tcp_input.c revision 170078
1/*-
2 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 4. Neither the name of the University nor the names of its contributors
14 *    may be used to endorse or promote products derived from this software
15 *    without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 *
29 *	@(#)tcp_input.c	8.12 (Berkeley) 5/24/95
30 * $FreeBSD: head/sys/netinet/tcp_input.c 170078 2007-05-28 23:27:44Z andre $
31 */
32
33#include "opt_ipfw.h"		/* for ipfw_fwd	*/
34#include "opt_inet.h"
35#include "opt_inet6.h"
36#include "opt_ipsec.h"
37#include "opt_mac.h"
38#include "opt_tcpdebug.h"
39
40#include <sys/param.h>
41#include <sys/kernel.h>
42#include <sys/malloc.h>
43#include <sys/mbuf.h>
44#include <sys/proc.h>		/* for proc0 declaration */
45#include <sys/protosw.h>
46#include <sys/signalvar.h>
47#include <sys/socket.h>
48#include <sys/socketvar.h>
49#include <sys/sysctl.h>
50#include <sys/syslog.h>
51#include <sys/systm.h>
52
53#include <machine/cpu.h>	/* before tcp_seq.h, for tcp_random18() */
54
55#include <vm/uma.h>
56
57#include <net/if.h>
58#include <net/route.h>
59
60#include <netinet/in.h>
61#include <netinet/in_pcb.h>
62#include <netinet/in_systm.h>
63#include <netinet/in_var.h>
64#include <netinet/ip.h>
65#include <netinet/ip_icmp.h>	/* required for icmp_var.h */
66#include <netinet/icmp_var.h>	/* for ICMP_BANDLIM */
67#include <netinet/ip_var.h>
68#include <netinet/ip_options.h>
69#include <netinet/ip6.h>
70#include <netinet/icmp6.h>
71#include <netinet6/in6_pcb.h>
72#include <netinet6/ip6_var.h>
73#include <netinet6/nd6.h>
74#include <netinet/tcp.h>
75#include <netinet/tcp_fsm.h>
76#include <netinet/tcp_seq.h>
77#include <netinet/tcp_timer.h>
78#include <netinet/tcp_var.h>
79#include <netinet6/tcp6_var.h>
80#include <netinet/tcpip.h>
81#ifdef TCPDEBUG
82#include <netinet/tcp_debug.h>
83#endif /* TCPDEBUG */
84
85#ifdef FAST_IPSEC
86#include <netipsec/ipsec.h>
87#include <netipsec/ipsec6.h>
88#endif /*FAST_IPSEC*/
89
90#ifdef IPSEC
91#include <netinet6/ipsec.h>
92#include <netinet6/ipsec6.h>
93#include <netkey/key.h>
94#endif /*IPSEC*/
95
96#include <machine/in_cksum.h>
97
98#include <security/mac/mac_framework.h>
99
100static const int tcprexmtthresh = 3;
101
102struct	tcpstat tcpstat;
103SYSCTL_STRUCT(_net_inet_tcp, TCPCTL_STATS, stats, CTLFLAG_RW,
104    &tcpstat , tcpstat, "TCP statistics (struct tcpstat, netinet/tcp_var.h)");
105
106static int tcp_log_in_vain = 0;
107SYSCTL_INT(_net_inet_tcp, OID_AUTO, log_in_vain, CTLFLAG_RW,
108    &tcp_log_in_vain, 0, "Log all incoming TCP segments to closed ports");
109
110static int blackhole = 0;
111SYSCTL_INT(_net_inet_tcp, OID_AUTO, blackhole, CTLFLAG_RW,
112    &blackhole, 0, "Do not send RST on segments to closed ports");
113
114int tcp_delack_enabled = 1;
115SYSCTL_INT(_net_inet_tcp, OID_AUTO, delayed_ack, CTLFLAG_RW,
116    &tcp_delack_enabled, 0,
117    "Delay ACK to try and piggyback it onto a data packet");
118
119static int drop_synfin = 0;
120SYSCTL_INT(_net_inet_tcp, OID_AUTO, drop_synfin, CTLFLAG_RW,
121    &drop_synfin, 0, "Drop TCP packets with SYN+FIN set");
122
123static int tcp_do_rfc3042 = 1;
124SYSCTL_INT(_net_inet_tcp, OID_AUTO, rfc3042, CTLFLAG_RW,
125    &tcp_do_rfc3042, 0, "Enable RFC 3042 (Limited Transmit)");
126
127static int tcp_do_rfc3390 = 1;
128SYSCTL_INT(_net_inet_tcp, OID_AUTO, rfc3390, CTLFLAG_RW,
129    &tcp_do_rfc3390, 0,
130    "Enable RFC 3390 (Increasing TCP's Initial Congestion Window)");
131
132static int tcp_insecure_rst = 0;
133SYSCTL_INT(_net_inet_tcp, OID_AUTO, insecure_rst, CTLFLAG_RW,
134    &tcp_insecure_rst, 0,
135    "Follow the old (insecure) criteria for accepting RST packets");
136
137int	tcp_do_autorcvbuf = 1;
138SYSCTL_INT(_net_inet_tcp, OID_AUTO, recvbuf_auto, CTLFLAG_RW,
139    &tcp_do_autorcvbuf, 0, "Enable automatic receive buffer sizing");
140
141int	tcp_autorcvbuf_inc = 16*1024;
142SYSCTL_INT(_net_inet_tcp, OID_AUTO, recvbuf_inc, CTLFLAG_RW,
143    &tcp_autorcvbuf_inc, 0,
144    "Incrementor step size of automatic receive buffer");
145
146int	tcp_autorcvbuf_max = 256*1024;
147SYSCTL_INT(_net_inet_tcp, OID_AUTO, recvbuf_max, CTLFLAG_RW,
148    &tcp_autorcvbuf_max, 0, "Max size of automatic receive buffer");
149
150struct inpcbhead tcb;
151#define	tcb6	tcb  /* for KAME src sync over BSD*'s */
152struct inpcbinfo tcbinfo;
153
154static void	 tcp_dooptions(struct tcpopt *, u_char *, int, int);
155static void	 tcp_do_segment(struct mbuf *, struct tcphdr *,
156		     struct socket *, struct tcpcb *, int, int);
157static void	 tcp_dropwithreset(struct mbuf *, struct tcphdr *,
158		     struct tcpcb *, int, int);
159static void	 tcp_pulloutofband(struct socket *,
160		     struct tcphdr *, struct mbuf *, int);
161static void	 tcp_xmit_timer(struct tcpcb *, int);
162static void	 tcp_newreno_partial_ack(struct tcpcb *, struct tcphdr *);
163
164/* Neighbor Discovery, Neighbor Unreachability Detection Upper layer hint. */
165#ifdef INET6
166#define ND6_HINT(tp) \
167do { \
168	if ((tp) && (tp)->t_inpcb && \
169	    ((tp)->t_inpcb->inp_vflag & INP_IPV6) != 0) \
170		nd6_nud_hint(NULL, NULL, 0); \
171} while (0)
172#else
173#define ND6_HINT(tp)
174#endif
175
176/*
177 * Indicate whether this ack should be delayed.  We can delay the ack if
178 *	- there is no delayed ack timer in progress and
179 *	- our last ack wasn't a 0-sized window.  We never want to delay
180 *	  the ack that opens up a 0-sized window and
181 *		- delayed acks are enabled or
182 *		- this is a half-synchronized T/TCP connection.
183 */
184#define DELAY_ACK(tp)							\
185	((!tcp_timer_active(tp, TT_DELACK) &&				\
186	    (tp->t_flags & TF_RXWIN0SENT) == 0) &&			\
187	    (tcp_delack_enabled || (tp->t_flags & TF_NEEDSYN)))
188
189
190/*
191 * TCP input handling is split into multiple parts:
192 *   tcp6_input is a thin wrapper around tcp_input for the extended
193 *	ip6_protox[] call format in ip6_input
194 *   tcp_input handles primary segment validation, inpcb lookup and
195 *	SYN processing on listen sockets
196 *   tcp_do_segment processes the ACK and text of the segment for
197 *	establishing, established and closing connections
198 */
199#ifdef INET6
200int
201tcp6_input(struct mbuf **mp, int *offp, int proto)
202{
203	struct mbuf *m = *mp;
204	struct in6_ifaddr *ia6;
205
206	IP6_EXTHDR_CHECK(m, *offp, sizeof(struct tcphdr), IPPROTO_DONE);
207
208	/*
209	 * draft-itojun-ipv6-tcp-to-anycast
210	 * better place to put this in?
211	 */
212	ia6 = ip6_getdstifaddr(m);
213	if (ia6 && (ia6->ia6_flags & IN6_IFF_ANYCAST)) {
214		struct ip6_hdr *ip6;
215
216		ip6 = mtod(m, struct ip6_hdr *);
217		icmp6_error(m, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_ADDR,
218			    (caddr_t)&ip6->ip6_dst - (caddr_t)ip6);
219		return IPPROTO_DONE;
220	}
221
222	tcp_input(m, *offp);
223	return IPPROTO_DONE;
224}
225#endif
226
227void
228tcp_input(struct mbuf *m, int off0)
229{
230	struct tcphdr *th;
231	struct ip *ip = NULL;
232	struct ipovly *ipov;
233	struct inpcb *inp = NULL;
234	struct tcpcb *tp = NULL;
235	struct socket *so = NULL;
236	u_char *optp = NULL;
237	int optlen = 0;
238	int len, tlen, off;
239	int drop_hdrlen;
240	int thflags;
241	int rstreason = 0;	/* For badport_bandlim accounting purposes */
242#ifdef IPFIREWALL_FORWARD
243	struct m_tag *fwd_tag;
244#endif
245#ifdef INET6
246	struct ip6_hdr *ip6 = NULL;
247	int isipv6;
248#else
249	const void *ip6 = NULL;
250	const int isipv6 = 0;
251#endif
252	struct tcpopt to;		/* options in this segment */
253	char *s = NULL;			/* address and port logging */
254
255#ifdef TCPDEBUG
256	/*
257	 * The size of tcp_saveipgen must be the size of the max ip header,
258	 * now IPv6.
259	 */
260	u_char tcp_saveipgen[IP6_HDR_LEN];
261	struct tcphdr tcp_savetcp;
262	short ostate = 0;
263#endif
264
265#ifdef INET6
266	isipv6 = (mtod(m, struct ip *)->ip_v == 6) ? 1 : 0;
267#endif
268
269	to.to_flags = 0;
270	tcpstat.tcps_rcvtotal++;
271
272	if (isipv6) {
273#ifdef INET6
274		/* IP6_EXTHDR_CHECK() is already done at tcp6_input(). */
275		ip6 = mtod(m, struct ip6_hdr *);
276		tlen = sizeof(*ip6) + ntohs(ip6->ip6_plen) - off0;
277		if (in6_cksum(m, IPPROTO_TCP, off0, tlen)) {
278			tcpstat.tcps_rcvbadsum++;
279			goto drop;
280		}
281		th = (struct tcphdr *)((caddr_t)ip6 + off0);
282
283		/*
284		 * Be proactive about unspecified IPv6 address in source.
285		 * As we use all-zero to indicate unbounded/unconnected pcb,
286		 * unspecified IPv6 address can be used to confuse us.
287		 *
288		 * Note that packets with unspecified IPv6 destination is
289		 * already dropped in ip6_input.
290		 */
291		if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) {
292			/* XXX stat */
293			goto drop;
294		}
295#else
296		th = NULL;		/* XXX: Avoid compiler warning. */
297#endif
298	} else {
299		/*
300		 * Get IP and TCP header together in first mbuf.
301		 * Note: IP leaves IP header in first mbuf.
302		 */
303		if (off0 > sizeof (struct ip)) {
304			ip_stripoptions(m, (struct mbuf *)0);
305			off0 = sizeof(struct ip);
306		}
307		if (m->m_len < sizeof (struct tcpiphdr)) {
308			if ((m = m_pullup(m, sizeof (struct tcpiphdr)))
309			    == NULL) {
310				tcpstat.tcps_rcvshort++;
311				return;
312			}
313		}
314		ip = mtod(m, struct ip *);
315		ipov = (struct ipovly *)ip;
316		th = (struct tcphdr *)((caddr_t)ip + off0);
317		tlen = ip->ip_len;
318
319		if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) {
320			if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR)
321				th->th_sum = m->m_pkthdr.csum_data;
322			else
323				th->th_sum = in_pseudo(ip->ip_src.s_addr,
324						ip->ip_dst.s_addr,
325						htonl(m->m_pkthdr.csum_data +
326							ip->ip_len +
327							IPPROTO_TCP));
328			th->th_sum ^= 0xffff;
329#ifdef TCPDEBUG
330			ipov->ih_len = (u_short)tlen;
331			ipov->ih_len = htons(ipov->ih_len);
332#endif
333		} else {
334			/*
335			 * Checksum extended TCP header and data.
336			 */
337			len = sizeof (struct ip) + tlen;
338			bzero(ipov->ih_x1, sizeof(ipov->ih_x1));
339			ipov->ih_len = (u_short)tlen;
340			ipov->ih_len = htons(ipov->ih_len);
341			th->th_sum = in_cksum(m, len);
342		}
343		if (th->th_sum) {
344			tcpstat.tcps_rcvbadsum++;
345			goto drop;
346		}
347		/* Re-initialization for later version check */
348		ip->ip_v = IPVERSION;
349	}
350
351	/*
352	 * Check that TCP offset makes sense,
353	 * pull out TCP options and adjust length.		XXX
354	 */
355	off = th->th_off << 2;
356	if (off < sizeof (struct tcphdr) || off > tlen) {
357		tcpstat.tcps_rcvbadoff++;
358		goto drop;
359	}
360	tlen -= off;	/* tlen is used instead of ti->ti_len */
361	if (off > sizeof (struct tcphdr)) {
362		if (isipv6) {
363#ifdef INET6
364			IP6_EXTHDR_CHECK(m, off0, off, );
365			ip6 = mtod(m, struct ip6_hdr *);
366			th = (struct tcphdr *)((caddr_t)ip6 + off0);
367#endif
368		} else {
369			if (m->m_len < sizeof(struct ip) + off) {
370				if ((m = m_pullup(m, sizeof (struct ip) + off))
371				    == NULL) {
372					tcpstat.tcps_rcvshort++;
373					return;
374				}
375				ip = mtod(m, struct ip *);
376				ipov = (struct ipovly *)ip;
377				th = (struct tcphdr *)((caddr_t)ip + off0);
378			}
379		}
380		optlen = off - sizeof (struct tcphdr);
381		optp = (u_char *)(th + 1);
382	}
383	thflags = th->th_flags;
384
385	/*
386	 * Convert TCP protocol specific fields to host format.
387	 */
388	th->th_seq = ntohl(th->th_seq);
389	th->th_ack = ntohl(th->th_ack);
390	th->th_win = ntohs(th->th_win);
391	th->th_urp = ntohs(th->th_urp);
392
393	/*
394	 * Delay dropping TCP, IP headers, IPv6 ext headers, and TCP options.
395	 */
396	drop_hdrlen = off0 + off;
397
398	/*
399	 * Locate pcb for segment.
400	 */
401	INP_INFO_WLOCK(&tcbinfo);
402findpcb:
403	INP_INFO_WLOCK_ASSERT(&tcbinfo);
404#ifdef IPFIREWALL_FORWARD
405	/*
406	 * Grab info from PACKET_TAG_IPFORWARD tag prepended to the chain.
407	 */
408	fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL);
409
410	if (fwd_tag != NULL && isipv6 == 0) {	/* IPv6 support is not yet */
411		struct sockaddr_in *next_hop;
412
413		next_hop = (struct sockaddr_in *)(fwd_tag+1);
414		/*
415		 * Transparently forwarded. Pretend to be the destination.
416		 * already got one like this?
417		 */
418		inp = in_pcblookup_hash(&tcbinfo,
419					ip->ip_src, th->th_sport,
420					ip->ip_dst, th->th_dport,
421					0, m->m_pkthdr.rcvif);
422		if (!inp) {
423			/* It's new.  Try to find the ambushing socket. */
424			inp = in_pcblookup_hash(&tcbinfo,
425						ip->ip_src, th->th_sport,
426						next_hop->sin_addr,
427						next_hop->sin_port ?
428						    ntohs(next_hop->sin_port) :
429						    th->th_dport,
430						INPLOOKUP_WILDCARD,
431						m->m_pkthdr.rcvif);
432		}
433		/* Remove the tag from the packet.  We don't need it anymore. */
434		m_tag_delete(m, fwd_tag);
435	} else
436#endif /* IPFIREWALL_FORWARD */
437	{
438		if (isipv6) {
439#ifdef INET6
440			inp = in6_pcblookup_hash(&tcbinfo,
441						 &ip6->ip6_src, th->th_sport,
442						 &ip6->ip6_dst, th->th_dport,
443						 INPLOOKUP_WILDCARD,
444						 m->m_pkthdr.rcvif);
445#endif
446		} else
447			inp = in_pcblookup_hash(&tcbinfo,
448						ip->ip_src, th->th_sport,
449						ip->ip_dst, th->th_dport,
450						INPLOOKUP_WILDCARD,
451						m->m_pkthdr.rcvif);
452	}
453
454#if defined(IPSEC) || defined(FAST_IPSEC)
455#ifdef INET6
456	if (isipv6 && inp != NULL && ipsec6_in_reject(m, inp)) {
457#ifdef IPSEC
458		ipsec6stat.in_polvio++;
459#endif
460		goto dropunlock;
461	} else
462#endif /* INET6 */
463	if (inp != NULL && ipsec4_in_reject(m, inp)) {
464#ifdef IPSEC
465		ipsecstat.in_polvio++;
466#endif
467		goto dropunlock;
468	}
469#endif /*IPSEC || FAST_IPSEC*/
470
471	/*
472	 * If the INPCB does not exist then all data in the incoming
473	 * segment is discarded and an appropriate RST is sent back.
474	 */
475	if (inp == NULL) {
476		/*
477		 * Log communication attempts to ports that are not
478		 * in use.
479		 */
480		if ((tcp_log_in_vain == 1 && (thflags & TH_SYN)) ||
481		    tcp_log_in_vain == 2) {
482			if ((s = tcp_log_addrs(NULL, th, (void *)ip,
483			    (void *)ip6)))
484				log(LOG_INFO, "%s; %s: Connection attempt "
485				    "to closed port\n", s, __func__);
486		}
487		/*
488		 * When blackholing do not respond with a RST but
489		 * completely ignore the segment and drop it.
490		 */
491		if ((blackhole == 1 && (thflags & TH_SYN)) ||
492		    blackhole == 2)
493			goto dropunlock;
494
495		rstreason = BANDLIM_RST_CLOSEDPORT;
496		goto dropwithreset;
497	}
498	INP_LOCK(inp);
499
500	/*
501	 * Check the minimum TTL for socket.
502	 */
503	if (inp->inp_ip_minttl != 0) {
504#ifdef INET6
505		if (isipv6 && inp->inp_ip_minttl > ip6->ip6_hlim)
506			goto dropunlock;
507		else
508#endif
509		if (inp->inp_ip_minttl > ip->ip_ttl)
510			goto dropunlock;
511	}
512
513	/*
514	 * A previous connection in TIMEWAIT state is supposed to catch
515	 * stray or duplicate segments arriving late.  If this segment
516	 * was a legitimate new connection attempt the old INPCB gets
517	 * removed and we can try again to find a listening socket.
518	 */
519	if (inp->inp_vflag & INP_TIMEWAIT) {
520		if (thflags & TH_SYN)
521			tcp_dooptions(&to, optp, optlen, TO_SYN);
522		/*
523		 * NB: tcp_twcheck unlocks the INP and frees the mbuf.
524		 */
525		if (tcp_twcheck(inp, &to, th, m, tlen))
526			goto findpcb;
527		INP_INFO_WUNLOCK(&tcbinfo);
528		return;
529	}
530	/*
531	 * The TCPCB may no longer exist if the connection is winding
532	 * down or it is in the CLOSED state.  Either way we drop the
533	 * segment and send an appropriate response.
534	 */
535	tp = intotcpcb(inp);
536	if (tp == NULL || tp->t_state == TCPS_CLOSED) {
537		rstreason = BANDLIM_RST_CLOSEDPORT;
538		goto dropwithreset;
539	}
540
541#ifdef MAC
542	INP_LOCK_ASSERT(inp);
543	if (mac_check_inpcb_deliver(inp, m))
544		goto dropunlock;
545#endif
546	so = inp->inp_socket;
547	KASSERT(so != NULL, ("%s: so == NULL", __func__));
548#ifdef TCPDEBUG
549	if (so->so_options & SO_DEBUG) {
550		ostate = tp->t_state;
551		if (isipv6) {
552#ifdef INET6
553			bcopy((char *)ip6, (char *)tcp_saveipgen, sizeof(*ip6));
554#endif
555		} else
556			bcopy((char *)ip, (char *)tcp_saveipgen, sizeof(*ip));
557		tcp_savetcp = *th;
558	}
559#endif
560	/*
561	 * When the socket is accepting connections (the INPCB is in LISTEN
562	 * state) we look into the SYN cache if this is a new connection
563	 * attempt or the completion of a previous one.
564	 */
565	if (so->so_options & SO_ACCEPTCONN) {
566		struct in_conninfo inc;
567
568		KASSERT(tp->t_state == TCPS_LISTEN, ("%s: so accepting but "
569		    "tp not listening", __func__));
570
571		bzero(&inc, sizeof(inc));
572		inc.inc_isipv6 = isipv6;
573#ifdef INET6
574		if (isipv6) {
575			inc.inc6_faddr = ip6->ip6_src;
576			inc.inc6_laddr = ip6->ip6_dst;
577		} else
578#endif
579		{
580			inc.inc_faddr = ip->ip_src;
581			inc.inc_laddr = ip->ip_dst;
582		}
583		inc.inc_fport = th->th_sport;
584		inc.inc_lport = th->th_dport;
585
586		/*
587		 * Check for an existing connection attempt in syncache if
588		 * the flag is only ACK.  A successful lookup creates a new
589		 * socket appended to the listen queue in SYN_RECEIVED state.
590		 */
591		if ((thflags & (TH_RST|TH_ACK|TH_SYN)) == TH_ACK) {
592			/*
593			 * Parse the TCP options here because
594			 * syncookies need access to the reflected
595			 * timestamp.
596			 */
597			tcp_dooptions(&to, optp, optlen, 0);
598			/*
599			 * NB: syncache_expand() doesn't unlock
600			 * inp and tcpinfo locks.
601			 */
602			if (!syncache_expand(&inc, &to, th, &so, m)) {
603				/*
604				 * No syncache entry or ACK was not
605				 * for our SYN/ACK.  Send a RST.
606				 * NB: syncache did its own logging
607				 * of the failure cause.
608				 */
609				rstreason = BANDLIM_RST_OPENPORT;
610				goto dropwithreset;
611			}
612			if (so == NULL) {
613				/*
614				 * We completed the 3-way handshake
615				 * but could not allocate a socket
616				 * either due to memory shortage,
617				 * listen queue length limits or
618				 * global socket limits.  Send RST
619				 * or wait and have the remote end
620				 * retransmit the ACK for another
621				 * try.
622				 */
623				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
624					log(LOG_DEBUG, "%s; %s: Listen socket: "
625					    "Socket allocation failed due to "
626					    "limits or memory shortage, %s\n",
627					    s, __func__, (tcp_sc_rst_sock_fail ?
628					    "sending RST" : "try again"));
629				if (tcp_sc_rst_sock_fail) {
630					rstreason = BANDLIM_UNLIMITED;
631					goto dropwithreset;
632				} else
633					goto dropunlock;
634			}
635			/*
636			 * Socket is created in state SYN_RECEIVED.
637			 * Unlock the listen socket, lock the newly
638			 * created socket and update the tp variable.
639			 */
640			INP_UNLOCK(inp);	/* listen socket */
641			inp = sotoinpcb(so);
642			INP_LOCK(inp);		/* new connection */
643			tp = intotcpcb(inp);
644			KASSERT(tp->t_state == TCPS_SYN_RECEIVED,
645			    ("%s: ", __func__));
646			/*
647			 * Process the segment and the data it
648			 * contains.  tcp_do_segment() consumes
649			 * the mbuf chain and unlocks the inpcb.
650			 */
651			tcp_do_segment(m, th, so, tp, drop_hdrlen, tlen);
652			INP_INFO_UNLOCK_ASSERT(&tcbinfo);
653			return;
654		}
655		/*
656		 * Segment flag validation for new connection attempts:
657		 *
658		 * Our (SYN|ACK) response was rejected.
659		 * Check with syncache and remove entry to prevent
660		 * retransmits.
661		 */
662		if ((thflags & (TH_ACK|TH_RST)) == (TH_ACK|TH_RST)) {
663			if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
664				log(LOG_DEBUG, "%s; %s: Listen socket: "
665				    "Our SYN|ACK was rejected, connection "
666				    "attempt aborted by remote endpoint\n",
667				    s, __func__);
668			syncache_chkrst(&inc, th);
669			goto dropunlock;
670		}
671		/*
672		 * Spurious RST.  Ignore.
673		 */
674		if (thflags & TH_RST) {
675			if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
676				log(LOG_DEBUG, "%s; %s: Listen socket: "
677				    "Spurious RST, segment rejected\n",
678				    s, __func__);
679			goto dropunlock;
680		}
681		/*
682		 * We can't do anything without SYN.
683		 */
684		if ((thflags & TH_SYN) == 0) {
685			if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
686				log(LOG_DEBUG, "%s; %s: Listen socket: "
687				    "SYN is missing, segment rejected\n",
688				    s, __func__);
689			tcpstat.tcps_badsyn++;
690			goto dropunlock;
691		}
692		/*
693		 * (SYN|ACK) is bogus on a listen socket.
694		 */
695		if (thflags & TH_ACK) {
696			if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
697				log(LOG_DEBUG, "%s; %s: Listen socket: "
698				    "SYN|ACK invalid, segment rejected\n",
699				    s, __func__);
700			syncache_badack(&inc);	/* XXX: Not needed! */
701			tcpstat.tcps_badsyn++;
702			rstreason = BANDLIM_RST_OPENPORT;
703			goto dropwithreset;
704		}
705		/*
706		 * If the drop_synfin option is enabled, drop all
707		 * segments with both the SYN and FIN bits set.
708		 * This prevents e.g. nmap from identifying the
709		 * TCP/IP stack.
710		 * XXX: Poor reasoning.  nmap has other methods
711		 * and is constantly refining its stack detection
712		 * strategies.
713		 * XXX: This is a violation of the TCP specification
714		 * and was used by RFC1644.
715		 */
716		if ((thflags & TH_FIN) && drop_synfin) {
717			if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
718				log(LOG_DEBUG, "%s; %s: Listen socket: "
719				    "SYN|FIN segment rejected (based on "
720				    "sysctl setting)\n", s, __func__);
721			tcpstat.tcps_badsyn++;
722                	goto dropunlock;
723		}
724		/*
725		 * Segment's flags are (SYN) or (SYN|FIN).
726		 *
727		 * TH_PUSH, TH_URG, TH_ECE, TH_CWR are ignored
728		 * as they do not affect the state of the TCP FSM.
729		 * The data pointed to by TH_URG and th_urp is ignored.
730		 */
731		KASSERT((thflags & (TH_RST|TH_ACK)) == 0,
732		    ("%s: Listen socket: TH_RST or TH_ACK set", __func__));
733		KASSERT(thflags & (TH_SYN),
734		    ("%s: Listen socket: TH_SYN not set", __func__));
735#ifdef INET6
736		/*
737		 * If deprecated address is forbidden,
738		 * we do not accept SYN to deprecated interface
739		 * address to prevent any new inbound connection from
740		 * getting established.
741		 * When we do not accept SYN, we send a TCP RST,
742		 * with deprecated source address (instead of dropping
743		 * it).  We compromise it as it is much better for peer
744		 * to send a RST, and RST will be the final packet
745		 * for the exchange.
746		 *
747		 * If we do not forbid deprecated addresses, we accept
748		 * the SYN packet.  RFC2462 does not suggest dropping
749		 * SYN in this case.
750		 * If we decipher RFC2462 5.5.4, it says like this:
751		 * 1. use of deprecated addr with existing
752		 *    communication is okay - "SHOULD continue to be
753		 *    used"
754		 * 2. use of it with new communication:
755		 *   (2a) "SHOULD NOT be used if alternate address
756		 *        with sufficient scope is available"
757		 *   (2b) nothing mentioned otherwise.
758		 * Here we fall into (2b) case as we have no choice in
759		 * our source address selection - we must obey the peer.
760		 *
761		 * The wording in RFC2462 is confusing, and there are
762		 * multiple description text for deprecated address
763		 * handling - worse, they are not exactly the same.
764		 * I believe 5.5.4 is the best one, so we follow 5.5.4.
765		 */
766		if (isipv6 && !ip6_use_deprecated) {
767			struct in6_ifaddr *ia6;
768
769			if ((ia6 = ip6_getdstifaddr(m)) &&
770			    (ia6->ia6_flags & IN6_IFF_DEPRECATED)) {
771				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
772				    log(LOG_DEBUG, "%s; %s: Listen socket: "
773					"Connection attempt to deprecated "
774					"IPv6 address rejected\n",
775					s, __func__);
776				rstreason = BANDLIM_RST_OPENPORT;
777				goto dropwithreset;
778			}
779		}
780#endif
781		/*
782		 * Basic sanity checks on incoming SYN requests:
783		 *   Don't respond if the destination is a link layer
784		 *	broadcast according to RFC1122 4.2.3.10, p. 104.
785		 *   If it is from this socket it must be forged.
786		 *   Don't respond if the source or destination is a
787		 *	global or subnet broad- or multicast address.
788		 *   Note that it is quite possible to receive unicast
789		 *	link-layer packets with a broadcast IP address. Use
790		 *	in_broadcast() to find them.
791		 */
792		if (m->m_flags & (M_BCAST|M_MCAST)) {
793			if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
794			    log(LOG_DEBUG, "%s; %s: Listen socket: "
795				"Connection attempt from broad- or multicast "
796				"link layer address rejected\n", s, __func__);
797			goto dropunlock;
798		}
799		if (isipv6) {
800#ifdef INET6
801			if (th->th_dport == th->th_sport &&
802			    IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst, &ip6->ip6_src)) {
803				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
804				    log(LOG_DEBUG, "%s; %s: Listen socket: "
805					"Connection attempt to/from self "
806					"rejected\n", s, __func__);
807				goto dropunlock;
808			}
809			if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) ||
810			    IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) {
811				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
812				    log(LOG_DEBUG, "%s; %s: Listen socket: "
813					"Connection attempt from/to multicast "
814					"address rejected\n", s, __func__);
815				goto dropunlock;
816			}
817#endif
818		} else {
819			if (th->th_dport == th->th_sport &&
820			    ip->ip_dst.s_addr == ip->ip_src.s_addr) {
821				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
822				    log(LOG_DEBUG, "%s; %s: Listen socket: "
823					"Connection attempt from/to self "
824					"rejected\n", s, __func__);
825				goto dropunlock;
826			}
827			if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
828			    IN_MULTICAST(ntohl(ip->ip_src.s_addr)) ||
829			    ip->ip_src.s_addr == htonl(INADDR_BROADCAST) ||
830			    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif)) {
831				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
832				    log(LOG_DEBUG, "%s; %s: Listen socket: "
833					"Connection attempt from/to broad- "
834					"or multicast address rejected\n",
835					s, __func__);
836				goto dropunlock;
837			}
838		}
839		/*
840		 * SYN appears to be valid.  Create compressed TCP state
841		 * for syncache.
842		 */
843#ifdef TCPDEBUG
844		if (so->so_options & SO_DEBUG)
845			tcp_trace(TA_INPUT, ostate, tp,
846			    (void *)tcp_saveipgen, &tcp_savetcp, 0);
847#endif
848		tcp_dooptions(&to, optp, optlen, TO_SYN);
849		syncache_add(&inc, &to, th, inp, &so, m);
850		/*
851		 * Entry added to syncache and mbuf consumed.
852		 * Everything already unlocked by syncache_add().
853		 */
854		INP_INFO_UNLOCK_ASSERT(&tcbinfo);
855		return;
856	}
857
858	/*
859	 * Segment belongs to a connection in SYN_SENT, ESTABLISHED or later
860	 * state.  tcp_do_segment() always consumes the mbuf chain, unlocks
861	 * the inpcb, and unlocks pcbinfo.
862	 */
863	tcp_do_segment(m, th, so, tp, drop_hdrlen, tlen);
864	INP_INFO_UNLOCK_ASSERT(&tcbinfo);
865	return;
866
867dropwithreset:
868	INP_INFO_WLOCK_ASSERT(&tcbinfo);
869	tcp_dropwithreset(m, th, tp, tlen, rstreason);
870	m = NULL;	/* mbuf chain got consumed. */
871dropunlock:
872	INP_INFO_WLOCK_ASSERT(&tcbinfo);
873	if (inp != NULL)
874		INP_UNLOCK(inp);
875	INP_INFO_WUNLOCK(&tcbinfo);
876drop:
877	INP_INFO_UNLOCK_ASSERT(&tcbinfo);
878	if (s != NULL)
879		free(s, M_TCPLOG);
880	if (m != NULL)
881		m_freem(m);
882	return;
883}
884
885static void
886tcp_do_segment(struct mbuf *m, struct tcphdr *th, struct socket *so,
887    struct tcpcb *tp, int drop_hdrlen, int tlen)
888{
889	int thflags, acked, ourfinisacked, needoutput = 0;
890	int headlocked = 1;
891	int rstreason, todrop, win;
892	u_long tiwin;
893	struct tcpopt to;
894
895#ifdef TCPDEBUG
896	/*
897	 * The size of tcp_saveipgen must be the size of the max ip header,
898	 * now IPv6.
899	 */
900	u_char tcp_saveipgen[IP6_HDR_LEN];
901	struct tcphdr tcp_savetcp;
902	short ostate = 0;
903#endif
904	thflags = th->th_flags;
905
906	INP_INFO_WLOCK_ASSERT(&tcbinfo);
907	INP_LOCK_ASSERT(tp->t_inpcb);
908	KASSERT(tp->t_state > TCPS_LISTEN, ("%s: TCPS_LISTEN",
909	    __func__));
910	KASSERT(tp->t_state != TCPS_TIME_WAIT, ("%s: TCPS_TIME_WAIT",
911	    __func__));
912
913	/*
914	 * Segment received on connection.
915	 * Reset idle time and keep-alive timer.
916	 */
917	tp->t_rcvtime = ticks;
918	if (TCPS_HAVEESTABLISHED(tp->t_state))
919		tcp_timer_activate(tp, TT_KEEP, tcp_keepidle);
920
921	/*
922	 * Unscale the window into a 32-bit value.
923	 * This value is bogus for the TCPS_SYN_SENT state
924	 * and is overwritten later.
925	 */
926	tiwin = th->th_win << tp->snd_scale;
927
928	/*
929	 * Parse options on any incoming segment.
930	 */
931	tcp_dooptions(&to, (u_char *)(th + 1),
932	    (th->th_off << 2) - sizeof(struct tcphdr),
933	    (thflags & TH_SYN) ? TO_SYN : 0);
934
935	/*
936	 * If echoed timestamp is later than the current time,
937	 * fall back to non RFC1323 RTT calculation.  Normalize
938	 * timestamp if syncookies were used when this connection
939	 * was established.
940	 */
941	if ((to.to_flags & TOF_TS) && (to.to_tsecr != 0)) {
942		to.to_tsecr -= tp->ts_offset;
943		if (TSTMP_GT(to.to_tsecr, ticks))
944			to.to_tsecr = 0;
945	}
946
947	/*
948	 * Process options only when we get SYN/ACK back. The SYN case
949	 * for incoming connections is handled in tcp_syncache.
950	 * XXX this is traditional behavior, may need to be cleaned up.
951	 */
952	if (tp->t_state == TCPS_SYN_SENT && (thflags & TH_SYN)) {
953		if ((to.to_flags & TOF_SCALE) &&
954		    (tp->t_flags & TF_REQ_SCALE)) {
955			tp->t_flags |= TF_RCVD_SCALE;
956			tp->snd_scale = to.to_wscale;
957			tp->snd_wnd = th->th_win << tp->snd_scale;
958			tiwin = tp->snd_wnd;
959		}
960		if (to.to_flags & TOF_TS) {
961			tp->t_flags |= TF_RCVD_TSTMP;
962			tp->ts_recent = to.to_tsval;
963			tp->ts_recent_age = ticks;
964		}
965		/* Initial send window, already scaled. */
966		tp->snd_wnd = th->th_win;
967		if (to.to_flags & TOF_MSS)
968			tcp_mss(tp, to.to_mss);
969		if ((tp->t_flags & TF_SACK_PERMIT) &&
970		    (to.to_flags & TOF_SACKPERM) == 0)
971			tp->t_flags &= ~TF_SACK_PERMIT;
972	}
973
974	/*
975	 * Header prediction: check for the two common cases
976	 * of a uni-directional data xfer.  If the packet has
977	 * no control flags, is in-sequence, the window didn't
978	 * change and we're not retransmitting, it's a
979	 * candidate.  If the length is zero and the ack moved
980	 * forward, we're the sender side of the xfer.  Just
981	 * free the data acked & wake any higher level process
982	 * that was blocked waiting for space.  If the length
983	 * is non-zero and the ack didn't move, we're the
984	 * receiver side.  If we're getting packets in-order
985	 * (the reassembly queue is empty), add the data to
986	 * the socket buffer and note that we need a delayed ack.
987	 * Make sure that the hidden state-flags are also off.
988	 * Since we check for TCPS_ESTABLISHED first, it can only
989	 * be TH_NEEDSYN.
990	 */
991	if (tp->t_state == TCPS_ESTABLISHED &&
992	    th->th_seq == tp->rcv_nxt &&
993	    (thflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK)) == TH_ACK &&
994	    tp->snd_nxt == tp->snd_max &&
995	    tiwin && tiwin == tp->snd_wnd &&
996	    ((tp->t_flags & (TF_NEEDSYN|TF_NEEDFIN)) == 0) &&
997	    LIST_EMPTY(&tp->t_segq) &&
998	    ((to.to_flags & TOF_TS) == 0 ||
999	     TSTMP_GEQ(to.to_tsval, tp->ts_recent)) ) {
1000
1001		/*
1002		 * If last ACK falls within this segment's sequence numbers,
1003		 * record the timestamp.
1004		 * NOTE that the test is modified according to the latest
1005		 * proposal of the tcplw@cray.com list (Braden 1993/04/26).
1006		 */
1007		if ((to.to_flags & TOF_TS) != 0 &&
1008		    SEQ_LEQ(th->th_seq, tp->last_ack_sent)) {
1009			tp->ts_recent_age = ticks;
1010			tp->ts_recent = to.to_tsval;
1011		}
1012
1013		if (tlen == 0) {
1014			if (SEQ_GT(th->th_ack, tp->snd_una) &&
1015			    SEQ_LEQ(th->th_ack, tp->snd_max) &&
1016			    tp->snd_cwnd >= tp->snd_wnd &&
1017			    ((!tcp_do_newreno &&
1018			      !(tp->t_flags & TF_SACK_PERMIT) &&
1019			      tp->t_dupacks < tcprexmtthresh) ||
1020			     ((tcp_do_newreno ||
1021			       (tp->t_flags & TF_SACK_PERMIT)) &&
1022			      !IN_FASTRECOVERY(tp) &&
1023			      (to.to_flags & TOF_SACK) == 0 &&
1024			      TAILQ_EMPTY(&tp->snd_holes)))) {
1025				KASSERT(headlocked,
1026				    ("%s: headlocked", __func__));
1027				INP_INFO_WUNLOCK(&tcbinfo);
1028				headlocked = 0;
1029				/*
1030				 * this is a pure ack for outstanding data.
1031				 */
1032				++tcpstat.tcps_predack;
1033				/*
1034				 * "bad retransmit" recovery
1035				 */
1036				if (tp->t_rxtshift == 1 &&
1037				    ticks < tp->t_badrxtwin) {
1038					++tcpstat.tcps_sndrexmitbad;
1039					tp->snd_cwnd = tp->snd_cwnd_prev;
1040					tp->snd_ssthresh =
1041					    tp->snd_ssthresh_prev;
1042					tp->snd_recover = tp->snd_recover_prev;
1043					if (tp->t_flags & TF_WASFRECOVERY)
1044					    ENTER_FASTRECOVERY(tp);
1045					tp->snd_nxt = tp->snd_max;
1046					tp->t_badrxtwin = 0;
1047				}
1048
1049				/*
1050				 * Recalculate the transmit timer / rtt.
1051				 *
1052				 * Some boxes send broken timestamp replies
1053				 * during the SYN+ACK phase, ignore
1054				 * timestamps of 0 or we could calculate a
1055				 * huge RTT and blow up the retransmit timer.
1056				 */
1057				if ((to.to_flags & TOF_TS) != 0 &&
1058				    to.to_tsecr) {
1059					if (!tp->t_rttlow ||
1060					    tp->t_rttlow > ticks - to.to_tsecr)
1061						tp->t_rttlow = ticks - to.to_tsecr;
1062					tcp_xmit_timer(tp,
1063					    ticks - to.to_tsecr + 1);
1064				} else if (tp->t_rtttime &&
1065				    SEQ_GT(th->th_ack, tp->t_rtseq)) {
1066					if (!tp->t_rttlow ||
1067					    tp->t_rttlow > ticks - tp->t_rtttime)
1068						tp->t_rttlow = ticks - tp->t_rtttime;
1069					tcp_xmit_timer(tp,
1070							ticks - tp->t_rtttime);
1071				}
1072				tcp_xmit_bandwidth_limit(tp, th->th_ack);
1073				acked = th->th_ack - tp->snd_una;
1074				tcpstat.tcps_rcvackpack++;
1075				tcpstat.tcps_rcvackbyte += acked;
1076				sbdrop(&so->so_snd, acked);
1077				if (SEQ_GT(tp->snd_una, tp->snd_recover) &&
1078				    SEQ_LEQ(th->th_ack, tp->snd_recover))
1079					tp->snd_recover = th->th_ack - 1;
1080				tp->snd_una = th->th_ack;
1081				/*
1082				 * pull snd_wl2 up to prevent seq wrap relative
1083				 * to th_ack.
1084				 */
1085				tp->snd_wl2 = th->th_ack;
1086				tp->t_dupacks = 0;
1087				m_freem(m);
1088				ND6_HINT(tp); /* some progress has been done */
1089
1090				/*
1091				 * If all outstanding data are acked, stop
1092				 * retransmit timer, otherwise restart timer
1093				 * using current (possibly backed-off) value.
1094				 * If process is waiting for space,
1095				 * wakeup/selwakeup/signal.  If data
1096				 * are ready to send, let tcp_output
1097				 * decide between more output or persist.
1098
1099#ifdef TCPDEBUG
1100				if (so->so_options & SO_DEBUG)
1101					tcp_trace(TA_INPUT, ostate, tp,
1102					    (void *)tcp_saveipgen,
1103					    &tcp_savetcp, 0);
1104#endif
1105				 */
1106				if (tp->snd_una == tp->snd_max)
1107					tcp_timer_activate(tp, TT_REXMT, 0);
1108				else if (!tcp_timer_active(tp, TT_PERSIST))
1109					tcp_timer_activate(tp, TT_REXMT,
1110						      tp->t_rxtcur);
1111
1112				sowwakeup(so);
1113				if (so->so_snd.sb_cc)
1114					(void) tcp_output(tp);
1115				goto check_delack;
1116			}
1117		} else if (th->th_ack == tp->snd_una &&
1118		    tlen <= sbspace(&so->so_rcv)) {
1119			int newsize = 0;	/* automatic sockbuf scaling */
1120
1121			KASSERT(headlocked, ("%s: headlocked", __func__));
1122			INP_INFO_WUNLOCK(&tcbinfo);
1123			headlocked = 0;
1124			/*
1125			 * this is a pure, in-sequence data packet
1126			 * with nothing on the reassembly queue and
1127			 * we have enough buffer space to take it.
1128			 */
1129			/* Clean receiver SACK report if present */
1130			if ((tp->t_flags & TF_SACK_PERMIT) && tp->rcv_numsacks)
1131				tcp_clean_sackreport(tp);
1132			++tcpstat.tcps_preddat;
1133			tp->rcv_nxt += tlen;
1134			/*
1135			 * Pull snd_wl1 up to prevent seq wrap relative to
1136			 * th_seq.
1137			 */
1138			tp->snd_wl1 = th->th_seq;
1139			/*
1140			 * Pull rcv_up up to prevent seq wrap relative to
1141			 * rcv_nxt.
1142			 */
1143			tp->rcv_up = tp->rcv_nxt;
1144			tcpstat.tcps_rcvpack++;
1145			tcpstat.tcps_rcvbyte += tlen;
1146			ND6_HINT(tp);	/* some progress has been done */
1147#ifdef TCPDEBUG
1148			if (so->so_options & SO_DEBUG)
1149				tcp_trace(TA_INPUT, ostate, tp,
1150				    (void *)tcp_saveipgen, &tcp_savetcp, 0);
1151#endif
1152		/*
1153		 * Automatic sizing of receive socket buffer.  Often the send
1154		 * buffer size is not optimally adjusted to the actual network
1155		 * conditions at hand (delay bandwidth product).  Setting the
1156		 * buffer size too small limits throughput on links with high
1157		 * bandwidth and high delay (eg. trans-continental/oceanic links).
1158		 *
1159		 * On the receive side the socket buffer memory is only rarely
1160		 * used to any significant extent.  This allows us to be much
1161		 * more aggressive in scaling the receive socket buffer.  For
1162		 * the case that the buffer space is actually used to a large
1163		 * extent and we run out of kernel memory we can simply drop
1164		 * the new segments; TCP on the sender will just retransmit it
1165		 * later.  Setting the buffer size too big may only consume too
1166		 * much kernel memory if the application doesn't read() from
1167		 * the socket or packet loss or reordering makes use of the
1168		 * reassembly queue.
1169		 *
1170		 * The criteria to step up the receive buffer one notch are:
1171		 *  1. the number of bytes received during the time it takes
1172		 *     one timestamp to be reflected back to us (the RTT);
1173		 *  2. received bytes per RTT is within seven eighth of the
1174		 *     current socket buffer size;
1175		 *  3. receive buffer size has not hit maximal automatic size;
1176		 *
1177		 * This algorithm does one step per RTT at most and only if
1178		 * we receive a bulk stream w/o packet losses or reorderings.
1179		 * Shrinking the buffer during idle times is not necessary as
1180		 * it doesn't consume any memory when idle.
1181		 *
1182		 * TODO: Only step up if the application is actually serving
1183		 * the buffer to better manage the socket buffer resources.
1184		 */
1185			if (tcp_do_autorcvbuf &&
1186			    to.to_tsecr &&
1187			    (so->so_rcv.sb_flags & SB_AUTOSIZE)) {
1188				if (to.to_tsecr > tp->rfbuf_ts &&
1189				    to.to_tsecr - tp->rfbuf_ts < hz) {
1190					if (tp->rfbuf_cnt >
1191					    (so->so_rcv.sb_hiwat / 8 * 7) &&
1192					    so->so_rcv.sb_hiwat <
1193					    tcp_autorcvbuf_max) {
1194						newsize =
1195						    min(so->so_rcv.sb_hiwat +
1196						    tcp_autorcvbuf_inc,
1197						    tcp_autorcvbuf_max);
1198					}
1199					/* Start over with next RTT. */
1200					tp->rfbuf_ts = 0;
1201					tp->rfbuf_cnt = 0;
1202				} else
1203					tp->rfbuf_cnt += tlen;	/* add up */
1204			}
1205
1206			/* Add data to socket buffer. */
1207			SOCKBUF_LOCK(&so->so_rcv);
1208			if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
1209				m_freem(m);
1210			} else {
1211				/*
1212				 * Set new socket buffer size.
1213				 * Give up when limit is reached.
1214				 */
1215				if (newsize)
1216					if (!sbreserve_locked(&so->so_rcv,
1217					    newsize, so, curthread))
1218						so->so_rcv.sb_flags &= ~SB_AUTOSIZE;
1219				m_adj(m, drop_hdrlen);	/* delayed header drop */
1220				sbappendstream_locked(&so->so_rcv, m);
1221			}
1222			sorwakeup_locked(so);
1223			if (DELAY_ACK(tp)) {
1224				tp->t_flags |= TF_DELACK;
1225			} else {
1226				tp->t_flags |= TF_ACKNOW;
1227				tcp_output(tp);
1228			}
1229			goto check_delack;
1230		}
1231	}
1232
1233	/*
1234	 * Calculate amount of space in receive window,
1235	 * and then do TCP input processing.
1236	 * Receive window is amount of space in rcv queue,
1237	 * but not less than advertised window.
1238	 */
1239	win = sbspace(&so->so_rcv);
1240	if (win < 0)
1241		win = 0;
1242	tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
1243
1244	/* Reset receive buffer auto scaling when not in bulk receive mode. */
1245	tp->rfbuf_ts = 0;
1246	tp->rfbuf_cnt = 0;
1247
1248	switch (tp->t_state) {
1249
1250	/*
1251	 * If the state is SYN_RECEIVED:
1252	 *	if seg contains an ACK, but not for our SYN/ACK, send a RST.
1253	 */
1254	case TCPS_SYN_RECEIVED:
1255		if ((thflags & TH_ACK) &&
1256		    (SEQ_LEQ(th->th_ack, tp->snd_una) ||
1257		     SEQ_GT(th->th_ack, tp->snd_max))) {
1258				rstreason = BANDLIM_RST_OPENPORT;
1259				goto dropwithreset;
1260		}
1261		break;
1262
1263	/*
1264	 * If the state is SYN_SENT:
1265	 *	if seg contains an ACK, but not for our SYN, drop the input.
1266	 *	if seg contains a RST, then drop the connection.
1267	 *	if seg does not contain SYN, then drop it.
1268	 * Otherwise this is an acceptable SYN segment
1269	 *	initialize tp->rcv_nxt and tp->irs
1270	 *	if seg contains ack then advance tp->snd_una
1271	 *	if SYN has been acked change to ESTABLISHED else SYN_RCVD state
1272	 *	arrange for segment to be acked (eventually)
1273	 *	continue processing rest of data/controls, beginning with URG
1274	 */
1275	case TCPS_SYN_SENT:
1276		if ((thflags & TH_ACK) &&
1277		    (SEQ_LEQ(th->th_ack, tp->iss) ||
1278		     SEQ_GT(th->th_ack, tp->snd_max))) {
1279			rstreason = BANDLIM_UNLIMITED;
1280			goto dropwithreset;
1281		}
1282		if ((thflags & (TH_ACK|TH_RST)) == (TH_ACK|TH_RST))
1283			tp = tcp_drop(tp, ECONNREFUSED);
1284		if (thflags & TH_RST)
1285			goto drop;
1286		if (!(thflags & TH_SYN))
1287			goto drop;
1288
1289		tp->irs = th->th_seq;
1290		tcp_rcvseqinit(tp);
1291		if (thflags & TH_ACK) {
1292			tcpstat.tcps_connects++;
1293			soisconnected(so);
1294#ifdef MAC
1295			SOCK_LOCK(so);
1296			mac_set_socket_peer_from_mbuf(m, so);
1297			SOCK_UNLOCK(so);
1298#endif
1299			/* Do window scaling on this connection? */
1300			if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
1301				(TF_RCVD_SCALE|TF_REQ_SCALE)) {
1302				tp->rcv_scale = tp->request_r_scale;
1303			}
1304			tp->rcv_adv += tp->rcv_wnd;
1305			tp->snd_una++;		/* SYN is acked */
1306			/*
1307			 * If there's data, delay ACK; if there's also a FIN
1308			 * ACKNOW will be turned on later.
1309			 */
1310			if (DELAY_ACK(tp) && tlen != 0)
1311				tcp_timer_activate(tp, TT_DELACK,
1312				    tcp_delacktime);
1313			else
1314				tp->t_flags |= TF_ACKNOW;
1315			/*
1316			 * Received <SYN,ACK> in SYN_SENT[*] state.
1317			 * Transitions:
1318			 *	SYN_SENT  --> ESTABLISHED
1319			 *	SYN_SENT* --> FIN_WAIT_1
1320			 */
1321			tp->t_starttime = ticks;
1322			if (tp->t_flags & TF_NEEDFIN) {
1323				tp->t_state = TCPS_FIN_WAIT_1;
1324				tp->t_flags &= ~TF_NEEDFIN;
1325				thflags &= ~TH_SYN;
1326			} else {
1327				tp->t_state = TCPS_ESTABLISHED;
1328				tcp_timer_activate(tp, TT_KEEP, tcp_keepidle);
1329			}
1330		} else {
1331			/*
1332			 * Received initial SYN in SYN-SENT[*] state =>
1333			 * simultaneous open.  If segment contains CC option
1334			 * and there is a cached CC, apply TAO test.
1335			 * If it succeeds, connection is * half-synchronized.
1336			 * Otherwise, do 3-way handshake:
1337			 *        SYN-SENT -> SYN-RECEIVED
1338			 *        SYN-SENT* -> SYN-RECEIVED*
1339			 * If there was no CC option, clear cached CC value.
1340			 */
1341			tp->t_flags |= (TF_ACKNOW | TF_NEEDSYN);
1342			tcp_timer_activate(tp, TT_REXMT, 0);
1343			tp->t_state = TCPS_SYN_RECEIVED;
1344		}
1345
1346		KASSERT(headlocked, ("%s: trimthenstep6: head not locked",
1347		    __func__));
1348		INP_LOCK_ASSERT(tp->t_inpcb);
1349
1350		/*
1351		 * Advance th->th_seq to correspond to first data byte.
1352		 * If data, trim to stay within window,
1353		 * dropping FIN if necessary.
1354		 */
1355		th->th_seq++;
1356		if (tlen > tp->rcv_wnd) {
1357			todrop = tlen - tp->rcv_wnd;
1358			m_adj(m, -todrop);
1359			tlen = tp->rcv_wnd;
1360			thflags &= ~TH_FIN;
1361			tcpstat.tcps_rcvpackafterwin++;
1362			tcpstat.tcps_rcvbyteafterwin += todrop;
1363		}
1364		tp->snd_wl1 = th->th_seq - 1;
1365		tp->rcv_up = th->th_seq;
1366		/*
1367		 * Client side of transaction: already sent SYN and data.
1368		 * If the remote host used T/TCP to validate the SYN,
1369		 * our data will be ACK'd; if so, enter normal data segment
1370		 * processing in the middle of step 5, ack processing.
1371		 * Otherwise, goto step 6.
1372		 */
1373		if (thflags & TH_ACK)
1374			goto process_ACK;
1375
1376		goto step6;
1377
1378	/*
1379	 * If the state is LAST_ACK or CLOSING or TIME_WAIT:
1380	 *      do normal processing.
1381	 *
1382	 * NB: Leftover from RFC1644 T/TCP.  Cases to be reused later.
1383	 */
1384	case TCPS_LAST_ACK:
1385	case TCPS_CLOSING:
1386		break;  /* continue normal processing */
1387	}
1388
1389	/*
1390	 * States other than LISTEN or SYN_SENT.
1391	 * First check the RST flag and sequence number since reset segments
1392	 * are exempt from the timestamp and connection count tests.  This
1393	 * fixes a bug introduced by the Stevens, vol. 2, p. 960 bugfix
1394	 * below which allowed reset segments in half the sequence space
1395	 * to fall though and be processed (which gives forged reset
1396	 * segments with a random sequence number a 50 percent chance of
1397	 * killing a connection).
1398	 * Then check timestamp, if present.
1399	 * Then check the connection count, if present.
1400	 * Then check that at least some bytes of segment are within
1401	 * receive window.  If segment begins before rcv_nxt,
1402	 * drop leading data (and SYN); if nothing left, just ack.
1403	 *
1404	 *
1405	 * If the RST bit is set, check the sequence number to see
1406	 * if this is a valid reset segment.
1407	 * RFC 793 page 37:
1408	 *   In all states except SYN-SENT, all reset (RST) segments
1409	 *   are validated by checking their SEQ-fields.  A reset is
1410	 *   valid if its sequence number is in the window.
1411	 * Note: this does not take into account delayed ACKs, so
1412	 *   we should test against last_ack_sent instead of rcv_nxt.
1413	 *   The sequence number in the reset segment is normally an
1414	 *   echo of our outgoing acknowlegement numbers, but some hosts
1415	 *   send a reset with the sequence number at the rightmost edge
1416	 *   of our receive window, and we have to handle this case.
1417	 * Note 2: Paul Watson's paper "Slipping in the Window" has shown
1418	 *   that brute force RST attacks are possible.  To combat this,
1419	 *   we use a much stricter check while in the ESTABLISHED state,
1420	 *   only accepting RSTs where the sequence number is equal to
1421	 *   last_ack_sent.  In all other states (the states in which a
1422	 *   RST is more likely), the more permissive check is used.
1423	 * If we have multiple segments in flight, the intial reset
1424	 * segment sequence numbers will be to the left of last_ack_sent,
1425	 * but they will eventually catch up.
1426	 * In any case, it never made sense to trim reset segments to
1427	 * fit the receive window since RFC 1122 says:
1428	 *   4.2.2.12  RST Segment: RFC-793 Section 3.4
1429	 *
1430	 *    A TCP SHOULD allow a received RST segment to include data.
1431	 *
1432	 *    DISCUSSION
1433	 *         It has been suggested that a RST segment could contain
1434	 *         ASCII text that encoded and explained the cause of the
1435	 *         RST.  No standard has yet been established for such
1436	 *         data.
1437	 *
1438	 * If the reset segment passes the sequence number test examine
1439	 * the state:
1440	 *    SYN_RECEIVED STATE:
1441	 *	If passive open, return to LISTEN state.
1442	 *	If active open, inform user that connection was refused.
1443	 *    ESTABLISHED, FIN_WAIT_1, FIN_WAIT_2, CLOSE_WAIT STATES:
1444	 *	Inform user that connection was reset, and close tcb.
1445	 *    CLOSING, LAST_ACK STATES:
1446	 *	Close the tcb.
1447	 *    TIME_WAIT STATE:
1448	 *	Drop the segment - see Stevens, vol. 2, p. 964 and
1449	 *      RFC 1337.
1450	 */
1451	if (thflags & TH_RST) {
1452		if (SEQ_GEQ(th->th_seq, tp->last_ack_sent - 1) &&
1453		    SEQ_LEQ(th->th_seq, tp->last_ack_sent + tp->rcv_wnd)) {
1454			switch (tp->t_state) {
1455
1456			case TCPS_SYN_RECEIVED:
1457				so->so_error = ECONNREFUSED;
1458				goto close;
1459
1460			case TCPS_ESTABLISHED:
1461				if (tcp_insecure_rst == 0 &&
1462				    !(SEQ_GEQ(th->th_seq, tp->rcv_nxt - 1) &&
1463				    SEQ_LEQ(th->th_seq, tp->rcv_nxt + 1)) &&
1464				    !(SEQ_GEQ(th->th_seq, tp->last_ack_sent - 1) &&
1465				    SEQ_LEQ(th->th_seq, tp->last_ack_sent + 1))) {
1466					tcpstat.tcps_badrst++;
1467					goto drop;
1468				}
1469			case TCPS_FIN_WAIT_1:
1470			case TCPS_FIN_WAIT_2:
1471			case TCPS_CLOSE_WAIT:
1472				so->so_error = ECONNRESET;
1473			close:
1474				tp->t_state = TCPS_CLOSED;
1475				tcpstat.tcps_drops++;
1476				KASSERT(headlocked, ("%s: trimthenstep6: "
1477				    "tcp_close: head not locked", __func__));
1478				tp = tcp_close(tp);
1479				break;
1480
1481			case TCPS_CLOSING:
1482			case TCPS_LAST_ACK:
1483				KASSERT(headlocked, ("%s: trimthenstep6: "
1484				    "tcp_close.2: head not locked", __func__));
1485				tp = tcp_close(tp);
1486				break;
1487			}
1488		}
1489		goto drop;
1490	}
1491
1492	/*
1493	 * RFC 1323 PAWS: If we have a timestamp reply on this segment
1494	 * and it's less than ts_recent, drop it.
1495	 */
1496	if ((to.to_flags & TOF_TS) != 0 && tp->ts_recent &&
1497	    TSTMP_LT(to.to_tsval, tp->ts_recent)) {
1498
1499		/* Check to see if ts_recent is over 24 days old.  */
1500		if ((int)(ticks - tp->ts_recent_age) > TCP_PAWS_IDLE) {
1501			/*
1502			 * Invalidate ts_recent.  If this segment updates
1503			 * ts_recent, the age will be reset later and ts_recent
1504			 * will get a valid value.  If it does not, setting
1505			 * ts_recent to zero will at least satisfy the
1506			 * requirement that zero be placed in the timestamp
1507			 * echo reply when ts_recent isn't valid.  The
1508			 * age isn't reset until we get a valid ts_recent
1509			 * because we don't want out-of-order segments to be
1510			 * dropped when ts_recent is old.
1511			 */
1512			tp->ts_recent = 0;
1513		} else {
1514			tcpstat.tcps_rcvduppack++;
1515			tcpstat.tcps_rcvdupbyte += tlen;
1516			tcpstat.tcps_pawsdrop++;
1517			if (tlen)
1518				goto dropafterack;
1519			goto drop;
1520		}
1521	}
1522
1523	/*
1524	 * In the SYN-RECEIVED state, validate that the packet belongs to
1525	 * this connection before trimming the data to fit the receive
1526	 * window.  Check the sequence number versus IRS since we know
1527	 * the sequence numbers haven't wrapped.  This is a partial fix
1528	 * for the "LAND" DoS attack.
1529	 */
1530	if (tp->t_state == TCPS_SYN_RECEIVED && SEQ_LT(th->th_seq, tp->irs)) {
1531		rstreason = BANDLIM_RST_OPENPORT;
1532		goto dropwithreset;
1533	}
1534
1535	todrop = tp->rcv_nxt - th->th_seq;
1536	if (todrop > 0) {
1537		if (thflags & TH_SYN) {
1538			thflags &= ~TH_SYN;
1539			th->th_seq++;
1540			if (th->th_urp > 1)
1541				th->th_urp--;
1542			else
1543				thflags &= ~TH_URG;
1544			todrop--;
1545		}
1546		/*
1547		 * Following if statement from Stevens, vol. 2, p. 960.
1548		 */
1549		if (todrop > tlen
1550		    || (todrop == tlen && (thflags & TH_FIN) == 0)) {
1551			/*
1552			 * Any valid FIN must be to the left of the window.
1553			 * At this point the FIN must be a duplicate or out
1554			 * of sequence; drop it.
1555			 */
1556			thflags &= ~TH_FIN;
1557
1558			/*
1559			 * Send an ACK to resynchronize and drop any data.
1560			 * But keep on processing for RST or ACK.
1561			 */
1562			tp->t_flags |= TF_ACKNOW;
1563			todrop = tlen;
1564			tcpstat.tcps_rcvduppack++;
1565			tcpstat.tcps_rcvdupbyte += todrop;
1566		} else {
1567			tcpstat.tcps_rcvpartduppack++;
1568			tcpstat.tcps_rcvpartdupbyte += todrop;
1569		}
1570		drop_hdrlen += todrop;	/* drop from the top afterwards */
1571		th->th_seq += todrop;
1572		tlen -= todrop;
1573		if (th->th_urp > todrop)
1574			th->th_urp -= todrop;
1575		else {
1576			thflags &= ~TH_URG;
1577			th->th_urp = 0;
1578		}
1579	}
1580
1581	/*
1582	 * If new data are received on a connection after the
1583	 * user processes are gone, then RST the other end.
1584	 */
1585	if ((so->so_state & SS_NOFDREF) &&
1586	    tp->t_state > TCPS_CLOSE_WAIT && tlen) {
1587		KASSERT(headlocked, ("%s: trimthenstep6: tcp_close.3: head "
1588		    "not locked", __func__));
1589		tp = tcp_close(tp);
1590		tcpstat.tcps_rcvafterclose++;
1591		rstreason = BANDLIM_UNLIMITED;
1592		goto dropwithreset;
1593	}
1594
1595	/*
1596	 * If segment ends after window, drop trailing data
1597	 * (and PUSH and FIN); if nothing left, just ACK.
1598	 */
1599	todrop = (th->th_seq + tlen) - (tp->rcv_nxt + tp->rcv_wnd);
1600	if (todrop > 0) {
1601		tcpstat.tcps_rcvpackafterwin++;
1602		if (todrop >= tlen) {
1603			tcpstat.tcps_rcvbyteafterwin += tlen;
1604			/*
1605			 * If window is closed can only take segments at
1606			 * window edge, and have to drop data and PUSH from
1607			 * incoming segments.  Continue processing, but
1608			 * remember to ack.  Otherwise, drop segment
1609			 * and ack.
1610			 */
1611			if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
1612				tp->t_flags |= TF_ACKNOW;
1613				tcpstat.tcps_rcvwinprobe++;
1614			} else
1615				goto dropafterack;
1616		} else
1617			tcpstat.tcps_rcvbyteafterwin += todrop;
1618		m_adj(m, -todrop);
1619		tlen -= todrop;
1620		thflags &= ~(TH_PUSH|TH_FIN);
1621	}
1622
1623	/*
1624	 * If last ACK falls within this segment's sequence numbers,
1625	 * record its timestamp.
1626	 * NOTE:
1627	 * 1) That the test incorporates suggestions from the latest
1628	 *    proposal of the tcplw@cray.com list (Braden 1993/04/26).
1629	 * 2) That updating only on newer timestamps interferes with
1630	 *    our earlier PAWS tests, so this check should be solely
1631	 *    predicated on the sequence space of this segment.
1632	 * 3) That we modify the segment boundary check to be
1633	 *        Last.ACK.Sent <= SEG.SEQ + SEG.Len
1634	 *    instead of RFC1323's
1635	 *        Last.ACK.Sent < SEG.SEQ + SEG.Len,
1636	 *    This modified check allows us to overcome RFC1323's
1637	 *    limitations as described in Stevens TCP/IP Illustrated
1638	 *    Vol. 2 p.869. In such cases, we can still calculate the
1639	 *    RTT correctly when RCV.NXT == Last.ACK.Sent.
1640	 */
1641	if ((to.to_flags & TOF_TS) != 0 &&
1642	    SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
1643	    SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
1644		((thflags & (TH_SYN|TH_FIN)) != 0))) {
1645		tp->ts_recent_age = ticks;
1646		tp->ts_recent = to.to_tsval;
1647	}
1648
1649	/*
1650	 * If a SYN is in the window, then this is an
1651	 * error and we send an RST and drop the connection.
1652	 */
1653	if (thflags & TH_SYN) {
1654		KASSERT(headlocked, ("%s: tcp_drop: trimthenstep6: "
1655		    "head not locked", __func__));
1656		tp = tcp_drop(tp, ECONNRESET);
1657		rstreason = BANDLIM_UNLIMITED;
1658		goto drop;
1659	}
1660
1661	/*
1662	 * If the ACK bit is off:  if in SYN-RECEIVED state or SENDSYN
1663	 * flag is on (half-synchronized state), then queue data for
1664	 * later processing; else drop segment and return.
1665	 */
1666	if ((thflags & TH_ACK) == 0) {
1667		if (tp->t_state == TCPS_SYN_RECEIVED ||
1668		    (tp->t_flags & TF_NEEDSYN))
1669			goto step6;
1670		else if (tp->t_flags & TF_ACKNOW)
1671			goto dropafterack;
1672		else
1673			goto drop;
1674	}
1675
1676	/*
1677	 * Ack processing.
1678	 */
1679	switch (tp->t_state) {
1680
1681	/*
1682	 * In SYN_RECEIVED state, the ack ACKs our SYN, so enter
1683	 * ESTABLISHED state and continue processing.
1684	 * The ACK was checked above.
1685	 */
1686	case TCPS_SYN_RECEIVED:
1687
1688		tcpstat.tcps_connects++;
1689		soisconnected(so);
1690		/* Do window scaling? */
1691		if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
1692			(TF_RCVD_SCALE|TF_REQ_SCALE)) {
1693			tp->rcv_scale = tp->request_r_scale;
1694			tp->snd_wnd = tiwin;
1695		}
1696		/*
1697		 * Make transitions:
1698		 *      SYN-RECEIVED  -> ESTABLISHED
1699		 *      SYN-RECEIVED* -> FIN-WAIT-1
1700		 */
1701		tp->t_starttime = ticks;
1702		if (tp->t_flags & TF_NEEDFIN) {
1703			tp->t_state = TCPS_FIN_WAIT_1;
1704			tp->t_flags &= ~TF_NEEDFIN;
1705		} else {
1706			tp->t_state = TCPS_ESTABLISHED;
1707			tcp_timer_activate(tp, TT_KEEP, tcp_keepidle);
1708		}
1709		/*
1710		 * If segment contains data or ACK, will call tcp_reass()
1711		 * later; if not, do so now to pass queued data to user.
1712		 */
1713		if (tlen == 0 && (thflags & TH_FIN) == 0)
1714			(void) tcp_reass(tp, (struct tcphdr *)0, 0,
1715			    (struct mbuf *)0);
1716		tp->snd_wl1 = th->th_seq - 1;
1717		/* FALLTHROUGH */
1718
1719	/*
1720	 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
1721	 * ACKs.  If the ack is in the range
1722	 *	tp->snd_una < th->th_ack <= tp->snd_max
1723	 * then advance tp->snd_una to th->th_ack and drop
1724	 * data from the retransmission queue.  If this ACK reflects
1725	 * more up to date window information we update our window information.
1726	 */
1727	case TCPS_ESTABLISHED:
1728	case TCPS_FIN_WAIT_1:
1729	case TCPS_FIN_WAIT_2:
1730	case TCPS_CLOSE_WAIT:
1731	case TCPS_CLOSING:
1732	case TCPS_LAST_ACK:
1733		if (SEQ_GT(th->th_ack, tp->snd_max)) {
1734			tcpstat.tcps_rcvacktoomuch++;
1735			goto dropafterack;
1736		}
1737		if ((tp->t_flags & TF_SACK_PERMIT) &&
1738		    ((to.to_flags & TOF_SACK) ||
1739		     !TAILQ_EMPTY(&tp->snd_holes)))
1740			tcp_sack_doack(tp, &to, th->th_ack);
1741		if (SEQ_LEQ(th->th_ack, tp->snd_una)) {
1742			if (tlen == 0 && tiwin == tp->snd_wnd) {
1743				tcpstat.tcps_rcvdupack++;
1744				/*
1745				 * If we have outstanding data (other than
1746				 * a window probe), this is a completely
1747				 * duplicate ack (ie, window info didn't
1748				 * change), the ack is the biggest we've
1749				 * seen and we've seen exactly our rexmt
1750				 * threshhold of them, assume a packet
1751				 * has been dropped and retransmit it.
1752				 * Kludge snd_nxt & the congestion
1753				 * window so we send only this one
1754				 * packet.
1755				 *
1756				 * We know we're losing at the current
1757				 * window size so do congestion avoidance
1758				 * (set ssthresh to half the current window
1759				 * and pull our congestion window back to
1760				 * the new ssthresh).
1761				 *
1762				 * Dup acks mean that packets have left the
1763				 * network (they're now cached at the receiver)
1764				 * so bump cwnd by the amount in the receiver
1765				 * to keep a constant cwnd packets in the
1766				 * network.
1767				 */
1768				if (!tcp_timer_active(tp, TT_REXMT) ||
1769				    th->th_ack != tp->snd_una)
1770					tp->t_dupacks = 0;
1771				else if (++tp->t_dupacks > tcprexmtthresh ||
1772				    ((tcp_do_newreno ||
1773				      (tp->t_flags & TF_SACK_PERMIT)) &&
1774				     IN_FASTRECOVERY(tp))) {
1775					if ((tp->t_flags & TF_SACK_PERMIT) &&
1776					    IN_FASTRECOVERY(tp)) {
1777						int awnd;
1778
1779						/*
1780						 * Compute the amount of data in flight first.
1781						 * We can inject new data into the pipe iff
1782						 * we have less than 1/2 the original window's
1783						 * worth of data in flight.
1784						 */
1785						awnd = (tp->snd_nxt - tp->snd_fack) +
1786							tp->sackhint.sack_bytes_rexmit;
1787						if (awnd < tp->snd_ssthresh) {
1788							tp->snd_cwnd += tp->t_maxseg;
1789							if (tp->snd_cwnd > tp->snd_ssthresh)
1790								tp->snd_cwnd = tp->snd_ssthresh;
1791						}
1792					} else
1793						tp->snd_cwnd += tp->t_maxseg;
1794					(void) tcp_output(tp);
1795					goto drop;
1796				} else if (tp->t_dupacks == tcprexmtthresh) {
1797					tcp_seq onxt = tp->snd_nxt;
1798					u_int win;
1799
1800					/*
1801					 * If we're doing sack, check to
1802					 * see if we're already in sack
1803					 * recovery. If we're not doing sack,
1804					 * check to see if we're in newreno
1805					 * recovery.
1806					 */
1807					if (tp->t_flags & TF_SACK_PERMIT) {
1808						if (IN_FASTRECOVERY(tp)) {
1809							tp->t_dupacks = 0;
1810							break;
1811						}
1812					} else if (tcp_do_newreno) {
1813						if (SEQ_LEQ(th->th_ack,
1814						    tp->snd_recover)) {
1815							tp->t_dupacks = 0;
1816							break;
1817						}
1818					}
1819					win = min(tp->snd_wnd, tp->snd_cwnd) /
1820					    2 / tp->t_maxseg;
1821					if (win < 2)
1822						win = 2;
1823					tp->snd_ssthresh = win * tp->t_maxseg;
1824					ENTER_FASTRECOVERY(tp);
1825					tp->snd_recover = tp->snd_max;
1826					tcp_timer_activate(tp, TT_REXMT, 0);
1827					tp->t_rtttime = 0;
1828					if (tp->t_flags & TF_SACK_PERMIT) {
1829						tcpstat.tcps_sack_recovery_episode++;
1830						tp->sack_newdata = tp->snd_nxt;
1831						tp->snd_cwnd = tp->t_maxseg;
1832						(void) tcp_output(tp);
1833						goto drop;
1834					}
1835					tp->snd_nxt = th->th_ack;
1836					tp->snd_cwnd = tp->t_maxseg;
1837					(void) tcp_output(tp);
1838					KASSERT(tp->snd_limited <= 2,
1839					    ("%s: tp->snd_limited too big",
1840					    __func__));
1841					tp->snd_cwnd = tp->snd_ssthresh +
1842					     tp->t_maxseg *
1843					     (tp->t_dupacks - tp->snd_limited);
1844					if (SEQ_GT(onxt, tp->snd_nxt))
1845						tp->snd_nxt = onxt;
1846					goto drop;
1847				} else if (tcp_do_rfc3042) {
1848					u_long oldcwnd = tp->snd_cwnd;
1849					tcp_seq oldsndmax = tp->snd_max;
1850					u_int sent;
1851
1852					KASSERT(tp->t_dupacks == 1 ||
1853					    tp->t_dupacks == 2,
1854					    ("%s: dupacks not 1 or 2",
1855					    __func__));
1856					if (tp->t_dupacks == 1)
1857						tp->snd_limited = 0;
1858					tp->snd_cwnd =
1859					    (tp->snd_nxt - tp->snd_una) +
1860					    (tp->t_dupacks - tp->snd_limited) *
1861					    tp->t_maxseg;
1862					(void) tcp_output(tp);
1863					sent = tp->snd_max - oldsndmax;
1864					if (sent > tp->t_maxseg) {
1865						KASSERT((tp->t_dupacks == 2 &&
1866						    tp->snd_limited == 0) ||
1867						   (sent == tp->t_maxseg + 1 &&
1868						    tp->t_flags & TF_SENTFIN),
1869						    ("%s: sent too much",
1870						    __func__));
1871						tp->snd_limited = 2;
1872					} else if (sent > 0)
1873						++tp->snd_limited;
1874					tp->snd_cwnd = oldcwnd;
1875					goto drop;
1876				}
1877			} else
1878				tp->t_dupacks = 0;
1879			break;
1880		}
1881
1882		KASSERT(SEQ_GT(th->th_ack, tp->snd_una),
1883		    ("%s: th_ack <= snd_una", __func__));
1884
1885		/*
1886		 * If the congestion window was inflated to account
1887		 * for the other side's cached packets, retract it.
1888		 */
1889		if (tcp_do_newreno || (tp->t_flags & TF_SACK_PERMIT)) {
1890			if (IN_FASTRECOVERY(tp)) {
1891				if (SEQ_LT(th->th_ack, tp->snd_recover)) {
1892					if (tp->t_flags & TF_SACK_PERMIT)
1893						tcp_sack_partialack(tp, th);
1894					else
1895						tcp_newreno_partial_ack(tp, th);
1896				} else {
1897					/*
1898					 * Out of fast recovery.
1899					 * Window inflation should have left us
1900					 * with approximately snd_ssthresh
1901					 * outstanding data.
1902					 * But in case we would be inclined to
1903					 * send a burst, better to do it via
1904					 * the slow start mechanism.
1905					 */
1906					if (SEQ_GT(th->th_ack +
1907							tp->snd_ssthresh,
1908						   tp->snd_max))
1909						tp->snd_cwnd = tp->snd_max -
1910								th->th_ack +
1911								tp->t_maxseg;
1912					else
1913						tp->snd_cwnd = tp->snd_ssthresh;
1914				}
1915			}
1916		} else {
1917			if (tp->t_dupacks >= tcprexmtthresh &&
1918			    tp->snd_cwnd > tp->snd_ssthresh)
1919				tp->snd_cwnd = tp->snd_ssthresh;
1920		}
1921		tp->t_dupacks = 0;
1922		/*
1923		 * If we reach this point, ACK is not a duplicate,
1924		 *     i.e., it ACKs something we sent.
1925		 */
1926		if (tp->t_flags & TF_NEEDSYN) {
1927			/*
1928			 * T/TCP: Connection was half-synchronized, and our
1929			 * SYN has been ACK'd (so connection is now fully
1930			 * synchronized).  Go to non-starred state,
1931			 * increment snd_una for ACK of SYN, and check if
1932			 * we can do window scaling.
1933			 */
1934			tp->t_flags &= ~TF_NEEDSYN;
1935			tp->snd_una++;
1936			/* Do window scaling? */
1937			if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
1938				(TF_RCVD_SCALE|TF_REQ_SCALE)) {
1939				tp->rcv_scale = tp->request_r_scale;
1940				/* Send window already scaled. */
1941			}
1942		}
1943
1944process_ACK:
1945		KASSERT(headlocked, ("%s: process_ACK: head not locked",
1946		    __func__));
1947		INP_LOCK_ASSERT(tp->t_inpcb);
1948
1949		acked = th->th_ack - tp->snd_una;
1950		tcpstat.tcps_rcvackpack++;
1951		tcpstat.tcps_rcvackbyte += acked;
1952
1953		/*
1954		 * If we just performed our first retransmit, and the ACK
1955		 * arrives within our recovery window, then it was a mistake
1956		 * to do the retransmit in the first place.  Recover our
1957		 * original cwnd and ssthresh, and proceed to transmit where
1958		 * we left off.
1959		 */
1960		if (tp->t_rxtshift == 1 && ticks < tp->t_badrxtwin) {
1961			++tcpstat.tcps_sndrexmitbad;
1962			tp->snd_cwnd = tp->snd_cwnd_prev;
1963			tp->snd_ssthresh = tp->snd_ssthresh_prev;
1964			tp->snd_recover = tp->snd_recover_prev;
1965			if (tp->t_flags & TF_WASFRECOVERY)
1966				ENTER_FASTRECOVERY(tp);
1967			tp->snd_nxt = tp->snd_max;
1968			tp->t_badrxtwin = 0;	/* XXX probably not required */
1969		}
1970
1971		/*
1972		 * If we have a timestamp reply, update smoothed
1973		 * round trip time.  If no timestamp is present but
1974		 * transmit timer is running and timed sequence
1975		 * number was acked, update smoothed round trip time.
1976		 * Since we now have an rtt measurement, cancel the
1977		 * timer backoff (cf., Phil Karn's retransmit alg.).
1978		 * Recompute the initial retransmit timer.
1979		 *
1980		 * Some boxes send broken timestamp replies
1981		 * during the SYN+ACK phase, ignore
1982		 * timestamps of 0 or we could calculate a
1983		 * huge RTT and blow up the retransmit timer.
1984		 */
1985		if ((to.to_flags & TOF_TS) != 0 &&
1986		    to.to_tsecr) {
1987			if (!tp->t_rttlow || tp->t_rttlow > ticks - to.to_tsecr)
1988				tp->t_rttlow = ticks - to.to_tsecr;
1989			tcp_xmit_timer(tp, ticks - to.to_tsecr + 1);
1990		} else if (tp->t_rtttime && SEQ_GT(th->th_ack, tp->t_rtseq)) {
1991			if (!tp->t_rttlow || tp->t_rttlow > ticks - tp->t_rtttime)
1992				tp->t_rttlow = ticks - tp->t_rtttime;
1993			tcp_xmit_timer(tp, ticks - tp->t_rtttime);
1994		}
1995		tcp_xmit_bandwidth_limit(tp, th->th_ack);
1996
1997		/*
1998		 * If all outstanding data is acked, stop retransmit
1999		 * timer and remember to restart (more output or persist).
2000		 * If there is more data to be acked, restart retransmit
2001		 * timer, using current (possibly backed-off) value.
2002		 */
2003		if (th->th_ack == tp->snd_max) {
2004			tcp_timer_activate(tp, TT_REXMT, 0);
2005			needoutput = 1;
2006		} else if (!tcp_timer_active(tp, TT_PERSIST))
2007			tcp_timer_activate(tp, TT_REXMT, tp->t_rxtcur);
2008
2009		/*
2010		 * If no data (only SYN) was ACK'd,
2011		 *    skip rest of ACK processing.
2012		 */
2013		if (acked == 0)
2014			goto step6;
2015
2016		/*
2017		 * When new data is acked, open the congestion window.
2018		 * If the window gives us less than ssthresh packets
2019		 * in flight, open exponentially (maxseg per packet).
2020		 * Otherwise open linearly: maxseg per window
2021		 * (maxseg^2 / cwnd per packet).
2022		 */
2023		if ((!tcp_do_newreno && !(tp->t_flags & TF_SACK_PERMIT)) ||
2024		    !IN_FASTRECOVERY(tp)) {
2025			u_int cw = tp->snd_cwnd;
2026			u_int incr = tp->t_maxseg;
2027			if (cw > tp->snd_ssthresh)
2028				incr = incr * incr / cw;
2029			tp->snd_cwnd = min(cw+incr, TCP_MAXWIN<<tp->snd_scale);
2030		}
2031		SOCKBUF_LOCK(&so->so_snd);
2032		if (acked > so->so_snd.sb_cc) {
2033			tp->snd_wnd -= so->so_snd.sb_cc;
2034			sbdrop_locked(&so->so_snd, (int)so->so_snd.sb_cc);
2035			ourfinisacked = 1;
2036		} else {
2037			sbdrop_locked(&so->so_snd, acked);
2038			tp->snd_wnd -= acked;
2039			ourfinisacked = 0;
2040		}
2041		sowwakeup_locked(so);
2042		/* detect una wraparound */
2043		if ((tcp_do_newreno || (tp->t_flags & TF_SACK_PERMIT)) &&
2044		    !IN_FASTRECOVERY(tp) &&
2045		    SEQ_GT(tp->snd_una, tp->snd_recover) &&
2046		    SEQ_LEQ(th->th_ack, tp->snd_recover))
2047			tp->snd_recover = th->th_ack - 1;
2048		if ((tcp_do_newreno || (tp->t_flags & TF_SACK_PERMIT)) &&
2049		    IN_FASTRECOVERY(tp) &&
2050		    SEQ_GEQ(th->th_ack, tp->snd_recover))
2051			EXIT_FASTRECOVERY(tp);
2052		tp->snd_una = th->th_ack;
2053		if (tp->t_flags & TF_SACK_PERMIT) {
2054			if (SEQ_GT(tp->snd_una, tp->snd_recover))
2055				tp->snd_recover = tp->snd_una;
2056		}
2057		if (SEQ_LT(tp->snd_nxt, tp->snd_una))
2058			tp->snd_nxt = tp->snd_una;
2059
2060		switch (tp->t_state) {
2061
2062		/*
2063		 * In FIN_WAIT_1 STATE in addition to the processing
2064		 * for the ESTABLISHED state if our FIN is now acknowledged
2065		 * then enter FIN_WAIT_2.
2066		 */
2067		case TCPS_FIN_WAIT_1:
2068			if (ourfinisacked) {
2069				/*
2070				 * If we can't receive any more
2071				 * data, then closing user can proceed.
2072				 * Starting the timer is contrary to the
2073				 * specification, but if we don't get a FIN
2074				 * we'll hang forever.
2075				 */
2076		/* XXXjl
2077		 * we should release the tp also, and use a
2078		 * compressed state.
2079		 */
2080				if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
2081					int timeout;
2082
2083					soisdisconnected(so);
2084					timeout = (tcp_fast_finwait2_recycle) ?
2085						tcp_finwait2_timeout : tcp_maxidle;
2086					tcp_timer_activate(tp, TT_2MSL, timeout);
2087				}
2088				tp->t_state = TCPS_FIN_WAIT_2;
2089			}
2090			break;
2091
2092		/*
2093		 * In CLOSING STATE in addition to the processing for
2094		 * the ESTABLISHED state if the ACK acknowledges our FIN
2095		 * then enter the TIME-WAIT state, otherwise ignore
2096		 * the segment.
2097		 */
2098		case TCPS_CLOSING:
2099			if (ourfinisacked) {
2100				KASSERT(headlocked, ("%s: process_ACK: "
2101				    "head not locked", __func__));
2102				tcp_twstart(tp);
2103				INP_INFO_WUNLOCK(&tcbinfo);
2104				headlocked = 0;
2105				m_freem(m);
2106				return;
2107			}
2108			break;
2109
2110		/*
2111		 * In LAST_ACK, we may still be waiting for data to drain
2112		 * and/or to be acked, as well as for the ack of our FIN.
2113		 * If our FIN is now acknowledged, delete the TCB,
2114		 * enter the closed state and return.
2115		 */
2116		case TCPS_LAST_ACK:
2117			if (ourfinisacked) {
2118				KASSERT(headlocked, ("%s: process_ACK: "
2119				    "tcp_close: head not locked", __func__));
2120				tp = tcp_close(tp);
2121				goto drop;
2122			}
2123			break;
2124		}
2125	}
2126
2127step6:
2128	KASSERT(headlocked, ("%s: step6: head not locked", __func__));
2129	INP_LOCK_ASSERT(tp->t_inpcb);
2130
2131	/*
2132	 * Update window information.
2133	 * Don't look at window if no ACK: TAC's send garbage on first SYN.
2134	 */
2135	if ((thflags & TH_ACK) &&
2136	    (SEQ_LT(tp->snd_wl1, th->th_seq) ||
2137	    (tp->snd_wl1 == th->th_seq && (SEQ_LT(tp->snd_wl2, th->th_ack) ||
2138	     (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))))) {
2139		/* keep track of pure window updates */
2140		if (tlen == 0 &&
2141		    tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)
2142			tcpstat.tcps_rcvwinupd++;
2143		tp->snd_wnd = tiwin;
2144		tp->snd_wl1 = th->th_seq;
2145		tp->snd_wl2 = th->th_ack;
2146		if (tp->snd_wnd > tp->max_sndwnd)
2147			tp->max_sndwnd = tp->snd_wnd;
2148		needoutput = 1;
2149	}
2150
2151	/*
2152	 * Process segments with URG.
2153	 */
2154	if ((thflags & TH_URG) && th->th_urp &&
2155	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2156		/*
2157		 * This is a kludge, but if we receive and accept
2158		 * random urgent pointers, we'll crash in
2159		 * soreceive.  It's hard to imagine someone
2160		 * actually wanting to send this much urgent data.
2161		 */
2162		SOCKBUF_LOCK(&so->so_rcv);
2163		if (th->th_urp + so->so_rcv.sb_cc > sb_max) {
2164			th->th_urp = 0;			/* XXX */
2165			thflags &= ~TH_URG;		/* XXX */
2166			SOCKBUF_UNLOCK(&so->so_rcv);	/* XXX */
2167			goto dodata;			/* XXX */
2168		}
2169		/*
2170		 * If this segment advances the known urgent pointer,
2171		 * then mark the data stream.  This should not happen
2172		 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
2173		 * a FIN has been received from the remote side.
2174		 * In these states we ignore the URG.
2175		 *
2176		 * According to RFC961 (Assigned Protocols),
2177		 * the urgent pointer points to the last octet
2178		 * of urgent data.  We continue, however,
2179		 * to consider it to indicate the first octet
2180		 * of data past the urgent section as the original
2181		 * spec states (in one of two places).
2182		 */
2183		if (SEQ_GT(th->th_seq+th->th_urp, tp->rcv_up)) {
2184			tp->rcv_up = th->th_seq + th->th_urp;
2185			so->so_oobmark = so->so_rcv.sb_cc +
2186			    (tp->rcv_up - tp->rcv_nxt) - 1;
2187			if (so->so_oobmark == 0)
2188				so->so_rcv.sb_state |= SBS_RCVATMARK;
2189			sohasoutofband(so);
2190			tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
2191		}
2192		SOCKBUF_UNLOCK(&so->so_rcv);
2193		/*
2194		 * Remove out of band data so doesn't get presented to user.
2195		 * This can happen independent of advancing the URG pointer,
2196		 * but if two URG's are pending at once, some out-of-band
2197		 * data may creep in... ick.
2198		 */
2199		if (th->th_urp <= (u_long)tlen &&
2200		    !(so->so_options & SO_OOBINLINE)) {
2201			/* hdr drop is delayed */
2202			tcp_pulloutofband(so, th, m, drop_hdrlen);
2203		}
2204	} else {
2205		/*
2206		 * If no out of band data is expected,
2207		 * pull receive urgent pointer along
2208		 * with the receive window.
2209		 */
2210		if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
2211			tp->rcv_up = tp->rcv_nxt;
2212	}
2213dodata:							/* XXX */
2214	KASSERT(headlocked, ("%s: dodata: head not locked", __func__));
2215	INP_LOCK_ASSERT(tp->t_inpcb);
2216
2217	/*
2218	 * Process the segment text, merging it into the TCP sequencing queue,
2219	 * and arranging for acknowledgment of receipt if necessary.
2220	 * This process logically involves adjusting tp->rcv_wnd as data
2221	 * is presented to the user (this happens in tcp_usrreq.c,
2222	 * case PRU_RCVD).  If a FIN has already been received on this
2223	 * connection then we just ignore the text.
2224	 */
2225	if ((tlen || (thflags & TH_FIN)) &&
2226	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2227		tcp_seq save_start = th->th_seq;
2228		tcp_seq save_end = th->th_seq + tlen;
2229		m_adj(m, drop_hdrlen);	/* delayed header drop */
2230		/*
2231		 * Insert segment which includes th into TCP reassembly queue
2232		 * with control block tp.  Set thflags to whether reassembly now
2233		 * includes a segment with FIN.  This handles the common case
2234		 * inline (segment is the next to be received on an established
2235		 * connection, and the queue is empty), avoiding linkage into
2236		 * and removal from the queue and repetition of various
2237		 * conversions.
2238		 * Set DELACK for segments received in order, but ack
2239		 * immediately when segments are out of order (so
2240		 * fast retransmit can work).
2241		 */
2242		if (th->th_seq == tp->rcv_nxt &&
2243		    LIST_EMPTY(&tp->t_segq) &&
2244		    TCPS_HAVEESTABLISHED(tp->t_state)) {
2245			if (DELAY_ACK(tp))
2246				tp->t_flags |= TF_DELACK;
2247			else
2248				tp->t_flags |= TF_ACKNOW;
2249			tp->rcv_nxt += tlen;
2250			thflags = th->th_flags & TH_FIN;
2251			tcpstat.tcps_rcvpack++;
2252			tcpstat.tcps_rcvbyte += tlen;
2253			ND6_HINT(tp);
2254			SOCKBUF_LOCK(&so->so_rcv);
2255			if (so->so_rcv.sb_state & SBS_CANTRCVMORE)
2256				m_freem(m);
2257			else
2258				sbappendstream_locked(&so->so_rcv, m);
2259			sorwakeup_locked(so);
2260		} else {
2261			thflags = tcp_reass(tp, th, &tlen, m);
2262			tp->t_flags |= TF_ACKNOW;
2263		}
2264		if (tlen > 0 && (tp->t_flags & TF_SACK_PERMIT))
2265			tcp_update_sack_list(tp, save_start, save_end);
2266#if 0
2267		/*
2268		 * Note the amount of data that peer has sent into
2269		 * our window, in order to estimate the sender's
2270		 * buffer size.
2271		 * XXX: Unused.
2272		 */
2273		len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
2274#endif
2275	} else {
2276		m_freem(m);
2277		thflags &= ~TH_FIN;
2278	}
2279
2280	/*
2281	 * If FIN is received ACK the FIN and let the user know
2282	 * that the connection is closing.
2283	 */
2284	if (thflags & TH_FIN) {
2285		if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2286			socantrcvmore(so);
2287			/*
2288			 * If connection is half-synchronized
2289			 * (ie NEEDSYN flag on) then delay ACK,
2290			 * so it may be piggybacked when SYN is sent.
2291			 * Otherwise, since we received a FIN then no
2292			 * more input can be expected, send ACK now.
2293			 */
2294			if (tp->t_flags & TF_NEEDSYN)
2295				tp->t_flags |= TF_DELACK;
2296			else
2297				tp->t_flags |= TF_ACKNOW;
2298			tp->rcv_nxt++;
2299		}
2300		switch (tp->t_state) {
2301
2302		/*
2303		 * In SYN_RECEIVED and ESTABLISHED STATES
2304		 * enter the CLOSE_WAIT state.
2305		 */
2306		case TCPS_SYN_RECEIVED:
2307			tp->t_starttime = ticks;
2308			/*FALLTHROUGH*/
2309		case TCPS_ESTABLISHED:
2310			tp->t_state = TCPS_CLOSE_WAIT;
2311			break;
2312
2313		/*
2314		 * If still in FIN_WAIT_1 STATE FIN has not been acked so
2315		 * enter the CLOSING state.
2316		 */
2317		case TCPS_FIN_WAIT_1:
2318			tp->t_state = TCPS_CLOSING;
2319			break;
2320
2321		/*
2322		 * In FIN_WAIT_2 state enter the TIME_WAIT state,
2323		 * starting the time-wait timer, turning off the other
2324		 * standard timers.
2325		 */
2326		case TCPS_FIN_WAIT_2:
2327			KASSERT(headlocked == 1, ("%s: dodata: "
2328			    "TCP_FIN_WAIT_2: head not locked", __func__));
2329			tcp_twstart(tp);
2330			INP_INFO_WUNLOCK(&tcbinfo);
2331			return;
2332		}
2333	}
2334	INP_INFO_WUNLOCK(&tcbinfo);
2335	headlocked = 0;
2336#ifdef TCPDEBUG
2337	if (so->so_options & SO_DEBUG)
2338		tcp_trace(TA_INPUT, ostate, tp, (void *)tcp_saveipgen,
2339			  &tcp_savetcp, 0);
2340#endif
2341
2342	/*
2343	 * Return any desired output.
2344	 */
2345	if (needoutput || (tp->t_flags & TF_ACKNOW))
2346		(void) tcp_output(tp);
2347
2348check_delack:
2349	KASSERT(headlocked == 0, ("%s: check_delack: head locked",
2350	    __func__));
2351	INP_INFO_UNLOCK_ASSERT(&tcbinfo);
2352	INP_LOCK_ASSERT(tp->t_inpcb);
2353	if (tp->t_flags & TF_DELACK) {
2354		tp->t_flags &= ~TF_DELACK;
2355		tcp_timer_activate(tp, TT_DELACK, tcp_delacktime);
2356	}
2357	INP_UNLOCK(tp->t_inpcb);
2358	return;
2359
2360dropafterack:
2361	KASSERT(headlocked, ("%s: dropafterack: head not locked", __func__));
2362	/*
2363	 * Generate an ACK dropping incoming segment if it occupies
2364	 * sequence space, where the ACK reflects our state.
2365	 *
2366	 * We can now skip the test for the RST flag since all
2367	 * paths to this code happen after packets containing
2368	 * RST have been dropped.
2369	 *
2370	 * In the SYN-RECEIVED state, don't send an ACK unless the
2371	 * segment we received passes the SYN-RECEIVED ACK test.
2372	 * If it fails send a RST.  This breaks the loop in the
2373	 * "LAND" DoS attack, and also prevents an ACK storm
2374	 * between two listening ports that have been sent forged
2375	 * SYN segments, each with the source address of the other.
2376	 */
2377	if (tp->t_state == TCPS_SYN_RECEIVED && (thflags & TH_ACK) &&
2378	    (SEQ_GT(tp->snd_una, th->th_ack) ||
2379	     SEQ_GT(th->th_ack, tp->snd_max)) ) {
2380		rstreason = BANDLIM_RST_OPENPORT;
2381		goto dropwithreset;
2382	}
2383#ifdef TCPDEBUG
2384	if (so->so_options & SO_DEBUG)
2385		tcp_trace(TA_DROP, ostate, tp, (void *)tcp_saveipgen,
2386			  &tcp_savetcp, 0);
2387#endif
2388	KASSERT(headlocked, ("%s: headlocked should be 1", __func__));
2389	INP_INFO_WUNLOCK(&tcbinfo);
2390	tp->t_flags |= TF_ACKNOW;
2391	(void) tcp_output(tp);
2392	INP_UNLOCK(tp->t_inpcb);
2393	m_freem(m);
2394	return;
2395
2396dropwithreset:
2397	KASSERT(headlocked, ("%s: dropwithreset: head not locked", __func__));
2398
2399	tcp_dropwithreset(m, th, tp, tlen, rstreason);
2400
2401	if (tp != NULL)
2402		INP_UNLOCK(tp->t_inpcb);
2403	if (headlocked)
2404		INP_INFO_WUNLOCK(&tcbinfo);
2405	return;
2406
2407drop:
2408	/*
2409	 * Drop space held by incoming segment and return.
2410	 */
2411#ifdef TCPDEBUG
2412	if (tp == NULL || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
2413		tcp_trace(TA_DROP, ostate, tp, (void *)tcp_saveipgen,
2414			  &tcp_savetcp, 0);
2415#endif
2416	if (tp != NULL)
2417		INP_UNLOCK(tp->t_inpcb);
2418	if (headlocked)
2419		INP_INFO_WUNLOCK(&tcbinfo);
2420	m_freem(m);
2421	return;
2422}
2423
2424/*
2425 * Issue RST and make ACK acceptable to originator of segment.
2426 * The mbuf must still include the original packet header.
2427 * tp may be NULL.
2428 */
2429static void
2430tcp_dropwithreset(struct mbuf *m, struct tcphdr *th, struct tcpcb *tp,
2431    int tlen, int rstreason)
2432{
2433	struct ip *ip;
2434#ifdef INET6
2435	struct ip6_hdr *ip6;
2436#endif
2437	/* Don't bother if destination was broadcast/multicast. */
2438	if ((th->th_flags & TH_RST) || m->m_flags & (M_BCAST|M_MCAST))
2439		goto drop;
2440#ifdef INET6
2441	if (mtod(m, struct ip *)->ip_v == 6) {
2442		ip6 = mtod(m, struct ip6_hdr *);
2443		if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) ||
2444		    IN6_IS_ADDR_MULTICAST(&ip6->ip6_src))
2445			goto drop;
2446		/* IPv6 anycast check is done at tcp6_input() */
2447	} else
2448#endif
2449	{
2450		ip = mtod(m, struct ip *);
2451		if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
2452		    IN_MULTICAST(ntohl(ip->ip_src.s_addr)) ||
2453		    ip->ip_src.s_addr == htonl(INADDR_BROADCAST) ||
2454		    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
2455			goto drop;
2456	}
2457
2458	/* Perform bandwidth limiting. */
2459	if (badport_bandlim(rstreason) < 0)
2460		goto drop;
2461
2462	/* tcp_respond consumes the mbuf chain. */
2463	if (th->th_flags & TH_ACK) {
2464		tcp_respond(tp, mtod(m, void *), th, m, (tcp_seq)0,
2465		    th->th_ack, TH_RST);
2466	} else {
2467		if (th->th_flags & TH_SYN)
2468			tlen++;
2469		tcp_respond(tp, mtod(m, void *), th, m, th->th_seq+tlen,
2470		    (tcp_seq)0, TH_RST|TH_ACK);
2471	}
2472	return;
2473drop:
2474	m_freem(m);
2475	return;
2476}
2477
2478/*
2479 * Parse TCP options and place in tcpopt.
2480 */
2481static void
2482tcp_dooptions(struct tcpopt *to, u_char *cp, int cnt, int flags)
2483{
2484	int opt, optlen;
2485
2486	to->to_flags = 0;
2487	for (; cnt > 0; cnt -= optlen, cp += optlen) {
2488		opt = cp[0];
2489		if (opt == TCPOPT_EOL)
2490			break;
2491		if (opt == TCPOPT_NOP)
2492			optlen = 1;
2493		else {
2494			if (cnt < 2)
2495				break;
2496			optlen = cp[1];
2497			if (optlen < 2 || optlen > cnt)
2498				break;
2499		}
2500		switch (opt) {
2501		case TCPOPT_MAXSEG:
2502			if (optlen != TCPOLEN_MAXSEG)
2503				continue;
2504			if (!(flags & TO_SYN))
2505				continue;
2506			to->to_flags |= TOF_MSS;
2507			bcopy((char *)cp + 2,
2508			    (char *)&to->to_mss, sizeof(to->to_mss));
2509			to->to_mss = ntohs(to->to_mss);
2510			break;
2511		case TCPOPT_WINDOW:
2512			if (optlen != TCPOLEN_WINDOW)
2513				continue;
2514			if (!(flags & TO_SYN))
2515				continue;
2516			to->to_flags |= TOF_SCALE;
2517			to->to_wscale = min(cp[2], TCP_MAX_WINSHIFT);
2518			break;
2519		case TCPOPT_TIMESTAMP:
2520			if (optlen != TCPOLEN_TIMESTAMP)
2521				continue;
2522			to->to_flags |= TOF_TS;
2523			bcopy((char *)cp + 2,
2524			    (char *)&to->to_tsval, sizeof(to->to_tsval));
2525			to->to_tsval = ntohl(to->to_tsval);
2526			bcopy((char *)cp + 6,
2527			    (char *)&to->to_tsecr, sizeof(to->to_tsecr));
2528			to->to_tsecr = ntohl(to->to_tsecr);
2529			break;
2530#ifdef TCP_SIGNATURE
2531		/*
2532		 * XXX In order to reply to a host which has set the
2533		 * TCP_SIGNATURE option in its initial SYN, we have to
2534		 * record the fact that the option was observed here
2535		 * for the syncache code to perform the correct response.
2536		 */
2537		case TCPOPT_SIGNATURE:
2538			if (optlen != TCPOLEN_SIGNATURE)
2539				continue;
2540			to->to_flags |= TOF_SIGNATURE;
2541			to->to_signature = cp + 2;
2542			break;
2543#endif
2544		case TCPOPT_SACK_PERMITTED:
2545			if (optlen != TCPOLEN_SACK_PERMITTED)
2546				continue;
2547			if (!(flags & TO_SYN))
2548				continue;
2549			if (!tcp_do_sack)
2550				continue;
2551			to->to_flags |= TOF_SACKPERM;
2552			break;
2553		case TCPOPT_SACK:
2554			if (optlen <= 2 || (optlen - 2) % TCPOLEN_SACK != 0)
2555				continue;
2556			if (flags & TO_SYN)
2557				continue;
2558			to->to_flags |= TOF_SACK;
2559			to->to_nsacks = (optlen - 2) / TCPOLEN_SACK;
2560			to->to_sacks = cp + 2;
2561			tcpstat.tcps_sack_rcv_blocks++;
2562			break;
2563		default:
2564			continue;
2565		}
2566	}
2567}
2568
2569/*
2570 * Pull out of band byte out of a segment so
2571 * it doesn't appear in the user's data queue.
2572 * It is still reflected in the segment length for
2573 * sequencing purposes.
2574 */
2575static void
2576tcp_pulloutofband(struct socket *so, struct tcphdr *th, struct mbuf *m,
2577    int off)
2578{
2579	int cnt = off + th->th_urp - 1;
2580
2581	while (cnt >= 0) {
2582		if (m->m_len > cnt) {
2583			char *cp = mtod(m, caddr_t) + cnt;
2584			struct tcpcb *tp = sototcpcb(so);
2585
2586			tp->t_iobc = *cp;
2587			tp->t_oobflags |= TCPOOB_HAVEDATA;
2588			bcopy(cp+1, cp, (unsigned)(m->m_len - cnt - 1));
2589			m->m_len--;
2590			if (m->m_flags & M_PKTHDR)
2591				m->m_pkthdr.len--;
2592			return;
2593		}
2594		cnt -= m->m_len;
2595		m = m->m_next;
2596		if (m == NULL)
2597			break;
2598	}
2599	panic("tcp_pulloutofband");
2600}
2601
2602/*
2603 * Collect new round-trip time estimate
2604 * and update averages and current timeout.
2605 */
2606static void
2607tcp_xmit_timer(struct tcpcb *tp, int rtt)
2608{
2609	int delta;
2610
2611	INP_LOCK_ASSERT(tp->t_inpcb);
2612
2613	tcpstat.tcps_rttupdated++;
2614	tp->t_rttupdated++;
2615	if (tp->t_srtt != 0) {
2616		/*
2617		 * srtt is stored as fixed point with 5 bits after the
2618		 * binary point (i.e., scaled by 8).  The following magic
2619		 * is equivalent to the smoothing algorithm in rfc793 with
2620		 * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed
2621		 * point).  Adjust rtt to origin 0.
2622		 */
2623		delta = ((rtt - 1) << TCP_DELTA_SHIFT)
2624			- (tp->t_srtt >> (TCP_RTT_SHIFT - TCP_DELTA_SHIFT));
2625
2626		if ((tp->t_srtt += delta) <= 0)
2627			tp->t_srtt = 1;
2628
2629		/*
2630		 * We accumulate a smoothed rtt variance (actually, a
2631		 * smoothed mean difference), then set the retransmit
2632		 * timer to smoothed rtt + 4 times the smoothed variance.
2633		 * rttvar is stored as fixed point with 4 bits after the
2634		 * binary point (scaled by 16).  The following is
2635		 * equivalent to rfc793 smoothing with an alpha of .75
2636		 * (rttvar = rttvar*3/4 + |delta| / 4).  This replaces
2637		 * rfc793's wired-in beta.
2638		 */
2639		if (delta < 0)
2640			delta = -delta;
2641		delta -= tp->t_rttvar >> (TCP_RTTVAR_SHIFT - TCP_DELTA_SHIFT);
2642		if ((tp->t_rttvar += delta) <= 0)
2643			tp->t_rttvar = 1;
2644		if (tp->t_rttbest > tp->t_srtt + tp->t_rttvar)
2645		    tp->t_rttbest = tp->t_srtt + tp->t_rttvar;
2646	} else {
2647		/*
2648		 * No rtt measurement yet - use the unsmoothed rtt.
2649		 * Set the variance to half the rtt (so our first
2650		 * retransmit happens at 3*rtt).
2651		 */
2652		tp->t_srtt = rtt << TCP_RTT_SHIFT;
2653		tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT - 1);
2654		tp->t_rttbest = tp->t_srtt + tp->t_rttvar;
2655	}
2656	tp->t_rtttime = 0;
2657	tp->t_rxtshift = 0;
2658
2659	/*
2660	 * the retransmit should happen at rtt + 4 * rttvar.
2661	 * Because of the way we do the smoothing, srtt and rttvar
2662	 * will each average +1/2 tick of bias.  When we compute
2663	 * the retransmit timer, we want 1/2 tick of rounding and
2664	 * 1 extra tick because of +-1/2 tick uncertainty in the
2665	 * firing of the timer.  The bias will give us exactly the
2666	 * 1.5 tick we need.  But, because the bias is
2667	 * statistical, we have to test that we don't drop below
2668	 * the minimum feasible timer (which is 2 ticks).
2669	 */
2670	TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
2671		      max(tp->t_rttmin, rtt + 2), TCPTV_REXMTMAX);
2672
2673	/*
2674	 * We received an ack for a packet that wasn't retransmitted;
2675	 * it is probably safe to discard any error indications we've
2676	 * received recently.  This isn't quite right, but close enough
2677	 * for now (a route might have failed after we sent a segment,
2678	 * and the return path might not be symmetrical).
2679	 */
2680	tp->t_softerror = 0;
2681}
2682
2683/*
2684 * Determine a reasonable value for maxseg size.
2685 * If the route is known, check route for mtu.
2686 * If none, use an mss that can be handled on the outgoing
2687 * interface without forcing IP to fragment; if bigger than
2688 * an mbuf cluster (MCLBYTES), round down to nearest multiple of MCLBYTES
2689 * to utilize large mbufs.  If no route is found, route has no mtu,
2690 * or the destination isn't local, use a default, hopefully conservative
2691 * size (usually 512 or the default IP max size, but no more than the mtu
2692 * of the interface), as we can't discover anything about intervening
2693 * gateways or networks.  We also initialize the congestion/slow start
2694 * window to be a single segment if the destination isn't local.
2695 * While looking at the routing entry, we also initialize other path-dependent
2696 * parameters from pre-set or cached values in the routing entry.
2697 *
2698 * Also take into account the space needed for options that we
2699 * send regularly.  Make maxseg shorter by that amount to assure
2700 * that we can send maxseg amount of data even when the options
2701 * are present.  Store the upper limit of the length of options plus
2702 * data in maxopd.
2703 *
2704 *
2705 * In case of T/TCP, we call this routine during implicit connection
2706 * setup as well (offer = -1), to initialize maxseg from the cached
2707 * MSS of our peer.
2708 *
2709 * NOTE that this routine is only called when we process an incoming
2710 * segment. Outgoing SYN/ACK MSS settings are handled in tcp_mssopt().
2711 */
2712void
2713tcp_mss(struct tcpcb *tp, int offer)
2714{
2715	int rtt, mss;
2716	u_long bufsize;
2717	u_long maxmtu;
2718	struct inpcb *inp = tp->t_inpcb;
2719	struct socket *so;
2720	struct hc_metrics_lite metrics;
2721	int origoffer = offer;
2722	int mtuflags = 0;
2723#ifdef INET6
2724	int isipv6 = ((inp->inp_vflag & INP_IPV6) != 0) ? 1 : 0;
2725	size_t min_protoh = isipv6 ?
2726			    sizeof (struct ip6_hdr) + sizeof (struct tcphdr) :
2727			    sizeof (struct tcpiphdr);
2728#else
2729	const size_t min_protoh = sizeof(struct tcpiphdr);
2730#endif
2731
2732	/* initialize */
2733#ifdef INET6
2734	if (isipv6) {
2735		maxmtu = tcp_maxmtu6(&inp->inp_inc, &mtuflags);
2736		tp->t_maxopd = tp->t_maxseg = tcp_v6mssdflt;
2737	} else
2738#endif
2739	{
2740		maxmtu = tcp_maxmtu(&inp->inp_inc, &mtuflags);
2741		tp->t_maxopd = tp->t_maxseg = tcp_mssdflt;
2742	}
2743	so = inp->inp_socket;
2744
2745	/*
2746	 * no route to sender, stay with default mss and return
2747	 */
2748	if (maxmtu == 0)
2749		return;
2750
2751	/* what have we got? */
2752	switch (offer) {
2753		case 0:
2754			/*
2755			 * Offer == 0 means that there was no MSS on the SYN
2756			 * segment, in this case we use tcp_mssdflt.
2757			 */
2758			offer =
2759#ifdef INET6
2760				isipv6 ? tcp_v6mssdflt :
2761#endif
2762				tcp_mssdflt;
2763			break;
2764
2765		case -1:
2766			/*
2767			 * Offer == -1 means that we didn't receive SYN yet.
2768			 */
2769			/* FALLTHROUGH */
2770
2771		default:
2772			/*
2773			 * Prevent DoS attack with too small MSS. Round up
2774			 * to at least minmss.
2775			 */
2776			offer = max(offer, tcp_minmss);
2777			/*
2778			 * Sanity check: make sure that maxopd will be large
2779			 * enough to allow some data on segments even if the
2780			 * all the option space is used (40bytes).  Otherwise
2781			 * funny things may happen in tcp_output.
2782			 */
2783			offer = max(offer, 64);
2784	}
2785
2786	/*
2787	 * rmx information is now retrieved from tcp_hostcache
2788	 */
2789	tcp_hc_get(&inp->inp_inc, &metrics);
2790
2791	/*
2792	 * if there's a discovered mtu int tcp hostcache, use it
2793	 * else, use the link mtu.
2794	 */
2795	if (metrics.rmx_mtu)
2796		mss = min(metrics.rmx_mtu, maxmtu) - min_protoh;
2797	else {
2798#ifdef INET6
2799		if (isipv6) {
2800			mss = maxmtu - min_protoh;
2801			if (!path_mtu_discovery &&
2802			    !in6_localaddr(&inp->in6p_faddr))
2803				mss = min(mss, tcp_v6mssdflt);
2804		} else
2805#endif
2806		{
2807			mss = maxmtu - min_protoh;
2808			if (!path_mtu_discovery &&
2809			    !in_localaddr(inp->inp_faddr))
2810				mss = min(mss, tcp_mssdflt);
2811		}
2812	}
2813	mss = min(mss, offer);
2814
2815	/*
2816	 * maxopd stores the maximum length of data AND options
2817	 * in a segment; maxseg is the amount of data in a normal
2818	 * segment.  We need to store this value (maxopd) apart
2819	 * from maxseg, because now every segment carries options
2820	 * and thus we normally have somewhat less data in segments.
2821	 */
2822	tp->t_maxopd = mss;
2823
2824	/*
2825	 * origoffer==-1 indicates, that no segments were received yet.
2826	 * In this case we just guess.
2827	 */
2828	if ((tp->t_flags & (TF_REQ_TSTMP|TF_NOOPT)) == TF_REQ_TSTMP &&
2829	    (origoffer == -1 ||
2830	     (tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP))
2831		mss -= TCPOLEN_TSTAMP_APPA;
2832	tp->t_maxseg = mss;
2833
2834#if	(MCLBYTES & (MCLBYTES - 1)) == 0
2835		if (mss > MCLBYTES)
2836			mss &= ~(MCLBYTES-1);
2837#else
2838		if (mss > MCLBYTES)
2839			mss = mss / MCLBYTES * MCLBYTES;
2840#endif
2841	tp->t_maxseg = mss;
2842
2843	/*
2844	 * If there's a pipesize, change the socket buffer to that size,
2845	 * don't change if sb_hiwat is different than default (then it
2846	 * has been changed on purpose with setsockopt).
2847	 * Make the socket buffers an integral number of mss units;
2848	 * if the mss is larger than the socket buffer, decrease the mss.
2849	 */
2850	SOCKBUF_LOCK(&so->so_snd);
2851	if ((so->so_snd.sb_hiwat == tcp_sendspace) && metrics.rmx_sendpipe)
2852		bufsize = metrics.rmx_sendpipe;
2853	else
2854		bufsize = so->so_snd.sb_hiwat;
2855	if (bufsize < mss)
2856		mss = bufsize;
2857	else {
2858		bufsize = roundup(bufsize, mss);
2859		if (bufsize > sb_max)
2860			bufsize = sb_max;
2861		if (bufsize > so->so_snd.sb_hiwat)
2862			(void)sbreserve_locked(&so->so_snd, bufsize, so, NULL);
2863	}
2864	SOCKBUF_UNLOCK(&so->so_snd);
2865	tp->t_maxseg = mss;
2866
2867	SOCKBUF_LOCK(&so->so_rcv);
2868	if ((so->so_rcv.sb_hiwat == tcp_recvspace) && metrics.rmx_recvpipe)
2869		bufsize = metrics.rmx_recvpipe;
2870	else
2871		bufsize = so->so_rcv.sb_hiwat;
2872	if (bufsize > mss) {
2873		bufsize = roundup(bufsize, mss);
2874		if (bufsize > sb_max)
2875			bufsize = sb_max;
2876		if (bufsize > so->so_rcv.sb_hiwat)
2877			(void)sbreserve_locked(&so->so_rcv, bufsize, so, NULL);
2878	}
2879	SOCKBUF_UNLOCK(&so->so_rcv);
2880	/*
2881	 * While we're here, check the others too
2882	 */
2883	if (tp->t_srtt == 0 && (rtt = metrics.rmx_rtt)) {
2884		tp->t_srtt = rtt;
2885		tp->t_rttbest = tp->t_srtt + TCP_RTT_SCALE;
2886		tcpstat.tcps_usedrtt++;
2887		if (metrics.rmx_rttvar) {
2888			tp->t_rttvar = metrics.rmx_rttvar;
2889			tcpstat.tcps_usedrttvar++;
2890		} else {
2891			/* default variation is +- 1 rtt */
2892			tp->t_rttvar =
2893			    tp->t_srtt * TCP_RTTVAR_SCALE / TCP_RTT_SCALE;
2894		}
2895		TCPT_RANGESET(tp->t_rxtcur,
2896			      ((tp->t_srtt >> 2) + tp->t_rttvar) >> 1,
2897			      tp->t_rttmin, TCPTV_REXMTMAX);
2898	}
2899	if (metrics.rmx_ssthresh) {
2900		/*
2901		 * There's some sort of gateway or interface
2902		 * buffer limit on the path.  Use this to set
2903		 * the slow start threshhold, but set the
2904		 * threshold to no less than 2*mss.
2905		 */
2906		tp->snd_ssthresh = max(2 * mss, metrics.rmx_ssthresh);
2907		tcpstat.tcps_usedssthresh++;
2908	}
2909	if (metrics.rmx_bandwidth)
2910		tp->snd_bandwidth = metrics.rmx_bandwidth;
2911
2912	/*
2913	 * Set the slow-start flight size depending on whether this
2914	 * is a local network or not.
2915	 *
2916	 * Extend this so we cache the cwnd too and retrieve it here.
2917	 * Make cwnd even bigger than RFC3390 suggests but only if we
2918	 * have previous experience with the remote host. Be careful
2919	 * not make cwnd bigger than remote receive window or our own
2920	 * send socket buffer. Maybe put some additional upper bound
2921	 * on the retrieved cwnd. Should do incremental updates to
2922	 * hostcache when cwnd collapses so next connection doesn't
2923	 * overloads the path again.
2924	 *
2925	 * RFC3390 says only do this if SYN or SYN/ACK didn't got lost.
2926	 * We currently check only in syncache_socket for that.
2927	 */
2928#define TCP_METRICS_CWND
2929#ifdef TCP_METRICS_CWND
2930	if (metrics.rmx_cwnd)
2931		tp->snd_cwnd = max(mss,
2932				min(metrics.rmx_cwnd / 2,
2933				 min(tp->snd_wnd, so->so_snd.sb_hiwat)));
2934	else
2935#endif
2936	if (tcp_do_rfc3390)
2937		tp->snd_cwnd = min(4 * mss, max(2 * mss, 4380));
2938#ifdef INET6
2939	else if ((isipv6 && in6_localaddr(&inp->in6p_faddr)) ||
2940		 (!isipv6 && in_localaddr(inp->inp_faddr)))
2941#else
2942	else if (in_localaddr(inp->inp_faddr))
2943#endif
2944		tp->snd_cwnd = mss * ss_fltsz_local;
2945	else
2946		tp->snd_cwnd = mss * ss_fltsz;
2947
2948	/* Check the interface for TSO capabilities. */
2949	if (mtuflags & CSUM_TSO)
2950		tp->t_flags |= TF_TSO;
2951}
2952
2953/*
2954 * Determine the MSS option to send on an outgoing SYN.
2955 */
2956int
2957tcp_mssopt(struct in_conninfo *inc)
2958{
2959	int mss = 0;
2960	u_long maxmtu = 0;
2961	u_long thcmtu = 0;
2962	size_t min_protoh;
2963#ifdef INET6
2964	int isipv6 = inc->inc_isipv6 ? 1 : 0;
2965#endif
2966
2967	KASSERT(inc != NULL, ("tcp_mssopt with NULL in_conninfo pointer"));
2968
2969#ifdef INET6
2970	if (isipv6) {
2971		mss = tcp_v6mssdflt;
2972		maxmtu = tcp_maxmtu6(inc, NULL);
2973		thcmtu = tcp_hc_getmtu(inc); /* IPv4 and IPv6 */
2974		min_protoh = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
2975	} else
2976#endif
2977	{
2978		mss = tcp_mssdflt;
2979		maxmtu = tcp_maxmtu(inc, NULL);
2980		thcmtu = tcp_hc_getmtu(inc); /* IPv4 and IPv6 */
2981		min_protoh = sizeof(struct tcpiphdr);
2982	}
2983	if (maxmtu && thcmtu)
2984		mss = min(maxmtu, thcmtu) - min_protoh;
2985	else if (maxmtu || thcmtu)
2986		mss = max(maxmtu, thcmtu) - min_protoh;
2987
2988	return (mss);
2989}
2990
2991
2992/*
2993 * On a partial ack arrives, force the retransmission of the
2994 * next unacknowledged segment.  Do not clear tp->t_dupacks.
2995 * By setting snd_nxt to ti_ack, this forces retransmission timer to
2996 * be started again.
2997 */
2998static void
2999tcp_newreno_partial_ack(struct tcpcb *tp, struct tcphdr *th)
3000{
3001	tcp_seq onxt = tp->snd_nxt;
3002	u_long  ocwnd = tp->snd_cwnd;
3003
3004	tcp_timer_activate(tp, TT_REXMT, 0);
3005	tp->t_rtttime = 0;
3006	tp->snd_nxt = th->th_ack;
3007	/*
3008	 * Set snd_cwnd to one segment beyond acknowledged offset.
3009	 * (tp->snd_una has not yet been updated when this function is called.)
3010	 */
3011	tp->snd_cwnd = tp->t_maxseg + (th->th_ack - tp->snd_una);
3012	tp->t_flags |= TF_ACKNOW;
3013	(void) tcp_output(tp);
3014	tp->snd_cwnd = ocwnd;
3015	if (SEQ_GT(onxt, tp->snd_nxt))
3016		tp->snd_nxt = onxt;
3017	/*
3018	 * Partial window deflation.  Relies on fact that tp->snd_una
3019	 * not updated yet.
3020	 */
3021	if (tp->snd_cwnd > th->th_ack - tp->snd_una)
3022		tp->snd_cwnd -= th->th_ack - tp->snd_una;
3023	else
3024		tp->snd_cwnd = 0;
3025	tp->snd_cwnd += tp->t_maxseg;
3026}
3027