tcp_input.c revision 170058
1/*-
2 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 4. Neither the name of the University nor the names of its contributors
14 *    may be used to endorse or promote products derived from this software
15 *    without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 *
29 *	@(#)tcp_input.c	8.12 (Berkeley) 5/24/95
30 * $FreeBSD: head/sys/netinet/tcp_input.c 170058 2007-05-28 11:35:40Z andre $
31 */
32
33#include "opt_ipfw.h"		/* for ipfw_fwd	*/
34#include "opt_inet.h"
35#include "opt_inet6.h"
36#include "opt_ipsec.h"
37#include "opt_mac.h"
38#include "opt_tcpdebug.h"
39
40#include <sys/param.h>
41#include <sys/kernel.h>
42#include <sys/malloc.h>
43#include <sys/mbuf.h>
44#include <sys/proc.h>		/* for proc0 declaration */
45#include <sys/protosw.h>
46#include <sys/signalvar.h>
47#include <sys/socket.h>
48#include <sys/socketvar.h>
49#include <sys/sysctl.h>
50#include <sys/syslog.h>
51#include <sys/systm.h>
52
53#include <machine/cpu.h>	/* before tcp_seq.h, for tcp_random18() */
54
55#include <vm/uma.h>
56
57#include <net/if.h>
58#include <net/route.h>
59
60#include <netinet/in.h>
61#include <netinet/in_pcb.h>
62#include <netinet/in_systm.h>
63#include <netinet/in_var.h>
64#include <netinet/ip.h>
65#include <netinet/ip_icmp.h>	/* required for icmp_var.h */
66#include <netinet/icmp_var.h>	/* for ICMP_BANDLIM */
67#include <netinet/ip_var.h>
68#include <netinet/ip_options.h>
69#include <netinet/ip6.h>
70#include <netinet/icmp6.h>
71#include <netinet6/in6_pcb.h>
72#include <netinet6/ip6_var.h>
73#include <netinet6/nd6.h>
74#include <netinet/tcp.h>
75#include <netinet/tcp_fsm.h>
76#include <netinet/tcp_seq.h>
77#include <netinet/tcp_timer.h>
78#include <netinet/tcp_var.h>
79#include <netinet6/tcp6_var.h>
80#include <netinet/tcpip.h>
81#ifdef TCPDEBUG
82#include <netinet/tcp_debug.h>
83#endif /* TCPDEBUG */
84
85#ifdef FAST_IPSEC
86#include <netipsec/ipsec.h>
87#include <netipsec/ipsec6.h>
88#endif /*FAST_IPSEC*/
89
90#ifdef IPSEC
91#include <netinet6/ipsec.h>
92#include <netinet6/ipsec6.h>
93#include <netkey/key.h>
94#endif /*IPSEC*/
95
96#include <machine/in_cksum.h>
97
98#include <security/mac/mac_framework.h>
99
100static const int tcprexmtthresh = 3;
101
102struct	tcpstat tcpstat;
103SYSCTL_STRUCT(_net_inet_tcp, TCPCTL_STATS, stats, CTLFLAG_RW,
104    &tcpstat , tcpstat, "TCP statistics (struct tcpstat, netinet/tcp_var.h)");
105
106static int tcp_log_in_vain = 0;
107SYSCTL_INT(_net_inet_tcp, OID_AUTO, log_in_vain, CTLFLAG_RW,
108    &tcp_log_in_vain, 0, "Log all incoming TCP segments to closed ports");
109
110static int blackhole = 0;
111SYSCTL_INT(_net_inet_tcp, OID_AUTO, blackhole, CTLFLAG_RW,
112    &blackhole, 0, "Do not send RST on segments to closed ports");
113
114int tcp_delack_enabled = 1;
115SYSCTL_INT(_net_inet_tcp, OID_AUTO, delayed_ack, CTLFLAG_RW,
116    &tcp_delack_enabled, 0,
117    "Delay ACK to try and piggyback it onto a data packet");
118
119static int drop_synfin = 0;
120SYSCTL_INT(_net_inet_tcp, OID_AUTO, drop_synfin, CTLFLAG_RW,
121    &drop_synfin, 0, "Drop TCP packets with SYN+FIN set");
122
123static int tcp_do_rfc3042 = 1;
124SYSCTL_INT(_net_inet_tcp, OID_AUTO, rfc3042, CTLFLAG_RW,
125    &tcp_do_rfc3042, 0, "Enable RFC 3042 (Limited Transmit)");
126
127static int tcp_do_rfc3390 = 1;
128SYSCTL_INT(_net_inet_tcp, OID_AUTO, rfc3390, CTLFLAG_RW,
129    &tcp_do_rfc3390, 0,
130    "Enable RFC 3390 (Increasing TCP's Initial Congestion Window)");
131
132static int tcp_insecure_rst = 0;
133SYSCTL_INT(_net_inet_tcp, OID_AUTO, insecure_rst, CTLFLAG_RW,
134    &tcp_insecure_rst, 0,
135    "Follow the old (insecure) criteria for accepting RST packets");
136
137int	tcp_do_autorcvbuf = 1;
138SYSCTL_INT(_net_inet_tcp, OID_AUTO, recvbuf_auto, CTLFLAG_RW,
139    &tcp_do_autorcvbuf, 0, "Enable automatic receive buffer sizing");
140
141int	tcp_autorcvbuf_inc = 16*1024;
142SYSCTL_INT(_net_inet_tcp, OID_AUTO, recvbuf_inc, CTLFLAG_RW,
143    &tcp_autorcvbuf_inc, 0,
144    "Incrementor step size of automatic receive buffer");
145
146int	tcp_autorcvbuf_max = 256*1024;
147SYSCTL_INT(_net_inet_tcp, OID_AUTO, recvbuf_max, CTLFLAG_RW,
148    &tcp_autorcvbuf_max, 0, "Max size of automatic receive buffer");
149
150struct inpcbhead tcb;
151#define	tcb6	tcb  /* for KAME src sync over BSD*'s */
152struct inpcbinfo tcbinfo;
153
154static void	 tcp_dooptions(struct tcpopt *, u_char *, int, int);
155static void	 tcp_do_segment(struct mbuf *, struct tcphdr *,
156		     struct socket *, struct tcpcb *, int, int);
157static void	 tcp_dropwithreset(struct mbuf *, struct tcphdr *,
158		     struct tcpcb *, int, int);
159static void	 tcp_pulloutofband(struct socket *,
160		     struct tcphdr *, struct mbuf *, int);
161static void	 tcp_xmit_timer(struct tcpcb *, int);
162static void	 tcp_newreno_partial_ack(struct tcpcb *, struct tcphdr *);
163
164/* Neighbor Discovery, Neighbor Unreachability Detection Upper layer hint. */
165#ifdef INET6
166#define ND6_HINT(tp) \
167do { \
168	if ((tp) && (tp)->t_inpcb && \
169	    ((tp)->t_inpcb->inp_vflag & INP_IPV6) != 0) \
170		nd6_nud_hint(NULL, NULL, 0); \
171} while (0)
172#else
173#define ND6_HINT(tp)
174#endif
175
176/*
177 * Indicate whether this ack should be delayed.  We can delay the ack if
178 *	- there is no delayed ack timer in progress and
179 *	- our last ack wasn't a 0-sized window.  We never want to delay
180 *	  the ack that opens up a 0-sized window and
181 *		- delayed acks are enabled or
182 *		- this is a half-synchronized T/TCP connection.
183 */
184#define DELAY_ACK(tp)							\
185	((!tcp_timer_active(tp, TT_DELACK) &&				\
186	    (tp->t_flags & TF_RXWIN0SENT) == 0) &&			\
187	    (tcp_delack_enabled || (tp->t_flags & TF_NEEDSYN)))
188
189
190/*
191 * TCP input routine, follows pages 65-76 of the
192 * protocol specification dated September, 1981 very closely.
193 */
194#ifdef INET6
195int
196tcp6_input(struct mbuf **mp, int *offp, int proto)
197{
198	struct mbuf *m = *mp;
199	struct in6_ifaddr *ia6;
200
201	IP6_EXTHDR_CHECK(m, *offp, sizeof(struct tcphdr), IPPROTO_DONE);
202
203	/*
204	 * draft-itojun-ipv6-tcp-to-anycast
205	 * better place to put this in?
206	 */
207	ia6 = ip6_getdstifaddr(m);
208	if (ia6 && (ia6->ia6_flags & IN6_IFF_ANYCAST)) {
209		struct ip6_hdr *ip6;
210
211		ip6 = mtod(m, struct ip6_hdr *);
212		icmp6_error(m, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_ADDR,
213			    (caddr_t)&ip6->ip6_dst - (caddr_t)ip6);
214		return IPPROTO_DONE;
215	}
216
217	tcp_input(m, *offp);
218	return IPPROTO_DONE;
219}
220#endif
221
222void
223tcp_input(struct mbuf *m, int off0)
224{
225	struct tcphdr *th;
226	struct ip *ip = NULL;
227	struct ipovly *ipov;
228	struct inpcb *inp = NULL;
229	struct tcpcb *tp = NULL;
230	struct socket *so = NULL;
231	u_char *optp = NULL;
232	int optlen = 0;
233	int len, tlen, off;
234	int drop_hdrlen;
235	int thflags;
236	int rstreason = 0;	/* For badport_bandlim accounting purposes */
237#ifdef IPFIREWALL_FORWARD
238	struct m_tag *fwd_tag;
239#endif
240#ifdef INET6
241	struct ip6_hdr *ip6 = NULL;
242	int isipv6;
243#else
244	const void *ip6 = NULL;
245	const int isipv6 = 0;
246#endif
247	struct tcpopt to;		/* options in this segment */
248	char *s = NULL;			/* address and port logging */
249
250#ifdef TCPDEBUG
251	/*
252	 * The size of tcp_saveipgen must be the size of the max ip header,
253	 * now IPv6.
254	 */
255	u_char tcp_saveipgen[IP6_HDR_LEN];
256	struct tcphdr tcp_savetcp;
257	short ostate = 0;
258#endif
259
260#ifdef INET6
261	isipv6 = (mtod(m, struct ip *)->ip_v == 6) ? 1 : 0;
262#endif
263
264	to.to_flags = 0;
265	tcpstat.tcps_rcvtotal++;
266
267	if (isipv6) {
268#ifdef INET6
269		/* IP6_EXTHDR_CHECK() is already done at tcp6_input() */
270		ip6 = mtod(m, struct ip6_hdr *);
271		tlen = sizeof(*ip6) + ntohs(ip6->ip6_plen) - off0;
272		if (in6_cksum(m, IPPROTO_TCP, off0, tlen)) {
273			tcpstat.tcps_rcvbadsum++;
274			goto drop;
275		}
276		th = (struct tcphdr *)((caddr_t)ip6 + off0);
277
278		/*
279		 * Be proactive about unspecified IPv6 address in source.
280		 * As we use all-zero to indicate unbounded/unconnected pcb,
281		 * unspecified IPv6 address can be used to confuse us.
282		 *
283		 * Note that packets with unspecified IPv6 destination is
284		 * already dropped in ip6_input.
285		 */
286		if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) {
287			/* XXX stat */
288			goto drop;
289		}
290#else
291		th = NULL;		/* XXX: avoid compiler warning */
292#endif
293	} else {
294		/*
295		 * Get IP and TCP header together in first mbuf.
296		 * Note: IP leaves IP header in first mbuf.
297		 */
298		if (off0 > sizeof (struct ip)) {
299			ip_stripoptions(m, (struct mbuf *)0);
300			off0 = sizeof(struct ip);
301		}
302		if (m->m_len < sizeof (struct tcpiphdr)) {
303			if ((m = m_pullup(m, sizeof (struct tcpiphdr)))
304			    == NULL) {
305				tcpstat.tcps_rcvshort++;
306				return;
307			}
308		}
309		ip = mtod(m, struct ip *);
310		ipov = (struct ipovly *)ip;
311		th = (struct tcphdr *)((caddr_t)ip + off0);
312		tlen = ip->ip_len;
313
314		if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) {
315			if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR)
316				th->th_sum = m->m_pkthdr.csum_data;
317			else
318				th->th_sum = in_pseudo(ip->ip_src.s_addr,
319						ip->ip_dst.s_addr,
320						htonl(m->m_pkthdr.csum_data +
321							ip->ip_len +
322							IPPROTO_TCP));
323			th->th_sum ^= 0xffff;
324#ifdef TCPDEBUG
325			ipov->ih_len = (u_short)tlen;
326			ipov->ih_len = htons(ipov->ih_len);
327#endif
328		} else {
329			/*
330			 * Checksum extended TCP header and data.
331			 */
332			len = sizeof (struct ip) + tlen;
333			bzero(ipov->ih_x1, sizeof(ipov->ih_x1));
334			ipov->ih_len = (u_short)tlen;
335			ipov->ih_len = htons(ipov->ih_len);
336			th->th_sum = in_cksum(m, len);
337		}
338		if (th->th_sum) {
339			tcpstat.tcps_rcvbadsum++;
340			goto drop;
341		}
342		/* Re-initialization for later version check */
343		ip->ip_v = IPVERSION;
344	}
345
346	/*
347	 * Check that TCP offset makes sense,
348	 * pull out TCP options and adjust length.		XXX
349	 */
350	off = th->th_off << 2;
351	if (off < sizeof (struct tcphdr) || off > tlen) {
352		tcpstat.tcps_rcvbadoff++;
353		goto drop;
354	}
355	tlen -= off;	/* tlen is used instead of ti->ti_len */
356	if (off > sizeof (struct tcphdr)) {
357		if (isipv6) {
358#ifdef INET6
359			IP6_EXTHDR_CHECK(m, off0, off, );
360			ip6 = mtod(m, struct ip6_hdr *);
361			th = (struct tcphdr *)((caddr_t)ip6 + off0);
362#endif
363		} else {
364			if (m->m_len < sizeof(struct ip) + off) {
365				if ((m = m_pullup(m, sizeof (struct ip) + off))
366				    == NULL) {
367					tcpstat.tcps_rcvshort++;
368					return;
369				}
370				ip = mtod(m, struct ip *);
371				ipov = (struct ipovly *)ip;
372				th = (struct tcphdr *)((caddr_t)ip + off0);
373			}
374		}
375		optlen = off - sizeof (struct tcphdr);
376		optp = (u_char *)(th + 1);
377	}
378	thflags = th->th_flags;
379
380	/*
381	 * Convert TCP protocol specific fields to host format.
382	 */
383	th->th_seq = ntohl(th->th_seq);
384	th->th_ack = ntohl(th->th_ack);
385	th->th_win = ntohs(th->th_win);
386	th->th_urp = ntohs(th->th_urp);
387
388	/*
389	 * Delay dropping TCP, IP headers, IPv6 ext headers, and TCP options.
390	 */
391	drop_hdrlen = off0 + off;
392
393	/*
394	 * Locate pcb for segment.
395	 */
396	INP_INFO_WLOCK(&tcbinfo);
397findpcb:
398	INP_INFO_WLOCK_ASSERT(&tcbinfo);
399#ifdef IPFIREWALL_FORWARD
400	/* Grab info from PACKET_TAG_IPFORWARD tag prepended to the chain. */
401	fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL);
402
403	if (fwd_tag != NULL && isipv6 == 0) {	/* IPv6 support is not yet */
404		struct sockaddr_in *next_hop;
405
406		next_hop = (struct sockaddr_in *)(fwd_tag+1);
407		/*
408		 * Transparently forwarded. Pretend to be the destination.
409		 * already got one like this?
410		 */
411		inp = in_pcblookup_hash(&tcbinfo,
412					ip->ip_src, th->th_sport,
413					ip->ip_dst, th->th_dport,
414					0, m->m_pkthdr.rcvif);
415		if (!inp) {
416			/* It's new.  Try to find the ambushing socket. */
417			inp = in_pcblookup_hash(&tcbinfo,
418						ip->ip_src, th->th_sport,
419						next_hop->sin_addr,
420						next_hop->sin_port ?
421						    ntohs(next_hop->sin_port) :
422						    th->th_dport,
423						INPLOOKUP_WILDCARD,
424						m->m_pkthdr.rcvif);
425		}
426		/* Remove the tag from the packet.  We don't need it anymore. */
427		m_tag_delete(m, fwd_tag);
428	} else
429#endif /* IPFIREWALL_FORWARD */
430	{
431		if (isipv6) {
432#ifdef INET6
433			inp = in6_pcblookup_hash(&tcbinfo,
434						 &ip6->ip6_src, th->th_sport,
435						 &ip6->ip6_dst, th->th_dport,
436						 INPLOOKUP_WILDCARD,
437						 m->m_pkthdr.rcvif);
438#endif
439		} else
440			inp = in_pcblookup_hash(&tcbinfo,
441						ip->ip_src, th->th_sport,
442						ip->ip_dst, th->th_dport,
443						INPLOOKUP_WILDCARD,
444						m->m_pkthdr.rcvif);
445	}
446
447#if defined(IPSEC) || defined(FAST_IPSEC)
448#ifdef INET6
449	if (isipv6 && inp != NULL && ipsec6_in_reject(m, inp)) {
450#ifdef IPSEC
451		ipsec6stat.in_polvio++;
452#endif
453		goto dropunlock;
454	} else
455#endif /* INET6 */
456	if (inp != NULL && ipsec4_in_reject(m, inp)) {
457#ifdef IPSEC
458		ipsecstat.in_polvio++;
459#endif
460		goto dropunlock;
461	}
462#endif /*IPSEC || FAST_IPSEC*/
463
464	/*
465	 * If the INPCB does not exist then all data in the incoming
466	 * segment is discarded and an appropriate RST is sent back.
467	 */
468	if (inp == NULL) {
469		/*
470		 * Log communication attempts to ports that are not
471		 * in use.
472		 */
473		if ((tcp_log_in_vain == 1 && (thflags & TH_SYN)) ||
474		    tcp_log_in_vain == 2) {
475			if ((s = tcp_log_addrs(NULL, th, (void *)ip,
476			    (void *)ip6)))
477				log(LOG_INFO, "%s; %s: Connection attempt "
478				    "to closed port\n", s, __func__);
479		}
480		/*
481		 * When blackholing do not respond with a RST but
482		 * completely ignore the segment and drop it.
483		 */
484		if ((blackhole == 1 && (thflags & TH_SYN)) ||
485		    blackhole == 2)
486			goto dropunlock;
487
488		rstreason = BANDLIM_RST_CLOSEDPORT;
489		goto dropwithreset;
490	}
491	INP_LOCK(inp);
492
493	/* Check the minimum TTL for socket. */
494	if (inp->inp_ip_minttl != 0) {
495#ifdef INET6
496		if (isipv6 && inp->inp_ip_minttl > ip6->ip6_hlim)
497			goto dropunlock;
498		else
499#endif
500		if (inp->inp_ip_minttl > ip->ip_ttl)
501			goto dropunlock;
502	}
503
504	/*
505	 * A previous connection in TIMEWAIT state is supposed to catch
506	 * stray or duplicate segments arriving late.  If this segment
507	 * was a legitimate new connection attempt the old INPCB gets
508	 * removed and we can try again to find a listening socket.
509	 */
510	if (inp->inp_vflag & INP_TIMEWAIT) {
511		if (thflags & TH_SYN)
512			tcp_dooptions(&to, optp, optlen, TO_SYN);
513		/* NB: tcp_twcheck unlocks the INP and frees the mbuf. */
514		if (tcp_twcheck(inp, &to, th, m, tlen))
515			goto findpcb;
516		INP_INFO_WUNLOCK(&tcbinfo);
517		return;
518	}
519	/*
520	 * The TCPCB may no longer exist if the connection is winding
521	 * down or it is in the CLOSED state.  Either way we drop the
522	 * segment and send an appropriate response.
523	 */
524	tp = intotcpcb(inp);
525	if (tp == NULL || tp->t_state == TCPS_CLOSED) {
526		rstreason = BANDLIM_RST_CLOSEDPORT;
527		goto dropwithreset;
528	}
529
530#ifdef MAC
531	INP_LOCK_ASSERT(inp);
532	if (mac_check_inpcb_deliver(inp, m))
533		goto dropunlock;
534#endif
535	so = inp->inp_socket;
536	KASSERT(so != NULL, ("%s: so == NULL", __func__));
537#ifdef TCPDEBUG
538	if (so->so_options & SO_DEBUG) {
539		ostate = tp->t_state;
540		if (isipv6) {
541#ifdef INET6
542			bcopy((char *)ip6, (char *)tcp_saveipgen, sizeof(*ip6));
543#endif
544		} else
545			bcopy((char *)ip, (char *)tcp_saveipgen, sizeof(*ip));
546		tcp_savetcp = *th;
547	}
548#endif
549	/*
550	 * When the socket is accepting connections (the INPCB is in LISTEN
551	 * state) we look into the SYN cache if this is a new connection
552	 * attempt or the completion of a previous one.
553	 */
554	if (so->so_options & SO_ACCEPTCONN) {
555		struct in_conninfo inc;
556
557		KASSERT(tp->t_state == TCPS_LISTEN, ("%s: so accepting but "
558		    "tp not listening", __func__));
559
560		bzero(&inc, sizeof(inc));
561		inc.inc_isipv6 = isipv6;
562#ifdef INET6
563		if (isipv6) {
564			inc.inc6_faddr = ip6->ip6_src;
565			inc.inc6_laddr = ip6->ip6_dst;
566		} else
567#endif
568		{
569			inc.inc_faddr = ip->ip_src;
570			inc.inc_laddr = ip->ip_dst;
571		}
572		inc.inc_fport = th->th_sport;
573		inc.inc_lport = th->th_dport;
574
575		/*
576		 * If the state is LISTEN then ignore segment if it contains
577		 * a RST.  If the segment contains an ACK then it is bad and
578		 * send a RST.  If it does not contain a SYN then it is not
579		 * interesting; drop it.
580		 *
581		 * If the state is SYN_RECEIVED (syncache) and seg contains
582		 * an ACK, but not for our SYN/ACK, send a RST.  If the seg
583		 * contains a RST, check the sequence number to see if it
584		 * is a valid reset segment.
585		 */
586		if ((thflags & (TH_RST|TH_ACK|TH_SYN)) == TH_ACK) {
587			/*
588			 * Parse the TCP options here because
589			 * syncookies need access to the reflected
590			 * timestamp.
591			 */
592			tcp_dooptions(&to, optp, optlen, 0);
593			/*
594			 * NB: syncache_expand() doesn't unlock
595			 * inp and tcpinfo locks.
596			 */
597			if (!syncache_expand(&inc, &to, th, &so, m)) {
598				/*
599				 * No syncache entry or ACK was not
600				 * for our SYN/ACK.  Send a RST.
601				 */
602				rstreason = BANDLIM_RST_OPENPORT;
603				goto dropwithreset;
604			}
605			if (so == NULL) {
606				/*
607				 * We completed the 3-way handshake
608				 * but could not allocate a socket
609				 * either due to memory shortage,
610				 * listen queue length limits or
611				 * global socket limits.  Send RST
612				 * or wait and have the remote end
613				 * retransmit the ACK for another
614				 * try.
615				 */
616				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
617					log(LOG_DEBUG, "%s; %s: Listen socket: "
618					    "Socket allocation failure, %s\n",
619					    s, __func__, (tcp_sc_rst_sock_fail ?
620					    "sending RST" : "try again"));
621				if (tcp_sc_rst_sock_fail) {
622					rstreason = BANDLIM_UNLIMITED;
623					goto dropwithreset;
624				} else
625					goto dropunlock;
626			}
627			/*
628			 * Socket is created in state SYN_RECEIVED.
629			 * Continue processing segment.
630			 */
631			INP_UNLOCK(inp);	/* listen socket */
632			inp = sotoinpcb(so);
633			INP_LOCK(inp);		/* new connection */
634			tp = intotcpcb(inp);
635			/*
636			 * Process the segment and the data it
637			 * contains.  tcp_do_segment() consumes
638			 * the mbuf chain and unlocks the inpcb.
639			 */
640			tcp_do_segment(m, th, so, tp, drop_hdrlen,
641					tlen);
642			INP_INFO_UNLOCK_ASSERT(&tcbinfo);
643			return;
644		}
645		/*
646		 * Our (SYN|ACK) response was rejected.
647		 * Check with syncache and remove entry to prevent
648		 * retransmits.
649		 */
650		if ((thflags & (TH_ACK|TH_RST)) == (TH_ACK|TH_RST)) {
651			if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
652				log(LOG_DEBUG, "%s; %s: Listen socket: "
653				    "SYN|ACK was rejected\n", s, __func__);
654			syncache_chkrst(&inc, th);
655			goto dropunlock;
656		}
657		/*
658		 * Spurious RST.  Ignore.
659		 */
660		if (thflags & TH_RST) {
661			if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
662				log(LOG_DEBUG, "%s; %s: Listen socket: "
663				    "Spurious RST\n", s, __func__);
664			goto dropunlock;
665		}
666		/*
667		 * We can't do anything without SYN.
668		 */
669		if ((thflags & TH_SYN) == 0) {
670			if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
671				log(LOG_DEBUG, "%s; %s: Listen socket: "
672				    "SYN missing\n", s, __func__);
673			tcpstat.tcps_badsyn++;
674			goto dropunlock;
675		}
676		/*
677		 * (SYN|ACK) is bogus on a listen socket.
678		 */
679		if (thflags & TH_ACK) {
680			if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
681				log(LOG_DEBUG, "%s; %s: Listen socket: "
682				    "SYN|ACK bogus\n", s, __func__);
683			syncache_badack(&inc);	/* XXX: Not needed! */
684			tcpstat.tcps_badsyn++;
685			rstreason = BANDLIM_RST_OPENPORT;
686			goto dropwithreset;
687		}
688		/*
689		 * If the drop_synfin option is enabled, drop all
690		 * segments with both the SYN and FIN bits set.
691		 * This prevents e.g. nmap from identifying the
692		 * TCP/IP stack.
693		 * XXX: Poor reasoning.  nmap has other methods
694		 * and is constantly refining its stack detection
695		 * strategies.
696		 *
697		 * This is a violation of the TCP specification
698		 * and was used by RFC1644.
699		 */
700		if ((thflags & TH_FIN) && drop_synfin) {
701			if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
702				log(LOG_DEBUG, "%s; %s: Listen socket: "
703				    "SYN|FIN ignored\n", s, __func__);
704			tcpstat.tcps_badsyn++;
705                	goto dropunlock;
706		}
707		/*
708		 * Segment's flags are (SYN) or (SYN|FIN).
709		 *
710		 * TH_PUSH, TH_URG, TH_ECE, TH_CWR are ignored
711		 * as they do not affect the state of the TCP FSM.
712		 * The data pointed to by TH_URG and th_urp is ignored.
713		 */
714		KASSERT((thflags & (TH_RST|TH_ACK)) == 0,
715		    ("%s: Listen socket: TH_RST or TH_ACK set", __func__));
716		KASSERT(thflags & (TH_SYN),
717		    ("%s: Listen socket: TH_SYN not set", __func__));
718#ifdef INET6
719		/*
720		 * If deprecated address is forbidden,
721		 * we do not accept SYN to deprecated interface
722		 * address to prevent any new inbound connection from
723		 * getting established.
724		 * When we do not accept SYN, we send a TCP RST,
725		 * with deprecated source address (instead of dropping
726		 * it).  We compromise it as it is much better for peer
727		 * to send a RST, and RST will be the final packet
728		 * for the exchange.
729		 *
730		 * If we do not forbid deprecated addresses, we accept
731		 * the SYN packet.  RFC2462 does not suggest dropping
732		 * SYN in this case.
733		 * If we decipher RFC2462 5.5.4, it says like this:
734		 * 1. use of deprecated addr with existing
735		 *    communication is okay - "SHOULD continue to be
736		 *    used"
737		 * 2. use of it with new communication:
738		 *   (2a) "SHOULD NOT be used if alternate address
739		 *        with sufficient scope is available"
740		 *   (2b) nothing mentioned otherwise.
741		 * Here we fall into (2b) case as we have no choice in
742		 * our source address selection - we must obey the peer.
743		 *
744		 * The wording in RFC2462 is confusing, and there are
745		 * multiple description text for deprecated address
746		 * handling - worse, they are not exactly the same.
747		 * I believe 5.5.4 is the best one, so we follow 5.5.4.
748		 */
749		if (isipv6 && !ip6_use_deprecated) {
750			struct in6_ifaddr *ia6;
751
752			if ((ia6 = ip6_getdstifaddr(m)) &&
753			    (ia6->ia6_flags & IN6_IFF_DEPRECATED)) {
754				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
755				    log(LOG_DEBUG, "%s; %s: Listen socket: "
756					"Deprecated IPv6 address\n",
757					s, __func__);
758				rstreason = BANDLIM_RST_OPENPORT;
759				goto dropwithreset;
760			}
761		}
762#endif
763		/*
764		 * Basic sanity checks on incoming SYN requests:
765		 *
766		 * Don't bother responding if the destination was a
767		 * broadcast according to RFC1122 4.2.3.10, p. 104.
768		 *
769		 * If it is from this socket, drop it, it must be forged.
770		 *
771		 * Note that it is quite possible to receive unicast
772		 * link-layer packets with a broadcast IP address. Use
773		 * in_broadcast() to find them.
774		 */
775		if (m->m_flags & (M_BCAST|M_MCAST))
776			goto dropunlock;
777		if (isipv6) {
778#ifdef INET6
779			if (th->th_dport == th->th_sport &&
780			    IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst, &ip6->ip6_src)) {
781				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
782				    log(LOG_DEBUG, "%s; %s: Listen socket: "
783					"Connection to self\n", s, __func__);
784				goto dropunlock;
785			}
786			if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) ||
787			    IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) {
788				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
789				    log(LOG_DEBUG, "%s; %s: Listen socket: "
790					"Connection to multicast address\n",
791					s, __func__);
792				goto dropunlock;
793			}
794#endif
795		} else {
796			if (th->th_dport == th->th_sport &&
797			    ip->ip_dst.s_addr == ip->ip_src.s_addr) {
798				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
799				    log(LOG_DEBUG, "%s; %s: Listen socket: "
800					"Connection to self\n", s, __func__);
801				goto dropunlock;
802			}
803			if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
804			    IN_MULTICAST(ntohl(ip->ip_src.s_addr)) ||
805			    ip->ip_src.s_addr == htonl(INADDR_BROADCAST) ||
806			    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif)) {
807				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
808				    log(LOG_DEBUG, "%s; %s: Listen socket: "
809					"Connection to multicast address\n",
810					s, __func__);
811				goto dropunlock;
812			}
813		}
814		/*
815		 * SYN appears to be valid.  Create compressed TCP state
816		 * for syncache.
817		 */
818#ifdef TCPDEBUG
819		if (so->so_options & SO_DEBUG)
820			tcp_trace(TA_INPUT, ostate, tp,
821			    (void *)tcp_saveipgen, &tcp_savetcp, 0);
822#endif
823		tcp_dooptions(&to, optp, optlen, TO_SYN);
824		syncache_add(&inc, &to, th, inp, &so, m);
825		/*
826		 * Entry added to syncache and mbuf consumed.
827		 * Everything already unlocked by syncache_add().
828		 */
829		INP_INFO_UNLOCK_ASSERT(&tcbinfo);
830		return;
831	}
832
833	/*
834	 * Segment belongs to a connection in SYN_SENT, ESTABLISHED or late
835	 * state.  tcp_do_segment() always consumes the mbuf chain, unlocks the
836	 * inpcb, and unlocks the pcbinfo.
837	 */
838	tcp_do_segment(m, th, so, tp, drop_hdrlen, tlen);
839	INP_INFO_UNLOCK_ASSERT(&tcbinfo);
840	return;
841
842dropwithreset:
843	INP_INFO_WLOCK_ASSERT(&tcbinfo);
844	tcp_dropwithreset(m, th, tp, tlen, rstreason);
845	m = NULL;	/* mbuf chain got consumed. */
846dropunlock:
847	INP_INFO_WLOCK_ASSERT(&tcbinfo);
848	if (inp != NULL)
849		INP_UNLOCK(inp);
850	INP_INFO_WUNLOCK(&tcbinfo);
851drop:
852	INP_INFO_UNLOCK_ASSERT(&tcbinfo);
853	if (s != NULL)
854		free(s, M_TCPLOG);
855	if (m != NULL)
856		m_freem(m);
857	return;
858}
859
860static void
861tcp_do_segment(struct mbuf *m, struct tcphdr *th, struct socket *so,
862    struct tcpcb *tp, int drop_hdrlen, int tlen)
863{
864	int thflags, acked, ourfinisacked, needoutput = 0;
865	int headlocked = 1;
866	int rstreason, todrop, win;
867	u_long tiwin;
868	struct tcpopt to;
869
870#ifdef TCPDEBUG
871	/*
872	 * The size of tcp_saveipgen must be the size of the max ip header,
873	 * now IPv6.
874	 */
875	u_char tcp_saveipgen[IP6_HDR_LEN];
876	struct tcphdr tcp_savetcp;
877	short ostate = 0;
878#endif
879	thflags = th->th_flags;
880
881	INP_INFO_WLOCK_ASSERT(&tcbinfo);
882	INP_LOCK_ASSERT(tp->t_inpcb);
883	KASSERT(tp->t_state > TCPS_LISTEN, ("%s: TCPS_LISTEN",
884	    __func__));
885	KASSERT(tp->t_state != TCPS_TIME_WAIT, ("%s: TCPS_TIME_WAIT",
886	    __func__));
887
888	/*
889	 * Segment received on connection.
890	 * Reset idle time and keep-alive timer.
891	 */
892	tp->t_rcvtime = ticks;
893	if (TCPS_HAVEESTABLISHED(tp->t_state))
894		tcp_timer_activate(tp, TT_KEEP, tcp_keepidle);
895
896	/*
897	 * Unscale the window into a 32-bit value.
898	 * This value is bogus for the TCPS_SYN_SENT state
899	 * and is overwritten later.
900	 */
901	tiwin = th->th_win << tp->snd_scale;
902
903	/*
904	 * Parse options on any incoming segment.
905	 */
906	tcp_dooptions(&to, (u_char *)(th + 1),
907	    (th->th_off << 2) - sizeof(struct tcphdr),
908	    (thflags & TH_SYN) ? TO_SYN : 0);
909
910	/*
911	 * If echoed timestamp is later than the current time,
912	 * fall back to non RFC1323 RTT calculation.  Normalize
913	 * timestamp if syncookies were used when this connection
914	 * was established.
915	 */
916	if ((to.to_flags & TOF_TS) && (to.to_tsecr != 0)) {
917		to.to_tsecr -= tp->ts_offset;
918		if (TSTMP_GT(to.to_tsecr, ticks))
919			to.to_tsecr = 0;
920	}
921
922	/*
923	 * Process options only when we get SYN/ACK back. The SYN case
924	 * for incoming connections is handled in tcp_syncache.
925	 * XXX this is traditional behavior, may need to be cleaned up.
926	 */
927	if (tp->t_state == TCPS_SYN_SENT && (thflags & TH_SYN)) {
928		if ((to.to_flags & TOF_SCALE) &&
929		    (tp->t_flags & TF_REQ_SCALE)) {
930			tp->t_flags |= TF_RCVD_SCALE;
931			tp->snd_scale = to.to_wscale;
932			tp->snd_wnd = th->th_win << tp->snd_scale;
933			tiwin = tp->snd_wnd;
934		}
935		if (to.to_flags & TOF_TS) {
936			tp->t_flags |= TF_RCVD_TSTMP;
937			tp->ts_recent = to.to_tsval;
938			tp->ts_recent_age = ticks;
939		}
940		/* Initial send window, already scaled. */
941		tp->snd_wnd = th->th_win;
942		if (to.to_flags & TOF_MSS)
943			tcp_mss(tp, to.to_mss);
944		if ((tp->t_flags & TF_SACK_PERMIT) &&
945		    (to.to_flags & TOF_SACKPERM) == 0)
946			tp->t_flags &= ~TF_SACK_PERMIT;
947	}
948
949	/*
950	 * Header prediction: check for the two common cases
951	 * of a uni-directional data xfer.  If the packet has
952	 * no control flags, is in-sequence, the window didn't
953	 * change and we're not retransmitting, it's a
954	 * candidate.  If the length is zero and the ack moved
955	 * forward, we're the sender side of the xfer.  Just
956	 * free the data acked & wake any higher level process
957	 * that was blocked waiting for space.  If the length
958	 * is non-zero and the ack didn't move, we're the
959	 * receiver side.  If we're getting packets in-order
960	 * (the reassembly queue is empty), add the data to
961	 * the socket buffer and note that we need a delayed ack.
962	 * Make sure that the hidden state-flags are also off.
963	 * Since we check for TCPS_ESTABLISHED first, it can only
964	 * be TH_NEEDSYN.
965	 */
966	if (tp->t_state == TCPS_ESTABLISHED &&
967	    th->th_seq == tp->rcv_nxt &&
968	    (thflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK)) == TH_ACK &&
969	    tp->snd_nxt == tp->snd_max &&
970	    tiwin && tiwin == tp->snd_wnd &&
971	    ((tp->t_flags & (TF_NEEDSYN|TF_NEEDFIN)) == 0) &&
972	    LIST_EMPTY(&tp->t_segq) &&
973	    ((to.to_flags & TOF_TS) == 0 ||
974	     TSTMP_GEQ(to.to_tsval, tp->ts_recent)) ) {
975
976		/*
977		 * If last ACK falls within this segment's sequence numbers,
978		 * record the timestamp.
979		 * NOTE that the test is modified according to the latest
980		 * proposal of the tcplw@cray.com list (Braden 1993/04/26).
981		 */
982		if ((to.to_flags & TOF_TS) != 0 &&
983		    SEQ_LEQ(th->th_seq, tp->last_ack_sent)) {
984			tp->ts_recent_age = ticks;
985			tp->ts_recent = to.to_tsval;
986		}
987
988		if (tlen == 0) {
989			if (SEQ_GT(th->th_ack, tp->snd_una) &&
990			    SEQ_LEQ(th->th_ack, tp->snd_max) &&
991			    tp->snd_cwnd >= tp->snd_wnd &&
992			    ((!tcp_do_newreno &&
993			      !(tp->t_flags & TF_SACK_PERMIT) &&
994			      tp->t_dupacks < tcprexmtthresh) ||
995			     ((tcp_do_newreno ||
996			       (tp->t_flags & TF_SACK_PERMIT)) &&
997			      !IN_FASTRECOVERY(tp) &&
998			      (to.to_flags & TOF_SACK) == 0 &&
999			      TAILQ_EMPTY(&tp->snd_holes)))) {
1000				KASSERT(headlocked,
1001				    ("%s: headlocked", __func__));
1002				INP_INFO_WUNLOCK(&tcbinfo);
1003				headlocked = 0;
1004				/*
1005				 * this is a pure ack for outstanding data.
1006				 */
1007				++tcpstat.tcps_predack;
1008				/*
1009				 * "bad retransmit" recovery
1010				 */
1011				if (tp->t_rxtshift == 1 &&
1012				    ticks < tp->t_badrxtwin) {
1013					++tcpstat.tcps_sndrexmitbad;
1014					tp->snd_cwnd = tp->snd_cwnd_prev;
1015					tp->snd_ssthresh =
1016					    tp->snd_ssthresh_prev;
1017					tp->snd_recover = tp->snd_recover_prev;
1018					if (tp->t_flags & TF_WASFRECOVERY)
1019					    ENTER_FASTRECOVERY(tp);
1020					tp->snd_nxt = tp->snd_max;
1021					tp->t_badrxtwin = 0;
1022				}
1023
1024				/*
1025				 * Recalculate the transmit timer / rtt.
1026				 *
1027				 * Some boxes send broken timestamp replies
1028				 * during the SYN+ACK phase, ignore
1029				 * timestamps of 0 or we could calculate a
1030				 * huge RTT and blow up the retransmit timer.
1031				 */
1032				if ((to.to_flags & TOF_TS) != 0 &&
1033				    to.to_tsecr) {
1034					if (!tp->t_rttlow ||
1035					    tp->t_rttlow > ticks - to.to_tsecr)
1036						tp->t_rttlow = ticks - to.to_tsecr;
1037					tcp_xmit_timer(tp,
1038					    ticks - to.to_tsecr + 1);
1039				} else if (tp->t_rtttime &&
1040				    SEQ_GT(th->th_ack, tp->t_rtseq)) {
1041					if (!tp->t_rttlow ||
1042					    tp->t_rttlow > ticks - tp->t_rtttime)
1043						tp->t_rttlow = ticks - tp->t_rtttime;
1044					tcp_xmit_timer(tp,
1045							ticks - tp->t_rtttime);
1046				}
1047				tcp_xmit_bandwidth_limit(tp, th->th_ack);
1048				acked = th->th_ack - tp->snd_una;
1049				tcpstat.tcps_rcvackpack++;
1050				tcpstat.tcps_rcvackbyte += acked;
1051				sbdrop(&so->so_snd, acked);
1052				if (SEQ_GT(tp->snd_una, tp->snd_recover) &&
1053				    SEQ_LEQ(th->th_ack, tp->snd_recover))
1054					tp->snd_recover = th->th_ack - 1;
1055				tp->snd_una = th->th_ack;
1056				/*
1057				 * pull snd_wl2 up to prevent seq wrap relative
1058				 * to th_ack.
1059				 */
1060				tp->snd_wl2 = th->th_ack;
1061				tp->t_dupacks = 0;
1062				m_freem(m);
1063				ND6_HINT(tp); /* some progress has been done */
1064
1065				/*
1066				 * If all outstanding data are acked, stop
1067				 * retransmit timer, otherwise restart timer
1068				 * using current (possibly backed-off) value.
1069				 * If process is waiting for space,
1070				 * wakeup/selwakeup/signal.  If data
1071				 * are ready to send, let tcp_output
1072				 * decide between more output or persist.
1073
1074#ifdef TCPDEBUG
1075				if (so->so_options & SO_DEBUG)
1076					tcp_trace(TA_INPUT, ostate, tp,
1077					    (void *)tcp_saveipgen,
1078					    &tcp_savetcp, 0);
1079#endif
1080				 */
1081				if (tp->snd_una == tp->snd_max)
1082					tcp_timer_activate(tp, TT_REXMT, 0);
1083				else if (!tcp_timer_active(tp, TT_PERSIST))
1084					tcp_timer_activate(tp, TT_REXMT,
1085						      tp->t_rxtcur);
1086
1087				sowwakeup(so);
1088				if (so->so_snd.sb_cc)
1089					(void) tcp_output(tp);
1090				goto check_delack;
1091			}
1092		} else if (th->th_ack == tp->snd_una &&
1093		    tlen <= sbspace(&so->so_rcv)) {
1094			int newsize = 0;	/* automatic sockbuf scaling */
1095
1096			KASSERT(headlocked, ("%s: headlocked", __func__));
1097			INP_INFO_WUNLOCK(&tcbinfo);
1098			headlocked = 0;
1099			/*
1100			 * this is a pure, in-sequence data packet
1101			 * with nothing on the reassembly queue and
1102			 * we have enough buffer space to take it.
1103			 */
1104			/* Clean receiver SACK report if present */
1105			if ((tp->t_flags & TF_SACK_PERMIT) && tp->rcv_numsacks)
1106				tcp_clean_sackreport(tp);
1107			++tcpstat.tcps_preddat;
1108			tp->rcv_nxt += tlen;
1109			/*
1110			 * Pull snd_wl1 up to prevent seq wrap relative to
1111			 * th_seq.
1112			 */
1113			tp->snd_wl1 = th->th_seq;
1114			/*
1115			 * Pull rcv_up up to prevent seq wrap relative to
1116			 * rcv_nxt.
1117			 */
1118			tp->rcv_up = tp->rcv_nxt;
1119			tcpstat.tcps_rcvpack++;
1120			tcpstat.tcps_rcvbyte += tlen;
1121			ND6_HINT(tp);	/* some progress has been done */
1122#ifdef TCPDEBUG
1123			if (so->so_options & SO_DEBUG)
1124				tcp_trace(TA_INPUT, ostate, tp,
1125				    (void *)tcp_saveipgen, &tcp_savetcp, 0);
1126#endif
1127		/*
1128		 * Automatic sizing of receive socket buffer.  Often the send
1129		 * buffer size is not optimally adjusted to the actual network
1130		 * conditions at hand (delay bandwidth product).  Setting the
1131		 * buffer size too small limits throughput on links with high
1132		 * bandwidth and high delay (eg. trans-continental/oceanic links).
1133		 *
1134		 * On the receive side the socket buffer memory is only rarely
1135		 * used to any significant extent.  This allows us to be much
1136		 * more aggressive in scaling the receive socket buffer.  For
1137		 * the case that the buffer space is actually used to a large
1138		 * extent and we run out of kernel memory we can simply drop
1139		 * the new segments; TCP on the sender will just retransmit it
1140		 * later.  Setting the buffer size too big may only consume too
1141		 * much kernel memory if the application doesn't read() from
1142		 * the socket or packet loss or reordering makes use of the
1143		 * reassembly queue.
1144		 *
1145		 * The criteria to step up the receive buffer one notch are:
1146		 *  1. the number of bytes received during the time it takes
1147		 *     one timestamp to be reflected back to us (the RTT);
1148		 *  2. received bytes per RTT is within seven eighth of the
1149		 *     current socket buffer size;
1150		 *  3. receive buffer size has not hit maximal automatic size;
1151		 *
1152		 * This algorithm does one step per RTT at most and only if
1153		 * we receive a bulk stream w/o packet losses or reorderings.
1154		 * Shrinking the buffer during idle times is not necessary as
1155		 * it doesn't consume any memory when idle.
1156		 *
1157		 * TODO: Only step up if the application is actually serving
1158		 * the buffer to better manage the socket buffer resources.
1159		 */
1160			if (tcp_do_autorcvbuf &&
1161			    to.to_tsecr &&
1162			    (so->so_rcv.sb_flags & SB_AUTOSIZE)) {
1163				if (to.to_tsecr > tp->rfbuf_ts &&
1164				    to.to_tsecr - tp->rfbuf_ts < hz) {
1165					if (tp->rfbuf_cnt >
1166					    (so->so_rcv.sb_hiwat / 8 * 7) &&
1167					    so->so_rcv.sb_hiwat <
1168					    tcp_autorcvbuf_max) {
1169						newsize =
1170						    min(so->so_rcv.sb_hiwat +
1171						    tcp_autorcvbuf_inc,
1172						    tcp_autorcvbuf_max);
1173					}
1174					/* Start over with next RTT. */
1175					tp->rfbuf_ts = 0;
1176					tp->rfbuf_cnt = 0;
1177				} else
1178					tp->rfbuf_cnt += tlen;	/* add up */
1179			}
1180
1181			/* Add data to socket buffer. */
1182			SOCKBUF_LOCK(&so->so_rcv);
1183			if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
1184				m_freem(m);
1185			} else {
1186				/*
1187				 * Set new socket buffer size.
1188				 * Give up when limit is reached.
1189				 */
1190				if (newsize)
1191					if (!sbreserve_locked(&so->so_rcv,
1192					    newsize, so, curthread))
1193						so->so_rcv.sb_flags &= ~SB_AUTOSIZE;
1194				m_adj(m, drop_hdrlen);	/* delayed header drop */
1195				sbappendstream_locked(&so->so_rcv, m);
1196			}
1197			sorwakeup_locked(so);
1198			if (DELAY_ACK(tp)) {
1199				tp->t_flags |= TF_DELACK;
1200			} else {
1201				tp->t_flags |= TF_ACKNOW;
1202				tcp_output(tp);
1203			}
1204			goto check_delack;
1205		}
1206	}
1207
1208	/*
1209	 * Calculate amount of space in receive window,
1210	 * and then do TCP input processing.
1211	 * Receive window is amount of space in rcv queue,
1212	 * but not less than advertised window.
1213	 */
1214	win = sbspace(&so->so_rcv);
1215	if (win < 0)
1216		win = 0;
1217	tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
1218
1219	/* Reset receive buffer auto scaling when not in bulk receive mode. */
1220	tp->rfbuf_ts = 0;
1221	tp->rfbuf_cnt = 0;
1222
1223	switch (tp->t_state) {
1224
1225	/*
1226	 * If the state is SYN_RECEIVED:
1227	 *	if seg contains an ACK, but not for our SYN/ACK, send a RST.
1228	 */
1229	case TCPS_SYN_RECEIVED:
1230		if ((thflags & TH_ACK) &&
1231		    (SEQ_LEQ(th->th_ack, tp->snd_una) ||
1232		     SEQ_GT(th->th_ack, tp->snd_max))) {
1233				rstreason = BANDLIM_RST_OPENPORT;
1234				goto dropwithreset;
1235		}
1236		break;
1237
1238	/*
1239	 * If the state is SYN_SENT:
1240	 *	if seg contains an ACK, but not for our SYN, drop the input.
1241	 *	if seg contains a RST, then drop the connection.
1242	 *	if seg does not contain SYN, then drop it.
1243	 * Otherwise this is an acceptable SYN segment
1244	 *	initialize tp->rcv_nxt and tp->irs
1245	 *	if seg contains ack then advance tp->snd_una
1246	 *	if SYN has been acked change to ESTABLISHED else SYN_RCVD state
1247	 *	arrange for segment to be acked (eventually)
1248	 *	continue processing rest of data/controls, beginning with URG
1249	 */
1250	case TCPS_SYN_SENT:
1251		if ((thflags & TH_ACK) &&
1252		    (SEQ_LEQ(th->th_ack, tp->iss) ||
1253		     SEQ_GT(th->th_ack, tp->snd_max))) {
1254			rstreason = BANDLIM_UNLIMITED;
1255			goto dropwithreset;
1256		}
1257		if ((thflags & (TH_ACK|TH_RST)) == (TH_ACK|TH_RST))
1258			tp = tcp_drop(tp, ECONNREFUSED);
1259		if (thflags & TH_RST)
1260			goto drop;
1261		if (!(thflags & TH_SYN))
1262			goto drop;
1263
1264		tp->irs = th->th_seq;
1265		tcp_rcvseqinit(tp);
1266		if (thflags & TH_ACK) {
1267			tcpstat.tcps_connects++;
1268			soisconnected(so);
1269#ifdef MAC
1270			SOCK_LOCK(so);
1271			mac_set_socket_peer_from_mbuf(m, so);
1272			SOCK_UNLOCK(so);
1273#endif
1274			/* Do window scaling on this connection? */
1275			if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
1276				(TF_RCVD_SCALE|TF_REQ_SCALE)) {
1277				tp->rcv_scale = tp->request_r_scale;
1278			}
1279			tp->rcv_adv += tp->rcv_wnd;
1280			tp->snd_una++;		/* SYN is acked */
1281			/*
1282			 * If there's data, delay ACK; if there's also a FIN
1283			 * ACKNOW will be turned on later.
1284			 */
1285			if (DELAY_ACK(tp) && tlen != 0)
1286				tcp_timer_activate(tp, TT_DELACK,
1287				    tcp_delacktime);
1288			else
1289				tp->t_flags |= TF_ACKNOW;
1290			/*
1291			 * Received <SYN,ACK> in SYN_SENT[*] state.
1292			 * Transitions:
1293			 *	SYN_SENT  --> ESTABLISHED
1294			 *	SYN_SENT* --> FIN_WAIT_1
1295			 */
1296			tp->t_starttime = ticks;
1297			if (tp->t_flags & TF_NEEDFIN) {
1298				tp->t_state = TCPS_FIN_WAIT_1;
1299				tp->t_flags &= ~TF_NEEDFIN;
1300				thflags &= ~TH_SYN;
1301			} else {
1302				tp->t_state = TCPS_ESTABLISHED;
1303				tcp_timer_activate(tp, TT_KEEP, tcp_keepidle);
1304			}
1305		} else {
1306			/*
1307			 * Received initial SYN in SYN-SENT[*] state =>
1308			 * simultaneous open.  If segment contains CC option
1309			 * and there is a cached CC, apply TAO test.
1310			 * If it succeeds, connection is * half-synchronized.
1311			 * Otherwise, do 3-way handshake:
1312			 *        SYN-SENT -> SYN-RECEIVED
1313			 *        SYN-SENT* -> SYN-RECEIVED*
1314			 * If there was no CC option, clear cached CC value.
1315			 */
1316			tp->t_flags |= (TF_ACKNOW | TF_NEEDSYN);
1317			tcp_timer_activate(tp, TT_REXMT, 0);
1318			tp->t_state = TCPS_SYN_RECEIVED;
1319		}
1320
1321		KASSERT(headlocked, ("%s: trimthenstep6: head not locked",
1322		    __func__));
1323		INP_LOCK_ASSERT(tp->t_inpcb);
1324
1325		/*
1326		 * Advance th->th_seq to correspond to first data byte.
1327		 * If data, trim to stay within window,
1328		 * dropping FIN if necessary.
1329		 */
1330		th->th_seq++;
1331		if (tlen > tp->rcv_wnd) {
1332			todrop = tlen - tp->rcv_wnd;
1333			m_adj(m, -todrop);
1334			tlen = tp->rcv_wnd;
1335			thflags &= ~TH_FIN;
1336			tcpstat.tcps_rcvpackafterwin++;
1337			tcpstat.tcps_rcvbyteafterwin += todrop;
1338		}
1339		tp->snd_wl1 = th->th_seq - 1;
1340		tp->rcv_up = th->th_seq;
1341		/*
1342		 * Client side of transaction: already sent SYN and data.
1343		 * If the remote host used T/TCP to validate the SYN,
1344		 * our data will be ACK'd; if so, enter normal data segment
1345		 * processing in the middle of step 5, ack processing.
1346		 * Otherwise, goto step 6.
1347		 */
1348		if (thflags & TH_ACK)
1349			goto process_ACK;
1350
1351		goto step6;
1352
1353	/*
1354	 * If the state is LAST_ACK or CLOSING or TIME_WAIT:
1355	 *      do normal processing.
1356	 *
1357	 * NB: Leftover from RFC1644 T/TCP.  Cases to be reused later.
1358	 */
1359	case TCPS_LAST_ACK:
1360	case TCPS_CLOSING:
1361		break;  /* continue normal processing */
1362	}
1363
1364	/*
1365	 * States other than LISTEN or SYN_SENT.
1366	 * First check the RST flag and sequence number since reset segments
1367	 * are exempt from the timestamp and connection count tests.  This
1368	 * fixes a bug introduced by the Stevens, vol. 2, p. 960 bugfix
1369	 * below which allowed reset segments in half the sequence space
1370	 * to fall though and be processed (which gives forged reset
1371	 * segments with a random sequence number a 50 percent chance of
1372	 * killing a connection).
1373	 * Then check timestamp, if present.
1374	 * Then check the connection count, if present.
1375	 * Then check that at least some bytes of segment are within
1376	 * receive window.  If segment begins before rcv_nxt,
1377	 * drop leading data (and SYN); if nothing left, just ack.
1378	 *
1379	 *
1380	 * If the RST bit is set, check the sequence number to see
1381	 * if this is a valid reset segment.
1382	 * RFC 793 page 37:
1383	 *   In all states except SYN-SENT, all reset (RST) segments
1384	 *   are validated by checking their SEQ-fields.  A reset is
1385	 *   valid if its sequence number is in the window.
1386	 * Note: this does not take into account delayed ACKs, so
1387	 *   we should test against last_ack_sent instead of rcv_nxt.
1388	 *   The sequence number in the reset segment is normally an
1389	 *   echo of our outgoing acknowlegement numbers, but some hosts
1390	 *   send a reset with the sequence number at the rightmost edge
1391	 *   of our receive window, and we have to handle this case.
1392	 * Note 2: Paul Watson's paper "Slipping in the Window" has shown
1393	 *   that brute force RST attacks are possible.  To combat this,
1394	 *   we use a much stricter check while in the ESTABLISHED state,
1395	 *   only accepting RSTs where the sequence number is equal to
1396	 *   last_ack_sent.  In all other states (the states in which a
1397	 *   RST is more likely), the more permissive check is used.
1398	 * If we have multiple segments in flight, the intial reset
1399	 * segment sequence numbers will be to the left of last_ack_sent,
1400	 * but they will eventually catch up.
1401	 * In any case, it never made sense to trim reset segments to
1402	 * fit the receive window since RFC 1122 says:
1403	 *   4.2.2.12  RST Segment: RFC-793 Section 3.4
1404	 *
1405	 *    A TCP SHOULD allow a received RST segment to include data.
1406	 *
1407	 *    DISCUSSION
1408	 *         It has been suggested that a RST segment could contain
1409	 *         ASCII text that encoded and explained the cause of the
1410	 *         RST.  No standard has yet been established for such
1411	 *         data.
1412	 *
1413	 * If the reset segment passes the sequence number test examine
1414	 * the state:
1415	 *    SYN_RECEIVED STATE:
1416	 *	If passive open, return to LISTEN state.
1417	 *	If active open, inform user that connection was refused.
1418	 *    ESTABLISHED, FIN_WAIT_1, FIN_WAIT_2, CLOSE_WAIT STATES:
1419	 *	Inform user that connection was reset, and close tcb.
1420	 *    CLOSING, LAST_ACK STATES:
1421	 *	Close the tcb.
1422	 *    TIME_WAIT STATE:
1423	 *	Drop the segment - see Stevens, vol. 2, p. 964 and
1424	 *      RFC 1337.
1425	 */
1426	if (thflags & TH_RST) {
1427		if (SEQ_GEQ(th->th_seq, tp->last_ack_sent - 1) &&
1428		    SEQ_LEQ(th->th_seq, tp->last_ack_sent + tp->rcv_wnd)) {
1429			switch (tp->t_state) {
1430
1431			case TCPS_SYN_RECEIVED:
1432				so->so_error = ECONNREFUSED;
1433				goto close;
1434
1435			case TCPS_ESTABLISHED:
1436				if (tcp_insecure_rst == 0 &&
1437				    !(SEQ_GEQ(th->th_seq, tp->rcv_nxt - 1) &&
1438				    SEQ_LEQ(th->th_seq, tp->rcv_nxt + 1)) &&
1439				    !(SEQ_GEQ(th->th_seq, tp->last_ack_sent - 1) &&
1440				    SEQ_LEQ(th->th_seq, tp->last_ack_sent + 1))) {
1441					tcpstat.tcps_badrst++;
1442					goto drop;
1443				}
1444			case TCPS_FIN_WAIT_1:
1445			case TCPS_FIN_WAIT_2:
1446			case TCPS_CLOSE_WAIT:
1447				so->so_error = ECONNRESET;
1448			close:
1449				tp->t_state = TCPS_CLOSED;
1450				tcpstat.tcps_drops++;
1451				KASSERT(headlocked, ("%s: trimthenstep6: "
1452				    "tcp_close: head not locked", __func__));
1453				tp = tcp_close(tp);
1454				break;
1455
1456			case TCPS_CLOSING:
1457			case TCPS_LAST_ACK:
1458				KASSERT(headlocked, ("%s: trimthenstep6: "
1459				    "tcp_close.2: head not locked", __func__));
1460				tp = tcp_close(tp);
1461				break;
1462			}
1463		}
1464		goto drop;
1465	}
1466
1467	/*
1468	 * RFC 1323 PAWS: If we have a timestamp reply on this segment
1469	 * and it's less than ts_recent, drop it.
1470	 */
1471	if ((to.to_flags & TOF_TS) != 0 && tp->ts_recent &&
1472	    TSTMP_LT(to.to_tsval, tp->ts_recent)) {
1473
1474		/* Check to see if ts_recent is over 24 days old.  */
1475		if ((int)(ticks - tp->ts_recent_age) > TCP_PAWS_IDLE) {
1476			/*
1477			 * Invalidate ts_recent.  If this segment updates
1478			 * ts_recent, the age will be reset later and ts_recent
1479			 * will get a valid value.  If it does not, setting
1480			 * ts_recent to zero will at least satisfy the
1481			 * requirement that zero be placed in the timestamp
1482			 * echo reply when ts_recent isn't valid.  The
1483			 * age isn't reset until we get a valid ts_recent
1484			 * because we don't want out-of-order segments to be
1485			 * dropped when ts_recent is old.
1486			 */
1487			tp->ts_recent = 0;
1488		} else {
1489			tcpstat.tcps_rcvduppack++;
1490			tcpstat.tcps_rcvdupbyte += tlen;
1491			tcpstat.tcps_pawsdrop++;
1492			if (tlen)
1493				goto dropafterack;
1494			goto drop;
1495		}
1496	}
1497
1498	/*
1499	 * In the SYN-RECEIVED state, validate that the packet belongs to
1500	 * this connection before trimming the data to fit the receive
1501	 * window.  Check the sequence number versus IRS since we know
1502	 * the sequence numbers haven't wrapped.  This is a partial fix
1503	 * for the "LAND" DoS attack.
1504	 */
1505	if (tp->t_state == TCPS_SYN_RECEIVED && SEQ_LT(th->th_seq, tp->irs)) {
1506		rstreason = BANDLIM_RST_OPENPORT;
1507		goto dropwithreset;
1508	}
1509
1510	todrop = tp->rcv_nxt - th->th_seq;
1511	if (todrop > 0) {
1512		if (thflags & TH_SYN) {
1513			thflags &= ~TH_SYN;
1514			th->th_seq++;
1515			if (th->th_urp > 1)
1516				th->th_urp--;
1517			else
1518				thflags &= ~TH_URG;
1519			todrop--;
1520		}
1521		/*
1522		 * Following if statement from Stevens, vol. 2, p. 960.
1523		 */
1524		if (todrop > tlen
1525		    || (todrop == tlen && (thflags & TH_FIN) == 0)) {
1526			/*
1527			 * Any valid FIN must be to the left of the window.
1528			 * At this point the FIN must be a duplicate or out
1529			 * of sequence; drop it.
1530			 */
1531			thflags &= ~TH_FIN;
1532
1533			/*
1534			 * Send an ACK to resynchronize and drop any data.
1535			 * But keep on processing for RST or ACK.
1536			 */
1537			tp->t_flags |= TF_ACKNOW;
1538			todrop = tlen;
1539			tcpstat.tcps_rcvduppack++;
1540			tcpstat.tcps_rcvdupbyte += todrop;
1541		} else {
1542			tcpstat.tcps_rcvpartduppack++;
1543			tcpstat.tcps_rcvpartdupbyte += todrop;
1544		}
1545		drop_hdrlen += todrop;	/* drop from the top afterwards */
1546		th->th_seq += todrop;
1547		tlen -= todrop;
1548		if (th->th_urp > todrop)
1549			th->th_urp -= todrop;
1550		else {
1551			thflags &= ~TH_URG;
1552			th->th_urp = 0;
1553		}
1554	}
1555
1556	/*
1557	 * If new data are received on a connection after the
1558	 * user processes are gone, then RST the other end.
1559	 */
1560	if ((so->so_state & SS_NOFDREF) &&
1561	    tp->t_state > TCPS_CLOSE_WAIT && tlen) {
1562		KASSERT(headlocked, ("%s: trimthenstep6: tcp_close.3: head "
1563		    "not locked", __func__));
1564		tp = tcp_close(tp);
1565		tcpstat.tcps_rcvafterclose++;
1566		rstreason = BANDLIM_UNLIMITED;
1567		goto dropwithreset;
1568	}
1569
1570	/*
1571	 * If segment ends after window, drop trailing data
1572	 * (and PUSH and FIN); if nothing left, just ACK.
1573	 */
1574	todrop = (th->th_seq + tlen) - (tp->rcv_nxt + tp->rcv_wnd);
1575	if (todrop > 0) {
1576		tcpstat.tcps_rcvpackafterwin++;
1577		if (todrop >= tlen) {
1578			tcpstat.tcps_rcvbyteafterwin += tlen;
1579			/*
1580			 * If window is closed can only take segments at
1581			 * window edge, and have to drop data and PUSH from
1582			 * incoming segments.  Continue processing, but
1583			 * remember to ack.  Otherwise, drop segment
1584			 * and ack.
1585			 */
1586			if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
1587				tp->t_flags |= TF_ACKNOW;
1588				tcpstat.tcps_rcvwinprobe++;
1589			} else
1590				goto dropafterack;
1591		} else
1592			tcpstat.tcps_rcvbyteafterwin += todrop;
1593		m_adj(m, -todrop);
1594		tlen -= todrop;
1595		thflags &= ~(TH_PUSH|TH_FIN);
1596	}
1597
1598	/*
1599	 * If last ACK falls within this segment's sequence numbers,
1600	 * record its timestamp.
1601	 * NOTE:
1602	 * 1) That the test incorporates suggestions from the latest
1603	 *    proposal of the tcplw@cray.com list (Braden 1993/04/26).
1604	 * 2) That updating only on newer timestamps interferes with
1605	 *    our earlier PAWS tests, so this check should be solely
1606	 *    predicated on the sequence space of this segment.
1607	 * 3) That we modify the segment boundary check to be
1608	 *        Last.ACK.Sent <= SEG.SEQ + SEG.Len
1609	 *    instead of RFC1323's
1610	 *        Last.ACK.Sent < SEG.SEQ + SEG.Len,
1611	 *    This modified check allows us to overcome RFC1323's
1612	 *    limitations as described in Stevens TCP/IP Illustrated
1613	 *    Vol. 2 p.869. In such cases, we can still calculate the
1614	 *    RTT correctly when RCV.NXT == Last.ACK.Sent.
1615	 */
1616	if ((to.to_flags & TOF_TS) != 0 &&
1617	    SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
1618	    SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
1619		((thflags & (TH_SYN|TH_FIN)) != 0))) {
1620		tp->ts_recent_age = ticks;
1621		tp->ts_recent = to.to_tsval;
1622	}
1623
1624	/*
1625	 * If a SYN is in the window, then this is an
1626	 * error and we send an RST and drop the connection.
1627	 */
1628	if (thflags & TH_SYN) {
1629		KASSERT(headlocked, ("%s: tcp_drop: trimthenstep6: "
1630		    "head not locked", __func__));
1631		tp = tcp_drop(tp, ECONNRESET);
1632		rstreason = BANDLIM_UNLIMITED;
1633		goto drop;
1634	}
1635
1636	/*
1637	 * If the ACK bit is off:  if in SYN-RECEIVED state or SENDSYN
1638	 * flag is on (half-synchronized state), then queue data for
1639	 * later processing; else drop segment and return.
1640	 */
1641	if ((thflags & TH_ACK) == 0) {
1642		if (tp->t_state == TCPS_SYN_RECEIVED ||
1643		    (tp->t_flags & TF_NEEDSYN))
1644			goto step6;
1645		else if (tp->t_flags & TF_ACKNOW)
1646			goto dropafterack;
1647		else
1648			goto drop;
1649	}
1650
1651	/*
1652	 * Ack processing.
1653	 */
1654	switch (tp->t_state) {
1655
1656	/*
1657	 * In SYN_RECEIVED state, the ack ACKs our SYN, so enter
1658	 * ESTABLISHED state and continue processing.
1659	 * The ACK was checked above.
1660	 */
1661	case TCPS_SYN_RECEIVED:
1662
1663		tcpstat.tcps_connects++;
1664		soisconnected(so);
1665		/* Do window scaling? */
1666		if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
1667			(TF_RCVD_SCALE|TF_REQ_SCALE)) {
1668			tp->rcv_scale = tp->request_r_scale;
1669			tp->snd_wnd = tiwin;
1670		}
1671		/*
1672		 * Make transitions:
1673		 *      SYN-RECEIVED  -> ESTABLISHED
1674		 *      SYN-RECEIVED* -> FIN-WAIT-1
1675		 */
1676		tp->t_starttime = ticks;
1677		if (tp->t_flags & TF_NEEDFIN) {
1678			tp->t_state = TCPS_FIN_WAIT_1;
1679			tp->t_flags &= ~TF_NEEDFIN;
1680		} else {
1681			tp->t_state = TCPS_ESTABLISHED;
1682			tcp_timer_activate(tp, TT_KEEP, tcp_keepidle);
1683		}
1684		/*
1685		 * If segment contains data or ACK, will call tcp_reass()
1686		 * later; if not, do so now to pass queued data to user.
1687		 */
1688		if (tlen == 0 && (thflags & TH_FIN) == 0)
1689			(void) tcp_reass(tp, (struct tcphdr *)0, 0,
1690			    (struct mbuf *)0);
1691		tp->snd_wl1 = th->th_seq - 1;
1692		/* FALLTHROUGH */
1693
1694	/*
1695	 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
1696	 * ACKs.  If the ack is in the range
1697	 *	tp->snd_una < th->th_ack <= tp->snd_max
1698	 * then advance tp->snd_una to th->th_ack and drop
1699	 * data from the retransmission queue.  If this ACK reflects
1700	 * more up to date window information we update our window information.
1701	 */
1702	case TCPS_ESTABLISHED:
1703	case TCPS_FIN_WAIT_1:
1704	case TCPS_FIN_WAIT_2:
1705	case TCPS_CLOSE_WAIT:
1706	case TCPS_CLOSING:
1707	case TCPS_LAST_ACK:
1708		if (SEQ_GT(th->th_ack, tp->snd_max)) {
1709			tcpstat.tcps_rcvacktoomuch++;
1710			goto dropafterack;
1711		}
1712		if ((tp->t_flags & TF_SACK_PERMIT) &&
1713		    ((to.to_flags & TOF_SACK) ||
1714		     !TAILQ_EMPTY(&tp->snd_holes)))
1715			tcp_sack_doack(tp, &to, th->th_ack);
1716		if (SEQ_LEQ(th->th_ack, tp->snd_una)) {
1717			if (tlen == 0 && tiwin == tp->snd_wnd) {
1718				tcpstat.tcps_rcvdupack++;
1719				/*
1720				 * If we have outstanding data (other than
1721				 * a window probe), this is a completely
1722				 * duplicate ack (ie, window info didn't
1723				 * change), the ack is the biggest we've
1724				 * seen and we've seen exactly our rexmt
1725				 * threshhold of them, assume a packet
1726				 * has been dropped and retransmit it.
1727				 * Kludge snd_nxt & the congestion
1728				 * window so we send only this one
1729				 * packet.
1730				 *
1731				 * We know we're losing at the current
1732				 * window size so do congestion avoidance
1733				 * (set ssthresh to half the current window
1734				 * and pull our congestion window back to
1735				 * the new ssthresh).
1736				 *
1737				 * Dup acks mean that packets have left the
1738				 * network (they're now cached at the receiver)
1739				 * so bump cwnd by the amount in the receiver
1740				 * to keep a constant cwnd packets in the
1741				 * network.
1742				 */
1743				if (!tcp_timer_active(tp, TT_REXMT) ||
1744				    th->th_ack != tp->snd_una)
1745					tp->t_dupacks = 0;
1746				else if (++tp->t_dupacks > tcprexmtthresh ||
1747				    ((tcp_do_newreno ||
1748				      (tp->t_flags & TF_SACK_PERMIT)) &&
1749				     IN_FASTRECOVERY(tp))) {
1750					if ((tp->t_flags & TF_SACK_PERMIT) &&
1751					    IN_FASTRECOVERY(tp)) {
1752						int awnd;
1753
1754						/*
1755						 * Compute the amount of data in flight first.
1756						 * We can inject new data into the pipe iff
1757						 * we have less than 1/2 the original window's
1758						 * worth of data in flight.
1759						 */
1760						awnd = (tp->snd_nxt - tp->snd_fack) +
1761							tp->sackhint.sack_bytes_rexmit;
1762						if (awnd < tp->snd_ssthresh) {
1763							tp->snd_cwnd += tp->t_maxseg;
1764							if (tp->snd_cwnd > tp->snd_ssthresh)
1765								tp->snd_cwnd = tp->snd_ssthresh;
1766						}
1767					} else
1768						tp->snd_cwnd += tp->t_maxseg;
1769					(void) tcp_output(tp);
1770					goto drop;
1771				} else if (tp->t_dupacks == tcprexmtthresh) {
1772					tcp_seq onxt = tp->snd_nxt;
1773					u_int win;
1774
1775					/*
1776					 * If we're doing sack, check to
1777					 * see if we're already in sack
1778					 * recovery. If we're not doing sack,
1779					 * check to see if we're in newreno
1780					 * recovery.
1781					 */
1782					if (tp->t_flags & TF_SACK_PERMIT) {
1783						if (IN_FASTRECOVERY(tp)) {
1784							tp->t_dupacks = 0;
1785							break;
1786						}
1787					} else if (tcp_do_newreno) {
1788						if (SEQ_LEQ(th->th_ack,
1789						    tp->snd_recover)) {
1790							tp->t_dupacks = 0;
1791							break;
1792						}
1793					}
1794					win = min(tp->snd_wnd, tp->snd_cwnd) /
1795					    2 / tp->t_maxseg;
1796					if (win < 2)
1797						win = 2;
1798					tp->snd_ssthresh = win * tp->t_maxseg;
1799					ENTER_FASTRECOVERY(tp);
1800					tp->snd_recover = tp->snd_max;
1801					tcp_timer_activate(tp, TT_REXMT, 0);
1802					tp->t_rtttime = 0;
1803					if (tp->t_flags & TF_SACK_PERMIT) {
1804						tcpstat.tcps_sack_recovery_episode++;
1805						tp->sack_newdata = tp->snd_nxt;
1806						tp->snd_cwnd = tp->t_maxseg;
1807						(void) tcp_output(tp);
1808						goto drop;
1809					}
1810					tp->snd_nxt = th->th_ack;
1811					tp->snd_cwnd = tp->t_maxseg;
1812					(void) tcp_output(tp);
1813					KASSERT(tp->snd_limited <= 2,
1814					    ("%s: tp->snd_limited too big",
1815					    __func__));
1816					tp->snd_cwnd = tp->snd_ssthresh +
1817					     tp->t_maxseg *
1818					     (tp->t_dupacks - tp->snd_limited);
1819					if (SEQ_GT(onxt, tp->snd_nxt))
1820						tp->snd_nxt = onxt;
1821					goto drop;
1822				} else if (tcp_do_rfc3042) {
1823					u_long oldcwnd = tp->snd_cwnd;
1824					tcp_seq oldsndmax = tp->snd_max;
1825					u_int sent;
1826
1827					KASSERT(tp->t_dupacks == 1 ||
1828					    tp->t_dupacks == 2,
1829					    ("%s: dupacks not 1 or 2",
1830					    __func__));
1831					if (tp->t_dupacks == 1)
1832						tp->snd_limited = 0;
1833					tp->snd_cwnd =
1834					    (tp->snd_nxt - tp->snd_una) +
1835					    (tp->t_dupacks - tp->snd_limited) *
1836					    tp->t_maxseg;
1837					(void) tcp_output(tp);
1838					sent = tp->snd_max - oldsndmax;
1839					if (sent > tp->t_maxseg) {
1840						KASSERT((tp->t_dupacks == 2 &&
1841						    tp->snd_limited == 0) ||
1842						   (sent == tp->t_maxseg + 1 &&
1843						    tp->t_flags & TF_SENTFIN),
1844						    ("%s: sent too much",
1845						    __func__));
1846						tp->snd_limited = 2;
1847					} else if (sent > 0)
1848						++tp->snd_limited;
1849					tp->snd_cwnd = oldcwnd;
1850					goto drop;
1851				}
1852			} else
1853				tp->t_dupacks = 0;
1854			break;
1855		}
1856
1857		KASSERT(SEQ_GT(th->th_ack, tp->snd_una),
1858		    ("%s: th_ack <= snd_una", __func__));
1859
1860		/*
1861		 * If the congestion window was inflated to account
1862		 * for the other side's cached packets, retract it.
1863		 */
1864		if (tcp_do_newreno || (tp->t_flags & TF_SACK_PERMIT)) {
1865			if (IN_FASTRECOVERY(tp)) {
1866				if (SEQ_LT(th->th_ack, tp->snd_recover)) {
1867					if (tp->t_flags & TF_SACK_PERMIT)
1868						tcp_sack_partialack(tp, th);
1869					else
1870						tcp_newreno_partial_ack(tp, th);
1871				} else {
1872					/*
1873					 * Out of fast recovery.
1874					 * Window inflation should have left us
1875					 * with approximately snd_ssthresh
1876					 * outstanding data.
1877					 * But in case we would be inclined to
1878					 * send a burst, better to do it via
1879					 * the slow start mechanism.
1880					 */
1881					if (SEQ_GT(th->th_ack +
1882							tp->snd_ssthresh,
1883						   tp->snd_max))
1884						tp->snd_cwnd = tp->snd_max -
1885								th->th_ack +
1886								tp->t_maxseg;
1887					else
1888						tp->snd_cwnd = tp->snd_ssthresh;
1889				}
1890			}
1891		} else {
1892			if (tp->t_dupacks >= tcprexmtthresh &&
1893			    tp->snd_cwnd > tp->snd_ssthresh)
1894				tp->snd_cwnd = tp->snd_ssthresh;
1895		}
1896		tp->t_dupacks = 0;
1897		/*
1898		 * If we reach this point, ACK is not a duplicate,
1899		 *     i.e., it ACKs something we sent.
1900		 */
1901		if (tp->t_flags & TF_NEEDSYN) {
1902			/*
1903			 * T/TCP: Connection was half-synchronized, and our
1904			 * SYN has been ACK'd (so connection is now fully
1905			 * synchronized).  Go to non-starred state,
1906			 * increment snd_una for ACK of SYN, and check if
1907			 * we can do window scaling.
1908			 */
1909			tp->t_flags &= ~TF_NEEDSYN;
1910			tp->snd_una++;
1911			/* Do window scaling? */
1912			if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
1913				(TF_RCVD_SCALE|TF_REQ_SCALE)) {
1914				tp->rcv_scale = tp->request_r_scale;
1915				/* Send window already scaled. */
1916			}
1917		}
1918
1919process_ACK:
1920		KASSERT(headlocked, ("%s: process_ACK: head not locked",
1921		    __func__));
1922		INP_LOCK_ASSERT(tp->t_inpcb);
1923
1924		acked = th->th_ack - tp->snd_una;
1925		tcpstat.tcps_rcvackpack++;
1926		tcpstat.tcps_rcvackbyte += acked;
1927
1928		/*
1929		 * If we just performed our first retransmit, and the ACK
1930		 * arrives within our recovery window, then it was a mistake
1931		 * to do the retransmit in the first place.  Recover our
1932		 * original cwnd and ssthresh, and proceed to transmit where
1933		 * we left off.
1934		 */
1935		if (tp->t_rxtshift == 1 && ticks < tp->t_badrxtwin) {
1936			++tcpstat.tcps_sndrexmitbad;
1937			tp->snd_cwnd = tp->snd_cwnd_prev;
1938			tp->snd_ssthresh = tp->snd_ssthresh_prev;
1939			tp->snd_recover = tp->snd_recover_prev;
1940			if (tp->t_flags & TF_WASFRECOVERY)
1941				ENTER_FASTRECOVERY(tp);
1942			tp->snd_nxt = tp->snd_max;
1943			tp->t_badrxtwin = 0;	/* XXX probably not required */
1944		}
1945
1946		/*
1947		 * If we have a timestamp reply, update smoothed
1948		 * round trip time.  If no timestamp is present but
1949		 * transmit timer is running and timed sequence
1950		 * number was acked, update smoothed round trip time.
1951		 * Since we now have an rtt measurement, cancel the
1952		 * timer backoff (cf., Phil Karn's retransmit alg.).
1953		 * Recompute the initial retransmit timer.
1954		 *
1955		 * Some boxes send broken timestamp replies
1956		 * during the SYN+ACK phase, ignore
1957		 * timestamps of 0 or we could calculate a
1958		 * huge RTT and blow up the retransmit timer.
1959		 */
1960		if ((to.to_flags & TOF_TS) != 0 &&
1961		    to.to_tsecr) {
1962			if (!tp->t_rttlow || tp->t_rttlow > ticks - to.to_tsecr)
1963				tp->t_rttlow = ticks - to.to_tsecr;
1964			tcp_xmit_timer(tp, ticks - to.to_tsecr + 1);
1965		} else if (tp->t_rtttime && SEQ_GT(th->th_ack, tp->t_rtseq)) {
1966			if (!tp->t_rttlow || tp->t_rttlow > ticks - tp->t_rtttime)
1967				tp->t_rttlow = ticks - tp->t_rtttime;
1968			tcp_xmit_timer(tp, ticks - tp->t_rtttime);
1969		}
1970		tcp_xmit_bandwidth_limit(tp, th->th_ack);
1971
1972		/*
1973		 * If all outstanding data is acked, stop retransmit
1974		 * timer and remember to restart (more output or persist).
1975		 * If there is more data to be acked, restart retransmit
1976		 * timer, using current (possibly backed-off) value.
1977		 */
1978		if (th->th_ack == tp->snd_max) {
1979			tcp_timer_activate(tp, TT_REXMT, 0);
1980			needoutput = 1;
1981		} else if (!tcp_timer_active(tp, TT_PERSIST))
1982			tcp_timer_activate(tp, TT_REXMT, tp->t_rxtcur);
1983
1984		/*
1985		 * If no data (only SYN) was ACK'd,
1986		 *    skip rest of ACK processing.
1987		 */
1988		if (acked == 0)
1989			goto step6;
1990
1991		/*
1992		 * When new data is acked, open the congestion window.
1993		 * If the window gives us less than ssthresh packets
1994		 * in flight, open exponentially (maxseg per packet).
1995		 * Otherwise open linearly: maxseg per window
1996		 * (maxseg^2 / cwnd per packet).
1997		 */
1998		if ((!tcp_do_newreno && !(tp->t_flags & TF_SACK_PERMIT)) ||
1999		    !IN_FASTRECOVERY(tp)) {
2000			u_int cw = tp->snd_cwnd;
2001			u_int incr = tp->t_maxseg;
2002			if (cw > tp->snd_ssthresh)
2003				incr = incr * incr / cw;
2004			tp->snd_cwnd = min(cw+incr, TCP_MAXWIN<<tp->snd_scale);
2005		}
2006		SOCKBUF_LOCK(&so->so_snd);
2007		if (acked > so->so_snd.sb_cc) {
2008			tp->snd_wnd -= so->so_snd.sb_cc;
2009			sbdrop_locked(&so->so_snd, (int)so->so_snd.sb_cc);
2010			ourfinisacked = 1;
2011		} else {
2012			sbdrop_locked(&so->so_snd, acked);
2013			tp->snd_wnd -= acked;
2014			ourfinisacked = 0;
2015		}
2016		sowwakeup_locked(so);
2017		/* detect una wraparound */
2018		if ((tcp_do_newreno || (tp->t_flags & TF_SACK_PERMIT)) &&
2019		    !IN_FASTRECOVERY(tp) &&
2020		    SEQ_GT(tp->snd_una, tp->snd_recover) &&
2021		    SEQ_LEQ(th->th_ack, tp->snd_recover))
2022			tp->snd_recover = th->th_ack - 1;
2023		if ((tcp_do_newreno || (tp->t_flags & TF_SACK_PERMIT)) &&
2024		    IN_FASTRECOVERY(tp) &&
2025		    SEQ_GEQ(th->th_ack, tp->snd_recover))
2026			EXIT_FASTRECOVERY(tp);
2027		tp->snd_una = th->th_ack;
2028		if (tp->t_flags & TF_SACK_PERMIT) {
2029			if (SEQ_GT(tp->snd_una, tp->snd_recover))
2030				tp->snd_recover = tp->snd_una;
2031		}
2032		if (SEQ_LT(tp->snd_nxt, tp->snd_una))
2033			tp->snd_nxt = tp->snd_una;
2034
2035		switch (tp->t_state) {
2036
2037		/*
2038		 * In FIN_WAIT_1 STATE in addition to the processing
2039		 * for the ESTABLISHED state if our FIN is now acknowledged
2040		 * then enter FIN_WAIT_2.
2041		 */
2042		case TCPS_FIN_WAIT_1:
2043			if (ourfinisacked) {
2044				/*
2045				 * If we can't receive any more
2046				 * data, then closing user can proceed.
2047				 * Starting the timer is contrary to the
2048				 * specification, but if we don't get a FIN
2049				 * we'll hang forever.
2050				 */
2051		/* XXXjl
2052		 * we should release the tp also, and use a
2053		 * compressed state.
2054		 */
2055				if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
2056					int timeout;
2057
2058					soisdisconnected(so);
2059					timeout = (tcp_fast_finwait2_recycle) ?
2060						tcp_finwait2_timeout : tcp_maxidle;
2061					tcp_timer_activate(tp, TT_2MSL, timeout);
2062				}
2063				tp->t_state = TCPS_FIN_WAIT_2;
2064			}
2065			break;
2066
2067		/*
2068		 * In CLOSING STATE in addition to the processing for
2069		 * the ESTABLISHED state if the ACK acknowledges our FIN
2070		 * then enter the TIME-WAIT state, otherwise ignore
2071		 * the segment.
2072		 */
2073		case TCPS_CLOSING:
2074			if (ourfinisacked) {
2075				KASSERT(headlocked, ("%s: process_ACK: "
2076				    "head not locked", __func__));
2077				tcp_twstart(tp);
2078				INP_INFO_WUNLOCK(&tcbinfo);
2079				headlocked = 0;
2080				m_freem(m);
2081				return;
2082			}
2083			break;
2084
2085		/*
2086		 * In LAST_ACK, we may still be waiting for data to drain
2087		 * and/or to be acked, as well as for the ack of our FIN.
2088		 * If our FIN is now acknowledged, delete the TCB,
2089		 * enter the closed state and return.
2090		 */
2091		case TCPS_LAST_ACK:
2092			if (ourfinisacked) {
2093				KASSERT(headlocked, ("%s: process_ACK: "
2094				    "tcp_close: head not locked", __func__));
2095				tp = tcp_close(tp);
2096				goto drop;
2097			}
2098			break;
2099		}
2100	}
2101
2102step6:
2103	KASSERT(headlocked, ("%s: step6: head not locked", __func__));
2104	INP_LOCK_ASSERT(tp->t_inpcb);
2105
2106	/*
2107	 * Update window information.
2108	 * Don't look at window if no ACK: TAC's send garbage on first SYN.
2109	 */
2110	if ((thflags & TH_ACK) &&
2111	    (SEQ_LT(tp->snd_wl1, th->th_seq) ||
2112	    (tp->snd_wl1 == th->th_seq && (SEQ_LT(tp->snd_wl2, th->th_ack) ||
2113	     (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))))) {
2114		/* keep track of pure window updates */
2115		if (tlen == 0 &&
2116		    tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)
2117			tcpstat.tcps_rcvwinupd++;
2118		tp->snd_wnd = tiwin;
2119		tp->snd_wl1 = th->th_seq;
2120		tp->snd_wl2 = th->th_ack;
2121		if (tp->snd_wnd > tp->max_sndwnd)
2122			tp->max_sndwnd = tp->snd_wnd;
2123		needoutput = 1;
2124	}
2125
2126	/*
2127	 * Process segments with URG.
2128	 */
2129	if ((thflags & TH_URG) && th->th_urp &&
2130	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2131		/*
2132		 * This is a kludge, but if we receive and accept
2133		 * random urgent pointers, we'll crash in
2134		 * soreceive.  It's hard to imagine someone
2135		 * actually wanting to send this much urgent data.
2136		 */
2137		SOCKBUF_LOCK(&so->so_rcv);
2138		if (th->th_urp + so->so_rcv.sb_cc > sb_max) {
2139			th->th_urp = 0;			/* XXX */
2140			thflags &= ~TH_URG;		/* XXX */
2141			SOCKBUF_UNLOCK(&so->so_rcv);	/* XXX */
2142			goto dodata;			/* XXX */
2143		}
2144		/*
2145		 * If this segment advances the known urgent pointer,
2146		 * then mark the data stream.  This should not happen
2147		 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
2148		 * a FIN has been received from the remote side.
2149		 * In these states we ignore the URG.
2150		 *
2151		 * According to RFC961 (Assigned Protocols),
2152		 * the urgent pointer points to the last octet
2153		 * of urgent data.  We continue, however,
2154		 * to consider it to indicate the first octet
2155		 * of data past the urgent section as the original
2156		 * spec states (in one of two places).
2157		 */
2158		if (SEQ_GT(th->th_seq+th->th_urp, tp->rcv_up)) {
2159			tp->rcv_up = th->th_seq + th->th_urp;
2160			so->so_oobmark = so->so_rcv.sb_cc +
2161			    (tp->rcv_up - tp->rcv_nxt) - 1;
2162			if (so->so_oobmark == 0)
2163				so->so_rcv.sb_state |= SBS_RCVATMARK;
2164			sohasoutofband(so);
2165			tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
2166		}
2167		SOCKBUF_UNLOCK(&so->so_rcv);
2168		/*
2169		 * Remove out of band data so doesn't get presented to user.
2170		 * This can happen independent of advancing the URG pointer,
2171		 * but if two URG's are pending at once, some out-of-band
2172		 * data may creep in... ick.
2173		 */
2174		if (th->th_urp <= (u_long)tlen &&
2175		    !(so->so_options & SO_OOBINLINE)) {
2176			/* hdr drop is delayed */
2177			tcp_pulloutofband(so, th, m, drop_hdrlen);
2178		}
2179	} else {
2180		/*
2181		 * If no out of band data is expected,
2182		 * pull receive urgent pointer along
2183		 * with the receive window.
2184		 */
2185		if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
2186			tp->rcv_up = tp->rcv_nxt;
2187	}
2188dodata:							/* XXX */
2189	KASSERT(headlocked, ("%s: dodata: head not locked", __func__));
2190	INP_LOCK_ASSERT(tp->t_inpcb);
2191
2192	/*
2193	 * Process the segment text, merging it into the TCP sequencing queue,
2194	 * and arranging for acknowledgment of receipt if necessary.
2195	 * This process logically involves adjusting tp->rcv_wnd as data
2196	 * is presented to the user (this happens in tcp_usrreq.c,
2197	 * case PRU_RCVD).  If a FIN has already been received on this
2198	 * connection then we just ignore the text.
2199	 */
2200	if ((tlen || (thflags & TH_FIN)) &&
2201	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2202		tcp_seq save_start = th->th_seq;
2203		tcp_seq save_end = th->th_seq + tlen;
2204		m_adj(m, drop_hdrlen);	/* delayed header drop */
2205		/*
2206		 * Insert segment which includes th into TCP reassembly queue
2207		 * with control block tp.  Set thflags to whether reassembly now
2208		 * includes a segment with FIN.  This handles the common case
2209		 * inline (segment is the next to be received on an established
2210		 * connection, and the queue is empty), avoiding linkage into
2211		 * and removal from the queue and repetition of various
2212		 * conversions.
2213		 * Set DELACK for segments received in order, but ack
2214		 * immediately when segments are out of order (so
2215		 * fast retransmit can work).
2216		 */
2217		if (th->th_seq == tp->rcv_nxt &&
2218		    LIST_EMPTY(&tp->t_segq) &&
2219		    TCPS_HAVEESTABLISHED(tp->t_state)) {
2220			if (DELAY_ACK(tp))
2221				tp->t_flags |= TF_DELACK;
2222			else
2223				tp->t_flags |= TF_ACKNOW;
2224			tp->rcv_nxt += tlen;
2225			thflags = th->th_flags & TH_FIN;
2226			tcpstat.tcps_rcvpack++;
2227			tcpstat.tcps_rcvbyte += tlen;
2228			ND6_HINT(tp);
2229			SOCKBUF_LOCK(&so->so_rcv);
2230			if (so->so_rcv.sb_state & SBS_CANTRCVMORE)
2231				m_freem(m);
2232			else
2233				sbappendstream_locked(&so->so_rcv, m);
2234			sorwakeup_locked(so);
2235		} else {
2236			thflags = tcp_reass(tp, th, &tlen, m);
2237			tp->t_flags |= TF_ACKNOW;
2238		}
2239		if (tlen > 0 && (tp->t_flags & TF_SACK_PERMIT))
2240			tcp_update_sack_list(tp, save_start, save_end);
2241#if 0
2242		/*
2243		 * Note the amount of data that peer has sent into
2244		 * our window, in order to estimate the sender's
2245		 * buffer size.
2246		 * XXX: Unused.
2247		 */
2248		len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
2249#endif
2250	} else {
2251		m_freem(m);
2252		thflags &= ~TH_FIN;
2253	}
2254
2255	/*
2256	 * If FIN is received ACK the FIN and let the user know
2257	 * that the connection is closing.
2258	 */
2259	if (thflags & TH_FIN) {
2260		if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2261			socantrcvmore(so);
2262			/*
2263			 * If connection is half-synchronized
2264			 * (ie NEEDSYN flag on) then delay ACK,
2265			 * so it may be piggybacked when SYN is sent.
2266			 * Otherwise, since we received a FIN then no
2267			 * more input can be expected, send ACK now.
2268			 */
2269			if (tp->t_flags & TF_NEEDSYN)
2270				tp->t_flags |= TF_DELACK;
2271			else
2272				tp->t_flags |= TF_ACKNOW;
2273			tp->rcv_nxt++;
2274		}
2275		switch (tp->t_state) {
2276
2277		/*
2278		 * In SYN_RECEIVED and ESTABLISHED STATES
2279		 * enter the CLOSE_WAIT state.
2280		 */
2281		case TCPS_SYN_RECEIVED:
2282			tp->t_starttime = ticks;
2283			/*FALLTHROUGH*/
2284		case TCPS_ESTABLISHED:
2285			tp->t_state = TCPS_CLOSE_WAIT;
2286			break;
2287
2288		/*
2289		 * If still in FIN_WAIT_1 STATE FIN has not been acked so
2290		 * enter the CLOSING state.
2291		 */
2292		case TCPS_FIN_WAIT_1:
2293			tp->t_state = TCPS_CLOSING;
2294			break;
2295
2296		/*
2297		 * In FIN_WAIT_2 state enter the TIME_WAIT state,
2298		 * starting the time-wait timer, turning off the other
2299		 * standard timers.
2300		 */
2301		case TCPS_FIN_WAIT_2:
2302			KASSERT(headlocked == 1, ("%s: dodata: "
2303			    "TCP_FIN_WAIT_2: head not locked", __func__));
2304			tcp_twstart(tp);
2305			INP_INFO_WUNLOCK(&tcbinfo);
2306			return;
2307		}
2308	}
2309	INP_INFO_WUNLOCK(&tcbinfo);
2310	headlocked = 0;
2311#ifdef TCPDEBUG
2312	if (so->so_options & SO_DEBUG)
2313		tcp_trace(TA_INPUT, ostate, tp, (void *)tcp_saveipgen,
2314			  &tcp_savetcp, 0);
2315#endif
2316
2317	/*
2318	 * Return any desired output.
2319	 */
2320	if (needoutput || (tp->t_flags & TF_ACKNOW))
2321		(void) tcp_output(tp);
2322
2323check_delack:
2324	KASSERT(headlocked == 0, ("%s: check_delack: head locked",
2325	    __func__));
2326	INP_INFO_UNLOCK_ASSERT(&tcbinfo);
2327	INP_LOCK_ASSERT(tp->t_inpcb);
2328	if (tp->t_flags & TF_DELACK) {
2329		tp->t_flags &= ~TF_DELACK;
2330		tcp_timer_activate(tp, TT_DELACK, tcp_delacktime);
2331	}
2332	INP_UNLOCK(tp->t_inpcb);
2333	return;
2334
2335dropafterack:
2336	KASSERT(headlocked, ("%s: dropafterack: head not locked", __func__));
2337	/*
2338	 * Generate an ACK dropping incoming segment if it occupies
2339	 * sequence space, where the ACK reflects our state.
2340	 *
2341	 * We can now skip the test for the RST flag since all
2342	 * paths to this code happen after packets containing
2343	 * RST have been dropped.
2344	 *
2345	 * In the SYN-RECEIVED state, don't send an ACK unless the
2346	 * segment we received passes the SYN-RECEIVED ACK test.
2347	 * If it fails send a RST.  This breaks the loop in the
2348	 * "LAND" DoS attack, and also prevents an ACK storm
2349	 * between two listening ports that have been sent forged
2350	 * SYN segments, each with the source address of the other.
2351	 */
2352	if (tp->t_state == TCPS_SYN_RECEIVED && (thflags & TH_ACK) &&
2353	    (SEQ_GT(tp->snd_una, th->th_ack) ||
2354	     SEQ_GT(th->th_ack, tp->snd_max)) ) {
2355		rstreason = BANDLIM_RST_OPENPORT;
2356		goto dropwithreset;
2357	}
2358#ifdef TCPDEBUG
2359	if (so->so_options & SO_DEBUG)
2360		tcp_trace(TA_DROP, ostate, tp, (void *)tcp_saveipgen,
2361			  &tcp_savetcp, 0);
2362#endif
2363	KASSERT(headlocked, ("%s: headlocked should be 1", __func__));
2364	INP_INFO_WUNLOCK(&tcbinfo);
2365	tp->t_flags |= TF_ACKNOW;
2366	(void) tcp_output(tp);
2367	INP_UNLOCK(tp->t_inpcb);
2368	m_freem(m);
2369	return;
2370
2371dropwithreset:
2372	KASSERT(headlocked, ("%s: dropwithreset: head not locked", __func__));
2373
2374	tcp_dropwithreset(m, th, tp, tlen, rstreason);
2375
2376	if (tp != NULL)
2377		INP_UNLOCK(tp->t_inpcb);
2378	if (headlocked)
2379		INP_INFO_WUNLOCK(&tcbinfo);
2380	return;
2381
2382drop:
2383	/*
2384	 * Drop space held by incoming segment and return.
2385	 */
2386#ifdef TCPDEBUG
2387	if (tp == NULL || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
2388		tcp_trace(TA_DROP, ostate, tp, (void *)tcp_saveipgen,
2389			  &tcp_savetcp, 0);
2390#endif
2391	if (tp != NULL)
2392		INP_UNLOCK(tp->t_inpcb);
2393	if (headlocked)
2394		INP_INFO_WUNLOCK(&tcbinfo);
2395	m_freem(m);
2396	return;
2397}
2398
2399/*
2400 * Issue RST and make ACK acceptable to originator of segment.
2401 * The mbuf must still include the original packet header.
2402 * tp may be NULL.
2403 */
2404static void
2405tcp_dropwithreset(struct mbuf *m, struct tcphdr *th, struct tcpcb *tp,
2406    int tlen, int rstreason)
2407{
2408	struct ip *ip;
2409#ifdef INET6
2410	struct ip6_hdr *ip6;
2411#endif
2412	/* Don't bother if destination was broadcast/multicast. */
2413	if ((th->th_flags & TH_RST) || m->m_flags & (M_BCAST|M_MCAST))
2414		goto drop;
2415#ifdef INET6
2416	if (mtod(m, struct ip *)->ip_v == 6) {
2417		ip6 = mtod(m, struct ip6_hdr *);
2418		if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) ||
2419		    IN6_IS_ADDR_MULTICAST(&ip6->ip6_src))
2420			goto drop;
2421		/* IPv6 anycast check is done at tcp6_input() */
2422	} else
2423#endif
2424	{
2425		ip = mtod(m, struct ip *);
2426		if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
2427		    IN_MULTICAST(ntohl(ip->ip_src.s_addr)) ||
2428		    ip->ip_src.s_addr == htonl(INADDR_BROADCAST) ||
2429		    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
2430			goto drop;
2431	}
2432
2433	/* Perform bandwidth limiting. */
2434	if (badport_bandlim(rstreason) < 0)
2435		goto drop;
2436
2437	/* tcp_respond consumes the mbuf chain. */
2438	if (th->th_flags & TH_ACK) {
2439		tcp_respond(tp, mtod(m, void *), th, m, (tcp_seq)0,
2440		    th->th_ack, TH_RST);
2441	} else {
2442		if (th->th_flags & TH_SYN)
2443			tlen++;
2444		tcp_respond(tp, mtod(m, void *), th, m, th->th_seq+tlen,
2445		    (tcp_seq)0, TH_RST|TH_ACK);
2446	}
2447	return;
2448drop:
2449	m_freem(m);
2450	return;
2451}
2452
2453/*
2454 * Parse TCP options and place in tcpopt.
2455 */
2456static void
2457tcp_dooptions(struct tcpopt *to, u_char *cp, int cnt, int flags)
2458{
2459	int opt, optlen;
2460
2461	to->to_flags = 0;
2462	for (; cnt > 0; cnt -= optlen, cp += optlen) {
2463		opt = cp[0];
2464		if (opt == TCPOPT_EOL)
2465			break;
2466		if (opt == TCPOPT_NOP)
2467			optlen = 1;
2468		else {
2469			if (cnt < 2)
2470				break;
2471			optlen = cp[1];
2472			if (optlen < 2 || optlen > cnt)
2473				break;
2474		}
2475		switch (opt) {
2476		case TCPOPT_MAXSEG:
2477			if (optlen != TCPOLEN_MAXSEG)
2478				continue;
2479			if (!(flags & TO_SYN))
2480				continue;
2481			to->to_flags |= TOF_MSS;
2482			bcopy((char *)cp + 2,
2483			    (char *)&to->to_mss, sizeof(to->to_mss));
2484			to->to_mss = ntohs(to->to_mss);
2485			break;
2486		case TCPOPT_WINDOW:
2487			if (optlen != TCPOLEN_WINDOW)
2488				continue;
2489			if (!(flags & TO_SYN))
2490				continue;
2491			to->to_flags |= TOF_SCALE;
2492			to->to_wscale = min(cp[2], TCP_MAX_WINSHIFT);
2493			break;
2494		case TCPOPT_TIMESTAMP:
2495			if (optlen != TCPOLEN_TIMESTAMP)
2496				continue;
2497			to->to_flags |= TOF_TS;
2498			bcopy((char *)cp + 2,
2499			    (char *)&to->to_tsval, sizeof(to->to_tsval));
2500			to->to_tsval = ntohl(to->to_tsval);
2501			bcopy((char *)cp + 6,
2502			    (char *)&to->to_tsecr, sizeof(to->to_tsecr));
2503			to->to_tsecr = ntohl(to->to_tsecr);
2504			break;
2505#ifdef TCP_SIGNATURE
2506		/*
2507		 * XXX In order to reply to a host which has set the
2508		 * TCP_SIGNATURE option in its initial SYN, we have to
2509		 * record the fact that the option was observed here
2510		 * for the syncache code to perform the correct response.
2511		 */
2512		case TCPOPT_SIGNATURE:
2513			if (optlen != TCPOLEN_SIGNATURE)
2514				continue;
2515			to->to_flags |= TOF_SIGNATURE;
2516			to->to_signature = cp + 2;
2517			break;
2518#endif
2519		case TCPOPT_SACK_PERMITTED:
2520			if (optlen != TCPOLEN_SACK_PERMITTED)
2521				continue;
2522			if (!(flags & TO_SYN))
2523				continue;
2524			if (!tcp_do_sack)
2525				continue;
2526			to->to_flags |= TOF_SACKPERM;
2527			break;
2528		case TCPOPT_SACK:
2529			if (optlen <= 2 || (optlen - 2) % TCPOLEN_SACK != 0)
2530				continue;
2531			if (flags & TO_SYN)
2532				continue;
2533			to->to_flags |= TOF_SACK;
2534			to->to_nsacks = (optlen - 2) / TCPOLEN_SACK;
2535			to->to_sacks = cp + 2;
2536			tcpstat.tcps_sack_rcv_blocks++;
2537			break;
2538		default:
2539			continue;
2540		}
2541	}
2542}
2543
2544/*
2545 * Pull out of band byte out of a segment so
2546 * it doesn't appear in the user's data queue.
2547 * It is still reflected in the segment length for
2548 * sequencing purposes.
2549 */
2550static void
2551tcp_pulloutofband(struct socket *so, struct tcphdr *th, struct mbuf *m,
2552    int off)
2553{
2554	int cnt = off + th->th_urp - 1;
2555
2556	while (cnt >= 0) {
2557		if (m->m_len > cnt) {
2558			char *cp = mtod(m, caddr_t) + cnt;
2559			struct tcpcb *tp = sototcpcb(so);
2560
2561			tp->t_iobc = *cp;
2562			tp->t_oobflags |= TCPOOB_HAVEDATA;
2563			bcopy(cp+1, cp, (unsigned)(m->m_len - cnt - 1));
2564			m->m_len--;
2565			if (m->m_flags & M_PKTHDR)
2566				m->m_pkthdr.len--;
2567			return;
2568		}
2569		cnt -= m->m_len;
2570		m = m->m_next;
2571		if (m == NULL)
2572			break;
2573	}
2574	panic("tcp_pulloutofband");
2575}
2576
2577/*
2578 * Collect new round-trip time estimate
2579 * and update averages and current timeout.
2580 */
2581static void
2582tcp_xmit_timer(struct tcpcb *tp, int rtt)
2583{
2584	int delta;
2585
2586	INP_LOCK_ASSERT(tp->t_inpcb);
2587
2588	tcpstat.tcps_rttupdated++;
2589	tp->t_rttupdated++;
2590	if (tp->t_srtt != 0) {
2591		/*
2592		 * srtt is stored as fixed point with 5 bits after the
2593		 * binary point (i.e., scaled by 8).  The following magic
2594		 * is equivalent to the smoothing algorithm in rfc793 with
2595		 * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed
2596		 * point).  Adjust rtt to origin 0.
2597		 */
2598		delta = ((rtt - 1) << TCP_DELTA_SHIFT)
2599			- (tp->t_srtt >> (TCP_RTT_SHIFT - TCP_DELTA_SHIFT));
2600
2601		if ((tp->t_srtt += delta) <= 0)
2602			tp->t_srtt = 1;
2603
2604		/*
2605		 * We accumulate a smoothed rtt variance (actually, a
2606		 * smoothed mean difference), then set the retransmit
2607		 * timer to smoothed rtt + 4 times the smoothed variance.
2608		 * rttvar is stored as fixed point with 4 bits after the
2609		 * binary point (scaled by 16).  The following is
2610		 * equivalent to rfc793 smoothing with an alpha of .75
2611		 * (rttvar = rttvar*3/4 + |delta| / 4).  This replaces
2612		 * rfc793's wired-in beta.
2613		 */
2614		if (delta < 0)
2615			delta = -delta;
2616		delta -= tp->t_rttvar >> (TCP_RTTVAR_SHIFT - TCP_DELTA_SHIFT);
2617		if ((tp->t_rttvar += delta) <= 0)
2618			tp->t_rttvar = 1;
2619		if (tp->t_rttbest > tp->t_srtt + tp->t_rttvar)
2620		    tp->t_rttbest = tp->t_srtt + tp->t_rttvar;
2621	} else {
2622		/*
2623		 * No rtt measurement yet - use the unsmoothed rtt.
2624		 * Set the variance to half the rtt (so our first
2625		 * retransmit happens at 3*rtt).
2626		 */
2627		tp->t_srtt = rtt << TCP_RTT_SHIFT;
2628		tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT - 1);
2629		tp->t_rttbest = tp->t_srtt + tp->t_rttvar;
2630	}
2631	tp->t_rtttime = 0;
2632	tp->t_rxtshift = 0;
2633
2634	/*
2635	 * the retransmit should happen at rtt + 4 * rttvar.
2636	 * Because of the way we do the smoothing, srtt and rttvar
2637	 * will each average +1/2 tick of bias.  When we compute
2638	 * the retransmit timer, we want 1/2 tick of rounding and
2639	 * 1 extra tick because of +-1/2 tick uncertainty in the
2640	 * firing of the timer.  The bias will give us exactly the
2641	 * 1.5 tick we need.  But, because the bias is
2642	 * statistical, we have to test that we don't drop below
2643	 * the minimum feasible timer (which is 2 ticks).
2644	 */
2645	TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
2646		      max(tp->t_rttmin, rtt + 2), TCPTV_REXMTMAX);
2647
2648	/*
2649	 * We received an ack for a packet that wasn't retransmitted;
2650	 * it is probably safe to discard any error indications we've
2651	 * received recently.  This isn't quite right, but close enough
2652	 * for now (a route might have failed after we sent a segment,
2653	 * and the return path might not be symmetrical).
2654	 */
2655	tp->t_softerror = 0;
2656}
2657
2658/*
2659 * Determine a reasonable value for maxseg size.
2660 * If the route is known, check route for mtu.
2661 * If none, use an mss that can be handled on the outgoing
2662 * interface without forcing IP to fragment; if bigger than
2663 * an mbuf cluster (MCLBYTES), round down to nearest multiple of MCLBYTES
2664 * to utilize large mbufs.  If no route is found, route has no mtu,
2665 * or the destination isn't local, use a default, hopefully conservative
2666 * size (usually 512 or the default IP max size, but no more than the mtu
2667 * of the interface), as we can't discover anything about intervening
2668 * gateways or networks.  We also initialize the congestion/slow start
2669 * window to be a single segment if the destination isn't local.
2670 * While looking at the routing entry, we also initialize other path-dependent
2671 * parameters from pre-set or cached values in the routing entry.
2672 *
2673 * Also take into account the space needed for options that we
2674 * send regularly.  Make maxseg shorter by that amount to assure
2675 * that we can send maxseg amount of data even when the options
2676 * are present.  Store the upper limit of the length of options plus
2677 * data in maxopd.
2678 *
2679 *
2680 * In case of T/TCP, we call this routine during implicit connection
2681 * setup as well (offer = -1), to initialize maxseg from the cached
2682 * MSS of our peer.
2683 *
2684 * NOTE that this routine is only called when we process an incoming
2685 * segment. Outgoing SYN/ACK MSS settings are handled in tcp_mssopt().
2686 */
2687void
2688tcp_mss(struct tcpcb *tp, int offer)
2689{
2690	int rtt, mss;
2691	u_long bufsize;
2692	u_long maxmtu;
2693	struct inpcb *inp = tp->t_inpcb;
2694	struct socket *so;
2695	struct hc_metrics_lite metrics;
2696	int origoffer = offer;
2697	int mtuflags = 0;
2698#ifdef INET6
2699	int isipv6 = ((inp->inp_vflag & INP_IPV6) != 0) ? 1 : 0;
2700	size_t min_protoh = isipv6 ?
2701			    sizeof (struct ip6_hdr) + sizeof (struct tcphdr) :
2702			    sizeof (struct tcpiphdr);
2703#else
2704	const size_t min_protoh = sizeof(struct tcpiphdr);
2705#endif
2706
2707	/* initialize */
2708#ifdef INET6
2709	if (isipv6) {
2710		maxmtu = tcp_maxmtu6(&inp->inp_inc, &mtuflags);
2711		tp->t_maxopd = tp->t_maxseg = tcp_v6mssdflt;
2712	} else
2713#endif
2714	{
2715		maxmtu = tcp_maxmtu(&inp->inp_inc, &mtuflags);
2716		tp->t_maxopd = tp->t_maxseg = tcp_mssdflt;
2717	}
2718	so = inp->inp_socket;
2719
2720	/*
2721	 * no route to sender, stay with default mss and return
2722	 */
2723	if (maxmtu == 0)
2724		return;
2725
2726	/* what have we got? */
2727	switch (offer) {
2728		case 0:
2729			/*
2730			 * Offer == 0 means that there was no MSS on the SYN
2731			 * segment, in this case we use tcp_mssdflt.
2732			 */
2733			offer =
2734#ifdef INET6
2735				isipv6 ? tcp_v6mssdflt :
2736#endif
2737				tcp_mssdflt;
2738			break;
2739
2740		case -1:
2741			/*
2742			 * Offer == -1 means that we didn't receive SYN yet.
2743			 */
2744			/* FALLTHROUGH */
2745
2746		default:
2747			/*
2748			 * Prevent DoS attack with too small MSS. Round up
2749			 * to at least minmss.
2750			 */
2751			offer = max(offer, tcp_minmss);
2752			/*
2753			 * Sanity check: make sure that maxopd will be large
2754			 * enough to allow some data on segments even if the
2755			 * all the option space is used (40bytes).  Otherwise
2756			 * funny things may happen in tcp_output.
2757			 */
2758			offer = max(offer, 64);
2759	}
2760
2761	/*
2762	 * rmx information is now retrieved from tcp_hostcache
2763	 */
2764	tcp_hc_get(&inp->inp_inc, &metrics);
2765
2766	/*
2767	 * if there's a discovered mtu int tcp hostcache, use it
2768	 * else, use the link mtu.
2769	 */
2770	if (metrics.rmx_mtu)
2771		mss = min(metrics.rmx_mtu, maxmtu) - min_protoh;
2772	else {
2773#ifdef INET6
2774		if (isipv6) {
2775			mss = maxmtu - min_protoh;
2776			if (!path_mtu_discovery &&
2777			    !in6_localaddr(&inp->in6p_faddr))
2778				mss = min(mss, tcp_v6mssdflt);
2779		} else
2780#endif
2781		{
2782			mss = maxmtu - min_protoh;
2783			if (!path_mtu_discovery &&
2784			    !in_localaddr(inp->inp_faddr))
2785				mss = min(mss, tcp_mssdflt);
2786		}
2787	}
2788	mss = min(mss, offer);
2789
2790	/*
2791	 * maxopd stores the maximum length of data AND options
2792	 * in a segment; maxseg is the amount of data in a normal
2793	 * segment.  We need to store this value (maxopd) apart
2794	 * from maxseg, because now every segment carries options
2795	 * and thus we normally have somewhat less data in segments.
2796	 */
2797	tp->t_maxopd = mss;
2798
2799	/*
2800	 * origoffer==-1 indicates, that no segments were received yet.
2801	 * In this case we just guess.
2802	 */
2803	if ((tp->t_flags & (TF_REQ_TSTMP|TF_NOOPT)) == TF_REQ_TSTMP &&
2804	    (origoffer == -1 ||
2805	     (tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP))
2806		mss -= TCPOLEN_TSTAMP_APPA;
2807	tp->t_maxseg = mss;
2808
2809#if	(MCLBYTES & (MCLBYTES - 1)) == 0
2810		if (mss > MCLBYTES)
2811			mss &= ~(MCLBYTES-1);
2812#else
2813		if (mss > MCLBYTES)
2814			mss = mss / MCLBYTES * MCLBYTES;
2815#endif
2816	tp->t_maxseg = mss;
2817
2818	/*
2819	 * If there's a pipesize, change the socket buffer to that size,
2820	 * don't change if sb_hiwat is different than default (then it
2821	 * has been changed on purpose with setsockopt).
2822	 * Make the socket buffers an integral number of mss units;
2823	 * if the mss is larger than the socket buffer, decrease the mss.
2824	 */
2825	SOCKBUF_LOCK(&so->so_snd);
2826	if ((so->so_snd.sb_hiwat == tcp_sendspace) && metrics.rmx_sendpipe)
2827		bufsize = metrics.rmx_sendpipe;
2828	else
2829		bufsize = so->so_snd.sb_hiwat;
2830	if (bufsize < mss)
2831		mss = bufsize;
2832	else {
2833		bufsize = roundup(bufsize, mss);
2834		if (bufsize > sb_max)
2835			bufsize = sb_max;
2836		if (bufsize > so->so_snd.sb_hiwat)
2837			(void)sbreserve_locked(&so->so_snd, bufsize, so, NULL);
2838	}
2839	SOCKBUF_UNLOCK(&so->so_snd);
2840	tp->t_maxseg = mss;
2841
2842	SOCKBUF_LOCK(&so->so_rcv);
2843	if ((so->so_rcv.sb_hiwat == tcp_recvspace) && metrics.rmx_recvpipe)
2844		bufsize = metrics.rmx_recvpipe;
2845	else
2846		bufsize = so->so_rcv.sb_hiwat;
2847	if (bufsize > mss) {
2848		bufsize = roundup(bufsize, mss);
2849		if (bufsize > sb_max)
2850			bufsize = sb_max;
2851		if (bufsize > so->so_rcv.sb_hiwat)
2852			(void)sbreserve_locked(&so->so_rcv, bufsize, so, NULL);
2853	}
2854	SOCKBUF_UNLOCK(&so->so_rcv);
2855	/*
2856	 * While we're here, check the others too
2857	 */
2858	if (tp->t_srtt == 0 && (rtt = metrics.rmx_rtt)) {
2859		tp->t_srtt = rtt;
2860		tp->t_rttbest = tp->t_srtt + TCP_RTT_SCALE;
2861		tcpstat.tcps_usedrtt++;
2862		if (metrics.rmx_rttvar) {
2863			tp->t_rttvar = metrics.rmx_rttvar;
2864			tcpstat.tcps_usedrttvar++;
2865		} else {
2866			/* default variation is +- 1 rtt */
2867			tp->t_rttvar =
2868			    tp->t_srtt * TCP_RTTVAR_SCALE / TCP_RTT_SCALE;
2869		}
2870		TCPT_RANGESET(tp->t_rxtcur,
2871			      ((tp->t_srtt >> 2) + tp->t_rttvar) >> 1,
2872			      tp->t_rttmin, TCPTV_REXMTMAX);
2873	}
2874	if (metrics.rmx_ssthresh) {
2875		/*
2876		 * There's some sort of gateway or interface
2877		 * buffer limit on the path.  Use this to set
2878		 * the slow start threshhold, but set the
2879		 * threshold to no less than 2*mss.
2880		 */
2881		tp->snd_ssthresh = max(2 * mss, metrics.rmx_ssthresh);
2882		tcpstat.tcps_usedssthresh++;
2883	}
2884	if (metrics.rmx_bandwidth)
2885		tp->snd_bandwidth = metrics.rmx_bandwidth;
2886
2887	/*
2888	 * Set the slow-start flight size depending on whether this
2889	 * is a local network or not.
2890	 *
2891	 * Extend this so we cache the cwnd too and retrieve it here.
2892	 * Make cwnd even bigger than RFC3390 suggests but only if we
2893	 * have previous experience with the remote host. Be careful
2894	 * not make cwnd bigger than remote receive window or our own
2895	 * send socket buffer. Maybe put some additional upper bound
2896	 * on the retrieved cwnd. Should do incremental updates to
2897	 * hostcache when cwnd collapses so next connection doesn't
2898	 * overloads the path again.
2899	 *
2900	 * RFC3390 says only do this if SYN or SYN/ACK didn't got lost.
2901	 * We currently check only in syncache_socket for that.
2902	 */
2903#define TCP_METRICS_CWND
2904#ifdef TCP_METRICS_CWND
2905	if (metrics.rmx_cwnd)
2906		tp->snd_cwnd = max(mss,
2907				min(metrics.rmx_cwnd / 2,
2908				 min(tp->snd_wnd, so->so_snd.sb_hiwat)));
2909	else
2910#endif
2911	if (tcp_do_rfc3390)
2912		tp->snd_cwnd = min(4 * mss, max(2 * mss, 4380));
2913#ifdef INET6
2914	else if ((isipv6 && in6_localaddr(&inp->in6p_faddr)) ||
2915		 (!isipv6 && in_localaddr(inp->inp_faddr)))
2916#else
2917	else if (in_localaddr(inp->inp_faddr))
2918#endif
2919		tp->snd_cwnd = mss * ss_fltsz_local;
2920	else
2921		tp->snd_cwnd = mss * ss_fltsz;
2922
2923	/* Check the interface for TSO capabilities. */
2924	if (mtuflags & CSUM_TSO)
2925		tp->t_flags |= TF_TSO;
2926}
2927
2928/*
2929 * Determine the MSS option to send on an outgoing SYN.
2930 */
2931int
2932tcp_mssopt(struct in_conninfo *inc)
2933{
2934	int mss = 0;
2935	u_long maxmtu = 0;
2936	u_long thcmtu = 0;
2937	size_t min_protoh;
2938#ifdef INET6
2939	int isipv6 = inc->inc_isipv6 ? 1 : 0;
2940#endif
2941
2942	KASSERT(inc != NULL, ("tcp_mssopt with NULL in_conninfo pointer"));
2943
2944#ifdef INET6
2945	if (isipv6) {
2946		mss = tcp_v6mssdflt;
2947		maxmtu = tcp_maxmtu6(inc, NULL);
2948		thcmtu = tcp_hc_getmtu(inc); /* IPv4 and IPv6 */
2949		min_protoh = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
2950	} else
2951#endif
2952	{
2953		mss = tcp_mssdflt;
2954		maxmtu = tcp_maxmtu(inc, NULL);
2955		thcmtu = tcp_hc_getmtu(inc); /* IPv4 and IPv6 */
2956		min_protoh = sizeof(struct tcpiphdr);
2957	}
2958	if (maxmtu && thcmtu)
2959		mss = min(maxmtu, thcmtu) - min_protoh;
2960	else if (maxmtu || thcmtu)
2961		mss = max(maxmtu, thcmtu) - min_protoh;
2962
2963	return (mss);
2964}
2965
2966
2967/*
2968 * On a partial ack arrives, force the retransmission of the
2969 * next unacknowledged segment.  Do not clear tp->t_dupacks.
2970 * By setting snd_nxt to ti_ack, this forces retransmission timer to
2971 * be started again.
2972 */
2973static void
2974tcp_newreno_partial_ack(struct tcpcb *tp, struct tcphdr *th)
2975{
2976	tcp_seq onxt = tp->snd_nxt;
2977	u_long  ocwnd = tp->snd_cwnd;
2978
2979	tcp_timer_activate(tp, TT_REXMT, 0);
2980	tp->t_rtttime = 0;
2981	tp->snd_nxt = th->th_ack;
2982	/*
2983	 * Set snd_cwnd to one segment beyond acknowledged offset.
2984	 * (tp->snd_una has not yet been updated when this function is called.)
2985	 */
2986	tp->snd_cwnd = tp->t_maxseg + (th->th_ack - tp->snd_una);
2987	tp->t_flags |= TF_ACKNOW;
2988	(void) tcp_output(tp);
2989	tp->snd_cwnd = ocwnd;
2990	if (SEQ_GT(onxt, tp->snd_nxt))
2991		tp->snd_nxt = onxt;
2992	/*
2993	 * Partial window deflation.  Relies on fact that tp->snd_una
2994	 * not updated yet.
2995	 */
2996	if (tp->snd_cwnd > th->th_ack - tp->snd_una)
2997		tp->snd_cwnd -= th->th_ack - tp->snd_una;
2998	else
2999		tp->snd_cwnd = 0;
3000	tp->snd_cwnd += tp->t_maxseg;
3001}
3002