flags & (M_BCAST|M_MCAST)) {
967			if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
968			    log(LOG_DEBUG, "%s; %s: Listen socket: "
969				"Connection attempt from broad- or multicast "
970				"link layer address ignored\n", s, __func__);
971			goto dropunlock;
972		}
973		if (isipv6) {
974#ifdef INET6
975			if (th->th_dport == th->th_sport &&
976			    IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst, &ip6->ip6_src)) {
977				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
978				    log(LOG_DEBUG, "%s; %s: Listen socket: "
979					"Connection attempt to/from self "
980					"ignored\n", s, __func__);
981				goto dropunlock;
982			}
983			if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) ||
984			    IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) {
985				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
986				    log(LOG_DEBUG, "%s; %s: Listen socket: "
987					"Connection attempt from/to multicast "
988					"address ignored\n", s, __func__);
989				goto dropunlock;
990			}
991#endif
992		} else {
993			if (th->th_dport == th->th_sport &&
994			    ip->ip_dst.s_addr == ip->ip_src.s_addr) {
995				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
996				    log(LOG_DEBUG, "%s; %s: Listen socket: "
997					"Connection attempt from/to self "
998					"ignored\n", s, __func__);
999				goto dropunlock;
1000			}
1001			if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
1002			    IN_MULTICAST(ntohl(ip->ip_src.s_addr)) ||
1003			    ip->ip_src.s_addr == htonl(INADDR_BROADCAST) ||
1004			    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif)) {
1005				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1006				    log(LOG_DEBUG, "%s; %s: Listen socket: "
1007					"Connection attempt from/to broad- "
1008					"or multicast address ignored\n",
1009					s, __func__);
1010				goto dropunlock;
1011			}
1012		}
1013		/*
1014		 * SYN appears to be valid.  Create compressed TCP state
1015		 * for syncache.
1016		 */
1017#ifdef TCPDEBUG
1018		if (so->so_options & SO_DEBUG)
1019			tcp_trace(TA_INPUT, ostate, tp,
1020			    (void *)tcp_saveipgen, &tcp_savetcp, 0);
1021#endif
1022		tcp_dooptions(&to, optp, optlen, TO_SYN);
1023		syncache_add(&inc, &to, th, inp, &so, m);
1024		/*
1025		 * Entry added to syncache and mbuf consumed.
1026		 * Everything already unlocked by syncache_add().
1027		 */
1028		INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
1029		return;
1030	}
1031
1032	/*
1033	 * Segment belongs to a connection in SYN_SENT, ESTABLISHED or later
1034	 * state.  tcp_do_segment() always consumes the mbuf chain, unlocks
1035	 * the inpcb, and unlocks pcbinfo.
1036	 */
1037	tcp_do_segment(m, th, so, tp, drop_hdrlen, tlen, iptos, ti_locked);
1038	INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
1039	return;
1040
1041dropwithreset:
1042	if (ti_locked == TI_RLOCKED)
1043		INP_INFO_RUNLOCK(&V_tcbinfo);
1044	else if (ti_locked == TI_WLOCKED)
1045		INP_INFO_WUNLOCK(&V_tcbinfo);
1046	else
1047		panic("%s: dropwithreset ti_locked %d", __func__, ti_locked);
1048	ti_locked = TI_UNLOCKED;
1049
1050	if (inp != NULL) {
1051		tcp_dropwithreset(m, th, tp, tlen, rstreason);
1052		INP_WUNLOCK(inp);
1053	} else
1054		tcp_dropwithreset(m, th, NULL, tlen, rstreason);
1055	m = NULL;	/* mbuf chain got consumed. */
1056	goto drop;
1057
1058dropunlock:
1059	if (ti_locked == TI_RLOCKED)
1060		INP_INFO_RUNLOCK(&V_tcbinfo);
1061	else if (ti_locked == TI_WLOCKED)
1062		INP_INFO_WUNLOCK(&V_tcbinfo);
1063	else
1064		panic("%s: dropunlock ti_locked %d", __func__, ti_locked);
1065	ti_locked = TI_UNLOCKED;
1066
1067	if (inp != NULL)
1068		INP_WUNLOCK(inp);
1069
1070drop:
1071	INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
1072	if (s != NULL)
1073		free(s, M_TCPLOG);
1074	if (m != NULL)
1075		m_freem(m);
1076}
1077
1078static void
1079tcp_do_segment(struct mbuf *m, struct tcphdr *th, struct socket *so,
1080    struct tcpcb *tp, int drop_hdrlen, int tlen, uint8_t iptos,
1081    int ti_locked)
1082{
1083	INIT_VNET_INET(tp->t_vnet);
1084	int thflags, acked, ourfinisacked, needoutput = 0;
1085	int rstreason, todrop, win;
1086	u_long tiwin;
1087	struct tcpopt to;
1088
1089#ifdef TCPDEBUG
1090	/*
1091	 * The size of tcp_saveipgen must be the size of the max ip header,
1092	 * now IPv6.
1093	 */
1094	u_char tcp_saveipgen[IP6_HDR_LEN];
1095	struct tcphdr tcp_savetcp;
1096	short ostate = 0;
1097#endif
1098	thflags = th->th_flags;
1099
1100	/*
1101	 * If this is either a state-changing packet or current state isn't
1102	 * established, we require a write lock on tcbinfo.  Otherwise, we
1103	 * allow either a read lock or a write lock, as we may have acquired
1104	 * a write lock due to a race.
1105	 *
1106	 * Require a global write lock for SYN/FIN/RST segments or
1107	 * non-established connections; otherwise accept either a read or
1108	 * write lock, as we may have conservatively acquired a write lock in
1109	 * certain cases in tcp_input() (is this still true?).  Currently we
1110	 * will never enter with no lock, so we try to drop it quickly in the
1111	 * common pure ack/pure data cases.
1112	 */
1113	if ((thflags & (TH_SYN | TH_FIN | TH_RST)) != 0 ||
1114	    tp->t_state != TCPS_ESTABLISHED) {
1115		KASSERT(ti_locked == TI_WLOCKED, ("%s ti_locked %d for "
1116		    "SYN/FIN/RST/!EST", __func__, ti_locked));
1117		INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
1118	} else {
1119#ifdef INVARIANTS
1120		if (ti_locked == TI_RLOCKED)
1121			INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
1122		else if (ti_locked == TI_WLOCKED)
1123			INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
1124		else
1125			panic("%s: ti_locked %d for EST", __func__,
1126			    ti_locked);
1127#endif
1128	}
1129	INP_WLOCK_ASSERT(tp->t_inpcb);
1130	KASSERT(tp->t_state > TCPS_LISTEN, ("%s: TCPS_LISTEN",
1131	    __func__));
1132	KASSERT(tp->t_state != TCPS_TIME_WAIT, ("%s: TCPS_TIME_WAIT",
1133	    __func__));
1134
1135	/*
1136	 * Segment received on connection.
1137	 * Reset idle time and keep-alive timer.
1138	 * XXX: This should be done after segment
1139	 * validation to ignore broken/spoofed segs.
1140	 */
1141	tp->t_rcvtime = ticks;
1142	if (TCPS_HAVEESTABLISHED(tp->t_state))
1143		tcp_timer_activate(tp, TT_KEEP, tcp_keepidle);
1144
1145	/*
1146	 * Unscale the window into a 32-bit value.
1147	 * For the SYN_SENT state the scale is zero.
1148	 */
1149	tiwin = th->th_win << tp->snd_scale;
1150
1151	/*
1152	 * TCP ECN processing.
1153	 */
1154	if (tp->t_flags & TF_ECN_PERMIT) {
1155		switch (iptos & IPTOS_ECN_MASK) {
1156		case IPTOS_ECN_CE:
1157			tp->t_flags |= TF_ECN_SND_ECE;
1158			TCPSTAT_INC(tcps_ecn_ce);
1159			break;
1160		case IPTOS_ECN_ECT0:
1161			TCPSTAT_INC(tcps_ecn_ect0);
1162			break;
1163		case IPTOS_ECN_ECT1:
1164			TCPSTAT_INC(tcps_ecn_ect1);
1165			break;
1166		}
1167
1168		if (thflags & TH_CWR)
1169			tp->t_flags &= ~TF_ECN_SND_ECE;
1170
1171		/*
1172		 * Congestion experienced.
1173		 * Ignore if we are already trying to recover.
1174		 */
1175		if ((thflags & TH_ECE) &&
1176		    SEQ_LEQ(th->th_ack, tp->snd_recover)) {
1177			TCPSTAT_INC(tcps_ecn_rcwnd);
1178			tcp_congestion_exp(tp);
1179		}
1180	}
1181
1182	/*
1183	 * Parse options on any incoming segment.
1184	 */
1185	tcp_dooptions(&to, (u_char *)(th + 1),
1186	    (th->th_off << 2) - sizeof(struct tcphdr),
1187	    (thflags & TH_SYN) ? TO_SYN : 0);
1188
1189	/*
1190	 * If echoed timestamp is later than the current time,
1191	 * fall back to non RFC1323 RTT calculation.  Normalize
1192	 * timestamp if syncookies were used when this connection
1193	 * was established.
1194	 */
1195	if ((to.to_flags & TOF_TS) && (to.to_tsecr != 0)) {
1196		to.to_tsecr -= tp->ts_offset;
1197		if (TSTMP_GT(to.to_tsecr, ticks))
1198			to.to_tsecr = 0;
1199	}
1200
1201	/*
1202	 * Process options only when we get SYN/ACK back. The SYN case
1203	 * for incoming connections is handled in tcp_syncache.
1204	 * According to RFC1323 the window field in a SYN (i.e., a <SYN>
1205	 * or <SYN,ACK>) segment itself is never scaled.
1206	 * XXX this is traditional behavior, may need to be cleaned up.
1207	 */
1208	if (tp->t_state == TCPS_SYN_SENT && (thflags & TH_SYN)) {
1209		if ((to.to_flags & TOF_SCALE) &&
1210		    (tp->t_flags & TF_REQ_SCALE)) {
1211			tp->t_flags |= TF_RCVD_SCALE;
1212			tp->snd_scale = to.to_wscale;
1213		}
1214		/*
1215		 * Initial send window.  It will be updated with
1216		 * the next incoming segment to the scaled value.
1217		 */
1218		tp->snd_wnd = th->th_win;
1219		if (to.to_flags & TOF_TS) {
1220			tp->t_flags |= TF_RCVD_TSTMP;
1221			tp->ts_recent = to.to_tsval;
1222			tp->ts_recent_age = ticks;
1223		}
1224		if (to.to_flags & TOF_MSS)
1225			tcp_mss(tp, to.to_mss);
1226		if ((tp->t_flags & TF_SACK_PERMIT) &&
1227		    (to.to_flags & TOF_SACKPERM) == 0)
1228			tp->t_flags &= ~TF_SACK_PERMIT;
1229	}
1230
1231	/*
1232	 * Header prediction: check for the two common cases
1233	 * of a uni-directional data xfer.  If the packet has
1234	 * no control flags, is in-sequence, the window didn't
1235	 * change and we're not retransmitting, it's a
1236	 * candidate.  If the length is zero and the ack moved
1237	 * forward, we're the sender side of the xfer.  Just
1238	 * free the data acked & wake any higher level process
1239	 * that was blocked waiting for space.  If the length
1240	 * is non-zero and the ack didn't move, we're the
1241	 * receiver side.  If we're getting packets in-order
1242	 * (the reassembly queue is empty), add the data to
1243	 * the socket buffer and note that we need a delayed ack.
1244	 * Make sure that the hidden state-flags are also off.
1245	 * Since we check for TCPS_ESTABLISHED first, it can only
1246	 * be TH_NEEDSYN.
1247	 */
1248	if (tp->t_state == TCPS_ESTABLISHED &&
1249	    th->th_seq == tp->rcv_nxt &&
1250	    (thflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK)) == TH_ACK &&
1251	    tp->snd_nxt == tp->snd_max &&
1252	    tiwin && tiwin == tp->snd_wnd &&
1253	    ((tp->t_flags & (TF_NEEDSYN|TF_NEEDFIN)) == 0) &&
1254	    LIST_EMPTY(&tp->t_segq) &&
1255	    ((to.to_flags & TOF_TS) == 0 ||
1256	     TSTMP_GEQ(to.to_tsval, tp->ts_recent)) ) {
1257
1258		/*
1259		 * If last ACK falls within this segment's sequence numbers,
1260		 * record the timestamp.
1261		 * NOTE that the test is modified according to the latest
1262		 * proposal of the tcplw@cray.com list (Braden 1993/04/26).
1263		 */
1264		if ((to.to_flags & TOF_TS) != 0 &&
1265		    SEQ_LEQ(th->th_seq, tp->last_ack_sent)) {
1266			tp->ts_recent_age = ticks;
1267			tp->ts_recent = to.to_tsval;
1268		}
1269
1270		if (tlen == 0) {
1271			if (SEQ_GT(th->th_ack, tp->snd_una) &&
1272			    SEQ_LEQ(th->th_ack, tp->snd_max) &&
1273			    tp->snd_cwnd >= tp->snd_wnd &&
1274			    ((!V_tcp_do_newreno &&
1275			      !(tp->t_flags & TF_SACK_PERMIT) &&
1276			      tp->t_dupacks < tcprexmtthresh) ||
1277			     ((V_tcp_do_newreno ||
1278			       (tp->t_flags & TF_SACK_PERMIT)) &&
1279			      !IN_FASTRECOVERY(tp) &&
1280			      (to.to_flags & TOF_SACK) == 0 &&
1281			      TAILQ_EMPTY(&tp->snd_holes)))) {
1282				/*
1283				 * This is a pure ack for outstanding data.
1284				 */
1285				if (ti_locked == TI_RLOCKED)
1286					INP_INFO_RUNLOCK(&V_tcbinfo);
1287				else if (ti_locked == TI_WLOCKED)
1288					INP_INFO_WUNLOCK(&V_tcbinfo);
1289				else
1290					panic("%s: ti_locked %d on pure ACK",
1291					    __func__, ti_locked);
1292				ti_locked = TI_UNLOCKED;
1293
1294				TCPSTAT_INC(tcps_predack);
1295
1296				/*
1297				 * "bad retransmit" recovery.
1298				 */
1299				if (tp->t_rxtshift == 1 &&
1300				    ticks < tp->t_badrxtwin) {
1301					TCPSTAT_INC(tcps_sndrexmitbad);
1302					tp->snd_cwnd = tp->snd_cwnd_prev;
1303					tp->snd_ssthresh =
1304					    tp->snd_ssthresh_prev;
1305					tp->snd_recover = tp->snd_recover_prev;
1306					if (tp->t_flags & TF_WASFRECOVERY)
1307					    ENTER_FASTRECOVERY(tp);
1308					tp->snd_nxt = tp->snd_max;
1309					tp->t_badrxtwin = 0;
1310				}
1311
1312				/*
1313				 * Recalculate the transmit timer / rtt.
1314				 *
1315				 * Some boxes send broken timestamp replies
1316				 * during the SYN+ACK phase, ignore
1317				 * timestamps of 0 or we could calculate a
1318				 * huge RTT and blow up the retransmit timer.
1319				 */
1320				if ((to.to_flags & TOF_TS) != 0 &&
1321				    to.to_tsecr) {
1322					if (!tp->t_rttlow ||
1323					    tp->t_rttlow > ticks - to.to_tsecr)
1324						tp->t_rttlow = ticks - to.to_tsecr;
1325					tcp_xmit_timer(tp,
1326					    ticks - to.to_tsecr + 1);
1327				} else if (tp->t_rtttime &&
1328				    SEQ_GT(th->th_ack, tp->t_rtseq)) {
1329					if (!tp->t_rttlow ||
1330					    tp->t_rttlow > ticks - tp->t_rtttime)
1331						tp->t_rttlow = ticks - tp->t_rtttime;
1332					tcp_xmit_timer(tp,
1333							ticks - tp->t_rtttime);
1334				}
1335				tcp_xmit_bandwidth_limit(tp, th->th_ack);
1336				acked = th->th_ack - tp->snd_una;
1337				TCPSTAT_INC(tcps_rcvackpack);
1338				TCPSTAT_ADD(tcps_rcvackbyte, acked);
1339				sbdrop(&so->so_snd, acked);
1340				if (SEQ_GT(tp->snd_una, tp->snd_recover) &&
1341				    SEQ_LEQ(th->th_ack, tp->snd_recover))
1342					tp->snd_recover = th->th_ack - 1;
1343				tp->snd_una = th->th_ack;
1344				/*
1345				 * Pull snd_wl2 up to prevent seq wrap relative
1346				 * to th_ack.
1347				 */
1348				tp->snd_wl2 = th->th_ack;
1349				tp->t_dupacks = 0;
1350				m_freem(m);
1351				ND6_HINT(tp); /* Some progress has been made. */
1352
1353				/*
1354				 * If all outstanding data are acked, stop
1355				 * retransmit timer, otherwise restart timer
1356				 * using current (possibly backed-off) value.
1357				 * If process is waiting for space,
1358				 * wakeup/selwakeup/signal.  If data
1359				 * are ready to send, let tcp_output
1360				 * decide between more output or persist.
1361				 */
1362#ifdef TCPDEBUG
1363				if (so->so_options & SO_DEBUG)
1364					tcp_trace(TA_INPUT, ostate, tp,
1365					    (void *)tcp_saveipgen,
1366					    &tcp_savetcp, 0);
1367#endif
1368				if (tp->snd_una == tp->snd_max)
1369					tcp_timer_activate(tp, TT_REXMT, 0);
1370				else if (!tcp_timer_active(tp, TT_PERSIST))
1371					tcp_timer_activate(tp, TT_REXMT,
1372						      tp->t_rxtcur);
1373				sowwakeup(so);
1374				if (so->so_snd.sb_cc)
1375					(void) tcp_output(tp);
1376				goto check_delack;
1377			}
1378		} else if (th->th_ack == tp->snd_una &&
1379		    tlen <= sbspace(&so->so_rcv)) {
1380			int newsize = 0;	/* automatic sockbuf scaling */
1381
1382			/*
1383			 * This is a pure, in-sequence data packet with
1384			 * nothing on the reassembly queue and we have enough
1385			 * buffer space to take it.
1386			 */
1387			if (ti_locked == TI_RLOCKED)
1388				INP_INFO_RUNLOCK(&V_tcbinfo);
1389			else if (ti_locked == TI_WLOCKED)
1390				INP_INFO_WUNLOCK(&V_tcbinfo);
1391			else
1392				panic("%s: ti_locked %d on pure data "
1393				    "segment", __func__, ti_locked);
1394			ti_locked = TI_UNLOCKED;
1395
1396			/* Clean receiver SACK report if present */
1397			if ((tp->t_flags & TF_SACK_PERMIT) && tp->rcv_numsacks)
1398				tcp_clean_sackreport(tp);
1399			TCPSTAT_INC(tcps_preddat);
1400			tp->rcv_nxt += tlen;
1401			/*
1402			 * Pull snd_wl1 up to prevent seq wrap relative to
1403			 * th_seq.
1404			 */
1405			tp->snd_wl1 = th->th_seq;
1406			/*
1407			 * Pull rcv_up up to prevent seq wrap relative to
1408			 * rcv_nxt.
1409			 */
1410			tp->rcv_up = tp->rcv_nxt;
1411			TCPSTAT_INC(tcps_rcvpack);
1412			TCPSTAT_ADD(tcps_rcvbyte, tlen);
1413			ND6_HINT(tp);	/* Some progress has been made */
1414#ifdef TCPDEBUG
1415			if (so->so_options & SO_DEBUG)
1416				tcp_trace(TA_INPUT, ostate, tp,
1417				    (void *)tcp_saveipgen, &tcp_savetcp, 0);
1418#endif
1419		/*
1420		 * Automatic sizing of receive socket buffer.  Often the send
1421		 * buffer size is not optimally adjusted to the actual network
1422		 * conditions at hand (delay bandwidth product).  Setting the
1423		 * buffer size too small limits throughput on links with high
1424		 * bandwidth and high delay (eg. trans-continental/oceanic links).
1425		 *
1426		 * On the receive side the socket buffer memory is only rarely
1427		 * used to any significant extent.  This allows us to be much
1428		 * more aggressive in scaling the receive socket buffer.  For
1429		 * the case that the buffer space is actually used to a large
1430		 * extent and we run out of kernel memory we can simply drop
1431		 * the new segments; TCP on the sender will just retransmit it
1432		 * later.  Setting the buffer size too big may only consume too
1433		 * much kernel memory if the application doesn't read() from
1434		 * the socket or packet loss or reordering makes use of the
1435		 * reassembly queue.
1436		 *
1437		 * The criteria to step up the receive buffer one notch are:
1438		 *  1. the number of bytes received during the time it takes
1439		 *     one timestamp to be reflected back to us (the RTT);
1440		 *  2. received bytes per RTT is within seven eighth of the
1441		 *     current socket buffer size;
1442		 *  3. receive buffer size has not hit maximal automatic size;
1443		 *
1444		 * This algorithm does one step per RTT at most and only if
1445		 * we receive a bulk stream w/o packet losses or reorderings.
1446		 * Shrinking the buffer during idle times is not necessary as
1447		 * it doesn't consume any memory when idle.
1448		 *
1449		 * TODO: Only step up if the application is actually serving
1450		 * the buffer to better manage the socket buffer resources.
1451		 */
1452			if (V_tcp_do_autorcvbuf &&
1453			    to.to_tsecr &&
1454			    (so->so_rcv.sb_flags & SB_AUTOSIZE)) {
1455				if (to.to_tsecr > tp->rfbuf_ts &&
1456				    to.to_tsecr - tp->rfbuf_ts < hz) {
1457					if (tp->rfbuf_cnt >
1458					    (so->so_rcv.sb_hiwat / 8 * 7) &&
1459					    so->so_rcv.sb_hiwat <
1460					    V_tcp_autorcvbuf_max) {
1461						newsize =
1462						    min(so->so_rcv.sb_hiwat +
1463						    V_tcp_autorcvbuf_inc,
1464						    V_tcp_autorcvbuf_max);
1465					}
1466					/* Start over with next RTT. */
1467					tp->rfbuf_ts = 0;
1468					tp->rfbuf_cnt = 0;
1469				} else
1470					tp->rfbuf_cnt += tlen;	/* add up */
1471			}
1472
1473			/* Add data to socket buffer. */
1474			SOCKBUF_LOCK(&so->so_rcv);
1475			if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
1476				m_freem(m);
1477			} else {
1478				/*
1479				 * Set new socket buffer size.
1480				 * Give up when limit is reached.
1481				 */
1482				if (newsize)
1483					if (!sbreserve_locked(&so->so_rcv,
1484					    newsize, so, NULL))
1485						so->so_rcv.sb_flags &= ~SB_AUTOSIZE;
1486				m_adj(m, drop_hdrlen);	/* delayed header drop */
1487				sbappendstream_locked(&so->so_rcv, m);
1488			}
1489			/* NB: sorwakeup_locked() does an implicit unlock. */
1490			sorwakeup_locked(so);
1491			if (DELAY_ACK(tp)) {
1492				tp->t_flags |= TF_DELACK;
1493			} else {
1494				tp->t_flags |= TF_ACKNOW;
1495				tcp_output(tp);
1496			}
1497			goto check_delack;
1498		}
1499	}
1500
1501	/*
1502	 * Calculate amount of space in receive window,
1503	 * and then do TCP input processing.
1504	 * Receive window is amount of space in rcv queue,
1505	 * but not less than advertised window.
1506	 */
1507	win = sbspace(&so->so_rcv);
1508	if (win < 0)
1509		win = 0;
1510	tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
1511
1512	/* Reset receive buffer auto scaling when not in bulk receive mode. */
1513	tp->rfbuf_ts = 0;
1514	tp->rfbuf_cnt = 0;
1515
1516	switch (tp->t_state) {
1517
1518	/*
1519	 * If the state is SYN_RECEIVED:
1520	 *	if seg contains an ACK, but not for our SYN/ACK, send a RST.
1521	 */
1522	case TCPS_SYN_RECEIVED:
1523		if ((thflags & TH_ACK) &&
1524		    (SEQ_LEQ(th->th_ack, tp->snd_una) ||
1525		     SEQ_GT(th->th_ack, tp->snd_max))) {
1526				rstreason = BANDLIM_RST_OPENPORT;
1527				goto dropwithreset;
1528		}
1529		break;
1530
1531	/*
1532	 * If the state is SYN_SENT:
1533	 *	if seg contains an ACK, but not for our SYN, drop the input.
1534	 *	if seg contains a RST, then drop the connection.
1535	 *	if seg does not contain SYN, then drop it.
1536	 * Otherwise this is an acceptable SYN segment
1537	 *	initialize tp->rcv_nxt and tp->irs
1538	 *	if seg contains ack then advance tp->snd_una
1539	 *	if seg contains an ECE and ECN support is enabled, the stream
1540	 *	    is ECN capable.
1541	 *	if SYN has been acked change to ESTABLISHED else SYN_RCVD state
1542	 *	arrange for segment to be acked (eventually)
1543	 *	continue processing rest of data/controls, beginning with URG
1544	 */
1545	case TCPS_SYN_SENT:
1546		if ((thflags & TH_ACK) &&
1547		    (SEQ_LEQ(th->th_ack, tp->iss) ||
1548		     SEQ_GT(th->th_ack, tp->snd_max))) {
1549			rstreason = BANDLIM_UNLIMITED;
1550			goto dropwithreset;
1551		}
1552		if ((thflags & (TH_ACK|TH_RST)) == (TH_ACK|TH_RST))
1553			tp = tcp_drop(tp, ECONNREFUSED);
1554		if (thflags & TH_RST)
1555			goto drop;
1556		if (!(thflags & TH_SYN))
1557			goto drop;
1558
1559		tp->irs = th->th_seq;
1560		tcp_rcvseqinit(tp);
1561		if (thflags & TH_ACK) {
1562			TCPSTAT_INC(tcps_connects);
1563			soisconnected(so);
1564#ifdef MAC
1565			SOCK_LOCK(so);
1566			mac_socketpeer_set_from_mbuf(m, so);
1567			SOCK_UNLOCK(so);
1568#endif
1569			/* Do window scaling on this connection? */
1570			if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
1571				(TF_RCVD_SCALE|TF_REQ_SCALE)) {
1572				tp->rcv_scale = tp->request_r_scale;
1573			}
1574			tp->rcv_adv += tp->rcv_wnd;
1575			tp->snd_una++;		/* SYN is acked */
1576			/*
1577			 * If there's data, delay ACK; if there's also a FIN
1578			 * ACKNOW will be turned on later.
1579			 */
1580			if (DELAY_ACK(tp) && tlen != 0)
1581				tcp_timer_activate(tp, TT_DELACK,
1582				    tcp_delacktime);
1583			else
1584				tp->t_flags |= TF_ACKNOW;
1585
1586			if ((thflags & TH_ECE) && V_tcp_do_ecn) {
1587				tp->t_flags |= TF_ECN_PERMIT;
1588				TCPSTAT_INC(tcps_ecn_shs);
1589			}
1590
1591			/*
1592			 * Received <SYN,ACK> in SYN_SENT[*] state.
1593			 * Transitions:
1594			 *	SYN_SENT  --> ESTABLISHED
1595			 *	SYN_SENT* --> FIN_WAIT_1
1596			 */
1597			tp->t_starttime = ticks;
1598			if (tp->t_flags & TF_NEEDFIN) {
1599				tp->t_state = TCPS_FIN_WAIT_1;
1600				tp->t_flags &= ~TF_NEEDFIN;
1601				thflags &= ~TH_SYN;
1602			} else {
1603				tp->t_state = TCPS_ESTABLISHED;
1604				tcp_timer_activate(tp, TT_KEEP, tcp_keepidle);
1605			}
1606		} else {
1607			/*
1608			 * Received initial SYN in SYN-SENT[*] state =>
1609			 * simultaneous open.  If segment contains CC option
1610			 * and there is a cached CC, apply TAO test.
1611			 * If it succeeds, connection is * half-synchronized.
1612			 * Otherwise, do 3-way handshake:
1613			 *        SYN-SENT -> SYN-RECEIVED
1614			 *        SYN-SENT* -> SYN-RECEIVED*
1615			 * If there was no CC option, clear cached CC value.
1616			 */
1617			tp->t_flags |= (TF_ACKNOW | TF_NEEDSYN);
1618			tcp_timer_activate(tp, TT_REXMT, 0);
1619			tp->t_state = TCPS_SYN_RECEIVED;
1620		}
1621
1622		KASSERT(ti_locked == TI_WLOCKED, ("%s: trimthenstep6: "
1623		    "ti_locked %d", __func__, ti_locked));
1624		INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
1625		INP_WLOCK_ASSERT(tp->t_inpcb);
1626
1627		/*
1628		 * Advance th->th_seq to correspond to first data byte.
1629		 * If data, trim to stay within window,
1630		 * dropping FIN if necessary.
1631		 */
1632		th->th_seq++;
1633		if (tlen > tp->rcv_wnd) {
1634			todrop = tlen - tp->rcv_wnd;
1635			m_adj(m, -todrop);
1636			tlen = tp->rcv_wnd;
1637			thflags &= ~TH_FIN;
1638			TCPSTAT_INC(tcps_rcvpackafterwin);
1639			TCPSTAT_ADD(tcps_rcvbyteafterwin, todrop);
1640		}
1641		tp->snd_wl1 = th->th_seq - 1;
1642		tp->rcv_up = th->th_seq;
1643		/*
1644		 * Client side of transaction: already sent SYN and data.
1645		 * If the remote host used T/TCP to validate the SYN,
1646		 * our data will be ACK'd; if so, enter normal data segment
1647		 * processing in the middle of step 5, ack processing.
1648		 * Otherwise, goto step 6.
1649		 */
1650		if (thflags & TH_ACK)
1651			goto process_ACK;
1652
1653		goto step6;
1654
1655	/*
1656	 * If the state is LAST_ACK or CLOSING or TIME_WAIT:
1657	 *      do normal processing.
1658	 *
1659	 * NB: Leftover from RFC1644 T/TCP.  Cases to be reused later.
1660	 */
1661	case TCPS_LAST_ACK:
1662	case TCPS_CLOSING:
1663		break;  /* continue normal processing */
1664	}
1665
1666	/*
1667	 * States other than LISTEN or SYN_SENT.
1668	 * First check the RST flag and sequence number since reset segments
1669	 * are exempt from the timestamp and connection count tests.  This
1670	 * fixes a bug introduced by the Stevens, vol. 2, p. 960 bugfix
1671	 * below which allowed reset segments in half the sequence space
1672	 * to fall though and be processed (which gives forged reset
1673	 * segments with a random sequence number a 50 percent chance of
1674	 * killing a connection).
1675	 * Then check timestamp, if present.
1676	 * Then check the connection count, if present.
1677	 * Then check that at least some bytes of segment are within
1678	 * receive window.  If segment begins before rcv_nxt,
1679	 * drop leading data (and SYN); if nothing left, just ack.
1680	 *
1681	 *
1682	 * If the RST bit is set, check the sequence number to see
1683	 * if this is a valid reset segment.
1684	 * RFC 793 page 37:
1685	 *   In all states except SYN-SENT, all reset (RST) segments
1686	 *   are validated by checking their SEQ-fields.  A reset is
1687	 *   valid if its sequence number is in the window.
1688	 * Note: this does not take into account delayed ACKs, so
1689	 *   we should test against last_ack_sent instead of rcv_nxt.
1690	 *   The sequence number in the reset segment is normally an
1691	 *   echo of our outgoing acknowlegement numbers, but some hosts
1692	 *   send a reset with the sequence number at the rightmost edge
1693	 *   of our receive window, and we have to handle this case.
1694	 * Note 2: Paul Watson's paper "Slipping in the Window" has shown
1695	 *   that brute force RST attacks are possible.  To combat this,
1696	 *   we use a much stricter check while in the ESTABLISHED state,
1697	 *   only accepting RSTs where the sequence number is equal to
1698	 *   last_ack_sent.  In all other states (the states in which a
1699	 *   RST is more likely), the more permissive check is used.
1700	 * If we have multiple segments in flight, the initial reset
1701	 * segment sequence numbers will be to the left of last_ack_sent,
1702	 * but they will eventually catch up.
1703	 * In any case, it never made sense to trim reset segments to
1704	 * fit the receive window since RFC 1122 says:
1705	 *   4.2.2.12  RST Segment: RFC-793 Section 3.4
1706	 *
1707	 *    A TCP SHOULD allow a received RST segment to include data.
1708	 *
1709	 *    DISCUSSION
1710	 *         It has been suggested that a RST segment could contain
1711	 *         ASCII text that encoded and explained the cause of the
1712	 *         RST.  No standard has yet been established for such
1713	 *         data.
1714	 *
1715	 * If the reset segment passes the sequence number test examine
1716	 * the state:
1717	 *    SYN_RECEIVED STATE:
1718	 *	If passive open, return to LISTEN state.
1719	 *	If active open, inform user that connection was refused.
1720	 *    ESTABLISHED, FIN_WAIT_1, FIN_WAIT_2, CLOSE_WAIT STATES:
1721	 *	Inform user that connection was reset, and close tcb.
1722	 *    CLOSING, LAST_ACK STATES:
1723	 *	Close the tcb.
1724	 *    TIME_WAIT STATE:
1725	 *	Drop the segment - see Stevens, vol. 2, p. 964 and
1726	 *      RFC 1337.
1727	 */
1728	if (thflags & TH_RST) {
1729		if (SEQ_GEQ(th->th_seq, tp->last_ack_sent - 1) &&
1730		    SEQ_LEQ(th->th_seq, tp->last_ack_sent + tp->rcv_wnd)) {
1731			switch (tp->t_state) {
1732
1733			case TCPS_SYN_RECEIVED:
1734				so->so_error = ECONNREFUSED;
1735				goto close;
1736
1737			case TCPS_ESTABLISHED:
1738				if (V_tcp_insecure_rst == 0 &&
1739				    !(SEQ_GEQ(th->th_seq, tp->rcv_nxt - 1) &&
1740				    SEQ_LEQ(th->th_seq, tp->rcv_nxt + 1)) &&
1741				    !(SEQ_GEQ(th->th_seq, tp->last_ack_sent - 1) &&
1742				    SEQ_LEQ(th->th_seq, tp->last_ack_sent + 1))) {
1743					TCPSTAT_INC(tcps_badrst);
1744					goto drop;
1745				}
1746				/* FALLTHROUGH */
1747			case TCPS_FIN_WAIT_1:
1748			case TCPS_FIN_WAIT_2:
1749			case TCPS_CLOSE_WAIT:
1750				so->so_error = ECONNRESET;
1751			close:
1752				KASSERT(ti_locked == TI_WLOCKED,
1753				    ("tcp_do_segment: TH_RST 1 ti_locked %d",
1754				    ti_locked));
1755				INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
1756
1757				tp->t_state = TCPS_CLOSED;
1758				TCPSTAT_INC(tcps_drops);
1759				tp = tcp_close(tp);
1760				break;
1761
1762			case TCPS_CLOSING:
1763			case TCPS_LAST_ACK:
1764				KASSERT(ti_locked == TI_WLOCKED,
1765				    ("tcp_do_segment: TH_RST 2 ti_locked %d",
1766				    ti_locked));
1767				INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
1768
1769				tp = tcp_close(tp);
1770				break;
1771			}
1772		}
1773		goto drop;
1774	}
1775
1776	/*
1777	 * RFC 1323 PAWS: If we have a timestamp reply on this segment
1778	 * and it's less than ts_recent, drop it.
1779	 */
1780	if ((to.to_flags & TOF_TS) != 0 && tp->ts_recent &&
1781	    TSTMP_LT(to.to_tsval, tp->ts_recent)) {
1782
1783		/* Check to see if ts_recent is over 24 days old.  */
1784		if ((int)(ticks - tp->ts_recent_age) > TCP_PAWS_IDLE) {
1785			/*
1786			 * Invalidate ts_recent.  If this segment updates
1787			 * ts_recent, the age will be reset later and ts_recent
1788			 * will get a valid value.  If it does not, setting
1789			 * ts_recent to zero will at least satisfy the
1790			 * requirement that zero be placed in the timestamp
1791			 * echo reply when ts_recent isn't valid.  The
1792			 * age isn't reset until we get a valid ts_recent
1793			 * because we don't want out-of-order segments to be
1794			 * dropped when ts_recent is old.
1795			 */
1796			tp->ts_recent = 0;
1797		} else {
1798			TCPSTAT_INC(tcps_rcvduppack);
1799			TCPSTAT_ADD(tcps_rcvdupbyte, tlen);
1800			TCPSTAT_INC(tcps_pawsdrop);
1801			if (tlen)
1802				goto dropafterack;
1803			goto drop;
1804		}
1805	}
1806
1807	/*
1808	 * In the SYN-RECEIVED state, validate that the packet belongs to
1809	 * this connection before trimming the data to fit the receive
1810	 * window.  Check the sequence number versus IRS since we know
1811	 * the sequence numbers haven't wrapped.  This is a partial fix
1812	 * for the "LAND" DoS attack.
1813	 */
1814	if (tp->t_state == TCPS_SYN_RECEIVED && SEQ_LT(th->th_seq, tp->irs)) {
1815		rstreason = BANDLIM_RST_OPENPORT;
1816		goto dropwithreset;
1817	}
1818
1819	todrop = tp->rcv_nxt - th->th_seq;
1820	if (todrop > 0) {
1821		/*
1822		 * If this is a duplicate SYN for our current connection,
1823		 * advance over it and pretend and it's not a SYN.
1824		 */
1825		if (thflags & TH_SYN && th->th_seq == tp->irs) {
1826			thflags &= ~TH_SYN;
1827			th->th_seq++;
1828			if (th->th_urp > 1)
1829				th->th_urp--;
1830			else
1831				thflags &= ~TH_URG;
1832			todrop--;
1833		}
1834		/*
1835		 * Following if statement from Stevens, vol. 2, p. 960.
1836		 */
1837		if (todrop > tlen
1838		    || (todrop == tlen && (thflags & TH_FIN) == 0)) {
1839			/*
1840			 * Any valid FIN must be to the left of the window.
1841			 * At this point the FIN must be a duplicate or out
1842			 * of sequence; drop it.
1843			 */
1844			thflags &= ~TH_FIN;
1845
1846			/*
1847			 * Send an ACK to resynchronize and drop any data.
1848			 * But keep on processing for RST or ACK.
1849			 */
1850			tp->t_flags |= TF_ACKNOW;
1851			todrop = tlen;
1852			TCPSTAT_INC(tcps_rcvduppack);
1853			TCPSTAT_ADD(tcps_rcvdupbyte, todrop);
1854		} else {
1855			TCPSTAT_INC(tcps_rcvpartduppack);
1856			TCPSTAT_ADD(tcps_rcvpartdupbyte, todrop);
1857		}
1858		drop_hdrlen += todrop;	/* drop from the top afterwards */
1859		th->th_seq += todrop;
1860		tlen -= todrop;
1861		if (th->th_urp > todrop)
1862			th->th_urp -= todrop;
1863		else {
1864			thflags &= ~TH_URG;
1865			th->th_urp = 0;
1866		}
1867	}
1868
1869	/*
1870	 * If new data are received on a connection after the
1871	 * user processes are gone, then RST the other end.
1872	 */
1873	if ((so->so_state & SS_NOFDREF) &&
1874	    tp->t_state > TCPS_CLOSE_WAIT && tlen) {
1875		char *s;
1876
1877		KASSERT(ti_locked == TI_WLOCKED, ("%s: SS_NOFDEREF && "
1878		    "CLOSE_WAIT && tlen ti_locked %d", __func__, ti_locked));
1879		INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
1880
1881		if ((s = tcp_log_addrs(&tp->t_inpcb->inp_inc, th, NULL, NULL))) {
1882			log(LOG_DEBUG, "%s; %s: %s: Received %d bytes of data after socket "
1883			    "was closed, sending RST and removing tcpcb\n",
1884			    s, __func__, tcpstates[tp->t_state], tlen);
1885			free(s, M_TCPLOG);
1886		}
1887		tp = tcp_close(tp);
1888		TCPSTAT_INC(tcps_rcvafterclose);
1889		rstreason = BANDLIM_UNLIMITED;
1890		goto dropwithreset;
1891	}
1892
1893	/*
1894	 * If segment ends after window, drop trailing data
1895	 * (and PUSH and FIN); if nothing left, just ACK.
1896	 */
1897	todrop = (th->th_seq + tlen) - (tp->rcv_nxt + tp->rcv_wnd);
1898	if (todrop > 0) {
1899		TCPSTAT_INC(tcps_rcvpackafterwin);
1900		if (todrop >= tlen) {
1901			TCPSTAT_ADD(tcps_rcvbyteafterwin, tlen);
1902			/*
1903			 * If window is closed can only take segments at
1904			 * window edge, and have to drop data and PUSH from
1905			 * incoming segments.  Continue processing, but
1906			 * remember to ack.  Otherwise, drop segment
1907			 * and ack.
1908			 */
1909			if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
1910				tp->t_flags |= TF_ACKNOW;
1911				TCPSTAT_INC(tcps_rcvwinprobe);
1912			} else
1913				goto dropafterack;
1914		} else
1915			TCPSTAT_ADD(tcps_rcvbyteafterwin, todrop);
1916		m_adj(m, -todrop);
1917		tlen -= todrop;
1918		thflags &= ~(TH_PUSH|TH_FIN);
1919	}
1920
1921	/*
1922	 * If last ACK falls within this segment's sequence numbers,
1923	 * record its timestamp.
1924	 * NOTE:
1925	 * 1) That the test incorporates suggestions from the latest
1926	 *    proposal of the tcplw@cray.com list (Braden 1993/04/26).
1927	 * 2) That updating only on newer timestamps interferes with
1928	 *    our earlier PAWS tests, so this check should be solely
1929	 *    predicated on the sequence space of this segment.
1930	 * 3) That we modify the segment boundary check to be
1931	 *        Last.ACK.Sent <= SEG.SEQ + SEG.Len
1932	 *    instead of RFC1323's
1933	 *        Last.ACK.Sent < SEG.SEQ + SEG.Len,
1934	 *    This modified check allows us to overcome RFC1323's
1935	 *    limitations as described in Stevens TCP/IP Illustrated
1936	 *    Vol. 2 p.869. In such cases, we can still calculate the
1937	 *    RTT correctly when RCV.NXT == Last.ACK.Sent.
1938	 */
1939	if ((to.to_flags & TOF_TS) != 0 &&
1940	    SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
1941	    SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
1942		((thflags & (TH_SYN|TH_FIN)) != 0))) {
1943		tp->ts_recent_age = ticks;
1944		tp->ts_recent = to.to_tsval;
1945	}
1946
1947	/*
1948	 * If a SYN is in the window, then this is an
1949	 * error and we send an RST and drop the connection.
1950	 */
1951	if (thflags & TH_SYN) {
1952		KASSERT(ti_locked == TI_WLOCKED,
1953		    ("tcp_do_segment: TH_SYN ti_locked %d", ti_locked));
1954		INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
1955
1956		tp = tcp_drop(tp, ECONNRESET);
1957		rstreason = BANDLIM_UNLIMITED;
1958		goto drop;
1959	}
1960
1961	/*
1962	 * If the ACK bit is off:  if in SYN-RECEIVED state or SENDSYN
1963	 * flag is on (half-synchronized state), then queue data for
1964	 * later processing; else drop segment and return.
1965	 */
1966	if ((thflags & TH_ACK) == 0) {
1967		if (tp->t_state == TCPS_SYN_RECEIVED ||
1968		    (tp->t_flags & TF_NEEDSYN))
1969			goto step6;
1970		else if (tp->t_flags & TF_ACKNOW)
1971			goto dropafterack;
1972		else
1973			goto drop;
1974	}
1975
1976	/*
1977	 * Ack processing.
1978	 */
1979	switch (tp->t_state) {
1980
1981	/*
1982	 * In SYN_RECEIVED state, the ack ACKs our SYN, so enter
1983	 * ESTABLISHED state and continue processing.
1984	 * The ACK was checked above.
1985	 */
1986	case TCPS_SYN_RECEIVED:
1987
1988		TCPSTAT_INC(tcps_connects);
1989		soisconnected(so);
1990		/* Do window scaling? */
1991		if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
1992			(TF_RCVD_SCALE|TF_REQ_SCALE)) {
1993			tp->rcv_scale = tp->request_r_scale;
1994			tp->snd_wnd = tiwin;
1995		}
1996		/*
1997		 * Make transitions:
1998		 *      SYN-RECEIVED  -> ESTABLISHED
1999		 *      SYN-RECEIVED* -> FIN-WAIT-1
2000		 */
2001		tp->t_starttime = ticks;
2002		if (tp->t_flags & TF_NEEDFIN) {
2003			tp->t_state = TCPS_FIN_WAIT_1;
2004			tp->t_flags &= ~TF_NEEDFIN;
2005		} else {
2006			tp->t_state = TCPS_ESTABLISHED;
2007			tcp_timer_activate(tp, TT_KEEP, tcp_keepidle);
2008		}
2009		/*
2010		 * If segment contains data or ACK, will call tcp_reass()
2011		 * later; if not, do so now to pass queued data to user.
2012		 */
2013		if (tlen == 0 && (thflags & TH_FIN) == 0)
2014			(void) tcp_reass(tp, (struct tcphdr *)0, 0,
2015			    (struct mbuf *)0);
2016		tp->snd_wl1 = th->th_seq - 1;
2017		/* FALLTHROUGH */
2018
2019	/*
2020	 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
2021	 * ACKs.  If the ack is in the range
2022	 *	tp->snd_una < th->th_ack <= tp->snd_max
2023	 * then advance tp->snd_una to th->th_ack and drop
2024	 * data from the retransmission queue.  If this ACK reflects
2025	 * more up to date window information we update our window information.
2026	 */
2027	case TCPS_ESTABLISHED:
2028	case TCPS_FIN_WAIT_1:
2029	case TCPS_FIN_WAIT_2:
2030	case TCPS_CLOSE_WAIT:
2031	case TCPS_CLOSING:
2032	case TCPS_LAST_ACK:
2033		if (SEQ_GT(th->th_ack, tp->snd_max)) {
2034			TCPSTAT_INC(tcps_rcvacktoomuch);
2035			goto dropafterack;
2036		}
2037		if ((tp->t_flags & TF_SACK_PERMIT) &&
2038		    ((to.to_flags & TOF_SACK) ||
2039		     !TAILQ_EMPTY(&tp->snd_holes)))
2040			tcp_sack_doack(tp, &to, th->th_ack);
2041		if (SEQ_LEQ(th->th_ack, tp->snd_una)) {
2042			if (tlen == 0 && tiwin == tp->snd_wnd) {
2043				TCPSTAT_INC(tcps_rcvdupack);
2044				/*
2045				 * If we have outstanding data (other than
2046				 * a window probe), this is a completely
2047				 * duplicate ack (ie, window info didn't
2048				 * change), the ack is the biggest we've
2049				 * seen and we've seen exactly our rexmt
2050				 * threshhold of them, assume a packet
2051				 * has been dropped and retransmit it.
2052				 * Kludge snd_nxt & the congestion
2053				 * window so we send only this one
2054				 * packet.
2055				 *
2056				 * We know we're losing at the current
2057				 * window size so do congestion avoidance
2058				 * (set ssthresh to half the current window
2059				 * and pull our congestion window back to
2060				 * the new ssthresh).
2061				 *
2062				 * Dup acks mean that packets have left the
2063				 * network (they're now cached at the receiver)
2064				 * so bump cwnd by the amount in the receiver
2065				 * to keep a constant cwnd packets in the
2066				 * network.
2067				 *
2068				 * When using TCP ECN, notify the peer that
2069				 * we reduced the cwnd.
2070				 */
2071				if (!tcp_timer_active(tp, TT_REXMT) ||
2072				    th->th_ack != tp->snd_una)
2073					tp->t_dupacks = 0;
2074				else if (++tp->t_dupacks > tcprexmtthresh ||
2075				    ((V_tcp_do_newreno ||
2076				      (tp->t_flags & TF_SACK_PERMIT)) &&
2077				     IN_FASTRECOVERY(tp))) {
2078					if ((tp->t_flags & TF_SACK_PERMIT) &&
2079					    IN_FASTRECOVERY(tp)) {
2080						int awnd;
2081
2082						/*
2083						 * Compute the amount of data in flight first.
2084						 * We can inject new data into the pipe iff
2085						 * we have less than 1/2 the original window's
2086						 * worth of data in flight.
2087						 */
2088						awnd = (tp->snd_nxt - tp->snd_fack) +
2089							tp->sackhint.sack_bytes_rexmit;
2090						if (awnd < tp->snd_ssthresh) {
2091							tp->snd_cwnd += tp->t_maxseg;
2092							if (tp->snd_cwnd > tp->snd_ssthresh)
2093								tp->snd_cwnd = tp->snd_ssthresh;
2094						}
2095					} else
2096						tp->snd_cwnd += tp->t_maxseg;
2097					(void) tcp_output(tp);
2098					goto drop;
2099				} else if (tp->t_dupacks == tcprexmtthresh) {
2100					tcp_seq onxt = tp->snd_nxt;
2101
2102					/*
2103					 * If we're doing sack, check to
2104					 * see if we're already in sack
2105					 * recovery. If we're not doing sack,
2106					 * check to see if we're in newreno
2107					 * recovery.
2108					 */
2109					if (tp->t_flags & TF_SACK_PERMIT) {
2110						if (IN_FASTRECOVERY(tp)) {
2111							tp->t_dupacks = 0;
2112							break;
2113						}
2114					} else if (V_tcp_do_newreno ||
2115					    V_tcp_do_ecn) {
2116						if (SEQ_LEQ(th->th_ack,
2117						    tp->snd_recover)) {
2118							tp->t_dupacks = 0;
2119							break;
2120						}
2121					}
2122					tcp_congestion_exp(tp);
2123					tcp_timer_activate(tp, TT_REXMT, 0);
2124					tp->t_rtttime = 0;
2125					if (tp->t_flags & TF_SACK_PERMIT) {
2126						TCPSTAT_INC(
2127						    tcps_sack_recovery_episode);
2128						tp->sack_newdata = tp->snd_nxt;
2129						tp->snd_cwnd = tp->t_maxseg;
2130						(void) tcp_output(tp);
2131						goto drop;
2132					}
2133					tp->snd_nxt = th->th_ack;
2134					tp->snd_cwnd = tp->t_maxseg;
2135					(void) tcp_output(tp);
2136					KASSERT(tp->snd_limited <= 2,
2137					    ("%s: tp->snd_limited too big",
2138					    __func__));
2139					tp->snd_cwnd = tp->snd_ssthresh +
2140					     tp->t_maxseg *
2141					     (tp->t_dupacks - tp->snd_limited);
2142					if (SEQ_GT(onxt, tp->snd_nxt))
2143						tp->snd_nxt = onxt;
2144					goto drop;
2145				} else if (V_tcp_do_rfc3042) {
2146					u_long oldcwnd = tp->snd_cwnd;
2147					tcp_seq oldsndmax = tp->snd_max;
2148					u_int sent;
2149
2150					KASSERT(tp->t_dupacks == 1 ||
2151					    tp->t_dupacks == 2,
2152					    ("%s: dupacks not 1 or 2",
2153					    __func__));
2154					if (tp->t_dupacks == 1)
2155						tp->snd_limited = 0;
2156					tp->snd_cwnd =
2157					    (tp->snd_nxt - tp->snd_una) +
2158					    (tp->t_dupacks - tp->snd_limited) *
2159					    tp->t_maxseg;
2160					(void) tcp_output(tp);
2161					sent = tp->snd_max - oldsndmax;
2162					if (sent > tp->t_maxseg) {
2163						KASSERT((tp->t_dupacks == 2 &&
2164						    tp->snd_limited == 0) ||
2165						   (sent == tp->t_maxseg + 1 &&
2166						    tp->t_flags & TF_SENTFIN),
2167						    ("%s: sent too much",
2168						    __func__));
2169						tp->snd_limited = 2;
2170					} else if (sent > 0)
2171						++tp->snd_limited;
2172					tp->snd_cwnd = oldcwnd;
2173					goto drop;
2174				}
2175			} else
2176				tp->t_dupacks = 0;
2177			break;
2178		}
2179
2180		KASSERT(SEQ_GT(th->th_ack, tp->snd_una),
2181		    ("%s: th_ack <= snd_una", __func__));
2182
2183		/*
2184		 * If the congestion window was inflated to account
2185		 * for the other side's cached packets, retract it.
2186		 */
2187		if (V_tcp_do_newreno || (tp->t_flags & TF_SACK_PERMIT)) {
2188			if (IN_FASTRECOVERY(tp)) {
2189				if (SEQ_LT(th->th_ack, tp->snd_recover)) {
2190					if (tp->t_flags & TF_SACK_PERMIT)
2191						tcp_sack_partialack(tp, th);
2192					else
2193						tcp_newreno_partial_ack(tp, th);
2194				} else {
2195					/*
2196					 * Out of fast recovery.
2197					 * Window inflation should have left us
2198					 * with approximately snd_ssthresh
2199					 * outstanding data.
2200					 * But in case we would be inclined to
2201					 * send a burst, better to do it via
2202					 * the slow start mechanism.
2203					 */
2204					if (SEQ_GT(th->th_ack +
2205							tp->snd_ssthresh,
2206						   tp->snd_max))
2207						tp->snd_cwnd = tp->snd_max -
2208								th->th_ack +
2209								tp->t_maxseg;
2210					else
2211						tp->snd_cwnd = tp->snd_ssthresh;
2212				}
2213			}
2214		} else {
2215			if (tp->t_dupacks >= tcprexmtthresh &&
2216			    tp->snd_cwnd > tp->snd_ssthresh)
2217				tp->snd_cwnd = tp->snd_ssthresh;
2218		}
2219		tp->t_dupacks = 0;
2220		/*
2221		 * If we reach this point, ACK is not a duplicate,
2222		 *     i.e., it ACKs something we sent.
2223		 */
2224		if (tp->t_flags & TF_NEEDSYN) {
2225			/*
2226			 * T/TCP: Connection was half-synchronized, and our
2227			 * SYN has been ACK'd (so connection is now fully
2228			 * synchronized).  Go to non-starred state,
2229			 * increment snd_una for ACK of SYN, and check if
2230			 * we can do window scaling.
2231			 */
2232			tp->t_flags &= ~TF_NEEDSYN;
2233			tp->snd_una++;
2234			/* Do window scaling? */
2235			if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
2236				(TF_RCVD_SCALE|TF_REQ_SCALE)) {
2237				tp->rcv_scale = tp->request_r_scale;
2238				/* Send window already scaled. */
2239			}
2240		}
2241
2242process_ACK:
2243		INP_INFO_LOCK_ASSERT(&V_tcbinfo);
2244		KASSERT(ti_locked == TI_RLOCKED || ti_locked == TI_WLOCKED,
2245		    ("tcp_input: process_ACK ti_locked %d", ti_locked));
2246		INP_WLOCK_ASSERT(tp->t_inpcb);
2247
2248		acked = th->th_ack - tp->snd_una;
2249		TCPSTAT_INC(tcps_rcvackpack);
2250		TCPSTAT_ADD(tcps_rcvackbyte, acked);
2251
2252		/*
2253		 * If we just performed our first retransmit, and the ACK
2254		 * arrives within our recovery window, then it was a mistake
2255		 * to do the retransmit in the first place.  Recover our
2256		 * original cwnd and ssthresh, and proceed to transmit where
2257		 * we left off.
2258		 */
2259		if (tp->t_rxtshift == 1 && ticks < tp->t_badrxtwin) {
2260			TCPSTAT_INC(tcps_sndrexmitbad);
2261			tp->snd_cwnd = tp->snd_cwnd_prev;
2262			tp->snd_ssthresh = tp->snd_ssthresh_prev;
2263			tp->snd_recover = tp->snd_recover_prev;
2264			if (tp->t_flags & TF_WASFRECOVERY)
2265				ENTER_FASTRECOVERY(tp);
2266			tp->snd_nxt = tp->snd_max;
2267			tp->t_badrxtwin = 0;	/* XXX probably not required */
2268		}
2269
2270		/*
2271		 * If we have a timestamp reply, update smoothed
2272		 * round trip time.  If no timestamp is present but
2273		 * transmit timer is running and timed sequence
2274		 * number was acked, update smoothed round trip time.
2275		 * Since we now have an rtt measurement, cancel the
2276		 * timer backoff (cf., Phil Karn's retransmit alg.).
2277		 * Recompute the initial retransmit timer.
2278		 *
2279		 * Some boxes send broken timestamp replies
2280		 * during the SYN+ACK phase, ignore
2281		 * timestamps of 0 or we could calculate a
2282		 * huge RTT and blow up the retransmit timer.
2283		 */
2284		if ((to.to_flags & TOF_TS) != 0 &&
2285		    to.to_tsecr) {
2286			if (!tp->t_rttlow || tp->t_rttlow > ticks - to.to_tsecr)
2287				tp->t_rttlow = ticks - to.to_tsecr;
2288			tcp_xmit_timer(tp, ticks - to.to_tsecr + 1);
2289		} else if (tp->t_rtttime && SEQ_GT(th->th_ack, tp->t_rtseq)) {
2290			if (!tp->t_rttlow || tp->t_rttlow > ticks - tp->t_rtttime)
2291				tp->t_rttlow = ticks - tp->t_rtttime;
2292			tcp_xmit_timer(tp, ticks - tp->t_rtttime);
2293		}
2294		tcp_xmit_bandwidth_limit(tp, th->th_ack);
2295
2296		/*
2297		 * If all outstanding data is acked, stop retransmit
2298		 * timer and remember to restart (more output or persist).
2299		 * If there is more data to be acked, restart retransmit
2300		 * timer, using current (possibly backed-off) value.
2301		 */
2302		if (th->th_ack == tp->snd_max) {
2303			tcp_timer_activate(tp, TT_REXMT, 0);
2304			needoutput = 1;
2305		} else if (!tcp_timer_active(tp, TT_PERSIST))
2306			tcp_timer_activate(tp, TT_REXMT, tp->t_rxtcur);
2307
2308		/*
2309		 * If no data (only SYN) was ACK'd,
2310		 *    skip rest of ACK processing.
2311		 */
2312		if (acked == 0)
2313			goto step6;
2314
2315		/*
2316		 * When new data is acked, open the congestion window.
2317		 * Method depends on which congestion control state we're
2318		 * in (slow start or cong avoid) and if ABC (RFC 3465) is
2319		 * enabled.
2320		 *
2321		 * slow start: cwnd <= ssthresh
2322		 * cong avoid: cwnd > ssthresh
2323		 *
2324		 * slow start and ABC (RFC 3465):
2325		 *   Grow cwnd exponentially by the amount of data
2326		 *   ACKed capping the max increment per ACK to
2327		 *   (abc_l_var * maxseg) bytes.
2328		 *
2329		 * slow start without ABC (RFC 2581):
2330		 *   Grow cwnd exponentially by maxseg per ACK.
2331		 *
2332		 * cong avoid and ABC (RFC 3465):
2333		 *   Grow cwnd linearly by maxseg per RTT for each
2334		 *   cwnd worth of ACKed data.
2335		 *
2336		 * cong avoid without ABC (RFC 2581):
2337		 *   Grow cwnd linearly by approximately maxseg per RTT using
2338		 *   maxseg^2 / cwnd per ACK as the increment.
2339		 *   If cwnd > maxseg^2, fix the cwnd increment at 1 byte to
2340		 *   avoid capping cwnd.
2341		 */
2342		if ((!V_tcp_do_newreno && !(tp->t_flags & TF_SACK_PERMIT)) ||
2343		    !IN_FASTRECOVERY(tp)) {
2344			u_int cw = tp->snd_cwnd;
2345			u_int incr = tp->t_maxseg;
2346			/* In congestion avoidance? */
2347			if (cw > tp->snd_ssthresh) {
2348				if (V_tcp_do_rfc3465) {
2349					tp->t_bytes_acked += acked;
2350					if (tp->t_bytes_acked >= tp->snd_cwnd)
2351						tp->t_bytes_acked -= cw;
2352					else
2353						incr = 0;
2354				}
2355				else
2356					incr = max((incr * incr / cw), 1);
2357			/*
2358			 * In slow-start with ABC enabled and no RTO in sight?
2359			 * (Must not use abc_l_var > 1 if slow starting after an
2360			 * RTO. On RTO, snd_nxt = snd_una, so the snd_nxt ==
2361			 * snd_max check is sufficient to handle this).
2362			 */
2363			} else if (V_tcp_do_rfc3465 &&
2364			    tp->snd_nxt == tp->snd_max)
2365				incr = min(acked,
2366				    V_tcp_abc_l_var * tp->t_maxseg);
2367			/* ABC is on by default, so (incr == 0) frequently. */
2368			if (incr > 0)
2369				tp->snd_cwnd = min(cw+incr, TCP_MAXWIN<<tp->snd_scale);
2370		}
2371		SOCKBUF_LOCK(&so->so_snd);
2372		if (acked > so->so_snd.sb_cc) {
2373			tp->snd_wnd -= so->so_snd.sb_cc;
2374			sbdrop_locked(&so->so_snd, (int)so->so_snd.sb_cc);
2375			ourfinisacked = 1;
2376		} else {
2377			sbdrop_locked(&so->so_snd, acked);
2378			tp->snd_wnd -= acked;
2379			ourfinisacked = 0;
2380		}
2381		/* NB: sowwakeup_locked() does an implicit unlock. */
2382		sowwakeup_locked(so);
2383		/* Detect una wraparound. */
2384		if ((V_tcp_do_newreno || (tp->t_flags & TF_SACK_PERMIT)) &&
2385		    !IN_FASTRECOVERY(tp) &&
2386		    SEQ_GT(tp->snd_una, tp->snd_recover) &&
2387		    SEQ_LEQ(th->th_ack, tp->snd_recover))
2388			tp->snd_recover = th->th_ack - 1;
2389		if ((V_tcp_do_newreno || (tp->t_flags & TF_SACK_PERMIT)) &&
2390		    IN_FASTRECOVERY(tp) &&
2391		    SEQ_GEQ(th->th_ack, tp->snd_recover)) {
2392			EXIT_FASTRECOVERY(tp);
2393			tp->t_bytes_acked = 0;
2394		}
2395		tp->snd_una = th->th_ack;
2396		if (tp->t_flags & TF_SACK_PERMIT) {
2397			if (SEQ_GT(tp->snd_una, tp->snd_recover))
2398				tp->snd_recover = tp->snd_una;
2399		}
2400		if (SEQ_LT(tp->snd_nxt, tp->snd_una))
2401			tp->snd_nxt = tp->snd_una;
2402
2403		switch (tp->t_state) {
2404
2405		/*
2406		 * In FIN_WAIT_1 STATE in addition to the processing
2407		 * for the ESTABLISHED state if our FIN is now acknowledged
2408		 * then enter FIN_WAIT_2.
2409		 */
2410		case TCPS_FIN_WAIT_1:
2411			if (ourfinisacked) {
2412				/*
2413				 * If we can't receive any more
2414				 * data, then closing user can proceed.
2415				 * Starting the timer is contrary to the
2416				 * specification, but if we don't get a FIN
2417				 * we'll hang forever.
2418				 *
2419				 * XXXjl:
2420				 * we should release the tp also, and use a
2421				 * compressed state.
2422				 */
2423				if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
2424					int timeout;
2425
2426					soisdisconnected(so);
2427					timeout = (tcp_fast_finwait2_recycle) ?
2428						tcp_finwait2_timeout : tcp_maxidle;
2429					tcp_timer_activate(tp, TT_2MSL, timeout);
2430				}
2431				tp->t_state = TCPS_FIN_WAIT_2;
2432			}
2433			break;
2434
2435		/*
2436		 * In CLOSING STATE in addition to the processing for
2437		 * the ESTABLISHED state if the ACK acknowledges our FIN
2438		 * then enter the TIME-WAIT state, otherwise ignore
2439		 * the segment.
2440		 */
2441		case TCPS_CLOSING:
2442			if (ourfinisacked) {
2443				INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
2444				tcp_twstart(tp);
2445				INP_INFO_WUNLOCK(&V_tcbinfo);
2446				m_freem(m);
2447				return;
2448			}
2449			break;
2450
2451		/*
2452		 * In LAST_ACK, we may still be waiting for data to drain
2453		 * and/or to be acked, as well as for the ack of our FIN.
2454		 * If our FIN is now acknowledged, delete the TCB,
2455		 * enter the closed state and return.
2456		 */
2457		case TCPS_LAST_ACK:
2458			if (ourfinisacked) {
2459				INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
2460				tp = tcp_close(tp);
2461				goto drop;
2462			}
2463			break;
2464		}
2465	}
2466
2467step6:
2468	INP_INFO_LOCK_ASSERT(&V_tcbinfo);
2469	KASSERT(ti_locked == TI_RLOCKED || ti_locked == TI_WLOCKED,
2470	    ("tcp_do_segment: step6 ti_locked %d", ti_locked));
2471	INP_WLOCK_ASSERT(tp->t_inpcb);
2472
2473	/*
2474	 * Update window information.
2475	 * Don't look at window if no ACK: TAC's send garbage on first SYN.
2476	 */
2477	if ((thflags & TH_ACK) &&
2478	    (SEQ_LT(tp->snd_wl1, th->th_seq) ||
2479	    (tp->snd_wl1 == th->th_seq && (SEQ_LT(tp->snd_wl2, th->th_ack) ||
2480	     (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))))) {
2481		/* keep track of pure window updates */
2482		if (tlen == 0 &&
2483		    tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)
2484			TCPSTAT_INC(tcps_rcvwinupd);
2485		tp->snd_wnd = tiwin;
2486		tp->snd_wl1 = th->th_seq;
2487		tp->snd_wl2 = th->th_ack;
2488		if (tp->snd_wnd > tp->max_sndwnd)
2489			tp->max_sndwnd = tp->snd_wnd;
2490		needoutput = 1;
2491	}
2492
2493	/*
2494	 * Process segments with URG.
2495	 */
2496	if ((thflags & TH_URG) && th->th_urp &&
2497	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2498		/*
2499		 * This is a kludge, but if we receive and accept
2500		 * random urgent pointers, we'll crash in
2501		 * soreceive.  It's hard to imagine someone
2502		 * actually wanting to send this much urgent data.
2503		 */
2504		SOCKBUF_LOCK(&so->so_rcv);
2505		if (th->th_urp + so->so_rcv.sb_cc > sb_max) {
2506			th->th_urp = 0;			/* XXX */
2507			thflags &= ~TH_URG;		/* XXX */
2508			SOCKBUF_UNLOCK(&so->so_rcv);	/* XXX */
2509			goto dodata;			/* XXX */
2510		}
2511		/*
2512		 * If this segment advances the known urgent pointer,
2513		 * then mark the data stream.  This should not happen
2514		 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
2515		 * a FIN has been received from the remote side.
2516		 * In these states we ignore the URG.
2517		 *
2518		 * According to RFC961 (Assigned Protocols),
2519		 * the urgent pointer points to the last octet
2520		 * of urgent data.  We continue, however,
2521		 * to consider it to indicate the first octet
2522		 * of data past the urgent section as the original
2523		 * spec states (in one of two places).
2524		 */
2525		if (SEQ_GT(th->th_seq+th->th_urp, tp->rcv_up)) {
2526			tp->rcv_up = th->th_seq + th->th_urp;
2527			so->so_oobmark = so->so_rcv.sb_cc +
2528			    (tp->rcv_up - tp->rcv_nxt) - 1;
2529			if (so->so_oobmark == 0)
2530				so->so_rcv.sb_state |= SBS_RCVATMARK;
2531			sohasoutofband(so);
2532			tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
2533		}
2534		SOCKBUF_UNLOCK(&so->so_rcv);
2535		/*
2536		 * Remove out of band data so doesn't get presented to user.
2537		 * This can happen independent of advancing the URG pointer,
2538		 * but if two URG's are pending at once, some out-of-band
2539		 * data may creep in... ick.
2540		 */
2541		if (th->th_urp <= (u_long)tlen &&
2542		    !(so->so_options & SO_OOBINLINE)) {
2543			/* hdr drop is delayed */
2544			tcp_pulloutofband(so, th, m, drop_hdrlen);
2545		}
2546	} else {
2547		/*
2548		 * If no out of band data is expected,
2549		 * pull receive urgent pointer along
2550		 * with the receive window.
2551		 */
2552		if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
2553			tp->rcv_up = tp->rcv_nxt;
2554	}
2555dodata:							/* XXX */
2556	INP_INFO_LOCK_ASSERT(&V_tcbinfo);
2557	KASSERT(ti_locked == TI_RLOCKED || ti_locked == TI_WLOCKED,
2558	    ("tcp_do_segment: dodata ti_locked %d", ti_locked));
2559	INP_WLOCK_ASSERT(tp->t_inpcb);
2560
2561	/*
2562	 * Process the segment text, merging it into the TCP sequencing queue,
2563	 * and arranging for acknowledgment of receipt if necessary.
2564	 * This process logically involves adjusting tp->rcv_wnd as data
2565	 * is presented to the user (this happens in tcp_usrreq.c,
2566	 * case PRU_RCVD).  If a FIN has already been received on this
2567	 * connection then we just ignore the text.
2568	 */
2569	if ((tlen || (thflags & TH_FIN)) &&
2570	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2571		tcp_seq save_start = th->th_seq;
2572		m_adj(m, drop_hdrlen);	/* delayed header drop */
2573		/*
2574		 * Insert segment which includes th into TCP reassembly queue
2575		 * with control block tp.  Set thflags to whether reassembly now
2576		 * includes a segment with FIN.  This handles the common case
2577		 * inline (segment is the next to be received on an established
2578		 * connection, and the queue is empty), avoiding linkage into
2579		 * and removal from the queue and repetition of various
2580		 * conversions.
2581		 * Set DELACK for segments received in order, but ack
2582		 * immediately when segments are out of order (so
2583		 * fast retransmit can work).
2584		 */
2585		if (th->th_seq == tp->rcv_nxt &&
2586		    LIST_EMPTY(&tp->t_segq) &&
2587		    TCPS_HAVEESTABLISHED(tp->t_state)) {
2588			if (DELAY_ACK(tp))
2589				tp->t_flags |= TF_DELACK;
2590			else
2591				tp->t_flags |= TF_ACKNOW;
2592			tp->rcv_nxt += tlen;
2593			thflags = th->th_flags & TH_FIN;
2594			TCPSTAT_INC(tcps_rcvpack);
2595			TCPSTAT_ADD(tcps_rcvbyte, tlen);
2596			ND6_HINT(tp);
2597			SOCKBUF_LOCK(&so->so_rcv);
2598			if (so->so_rcv.sb_state & SBS_CANTRCVMORE)
2599				m_freem(m);
2600			else
2601				sbappendstream_locked(&so->so_rcv, m);
2602			/* NB: sorwakeup_locked() does an implicit unlock. */
2603			sorwakeup_locked(so);
2604		} else {
2605			/*
2606			 * XXX: Due to the header drop above "th" is
2607			 * theoretically invalid by now.  Fortunately
2608			 * m_adj() doesn't actually frees any mbufs
2609			 * when trimming from the head.
2610			 */
2611			thflags = tcp_reass(tp, th, &tlen, m);
2612			tp->t_flags |= TF_ACKNOW;
2613		}
2614		if (tlen > 0 && (tp->t_flags & TF_SACK_PERMIT))
2615			tcp_update_sack_list(tp, save_start, save_start + tlen);
2616#if 0
2617		/*
2618		 * Note the amount of data that peer has sent into
2619		 * our window, in order to estimate the sender's
2620		 * buffer size.
2621		 * XXX: Unused.
2622		 */
2623		len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
2624#endif
2625	} else {
2626		m_freem(m);
2627		thflags &= ~TH_FIN;
2628	}
2629
2630	/*
2631	 * If FIN is received ACK the FIN and let the user know
2632	 * that the connection is closing.
2633	 */
2634	if (thflags & TH_FIN) {
2635		if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2636			socantrcvmore(so);
2637			/*
2638			 * If connection is half-synchronized
2639			 * (ie NEEDSYN flag on) then delay ACK,
2640			 * so it may be piggybacked when SYN is sent.
2641			 * Otherwise, since we received a FIN then no
2642			 * more input can be expected, send ACK now.
2643			 */
2644			if (tp->t_flags & TF_NEEDSYN)
2645				tp->t_flags |= TF_DELACK;
2646			else
2647				tp->t_flags |= TF_ACKNOW;
2648			tp->rcv_nxt++;
2649		}
2650		switch (tp->t_state) {
2651
2652		/*
2653		 * In SYN_RECEIVED and ESTABLISHED STATES
2654		 * enter the CLOSE_WAIT state.
2655		 */
2656		case TCPS_SYN_RECEIVED:
2657			tp->t_starttime = ticks;
2658			/* FALLTHROUGH */
2659		case TCPS_ESTABLISHED:
2660			tp->t_state = TCPS_CLOSE_WAIT;
2661			break;
2662
2663		/*
2664		 * If still in FIN_WAIT_1 STATE FIN has not been acked so
2665		 * enter the CLOSING state.
2666		 */
2667		case TCPS_FIN_WAIT_1:
2668			tp->t_state = TCPS_CLOSING;
2669			break;
2670
2671		/*
2672		 * In FIN_WAIT_2 state enter the TIME_WAIT state,
2673		 * starting the time-wait timer, turning off the other
2674		 * standard timers.
2675		 */
2676		case TCPS_FIN_WAIT_2:
2677			INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
2678			KASSERT(ti_locked == TI_WLOCKED, ("%s: dodata "
2679			    "TCP_FIN_WAIT_2 ti_locked: %d", __func__,
2680			    ti_locked));
2681
2682			tcp_twstart(tp);
2683			INP_INFO_WUNLOCK(&V_tcbinfo);
2684			return;
2685		}
2686	}
2687	if (ti_locked == TI_RLOCKED)
2688		INP_INFO_RUNLOCK(&V_tcbinfo);
2689	else if (ti_locked == TI_WLOCKED)
2690		INP_INFO_WUNLOCK(&V_tcbinfo);
2691	else
2692		panic("%s: dodata epilogue ti_locked %d", __func__,
2693		    ti_locked);
2694	ti_locked = TI_UNLOCKED;
2695
2696#ifdef TCPDEBUG
2697	if (so->so_options & SO_DEBUG)
2698		tcp_trace(TA_INPUT, ostate, tp, (void *)tcp_saveipgen,
2699			  &tcp_savetcp, 0);
2700#endif
2701
2702	/*
2703	 * Return any desired output.
2704	 */
2705	if (needoutput || (tp->t_flags & TF_ACKNOW))
2706		(void) tcp_output(tp);
2707
2708check_delack:
2709	KASSERT(ti_locked == TI_UNLOCKED, ("%s: check_delack ti_locked %d",
2710	    __func__, ti_locked));
2711	INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
2712	INP_WLOCK_ASSERT(tp->t_inpcb);
2713
2714	if (tp->t_flags & TF_DELACK) {
2715		tp->t_flags &= ~TF_DELACK;
2716		tcp_timer_activate(tp, TT_DELACK, tcp_delacktime);
2717	}
2718	INP_WUNLOCK(tp->t_inpcb);
2719	return;
2720
2721dropafterack:
2722	KASSERT(ti_locked == TI_RLOCKED || ti_locked == TI_WLOCKED,
2723	    ("tcp_do_segment: dropafterack ti_locked %d", ti_locked));
2724
2725	/*
2726	 * Generate an ACK dropping incoming segment if it occupies
2727	 * sequence space, where the ACK reflects our state.
2728	 *
2729	 * We can now skip the test for the RST flag since all
2730	 * paths to this code happen after packets containing
2731	 * RST have been dropped.
2732	 *
2733	 * In the SYN-RECEIVED state, don't send an ACK unless the
2734	 * segment we received passes the SYN-RECEIVED ACK test.
2735	 * If it fails send a RST.  This breaks the loop in the
2736	 * "LAND" DoS attack, and also prevents an ACK storm
2737	 * between two listening ports that have been sent forged
2738	 * SYN segments, each with the source address of the other.
2739	 */
2740	if (tp->t_state == TCPS_SYN_RECEIVED && (thflags & TH_ACK) &&
2741	    (SEQ_GT(tp->snd_una, th->th_ack) ||
2742	     SEQ_GT(th->th_ack, tp->snd_max)) ) {
2743		rstreason = BANDLIM_RST_OPENPORT;
2744		goto dropwithreset;
2745	}
2746#ifdef TCPDEBUG
2747	if (so->so_options & SO_DEBUG)
2748		tcp_trace(TA_DROP, ostate, tp, (void *)tcp_saveipgen,
2749			  &tcp_savetcp, 0);
2750#endif
2751	if (ti_locked == TI_RLOCKED)
2752		INP_INFO_RUNLOCK(&V_tcbinfo);
2753	else if (ti_locked == TI_WLOCKED)
2754		INP_INFO_WUNLOCK(&V_tcbinfo);
2755	else
2756		panic("%s: dropafterack epilogue ti_locked %d", __func__,
2757		    ti_locked);
2758	ti_locked = TI_UNLOCKED;
2759
2760	tp->t_flags |= TF_ACKNOW;
2761	(void) tcp_output(tp);
2762	INP_WUNLOCK(tp->t_inpcb);
2763	m_freem(m);
2764	return;
2765
2766dropwithreset:
2767	if (ti_locked == TI_RLOCKED)
2768		INP_INFO_RUNLOCK(&V_tcbinfo);
2769	else if (ti_locked == TI_WLOCKED)
2770		INP_INFO_WUNLOCK(&V_tcbinfo);
2771	else
2772		panic("%s: dropwithreset ti_locked %d", __func__, ti_locked);
2773	ti_locked = TI_UNLOCKED;
2774
2775	if (tp != NULL) {
2776		tcp_dropwithreset(m, th, tp, tlen, rstreason);
2777		INP_WUNLOCK(tp->t_inpcb);
2778	} else
2779		tcp_dropwithreset(m, th, NULL, tlen, rstreason);
2780	return;
2781
2782drop:
2783	if (ti_locked == TI_RLOCKED)
2784		INP_INFO_RUNLOCK(&V_tcbinfo);
2785	else if (ti_locked == TI_WLOCKED)
2786		INP_INFO_WUNLOCK(&V_tcbinfo);
2787#ifdef INVARIANTS
2788	else
2789		INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
2790#endif
2791	ti_locked = TI_UNLOCKED;
2792
2793	/*
2794	 * Drop space held by incoming segment and return.
2795	 */
2796#ifdef TCPDEBUG
2797	if (tp == NULL || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
2798		tcp_trace(TA_DROP, ostate, tp, (void *)tcp_saveipgen,
2799			  &tcp_savetcp, 0);
2800#endif
2801	if (tp != NULL)
2802		INP_WUNLOCK(tp->t_inpcb);
2803	m_freem(m);
2804}
2805
2806/*
2807 * Issue RST and make ACK acceptable to originator of segment.
2808 * The mbuf must still include the original packet header.
2809 * tp may be NULL.
2810 */
2811static void
2812tcp_dropwithreset(struct mbuf *m, struct tcphdr *th, struct tcpcb *tp,
2813    int tlen, int rstreason)
2814{
2815	struct ip *ip;
2816#ifdef INET6
2817	struct ip6_hdr *ip6;
2818#endif
2819
2820	if (tp != NULL) {
2821		INP_WLOCK_ASSERT(tp->t_inpcb);
2822	}
2823
2824	/* Don't bother if destination was broadcast/multicast. */
2825	if ((th->th_flags & TH_RST) || m->m_flags & (M_BCAST|M_MCAST))
2826		goto drop;
2827#ifdef INET6
2828	if (mtod(m, struct ip *)->ip_v == 6) {
2829		ip6 = mtod(m, struct ip6_hdr *);
2830		if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) ||
2831		    IN6_IS_ADDR_MULTICAST(&ip6->ip6_src))
2832			goto drop;
2833		/* IPv6 anycast check is done at tcp6_input() */
2834	} else
2835#endif
2836	{
2837		ip = mtod(m, struct ip *);
2838		if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
2839		    IN_MULTICAST(ntohl(ip->ip_src.s_addr)) ||
2840		    ip->ip_src.s_addr == htonl(INADDR_BROADCAST) ||
2841		    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
2842			goto drop;
2843	}
2844
2845	/* Perform bandwidth limiting. */
2846	if (badport_bandlim(rstreason) < 0)
2847		goto drop;
2848
2849	/* tcp_respond consumes the mbuf chain. */
2850	if (th->th_flags & TH_ACK) {
2851		tcp_respond(tp, mtod(m, void *), th, m, (tcp_seq)0,
2852		    th->th_ack, TH_RST);
2853	} else {
2854		if (th->th_flags & TH_SYN)
2855			tlen++;
2856		tcp_respond(tp, mtod(m, void *), th, m, th->th_seq+tlen,
2857		    (tcp_seq)0, TH_RST|TH_ACK);
2858	}
2859	return;
2860drop:
2861	m_freem(m);
2862}
2863
2864/*
2865 * Parse TCP options and place in tcpopt.
2866 */
2867static void
2868tcp_dooptions(struct tcpopt *to, u_char *cp, int cnt, int flags)
2869{
2870	INIT_VNET_INET(curvnet);
2871	int opt, optlen;
2872
2873	to->to_flags = 0;
2874	for (; cnt > 0; cnt -= optlen, cp += optlen) {
2875		opt = cp[0];
2876		if (opt == TCPOPT_EOL)
2877			break;
2878		if (opt == TCPOPT_NOP)
2879			optlen = 1;
2880		else {
2881			if (cnt < 2)
2882				break;
2883			optlen = cp[1];
2884			if (optlen < 2 || optlen > cnt)
2885				break;
2886		}
2887		switch (opt) {
2888		case TCPOPT_MAXSEG:
2889			if (optlen != TCPOLEN_MAXSEG)
2890				continue;
2891			if (!(flags & TO_SYN))
2892				continue;
2893			to->to_flags |= TOF_MSS;
2894			bcopy((char *)cp + 2,
2895			    (char *)&to->to_mss, sizeof(to->to_mss));
2896			to->to_mss = ntohs(to->to_mss);
2897			break;
2898		case TCPOPT_WINDOW:
2899			if (optlen != TCPOLEN_WINDOW)
2900				continue;
2901			if (!(flags & TO_SYN))
2902				continue;
2903			to->to_flags |= TOF_SCALE;
2904			to->to_wscale = min(cp[2], TCP_MAX_WINSHIFT);
2905			break;
2906		case TCPOPT_TIMESTAMP:
2907			if (optlen != TCPOLEN_TIMESTAMP)
2908				continue;
2909			to->to_flags |= TOF_TS;
2910			bcopy((char *)cp + 2,
2911			    (char *)&to->to_tsval, sizeof(to->to_tsval));
2912			to->to_tsval = ntohl(to->to_tsval);
2913			bcopy((char *)cp + 6,
2914			    (char *)&to->to_tsecr, sizeof(to->to_tsecr));
2915			to->to_tsecr = ntohl(to->to_tsecr);
2916			break;
2917#ifdef TCP_SIGNATURE
2918		/*
2919		 * XXX In order to reply to a host which has set the
2920		 * TCP_SIGNATURE option in its initial SYN, we have to
2921		 * record the fact that the option was observed here
2922		 * for the syncache code to perform the correct response.
2923		 */
2924		case TCPOPT_SIGNATURE:
2925			if (optlen != TCPOLEN_SIGNATURE)
2926				continue;
2927			to->to_flags |= TOF_SIGNATURE;
2928			to->to_signature = cp + 2;
2929			break;
2930#endif
2931		case TCPOPT_SACK_PERMITTED:
2932			if (optlen != TCPOLEN_SACK_PERMITTED)
2933				continue;
2934			if (!(flags & TO_SYN))
2935				continue;
2936			if (!V_tcp_do_sack)
2937				continue;
2938			to->to_flags |= TOF_SACKPERM;
2939			break;
2940		case TCPOPT_SACK:
2941			if (optlen <= 2 || (optlen - 2) % TCPOLEN_SACK != 0)
2942				continue;
2943			if (flags & TO_SYN)
2944				continue;
2945			to->to_flags |= TOF_SACK;
2946			to->to_nsacks = (optlen - 2) / TCPOLEN_SACK;
2947			to->to_sacks = cp + 2;
2948			TCPSTAT_INC(tcps_sack_rcv_blocks);
2949			break;
2950		default:
2951			continue;
2952		}
2953	}
2954}
2955
2956/*
2957 * Pull out of band byte out of a segment so
2958 * it doesn't appear in the user's data queue.
2959 * It is still reflected in the segment length for
2960 * sequencing purposes.
2961 */
2962static void
2963tcp_pulloutofband(struct socket *so, struct tcphdr *th, struct mbuf *m,
2964    int off)
2965{
2966	int cnt = off + th->th_urp - 1;
2967
2968	while (cnt >= 0) {
2969		if (m->m_len > cnt) {
2970			char *cp = mtod(m, caddr_t) + cnt;
2971			struct tcpcb *tp = sototcpcb(so);
2972
2973			INP_WLOCK_ASSERT(tp->t_inpcb);
2974
2975			tp->t_iobc = *cp;
2976			tp->t_oobflags |= TCPOOB_HAVEDATA;
2977			bcopy(cp+1, cp, (unsigned)(m->m_len - cnt - 1));
2978			m->m_len--;
2979			if (m->m_flags & M_PKTHDR)
2980				m->m_pkthdr.len--;
2981			return;
2982		}
2983		cnt -= m->m_len;
2984		m = m->m_next;
2985		if (m == NULL)
2986			break;
2987	}
2988	panic("tcp_pulloutofband");
2989}
2990
2991/*
2992 * Collect new round-trip time estimate
2993 * and update averages and current timeout.
2994 */
2995static void
2996tcp_xmit_timer(struct tcpcb *tp, int rtt)
2997{
2998	INIT_VNET_INET(tp->t_inpcb->inp_vnet);
2999	int delta;
3000
3001	INP_WLOCK_ASSERT(tp->t_inpcb);
3002
3003	TCPSTAT_INC(tcps_rttupdated);
3004	tp->t_rttupdated++;
3005	if (tp->t_srtt != 0) {
3006		/*
3007		 * srtt is stored as fixed point with 5 bits after the
3008		 * binary point (i.e., scaled by 8).  The following magic
3009		 * is equivalent to the smoothing algorithm in rfc793 with
3010		 * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed
3011		 * point).  Adjust rtt to origin 0.
3012		 */
3013		delta = ((rtt - 1) << TCP_DELTA_SHIFT)
3014			- (tp->t_srtt >> (TCP_RTT_SHIFT - TCP_DELTA_SHIFT));
3015
3016		if ((tp->t_srtt += delta) <= 0)
3017			tp->t_srtt = 1;
3018
3019		/*
3020		 * We accumulate a smoothed rtt variance (actually, a
3021		 * smoothed mean difference), then set the retransmit
3022		 * timer to smoothed rtt + 4 times the smoothed variance.
3023		 * rttvar is stored as fixed point with 4 bits after the
3024		 * binary point (scaled by 16).  The following is
3025		 * equivalent to rfc793 smoothing with an alpha of .75
3026		 * (rttvar = rttvar*3/4 + |delta| / 4).  This replaces
3027		 * rfc793's wired-in beta.
3028		 */
3029		if (delta < 0)
3030			delta = -delta;
3031		delta -= tp->t_rttvar >> (TCP_RTTVAR_SHIFT - TCP_DELTA_SHIFT);
3032		if ((tp->t_rttvar += delta) <= 0)
3033			tp->t_rttvar = 1;
3034		if (tp->t_rttbest > tp->t_srtt + tp->t_rttvar)
3035		    tp->t_rttbest = tp->t_srtt + tp->t_rttvar;
3036	} else {
3037		/*
3038		 * No rtt measurement yet - use the unsmoothed rtt.
3039		 * Set the variance to half the rtt (so our first
3040		 * retransmit happens at 3*rtt).
3041		 */
3042		tp->t_srtt = rtt << TCP_RTT_SHIFT;
3043		tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT - 1);
3044		tp->t_rttbest = tp->t_srtt + tp->t_rttvar;
3045	}
3046	tp->t_rtttime = 0;
3047	tp->t_rxtshift = 0;
3048
3049	/*
3050	 * the retransmit should happen at rtt + 4 * rttvar.
3051	 * Because of the way we do the smoothing, srtt and rttvar
3052	 * will each average +1/2 tick of bias.  When we compute
3053	 * the retransmit timer, we want 1/2 tick of rounding and
3054	 * 1 extra tick because of +-1/2 tick uncertainty in the
3055	 * firing of the timer.  The bias will give us exactly the
3056	 * 1.5 tick we need.  But, because the bias is
3057	 * statistical, we have to test that we don't drop below
3058	 * the minimum feasible timer (which is 2 ticks).
3059	 */
3060	TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
3061		      max(tp->t_rttmin, rtt + 2), TCPTV_REXMTMAX);
3062
3063	/*
3064	 * We received an ack for a packet that wasn't retransmitted;
3065	 * it is probably safe to discard any error indications we've
3066	 * received recently.  This isn't quite right, but close enough
3067	 * for now (a route might have failed after we sent a segment,
3068	 * and the return path might not be symmetrical).
3069	 */
3070	tp->t_softerror = 0;
3071}
3072
3073/*
3074 * Determine a reasonable value for maxseg size.
3075 * If the route is known, check route for mtu.
3076 * If none, use an mss that can be handled on the outgoing
3077 * interface without forcing IP to fragment; if bigger than
3078 * an mbuf cluster (MCLBYTES), round down to nearest multiple of MCLBYTES
3079 * to utilize large mbufs.  If no route is found, route has no mtu,
3080 * or the destination isn't local, use a default, hopefully conservative
3081 * size (usually 512 or the default IP max size, but no more than the mtu
3082 * of the interface), as we can't discover anything about intervening
3083 * gateways or networks.  We also initialize the congestion/slow start
3084 * window to be a single segment if the destination isn't local.
3085 * While looking at the routing entry, we also initialize other path-dependent
3086 * parameters from pre-set or cached values in the routing entry.
3087 *
3088 * Also take into account the space needed for options that we
3089 * send regularly.  Make maxseg shorter by that amount to assure
3090 * that we can send maxseg amount of data even when the options
3091 * are present.  Store the upper limit of the length of options plus
3092 * data in maxopd.
3093 *
3094 * In case of T/TCP, we call this routine during implicit connection
3095 * setup as well (offer = -1), to initialize maxseg from the cached
3096 * MSS of our peer.
3097 *
3098 * NOTE that this routine is only called when we process an incoming
3099 * segment. Outgoing SYN/ACK MSS settings are handled in tcp_mssopt().
3100 */
3101void
3102tcp_mss_update(struct tcpcb *tp, int offer,
3103    struct hc_metrics_lite *metricptr, int *mtuflags)
3104{
3105	INIT_VNET_INET(tp->t_inpcb->inp_vnet);
3106	int mss;
3107	u_long maxmtu;
3108	struct inpcb *inp = tp->t_inpcb;
3109	struct hc_metrics_lite metrics;
3110	int origoffer = offer;
3111#ifdef INET6
3112	int isipv6 = ((inp->inp_vflag & INP_IPV6) != 0) ? 1 : 0;
3113	size_t min_protoh = isipv6 ?
3114			    sizeof (struct ip6_hdr) + sizeof (struct tcphdr) :
3115			    sizeof (struct tcpiphdr);
3116#else
3117	const size_t min_protoh = sizeof(struct tcpiphdr);
3118#endif
3119
3120	INP_WLOCK_ASSERT(tp->t_inpcb);
3121
3122	/* Initialize. */
3123#ifdef INET6
3124	if (isipv6) {
3125		maxmtu = tcp_maxmtu6(&inp->inp_inc, mtuflags);
3126		tp->t_maxopd = tp->t_maxseg = V_tcp_v6mssdflt;
3127	} else
3128#endif
3129	{
3130		maxmtu = tcp_maxmtu(&inp->inp_inc, mtuflags);
3131		tp->t_maxopd = tp->t_maxseg = V_tcp_mssdflt;
3132	}
3133
3134	/*
3135	 * No route to sender, stay with default mss and return.
3136	 */
3137	if (maxmtu == 0) {
3138		/*
3139		 * In case we return early we need to initialize metrics
3140		 * to a defined state as tcp_hc_get() would do for us
3141		 * if there was no cache hit.
3142		 */
3143		if (metricptr != NULL)
3144			bzero(metricptr, sizeof(struct hc_metrics_lite));
3145		return;
3146	}
3147
3148	/* What have we got? */
3149	switch (offer) {
3150		case 0:
3151			/*
3152			 * Offer == 0 means that there was no MSS on the SYN
3153			 * segment, in this case we use tcp_mssdflt as
3154			 * already assigned to t_maxopd above.
3155			 */
3156			offer = tp->t_maxopd;
3157			break;
3158
3159		case -1:
3160			/*
3161			 * Offer == -1 means that we didn't receive SYN yet.
3162			 */
3163			/* FALLTHROUGH */
3164
3165		default:
3166			/*
3167			 * Prevent DoS attack with too small MSS. Round up
3168			 * to at least minmss.
3169			 */
3170			offer = max(offer, V_tcp_minmss);
3171	}
3172
3173	/*
3174	 * rmx information is now retrieved from tcp_hostcache.
3175	 */
3176	tcp_hc_get(&inp->inp_inc, &metrics);
3177	if (metricptr != NULL)
3178		bcopy(&metrics, metricptr, sizeof(struct hc_metrics_lite));
3179
3180	/*
3181	 * If there's a discovered mtu int tcp hostcache, use it
3182	 * else, use the link mtu.
3183	 */
3184	if (metrics.rmx_mtu)
3185		mss = min(metrics.rmx_mtu, maxmtu) - min_protoh;
3186	else {
3187#ifdef INET6
3188		if (isipv6) {
3189			mss = maxmtu - min_protoh;
3190			if (!V_path_mtu_discovery &&
3191			    !in6_localaddr(&inp->in6p_faddr))
3192				mss = min(mss, V_tcp_v6mssdflt);
3193		} else
3194#endif
3195		{
3196			mss = maxmtu - min_protoh;
3197			if (!V_path_mtu_discovery &&
3198			    !in_localaddr(inp->inp_faddr))
3199				mss = min(mss, V_tcp_mssdflt);
3200		}
3201		/*
3202		 * XXX - The above conditional (mss = maxmtu - min_protoh)
3203		 * probably violates the TCP spec.
3204		 * The problem is that, since we don't know the
3205		 * other end's MSS, we are supposed to use a conservative
3206		 * default.  But, if we do that, then MTU discovery will
3207		 * never actually take place, because the conservative
3208		 * default is much less than the MTUs typically seen
3209		 * on the Internet today.  For the moment, we'll sweep
3210		 * this under the carpet.
3211		 *
3212		 * The conservative default might not actually be a problem
3213		 * if the only case this occurs is when sending an initial
3214		 * SYN with options and data to a host we've never talked
3215		 * to before.  Then, they will reply with an MSS value which
3216		 * will get recorded and the new parameters should get
3217		 * recomputed.  For Further Study.
3218		 */
3219	}
3220	mss = min(mss, offer);
3221
3222	/*
3223	 * Sanity check: make sure that maxopd will be large
3224	 * enough to allow some data on segments even if the
3225	 * all the option space is used (40bytes).  Otherwise
3226	 * funny things may happen in tcp_output.
3227	 */
3228	mss = max(mss, 64);
3229
3230	/*
3231	 * maxopd stores the maximum length of data AND options
3232	 * in a segment; maxseg is the amount of data in a normal
3233	 * segment.  We need to store this value (maxopd) apart
3234	 * from maxseg, because now every segment carries options
3235	 * and thus we normally have somewhat less data in segments.
3236	 */
3237	tp->t_maxopd = mss;
3238
3239	/*
3240	 * origoffer==-1 indicates that no segments were received yet.
3241	 * In this case we just guess.
3242	 */
3243	if ((tp->t_flags & (TF_REQ_TSTMP|TF_NOOPT)) == TF_REQ_TSTMP &&
3244	    (origoffer == -1 ||
3245	     (tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP))
3246		mss -= TCPOLEN_TSTAMP_APPA;
3247
3248#if	(MCLBYTES & (MCLBYTES - 1)) == 0
3249	if (mss > MCLBYTES)
3250		mss &= ~(MCLBYTES-1);
3251#else
3252	if (mss > MCLBYTES)
3253		mss = mss / MCLBYTES * MCLBYTES;
3254#endif
3255	tp->t_maxseg = mss;
3256}
3257
3258void
3259tcp_mss(struct tcpcb *tp, int offer)
3260{
3261	int rtt, mss;
3262	u_long bufsize;
3263	struct inpcb *inp;
3264	struct socket *so;
3265	struct hc_metrics_lite metrics;
3266	int mtuflags = 0;
3267#ifdef INET6
3268	int isipv6;
3269#endif
3270	KASSERT(tp != NULL, ("%s: tp == NULL", __func__));
3271	INIT_VNET_INET(tp->t_vnet);
3272
3273	tcp_mss_update(tp, offer, &metrics, &mtuflags);
3274
3275	mss = tp->t_maxseg;
3276	inp = tp->t_inpcb;
3277#ifdef INET6
3278	isipv6 = ((inp->inp_vflag & INP_IPV6) != 0) ? 1 : 0;
3279#endif
3280
3281	/*
3282	 * If there's a pipesize, change the socket buffer to that size,
3283	 * don't change if sb_hiwat is different than default (then it
3284	 * has been changed on purpose with setsockopt).
3285	 * Make the socket buffers an integral number of mss units;
3286	 * if the mss is larger than the socket buffer, decrease the mss.
3287	 */
3288	so = inp->inp_socket;
3289	SOCKBUF_LOCK(&so->so_snd);
3290	if ((so->so_snd.sb_hiwat == tcp_sendspace) && metrics.rmx_sendpipe)
3291		bufsize = metrics.rmx_sendpipe;
3292	else
3293		bufsize = so->so_snd.sb_hiwat;
3294	if (bufsize < mss)
3295		mss = bufsize;
3296	else {
3297		bufsize = roundup(bufsize, mss);
3298		if (bufsize > sb_max)
3299			bufsize = sb_max;
3300		if (bufsize > so->so_snd.sb_hiwat)
3301			(void)sbreserve_locked(&so->so_snd, bufsize, so, NULL);
3302	}
3303	SOCKBUF_UNLOCK(&so->so_snd);
3304	tp->t_maxseg = mss;
3305
3306	SOCKBUF_LOCK(&so->so_rcv);
3307	if ((so->so_rcv.sb_hiwat == tcp_recvspace) && metrics.rmx_recvpipe)
3308		bufsize = metrics.rmx_recvpipe;
3309	else
3310		bufsize = so->so_rcv.sb_hiwat;
3311	if (bufsize > mss) {
3312		bufsize = roundup(bufsize, mss);
3313		if (bufsize > sb_max)
3314			bufsize = sb_max;
3315		if (bufsize > so->so_rcv.sb_hiwat)
3316			(void)sbreserve_locked(&so->so_rcv, bufsize, so, NULL);
3317	}
3318	SOCKBUF_UNLOCK(&so->so_rcv);
3319	/*
3320	 * While we're here, check the others too.
3321	 */
3322	if (tp->t_srtt == 0 && (rtt = metrics.rmx_rtt)) {
3323		tp->t_srtt = rtt;
3324		tp->t_rttbest = tp->t_srtt + TCP_RTT_SCALE;
3325		TCPSTAT_INC(tcps_usedrtt);
3326		if (metrics.rmx_rttvar) {
3327			tp->t_rttvar = metrics.rmx_rttvar;
3328			TCPSTAT_INC(tcps_usedrttvar);
3329		} else {
3330			/* default variation is +- 1 rtt */
3331			tp->t_rttvar =
3332			    tp->t_srtt * TCP_RTTVAR_SCALE / TCP_RTT_SCALE;
3333		}
3334		TCPT_RANGESET(tp->t_rxtcur,
3335			      ((tp->t_srtt >> 2) + tp->t_rttvar) >> 1,
3336			      tp->t_rttmin, TCPTV_REXMTMAX);
3337	}
3338	if (metrics.rmx_ssthresh) {
3339		/*
3340		 * There's some sort of gateway or interface
3341		 * buffer limit on the path.  Use this to set
3342		 * the slow start threshhold, but set the
3343		 * threshold to no less than 2*mss.
3344		 */
3345		tp->snd_ssthresh = max(2 * mss, metrics.rmx_ssthresh);
3346		TCPSTAT_INC(tcps_usedssthresh);
3347	}
3348	if (metrics.rmx_bandwidth)
3349		tp->snd_bandwidth = metrics.rmx_bandwidth;
3350
3351	/*
3352	 * Set the slow-start flight size depending on whether this
3353	 * is a local network or not.
3354	 *
3355	 * Extend this so we cache the cwnd too and retrieve it here.
3356	 * Make cwnd even bigger than RFC3390 suggests but only if we
3357	 * have previous experience with the remote host. Be careful
3358	 * not make cwnd bigger than remote receive window or our own
3359	 * send socket buffer. Maybe put some additional upper bound
3360	 * on the retrieved cwnd. Should do incremental updates to
3361	 * hostcache when cwnd collapses so next connection doesn't
3362	 * overloads the path again.
3363	 *
3364	 * RFC3390 says only do this if SYN or SYN/ACK didn't got lost.
3365	 * We currently check only in syncache_socket for that.
3366	 */
3367#define TCP_METRICS_CWND
3368#ifdef TCP_METRICS_CWND
3369	if (metrics.rmx_cwnd)
3370		tp->snd_cwnd = max(mss,
3371				min(metrics.rmx_cwnd / 2,
3372				 min(tp->snd_wnd, so->so_snd.sb_hiwat)));
3373	else
3374#endif
3375	if (V_tcp_do_rfc3390)
3376		tp->snd_cwnd = min(4 * mss, max(2 * mss, 4380));
3377#ifdef INET6
3378	else if ((isipv6 && in6_localaddr(&inp->in6p_faddr)) ||
3379		 (!isipv6 && in_localaddr(inp->inp_faddr)))
3380#else
3381	else if (in_localaddr(inp->inp_faddr))
3382#endif
3383		tp->snd_cwnd = mss * V_ss_fltsz_local;
3384	else
3385		tp->snd_cwnd = mss * V_ss_fltsz;
3386
3387	/* Check the interface for TSO capabilities. */
3388	if (mtuflags & CSUM_TSO)
3389		tp->t_flags |= TF_TSO;
3390}
3391
3392/*
3393 * Determine the MSS option to send on an outgoing SYN.
3394 */
3395int
3396tcp_mssopt(struct in_conninfo *inc)
3397{
3398	INIT_VNET_INET(curvnet);
3399	int mss = 0;
3400	u_long maxmtu = 0;
3401	u_long thcmtu = 0;
3402	size_t min_protoh;
3403
3404	KASSERT(inc != NULL, ("tcp_mssopt with NULL in_conninfo pointer"));
3405
3406#ifdef INET6
3407	if (inc->inc_flags & INC_ISIPV6) {
3408		mss = V_tcp_v6mssdflt;
3409		maxmtu = tcp_maxmtu6(inc, NULL);
3410		thcmtu = tcp_hc_getmtu(inc); /* IPv4 and IPv6 */
3411		min_protoh = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
3412	} else
3413#endif
3414	{
3415		mss = V_tcp_mssdflt;
3416		maxmtu = tcp_maxmtu(inc, NULL);
3417		thcmtu = tcp_hc_getmtu(inc); /* IPv4 and IPv6 */
3418		min_protoh = sizeof(struct tcpiphdr);
3419	}
3420	if (maxmtu && thcmtu)
3421		mss = min(maxmtu, thcmtu) - min_protoh;
3422	else if (maxmtu || thcmtu)
3423		mss = max(maxmtu, thcmtu) - min_protoh;
3424
3425	return (mss);
3426}
3427
3428
3429/*
3430 * On a partial ack arrives, force the retransmission of the
3431 * next unacknowledged segment.  Do not clear tp->t_dupacks.
3432 * By setting snd_nxt to ti_ack, this forces retransmission timer to
3433 * be started again.
3434 */
3435static void
3436tcp_newreno_partial_ack(struct tcpcb *tp, struct tcphdr *th)
3437{
3438	tcp_seq onxt = tp->snd_nxt;
3439	u_long  ocwnd = tp->snd_cwnd;
3440
3441	INP_WLOCK_ASSERT(tp->t_inpcb);
3442
3443	tcp_timer_activate(tp, TT_REXMT, 0);
3444	tp->t_rtttime = 0;
3445	tp->snd_nxt = th->th_ack;
3446	/*
3447	 * Set snd_cwnd to one segment beyond acknowledged offset.
3448	 * (tp->snd_una has not yet been updated when this function is called.)
3449	 */
3450	tp->snd_cwnd = tp->t_maxseg + (th->th_ack - tp->snd_una);
3451	tp->t_flags |= TF_ACKNOW;
3452	(void) tcp_output(tp);
3453	tp->snd_cwnd = ocwnd;
3454	if (SEQ_GT(onxt, tp->snd_nxt))
3455		tp->snd_nxt = onxt;
3456	/*
3457	 * Partial window deflation.  Relies on fact that tp->snd_una
3458	 * not updated yet.
3459	 */
3460	if (tp->snd_cwnd > th->th_ack - tp->snd_una)
3461		tp->snd_cwnd -= th->th_ack - tp->snd_una;
3462	else
3463		tp->snd_cwnd = 0;
3464	tp->snd_cwnd += tp->t_maxseg;
3465}
3466