tcp_input.c revision 169317
1/*-
2 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 4. Neither the name of the University nor the names of its contributors
14 *    may be used to endorse or promote products derived from this software
15 *    without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 *
29 *	@(#)tcp_input.c	8.12 (Berkeley) 5/24/95
30 * $FreeBSD: head/sys/netinet/tcp_input.c 169317 2007-05-06 15:56:31Z andre $
31 */
32
33#include "opt_ipfw.h"		/* for ipfw_fwd	*/
34#include "opt_inet.h"
35#include "opt_inet6.h"
36#include "opt_ipsec.h"
37#include "opt_mac.h"
38#include "opt_tcpdebug.h"
39
40#include <sys/param.h>
41#include <sys/kernel.h>
42#include <sys/malloc.h>
43#include <sys/mbuf.h>
44#include <sys/proc.h>		/* for proc0 declaration */
45#include <sys/protosw.h>
46#include <sys/signalvar.h>
47#include <sys/socket.h>
48#include <sys/socketvar.h>
49#include <sys/sysctl.h>
50#include <sys/syslog.h>
51#include <sys/systm.h>
52
53#include <machine/cpu.h>	/* before tcp_seq.h, for tcp_random18() */
54
55#include <vm/uma.h>
56
57#include <net/if.h>
58#include <net/route.h>
59
60#include <netinet/in.h>
61#include <netinet/in_pcb.h>
62#include <netinet/in_systm.h>
63#include <netinet/in_var.h>
64#include <netinet/ip.h>
65#include <netinet/ip_icmp.h>	/* required for icmp_var.h */
66#include <netinet/icmp_var.h>	/* for ICMP_BANDLIM */
67#include <netinet/ip_var.h>
68#include <netinet/ip_options.h>
69#include <netinet/ip6.h>
70#include <netinet/icmp6.h>
71#include <netinet6/in6_pcb.h>
72#include <netinet6/ip6_var.h>
73#include <netinet6/nd6.h>
74#include <netinet/tcp.h>
75#include <netinet/tcp_fsm.h>
76#include <netinet/tcp_seq.h>
77#include <netinet/tcp_timer.h>
78#include <netinet/tcp_var.h>
79#include <netinet6/tcp6_var.h>
80#include <netinet/tcpip.h>
81#ifdef TCPDEBUG
82#include <netinet/tcp_debug.h>
83#endif /* TCPDEBUG */
84
85#ifdef FAST_IPSEC
86#include <netipsec/ipsec.h>
87#include <netipsec/ipsec6.h>
88#endif /*FAST_IPSEC*/
89
90#ifdef IPSEC
91#include <netinet6/ipsec.h>
92#include <netinet6/ipsec6.h>
93#include <netkey/key.h>
94#endif /*IPSEC*/
95
96#include <machine/in_cksum.h>
97
98#include <security/mac/mac_framework.h>
99
100static const int tcprexmtthresh = 3;
101
102struct	tcpstat tcpstat;
103SYSCTL_STRUCT(_net_inet_tcp, TCPCTL_STATS, stats, CTLFLAG_RW,
104    &tcpstat , tcpstat, "TCP statistics (struct tcpstat, netinet/tcp_var.h)");
105
106static int tcp_log_in_vain = 0;
107SYSCTL_INT(_net_inet_tcp, OID_AUTO, log_in_vain, CTLFLAG_RW,
108    &tcp_log_in_vain, 0, "Log all incoming TCP segments to closed ports");
109
110static int blackhole = 0;
111SYSCTL_INT(_net_inet_tcp, OID_AUTO, blackhole, CTLFLAG_RW,
112    &blackhole, 0, "Do not send RST on segments to closed ports");
113
114int tcp_delack_enabled = 1;
115SYSCTL_INT(_net_inet_tcp, OID_AUTO, delayed_ack, CTLFLAG_RW,
116    &tcp_delack_enabled, 0,
117    "Delay ACK to try and piggyback it onto a data packet");
118
119static int drop_synfin = 0;
120SYSCTL_INT(_net_inet_tcp, OID_AUTO, drop_synfin, CTLFLAG_RW,
121    &drop_synfin, 0, "Drop TCP packets with SYN+FIN set");
122
123static int tcp_do_rfc3042 = 1;
124SYSCTL_INT(_net_inet_tcp, OID_AUTO, rfc3042, CTLFLAG_RW,
125    &tcp_do_rfc3042, 0, "Enable RFC 3042 (Limited Transmit)");
126
127static int tcp_do_rfc3390 = 1;
128SYSCTL_INT(_net_inet_tcp, OID_AUTO, rfc3390, CTLFLAG_RW,
129    &tcp_do_rfc3390, 0,
130    "Enable RFC 3390 (Increasing TCP's Initial Congestion Window)");
131
132static int tcp_insecure_rst = 0;
133SYSCTL_INT(_net_inet_tcp, OID_AUTO, insecure_rst, CTLFLAG_RW,
134    &tcp_insecure_rst, 0,
135    "Follow the old (insecure) criteria for accepting RST packets");
136
137SYSCTL_NODE(_net_inet_tcp, OID_AUTO, reass, CTLFLAG_RW, 0,
138    "TCP Segment Reassembly Queue");
139
140static int tcp_reass_maxseg = 0;
141SYSCTL_INT(_net_inet_tcp_reass, OID_AUTO, maxsegments, CTLFLAG_RDTUN,
142    &tcp_reass_maxseg, 0,
143    "Global maximum number of TCP Segments in Reassembly Queue");
144
145int tcp_reass_qsize = 0;
146SYSCTL_INT(_net_inet_tcp_reass, OID_AUTO, cursegments, CTLFLAG_RD,
147    &tcp_reass_qsize, 0,
148    "Global number of TCP Segments currently in Reassembly Queue");
149
150static int tcp_reass_maxqlen = 48;
151SYSCTL_INT(_net_inet_tcp_reass, OID_AUTO, maxqlen, CTLFLAG_RW,
152    &tcp_reass_maxqlen, 0,
153    "Maximum number of TCP Segments per individual Reassembly Queue");
154
155static int tcp_reass_overflows = 0;
156SYSCTL_INT(_net_inet_tcp_reass, OID_AUTO, overflows, CTLFLAG_RD,
157    &tcp_reass_overflows, 0,
158    "Global number of TCP Segment Reassembly Queue Overflows");
159
160int	tcp_do_autorcvbuf = 1;
161SYSCTL_INT(_net_inet_tcp, OID_AUTO, recvbuf_auto, CTLFLAG_RW,
162    &tcp_do_autorcvbuf, 0, "Enable automatic receive buffer sizing");
163
164int	tcp_autorcvbuf_inc = 16*1024;
165SYSCTL_INT(_net_inet_tcp, OID_AUTO, recvbuf_inc, CTLFLAG_RW,
166    &tcp_autorcvbuf_inc, 0,
167    "Incrementor step size of automatic receive buffer");
168
169int	tcp_autorcvbuf_max = 256*1024;
170SYSCTL_INT(_net_inet_tcp, OID_AUTO, recvbuf_max, CTLFLAG_RW,
171    &tcp_autorcvbuf_max, 0, "Max size of automatic receive buffer");
172
173struct inpcbhead tcb;
174#define	tcb6	tcb  /* for KAME src sync over BSD*'s */
175struct inpcbinfo tcbinfo;
176
177static void	 tcp_dooptions(struct tcpopt *, u_char *, int, int);
178static void	 tcp_do_segment(struct mbuf *, struct tcphdr *,
179		     struct socket *, struct tcpcb *, int, int);
180static void	 tcp_dropwithreset(struct mbuf *, struct tcphdr *,
181		     struct tcpcb *, int, int);
182static void	 tcp_pulloutofband(struct socket *,
183		     struct tcphdr *, struct mbuf *, int);
184static int	 tcp_reass(struct tcpcb *, struct tcphdr *, int *,
185		     struct mbuf *);
186static void	 tcp_xmit_timer(struct tcpcb *, int);
187static void	 tcp_newreno_partial_ack(struct tcpcb *, struct tcphdr *);
188static int	 tcp_timewait(struct inpcb *, struct tcpopt *,
189		     struct tcphdr *, struct mbuf *, int);
190
191/* Neighbor Discovery, Neighbor Unreachability Detection Upper layer hint. */
192#ifdef INET6
193#define ND6_HINT(tp) \
194do { \
195	if ((tp) && (tp)->t_inpcb && \
196	    ((tp)->t_inpcb->inp_vflag & INP_IPV6) != 0) \
197		nd6_nud_hint(NULL, NULL, 0); \
198} while (0)
199#else
200#define ND6_HINT(tp)
201#endif
202
203/*
204 * Indicate whether this ack should be delayed.  We can delay the ack if
205 *	- there is no delayed ack timer in progress and
206 *	- our last ack wasn't a 0-sized window.  We never want to delay
207 *	  the ack that opens up a 0-sized window and
208 *		- delayed acks are enabled or
209 *		- this is a half-synchronized T/TCP connection.
210 */
211#define DELAY_ACK(tp)							\
212	((!tcp_timer_active(tp, TT_DELACK) &&				\
213	    (tp->t_flags & TF_RXWIN0SENT) == 0) &&			\
214	    (tcp_delack_enabled || (tp->t_flags & TF_NEEDSYN)))
215
216/* Initialize TCP reassembly queue */
217static void
218tcp_reass_zone_change(void *tag)
219{
220
221	tcp_reass_maxseg = nmbclusters / 16;
222	uma_zone_set_max(tcp_reass_zone, tcp_reass_maxseg);
223}
224
225uma_zone_t	tcp_reass_zone;
226void
227tcp_reass_init()
228{
229	tcp_reass_maxseg = nmbclusters / 16;
230	TUNABLE_INT_FETCH("net.inet.tcp.reass.maxsegments",
231	    &tcp_reass_maxseg);
232	tcp_reass_zone = uma_zcreate("tcpreass", sizeof (struct tseg_qent),
233	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
234	uma_zone_set_max(tcp_reass_zone, tcp_reass_maxseg);
235	EVENTHANDLER_REGISTER(nmbclusters_change,
236	    tcp_reass_zone_change, NULL, EVENTHANDLER_PRI_ANY);
237}
238
239static int
240tcp_reass(struct tcpcb *tp, struct tcphdr *th, int *tlenp, struct mbuf *m)
241{
242	struct tseg_qent *q;
243	struct tseg_qent *p = NULL;
244	struct tseg_qent *nq;
245	struct tseg_qent *te = NULL;
246	struct socket *so = tp->t_inpcb->inp_socket;
247	int flags;
248
249	INP_LOCK_ASSERT(tp->t_inpcb);
250
251	/*
252	 * XXX: tcp_reass() is rather inefficient with its data structures
253	 * and should be rewritten (see NetBSD for optimizations).  While
254	 * doing that it should move to its own file tcp_reass.c.
255	 */
256
257	/*
258	 * Call with th==NULL after become established to
259	 * force pre-ESTABLISHED data up to user socket.
260	 */
261	if (th == NULL)
262		goto present;
263
264	/*
265	 * Limit the number of segments in the reassembly queue to prevent
266	 * holding on to too many segments (and thus running out of mbufs).
267	 * Make sure to let the missing segment through which caused this
268	 * queue.  Always keep one global queue entry spare to be able to
269	 * process the missing segment.
270	 */
271	if (th->th_seq != tp->rcv_nxt &&
272	    (tcp_reass_qsize + 1 >= tcp_reass_maxseg ||
273	     tp->t_segqlen >= tcp_reass_maxqlen)) {
274		tcp_reass_overflows++;
275		tcpstat.tcps_rcvmemdrop++;
276		m_freem(m);
277		*tlenp = 0;
278		return (0);
279	}
280
281	/*
282	 * Allocate a new queue entry. If we can't, or hit the zone limit
283	 * just drop the pkt.
284	 */
285	te = uma_zalloc(tcp_reass_zone, M_NOWAIT);
286	if (te == NULL) {
287		tcpstat.tcps_rcvmemdrop++;
288		m_freem(m);
289		*tlenp = 0;
290		return (0);
291	}
292	tp->t_segqlen++;
293	tcp_reass_qsize++;
294
295	/*
296	 * Find a segment which begins after this one does.
297	 */
298	LIST_FOREACH(q, &tp->t_segq, tqe_q) {
299		if (SEQ_GT(q->tqe_th->th_seq, th->th_seq))
300			break;
301		p = q;
302	}
303
304	/*
305	 * If there is a preceding segment, it may provide some of
306	 * our data already.  If so, drop the data from the incoming
307	 * segment.  If it provides all of our data, drop us.
308	 */
309	if (p != NULL) {
310		int i;
311		/* conversion to int (in i) handles seq wraparound */
312		i = p->tqe_th->th_seq + p->tqe_len - th->th_seq;
313		if (i > 0) {
314			if (i >= *tlenp) {
315				tcpstat.tcps_rcvduppack++;
316				tcpstat.tcps_rcvdupbyte += *tlenp;
317				m_freem(m);
318				uma_zfree(tcp_reass_zone, te);
319				tp->t_segqlen--;
320				tcp_reass_qsize--;
321				/*
322				 * Try to present any queued data
323				 * at the left window edge to the user.
324				 * This is needed after the 3-WHS
325				 * completes.
326				 */
327				goto present;	/* ??? */
328			}
329			m_adj(m, i);
330			*tlenp -= i;
331			th->th_seq += i;
332		}
333	}
334	tcpstat.tcps_rcvoopack++;
335	tcpstat.tcps_rcvoobyte += *tlenp;
336
337	/*
338	 * While we overlap succeeding segments trim them or,
339	 * if they are completely covered, dequeue them.
340	 */
341	while (q) {
342		int i = (th->th_seq + *tlenp) - q->tqe_th->th_seq;
343		if (i <= 0)
344			break;
345		if (i < q->tqe_len) {
346			q->tqe_th->th_seq += i;
347			q->tqe_len -= i;
348			m_adj(q->tqe_m, i);
349			break;
350		}
351
352		nq = LIST_NEXT(q, tqe_q);
353		LIST_REMOVE(q, tqe_q);
354		m_freem(q->tqe_m);
355		uma_zfree(tcp_reass_zone, q);
356		tp->t_segqlen--;
357		tcp_reass_qsize--;
358		q = nq;
359	}
360
361	/* Insert the new segment queue entry into place. */
362	te->tqe_m = m;
363	te->tqe_th = th;
364	te->tqe_len = *tlenp;
365
366	if (p == NULL) {
367		LIST_INSERT_HEAD(&tp->t_segq, te, tqe_q);
368	} else {
369		LIST_INSERT_AFTER(p, te, tqe_q);
370	}
371
372present:
373	/*
374	 * Present data to user, advancing rcv_nxt through
375	 * completed sequence space.
376	 */
377	if (!TCPS_HAVEESTABLISHED(tp->t_state))
378		return (0);
379	q = LIST_FIRST(&tp->t_segq);
380	if (!q || q->tqe_th->th_seq != tp->rcv_nxt)
381		return (0);
382	SOCKBUF_LOCK(&so->so_rcv);
383	do {
384		tp->rcv_nxt += q->tqe_len;
385		flags = q->tqe_th->th_flags & TH_FIN;
386		nq = LIST_NEXT(q, tqe_q);
387		LIST_REMOVE(q, tqe_q);
388		if (so->so_rcv.sb_state & SBS_CANTRCVMORE)
389			m_freem(q->tqe_m);
390		else
391			sbappendstream_locked(&so->so_rcv, q->tqe_m);
392		uma_zfree(tcp_reass_zone, q);
393		tp->t_segqlen--;
394		tcp_reass_qsize--;
395		q = nq;
396	} while (q && q->tqe_th->th_seq == tp->rcv_nxt);
397	ND6_HINT(tp);
398	sorwakeup_locked(so);
399	return (flags);
400}
401
402/*
403 * TCP input routine, follows pages 65-76 of the
404 * protocol specification dated September, 1981 very closely.
405 */
406#ifdef INET6
407int
408tcp6_input(struct mbuf **mp, int *offp, int proto)
409{
410	struct mbuf *m = *mp;
411	struct in6_ifaddr *ia6;
412
413	IP6_EXTHDR_CHECK(m, *offp, sizeof(struct tcphdr), IPPROTO_DONE);
414
415	/*
416	 * draft-itojun-ipv6-tcp-to-anycast
417	 * better place to put this in?
418	 */
419	ia6 = ip6_getdstifaddr(m);
420	if (ia6 && (ia6->ia6_flags & IN6_IFF_ANYCAST)) {
421		struct ip6_hdr *ip6;
422
423		ip6 = mtod(m, struct ip6_hdr *);
424		icmp6_error(m, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_ADDR,
425			    (caddr_t)&ip6->ip6_dst - (caddr_t)ip6);
426		return IPPROTO_DONE;
427	}
428
429	tcp_input(m, *offp);
430	return IPPROTO_DONE;
431}
432#endif
433
434void
435tcp_input(struct mbuf *m, int off0)
436{
437	struct tcphdr *th;
438	struct ip *ip = NULL;
439	struct ipovly *ipov;
440	struct inpcb *inp = NULL;
441	struct tcpcb *tp = NULL;
442	struct socket *so = NULL;
443	u_char *optp = NULL;
444	int optlen = 0;
445	int len, tlen, off;
446	int drop_hdrlen;
447	int thflags;
448	int rstreason = 0;	/* For badport_bandlim accounting purposes */
449#ifdef IPFIREWALL_FORWARD
450	struct m_tag *fwd_tag;
451#endif
452#ifdef INET6
453	struct ip6_hdr *ip6 = NULL;
454	int isipv6;
455	char ip6buf[INET6_ADDRSTRLEN];
456#else
457	const int isipv6 = 0;
458#endif
459	struct tcpopt to;		/* options in this segment */
460
461#ifdef TCPDEBUG
462	/*
463	 * The size of tcp_saveipgen must be the size of the max ip header,
464	 * now IPv6.
465	 */
466	u_char tcp_saveipgen[IP6_HDR_LEN];
467	struct tcphdr tcp_savetcp;
468	short ostate = 0;
469#endif
470
471#ifdef INET6
472	isipv6 = (mtod(m, struct ip *)->ip_v == 6) ? 1 : 0;
473#endif
474
475	to.to_flags = 0;
476	tcpstat.tcps_rcvtotal++;
477
478	if (isipv6) {
479#ifdef INET6
480		/* IP6_EXTHDR_CHECK() is already done at tcp6_input() */
481		ip6 = mtod(m, struct ip6_hdr *);
482		tlen = sizeof(*ip6) + ntohs(ip6->ip6_plen) - off0;
483		if (in6_cksum(m, IPPROTO_TCP, off0, tlen)) {
484			tcpstat.tcps_rcvbadsum++;
485			goto drop;
486		}
487		th = (struct tcphdr *)((caddr_t)ip6 + off0);
488
489		/*
490		 * Be proactive about unspecified IPv6 address in source.
491		 * As we use all-zero to indicate unbounded/unconnected pcb,
492		 * unspecified IPv6 address can be used to confuse us.
493		 *
494		 * Note that packets with unspecified IPv6 destination is
495		 * already dropped in ip6_input.
496		 */
497		if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) {
498			/* XXX stat */
499			goto drop;
500		}
501#else
502		th = NULL;		/* XXX: avoid compiler warning */
503#endif
504	} else {
505		/*
506		 * Get IP and TCP header together in first mbuf.
507		 * Note: IP leaves IP header in first mbuf.
508		 */
509		if (off0 > sizeof (struct ip)) {
510			ip_stripoptions(m, (struct mbuf *)0);
511			off0 = sizeof(struct ip);
512		}
513		if (m->m_len < sizeof (struct tcpiphdr)) {
514			if ((m = m_pullup(m, sizeof (struct tcpiphdr)))
515			    == NULL) {
516				tcpstat.tcps_rcvshort++;
517				return;
518			}
519		}
520		ip = mtod(m, struct ip *);
521		ipov = (struct ipovly *)ip;
522		th = (struct tcphdr *)((caddr_t)ip + off0);
523		tlen = ip->ip_len;
524
525		if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) {
526			if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR)
527				th->th_sum = m->m_pkthdr.csum_data;
528			else
529				th->th_sum = in_pseudo(ip->ip_src.s_addr,
530						ip->ip_dst.s_addr,
531						htonl(m->m_pkthdr.csum_data +
532							ip->ip_len +
533							IPPROTO_TCP));
534			th->th_sum ^= 0xffff;
535#ifdef TCPDEBUG
536			ipov->ih_len = (u_short)tlen;
537			ipov->ih_len = htons(ipov->ih_len);
538#endif
539		} else {
540			/*
541			 * Checksum extended TCP header and data.
542			 */
543			len = sizeof (struct ip) + tlen;
544			bzero(ipov->ih_x1, sizeof(ipov->ih_x1));
545			ipov->ih_len = (u_short)tlen;
546			ipov->ih_len = htons(ipov->ih_len);
547			th->th_sum = in_cksum(m, len);
548		}
549		if (th->th_sum) {
550			tcpstat.tcps_rcvbadsum++;
551			goto drop;
552		}
553		/* Re-initialization for later version check */
554		ip->ip_v = IPVERSION;
555	}
556
557	/*
558	 * Check that TCP offset makes sense,
559	 * pull out TCP options and adjust length.		XXX
560	 */
561	off = th->th_off << 2;
562	if (off < sizeof (struct tcphdr) || off > tlen) {
563		tcpstat.tcps_rcvbadoff++;
564		goto drop;
565	}
566	tlen -= off;	/* tlen is used instead of ti->ti_len */
567	if (off > sizeof (struct tcphdr)) {
568		if (isipv6) {
569#ifdef INET6
570			IP6_EXTHDR_CHECK(m, off0, off, );
571			ip6 = mtod(m, struct ip6_hdr *);
572			th = (struct tcphdr *)((caddr_t)ip6 + off0);
573#endif
574		} else {
575			if (m->m_len < sizeof(struct ip) + off) {
576				if ((m = m_pullup(m, sizeof (struct ip) + off))
577				    == NULL) {
578					tcpstat.tcps_rcvshort++;
579					return;
580				}
581				ip = mtod(m, struct ip *);
582				ipov = (struct ipovly *)ip;
583				th = (struct tcphdr *)((caddr_t)ip + off0);
584			}
585		}
586		optlen = off - sizeof (struct tcphdr);
587		optp = (u_char *)(th + 1);
588	}
589	thflags = th->th_flags;
590
591	/*
592	 * If the drop_synfin option is enabled, drop all packets with
593	 * both the SYN and FIN bits set. This prevents e.g. nmap from
594	 * identifying the TCP/IP stack.
595	 *
596	 * This is a violation of the TCP specification.
597	 */
598	if (drop_synfin && (thflags & (TH_SYN|TH_FIN)) == (TH_SYN|TH_FIN))
599		goto drop;
600
601	/*
602	 * Convert TCP protocol specific fields to host format.
603	 */
604	th->th_seq = ntohl(th->th_seq);
605	th->th_ack = ntohl(th->th_ack);
606	th->th_win = ntohs(th->th_win);
607	th->th_urp = ntohs(th->th_urp);
608
609	/*
610	 * Delay dropping TCP, IP headers, IPv6 ext headers, and TCP options.
611	 */
612	drop_hdrlen = off0 + off;
613
614	/*
615	 * Locate pcb for segment.
616	 */
617	INP_INFO_WLOCK(&tcbinfo);
618findpcb:
619	INP_INFO_WLOCK_ASSERT(&tcbinfo);
620#ifdef IPFIREWALL_FORWARD
621	/* Grab info from PACKET_TAG_IPFORWARD tag prepended to the chain. */
622	fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL);
623
624	if (fwd_tag != NULL && isipv6 == 0) {	/* IPv6 support is not yet */
625		struct sockaddr_in *next_hop;
626
627		next_hop = (struct sockaddr_in *)(fwd_tag+1);
628		/*
629		 * Transparently forwarded. Pretend to be the destination.
630		 * already got one like this?
631		 */
632		inp = in_pcblookup_hash(&tcbinfo,
633					ip->ip_src, th->th_sport,
634					ip->ip_dst, th->th_dport,
635					0, m->m_pkthdr.rcvif);
636		if (!inp) {
637			/* It's new.  Try to find the ambushing socket. */
638			inp = in_pcblookup_hash(&tcbinfo,
639						ip->ip_src, th->th_sport,
640						next_hop->sin_addr,
641						next_hop->sin_port ?
642						    ntohs(next_hop->sin_port) :
643						    th->th_dport,
644						INPLOOKUP_WILDCARD,
645						m->m_pkthdr.rcvif);
646		}
647		/* Remove the tag from the packet.  We don't need it anymore. */
648		m_tag_delete(m, fwd_tag);
649	} else
650#endif /* IPFIREWALL_FORWARD */
651	{
652		if (isipv6) {
653#ifdef INET6
654			inp = in6_pcblookup_hash(&tcbinfo,
655						 &ip6->ip6_src, th->th_sport,
656						 &ip6->ip6_dst, th->th_dport,
657						 INPLOOKUP_WILDCARD,
658						 m->m_pkthdr.rcvif);
659#endif
660		} else
661			inp = in_pcblookup_hash(&tcbinfo,
662						ip->ip_src, th->th_sport,
663						ip->ip_dst, th->th_dport,
664						INPLOOKUP_WILDCARD,
665						m->m_pkthdr.rcvif);
666	}
667
668#if defined(IPSEC) || defined(FAST_IPSEC)
669#ifdef INET6
670	if (isipv6 && inp != NULL && ipsec6_in_reject(m, inp)) {
671#ifdef IPSEC
672		ipsec6stat.in_polvio++;
673#endif
674		goto dropunlock;
675	} else
676#endif /* INET6 */
677	if (inp != NULL && ipsec4_in_reject(m, inp)) {
678#ifdef IPSEC
679		ipsecstat.in_polvio++;
680#endif
681		goto dropunlock;
682	}
683#endif /*IPSEC || FAST_IPSEC*/
684
685	/*
686	 * If the INPCB does not exist then all data in the incoming
687	 * segment is discarded and an appropriate RST is sent back.
688	 */
689	if (inp == NULL) {
690		/*
691		 * Log communication attempts to ports that are not
692		 * in use.
693		 */
694		if ((tcp_log_in_vain == 1 && (thflags & TH_SYN)) ||
695		    tcp_log_in_vain == 2) {
696#ifndef INET6
697			char dbuf[4*sizeof "123"], sbuf[4*sizeof "123"];
698#else
699			char dbuf[INET6_ADDRSTRLEN+2], sbuf[INET6_ADDRSTRLEN+2];
700			if (isipv6) {
701				strcpy(dbuf, "[");
702				strcat(dbuf,
703				    ip6_sprintf(ip6buf, &ip6->ip6_dst));
704				strcat(dbuf, "]");
705				strcpy(sbuf, "[");
706				strcat(sbuf,
707				    ip6_sprintf(ip6buf, &ip6->ip6_src));
708				strcat(sbuf, "]");
709			} else
710#endif /* INET6 */
711			{
712				strcpy(dbuf, inet_ntoa(ip->ip_dst));
713				strcpy(sbuf, inet_ntoa(ip->ip_src));
714			}
715			log(LOG_INFO,
716			    "Connection attempt to TCP %s:%d "
717			    "from %s:%d flags:0x%02x\n",
718			    dbuf, ntohs(th->th_dport), sbuf,
719			    ntohs(th->th_sport), thflags);
720		}
721		/*
722		 * When blackholing do not respond with a RST but
723		 * completely ignore the segment and drop it.
724		 */
725		if ((blackhole == 1 && (thflags & TH_SYN)) ||
726		    blackhole == 2)
727			goto dropunlock;
728
729		rstreason = BANDLIM_RST_CLOSEDPORT;
730		goto dropwithreset;
731	}
732	INP_LOCK(inp);
733
734	/* Check the minimum TTL for socket. */
735	if (inp->inp_ip_minttl != 0) {
736#ifdef INET6
737		if (isipv6 && inp->inp_ip_minttl > ip6->ip6_hlim)
738			goto dropunlock;
739		else
740#endif
741		if (inp->inp_ip_minttl > ip->ip_ttl)
742			goto dropunlock;
743	}
744
745	/*
746	 * A previous connection in TIMEWAIT state is supposed to catch
747	 * stray or duplicate segments arriving late.  If this segment
748	 * was a legitimate new connection attempt the old INPCB gets
749	 * removed and we can try again to find a listening socket.
750	 */
751	if (inp->inp_vflag & INP_TIMEWAIT) {
752		if (thflags & TH_SYN)
753			tcp_dooptions(&to, optp, optlen, TO_SYN);
754		/* NB: tcp_timewait unlocks the INP and frees the mbuf. */
755		if (tcp_timewait(inp, &to, th, m, tlen))
756			goto findpcb;
757		INP_INFO_WUNLOCK(&tcbinfo);
758		return;
759	}
760	/*
761	 * The TCPCB may no longer exist if the connection is winding
762	 * down or it is in the CLOSED state.  Either way we drop the
763	 * segment and send an appropriate response.
764	 */
765	tp = intotcpcb(inp);
766	if (tp == NULL) {
767		rstreason = BANDLIM_RST_CLOSEDPORT;
768		goto dropwithreset;
769	}
770	if (tp->t_state == TCPS_CLOSED)
771		goto dropunlock;	/* XXX: dropwithreset??? */
772
773#ifdef MAC
774	INP_LOCK_ASSERT(inp);
775	if (mac_check_inpcb_deliver(inp, m))
776		goto dropunlock;
777#endif
778	so = inp->inp_socket;
779	KASSERT(so != NULL, ("%s: so == NULL", __func__));
780#ifdef TCPDEBUG
781	if (so->so_options & SO_DEBUG) {
782		ostate = tp->t_state;
783		if (isipv6)
784			bcopy((char *)ip6, (char *)tcp_saveipgen, sizeof(*ip6));
785		else
786			bcopy((char *)ip, (char *)tcp_saveipgen, sizeof(*ip));
787		tcp_savetcp = *th;
788	}
789#endif
790	/*
791	 * When the socket is accepting connections (the INPCB is in LISTEN
792	 * state) we look into the SYN cache if this is a new connection
793	 * attempt or the completion of a previous one.
794	 */
795	if (so->so_options & SO_ACCEPTCONN) {
796		struct in_conninfo inc;
797
798		KASSERT(tp->t_state == TCPS_LISTEN, ("%s: so accepting but "
799		    "tp not listening", __func__));
800
801		bzero(&inc, sizeof(inc));
802		inc.inc_isipv6 = isipv6;
803#ifdef INET6
804		if (isipv6) {
805			inc.inc6_faddr = ip6->ip6_src;
806			inc.inc6_laddr = ip6->ip6_dst;
807		} else
808#endif
809		{
810			inc.inc_faddr = ip->ip_src;
811			inc.inc_laddr = ip->ip_dst;
812		}
813		inc.inc_fport = th->th_sport;
814		inc.inc_lport = th->th_dport;
815
816		/*
817		 * If the state is LISTEN then ignore segment if it contains
818		 * a RST.  If the segment contains an ACK then it is bad and
819		 * send a RST.  If it does not contain a SYN then it is not
820		 * interesting; drop it.
821		 *
822		 * If the state is SYN_RECEIVED (syncache) and seg contains
823		 * an ACK, but not for our SYN/ACK, send a RST.  If the seg
824		 * contains a RST, check the sequence number to see if it
825		 * is a valid reset segment.
826		 */
827		if ((thflags & (TH_RST|TH_ACK|TH_SYN)) != TH_SYN) {
828			if ((thflags & (TH_RST|TH_ACK|TH_SYN)) == TH_ACK) {
829				/*
830				 * Parse the TCP options here because
831				 * syncookies need access to the reflected
832				 * timestamp.
833				 */
834				tcp_dooptions(&to, optp, optlen, 0);
835				/*
836				 * NB: syncache_expand() doesn't unlock
837				 * inp and tcpinfo locks.
838				 */
839				if (!syncache_expand(&inc, &to, th, &so, m)) {
840					/*
841					 * No syncache entry or ACK was not
842					 * for our SYN/ACK.  Send a RST.
843					 */
844					rstreason = BANDLIM_RST_OPENPORT;
845					goto dropwithreset;
846				}
847				if (so == NULL) {
848					/*
849					 * We completed the 3-way handshake
850					 * but could not allocate a socket
851					 * either due to memory shortage,
852					 * listen queue length limits or
853					 * global socket limits.
854					 */
855					rstreason = BANDLIM_UNLIMITED;
856					goto dropwithreset;
857				}
858				/*
859				 * Socket is created in state SYN_RECEIVED.
860				 * Continue processing segment.
861				 */
862				INP_UNLOCK(inp);	/* listen socket */
863				inp = sotoinpcb(so);
864				INP_LOCK(inp);		/* new connection */
865				tp = intotcpcb(inp);
866				/*
867				 * Process the segment and the data it
868				 * contains.  tcp_do_segment() consumes
869				 * the mbuf chain and unlocks the inpcb.
870				 */
871				tcp_do_segment(m, th, so, tp, drop_hdrlen,
872						tlen);
873				INP_INFO_UNLOCK_ASSERT(&tcbinfo);
874				return;
875			}
876			if (thflags & TH_RST) {
877				syncache_chkrst(&inc, th);
878				goto dropunlock;
879			}
880			if (thflags & TH_ACK) {
881				syncache_badack(&inc);
882				tcpstat.tcps_badsyn++;
883				rstreason = BANDLIM_RST_OPENPORT;
884				goto dropwithreset;
885			}
886			goto dropunlock;
887		}
888
889		/*
890		 * Segment's flags are (SYN) or (SYN|FIN).
891		 */
892#ifdef INET6
893		/*
894		 * If deprecated address is forbidden,
895		 * we do not accept SYN to deprecated interface
896		 * address to prevent any new inbound connection from
897		 * getting established.
898		 * When we do not accept SYN, we send a TCP RST,
899		 * with deprecated source address (instead of dropping
900		 * it).  We compromise it as it is much better for peer
901		 * to send a RST, and RST will be the final packet
902		 * for the exchange.
903		 *
904		 * If we do not forbid deprecated addresses, we accept
905		 * the SYN packet.  RFC2462 does not suggest dropping
906		 * SYN in this case.
907		 * If we decipher RFC2462 5.5.4, it says like this:
908		 * 1. use of deprecated addr with existing
909		 *    communication is okay - "SHOULD continue to be
910		 *    used"
911		 * 2. use of it with new communication:
912		 *   (2a) "SHOULD NOT be used if alternate address
913		 *        with sufficient scope is available"
914		 *   (2b) nothing mentioned otherwise.
915		 * Here we fall into (2b) case as we have no choice in
916		 * our source address selection - we must obey the peer.
917		 *
918		 * The wording in RFC2462 is confusing, and there are
919		 * multiple description text for deprecated address
920		 * handling - worse, they are not exactly the same.
921		 * I believe 5.5.4 is the best one, so we follow 5.5.4.
922		 */
923		if (isipv6 && !ip6_use_deprecated) {
924			struct in6_ifaddr *ia6;
925
926			if ((ia6 = ip6_getdstifaddr(m)) &&
927			    (ia6->ia6_flags & IN6_IFF_DEPRECATED)) {
928				rstreason = BANDLIM_RST_OPENPORT;
929				goto dropwithreset;
930			}
931		}
932#endif
933		/*
934		 * Basic sanity checks on incoming SYN requests:
935		 *
936		 * Don't bother responding if the destination was a
937		 * broadcast according to RFC1122 4.2.3.10, p. 104.
938		 *
939		 * If it is from this socket, drop it, it must be forged.
940		 *
941		 * Note that it is quite possible to receive unicast
942		 * link-layer packets with a broadcast IP address. Use
943		 * in_broadcast() to find them.
944		 */
945		if (m->m_flags & (M_BCAST|M_MCAST))
946			goto dropunlock;
947		if (isipv6) {
948#ifdef INET6
949			if (th->th_dport == th->th_sport &&
950			    IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst, &ip6->ip6_src))
951				goto dropunlock;
952			if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) ||
953			    IN6_IS_ADDR_MULTICAST(&ip6->ip6_src))
954				goto dropunlock;
955#endif
956		} else {
957			if (th->th_dport == th->th_sport &&
958			    ip->ip_dst.s_addr == ip->ip_src.s_addr)
959				goto dropunlock;
960			if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
961			    IN_MULTICAST(ntohl(ip->ip_src.s_addr)) ||
962			    ip->ip_src.s_addr == htonl(INADDR_BROADCAST) ||
963			    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
964				goto dropunlock;
965		}
966		/*
967		 * SYN appears to be valid.  Create compressed TCP state
968		 * for syncache.
969		 */
970#ifdef TCPDEBUG
971		if (so->so_options & SO_DEBUG)
972			tcp_trace(TA_INPUT, ostate, tp,
973			    (void *)tcp_saveipgen, &tcp_savetcp, 0);
974#endif
975		tcp_dooptions(&to, optp, optlen, TO_SYN);
976		syncache_add(&inc, &to, th, inp, &so, m);
977		/*
978		 * Entry added to syncache and mbuf consumed.
979		 * Everything unlocked already by syncache_add().
980		 */
981		return;
982	}
983
984	/*
985	 * Segment belongs to a connection in SYN_SENT, ESTABLISHED or late
986	 * state.  tcp_do_segment() always consumes the mbuf chain, unlocks the
987	 * inpcb, and unlocks the pcbinfo.
988	 */
989	tcp_do_segment(m, th, so, tp, drop_hdrlen, tlen);
990	INP_INFO_UNLOCK_ASSERT(&tcbinfo);
991	return;
992
993dropwithreset:
994	INP_INFO_WLOCK_ASSERT(&tcbinfo);
995	tcp_dropwithreset(m, th, tp, tlen, rstreason);
996	m = NULL;	/* mbuf chain got consumed. */
997dropunlock:
998	INP_INFO_WLOCK_ASSERT(&tcbinfo);
999	if (inp != NULL)
1000		INP_UNLOCK(inp);
1001	INP_INFO_WUNLOCK(&tcbinfo);
1002drop:
1003	INP_INFO_UNLOCK_ASSERT(&tcbinfo);
1004	if (m != NULL)
1005		m_freem(m);
1006	return;
1007}
1008
1009static void
1010tcp_do_segment(struct mbuf *m, struct tcphdr *th, struct socket *so,
1011    struct tcpcb *tp, int drop_hdrlen, int tlen)
1012{
1013	int thflags, acked, ourfinisacked, needoutput = 0;
1014	int headlocked = 1;
1015	int rstreason, todrop, win;
1016	u_long tiwin;
1017	struct tcpopt to;
1018
1019#ifdef TCPDEBUG
1020	/*
1021	 * The size of tcp_saveipgen must be the size of the max ip header,
1022	 * now IPv6.
1023	 */
1024	u_char tcp_saveipgen[IP6_HDR_LEN];
1025	struct tcphdr tcp_savetcp;
1026	short ostate = 0;
1027#endif
1028	thflags = th->th_flags;
1029
1030	INP_INFO_WLOCK_ASSERT(&tcbinfo);
1031	INP_LOCK_ASSERT(tp->t_inpcb);
1032	KASSERT(tp->t_state > TCPS_LISTEN, ("%s: TCPS_LISTEN",
1033	    __func__));
1034	KASSERT(tp->t_state != TCPS_TIME_WAIT, ("%s: TCPS_TIME_WAIT",
1035	    __func__));
1036
1037	/*
1038	 * Segment received on connection.
1039	 * Reset idle time and keep-alive timer.
1040	 */
1041	tp->t_rcvtime = ticks;
1042	if (TCPS_HAVEESTABLISHED(tp->t_state))
1043		tcp_timer_activate(tp, TT_KEEP, tcp_keepidle);
1044
1045	/*
1046	 * Unscale the window into a 32-bit value.
1047	 * This value is bogus for the TCPS_SYN_SENT state
1048	 * and is overwritten later.
1049	 */
1050	tiwin = th->th_win << tp->snd_scale;
1051
1052	/*
1053	 * Parse options on any incoming segment.
1054	 */
1055	tcp_dooptions(&to, (u_char *)(th + 1),
1056	    (th->th_off << 2) - sizeof(struct tcphdr),
1057	    (thflags & TH_SYN) ? TO_SYN : 0);
1058
1059	/*
1060	 * If echoed timestamp is later than the current time,
1061	 * fall back to non RFC1323 RTT calculation.  Normalize
1062	 * timestamp if syncookies were used when this connection
1063	 * was established.
1064	 */
1065	if ((to.to_flags & TOF_TS) && (to.to_tsecr != 0)) {
1066		to.to_tsecr -= tp->ts_offset;
1067		if (TSTMP_GT(to.to_tsecr, ticks))
1068			to.to_tsecr = 0;
1069	}
1070
1071	/*
1072	 * Process options only when we get SYN/ACK back. The SYN case
1073	 * for incoming connections is handled in tcp_syncache.
1074	 * XXX this is traditional behavior, may need to be cleaned up.
1075	 */
1076	if (tp->t_state == TCPS_SYN_SENT && (thflags & TH_SYN)) {
1077		if ((to.to_flags & TOF_SCALE) &&
1078		    (tp->t_flags & TF_REQ_SCALE)) {
1079			tp->t_flags |= TF_RCVD_SCALE;
1080			tp->snd_scale = to.to_wscale;
1081			tp->snd_wnd = th->th_win << tp->snd_scale;
1082			tiwin = tp->snd_wnd;
1083		}
1084		if (to.to_flags & TOF_TS) {
1085			tp->t_flags |= TF_RCVD_TSTMP;
1086			tp->ts_recent = to.to_tsval;
1087			tp->ts_recent_age = ticks;
1088		}
1089		/* Initial send window, already scaled. */
1090		tp->snd_wnd = th->th_win;
1091		if (to.to_flags & TOF_MSS)
1092			tcp_mss(tp, to.to_mss);
1093		if ((tp->t_flags & TF_SACK_PERMIT) &&
1094		    (to.to_flags & TOF_SACKPERM) == 0)
1095			tp->t_flags &= ~TF_SACK_PERMIT;
1096	}
1097
1098	/*
1099	 * Header prediction: check for the two common cases
1100	 * of a uni-directional data xfer.  If the packet has
1101	 * no control flags, is in-sequence, the window didn't
1102	 * change and we're not retransmitting, it's a
1103	 * candidate.  If the length is zero and the ack moved
1104	 * forward, we're the sender side of the xfer.  Just
1105	 * free the data acked & wake any higher level process
1106	 * that was blocked waiting for space.  If the length
1107	 * is non-zero and the ack didn't move, we're the
1108	 * receiver side.  If we're getting packets in-order
1109	 * (the reassembly queue is empty), add the data to
1110	 * the socket buffer and note that we need a delayed ack.
1111	 * Make sure that the hidden state-flags are also off.
1112	 * Since we check for TCPS_ESTABLISHED first, it can only
1113	 * be TH_NEEDSYN.
1114	 */
1115	if (tp->t_state == TCPS_ESTABLISHED &&
1116	    th->th_seq == tp->rcv_nxt &&
1117	    (thflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK)) == TH_ACK &&
1118	    tp->snd_nxt == tp->snd_max &&
1119	    tiwin && tiwin == tp->snd_wnd &&
1120	    ((tp->t_flags & (TF_NEEDSYN|TF_NEEDFIN)) == 0) &&
1121	    LIST_EMPTY(&tp->t_segq) &&
1122	    ((to.to_flags & TOF_TS) == 0 ||
1123	     TSTMP_GEQ(to.to_tsval, tp->ts_recent)) ) {
1124
1125		/*
1126		 * If last ACK falls within this segment's sequence numbers,
1127		 * record the timestamp.
1128		 * NOTE that the test is modified according to the latest
1129		 * proposal of the tcplw@cray.com list (Braden 1993/04/26).
1130		 */
1131		if ((to.to_flags & TOF_TS) != 0 &&
1132		    SEQ_LEQ(th->th_seq, tp->last_ack_sent)) {
1133			tp->ts_recent_age = ticks;
1134			tp->ts_recent = to.to_tsval;
1135		}
1136
1137		if (tlen == 0) {
1138			if (SEQ_GT(th->th_ack, tp->snd_una) &&
1139			    SEQ_LEQ(th->th_ack, tp->snd_max) &&
1140			    tp->snd_cwnd >= tp->snd_wnd &&
1141			    ((!tcp_do_newreno &&
1142			      !(tp->t_flags & TF_SACK_PERMIT) &&
1143			      tp->t_dupacks < tcprexmtthresh) ||
1144			     ((tcp_do_newreno ||
1145			       (tp->t_flags & TF_SACK_PERMIT)) &&
1146			      !IN_FASTRECOVERY(tp) &&
1147			      (to.to_flags & TOF_SACK) == 0 &&
1148			      TAILQ_EMPTY(&tp->snd_holes)))) {
1149				KASSERT(headlocked,
1150				    ("%s: headlocked", __func__));
1151				INP_INFO_WUNLOCK(&tcbinfo);
1152				headlocked = 0;
1153				/*
1154				 * this is a pure ack for outstanding data.
1155				 */
1156				++tcpstat.tcps_predack;
1157				/*
1158				 * "bad retransmit" recovery
1159				 */
1160				if (tp->t_rxtshift == 1 &&
1161				    ticks < tp->t_badrxtwin) {
1162					++tcpstat.tcps_sndrexmitbad;
1163					tp->snd_cwnd = tp->snd_cwnd_prev;
1164					tp->snd_ssthresh =
1165					    tp->snd_ssthresh_prev;
1166					tp->snd_recover = tp->snd_recover_prev;
1167					if (tp->t_flags & TF_WASFRECOVERY)
1168					    ENTER_FASTRECOVERY(tp);
1169					tp->snd_nxt = tp->snd_max;
1170					tp->t_badrxtwin = 0;
1171				}
1172
1173				/*
1174				 * Recalculate the transmit timer / rtt.
1175				 *
1176				 * Some boxes send broken timestamp replies
1177				 * during the SYN+ACK phase, ignore
1178				 * timestamps of 0 or we could calculate a
1179				 * huge RTT and blow up the retransmit timer.
1180				 */
1181				if ((to.to_flags & TOF_TS) != 0 &&
1182				    to.to_tsecr) {
1183					if (!tp->t_rttlow ||
1184					    tp->t_rttlow > ticks - to.to_tsecr)
1185						tp->t_rttlow = ticks - to.to_tsecr;
1186					tcp_xmit_timer(tp,
1187					    ticks - to.to_tsecr + 1);
1188				} else if (tp->t_rtttime &&
1189				    SEQ_GT(th->th_ack, tp->t_rtseq)) {
1190					if (!tp->t_rttlow ||
1191					    tp->t_rttlow > ticks - tp->t_rtttime)
1192						tp->t_rttlow = ticks - tp->t_rtttime;
1193					tcp_xmit_timer(tp,
1194							ticks - tp->t_rtttime);
1195				}
1196				tcp_xmit_bandwidth_limit(tp, th->th_ack);
1197				acked = th->th_ack - tp->snd_una;
1198				tcpstat.tcps_rcvackpack++;
1199				tcpstat.tcps_rcvackbyte += acked;
1200				sbdrop(&so->so_snd, acked);
1201				if (SEQ_GT(tp->snd_una, tp->snd_recover) &&
1202				    SEQ_LEQ(th->th_ack, tp->snd_recover))
1203					tp->snd_recover = th->th_ack - 1;
1204				tp->snd_una = th->th_ack;
1205				/*
1206				 * pull snd_wl2 up to prevent seq wrap relative
1207				 * to th_ack.
1208				 */
1209				tp->snd_wl2 = th->th_ack;
1210				tp->t_dupacks = 0;
1211				m_freem(m);
1212				ND6_HINT(tp); /* some progress has been done */
1213
1214				/*
1215				 * If all outstanding data are acked, stop
1216				 * retransmit timer, otherwise restart timer
1217				 * using current (possibly backed-off) value.
1218				 * If process is waiting for space,
1219				 * wakeup/selwakeup/signal.  If data
1220				 * are ready to send, let tcp_output
1221				 * decide between more output or persist.
1222
1223#ifdef TCPDEBUG
1224				if (so->so_options & SO_DEBUG)
1225					tcp_trace(TA_INPUT, ostate, tp,
1226					    (void *)tcp_saveipgen,
1227					    &tcp_savetcp, 0);
1228#endif
1229				 */
1230				if (tp->snd_una == tp->snd_max)
1231					tcp_timer_activate(tp, TT_REXMT, 0);
1232				else if (!tcp_timer_active(tp, TT_PERSIST))
1233					tcp_timer_activate(tp, TT_REXMT,
1234						      tp->t_rxtcur);
1235
1236				sowwakeup(so);
1237				if (so->so_snd.sb_cc)
1238					(void) tcp_output(tp);
1239				goto check_delack;
1240			}
1241		} else if (th->th_ack == tp->snd_una &&
1242		    tlen <= sbspace(&so->so_rcv)) {
1243			int newsize = 0;	/* automatic sockbuf scaling */
1244
1245			KASSERT(headlocked, ("%s: headlocked", __func__));
1246			INP_INFO_WUNLOCK(&tcbinfo);
1247			headlocked = 0;
1248			/*
1249			 * this is a pure, in-sequence data packet
1250			 * with nothing on the reassembly queue and
1251			 * we have enough buffer space to take it.
1252			 */
1253			/* Clean receiver SACK report if present */
1254			if ((tp->t_flags & TF_SACK_PERMIT) && tp->rcv_numsacks)
1255				tcp_clean_sackreport(tp);
1256			++tcpstat.tcps_preddat;
1257			tp->rcv_nxt += tlen;
1258			/*
1259			 * Pull snd_wl1 up to prevent seq wrap relative to
1260			 * th_seq.
1261			 */
1262			tp->snd_wl1 = th->th_seq;
1263			/*
1264			 * Pull rcv_up up to prevent seq wrap relative to
1265			 * rcv_nxt.
1266			 */
1267			tp->rcv_up = tp->rcv_nxt;
1268			tcpstat.tcps_rcvpack++;
1269			tcpstat.tcps_rcvbyte += tlen;
1270			ND6_HINT(tp);	/* some progress has been done */
1271#ifdef TCPDEBUG
1272			if (so->so_options & SO_DEBUG)
1273				tcp_trace(TA_INPUT, ostate, tp,
1274				    (void *)tcp_saveipgen, &tcp_savetcp, 0);
1275#endif
1276		/*
1277		 * Automatic sizing of receive socket buffer.  Often the send
1278		 * buffer size is not optimally adjusted to the actual network
1279		 * conditions at hand (delay bandwidth product).  Setting the
1280		 * buffer size too small limits throughput on links with high
1281		 * bandwidth and high delay (eg. trans-continental/oceanic links).
1282		 *
1283		 * On the receive side the socket buffer memory is only rarely
1284		 * used to any significant extent.  This allows us to be much
1285		 * more aggressive in scaling the receive socket buffer.  For
1286		 * the case that the buffer space is actually used to a large
1287		 * extent and we run out of kernel memory we can simply drop
1288		 * the new segments; TCP on the sender will just retransmit it
1289		 * later.  Setting the buffer size too big may only consume too
1290		 * much kernel memory if the application doesn't read() from
1291		 * the socket or packet loss or reordering makes use of the
1292		 * reassembly queue.
1293		 *
1294		 * The criteria to step up the receive buffer one notch are:
1295		 *  1. the number of bytes received during the time it takes
1296		 *     one timestamp to be reflected back to us (the RTT);
1297		 *  2. received bytes per RTT is within seven eighth of the
1298		 *     current socket buffer size;
1299		 *  3. receive buffer size has not hit maximal automatic size;
1300		 *
1301		 * This algorithm does one step per RTT at most and only if
1302		 * we receive a bulk stream w/o packet losses or reorderings.
1303		 * Shrinking the buffer during idle times is not necessary as
1304		 * it doesn't consume any memory when idle.
1305		 *
1306		 * TODO: Only step up if the application is actually serving
1307		 * the buffer to better manage the socket buffer resources.
1308		 */
1309			if (tcp_do_autorcvbuf &&
1310			    to.to_tsecr &&
1311			    (so->so_rcv.sb_flags & SB_AUTOSIZE)) {
1312				if (to.to_tsecr > tp->rfbuf_ts &&
1313				    to.to_tsecr - tp->rfbuf_ts < hz) {
1314					if (tp->rfbuf_cnt >
1315					    (so->so_rcv.sb_hiwat / 8 * 7) &&
1316					    so->so_rcv.sb_hiwat <
1317					    tcp_autorcvbuf_max) {
1318						newsize =
1319						    min(so->so_rcv.sb_hiwat +
1320						    tcp_autorcvbuf_inc,
1321						    tcp_autorcvbuf_max);
1322					}
1323					/* Start over with next RTT. */
1324					tp->rfbuf_ts = 0;
1325					tp->rfbuf_cnt = 0;
1326				} else
1327					tp->rfbuf_cnt += tlen;	/* add up */
1328			}
1329
1330			/* Add data to socket buffer. */
1331			SOCKBUF_LOCK(&so->so_rcv);
1332			if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
1333				m_freem(m);
1334			} else {
1335				/*
1336				 * Set new socket buffer size.
1337				 * Give up when limit is reached.
1338				 */
1339				if (newsize)
1340					if (!sbreserve_locked(&so->so_rcv,
1341					    newsize, so, curthread))
1342						so->so_rcv.sb_flags &= ~SB_AUTOSIZE;
1343				m_adj(m, drop_hdrlen);	/* delayed header drop */
1344				sbappendstream_locked(&so->so_rcv, m);
1345			}
1346			sorwakeup_locked(so);
1347			if (DELAY_ACK(tp)) {
1348				tp->t_flags |= TF_DELACK;
1349			} else {
1350				tp->t_flags |= TF_ACKNOW;
1351				tcp_output(tp);
1352			}
1353			goto check_delack;
1354		}
1355	}
1356
1357	/*
1358	 * Calculate amount of space in receive window,
1359	 * and then do TCP input processing.
1360	 * Receive window is amount of space in rcv queue,
1361	 * but not less than advertised window.
1362	 */
1363	win = sbspace(&so->so_rcv);
1364	if (win < 0)
1365		win = 0;
1366	tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
1367
1368	/* Reset receive buffer auto scaling when not in bulk receive mode. */
1369	tp->rfbuf_ts = 0;
1370	tp->rfbuf_cnt = 0;
1371
1372	switch (tp->t_state) {
1373
1374	/*
1375	 * If the state is SYN_RECEIVED:
1376	 *	if seg contains an ACK, but not for our SYN/ACK, send a RST.
1377	 */
1378	case TCPS_SYN_RECEIVED:
1379		if ((thflags & TH_ACK) &&
1380		    (SEQ_LEQ(th->th_ack, tp->snd_una) ||
1381		     SEQ_GT(th->th_ack, tp->snd_max))) {
1382				rstreason = BANDLIM_RST_OPENPORT;
1383				goto dropwithreset;
1384		}
1385		break;
1386
1387	/*
1388	 * If the state is SYN_SENT:
1389	 *	if seg contains an ACK, but not for our SYN, drop the input.
1390	 *	if seg contains a RST, then drop the connection.
1391	 *	if seg does not contain SYN, then drop it.
1392	 * Otherwise this is an acceptable SYN segment
1393	 *	initialize tp->rcv_nxt and tp->irs
1394	 *	if seg contains ack then advance tp->snd_una
1395	 *	if SYN has been acked change to ESTABLISHED else SYN_RCVD state
1396	 *	arrange for segment to be acked (eventually)
1397	 *	continue processing rest of data/controls, beginning with URG
1398	 */
1399	case TCPS_SYN_SENT:
1400		if ((thflags & TH_ACK) &&
1401		    (SEQ_LEQ(th->th_ack, tp->iss) ||
1402		     SEQ_GT(th->th_ack, tp->snd_max))) {
1403			rstreason = BANDLIM_UNLIMITED;
1404			goto dropwithreset;
1405		}
1406		if ((thflags & (TH_ACK|TH_RST)) == (TH_ACK|TH_RST))
1407			tp = tcp_drop(tp, ECONNREFUSED);
1408		if (thflags & TH_RST)
1409			goto drop;
1410		if (!(thflags & TH_SYN))
1411			goto drop;
1412
1413		tp->irs = th->th_seq;
1414		tcp_rcvseqinit(tp);
1415		if (thflags & TH_ACK) {
1416			tcpstat.tcps_connects++;
1417			soisconnected(so);
1418#ifdef MAC
1419			SOCK_LOCK(so);
1420			mac_set_socket_peer_from_mbuf(m, so);
1421			SOCK_UNLOCK(so);
1422#endif
1423			/* Do window scaling on this connection? */
1424			if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
1425				(TF_RCVD_SCALE|TF_REQ_SCALE)) {
1426				tp->rcv_scale = tp->request_r_scale;
1427			}
1428			tp->rcv_adv += tp->rcv_wnd;
1429			tp->snd_una++;		/* SYN is acked */
1430			/*
1431			 * If there's data, delay ACK; if there's also a FIN
1432			 * ACKNOW will be turned on later.
1433			 */
1434			if (DELAY_ACK(tp) && tlen != 0)
1435				tcp_timer_activate(tp, TT_DELACK,
1436				    tcp_delacktime);
1437			else
1438				tp->t_flags |= TF_ACKNOW;
1439			/*
1440			 * Received <SYN,ACK> in SYN_SENT[*] state.
1441			 * Transitions:
1442			 *	SYN_SENT  --> ESTABLISHED
1443			 *	SYN_SENT* --> FIN_WAIT_1
1444			 */
1445			tp->t_starttime = ticks;
1446			if (tp->t_flags & TF_NEEDFIN) {
1447				tp->t_state = TCPS_FIN_WAIT_1;
1448				tp->t_flags &= ~TF_NEEDFIN;
1449				thflags &= ~TH_SYN;
1450			} else {
1451				tp->t_state = TCPS_ESTABLISHED;
1452				tcp_timer_activate(tp, TT_KEEP, tcp_keepidle);
1453			}
1454		} else {
1455			/*
1456			 * Received initial SYN in SYN-SENT[*] state =>
1457			 * simultaneous open.  If segment contains CC option
1458			 * and there is a cached CC, apply TAO test.
1459			 * If it succeeds, connection is * half-synchronized.
1460			 * Otherwise, do 3-way handshake:
1461			 *        SYN-SENT -> SYN-RECEIVED
1462			 *        SYN-SENT* -> SYN-RECEIVED*
1463			 * If there was no CC option, clear cached CC value.
1464			 */
1465			tp->t_flags |= (TF_ACKNOW | TF_NEEDSYN);
1466			tcp_timer_activate(tp, TT_REXMT, 0);
1467			tp->t_state = TCPS_SYN_RECEIVED;
1468		}
1469
1470		KASSERT(headlocked, ("%s: trimthenstep6: head not locked",
1471		    __func__));
1472		INP_LOCK_ASSERT(tp->t_inpcb);
1473
1474		/*
1475		 * Advance th->th_seq to correspond to first data byte.
1476		 * If data, trim to stay within window,
1477		 * dropping FIN if necessary.
1478		 */
1479		th->th_seq++;
1480		if (tlen > tp->rcv_wnd) {
1481			todrop = tlen - tp->rcv_wnd;
1482			m_adj(m, -todrop);
1483			tlen = tp->rcv_wnd;
1484			thflags &= ~TH_FIN;
1485			tcpstat.tcps_rcvpackafterwin++;
1486			tcpstat.tcps_rcvbyteafterwin += todrop;
1487		}
1488		tp->snd_wl1 = th->th_seq - 1;
1489		tp->rcv_up = th->th_seq;
1490		/*
1491		 * Client side of transaction: already sent SYN and data.
1492		 * If the remote host used T/TCP to validate the SYN,
1493		 * our data will be ACK'd; if so, enter normal data segment
1494		 * processing in the middle of step 5, ack processing.
1495		 * Otherwise, goto step 6.
1496		 */
1497		if (thflags & TH_ACK)
1498			goto process_ACK;
1499
1500		goto step6;
1501
1502	/*
1503	 * If the state is LAST_ACK or CLOSING or TIME_WAIT:
1504	 *      do normal processing.
1505	 *
1506	 * NB: Leftover from RFC1644 T/TCP.  Cases to be reused later.
1507	 */
1508	case TCPS_LAST_ACK:
1509	case TCPS_CLOSING:
1510		break;  /* continue normal processing */
1511	}
1512
1513	/*
1514	 * States other than LISTEN or SYN_SENT.
1515	 * First check the RST flag and sequence number since reset segments
1516	 * are exempt from the timestamp and connection count tests.  This
1517	 * fixes a bug introduced by the Stevens, vol. 2, p. 960 bugfix
1518	 * below which allowed reset segments in half the sequence space
1519	 * to fall though and be processed (which gives forged reset
1520	 * segments with a random sequence number a 50 percent chance of
1521	 * killing a connection).
1522	 * Then check timestamp, if present.
1523	 * Then check the connection count, if present.
1524	 * Then check that at least some bytes of segment are within
1525	 * receive window.  If segment begins before rcv_nxt,
1526	 * drop leading data (and SYN); if nothing left, just ack.
1527	 *
1528	 *
1529	 * If the RST bit is set, check the sequence number to see
1530	 * if this is a valid reset segment.
1531	 * RFC 793 page 37:
1532	 *   In all states except SYN-SENT, all reset (RST) segments
1533	 *   are validated by checking their SEQ-fields.  A reset is
1534	 *   valid if its sequence number is in the window.
1535	 * Note: this does not take into account delayed ACKs, so
1536	 *   we should test against last_ack_sent instead of rcv_nxt.
1537	 *   The sequence number in the reset segment is normally an
1538	 *   echo of our outgoing acknowlegement numbers, but some hosts
1539	 *   send a reset with the sequence number at the rightmost edge
1540	 *   of our receive window, and we have to handle this case.
1541	 * Note 2: Paul Watson's paper "Slipping in the Window" has shown
1542	 *   that brute force RST attacks are possible.  To combat this,
1543	 *   we use a much stricter check while in the ESTABLISHED state,
1544	 *   only accepting RSTs where the sequence number is equal to
1545	 *   last_ack_sent.  In all other states (the states in which a
1546	 *   RST is more likely), the more permissive check is used.
1547	 * If we have multiple segments in flight, the intial reset
1548	 * segment sequence numbers will be to the left of last_ack_sent,
1549	 * but they will eventually catch up.
1550	 * In any case, it never made sense to trim reset segments to
1551	 * fit the receive window since RFC 1122 says:
1552	 *   4.2.2.12  RST Segment: RFC-793 Section 3.4
1553	 *
1554	 *    A TCP SHOULD allow a received RST segment to include data.
1555	 *
1556	 *    DISCUSSION
1557	 *         It has been suggested that a RST segment could contain
1558	 *         ASCII text that encoded and explained the cause of the
1559	 *         RST.  No standard has yet been established for such
1560	 *         data.
1561	 *
1562	 * If the reset segment passes the sequence number test examine
1563	 * the state:
1564	 *    SYN_RECEIVED STATE:
1565	 *	If passive open, return to LISTEN state.
1566	 *	If active open, inform user that connection was refused.
1567	 *    ESTABLISHED, FIN_WAIT_1, FIN_WAIT_2, CLOSE_WAIT STATES:
1568	 *	Inform user that connection was reset, and close tcb.
1569	 *    CLOSING, LAST_ACK STATES:
1570	 *	Close the tcb.
1571	 *    TIME_WAIT STATE:
1572	 *	Drop the segment - see Stevens, vol. 2, p. 964 and
1573	 *      RFC 1337.
1574	 */
1575	if (thflags & TH_RST) {
1576		if (SEQ_GEQ(th->th_seq, tp->last_ack_sent - 1) &&
1577		    SEQ_LEQ(th->th_seq, tp->last_ack_sent + tp->rcv_wnd)) {
1578			switch (tp->t_state) {
1579
1580			case TCPS_SYN_RECEIVED:
1581				so->so_error = ECONNREFUSED;
1582				goto close;
1583
1584			case TCPS_ESTABLISHED:
1585				if (tcp_insecure_rst == 0 &&
1586				    !(SEQ_GEQ(th->th_seq, tp->rcv_nxt - 1) &&
1587				    SEQ_LEQ(th->th_seq, tp->rcv_nxt + 1)) &&
1588				    !(SEQ_GEQ(th->th_seq, tp->last_ack_sent - 1) &&
1589				    SEQ_LEQ(th->th_seq, tp->last_ack_sent + 1))) {
1590					tcpstat.tcps_badrst++;
1591					goto drop;
1592				}
1593			case TCPS_FIN_WAIT_1:
1594			case TCPS_FIN_WAIT_2:
1595			case TCPS_CLOSE_WAIT:
1596				so->so_error = ECONNRESET;
1597			close:
1598				tp->t_state = TCPS_CLOSED;
1599				tcpstat.tcps_drops++;
1600				KASSERT(headlocked, ("%s: trimthenstep6: "
1601				    "tcp_close: head not locked", __func__));
1602				tp = tcp_close(tp);
1603				break;
1604
1605			case TCPS_CLOSING:
1606			case TCPS_LAST_ACK:
1607				KASSERT(headlocked, ("%s: trimthenstep6: "
1608				    "tcp_close.2: head not locked", __func__));
1609				tp = tcp_close(tp);
1610				break;
1611			}
1612		}
1613		goto drop;
1614	}
1615
1616	/*
1617	 * RFC 1323 PAWS: If we have a timestamp reply on this segment
1618	 * and it's less than ts_recent, drop it.
1619	 */
1620	if ((to.to_flags & TOF_TS) != 0 && tp->ts_recent &&
1621	    TSTMP_LT(to.to_tsval, tp->ts_recent)) {
1622
1623		/* Check to see if ts_recent is over 24 days old.  */
1624		if ((int)(ticks - tp->ts_recent_age) > TCP_PAWS_IDLE) {
1625			/*
1626			 * Invalidate ts_recent.  If this segment updates
1627			 * ts_recent, the age will be reset later and ts_recent
1628			 * will get a valid value.  If it does not, setting
1629			 * ts_recent to zero will at least satisfy the
1630			 * requirement that zero be placed in the timestamp
1631			 * echo reply when ts_recent isn't valid.  The
1632			 * age isn't reset until we get a valid ts_recent
1633			 * because we don't want out-of-order segments to be
1634			 * dropped when ts_recent is old.
1635			 */
1636			tp->ts_recent = 0;
1637		} else {
1638			tcpstat.tcps_rcvduppack++;
1639			tcpstat.tcps_rcvdupbyte += tlen;
1640			tcpstat.tcps_pawsdrop++;
1641			if (tlen)
1642				goto dropafterack;
1643			goto drop;
1644		}
1645	}
1646
1647	/*
1648	 * In the SYN-RECEIVED state, validate that the packet belongs to
1649	 * this connection before trimming the data to fit the receive
1650	 * window.  Check the sequence number versus IRS since we know
1651	 * the sequence numbers haven't wrapped.  This is a partial fix
1652	 * for the "LAND" DoS attack.
1653	 */
1654	if (tp->t_state == TCPS_SYN_RECEIVED && SEQ_LT(th->th_seq, tp->irs)) {
1655		rstreason = BANDLIM_RST_OPENPORT;
1656		goto dropwithreset;
1657	}
1658
1659	todrop = tp->rcv_nxt - th->th_seq;
1660	if (todrop > 0) {
1661		if (thflags & TH_SYN) {
1662			thflags &= ~TH_SYN;
1663			th->th_seq++;
1664			if (th->th_urp > 1)
1665				th->th_urp--;
1666			else
1667				thflags &= ~TH_URG;
1668			todrop--;
1669		}
1670		/*
1671		 * Following if statement from Stevens, vol. 2, p. 960.
1672		 */
1673		if (todrop > tlen
1674		    || (todrop == tlen && (thflags & TH_FIN) == 0)) {
1675			/*
1676			 * Any valid FIN must be to the left of the window.
1677			 * At this point the FIN must be a duplicate or out
1678			 * of sequence; drop it.
1679			 */
1680			thflags &= ~TH_FIN;
1681
1682			/*
1683			 * Send an ACK to resynchronize and drop any data.
1684			 * But keep on processing for RST or ACK.
1685			 */
1686			tp->t_flags |= TF_ACKNOW;
1687			todrop = tlen;
1688			tcpstat.tcps_rcvduppack++;
1689			tcpstat.tcps_rcvdupbyte += todrop;
1690		} else {
1691			tcpstat.tcps_rcvpartduppack++;
1692			tcpstat.tcps_rcvpartdupbyte += todrop;
1693		}
1694		drop_hdrlen += todrop;	/* drop from the top afterwards */
1695		th->th_seq += todrop;
1696		tlen -= todrop;
1697		if (th->th_urp > todrop)
1698			th->th_urp -= todrop;
1699		else {
1700			thflags &= ~TH_URG;
1701			th->th_urp = 0;
1702		}
1703	}
1704
1705	/*
1706	 * If new data are received on a connection after the
1707	 * user processes are gone, then RST the other end.
1708	 */
1709	if ((so->so_state & SS_NOFDREF) &&
1710	    tp->t_state > TCPS_CLOSE_WAIT && tlen) {
1711		KASSERT(headlocked, ("%s: trimthenstep6: tcp_close.3: head "
1712		    "not locked", __func__));
1713		tp = tcp_close(tp);
1714		tcpstat.tcps_rcvafterclose++;
1715		rstreason = BANDLIM_UNLIMITED;
1716		goto dropwithreset;
1717	}
1718
1719	/*
1720	 * If segment ends after window, drop trailing data
1721	 * (and PUSH and FIN); if nothing left, just ACK.
1722	 */
1723	todrop = (th->th_seq + tlen) - (tp->rcv_nxt + tp->rcv_wnd);
1724	if (todrop > 0) {
1725		tcpstat.tcps_rcvpackafterwin++;
1726		if (todrop >= tlen) {
1727			tcpstat.tcps_rcvbyteafterwin += tlen;
1728			/*
1729			 * If window is closed can only take segments at
1730			 * window edge, and have to drop data and PUSH from
1731			 * incoming segments.  Continue processing, but
1732			 * remember to ack.  Otherwise, drop segment
1733			 * and ack.
1734			 */
1735			if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
1736				tp->t_flags |= TF_ACKNOW;
1737				tcpstat.tcps_rcvwinprobe++;
1738			} else
1739				goto dropafterack;
1740		} else
1741			tcpstat.tcps_rcvbyteafterwin += todrop;
1742		m_adj(m, -todrop);
1743		tlen -= todrop;
1744		thflags &= ~(TH_PUSH|TH_FIN);
1745	}
1746
1747	/*
1748	 * If last ACK falls within this segment's sequence numbers,
1749	 * record its timestamp.
1750	 * NOTE:
1751	 * 1) That the test incorporates suggestions from the latest
1752	 *    proposal of the tcplw@cray.com list (Braden 1993/04/26).
1753	 * 2) That updating only on newer timestamps interferes with
1754	 *    our earlier PAWS tests, so this check should be solely
1755	 *    predicated on the sequence space of this segment.
1756	 * 3) That we modify the segment boundary check to be
1757	 *        Last.ACK.Sent <= SEG.SEQ + SEG.Len
1758	 *    instead of RFC1323's
1759	 *        Last.ACK.Sent < SEG.SEQ + SEG.Len,
1760	 *    This modified check allows us to overcome RFC1323's
1761	 *    limitations as described in Stevens TCP/IP Illustrated
1762	 *    Vol. 2 p.869. In such cases, we can still calculate the
1763	 *    RTT correctly when RCV.NXT == Last.ACK.Sent.
1764	 */
1765	if ((to.to_flags & TOF_TS) != 0 &&
1766	    SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
1767	    SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
1768		((thflags & (TH_SYN|TH_FIN)) != 0))) {
1769		tp->ts_recent_age = ticks;
1770		tp->ts_recent = to.to_tsval;
1771	}
1772
1773	/*
1774	 * If a SYN is in the window, then this is an
1775	 * error and we send an RST and drop the connection.
1776	 */
1777	if (thflags & TH_SYN) {
1778		KASSERT(headlocked, ("%s: tcp_drop: trimthenstep6: "
1779		    "head not locked", __func__));
1780		tp = tcp_drop(tp, ECONNRESET);
1781		rstreason = BANDLIM_UNLIMITED;
1782		goto drop;
1783	}
1784
1785	/*
1786	 * If the ACK bit is off:  if in SYN-RECEIVED state or SENDSYN
1787	 * flag is on (half-synchronized state), then queue data for
1788	 * later processing; else drop segment and return.
1789	 */
1790	if ((thflags & TH_ACK) == 0) {
1791		if (tp->t_state == TCPS_SYN_RECEIVED ||
1792		    (tp->t_flags & TF_NEEDSYN))
1793			goto step6;
1794		else if (tp->t_flags & TF_ACKNOW)
1795			goto dropafterack;
1796		else
1797			goto drop;
1798	}
1799
1800	/*
1801	 * Ack processing.
1802	 */
1803	switch (tp->t_state) {
1804
1805	/*
1806	 * In SYN_RECEIVED state, the ack ACKs our SYN, so enter
1807	 * ESTABLISHED state and continue processing.
1808	 * The ACK was checked above.
1809	 */
1810	case TCPS_SYN_RECEIVED:
1811
1812		tcpstat.tcps_connects++;
1813		soisconnected(so);
1814		/* Do window scaling? */
1815		if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
1816			(TF_RCVD_SCALE|TF_REQ_SCALE)) {
1817			tp->rcv_scale = tp->request_r_scale;
1818			tp->snd_wnd = tiwin;
1819		}
1820		/*
1821		 * Make transitions:
1822		 *      SYN-RECEIVED  -> ESTABLISHED
1823		 *      SYN-RECEIVED* -> FIN-WAIT-1
1824		 */
1825		tp->t_starttime = ticks;
1826		if (tp->t_flags & TF_NEEDFIN) {
1827			tp->t_state = TCPS_FIN_WAIT_1;
1828			tp->t_flags &= ~TF_NEEDFIN;
1829		} else {
1830			tp->t_state = TCPS_ESTABLISHED;
1831			tcp_timer_activate(tp, TT_KEEP, tcp_keepidle);
1832		}
1833		/*
1834		 * If segment contains data or ACK, will call tcp_reass()
1835		 * later; if not, do so now to pass queued data to user.
1836		 */
1837		if (tlen == 0 && (thflags & TH_FIN) == 0)
1838			(void) tcp_reass(tp, (struct tcphdr *)0, 0,
1839			    (struct mbuf *)0);
1840		tp->snd_wl1 = th->th_seq - 1;
1841		/* FALLTHROUGH */
1842
1843	/*
1844	 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
1845	 * ACKs.  If the ack is in the range
1846	 *	tp->snd_una < th->th_ack <= tp->snd_max
1847	 * then advance tp->snd_una to th->th_ack and drop
1848	 * data from the retransmission queue.  If this ACK reflects
1849	 * more up to date window information we update our window information.
1850	 */
1851	case TCPS_ESTABLISHED:
1852	case TCPS_FIN_WAIT_1:
1853	case TCPS_FIN_WAIT_2:
1854	case TCPS_CLOSE_WAIT:
1855	case TCPS_CLOSING:
1856	case TCPS_LAST_ACK:
1857		if (SEQ_GT(th->th_ack, tp->snd_max)) {
1858			tcpstat.tcps_rcvacktoomuch++;
1859			goto dropafterack;
1860		}
1861		if ((tp->t_flags & TF_SACK_PERMIT) &&
1862		    ((to.to_flags & TOF_SACK) ||
1863		     !TAILQ_EMPTY(&tp->snd_holes)))
1864			tcp_sack_doack(tp, &to, th->th_ack);
1865		if (SEQ_LEQ(th->th_ack, tp->snd_una)) {
1866			if (tlen == 0 && tiwin == tp->snd_wnd) {
1867				tcpstat.tcps_rcvdupack++;
1868				/*
1869				 * If we have outstanding data (other than
1870				 * a window probe), this is a completely
1871				 * duplicate ack (ie, window info didn't
1872				 * change), the ack is the biggest we've
1873				 * seen and we've seen exactly our rexmt
1874				 * threshhold of them, assume a packet
1875				 * has been dropped and retransmit it.
1876				 * Kludge snd_nxt & the congestion
1877				 * window so we send only this one
1878				 * packet.
1879				 *
1880				 * We know we're losing at the current
1881				 * window size so do congestion avoidance
1882				 * (set ssthresh to half the current window
1883				 * and pull our congestion window back to
1884				 * the new ssthresh).
1885				 *
1886				 * Dup acks mean that packets have left the
1887				 * network (they're now cached at the receiver)
1888				 * so bump cwnd by the amount in the receiver
1889				 * to keep a constant cwnd packets in the
1890				 * network.
1891				 */
1892				if (!tcp_timer_active(tp, TT_REXMT) ||
1893				    th->th_ack != tp->snd_una)
1894					tp->t_dupacks = 0;
1895				else if (++tp->t_dupacks > tcprexmtthresh ||
1896				    ((tcp_do_newreno ||
1897				      (tp->t_flags & TF_SACK_PERMIT)) &&
1898				     IN_FASTRECOVERY(tp))) {
1899					if ((tp->t_flags & TF_SACK_PERMIT) &&
1900					    IN_FASTRECOVERY(tp)) {
1901						int awnd;
1902
1903						/*
1904						 * Compute the amount of data in flight first.
1905						 * We can inject new data into the pipe iff
1906						 * we have less than 1/2 the original window's
1907						 * worth of data in flight.
1908						 */
1909						awnd = (tp->snd_nxt - tp->snd_fack) +
1910							tp->sackhint.sack_bytes_rexmit;
1911						if (awnd < tp->snd_ssthresh) {
1912							tp->snd_cwnd += tp->t_maxseg;
1913							if (tp->snd_cwnd > tp->snd_ssthresh)
1914								tp->snd_cwnd = tp->snd_ssthresh;
1915						}
1916					} else
1917						tp->snd_cwnd += tp->t_maxseg;
1918					(void) tcp_output(tp);
1919					goto drop;
1920				} else if (tp->t_dupacks == tcprexmtthresh) {
1921					tcp_seq onxt = tp->snd_nxt;
1922					u_int win;
1923
1924					/*
1925					 * If we're doing sack, check to
1926					 * see if we're already in sack
1927					 * recovery. If we're not doing sack,
1928					 * check to see if we're in newreno
1929					 * recovery.
1930					 */
1931					if (tp->t_flags & TF_SACK_PERMIT) {
1932						if (IN_FASTRECOVERY(tp)) {
1933							tp->t_dupacks = 0;
1934							break;
1935						}
1936					} else if (tcp_do_newreno) {
1937						if (SEQ_LEQ(th->th_ack,
1938						    tp->snd_recover)) {
1939							tp->t_dupacks = 0;
1940							break;
1941						}
1942					}
1943					win = min(tp->snd_wnd, tp->snd_cwnd) /
1944					    2 / tp->t_maxseg;
1945					if (win < 2)
1946						win = 2;
1947					tp->snd_ssthresh = win * tp->t_maxseg;
1948					ENTER_FASTRECOVERY(tp);
1949					tp->snd_recover = tp->snd_max;
1950					tcp_timer_activate(tp, TT_REXMT, 0);
1951					tp->t_rtttime = 0;
1952					if (tp->t_flags & TF_SACK_PERMIT) {
1953						tcpstat.tcps_sack_recovery_episode++;
1954						tp->sack_newdata = tp->snd_nxt;
1955						tp->snd_cwnd = tp->t_maxseg;
1956						(void) tcp_output(tp);
1957						goto drop;
1958					}
1959					tp->snd_nxt = th->th_ack;
1960					tp->snd_cwnd = tp->t_maxseg;
1961					(void) tcp_output(tp);
1962					KASSERT(tp->snd_limited <= 2,
1963					    ("%s: tp->snd_limited too big",
1964					    __func__));
1965					tp->snd_cwnd = tp->snd_ssthresh +
1966					     tp->t_maxseg *
1967					     (tp->t_dupacks - tp->snd_limited);
1968					if (SEQ_GT(onxt, tp->snd_nxt))
1969						tp->snd_nxt = onxt;
1970					goto drop;
1971				} else if (tcp_do_rfc3042) {
1972					u_long oldcwnd = tp->snd_cwnd;
1973					tcp_seq oldsndmax = tp->snd_max;
1974					u_int sent;
1975
1976					KASSERT(tp->t_dupacks == 1 ||
1977					    tp->t_dupacks == 2,
1978					    ("%s: dupacks not 1 or 2",
1979					    __func__));
1980					if (tp->t_dupacks == 1)
1981						tp->snd_limited = 0;
1982					tp->snd_cwnd =
1983					    (tp->snd_nxt - tp->snd_una) +
1984					    (tp->t_dupacks - tp->snd_limited) *
1985					    tp->t_maxseg;
1986					(void) tcp_output(tp);
1987					sent = tp->snd_max - oldsndmax;
1988					if (sent > tp->t_maxseg) {
1989						KASSERT((tp->t_dupacks == 2 &&
1990						    tp->snd_limited == 0) ||
1991						   (sent == tp->t_maxseg + 1 &&
1992						    tp->t_flags & TF_SENTFIN),
1993						    ("%s: sent too much",
1994						    __func__));
1995						tp->snd_limited = 2;
1996					} else if (sent > 0)
1997						++tp->snd_limited;
1998					tp->snd_cwnd = oldcwnd;
1999					goto drop;
2000				}
2001			} else
2002				tp->t_dupacks = 0;
2003			break;
2004		}
2005
2006		KASSERT(SEQ_GT(th->th_ack, tp->snd_una),
2007		    ("%s: th_ack <= snd_una", __func__));
2008
2009		/*
2010		 * If the congestion window was inflated to account
2011		 * for the other side's cached packets, retract it.
2012		 */
2013		if (tcp_do_newreno || (tp->t_flags & TF_SACK_PERMIT)) {
2014			if (IN_FASTRECOVERY(tp)) {
2015				if (SEQ_LT(th->th_ack, tp->snd_recover)) {
2016					if (tp->t_flags & TF_SACK_PERMIT)
2017						tcp_sack_partialack(tp, th);
2018					else
2019						tcp_newreno_partial_ack(tp, th);
2020				} else {
2021					/*
2022					 * Out of fast recovery.
2023					 * Window inflation should have left us
2024					 * with approximately snd_ssthresh
2025					 * outstanding data.
2026					 * But in case we would be inclined to
2027					 * send a burst, better to do it via
2028					 * the slow start mechanism.
2029					 */
2030					if (SEQ_GT(th->th_ack +
2031							tp->snd_ssthresh,
2032						   tp->snd_max))
2033						tp->snd_cwnd = tp->snd_max -
2034								th->th_ack +
2035								tp->t_maxseg;
2036					else
2037						tp->snd_cwnd = tp->snd_ssthresh;
2038				}
2039			}
2040		} else {
2041			if (tp->t_dupacks >= tcprexmtthresh &&
2042			    tp->snd_cwnd > tp->snd_ssthresh)
2043				tp->snd_cwnd = tp->snd_ssthresh;
2044		}
2045		tp->t_dupacks = 0;
2046		/*
2047		 * If we reach this point, ACK is not a duplicate,
2048		 *     i.e., it ACKs something we sent.
2049		 */
2050		if (tp->t_flags & TF_NEEDSYN) {
2051			/*
2052			 * T/TCP: Connection was half-synchronized, and our
2053			 * SYN has been ACK'd (so connection is now fully
2054			 * synchronized).  Go to non-starred state,
2055			 * increment snd_una for ACK of SYN, and check if
2056			 * we can do window scaling.
2057			 */
2058			tp->t_flags &= ~TF_NEEDSYN;
2059			tp->snd_una++;
2060			/* Do window scaling? */
2061			if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
2062				(TF_RCVD_SCALE|TF_REQ_SCALE)) {
2063				tp->rcv_scale = tp->request_r_scale;
2064				/* Send window already scaled. */
2065			}
2066		}
2067
2068process_ACK:
2069		KASSERT(headlocked, ("%s: process_ACK: head not locked",
2070		    __func__));
2071		INP_LOCK_ASSERT(tp->t_inpcb);
2072
2073		acked = th->th_ack - tp->snd_una;
2074		tcpstat.tcps_rcvackpack++;
2075		tcpstat.tcps_rcvackbyte += acked;
2076
2077		/*
2078		 * If we just performed our first retransmit, and the ACK
2079		 * arrives within our recovery window, then it was a mistake
2080		 * to do the retransmit in the first place.  Recover our
2081		 * original cwnd and ssthresh, and proceed to transmit where
2082		 * we left off.
2083		 */
2084		if (tp->t_rxtshift == 1 && ticks < tp->t_badrxtwin) {
2085			++tcpstat.tcps_sndrexmitbad;
2086			tp->snd_cwnd = tp->snd_cwnd_prev;
2087			tp->snd_ssthresh = tp->snd_ssthresh_prev;
2088			tp->snd_recover = tp->snd_recover_prev;
2089			if (tp->t_flags & TF_WASFRECOVERY)
2090				ENTER_FASTRECOVERY(tp);
2091			tp->snd_nxt = tp->snd_max;
2092			tp->t_badrxtwin = 0;	/* XXX probably not required */
2093		}
2094
2095		/*
2096		 * If we have a timestamp reply, update smoothed
2097		 * round trip time.  If no timestamp is present but
2098		 * transmit timer is running and timed sequence
2099		 * number was acked, update smoothed round trip time.
2100		 * Since we now have an rtt measurement, cancel the
2101		 * timer backoff (cf., Phil Karn's retransmit alg.).
2102		 * Recompute the initial retransmit timer.
2103		 *
2104		 * Some boxes send broken timestamp replies
2105		 * during the SYN+ACK phase, ignore
2106		 * timestamps of 0 or we could calculate a
2107		 * huge RTT and blow up the retransmit timer.
2108		 */
2109		if ((to.to_flags & TOF_TS) != 0 &&
2110		    to.to_tsecr) {
2111			if (!tp->t_rttlow || tp->t_rttlow > ticks - to.to_tsecr)
2112				tp->t_rttlow = ticks - to.to_tsecr;
2113			tcp_xmit_timer(tp, ticks - to.to_tsecr + 1);
2114		} else if (tp->t_rtttime && SEQ_GT(th->th_ack, tp->t_rtseq)) {
2115			if (!tp->t_rttlow || tp->t_rttlow > ticks - tp->t_rtttime)
2116				tp->t_rttlow = ticks - tp->t_rtttime;
2117			tcp_xmit_timer(tp, ticks - tp->t_rtttime);
2118		}
2119		tcp_xmit_bandwidth_limit(tp, th->th_ack);
2120
2121		/*
2122		 * If all outstanding data is acked, stop retransmit
2123		 * timer and remember to restart (more output or persist).
2124		 * If there is more data to be acked, restart retransmit
2125		 * timer, using current (possibly backed-off) value.
2126		 */
2127		if (th->th_ack == tp->snd_max) {
2128			tcp_timer_activate(tp, TT_REXMT, 0);
2129			needoutput = 1;
2130		} else if (!tcp_timer_active(tp, TT_PERSIST))
2131			tcp_timer_activate(tp, TT_REXMT, tp->t_rxtcur);
2132
2133		/*
2134		 * If no data (only SYN) was ACK'd,
2135		 *    skip rest of ACK processing.
2136		 */
2137		if (acked == 0)
2138			goto step6;
2139
2140		/*
2141		 * When new data is acked, open the congestion window.
2142		 * If the window gives us less than ssthresh packets
2143		 * in flight, open exponentially (maxseg per packet).
2144		 * Otherwise open linearly: maxseg per window
2145		 * (maxseg^2 / cwnd per packet).
2146		 */
2147		if ((!tcp_do_newreno && !(tp->t_flags & TF_SACK_PERMIT)) ||
2148		    !IN_FASTRECOVERY(tp)) {
2149			u_int cw = tp->snd_cwnd;
2150			u_int incr = tp->t_maxseg;
2151			if (cw > tp->snd_ssthresh)
2152				incr = incr * incr / cw;
2153			tp->snd_cwnd = min(cw+incr, TCP_MAXWIN<<tp->snd_scale);
2154		}
2155		SOCKBUF_LOCK(&so->so_snd);
2156		if (acked > so->so_snd.sb_cc) {
2157			tp->snd_wnd -= so->so_snd.sb_cc;
2158			sbdrop_locked(&so->so_snd, (int)so->so_snd.sb_cc);
2159			ourfinisacked = 1;
2160		} else {
2161			sbdrop_locked(&so->so_snd, acked);
2162			tp->snd_wnd -= acked;
2163			ourfinisacked = 0;
2164		}
2165		sowwakeup_locked(so);
2166		/* detect una wraparound */
2167		if ((tcp_do_newreno || (tp->t_flags & TF_SACK_PERMIT)) &&
2168		    !IN_FASTRECOVERY(tp) &&
2169		    SEQ_GT(tp->snd_una, tp->snd_recover) &&
2170		    SEQ_LEQ(th->th_ack, tp->snd_recover))
2171			tp->snd_recover = th->th_ack - 1;
2172		if ((tcp_do_newreno || (tp->t_flags & TF_SACK_PERMIT)) &&
2173		    IN_FASTRECOVERY(tp) &&
2174		    SEQ_GEQ(th->th_ack, tp->snd_recover))
2175			EXIT_FASTRECOVERY(tp);
2176		tp->snd_una = th->th_ack;
2177		if (tp->t_flags & TF_SACK_PERMIT) {
2178			if (SEQ_GT(tp->snd_una, tp->snd_recover))
2179				tp->snd_recover = tp->snd_una;
2180		}
2181		if (SEQ_LT(tp->snd_nxt, tp->snd_una))
2182			tp->snd_nxt = tp->snd_una;
2183
2184		switch (tp->t_state) {
2185
2186		/*
2187		 * In FIN_WAIT_1 STATE in addition to the processing
2188		 * for the ESTABLISHED state if our FIN is now acknowledged
2189		 * then enter FIN_WAIT_2.
2190		 */
2191		case TCPS_FIN_WAIT_1:
2192			if (ourfinisacked) {
2193				/*
2194				 * If we can't receive any more
2195				 * data, then closing user can proceed.
2196				 * Starting the timer is contrary to the
2197				 * specification, but if we don't get a FIN
2198				 * we'll hang forever.
2199				 */
2200		/* XXXjl
2201		 * we should release the tp also, and use a
2202		 * compressed state.
2203		 */
2204				if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
2205					int timeout;
2206
2207					soisdisconnected(so);
2208					timeout = (tcp_fast_finwait2_recycle) ?
2209						tcp_finwait2_timeout : tcp_maxidle;
2210					tcp_timer_activate(tp, TT_2MSL, timeout);
2211				}
2212				tp->t_state = TCPS_FIN_WAIT_2;
2213			}
2214			break;
2215
2216		/*
2217		 * In CLOSING STATE in addition to the processing for
2218		 * the ESTABLISHED state if the ACK acknowledges our FIN
2219		 * then enter the TIME-WAIT state, otherwise ignore
2220		 * the segment.
2221		 */
2222		case TCPS_CLOSING:
2223			if (ourfinisacked) {
2224				KASSERT(headlocked, ("%s: process_ACK: "
2225				    "head not locked", __func__));
2226				tcp_twstart(tp);
2227				INP_INFO_WUNLOCK(&tcbinfo);
2228				headlocked = 0;
2229				m_freem(m);
2230				return;
2231			}
2232			break;
2233
2234		/*
2235		 * In LAST_ACK, we may still be waiting for data to drain
2236		 * and/or to be acked, as well as for the ack of our FIN.
2237		 * If our FIN is now acknowledged, delete the TCB,
2238		 * enter the closed state and return.
2239		 */
2240		case TCPS_LAST_ACK:
2241			if (ourfinisacked) {
2242				KASSERT(headlocked, ("%s: process_ACK: "
2243				    "tcp_close: head not locked", __func__));
2244				tp = tcp_close(tp);
2245				goto drop;
2246			}
2247			break;
2248		}
2249	}
2250
2251step6:
2252	KASSERT(headlocked, ("%s: step6: head not locked", __func__));
2253	INP_LOCK_ASSERT(tp->t_inpcb);
2254
2255	/*
2256	 * Update window information.
2257	 * Don't look at window if no ACK: TAC's send garbage on first SYN.
2258	 */
2259	if ((thflags & TH_ACK) &&
2260	    (SEQ_LT(tp->snd_wl1, th->th_seq) ||
2261	    (tp->snd_wl1 == th->th_seq && (SEQ_LT(tp->snd_wl2, th->th_ack) ||
2262	     (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))))) {
2263		/* keep track of pure window updates */
2264		if (tlen == 0 &&
2265		    tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)
2266			tcpstat.tcps_rcvwinupd++;
2267		tp->snd_wnd = tiwin;
2268		tp->snd_wl1 = th->th_seq;
2269		tp->snd_wl2 = th->th_ack;
2270		if (tp->snd_wnd > tp->max_sndwnd)
2271			tp->max_sndwnd = tp->snd_wnd;
2272		needoutput = 1;
2273	}
2274
2275	/*
2276	 * Process segments with URG.
2277	 */
2278	if ((thflags & TH_URG) && th->th_urp &&
2279	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2280		/*
2281		 * This is a kludge, but if we receive and accept
2282		 * random urgent pointers, we'll crash in
2283		 * soreceive.  It's hard to imagine someone
2284		 * actually wanting to send this much urgent data.
2285		 */
2286		SOCKBUF_LOCK(&so->so_rcv);
2287		if (th->th_urp + so->so_rcv.sb_cc > sb_max) {
2288			th->th_urp = 0;			/* XXX */
2289			thflags &= ~TH_URG;		/* XXX */
2290			SOCKBUF_UNLOCK(&so->so_rcv);	/* XXX */
2291			goto dodata;			/* XXX */
2292		}
2293		/*
2294		 * If this segment advances the known urgent pointer,
2295		 * then mark the data stream.  This should not happen
2296		 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
2297		 * a FIN has been received from the remote side.
2298		 * In these states we ignore the URG.
2299		 *
2300		 * According to RFC961 (Assigned Protocols),
2301		 * the urgent pointer points to the last octet
2302		 * of urgent data.  We continue, however,
2303		 * to consider it to indicate the first octet
2304		 * of data past the urgent section as the original
2305		 * spec states (in one of two places).
2306		 */
2307		if (SEQ_GT(th->th_seq+th->th_urp, tp->rcv_up)) {
2308			tp->rcv_up = th->th_seq + th->th_urp;
2309			so->so_oobmark = so->so_rcv.sb_cc +
2310			    (tp->rcv_up - tp->rcv_nxt) - 1;
2311			if (so->so_oobmark == 0)
2312				so->so_rcv.sb_state |= SBS_RCVATMARK;
2313			sohasoutofband(so);
2314			tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
2315		}
2316		SOCKBUF_UNLOCK(&so->so_rcv);
2317		/*
2318		 * Remove out of band data so doesn't get presented to user.
2319		 * This can happen independent of advancing the URG pointer,
2320		 * but if two URG's are pending at once, some out-of-band
2321		 * data may creep in... ick.
2322		 */
2323		if (th->th_urp <= (u_long)tlen &&
2324		    !(so->so_options & SO_OOBINLINE)) {
2325			/* hdr drop is delayed */
2326			tcp_pulloutofband(so, th, m, drop_hdrlen);
2327		}
2328	} else {
2329		/*
2330		 * If no out of band data is expected,
2331		 * pull receive urgent pointer along
2332		 * with the receive window.
2333		 */
2334		if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
2335			tp->rcv_up = tp->rcv_nxt;
2336	}
2337dodata:							/* XXX */
2338	KASSERT(headlocked, ("%s: dodata: head not locked", __func__));
2339	INP_LOCK_ASSERT(tp->t_inpcb);
2340
2341	/*
2342	 * Process the segment text, merging it into the TCP sequencing queue,
2343	 * and arranging for acknowledgment of receipt if necessary.
2344	 * This process logically involves adjusting tp->rcv_wnd as data
2345	 * is presented to the user (this happens in tcp_usrreq.c,
2346	 * case PRU_RCVD).  If a FIN has already been received on this
2347	 * connection then we just ignore the text.
2348	 */
2349	if ((tlen || (thflags & TH_FIN)) &&
2350	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2351		tcp_seq save_start = th->th_seq;
2352		tcp_seq save_end = th->th_seq + tlen;
2353		m_adj(m, drop_hdrlen);	/* delayed header drop */
2354		/*
2355		 * Insert segment which includes th into TCP reassembly queue
2356		 * with control block tp.  Set thflags to whether reassembly now
2357		 * includes a segment with FIN.  This handles the common case
2358		 * inline (segment is the next to be received on an established
2359		 * connection, and the queue is empty), avoiding linkage into
2360		 * and removal from the queue and repetition of various
2361		 * conversions.
2362		 * Set DELACK for segments received in order, but ack
2363		 * immediately when segments are out of order (so
2364		 * fast retransmit can work).
2365		 */
2366		if (th->th_seq == tp->rcv_nxt &&
2367		    LIST_EMPTY(&tp->t_segq) &&
2368		    TCPS_HAVEESTABLISHED(tp->t_state)) {
2369			if (DELAY_ACK(tp))
2370				tp->t_flags |= TF_DELACK;
2371			else
2372				tp->t_flags |= TF_ACKNOW;
2373			tp->rcv_nxt += tlen;
2374			thflags = th->th_flags & TH_FIN;
2375			tcpstat.tcps_rcvpack++;
2376			tcpstat.tcps_rcvbyte += tlen;
2377			ND6_HINT(tp);
2378			SOCKBUF_LOCK(&so->so_rcv);
2379			if (so->so_rcv.sb_state & SBS_CANTRCVMORE)
2380				m_freem(m);
2381			else
2382				sbappendstream_locked(&so->so_rcv, m);
2383			sorwakeup_locked(so);
2384		} else {
2385			thflags = tcp_reass(tp, th, &tlen, m);
2386			tp->t_flags |= TF_ACKNOW;
2387		}
2388		if (tlen > 0 && (tp->t_flags & TF_SACK_PERMIT))
2389			tcp_update_sack_list(tp, save_start, save_end);
2390#if 0
2391		/*
2392		 * Note the amount of data that peer has sent into
2393		 * our window, in order to estimate the sender's
2394		 * buffer size.
2395		 * XXX: Unused.
2396		 */
2397		len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
2398#endif
2399	} else {
2400		m_freem(m);
2401		thflags &= ~TH_FIN;
2402	}
2403
2404	/*
2405	 * If FIN is received ACK the FIN and let the user know
2406	 * that the connection is closing.
2407	 */
2408	if (thflags & TH_FIN) {
2409		if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2410			socantrcvmore(so);
2411			/*
2412			 * If connection is half-synchronized
2413			 * (ie NEEDSYN flag on) then delay ACK,
2414			 * so it may be piggybacked when SYN is sent.
2415			 * Otherwise, since we received a FIN then no
2416			 * more input can be expected, send ACK now.
2417			 */
2418			if (tp->t_flags & TF_NEEDSYN)
2419				tp->t_flags |= TF_DELACK;
2420			else
2421				tp->t_flags |= TF_ACKNOW;
2422			tp->rcv_nxt++;
2423		}
2424		switch (tp->t_state) {
2425
2426		/*
2427		 * In SYN_RECEIVED and ESTABLISHED STATES
2428		 * enter the CLOSE_WAIT state.
2429		 */
2430		case TCPS_SYN_RECEIVED:
2431			tp->t_starttime = ticks;
2432			/*FALLTHROUGH*/
2433		case TCPS_ESTABLISHED:
2434			tp->t_state = TCPS_CLOSE_WAIT;
2435			break;
2436
2437		/*
2438		 * If still in FIN_WAIT_1 STATE FIN has not been acked so
2439		 * enter the CLOSING state.
2440		 */
2441		case TCPS_FIN_WAIT_1:
2442			tp->t_state = TCPS_CLOSING;
2443			break;
2444
2445		/*
2446		 * In FIN_WAIT_2 state enter the TIME_WAIT state,
2447		 * starting the time-wait timer, turning off the other
2448		 * standard timers.
2449		 */
2450		case TCPS_FIN_WAIT_2:
2451			KASSERT(headlocked == 1, ("%s: dodata: "
2452			    "TCP_FIN_WAIT_2: head not locked", __func__));
2453			tcp_twstart(tp);
2454			INP_INFO_WUNLOCK(&tcbinfo);
2455			return;
2456		}
2457	}
2458	INP_INFO_WUNLOCK(&tcbinfo);
2459	headlocked = 0;
2460#ifdef TCPDEBUG
2461	if (so->so_options & SO_DEBUG)
2462		tcp_trace(TA_INPUT, ostate, tp, (void *)tcp_saveipgen,
2463			  &tcp_savetcp, 0);
2464#endif
2465
2466	/*
2467	 * Return any desired output.
2468	 */
2469	if (needoutput || (tp->t_flags & TF_ACKNOW))
2470		(void) tcp_output(tp);
2471
2472check_delack:
2473	KASSERT(headlocked == 0, ("%s: check_delack: head locked",
2474	    __func__));
2475	INP_INFO_UNLOCK_ASSERT(&tcbinfo);
2476	INP_LOCK_ASSERT(tp->t_inpcb);
2477	if (tp->t_flags & TF_DELACK) {
2478		tp->t_flags &= ~TF_DELACK;
2479		tcp_timer_activate(tp, TT_DELACK, tcp_delacktime);
2480	}
2481	INP_UNLOCK(tp->t_inpcb);
2482	return;
2483
2484dropafterack:
2485	KASSERT(headlocked, ("%s: dropafterack: head not locked", __func__));
2486	/*
2487	 * Generate an ACK dropping incoming segment if it occupies
2488	 * sequence space, where the ACK reflects our state.
2489	 *
2490	 * We can now skip the test for the RST flag since all
2491	 * paths to this code happen after packets containing
2492	 * RST have been dropped.
2493	 *
2494	 * In the SYN-RECEIVED state, don't send an ACK unless the
2495	 * segment we received passes the SYN-RECEIVED ACK test.
2496	 * If it fails send a RST.  This breaks the loop in the
2497	 * "LAND" DoS attack, and also prevents an ACK storm
2498	 * between two listening ports that have been sent forged
2499	 * SYN segments, each with the source address of the other.
2500	 */
2501	if (tp->t_state == TCPS_SYN_RECEIVED && (thflags & TH_ACK) &&
2502	    (SEQ_GT(tp->snd_una, th->th_ack) ||
2503	     SEQ_GT(th->th_ack, tp->snd_max)) ) {
2504		rstreason = BANDLIM_RST_OPENPORT;
2505		goto dropwithreset;
2506	}
2507#ifdef TCPDEBUG
2508	if (so->so_options & SO_DEBUG)
2509		tcp_trace(TA_DROP, ostate, tp, (void *)tcp_saveipgen,
2510			  &tcp_savetcp, 0);
2511#endif
2512	KASSERT(headlocked, ("%s: headlocked should be 1", __func__));
2513	INP_INFO_WUNLOCK(&tcbinfo);
2514	tp->t_flags |= TF_ACKNOW;
2515	(void) tcp_output(tp);
2516	INP_UNLOCK(tp->t_inpcb);
2517	m_freem(m);
2518	return;
2519
2520dropwithreset:
2521	KASSERT(headlocked, ("%s: dropwithreset: head not locked", __func__));
2522
2523	tcp_dropwithreset(m, th, tp, tlen, rstreason);
2524
2525	if (tp != NULL)
2526		INP_UNLOCK(tp->t_inpcb);
2527	if (headlocked)
2528		INP_INFO_WUNLOCK(&tcbinfo);
2529	return;
2530
2531drop:
2532	/*
2533	 * Drop space held by incoming segment and return.
2534	 */
2535#ifdef TCPDEBUG
2536	if (tp == NULL || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
2537		tcp_trace(TA_DROP, ostate, tp, (void *)tcp_saveipgen,
2538			  &tcp_savetcp, 0);
2539#endif
2540	if (tp != NULL)
2541		INP_UNLOCK(tp->t_inpcb);
2542	if (headlocked)
2543		INP_INFO_WUNLOCK(&tcbinfo);
2544	m_freem(m);
2545	return;
2546}
2547
2548/*
2549 * Issue RST and make ACK acceptable to originator of segment.
2550 * The mbuf must still include the original packet header.
2551 * tp may be NULL.
2552 */
2553static void
2554tcp_dropwithreset(struct mbuf *m, struct tcphdr *th, struct tcpcb *tp,
2555    int tlen, int rstreason)
2556{
2557	struct ip *ip;
2558#ifdef INET6
2559	struct ip6_hdr *ip6;
2560#endif
2561	/* Don't bother if destination was broadcast/multicast. */
2562	if ((th->th_flags & TH_RST) || m->m_flags & (M_BCAST|M_MCAST))
2563		goto drop;
2564#ifdef INET6
2565	if (mtod(m, struct ip *)->ip_v == 6) {
2566		ip6 = mtod(m, struct ip6_hdr *);
2567		if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) ||
2568		    IN6_IS_ADDR_MULTICAST(&ip6->ip6_src))
2569			goto drop;
2570		/* IPv6 anycast check is done at tcp6_input() */
2571	} else
2572#endif
2573	{
2574		ip = mtod(m, struct ip *);
2575		if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
2576		    IN_MULTICAST(ntohl(ip->ip_src.s_addr)) ||
2577		    ip->ip_src.s_addr == htonl(INADDR_BROADCAST) ||
2578		    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
2579			goto drop;
2580	}
2581
2582	/* Perform bandwidth limiting. */
2583	if (badport_bandlim(rstreason) < 0)
2584		goto drop;
2585
2586	/* tcp_respond consumes the mbuf chain. */
2587	if (th->th_flags & TH_ACK) {
2588		tcp_respond(tp, mtod(m, void *), th, m, (tcp_seq)0,
2589		    th->th_ack, TH_RST);
2590	} else {
2591		if (th->th_flags & TH_SYN)
2592			tlen++;
2593		tcp_respond(tp, mtod(m, void *), th, m, th->th_seq+tlen,
2594		    (tcp_seq)0, TH_RST|TH_ACK);
2595	}
2596	return;
2597drop:
2598	m_freem(m);
2599	return;
2600}
2601
2602/*
2603 * Parse TCP options and place in tcpopt.
2604 */
2605static void
2606tcp_dooptions(struct tcpopt *to, u_char *cp, int cnt, int flags)
2607{
2608	int opt, optlen;
2609
2610	to->to_flags = 0;
2611	for (; cnt > 0; cnt -= optlen, cp += optlen) {
2612		opt = cp[0];
2613		if (opt == TCPOPT_EOL)
2614			break;
2615		if (opt == TCPOPT_NOP)
2616			optlen = 1;
2617		else {
2618			if (cnt < 2)
2619				break;
2620			optlen = cp[1];
2621			if (optlen < 2 || optlen > cnt)
2622				break;
2623		}
2624		switch (opt) {
2625		case TCPOPT_MAXSEG:
2626			if (optlen != TCPOLEN_MAXSEG)
2627				continue;
2628			if (!(flags & TO_SYN))
2629				continue;
2630			to->to_flags |= TOF_MSS;
2631			bcopy((char *)cp + 2,
2632			    (char *)&to->to_mss, sizeof(to->to_mss));
2633			to->to_mss = ntohs(to->to_mss);
2634			break;
2635		case TCPOPT_WINDOW:
2636			if (optlen != TCPOLEN_WINDOW)
2637				continue;
2638			if (!(flags & TO_SYN))
2639				continue;
2640			to->to_flags |= TOF_SCALE;
2641			to->to_wscale = min(cp[2], TCP_MAX_WINSHIFT);
2642			break;
2643		case TCPOPT_TIMESTAMP:
2644			if (optlen != TCPOLEN_TIMESTAMP)
2645				continue;
2646			to->to_flags |= TOF_TS;
2647			bcopy((char *)cp + 2,
2648			    (char *)&to->to_tsval, sizeof(to->to_tsval));
2649			to->to_tsval = ntohl(to->to_tsval);
2650			bcopy((char *)cp + 6,
2651			    (char *)&to->to_tsecr, sizeof(to->to_tsecr));
2652			to->to_tsecr = ntohl(to->to_tsecr);
2653			break;
2654#ifdef TCP_SIGNATURE
2655		/*
2656		 * XXX In order to reply to a host which has set the
2657		 * TCP_SIGNATURE option in its initial SYN, we have to
2658		 * record the fact that the option was observed here
2659		 * for the syncache code to perform the correct response.
2660		 */
2661		case TCPOPT_SIGNATURE:
2662			if (optlen != TCPOLEN_SIGNATURE)
2663				continue;
2664			to->to_flags |= TOF_SIGNATURE;
2665			to->to_signature = cp + 2;
2666			break;
2667#endif
2668		case TCPOPT_SACK_PERMITTED:
2669			if (optlen != TCPOLEN_SACK_PERMITTED)
2670				continue;
2671			if (!(flags & TO_SYN))
2672				continue;
2673			if (!tcp_do_sack)
2674				continue;
2675			to->to_flags |= TOF_SACKPERM;
2676			break;
2677		case TCPOPT_SACK:
2678			if (optlen <= 2 || (optlen - 2) % TCPOLEN_SACK != 0)
2679				continue;
2680			if (flags & TO_SYN)
2681				continue;
2682			to->to_flags |= TOF_SACK;
2683			to->to_nsacks = (optlen - 2) / TCPOLEN_SACK;
2684			to->to_sacks = cp + 2;
2685			tcpstat.tcps_sack_rcv_blocks++;
2686			break;
2687		default:
2688			continue;
2689		}
2690	}
2691}
2692
2693/*
2694 * Pull out of band byte out of a segment so
2695 * it doesn't appear in the user's data queue.
2696 * It is still reflected in the segment length for
2697 * sequencing purposes.
2698 */
2699static void
2700tcp_pulloutofband(struct socket *so, struct tcphdr *th, struct mbuf *m,
2701    int off)
2702{
2703	int cnt = off + th->th_urp - 1;
2704
2705	while (cnt >= 0) {
2706		if (m->m_len > cnt) {
2707			char *cp = mtod(m, caddr_t) + cnt;
2708			struct tcpcb *tp = sototcpcb(so);
2709
2710			tp->t_iobc = *cp;
2711			tp->t_oobflags |= TCPOOB_HAVEDATA;
2712			bcopy(cp+1, cp, (unsigned)(m->m_len - cnt - 1));
2713			m->m_len--;
2714			if (m->m_flags & M_PKTHDR)
2715				m->m_pkthdr.len--;
2716			return;
2717		}
2718		cnt -= m->m_len;
2719		m = m->m_next;
2720		if (m == NULL)
2721			break;
2722	}
2723	panic("tcp_pulloutofband");
2724}
2725
2726/*
2727 * Collect new round-trip time estimate
2728 * and update averages and current timeout.
2729 */
2730static void
2731tcp_xmit_timer(struct tcpcb *tp, int rtt)
2732{
2733	int delta;
2734
2735	INP_LOCK_ASSERT(tp->t_inpcb);
2736
2737	tcpstat.tcps_rttupdated++;
2738	tp->t_rttupdated++;
2739	if (tp->t_srtt != 0) {
2740		/*
2741		 * srtt is stored as fixed point with 5 bits after the
2742		 * binary point (i.e., scaled by 8).  The following magic
2743		 * is equivalent to the smoothing algorithm in rfc793 with
2744		 * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed
2745		 * point).  Adjust rtt to origin 0.
2746		 */
2747		delta = ((rtt - 1) << TCP_DELTA_SHIFT)
2748			- (tp->t_srtt >> (TCP_RTT_SHIFT - TCP_DELTA_SHIFT));
2749
2750		if ((tp->t_srtt += delta) <= 0)
2751			tp->t_srtt = 1;
2752
2753		/*
2754		 * We accumulate a smoothed rtt variance (actually, a
2755		 * smoothed mean difference), then set the retransmit
2756		 * timer to smoothed rtt + 4 times the smoothed variance.
2757		 * rttvar is stored as fixed point with 4 bits after the
2758		 * binary point (scaled by 16).  The following is
2759		 * equivalent to rfc793 smoothing with an alpha of .75
2760		 * (rttvar = rttvar*3/4 + |delta| / 4).  This replaces
2761		 * rfc793's wired-in beta.
2762		 */
2763		if (delta < 0)
2764			delta = -delta;
2765		delta -= tp->t_rttvar >> (TCP_RTTVAR_SHIFT - TCP_DELTA_SHIFT);
2766		if ((tp->t_rttvar += delta) <= 0)
2767			tp->t_rttvar = 1;
2768		if (tp->t_rttbest > tp->t_srtt + tp->t_rttvar)
2769		    tp->t_rttbest = tp->t_srtt + tp->t_rttvar;
2770	} else {
2771		/*
2772		 * No rtt measurement yet - use the unsmoothed rtt.
2773		 * Set the variance to half the rtt (so our first
2774		 * retransmit happens at 3*rtt).
2775		 */
2776		tp->t_srtt = rtt << TCP_RTT_SHIFT;
2777		tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT - 1);
2778		tp->t_rttbest = tp->t_srtt + tp->t_rttvar;
2779	}
2780	tp->t_rtttime = 0;
2781	tp->t_rxtshift = 0;
2782
2783	/*
2784	 * the retransmit should happen at rtt + 4 * rttvar.
2785	 * Because of the way we do the smoothing, srtt and rttvar
2786	 * will each average +1/2 tick of bias.  When we compute
2787	 * the retransmit timer, we want 1/2 tick of rounding and
2788	 * 1 extra tick because of +-1/2 tick uncertainty in the
2789	 * firing of the timer.  The bias will give us exactly the
2790	 * 1.5 tick we need.  But, because the bias is
2791	 * statistical, we have to test that we don't drop below
2792	 * the minimum feasible timer (which is 2 ticks).
2793	 */
2794	TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
2795		      max(tp->t_rttmin, rtt + 2), TCPTV_REXMTMAX);
2796
2797	/*
2798	 * We received an ack for a packet that wasn't retransmitted;
2799	 * it is probably safe to discard any error indications we've
2800	 * received recently.  This isn't quite right, but close enough
2801	 * for now (a route might have failed after we sent a segment,
2802	 * and the return path might not be symmetrical).
2803	 */
2804	tp->t_softerror = 0;
2805}
2806
2807/*
2808 * Determine a reasonable value for maxseg size.
2809 * If the route is known, check route for mtu.
2810 * If none, use an mss that can be handled on the outgoing
2811 * interface without forcing IP to fragment; if bigger than
2812 * an mbuf cluster (MCLBYTES), round down to nearest multiple of MCLBYTES
2813 * to utilize large mbufs.  If no route is found, route has no mtu,
2814 * or the destination isn't local, use a default, hopefully conservative
2815 * size (usually 512 or the default IP max size, but no more than the mtu
2816 * of the interface), as we can't discover anything about intervening
2817 * gateways or networks.  We also initialize the congestion/slow start
2818 * window to be a single segment if the destination isn't local.
2819 * While looking at the routing entry, we also initialize other path-dependent
2820 * parameters from pre-set or cached values in the routing entry.
2821 *
2822 * Also take into account the space needed for options that we
2823 * send regularly.  Make maxseg shorter by that amount to assure
2824 * that we can send maxseg amount of data even when the options
2825 * are present.  Store the upper limit of the length of options plus
2826 * data in maxopd.
2827 *
2828 *
2829 * In case of T/TCP, we call this routine during implicit connection
2830 * setup as well (offer = -1), to initialize maxseg from the cached
2831 * MSS of our peer.
2832 *
2833 * NOTE that this routine is only called when we process an incoming
2834 * segment. Outgoing SYN/ACK MSS settings are handled in tcp_mssopt().
2835 */
2836void
2837tcp_mss(struct tcpcb *tp, int offer)
2838{
2839	int rtt, mss;
2840	u_long bufsize;
2841	u_long maxmtu;
2842	struct inpcb *inp = tp->t_inpcb;
2843	struct socket *so;
2844	struct hc_metrics_lite metrics;
2845	int origoffer = offer;
2846	int mtuflags = 0;
2847#ifdef INET6
2848	int isipv6 = ((inp->inp_vflag & INP_IPV6) != 0) ? 1 : 0;
2849	size_t min_protoh = isipv6 ?
2850			    sizeof (struct ip6_hdr) + sizeof (struct tcphdr) :
2851			    sizeof (struct tcpiphdr);
2852#else
2853	const size_t min_protoh = sizeof(struct tcpiphdr);
2854#endif
2855
2856	/* initialize */
2857#ifdef INET6
2858	if (isipv6) {
2859		maxmtu = tcp_maxmtu6(&inp->inp_inc, &mtuflags);
2860		tp->t_maxopd = tp->t_maxseg = tcp_v6mssdflt;
2861	} else
2862#endif
2863	{
2864		maxmtu = tcp_maxmtu(&inp->inp_inc, &mtuflags);
2865		tp->t_maxopd = tp->t_maxseg = tcp_mssdflt;
2866	}
2867	so = inp->inp_socket;
2868
2869	/*
2870	 * no route to sender, stay with default mss and return
2871	 */
2872	if (maxmtu == 0)
2873		return;
2874
2875	/* what have we got? */
2876	switch (offer) {
2877		case 0:
2878			/*
2879			 * Offer == 0 means that there was no MSS on the SYN
2880			 * segment, in this case we use tcp_mssdflt.
2881			 */
2882			offer =
2883#ifdef INET6
2884				isipv6 ? tcp_v6mssdflt :
2885#endif
2886				tcp_mssdflt;
2887			break;
2888
2889		case -1:
2890			/*
2891			 * Offer == -1 means that we didn't receive SYN yet.
2892			 */
2893			/* FALLTHROUGH */
2894
2895		default:
2896			/*
2897			 * Prevent DoS attack with too small MSS. Round up
2898			 * to at least minmss.
2899			 */
2900			offer = max(offer, tcp_minmss);
2901			/*
2902			 * Sanity check: make sure that maxopd will be large
2903			 * enough to allow some data on segments even if the
2904			 * all the option space is used (40bytes).  Otherwise
2905			 * funny things may happen in tcp_output.
2906			 */
2907			offer = max(offer, 64);
2908	}
2909
2910	/*
2911	 * rmx information is now retrieved from tcp_hostcache
2912	 */
2913	tcp_hc_get(&inp->inp_inc, &metrics);
2914
2915	/*
2916	 * if there's a discovered mtu int tcp hostcache, use it
2917	 * else, use the link mtu.
2918	 */
2919	if (metrics.rmx_mtu)
2920		mss = min(metrics.rmx_mtu, maxmtu) - min_protoh;
2921	else {
2922#ifdef INET6
2923		if (isipv6) {
2924			mss = maxmtu - min_protoh;
2925			if (!path_mtu_discovery &&
2926			    !in6_localaddr(&inp->in6p_faddr))
2927				mss = min(mss, tcp_v6mssdflt);
2928		} else
2929#endif
2930		{
2931			mss = maxmtu - min_protoh;
2932			if (!path_mtu_discovery &&
2933			    !in_localaddr(inp->inp_faddr))
2934				mss = min(mss, tcp_mssdflt);
2935		}
2936	}
2937	mss = min(mss, offer);
2938
2939	/*
2940	 * maxopd stores the maximum length of data AND options
2941	 * in a segment; maxseg is the amount of data in a normal
2942	 * segment.  We need to store this value (maxopd) apart
2943	 * from maxseg, because now every segment carries options
2944	 * and thus we normally have somewhat less data in segments.
2945	 */
2946	tp->t_maxopd = mss;
2947
2948	/*
2949	 * origoffer==-1 indicates, that no segments were received yet.
2950	 * In this case we just guess.
2951	 */
2952	if ((tp->t_flags & (TF_REQ_TSTMP|TF_NOOPT)) == TF_REQ_TSTMP &&
2953	    (origoffer == -1 ||
2954	     (tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP))
2955		mss -= TCPOLEN_TSTAMP_APPA;
2956	tp->t_maxseg = mss;
2957
2958#if	(MCLBYTES & (MCLBYTES - 1)) == 0
2959		if (mss > MCLBYTES)
2960			mss &= ~(MCLBYTES-1);
2961#else
2962		if (mss > MCLBYTES)
2963			mss = mss / MCLBYTES * MCLBYTES;
2964#endif
2965	tp->t_maxseg = mss;
2966
2967	/*
2968	 * If there's a pipesize, change the socket buffer to that size,
2969	 * don't change if sb_hiwat is different than default (then it
2970	 * has been changed on purpose with setsockopt).
2971	 * Make the socket buffers an integral number of mss units;
2972	 * if the mss is larger than the socket buffer, decrease the mss.
2973	 */
2974	SOCKBUF_LOCK(&so->so_snd);
2975	if ((so->so_snd.sb_hiwat == tcp_sendspace) && metrics.rmx_sendpipe)
2976		bufsize = metrics.rmx_sendpipe;
2977	else
2978		bufsize = so->so_snd.sb_hiwat;
2979	if (bufsize < mss)
2980		mss = bufsize;
2981	else {
2982		bufsize = roundup(bufsize, mss);
2983		if (bufsize > sb_max)
2984			bufsize = sb_max;
2985		if (bufsize > so->so_snd.sb_hiwat)
2986			(void)sbreserve_locked(&so->so_snd, bufsize, so, NULL);
2987	}
2988	SOCKBUF_UNLOCK(&so->so_snd);
2989	tp->t_maxseg = mss;
2990
2991	SOCKBUF_LOCK(&so->so_rcv);
2992	if ((so->so_rcv.sb_hiwat == tcp_recvspace) && metrics.rmx_recvpipe)
2993		bufsize = metrics.rmx_recvpipe;
2994	else
2995		bufsize = so->so_rcv.sb_hiwat;
2996	if (bufsize > mss) {
2997		bufsize = roundup(bufsize, mss);
2998		if (bufsize > sb_max)
2999			bufsize = sb_max;
3000		if (bufsize > so->so_rcv.sb_hiwat)
3001			(void)sbreserve_locked(&so->so_rcv, bufsize, so, NULL);
3002	}
3003	SOCKBUF_UNLOCK(&so->so_rcv);
3004	/*
3005	 * While we're here, check the others too
3006	 */
3007	if (tp->t_srtt == 0 && (rtt = metrics.rmx_rtt)) {
3008		tp->t_srtt = rtt;
3009		tp->t_rttbest = tp->t_srtt + TCP_RTT_SCALE;
3010		tcpstat.tcps_usedrtt++;
3011		if (metrics.rmx_rttvar) {
3012			tp->t_rttvar = metrics.rmx_rttvar;
3013			tcpstat.tcps_usedrttvar++;
3014		} else {
3015			/* default variation is +- 1 rtt */
3016			tp->t_rttvar =
3017			    tp->t_srtt * TCP_RTTVAR_SCALE / TCP_RTT_SCALE;
3018		}
3019		TCPT_RANGESET(tp->t_rxtcur,
3020			      ((tp->t_srtt >> 2) + tp->t_rttvar) >> 1,
3021			      tp->t_rttmin, TCPTV_REXMTMAX);
3022	}
3023	if (metrics.rmx_ssthresh) {
3024		/*
3025		 * There's some sort of gateway or interface
3026		 * buffer limit on the path.  Use this to set
3027		 * the slow start threshhold, but set the
3028		 * threshold to no less than 2*mss.
3029		 */
3030		tp->snd_ssthresh = max(2 * mss, metrics.rmx_ssthresh);
3031		tcpstat.tcps_usedssthresh++;
3032	}
3033	if (metrics.rmx_bandwidth)
3034		tp->snd_bandwidth = metrics.rmx_bandwidth;
3035
3036	/*
3037	 * Set the slow-start flight size depending on whether this
3038	 * is a local network or not.
3039	 *
3040	 * Extend this so we cache the cwnd too and retrieve it here.
3041	 * Make cwnd even bigger than RFC3390 suggests but only if we
3042	 * have previous experience with the remote host. Be careful
3043	 * not make cwnd bigger than remote receive window or our own
3044	 * send socket buffer. Maybe put some additional upper bound
3045	 * on the retrieved cwnd. Should do incremental updates to
3046	 * hostcache when cwnd collapses so next connection doesn't
3047	 * overloads the path again.
3048	 *
3049	 * RFC3390 says only do this if SYN or SYN/ACK didn't got lost.
3050	 * We currently check only in syncache_socket for that.
3051	 */
3052#define TCP_METRICS_CWND
3053#ifdef TCP_METRICS_CWND
3054	if (metrics.rmx_cwnd)
3055		tp->snd_cwnd = max(mss,
3056				min(metrics.rmx_cwnd / 2,
3057				 min(tp->snd_wnd, so->so_snd.sb_hiwat)));
3058	else
3059#endif
3060	if (tcp_do_rfc3390)
3061		tp->snd_cwnd = min(4 * mss, max(2 * mss, 4380));
3062#ifdef INET6
3063	else if ((isipv6 && in6_localaddr(&inp->in6p_faddr)) ||
3064		 (!isipv6 && in_localaddr(inp->inp_faddr)))
3065#else
3066	else if (in_localaddr(inp->inp_faddr))
3067#endif
3068		tp->snd_cwnd = mss * ss_fltsz_local;
3069	else
3070		tp->snd_cwnd = mss * ss_fltsz;
3071
3072	/* Check the interface for TSO capabilities. */
3073	if (mtuflags & CSUM_TSO)
3074		tp->t_flags |= TF_TSO;
3075}
3076
3077/*
3078 * Determine the MSS option to send on an outgoing SYN.
3079 */
3080int
3081tcp_mssopt(struct in_conninfo *inc)
3082{
3083	int mss = 0;
3084	u_long maxmtu = 0;
3085	u_long thcmtu = 0;
3086	size_t min_protoh;
3087#ifdef INET6
3088	int isipv6 = inc->inc_isipv6 ? 1 : 0;
3089#endif
3090
3091	KASSERT(inc != NULL, ("tcp_mssopt with NULL in_conninfo pointer"));
3092
3093#ifdef INET6
3094	if (isipv6) {
3095		mss = tcp_v6mssdflt;
3096		maxmtu = tcp_maxmtu6(inc, NULL);
3097		thcmtu = tcp_hc_getmtu(inc); /* IPv4 and IPv6 */
3098		min_protoh = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
3099	} else
3100#endif
3101	{
3102		mss = tcp_mssdflt;
3103		maxmtu = tcp_maxmtu(inc, NULL);
3104		thcmtu = tcp_hc_getmtu(inc); /* IPv4 and IPv6 */
3105		min_protoh = sizeof(struct tcpiphdr);
3106	}
3107	if (maxmtu && thcmtu)
3108		mss = min(maxmtu, thcmtu) - min_protoh;
3109	else if (maxmtu || thcmtu)
3110		mss = max(maxmtu, thcmtu) - min_protoh;
3111
3112	return (mss);
3113}
3114
3115
3116/*
3117 * On a partial ack arrives, force the retransmission of the
3118 * next unacknowledged segment.  Do not clear tp->t_dupacks.
3119 * By setting snd_nxt to ti_ack, this forces retransmission timer to
3120 * be started again.
3121 */
3122static void
3123tcp_newreno_partial_ack(struct tcpcb *tp, struct tcphdr *th)
3124{
3125	tcp_seq onxt = tp->snd_nxt;
3126	u_long  ocwnd = tp->snd_cwnd;
3127
3128	tcp_timer_activate(tp, TT_REXMT, 0);
3129	tp->t_rtttime = 0;
3130	tp->snd_nxt = th->th_ack;
3131	/*
3132	 * Set snd_cwnd to one segment beyond acknowledged offset.
3133	 * (tp->snd_una has not yet been updated when this function is called.)
3134	 */
3135	tp->snd_cwnd = tp->t_maxseg + (th->th_ack - tp->snd_una);
3136	tp->t_flags |= TF_ACKNOW;
3137	(void) tcp_output(tp);
3138	tp->snd_cwnd = ocwnd;
3139	if (SEQ_GT(onxt, tp->snd_nxt))
3140		tp->snd_nxt = onxt;
3141	/*
3142	 * Partial window deflation.  Relies on fact that tp->snd_una
3143	 * not updated yet.
3144	 */
3145	if (tp->snd_cwnd > th->th_ack - tp->snd_una)
3146		tp->snd_cwnd -= th->th_ack - tp->snd_una;
3147	else
3148		tp->snd_cwnd = 0;
3149	tp->snd_cwnd += tp->t_maxseg;
3150}
3151
3152/*
3153 * Returns 1 if the TIME_WAIT state was killed and we should start over,
3154 * looking for a pcb in the listen state.  Returns 0 otherwise.
3155 */
3156static int
3157tcp_timewait(struct inpcb *inp, struct tcpopt *to, struct tcphdr *th,
3158    struct mbuf *m, int tlen)
3159{
3160	struct tcptw *tw;
3161	int thflags;
3162	tcp_seq seq;
3163#ifdef INET6
3164	int isipv6 = (mtod(m, struct ip *)->ip_v == 6) ? 1 : 0;
3165#else
3166	const int isipv6 = 0;
3167#endif
3168
3169	/* tcbinfo lock required for tcp_twclose(), tcp_timer_2msl_reset(). */
3170	INP_INFO_WLOCK_ASSERT(&tcbinfo);
3171	INP_LOCK_ASSERT(inp);
3172
3173	/*
3174	 * XXXRW: Time wait state for inpcb has been recycled, but inpcb is
3175	 * still present.  This is undesirable, but temporarily necessary
3176	 * until we work out how to handle inpcb's who's timewait state has
3177	 * been removed.
3178	 */
3179	tw = intotw(inp);
3180	if (tw == NULL)
3181		goto drop;
3182
3183	thflags = th->th_flags;
3184
3185	/*
3186	 * NOTE: for FIN_WAIT_2 (to be added later),
3187	 * must validate sequence number before accepting RST
3188	 */
3189
3190	/*
3191	 * If the segment contains RST:
3192	 *	Drop the segment - see Stevens, vol. 2, p. 964 and
3193	 *      RFC 1337.
3194	 */
3195	if (thflags & TH_RST)
3196		goto drop;
3197
3198#if 0
3199/* PAWS not needed at the moment */
3200	/*
3201	 * RFC 1323 PAWS: If we have a timestamp reply on this segment
3202	 * and it's less than ts_recent, drop it.
3203	 */
3204	if ((to.to_flags & TOF_TS) != 0 && tp->ts_recent &&
3205	    TSTMP_LT(to.to_tsval, tp->ts_recent)) {
3206		if ((thflags & TH_ACK) == 0)
3207			goto drop;
3208		goto ack;
3209	}
3210	/*
3211	 * ts_recent is never updated because we never accept new segments.
3212	 */
3213#endif
3214
3215	/*
3216	 * If a new connection request is received
3217	 * while in TIME_WAIT, drop the old connection
3218	 * and start over if the sequence numbers
3219	 * are above the previous ones.
3220	 */
3221	if ((thflags & TH_SYN) && SEQ_GT(th->th_seq, tw->rcv_nxt)) {
3222		tcp_twclose(tw, 0);
3223		return (1);
3224	}
3225
3226	/*
3227	 * Drop the the segment if it does not contain an ACK.
3228	 */
3229	if ((thflags & TH_ACK) == 0)
3230		goto drop;
3231
3232	/*
3233	 * Reset the 2MSL timer if this is a duplicate FIN.
3234	 */
3235	if (thflags & TH_FIN) {
3236		seq = th->th_seq + tlen + (thflags & TH_SYN ? 1 : 0);
3237		if (seq + 1 == tw->rcv_nxt)
3238			tcp_timer_2msl_reset(tw, 1);
3239	}
3240
3241	/*
3242	 * Acknowledge the segment if it has data or is not a duplicate ACK.
3243	 */
3244	if (thflags != TH_ACK || tlen != 0 ||
3245	    th->th_seq != tw->rcv_nxt || th->th_ack != tw->snd_nxt)
3246		tcp_twrespond(tw, TH_ACK);
3247	goto drop;
3248
3249	/*
3250	 * Generate a RST, dropping incoming segment.
3251	 * Make ACK acceptable to originator of segment.
3252	 * Don't bother to respond if destination was broadcast/multicast.
3253	 */
3254	if (m->m_flags & (M_BCAST|M_MCAST))
3255		goto drop;
3256	if (isipv6) {
3257		struct ip6_hdr *ip6;
3258
3259		/* IPv6 anycast check is done at tcp6_input() */
3260		ip6 = mtod(m, struct ip6_hdr *);
3261		if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) ||
3262		    IN6_IS_ADDR_MULTICAST(&ip6->ip6_src))
3263			goto drop;
3264	} else {
3265		struct ip *ip;
3266
3267		ip = mtod(m, struct ip *);
3268		if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
3269		    IN_MULTICAST(ntohl(ip->ip_src.s_addr)) ||
3270		    ip->ip_src.s_addr == htonl(INADDR_BROADCAST) ||
3271		    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
3272			goto drop;
3273	}
3274	if (thflags & TH_ACK) {
3275		tcp_respond(NULL,
3276		    mtod(m, void *), th, m, 0, th->th_ack, TH_RST);
3277	} else {
3278		seq = th->th_seq + (thflags & TH_SYN ? 1 : 0);
3279		tcp_respond(NULL,
3280		    mtod(m, void *), th, m, seq, 0, TH_RST|TH_ACK);
3281	}
3282	INP_UNLOCK(inp);
3283	return (0);
3284
3285drop:
3286	INP_UNLOCK(inp);
3287	m_freem(m);
3288	return (0);
3289}
3290