tcp_input.c revision 167989
1/*-
2 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 4. Neither the name of the University nor the names of its contributors
14 *    may be used to endorse or promote products derived from this software
15 *    without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 *
29 *	@(#)tcp_input.c	8.12 (Berkeley) 5/24/95
30 * $FreeBSD: head/sys/netinet/tcp_input.c 167989 2007-03-28 12:58:13Z andre $
31 */
32
33#include "opt_ipfw.h"		/* for ipfw_fwd	*/
34#include "opt_inet.h"
35#include "opt_inet6.h"
36#include "opt_ipsec.h"
37#include "opt_mac.h"
38#include "opt_tcpdebug.h"
39#include "opt_tcp_sack.h"
40
41#include <sys/param.h>
42#include <sys/kernel.h>
43#include <sys/malloc.h>
44#include <sys/mbuf.h>
45#include <sys/proc.h>		/* for proc0 declaration */
46#include <sys/protosw.h>
47#include <sys/signalvar.h>
48#include <sys/socket.h>
49#include <sys/socketvar.h>
50#include <sys/sysctl.h>
51#include <sys/syslog.h>
52#include <sys/systm.h>
53
54#include <machine/cpu.h>	/* before tcp_seq.h, for tcp_random18() */
55
56#include <vm/uma.h>
57
58#include <net/if.h>
59#include <net/route.h>
60
61#include <netinet/in.h>
62#include <netinet/in_pcb.h>
63#include <netinet/in_systm.h>
64#include <netinet/in_var.h>
65#include <netinet/ip.h>
66#include <netinet/ip_icmp.h>	/* required for icmp_var.h */
67#include <netinet/icmp_var.h>	/* for ICMP_BANDLIM */
68#include <netinet/ip_var.h>
69#include <netinet/ip_options.h>
70#include <netinet/ip6.h>
71#include <netinet/icmp6.h>
72#include <netinet6/in6_pcb.h>
73#include <netinet6/ip6_var.h>
74#include <netinet6/nd6.h>
75#include <netinet/tcp.h>
76#include <netinet/tcp_fsm.h>
77#include <netinet/tcp_seq.h>
78#include <netinet/tcp_timer.h>
79#include <netinet/tcp_var.h>
80#include <netinet6/tcp6_var.h>
81#include <netinet/tcpip.h>
82#ifdef TCPDEBUG
83#include <netinet/tcp_debug.h>
84#endif /* TCPDEBUG */
85
86#ifdef FAST_IPSEC
87#include <netipsec/ipsec.h>
88#include <netipsec/ipsec6.h>
89#endif /*FAST_IPSEC*/
90
91#ifdef IPSEC
92#include <netinet6/ipsec.h>
93#include <netinet6/ipsec6.h>
94#include <netkey/key.h>
95#endif /*IPSEC*/
96
97#include <machine/in_cksum.h>
98
99#include <security/mac/mac_framework.h>
100
101static const int tcprexmtthresh = 3;
102
103struct	tcpstat tcpstat;
104SYSCTL_STRUCT(_net_inet_tcp, TCPCTL_STATS, stats, CTLFLAG_RW,
105    &tcpstat , tcpstat, "TCP statistics (struct tcpstat, netinet/tcp_var.h)");
106
107static int tcp_log_in_vain = 0;
108SYSCTL_INT(_net_inet_tcp, OID_AUTO, log_in_vain, CTLFLAG_RW,
109    &tcp_log_in_vain, 0, "Log all incoming TCP segments to closed ports");
110
111static int blackhole = 0;
112SYSCTL_INT(_net_inet_tcp, OID_AUTO, blackhole, CTLFLAG_RW,
113    &blackhole, 0, "Do not send RST on segments to closed ports");
114
115int tcp_delack_enabled = 1;
116SYSCTL_INT(_net_inet_tcp, OID_AUTO, delayed_ack, CTLFLAG_RW,
117    &tcp_delack_enabled, 0,
118    "Delay ACK to try and piggyback it onto a data packet");
119
120static int drop_synfin = 0;
121SYSCTL_INT(_net_inet_tcp, OID_AUTO, drop_synfin, CTLFLAG_RW,
122    &drop_synfin, 0, "Drop TCP packets with SYN+FIN set");
123
124static int tcp_do_rfc3042 = 1;
125SYSCTL_INT(_net_inet_tcp, OID_AUTO, rfc3042, CTLFLAG_RW,
126    &tcp_do_rfc3042, 0, "Enable RFC 3042 (Limited Transmit)");
127
128static int tcp_do_rfc3390 = 1;
129SYSCTL_INT(_net_inet_tcp, OID_AUTO, rfc3390, CTLFLAG_RW,
130    &tcp_do_rfc3390, 0,
131    "Enable RFC 3390 (Increasing TCP's Initial Congestion Window)");
132
133static int tcp_insecure_rst = 0;
134SYSCTL_INT(_net_inet_tcp, OID_AUTO, insecure_rst, CTLFLAG_RW,
135    &tcp_insecure_rst, 0,
136    "Follow the old (insecure) criteria for accepting RST packets");
137
138SYSCTL_NODE(_net_inet_tcp, OID_AUTO, reass, CTLFLAG_RW, 0,
139    "TCP Segment Reassembly Queue");
140
141static int tcp_reass_maxseg = 0;
142SYSCTL_INT(_net_inet_tcp_reass, OID_AUTO, maxsegments, CTLFLAG_RDTUN,
143    &tcp_reass_maxseg, 0,
144    "Global maximum number of TCP Segments in Reassembly Queue");
145
146int tcp_reass_qsize = 0;
147SYSCTL_INT(_net_inet_tcp_reass, OID_AUTO, cursegments, CTLFLAG_RD,
148    &tcp_reass_qsize, 0,
149    "Global number of TCP Segments currently in Reassembly Queue");
150
151static int tcp_reass_maxqlen = 48;
152SYSCTL_INT(_net_inet_tcp_reass, OID_AUTO, maxqlen, CTLFLAG_RW,
153    &tcp_reass_maxqlen, 0,
154    "Maximum number of TCP Segments per individual Reassembly Queue");
155
156static int tcp_reass_overflows = 0;
157SYSCTL_INT(_net_inet_tcp_reass, OID_AUTO, overflows, CTLFLAG_RD,
158    &tcp_reass_overflows, 0,
159    "Global number of TCP Segment Reassembly Queue Overflows");
160
161int	tcp_do_autorcvbuf = 1;
162SYSCTL_INT(_net_inet_tcp, OID_AUTO, recvbuf_auto, CTLFLAG_RW,
163    &tcp_do_autorcvbuf, 0, "Enable automatic receive buffer sizing");
164
165int	tcp_autorcvbuf_inc = 16*1024;
166SYSCTL_INT(_net_inet_tcp, OID_AUTO, recvbuf_inc, CTLFLAG_RW,
167    &tcp_autorcvbuf_inc, 0,
168    "Incrementor step size of automatic receive buffer");
169
170int	tcp_autorcvbuf_max = 256*1024;
171SYSCTL_INT(_net_inet_tcp, OID_AUTO, recvbuf_max, CTLFLAG_RW,
172    &tcp_autorcvbuf_max, 0, "Max size of automatic receive buffer");
173
174struct inpcbhead tcb;
175#define	tcb6	tcb  /* for KAME src sync over BSD*'s */
176struct inpcbinfo tcbinfo;
177struct mtx	*tcbinfo_mtx;
178
179static void	 tcp_dooptions(struct tcpopt *, u_char *, int, int);
180static int	 tcp_do_segment(struct mbuf *, struct tcphdr *,
181		     struct socket *, struct tcpcb *, int, int);
182static void	 tcp_dropwithreset(struct mbuf *, struct tcphdr *,
183		     struct tcpcb *, int, int);
184static void	 tcp_pulloutofband(struct socket *,
185		     struct tcphdr *, struct mbuf *, int);
186static int	 tcp_reass(struct tcpcb *, struct tcphdr *, int *,
187		     struct mbuf *);
188static void	 tcp_xmit_timer(struct tcpcb *, int);
189static void	 tcp_newreno_partial_ack(struct tcpcb *, struct tcphdr *);
190static int	 tcp_timewait(struct inpcb *, struct tcpopt *,
191		     struct tcphdr *, struct mbuf *, int);
192
193/* Neighbor Discovery, Neighbor Unreachability Detection Upper layer hint. */
194#ifdef INET6
195#define ND6_HINT(tp) \
196do { \
197	if ((tp) && (tp)->t_inpcb && \
198	    ((tp)->t_inpcb->inp_vflag & INP_IPV6) != 0) \
199		nd6_nud_hint(NULL, NULL, 0); \
200} while (0)
201#else
202#define ND6_HINT(tp)
203#endif
204
205/*
206 * Indicate whether this ack should be delayed.  We can delay the ack if
207 *	- there is no delayed ack timer in progress and
208 *	- our last ack wasn't a 0-sized window.  We never want to delay
209 *	  the ack that opens up a 0-sized window and
210 *		- delayed acks are enabled or
211 *		- this is a half-synchronized T/TCP connection.
212 */
213#define DELAY_ACK(tp)							\
214	((!callout_active(tp->tt_delack) &&				\
215	    (tp->t_flags & TF_RXWIN0SENT) == 0) &&			\
216	    (tcp_delack_enabled || (tp->t_flags & TF_NEEDSYN)))
217
218/* Initialize TCP reassembly queue */
219static void
220tcp_reass_zone_change(void *tag)
221{
222
223	tcp_reass_maxseg = nmbclusters / 16;
224	uma_zone_set_max(tcp_reass_zone, tcp_reass_maxseg);
225}
226
227uma_zone_t	tcp_reass_zone;
228void
229tcp_reass_init()
230{
231	tcp_reass_maxseg = nmbclusters / 16;
232	TUNABLE_INT_FETCH("net.inet.tcp.reass.maxsegments",
233	    &tcp_reass_maxseg);
234	tcp_reass_zone = uma_zcreate("tcpreass", sizeof (struct tseg_qent),
235	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
236	uma_zone_set_max(tcp_reass_zone, tcp_reass_maxseg);
237	EVENTHANDLER_REGISTER(nmbclusters_change,
238	    tcp_reass_zone_change, NULL, EVENTHANDLER_PRI_ANY);
239}
240
241static int
242tcp_reass(struct tcpcb *tp, struct tcphdr *th, int *tlenp, struct mbuf *m)
243{
244	struct tseg_qent *q;
245	struct tseg_qent *p = NULL;
246	struct tseg_qent *nq;
247	struct tseg_qent *te = NULL;
248	struct socket *so = tp->t_inpcb->inp_socket;
249	int flags;
250
251	INP_LOCK_ASSERT(tp->t_inpcb);
252
253	/*
254	 * XXX: tcp_reass() is rather inefficient with its data structures
255	 * and should be rewritten (see NetBSD for optimizations).  While
256	 * doing that it should move to its own file tcp_reass.c.
257	 */
258
259	/*
260	 * Call with th==NULL after become established to
261	 * force pre-ESTABLISHED data up to user socket.
262	 */
263	if (th == NULL)
264		goto present;
265
266	/*
267	 * Limit the number of segments in the reassembly queue to prevent
268	 * holding on to too many segments (and thus running out of mbufs).
269	 * Make sure to let the missing segment through which caused this
270	 * queue.  Always keep one global queue entry spare to be able to
271	 * process the missing segment.
272	 */
273	if (th->th_seq != tp->rcv_nxt &&
274	    (tcp_reass_qsize + 1 >= tcp_reass_maxseg ||
275	     tp->t_segqlen >= tcp_reass_maxqlen)) {
276		tcp_reass_overflows++;
277		tcpstat.tcps_rcvmemdrop++;
278		m_freem(m);
279		*tlenp = 0;
280		return (0);
281	}
282
283	/*
284	 * Allocate a new queue entry. If we can't, or hit the zone limit
285	 * just drop the pkt.
286	 */
287	te = uma_zalloc(tcp_reass_zone, M_NOWAIT);
288	if (te == NULL) {
289		tcpstat.tcps_rcvmemdrop++;
290		m_freem(m);
291		*tlenp = 0;
292		return (0);
293	}
294	tp->t_segqlen++;
295	tcp_reass_qsize++;
296
297	/*
298	 * Find a segment which begins after this one does.
299	 */
300	LIST_FOREACH(q, &tp->t_segq, tqe_q) {
301		if (SEQ_GT(q->tqe_th->th_seq, th->th_seq))
302			break;
303		p = q;
304	}
305
306	/*
307	 * If there is a preceding segment, it may provide some of
308	 * our data already.  If so, drop the data from the incoming
309	 * segment.  If it provides all of our data, drop us.
310	 */
311	if (p != NULL) {
312		int i;
313		/* conversion to int (in i) handles seq wraparound */
314		i = p->tqe_th->th_seq + p->tqe_len - th->th_seq;
315		if (i > 0) {
316			if (i >= *tlenp) {
317				tcpstat.tcps_rcvduppack++;
318				tcpstat.tcps_rcvdupbyte += *tlenp;
319				m_freem(m);
320				uma_zfree(tcp_reass_zone, te);
321				tp->t_segqlen--;
322				tcp_reass_qsize--;
323				/*
324				 * Try to present any queued data
325				 * at the left window edge to the user.
326				 * This is needed after the 3-WHS
327				 * completes.
328				 */
329				goto present;	/* ??? */
330			}
331			m_adj(m, i);
332			*tlenp -= i;
333			th->th_seq += i;
334		}
335	}
336	tcpstat.tcps_rcvoopack++;
337	tcpstat.tcps_rcvoobyte += *tlenp;
338
339	/*
340	 * While we overlap succeeding segments trim them or,
341	 * if they are completely covered, dequeue them.
342	 */
343	while (q) {
344		int i = (th->th_seq + *tlenp) - q->tqe_th->th_seq;
345		if (i <= 0)
346			break;
347		if (i < q->tqe_len) {
348			q->tqe_th->th_seq += i;
349			q->tqe_len -= i;
350			m_adj(q->tqe_m, i);
351			break;
352		}
353
354		nq = LIST_NEXT(q, tqe_q);
355		LIST_REMOVE(q, tqe_q);
356		m_freem(q->tqe_m);
357		uma_zfree(tcp_reass_zone, q);
358		tp->t_segqlen--;
359		tcp_reass_qsize--;
360		q = nq;
361	}
362
363	/* Insert the new segment queue entry into place. */
364	te->tqe_m = m;
365	te->tqe_th = th;
366	te->tqe_len = *tlenp;
367
368	if (p == NULL) {
369		LIST_INSERT_HEAD(&tp->t_segq, te, tqe_q);
370	} else {
371		LIST_INSERT_AFTER(p, te, tqe_q);
372	}
373
374present:
375	/*
376	 * Present data to user, advancing rcv_nxt through
377	 * completed sequence space.
378	 */
379	if (!TCPS_HAVEESTABLISHED(tp->t_state))
380		return (0);
381	q = LIST_FIRST(&tp->t_segq);
382	if (!q || q->tqe_th->th_seq != tp->rcv_nxt)
383		return (0);
384	SOCKBUF_LOCK(&so->so_rcv);
385	do {
386		tp->rcv_nxt += q->tqe_len;
387		flags = q->tqe_th->th_flags & TH_FIN;
388		nq = LIST_NEXT(q, tqe_q);
389		LIST_REMOVE(q, tqe_q);
390		if (so->so_rcv.sb_state & SBS_CANTRCVMORE)
391			m_freem(q->tqe_m);
392		else
393			sbappendstream_locked(&so->so_rcv, q->tqe_m);
394		uma_zfree(tcp_reass_zone, q);
395		tp->t_segqlen--;
396		tcp_reass_qsize--;
397		q = nq;
398	} while (q && q->tqe_th->th_seq == tp->rcv_nxt);
399	ND6_HINT(tp);
400	sorwakeup_locked(so);
401	return (flags);
402}
403
404/*
405 * TCP input routine, follows pages 65-76 of the
406 * protocol specification dated September, 1981 very closely.
407 */
408#ifdef INET6
409int
410tcp6_input(struct mbuf **mp, int *offp, int proto)
411{
412	struct mbuf *m = *mp;
413	struct in6_ifaddr *ia6;
414
415	IP6_EXTHDR_CHECK(m, *offp, sizeof(struct tcphdr), IPPROTO_DONE);
416
417	/*
418	 * draft-itojun-ipv6-tcp-to-anycast
419	 * better place to put this in?
420	 */
421	ia6 = ip6_getdstifaddr(m);
422	if (ia6 && (ia6->ia6_flags & IN6_IFF_ANYCAST)) {
423		struct ip6_hdr *ip6;
424
425		ip6 = mtod(m, struct ip6_hdr *);
426		icmp6_error(m, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_ADDR,
427			    (caddr_t)&ip6->ip6_dst - (caddr_t)ip6);
428		return IPPROTO_DONE;
429	}
430
431	tcp_input(m, *offp);
432	return IPPROTO_DONE;
433}
434#endif
435
436void
437tcp_input(struct mbuf *m, int off0)
438{
439	struct tcphdr *th;
440	struct ip *ip = NULL;
441	struct ipovly *ipov;
442	struct inpcb *inp = NULL;
443	struct tcpcb *tp = NULL;
444	struct socket *so = NULL;
445	u_char *optp = NULL;
446	int optlen = 0;
447	int len, tlen, off;
448	int drop_hdrlen;
449	int thflags;
450	int rstreason = 0;	/* For badport_bandlim accounting purposes */
451#ifdef IPFIREWALL_FORWARD
452	struct m_tag *fwd_tag;
453#endif
454#ifdef INET6
455	struct ip6_hdr *ip6 = NULL;
456	int isipv6;
457	char ip6buf[INET6_ADDRSTRLEN];
458#else
459	const int isipv6 = 0;
460#endif
461	struct tcpopt to;		/* options in this segment */
462
463#ifdef TCPDEBUG
464	/*
465	 * The size of tcp_saveipgen must be the size of the max ip header,
466	 * now IPv6.
467	 */
468	u_char tcp_saveipgen[IP6_HDR_LEN];
469	struct tcphdr tcp_savetcp;
470	short ostate = 0;
471#endif
472
473#ifdef INET6
474	isipv6 = (mtod(m, struct ip *)->ip_v == 6) ? 1 : 0;
475#endif
476
477	to.to_flags = 0;
478	tcpstat.tcps_rcvtotal++;
479
480	if (isipv6) {
481#ifdef INET6
482		/* IP6_EXTHDR_CHECK() is already done at tcp6_input() */
483		ip6 = mtod(m, struct ip6_hdr *);
484		tlen = sizeof(*ip6) + ntohs(ip6->ip6_plen) - off0;
485		if (in6_cksum(m, IPPROTO_TCP, off0, tlen)) {
486			tcpstat.tcps_rcvbadsum++;
487			goto drop;
488		}
489		th = (struct tcphdr *)((caddr_t)ip6 + off0);
490
491		/*
492		 * Be proactive about unspecified IPv6 address in source.
493		 * As we use all-zero to indicate unbounded/unconnected pcb,
494		 * unspecified IPv6 address can be used to confuse us.
495		 *
496		 * Note that packets with unspecified IPv6 destination is
497		 * already dropped in ip6_input.
498		 */
499		if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) {
500			/* XXX stat */
501			goto drop;
502		}
503#else
504		th = NULL;		/* XXX: avoid compiler warning */
505#endif
506	} else {
507		/*
508		 * Get IP and TCP header together in first mbuf.
509		 * Note: IP leaves IP header in first mbuf.
510		 */
511		if (off0 > sizeof (struct ip)) {
512			ip_stripoptions(m, (struct mbuf *)0);
513			off0 = sizeof(struct ip);
514		}
515		if (m->m_len < sizeof (struct tcpiphdr)) {
516			if ((m = m_pullup(m, sizeof (struct tcpiphdr)))
517			    == NULL) {
518				tcpstat.tcps_rcvshort++;
519				return;
520			}
521		}
522		ip = mtod(m, struct ip *);
523		ipov = (struct ipovly *)ip;
524		th = (struct tcphdr *)((caddr_t)ip + off0);
525		tlen = ip->ip_len;
526
527		if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) {
528			if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR)
529				th->th_sum = m->m_pkthdr.csum_data;
530			else
531				th->th_sum = in_pseudo(ip->ip_src.s_addr,
532						ip->ip_dst.s_addr,
533						htonl(m->m_pkthdr.csum_data +
534							ip->ip_len +
535							IPPROTO_TCP));
536			th->th_sum ^= 0xffff;
537#ifdef TCPDEBUG
538			ipov->ih_len = (u_short)tlen;
539			ipov->ih_len = htons(ipov->ih_len);
540#endif
541		} else {
542			/*
543			 * Checksum extended TCP header and data.
544			 */
545			len = sizeof (struct ip) + tlen;
546			bzero(ipov->ih_x1, sizeof(ipov->ih_x1));
547			ipov->ih_len = (u_short)tlen;
548			ipov->ih_len = htons(ipov->ih_len);
549			th->th_sum = in_cksum(m, len);
550		}
551		if (th->th_sum) {
552			tcpstat.tcps_rcvbadsum++;
553			goto drop;
554		}
555		/* Re-initialization for later version check */
556		ip->ip_v = IPVERSION;
557	}
558
559	/*
560	 * Check that TCP offset makes sense,
561	 * pull out TCP options and adjust length.		XXX
562	 */
563	off = th->th_off << 2;
564	if (off < sizeof (struct tcphdr) || off > tlen) {
565		tcpstat.tcps_rcvbadoff++;
566		goto drop;
567	}
568	tlen -= off;	/* tlen is used instead of ti->ti_len */
569	if (off > sizeof (struct tcphdr)) {
570		if (isipv6) {
571#ifdef INET6
572			IP6_EXTHDR_CHECK(m, off0, off, );
573			ip6 = mtod(m, struct ip6_hdr *);
574			th = (struct tcphdr *)((caddr_t)ip6 + off0);
575#endif
576		} else {
577			if (m->m_len < sizeof(struct ip) + off) {
578				if ((m = m_pullup(m, sizeof (struct ip) + off))
579				    == NULL) {
580					tcpstat.tcps_rcvshort++;
581					return;
582				}
583				ip = mtod(m, struct ip *);
584				ipov = (struct ipovly *)ip;
585				th = (struct tcphdr *)((caddr_t)ip + off0);
586			}
587		}
588		optlen = off - sizeof (struct tcphdr);
589		optp = (u_char *)(th + 1);
590	}
591	thflags = th->th_flags;
592
593	/*
594	 * If the drop_synfin option is enabled, drop all packets with
595	 * both the SYN and FIN bits set. This prevents e.g. nmap from
596	 * identifying the TCP/IP stack.
597	 *
598	 * This is a violation of the TCP specification.
599	 */
600	if (drop_synfin && (thflags & (TH_SYN|TH_FIN)) == (TH_SYN|TH_FIN))
601		goto drop;
602
603	/*
604	 * Convert TCP protocol specific fields to host format.
605	 */
606	th->th_seq = ntohl(th->th_seq);
607	th->th_ack = ntohl(th->th_ack);
608	th->th_win = ntohs(th->th_win);
609	th->th_urp = ntohs(th->th_urp);
610
611	/*
612	 * Delay dropping TCP, IP headers, IPv6 ext headers, and TCP options.
613	 */
614	drop_hdrlen = off0 + off;
615
616	/*
617	 * Locate pcb for segment.
618	 */
619	INP_INFO_WLOCK(&tcbinfo);
620findpcb:
621	INP_INFO_WLOCK_ASSERT(&tcbinfo);
622#ifdef IPFIREWALL_FORWARD
623	/* Grab info from PACKET_TAG_IPFORWARD tag prepended to the chain. */
624	fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL);
625
626	if (fwd_tag != NULL && isipv6 == 0) {	/* IPv6 support is not yet */
627		struct sockaddr_in *next_hop;
628
629		next_hop = (struct sockaddr_in *)(fwd_tag+1);
630		/*
631		 * Transparently forwarded. Pretend to be the destination.
632		 * already got one like this?
633		 */
634		inp = in_pcblookup_hash(&tcbinfo,
635					ip->ip_src, th->th_sport,
636					ip->ip_dst, th->th_dport,
637					0, m->m_pkthdr.rcvif);
638		if (!inp) {
639			/* It's new.  Try to find the ambushing socket. */
640			inp = in_pcblookup_hash(&tcbinfo,
641						ip->ip_src, th->th_sport,
642						next_hop->sin_addr,
643						next_hop->sin_port ?
644						    ntohs(next_hop->sin_port) :
645						    th->th_dport,
646						INPLOOKUP_WILDCARD,
647						m->m_pkthdr.rcvif);
648		}
649		/* Remove the tag from the packet.  We don't need it anymore. */
650		m_tag_delete(m, fwd_tag);
651	} else
652#endif /* IPFIREWALL_FORWARD */
653	{
654		if (isipv6) {
655#ifdef INET6
656			inp = in6_pcblookup_hash(&tcbinfo,
657						 &ip6->ip6_src, th->th_sport,
658						 &ip6->ip6_dst, th->th_dport,
659						 INPLOOKUP_WILDCARD,
660						 m->m_pkthdr.rcvif);
661#endif
662		} else
663			inp = in_pcblookup_hash(&tcbinfo,
664						ip->ip_src, th->th_sport,
665						ip->ip_dst, th->th_dport,
666						INPLOOKUP_WILDCARD,
667						m->m_pkthdr.rcvif);
668	}
669
670#if defined(IPSEC) || defined(FAST_IPSEC)
671#ifdef INET6
672	if (isipv6 && inp != NULL && ipsec6_in_reject(m, inp)) {
673#ifdef IPSEC
674		ipsec6stat.in_polvio++;
675#endif
676		goto dropunlock;
677	} else
678#endif /* INET6 */
679	if (inp != NULL && ipsec4_in_reject(m, inp)) {
680#ifdef IPSEC
681		ipsecstat.in_polvio++;
682#endif
683		goto dropunlock;
684	}
685#endif /*IPSEC || FAST_IPSEC*/
686
687	/*
688	 * If the INPCB does not exist then all data in the incoming
689	 * segment is discarded and an appropriate RST is sent back.
690	 */
691	if (inp == NULL) {
692		/*
693		 * Log communication attempts to ports that are not
694		 * in use.
695		 */
696		if ((tcp_log_in_vain == 1 && (thflags & TH_SYN)) ||
697		    tcp_log_in_vain == 2) {
698#ifndef INET6
699			char dbuf[4*sizeof "123"], sbuf[4*sizeof "123"];
700#else
701			char dbuf[INET6_ADDRSTRLEN+2], sbuf[INET6_ADDRSTRLEN+2];
702			if (isipv6) {
703				strcpy(dbuf, "[");
704				strcat(dbuf,
705				    ip6_sprintf(ip6buf, &ip6->ip6_dst));
706				strcat(dbuf, "]");
707				strcpy(sbuf, "[");
708				strcat(sbuf,
709				    ip6_sprintf(ip6buf, &ip6->ip6_src));
710				strcat(sbuf, "]");
711			} else
712#endif /* INET6 */
713			{
714				strcpy(dbuf, inet_ntoa(ip->ip_dst));
715				strcpy(sbuf, inet_ntoa(ip->ip_src));
716			}
717			log(LOG_INFO,
718			    "Connection attempt to TCP %s:%d "
719			    "from %s:%d flags:0x%02x\n",
720			    dbuf, ntohs(th->th_dport), sbuf,
721			    ntohs(th->th_sport), thflags);
722		}
723		/*
724		 * When blackholing do not respond with a RST but
725		 * completely ignore the segment and drop it.
726		 */
727		if ((blackhole == 1 && (thflags & TH_SYN)) ||
728		    blackhole == 2)
729			goto dropunlock;
730
731		rstreason = BANDLIM_RST_CLOSEDPORT;
732		goto dropwithreset;
733	}
734	INP_LOCK(inp);
735
736	/* Check the minimum TTL for socket. */
737	if (inp->inp_ip_minttl != 0) {
738#ifdef INET6
739		if (isipv6 && inp->inp_ip_minttl > ip6->ip6_hlim)
740			goto dropunlock;
741		else
742#endif
743		if (inp->inp_ip_minttl > ip->ip_ttl)
744			goto dropunlock;
745	}
746
747	/*
748	 * A previous connection in TIMEWAIT state is supposed to catch
749	 * stray or duplicate segments arriving late.  If this segment
750	 * was a legitimate new connection attempt the old INPCB gets
751	 * removed and we can try again to find a listening socket.
752	 */
753	if (inp->inp_vflag & INP_TIMEWAIT) {
754		if (thflags & TH_SYN)
755			tcp_dooptions(&to, optp, optlen, TO_SYN);
756		if (tcp_timewait(inp, &to, th, m, tlen))
757			goto findpcb;
758		/* tcp_timewait unlocks inp. */
759		INP_INFO_WUNLOCK(&tcbinfo);
760		return;
761	}
762	/*
763	 * The TCPCB may no longer exist if the connection is winding
764	 * down or it is in the CLOSED state.  Either way we drop the
765	 * segment and send an appropriate response.
766	 */
767	tp = intotcpcb(inp);
768	if (tp == NULL) {
769		INP_UNLOCK(inp);
770		rstreason = BANDLIM_RST_CLOSEDPORT;
771		goto dropwithreset;
772	}
773	if (tp->t_state == TCPS_CLOSED)
774		goto dropunlock;	/* XXX: dropwithreset??? */
775
776#ifdef MAC
777	INP_LOCK_ASSERT(inp);
778	if (mac_check_inpcb_deliver(inp, m))
779		goto dropunlock;
780#endif
781	so = inp->inp_socket;
782	KASSERT(so != NULL, ("%s: so == NULL", __func__));
783#ifdef TCPDEBUG
784	if (so->so_options & SO_DEBUG) {
785		ostate = tp->t_state;
786		if (isipv6)
787			bcopy((char *)ip6, (char *)tcp_saveipgen, sizeof(*ip6));
788		else
789			bcopy((char *)ip, (char *)tcp_saveipgen, sizeof(*ip));
790		tcp_savetcp = *th;
791	}
792#endif
793	/*
794	 * When the socket is accepting connections (the INPCB is in LISTEN
795	 * state) we look into the SYN cache if this is a new connection
796	 * attempt or the completion of a previous one.
797	 */
798	if (so->so_options & SO_ACCEPTCONN) {
799		struct in_conninfo inc;
800
801		bzero(&inc, sizeof(inc));
802		inc.inc_isipv6 = isipv6;
803#ifdef INET6
804		if (isipv6) {
805			inc.inc6_faddr = ip6->ip6_src;
806			inc.inc6_laddr = ip6->ip6_dst;
807		} else
808#endif
809		{
810			inc.inc_faddr = ip->ip_src;
811			inc.inc_laddr = ip->ip_dst;
812		}
813		inc.inc_fport = th->th_sport;
814		inc.inc_lport = th->th_dport;
815
816		/*
817		 * If the state is LISTEN then ignore segment if it contains
818		 * a RST.  If the segment contains an ACK then it is bad and
819		 * send a RST.  If it does not contain a SYN then it is not
820		 * interesting; drop it.
821		 *
822		 * If the state is SYN_RECEIVED (syncache) and seg contains
823		 * an ACK, but not for our SYN/ACK, send a RST.  If the seg
824		 * contains a RST, check the sequence number to see if it
825		 * is a valid reset segment.
826		 */
827		if ((thflags & (TH_RST|TH_ACK|TH_SYN)) != TH_SYN) {
828			if ((thflags & (TH_RST|TH_ACK|TH_SYN)) == TH_ACK) {
829				/*
830				 * Parse the TCP options here because
831				 * syncookies need access to the reflected
832				 * timestamp.
833				 */
834				tcp_dooptions(&to, optp, optlen, 0);
835				if (!syncache_expand(&inc, &to, th, &so, m)) {
836					/*
837					 * No syncache entry, or ACK was not
838					 * for our SYN/ACK.  Send a RST.
839					 */
840					tcpstat.tcps_badsyn++;
841					rstreason = BANDLIM_RST_OPENPORT;
842					goto dropwithreset;
843				}
844				if (so == NULL) {
845					/*
846					 * Could not complete 3-way handshake,
847					 * connection is being closed down, and
848					 * syncache has free'd mbuf.
849					 */
850					INP_UNLOCK(inp);
851					INP_INFO_WUNLOCK(&tcbinfo);
852					return;
853				}
854				/*
855				 * Socket is created in state SYN_RECEIVED.
856				 * Continue processing segment.
857				 */
858				INP_UNLOCK(inp);
859				inp = sotoinpcb(so);
860				INP_LOCK(inp);
861				tp = intotcpcb(inp);
862				/*
863				 * This is what would have happened in
864				 * tcp_output() when the SYN,ACK was sent.
865				 */
866				tp->snd_up = tp->snd_una;
867				tp->snd_max = tp->snd_nxt = tp->iss + 1;
868				tp->last_ack_sent = tp->rcv_nxt;
869
870				/*
871				 * Process the segment and the data it
872				 * contains.  tcp_do_segment() consumes
873				 * the mbuf chain and unlocks the inpcb.
874				 * XXX: The potential return value of
875				 * TIME_WAIT nuked is supposed to be
876				 * handled above.
877				 */
878				if (tcp_do_segment(m, th, so, tp,
879						   drop_hdrlen, tlen))
880					goto findpcb;	/* TIME_WAIT nuked */
881				return;
882			}
883			if (thflags & TH_RST) {
884				syncache_chkrst(&inc, th);
885				goto dropunlock;
886			}
887			if (thflags & TH_ACK) {
888				syncache_badack(&inc);
889				tcpstat.tcps_badsyn++;
890				rstreason = BANDLIM_RST_OPENPORT;
891				goto dropwithreset;
892			}
893			goto dropunlock;
894		}
895
896		/*
897		 * Segment's flags are (SYN) or (SYN|FIN).
898		 */
899#ifdef INET6
900		/*
901		 * If deprecated address is forbidden,
902		 * we do not accept SYN to deprecated interface
903		 * address to prevent any new inbound connection from
904		 * getting established.
905		 * When we do not accept SYN, we send a TCP RST,
906		 * with deprecated source address (instead of dropping
907		 * it).  We compromise it as it is much better for peer
908		 * to send a RST, and RST will be the final packet
909		 * for the exchange.
910		 *
911		 * If we do not forbid deprecated addresses, we accept
912		 * the SYN packet.  RFC2462 does not suggest dropping
913		 * SYN in this case.
914		 * If we decipher RFC2462 5.5.4, it says like this:
915		 * 1. use of deprecated addr with existing
916		 *    communication is okay - "SHOULD continue to be
917		 *    used"
918		 * 2. use of it with new communication:
919		 *   (2a) "SHOULD NOT be used if alternate address
920		 *        with sufficient scope is available"
921		 *   (2b) nothing mentioned otherwise.
922		 * Here we fall into (2b) case as we have no choice in
923		 * our source address selection - we must obey the peer.
924		 *
925		 * The wording in RFC2462 is confusing, and there are
926		 * multiple description text for deprecated address
927		 * handling - worse, they are not exactly the same.
928		 * I believe 5.5.4 is the best one, so we follow 5.5.4.
929		 */
930		if (isipv6 && !ip6_use_deprecated) {
931			struct in6_ifaddr *ia6;
932
933			if ((ia6 = ip6_getdstifaddr(m)) &&
934			    (ia6->ia6_flags & IN6_IFF_DEPRECATED)) {
935				INP_UNLOCK(inp);
936				tp = NULL;
937				rstreason = BANDLIM_RST_OPENPORT;
938				goto dropwithreset;
939			}
940		}
941#endif
942		/*
943		 * Basic sanity checks on incoming SYN requests:
944		 *
945		 * Don't bother responding if the destination was a
946		 * broadcast according to RFC1122 4.2.3.10, p. 104.
947		 *
948		 * If it is from this socket, drop it, it must be forged.
949		 *
950		 * Note that it is quite possible to receive unicast
951		 * link-layer packets with a broadcast IP address. Use
952		 * in_broadcast() to find them.
953		 */
954		if (m->m_flags & (M_BCAST|M_MCAST))
955			goto dropunlock;
956		if (isipv6) {
957#ifdef INET6
958			if (th->th_dport == th->th_sport &&
959			    IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst, &ip6->ip6_src))
960				goto dropunlock;
961			if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) ||
962			    IN6_IS_ADDR_MULTICAST(&ip6->ip6_src))
963				goto dropunlock;
964#endif
965		} else {
966			if (th->th_dport == th->th_sport &&
967			    ip->ip_dst.s_addr == ip->ip_src.s_addr)
968				goto dropunlock;
969			if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
970			    IN_MULTICAST(ntohl(ip->ip_src.s_addr)) ||
971			    ip->ip_src.s_addr == htonl(INADDR_BROADCAST) ||
972			    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
973				goto dropunlock;
974		}
975		/*
976		 * SYN appears to be valid.  Create compressed TCP state
977		 * for syncache.
978		 */
979		if (so->so_qlen <= so->so_qlimit) {
980#ifdef TCPDEBUG
981			if (so->so_options & SO_DEBUG)
982				tcp_trace(TA_INPUT, ostate, tp,
983				    (void *)tcp_saveipgen, &tcp_savetcp, 0);
984#endif
985			tcp_dooptions(&to, optp, optlen, TO_SYN);
986			if (!syncache_add(&inc, &to, th, inp, &so, m))
987				goto dropunlock;
988			/*
989			 * Entry added to syncache, mbuf used to
990			 * send SYN-ACK packet.  Everything unlocked
991			 * already.
992			 */
993			return;
994		}
995		/* Catch all.  Everthing that makes it down here is junk. */
996		goto dropunlock;
997	}
998
999	/*
1000	 * Segment belongs to a connection in SYN_SENT, ESTABLISHED or
1001	 * later state.  tcp_do_segment() always consumes the mbuf chain
1002	 * and unlocks the inpcb.
1003	 */
1004	if (tcp_do_segment(m, th, so, tp, drop_hdrlen, tlen))
1005		goto findpcb;	/* XXX: TIME_WAIT was nuked. */
1006	return;
1007
1008dropwithreset:
1009	tcp_dropwithreset(m, th, tp, tlen, rstreason);
1010	m = NULL;	/* mbuf chain got consumed. */
1011dropunlock:
1012	if (tp != NULL)
1013		INP_UNLOCK(inp);
1014	INP_INFO_WUNLOCK(&tcbinfo);
1015drop:
1016	if (m != NULL)
1017		m_freem(m);
1018	return;
1019}
1020
1021static int
1022tcp_do_segment(struct mbuf *m, struct tcphdr *th, struct socket *so,
1023    struct tcpcb *tp, int drop_hdrlen, int tlen)
1024{
1025	int thflags, acked, ourfinisacked, needoutput = 0;
1026	int headlocked = 1;
1027	int rstreason, todrop, win;
1028	u_long tiwin;
1029	struct tcpopt to;
1030
1031#ifdef TCPDEBUG
1032	/*
1033	 * The size of tcp_saveipgen must be the size of the max ip header,
1034	 * now IPv6.
1035	 */
1036	u_char tcp_saveipgen[IP6_HDR_LEN];
1037	struct tcphdr tcp_savetcp;
1038	short ostate = 0;
1039#endif
1040	thflags = th->th_flags;
1041
1042	INP_INFO_WLOCK_ASSERT(&tcbinfo);
1043	INP_LOCK_ASSERT(tp->t_inpcb);
1044	KASSERT(tp->t_state > TCPS_LISTEN, ("%s: TCPS_LISTEN", __func__));
1045
1046	/*
1047	 * Segment received on connection.
1048	 * Reset idle time and keep-alive timer.
1049	 */
1050	tp->t_rcvtime = ticks;
1051	if (TCPS_HAVEESTABLISHED(tp->t_state))
1052		callout_reset(tp->tt_keep, tcp_keepidle, tcp_timer_keep, tp);
1053
1054	/*
1055	 * Unscale the window into a 32-bit value.
1056	 * This value is bogus for the TCPS_SYN_SENT state
1057	 * and is overwritten later.
1058	 */
1059	tiwin = th->th_win << tp->snd_scale;
1060
1061	/*
1062	 * Parse options on any incoming segment.
1063	 */
1064	tcp_dooptions(&to, (u_char *)(th + 1),
1065	    (th->th_off << 2) - sizeof(struct tcphdr),
1066	    (thflags & TH_SYN) ? TO_SYN : 0);
1067
1068	/*
1069	 * If echoed timestamp is later than the current time,
1070	 * fall back to non RFC1323 RTT calculation.  Normalize
1071	 * timestamp if syncookies were used when this connection
1072	 * was established.
1073	 */
1074	if ((to.to_flags & TOF_TS) && (to.to_tsecr != 0)) {
1075		to.to_tsecr -= tp->ts_offset;
1076		if (TSTMP_GT(to.to_tsecr, ticks))
1077			to.to_tsecr = 0;
1078	}
1079
1080	/*
1081	 * Process options only when we get SYN/ACK back. The SYN case
1082	 * for incoming connections is handled in tcp_syncache.
1083	 * XXX this is traditional behavior, may need to be cleaned up.
1084	 */
1085	if (tp->t_state == TCPS_SYN_SENT && (thflags & TH_SYN)) {
1086		if ((to.to_flags & TOF_SCALE) &&
1087		    (tp->t_flags & TF_REQ_SCALE)) {
1088			tp->t_flags |= TF_RCVD_SCALE;
1089			tp->snd_scale = to.to_wscale;
1090			tp->snd_wnd = th->th_win << tp->snd_scale;
1091			tiwin = tp->snd_wnd;
1092		}
1093		if (to.to_flags & TOF_TS) {
1094			tp->t_flags |= TF_RCVD_TSTMP;
1095			tp->ts_recent = to.to_tsval;
1096			tp->ts_recent_age = ticks;
1097		}
1098		/* Initial send window, already scaled. */
1099		tp->snd_wnd = th->th_win;
1100		if (to.to_flags & TOF_MSS)
1101			tcp_mss(tp, to.to_mss);
1102		if (tp->sack_enable) {
1103			if (!(to.to_flags & TOF_SACKPERM))
1104				tp->sack_enable = 0;
1105			else
1106				tp->t_flags |= TF_SACK_PERMIT;
1107		}
1108
1109	}
1110
1111	/*
1112	 * Header prediction: check for the two common cases
1113	 * of a uni-directional data xfer.  If the packet has
1114	 * no control flags, is in-sequence, the window didn't
1115	 * change and we're not retransmitting, it's a
1116	 * candidate.  If the length is zero and the ack moved
1117	 * forward, we're the sender side of the xfer.  Just
1118	 * free the data acked & wake any higher level process
1119	 * that was blocked waiting for space.  If the length
1120	 * is non-zero and the ack didn't move, we're the
1121	 * receiver side.  If we're getting packets in-order
1122	 * (the reassembly queue is empty), add the data to
1123	 * the socket buffer and note that we need a delayed ack.
1124	 * Make sure that the hidden state-flags are also off.
1125	 * Since we check for TCPS_ESTABLISHED above, it can only
1126	 * be TH_NEEDSYN.
1127	 */
1128	if (tp->t_state == TCPS_ESTABLISHED &&
1129	    (thflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK)) == TH_ACK &&
1130	    ((tp->t_flags & (TF_NEEDSYN|TF_NEEDFIN)) == 0) &&
1131	    ((to.to_flags & TOF_TS) == 0 ||
1132	     TSTMP_GEQ(to.to_tsval, tp->ts_recent)) &&
1133	     th->th_seq == tp->rcv_nxt && tiwin && tiwin == tp->snd_wnd &&
1134	     tp->snd_nxt == tp->snd_max) {
1135
1136		/*
1137		 * If last ACK falls within this segment's sequence numbers,
1138		 * record the timestamp.
1139		 * NOTE that the test is modified according to the latest
1140		 * proposal of the tcplw@cray.com list (Braden 1993/04/26).
1141		 */
1142		if ((to.to_flags & TOF_TS) != 0 &&
1143		    SEQ_LEQ(th->th_seq, tp->last_ack_sent)) {
1144			tp->ts_recent_age = ticks;
1145			tp->ts_recent = to.to_tsval;
1146		}
1147
1148		if (tlen == 0) {
1149			if (SEQ_GT(th->th_ack, tp->snd_una) &&
1150			    SEQ_LEQ(th->th_ack, tp->snd_max) &&
1151			    tp->snd_cwnd >= tp->snd_wnd &&
1152			    ((!tcp_do_newreno && !tp->sack_enable &&
1153			      tp->t_dupacks < tcprexmtthresh) ||
1154			     ((tcp_do_newreno || tp->sack_enable) &&
1155			      !IN_FASTRECOVERY(tp) &&
1156			      (to.to_flags & TOF_SACK) == 0 &&
1157			      TAILQ_EMPTY(&tp->snd_holes)))) {
1158				KASSERT(headlocked,
1159				    ("%s: headlocked", __func__));
1160				INP_INFO_WUNLOCK(&tcbinfo);
1161				headlocked = 0;
1162				/*
1163				 * this is a pure ack for outstanding data.
1164				 */
1165				++tcpstat.tcps_predack;
1166				/*
1167				 * "bad retransmit" recovery
1168				 */
1169				if (tp->t_rxtshift == 1 &&
1170				    ticks < tp->t_badrxtwin) {
1171					++tcpstat.tcps_sndrexmitbad;
1172					tp->snd_cwnd = tp->snd_cwnd_prev;
1173					tp->snd_ssthresh =
1174					    tp->snd_ssthresh_prev;
1175					tp->snd_recover = tp->snd_recover_prev;
1176					if (tp->t_flags & TF_WASFRECOVERY)
1177					    ENTER_FASTRECOVERY(tp);
1178					tp->snd_nxt = tp->snd_max;
1179					tp->t_badrxtwin = 0;
1180				}
1181
1182				/*
1183				 * Recalculate the transmit timer / rtt.
1184				 *
1185				 * Some boxes send broken timestamp replies
1186				 * during the SYN+ACK phase, ignore
1187				 * timestamps of 0 or we could calculate a
1188				 * huge RTT and blow up the retransmit timer.
1189				 */
1190				if ((to.to_flags & TOF_TS) != 0 &&
1191				    to.to_tsecr) {
1192					if (!tp->t_rttlow ||
1193					    tp->t_rttlow > ticks - to.to_tsecr)
1194						tp->t_rttlow = ticks - to.to_tsecr;
1195					tcp_xmit_timer(tp,
1196					    ticks - to.to_tsecr + 1);
1197				} else if (tp->t_rtttime &&
1198				    SEQ_GT(th->th_ack, tp->t_rtseq)) {
1199					if (!tp->t_rttlow ||
1200					    tp->t_rttlow > ticks - tp->t_rtttime)
1201						tp->t_rttlow = ticks - tp->t_rtttime;
1202					tcp_xmit_timer(tp,
1203							ticks - tp->t_rtttime);
1204				}
1205				tcp_xmit_bandwidth_limit(tp, th->th_ack);
1206				acked = th->th_ack - tp->snd_una;
1207				tcpstat.tcps_rcvackpack++;
1208				tcpstat.tcps_rcvackbyte += acked;
1209				sbdrop(&so->so_snd, acked);
1210				if (SEQ_GT(tp->snd_una, tp->snd_recover) &&
1211				    SEQ_LEQ(th->th_ack, tp->snd_recover))
1212					tp->snd_recover = th->th_ack - 1;
1213				tp->snd_una = th->th_ack;
1214				/*
1215				 * pull snd_wl2 up to prevent seq wrap relative
1216				 * to th_ack.
1217				 */
1218				tp->snd_wl2 = th->th_ack;
1219				tp->t_dupacks = 0;
1220				m_freem(m);
1221				ND6_HINT(tp); /* some progress has been done */
1222
1223				/*
1224				 * If all outstanding data are acked, stop
1225				 * retransmit timer, otherwise restart timer
1226				 * using current (possibly backed-off) value.
1227				 * If process is waiting for space,
1228				 * wakeup/selwakeup/signal.  If data
1229				 * are ready to send, let tcp_output
1230				 * decide between more output or persist.
1231
1232#ifdef TCPDEBUG
1233				if (so->so_options & SO_DEBUG)
1234					tcp_trace(TA_INPUT, ostate, tp,
1235					    (void *)tcp_saveipgen,
1236					    &tcp_savetcp, 0);
1237#endif
1238				 */
1239				if (tp->snd_una == tp->snd_max)
1240					callout_stop(tp->tt_rexmt);
1241				else if (!callout_active(tp->tt_persist))
1242					callout_reset(tp->tt_rexmt,
1243						      tp->t_rxtcur,
1244						      tcp_timer_rexmt, tp);
1245
1246				sowwakeup(so);
1247				if (so->so_snd.sb_cc)
1248					(void) tcp_output(tp);
1249				goto check_delack;
1250			}
1251		} else if (th->th_ack == tp->snd_una &&
1252		    LIST_EMPTY(&tp->t_segq) &&
1253		    tlen <= sbspace(&so->so_rcv)) {
1254			int newsize = 0;	/* automatic sockbuf scaling */
1255
1256			KASSERT(headlocked, ("%s: headlocked", __func__));
1257			INP_INFO_WUNLOCK(&tcbinfo);
1258			headlocked = 0;
1259			/*
1260			 * this is a pure, in-sequence data packet
1261			 * with nothing on the reassembly queue and
1262			 * we have enough buffer space to take it.
1263			 */
1264			/* Clean receiver SACK report if present */
1265			if (tp->sack_enable && tp->rcv_numsacks)
1266				tcp_clean_sackreport(tp);
1267			++tcpstat.tcps_preddat;
1268			tp->rcv_nxt += tlen;
1269			/*
1270			 * Pull snd_wl1 up to prevent seq wrap relative to
1271			 * th_seq.
1272			 */
1273			tp->snd_wl1 = th->th_seq;
1274			/*
1275			 * Pull rcv_up up to prevent seq wrap relative to
1276			 * rcv_nxt.
1277			 */
1278			tp->rcv_up = tp->rcv_nxt;
1279			tcpstat.tcps_rcvpack++;
1280			tcpstat.tcps_rcvbyte += tlen;
1281			ND6_HINT(tp);	/* some progress has been done */
1282#ifdef TCPDEBUG
1283			if (so->so_options & SO_DEBUG)
1284				tcp_trace(TA_INPUT, ostate, tp,
1285				    (void *)tcp_saveipgen, &tcp_savetcp, 0);
1286#endif
1287		/*
1288		 * Automatic sizing of receive socket buffer.  Often the send
1289		 * buffer size is not optimally adjusted to the actual network
1290		 * conditions at hand (delay bandwidth product).  Setting the
1291		 * buffer size too small limits throughput on links with high
1292		 * bandwidth and high delay (eg. trans-continental/oceanic links).
1293		 *
1294		 * On the receive side the socket buffer memory is only rarely
1295		 * used to any significant extent.  This allows us to be much
1296		 * more aggressive in scaling the receive socket buffer.  For
1297		 * the case that the buffer space is actually used to a large
1298		 * extent and we run out of kernel memory we can simply drop
1299		 * the new segments; TCP on the sender will just retransmit it
1300		 * later.  Setting the buffer size too big may only consume too
1301		 * much kernel memory if the application doesn't read() from
1302		 * the socket or packet loss or reordering makes use of the
1303		 * reassembly queue.
1304		 *
1305		 * The criteria to step up the receive buffer one notch are:
1306		 *  1. the number of bytes received during the time it takes
1307		 *     one timestamp to be reflected back to us (the RTT);
1308		 *  2. received bytes per RTT is within seven eighth of the
1309		 *     current socket buffer size;
1310		 *  3. receive buffer size has not hit maximal automatic size;
1311		 *
1312		 * This algorithm does one step per RTT at most and only if
1313		 * we receive a bulk stream w/o packet losses or reorderings.
1314		 * Shrinking the buffer during idle times is not necessary as
1315		 * it doesn't consume any memory when idle.
1316		 *
1317		 * TODO: Only step up if the application is actually serving
1318		 * the buffer to better manage the socket buffer resources.
1319		 */
1320			if (tcp_do_autorcvbuf &&
1321			    to.to_tsecr &&
1322			    (so->so_rcv.sb_flags & SB_AUTOSIZE)) {
1323				if (to.to_tsecr > tp->rfbuf_ts &&
1324				    to.to_tsecr - tp->rfbuf_ts < hz) {
1325					if (tp->rfbuf_cnt >
1326					    (so->so_rcv.sb_hiwat / 8 * 7) &&
1327					    so->so_rcv.sb_hiwat <
1328					    tcp_autorcvbuf_max) {
1329						newsize =
1330						    min(so->so_rcv.sb_hiwat +
1331						    tcp_autorcvbuf_inc,
1332						    tcp_autorcvbuf_max);
1333					}
1334					/* Start over with next RTT. */
1335					tp->rfbuf_ts = 0;
1336					tp->rfbuf_cnt = 0;
1337				} else
1338					tp->rfbuf_cnt += tlen;	/* add up */
1339			}
1340
1341			/* Add data to socket buffer. */
1342			SOCKBUF_LOCK(&so->so_rcv);
1343			if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
1344				m_freem(m);
1345			} else {
1346				/*
1347				 * Set new socket buffer size.
1348				 * Give up when limit is reached.
1349				 */
1350				if (newsize)
1351					if (!sbreserve_locked(&so->so_rcv,
1352					    newsize, so, curthread))
1353						so->so_rcv.sb_flags &= ~SB_AUTOSIZE;
1354				m_adj(m, drop_hdrlen);	/* delayed header drop */
1355				sbappendstream_locked(&so->so_rcv, m);
1356			}
1357			sorwakeup_locked(so);
1358			if (DELAY_ACK(tp)) {
1359				tp->t_flags |= TF_DELACK;
1360			} else {
1361				tp->t_flags |= TF_ACKNOW;
1362				tcp_output(tp);
1363			}
1364			goto check_delack;
1365		}
1366	}
1367
1368	/*
1369	 * Calculate amount of space in receive window,
1370	 * and then do TCP input processing.
1371	 * Receive window is amount of space in rcv queue,
1372	 * but not less than advertised window.
1373	 */
1374	win = sbspace(&so->so_rcv);
1375	if (win < 0)
1376		win = 0;
1377	tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
1378
1379	/* Reset receive buffer auto scaling when not in bulk receive mode. */
1380	tp->rfbuf_ts = 0;
1381	tp->rfbuf_cnt = 0;
1382
1383	switch (tp->t_state) {
1384
1385	/*
1386	 * If the state is SYN_RECEIVED:
1387	 *	if seg contains an ACK, but not for our SYN/ACK, send a RST.
1388	 */
1389	case TCPS_SYN_RECEIVED:
1390		if ((thflags & TH_ACK) &&
1391		    (SEQ_LEQ(th->th_ack, tp->snd_una) ||
1392		     SEQ_GT(th->th_ack, tp->snd_max))) {
1393				rstreason = BANDLIM_RST_OPENPORT;
1394				goto dropwithreset;
1395		}
1396		break;
1397
1398	/*
1399	 * If the state is SYN_SENT:
1400	 *	if seg contains an ACK, but not for our SYN, drop the input.
1401	 *	if seg contains a RST, then drop the connection.
1402	 *	if seg does not contain SYN, then drop it.
1403	 * Otherwise this is an acceptable SYN segment
1404	 *	initialize tp->rcv_nxt and tp->irs
1405	 *	if seg contains ack then advance tp->snd_una
1406	 *	if SYN has been acked change to ESTABLISHED else SYN_RCVD state
1407	 *	arrange for segment to be acked (eventually)
1408	 *	continue processing rest of data/controls, beginning with URG
1409	 */
1410	case TCPS_SYN_SENT:
1411		if ((thflags & TH_ACK) &&
1412		    (SEQ_LEQ(th->th_ack, tp->iss) ||
1413		     SEQ_GT(th->th_ack, tp->snd_max))) {
1414			rstreason = BANDLIM_UNLIMITED;
1415			goto dropwithreset;
1416		}
1417		if (thflags & TH_RST) {
1418			if (thflags & TH_ACK) {
1419				KASSERT(headlocked, ("%s: after_listen: "
1420				    "tcp_drop.2: head not locked", __func__));
1421				tp = tcp_drop(tp, ECONNREFUSED);
1422			}
1423			goto drop;
1424		}
1425		if ((thflags & TH_SYN) == 0)
1426			goto drop;
1427
1428		tp->irs = th->th_seq;
1429		tcp_rcvseqinit(tp);
1430		if (thflags & TH_ACK) {
1431			tcpstat.tcps_connects++;
1432			soisconnected(so);
1433#ifdef MAC
1434			SOCK_LOCK(so);
1435			mac_set_socket_peer_from_mbuf(m, so);
1436			SOCK_UNLOCK(so);
1437#endif
1438			/* Do window scaling on this connection? */
1439			if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
1440				(TF_RCVD_SCALE|TF_REQ_SCALE)) {
1441				tp->rcv_scale = tp->request_r_scale;
1442			}
1443			tp->rcv_adv += tp->rcv_wnd;
1444			tp->snd_una++;		/* SYN is acked */
1445			/*
1446			 * If there's data, delay ACK; if there's also a FIN
1447			 * ACKNOW will be turned on later.
1448			 */
1449			if (DELAY_ACK(tp) && tlen != 0)
1450				callout_reset(tp->tt_delack, tcp_delacktime,
1451				    tcp_timer_delack, tp);
1452			else
1453				tp->t_flags |= TF_ACKNOW;
1454			/*
1455			 * Received <SYN,ACK> in SYN_SENT[*] state.
1456			 * Transitions:
1457			 *	SYN_SENT  --> ESTABLISHED
1458			 *	SYN_SENT* --> FIN_WAIT_1
1459			 */
1460			tp->t_starttime = ticks;
1461			if (tp->t_flags & TF_NEEDFIN) {
1462				tp->t_state = TCPS_FIN_WAIT_1;
1463				tp->t_flags &= ~TF_NEEDFIN;
1464				thflags &= ~TH_SYN;
1465			} else {
1466				tp->t_state = TCPS_ESTABLISHED;
1467				callout_reset(tp->tt_keep, tcp_keepidle,
1468					      tcp_timer_keep, tp);
1469			}
1470		} else {
1471			/*
1472			 * Received initial SYN in SYN-SENT[*] state =>
1473			 * simultaneous open.  If segment contains CC option
1474			 * and there is a cached CC, apply TAO test.
1475			 * If it succeeds, connection is * half-synchronized.
1476			 * Otherwise, do 3-way handshake:
1477			 *        SYN-SENT -> SYN-RECEIVED
1478			 *        SYN-SENT* -> SYN-RECEIVED*
1479			 * If there was no CC option, clear cached CC value.
1480			 */
1481			tp->t_flags |= (TF_ACKNOW | TF_NEEDSYN);
1482			callout_stop(tp->tt_rexmt);
1483			tp->t_state = TCPS_SYN_RECEIVED;
1484		}
1485
1486		KASSERT(headlocked, ("%s: trimthenstep6: head not locked",
1487		    __func__));
1488		INP_LOCK_ASSERT(tp->t_inpcb);
1489
1490		/*
1491		 * Advance th->th_seq to correspond to first data byte.
1492		 * If data, trim to stay within window,
1493		 * dropping FIN if necessary.
1494		 */
1495		th->th_seq++;
1496		if (tlen > tp->rcv_wnd) {
1497			todrop = tlen - tp->rcv_wnd;
1498			m_adj(m, -todrop);
1499			tlen = tp->rcv_wnd;
1500			thflags &= ~TH_FIN;
1501			tcpstat.tcps_rcvpackafterwin++;
1502			tcpstat.tcps_rcvbyteafterwin += todrop;
1503		}
1504		tp->snd_wl1 = th->th_seq - 1;
1505		tp->rcv_up = th->th_seq;
1506		/*
1507		 * Client side of transaction: already sent SYN and data.
1508		 * If the remote host used T/TCP to validate the SYN,
1509		 * our data will be ACK'd; if so, enter normal data segment
1510		 * processing in the middle of step 5, ack processing.
1511		 * Otherwise, goto step 6.
1512		 */
1513		if (thflags & TH_ACK)
1514			goto process_ACK;
1515
1516		goto step6;
1517
1518	/*
1519	 * If the state is LAST_ACK or CLOSING or TIME_WAIT:
1520	 *      do normal processing.
1521	 *
1522	 * NB: Leftover from RFC1644 T/TCP.  Cases to be reused later.
1523	 */
1524	case TCPS_LAST_ACK:
1525	case TCPS_CLOSING:
1526	case TCPS_TIME_WAIT:
1527		KASSERT(tp->t_state != TCPS_TIME_WAIT, ("%s: timewait",
1528		    __func__));
1529		break;  /* continue normal processing */
1530	}
1531
1532	/*
1533	 * States other than LISTEN or SYN_SENT.
1534	 * First check the RST flag and sequence number since reset segments
1535	 * are exempt from the timestamp and connection count tests.  This
1536	 * fixes a bug introduced by the Stevens, vol. 2, p. 960 bugfix
1537	 * below which allowed reset segments in half the sequence space
1538	 * to fall though and be processed (which gives forged reset
1539	 * segments with a random sequence number a 50 percent chance of
1540	 * killing a connection).
1541	 * Then check timestamp, if present.
1542	 * Then check the connection count, if present.
1543	 * Then check that at least some bytes of segment are within
1544	 * receive window.  If segment begins before rcv_nxt,
1545	 * drop leading data (and SYN); if nothing left, just ack.
1546	 *
1547	 *
1548	 * If the RST bit is set, check the sequence number to see
1549	 * if this is a valid reset segment.
1550	 * RFC 793 page 37:
1551	 *   In all states except SYN-SENT, all reset (RST) segments
1552	 *   are validated by checking their SEQ-fields.  A reset is
1553	 *   valid if its sequence number is in the window.
1554	 * Note: this does not take into account delayed ACKs, so
1555	 *   we should test against last_ack_sent instead of rcv_nxt.
1556	 *   The sequence number in the reset segment is normally an
1557	 *   echo of our outgoing acknowlegement numbers, but some hosts
1558	 *   send a reset with the sequence number at the rightmost edge
1559	 *   of our receive window, and we have to handle this case.
1560	 * Note 2: Paul Watson's paper "Slipping in the Window" has shown
1561	 *   that brute force RST attacks are possible.  To combat this,
1562	 *   we use a much stricter check while in the ESTABLISHED state,
1563	 *   only accepting RSTs where the sequence number is equal to
1564	 *   last_ack_sent.  In all other states (the states in which a
1565	 *   RST is more likely), the more permissive check is used.
1566	 * If we have multiple segments in flight, the intial reset
1567	 * segment sequence numbers will be to the left of last_ack_sent,
1568	 * but they will eventually catch up.
1569	 * In any case, it never made sense to trim reset segments to
1570	 * fit the receive window since RFC 1122 says:
1571	 *   4.2.2.12  RST Segment: RFC-793 Section 3.4
1572	 *
1573	 *    A TCP SHOULD allow a received RST segment to include data.
1574	 *
1575	 *    DISCUSSION
1576	 *         It has been suggested that a RST segment could contain
1577	 *         ASCII text that encoded and explained the cause of the
1578	 *         RST.  No standard has yet been established for such
1579	 *         data.
1580	 *
1581	 * If the reset segment passes the sequence number test examine
1582	 * the state:
1583	 *    SYN_RECEIVED STATE:
1584	 *	If passive open, return to LISTEN state.
1585	 *	If active open, inform user that connection was refused.
1586	 *    ESTABLISHED, FIN_WAIT_1, FIN_WAIT_2, CLOSE_WAIT STATES:
1587	 *	Inform user that connection was reset, and close tcb.
1588	 *    CLOSING, LAST_ACK STATES:
1589	 *	Close the tcb.
1590	 *    TIME_WAIT STATE:
1591	 *	Drop the segment - see Stevens, vol. 2, p. 964 and
1592	 *      RFC 1337.
1593	 */
1594	if (thflags & TH_RST) {
1595		if (SEQ_GEQ(th->th_seq, tp->last_ack_sent - 1) &&
1596		    SEQ_LEQ(th->th_seq, tp->last_ack_sent + tp->rcv_wnd)) {
1597			switch (tp->t_state) {
1598
1599			case TCPS_SYN_RECEIVED:
1600				so->so_error = ECONNREFUSED;
1601				goto close;
1602
1603			case TCPS_ESTABLISHED:
1604				if (tcp_insecure_rst == 0 &&
1605				    !(SEQ_GEQ(th->th_seq, tp->rcv_nxt - 1) &&
1606				    SEQ_LEQ(th->th_seq, tp->rcv_nxt + 1)) &&
1607				    !(SEQ_GEQ(th->th_seq, tp->last_ack_sent - 1) &&
1608				    SEQ_LEQ(th->th_seq, tp->last_ack_sent + 1))) {
1609					tcpstat.tcps_badrst++;
1610					goto drop;
1611				}
1612			case TCPS_FIN_WAIT_1:
1613			case TCPS_FIN_WAIT_2:
1614			case TCPS_CLOSE_WAIT:
1615				so->so_error = ECONNRESET;
1616			close:
1617				tp->t_state = TCPS_CLOSED;
1618				tcpstat.tcps_drops++;
1619				KASSERT(headlocked, ("%s: trimthenstep6: "
1620				    "tcp_close: head not locked", __func__));
1621				tp = tcp_close(tp);
1622				break;
1623
1624			case TCPS_CLOSING:
1625			case TCPS_LAST_ACK:
1626				KASSERT(headlocked, ("%s: trimthenstep6: "
1627				    "tcp_close.2: head not locked", __func__));
1628				tp = tcp_close(tp);
1629				break;
1630
1631			case TCPS_TIME_WAIT:
1632				KASSERT(tp->t_state != TCPS_TIME_WAIT,
1633				    ("%s: timewait", __func__));
1634				break;
1635			}
1636		}
1637		goto drop;
1638	}
1639
1640	/*
1641	 * RFC 1323 PAWS: If we have a timestamp reply on this segment
1642	 * and it's less than ts_recent, drop it.
1643	 */
1644	if ((to.to_flags & TOF_TS) != 0 && tp->ts_recent &&
1645	    TSTMP_LT(to.to_tsval, tp->ts_recent)) {
1646
1647		/* Check to see if ts_recent is over 24 days old.  */
1648		if ((int)(ticks - tp->ts_recent_age) > TCP_PAWS_IDLE) {
1649			/*
1650			 * Invalidate ts_recent.  If this segment updates
1651			 * ts_recent, the age will be reset later and ts_recent
1652			 * will get a valid value.  If it does not, setting
1653			 * ts_recent to zero will at least satisfy the
1654			 * requirement that zero be placed in the timestamp
1655			 * echo reply when ts_recent isn't valid.  The
1656			 * age isn't reset until we get a valid ts_recent
1657			 * because we don't want out-of-order segments to be
1658			 * dropped when ts_recent is old.
1659			 */
1660			tp->ts_recent = 0;
1661		} else {
1662			tcpstat.tcps_rcvduppack++;
1663			tcpstat.tcps_rcvdupbyte += tlen;
1664			tcpstat.tcps_pawsdrop++;
1665			if (tlen)
1666				goto dropafterack;
1667			goto drop;
1668		}
1669	}
1670
1671	/*
1672	 * In the SYN-RECEIVED state, validate that the packet belongs to
1673	 * this connection before trimming the data to fit the receive
1674	 * window.  Check the sequence number versus IRS since we know
1675	 * the sequence numbers haven't wrapped.  This is a partial fix
1676	 * for the "LAND" DoS attack.
1677	 */
1678	if (tp->t_state == TCPS_SYN_RECEIVED && SEQ_LT(th->th_seq, tp->irs)) {
1679		rstreason = BANDLIM_RST_OPENPORT;
1680		goto dropwithreset;
1681	}
1682
1683	todrop = tp->rcv_nxt - th->th_seq;
1684	if (todrop > 0) {
1685		if (thflags & TH_SYN) {
1686			thflags &= ~TH_SYN;
1687			th->th_seq++;
1688			if (th->th_urp > 1)
1689				th->th_urp--;
1690			else
1691				thflags &= ~TH_URG;
1692			todrop--;
1693		}
1694		/*
1695		 * Following if statement from Stevens, vol. 2, p. 960.
1696		 */
1697		if (todrop > tlen
1698		    || (todrop == tlen && (thflags & TH_FIN) == 0)) {
1699			/*
1700			 * Any valid FIN must be to the left of the window.
1701			 * At this point the FIN must be a duplicate or out
1702			 * of sequence; drop it.
1703			 */
1704			thflags &= ~TH_FIN;
1705
1706			/*
1707			 * Send an ACK to resynchronize and drop any data.
1708			 * But keep on processing for RST or ACK.
1709			 */
1710			tp->t_flags |= TF_ACKNOW;
1711			todrop = tlen;
1712			tcpstat.tcps_rcvduppack++;
1713			tcpstat.tcps_rcvdupbyte += todrop;
1714		} else {
1715			tcpstat.tcps_rcvpartduppack++;
1716			tcpstat.tcps_rcvpartdupbyte += todrop;
1717		}
1718		drop_hdrlen += todrop;	/* drop from the top afterwards */
1719		th->th_seq += todrop;
1720		tlen -= todrop;
1721		if (th->th_urp > todrop)
1722			th->th_urp -= todrop;
1723		else {
1724			thflags &= ~TH_URG;
1725			th->th_urp = 0;
1726		}
1727	}
1728
1729	/*
1730	 * If new data are received on a connection after the
1731	 * user processes are gone, then RST the other end.
1732	 */
1733	if ((so->so_state & SS_NOFDREF) &&
1734	    tp->t_state > TCPS_CLOSE_WAIT && tlen) {
1735		KASSERT(headlocked, ("%s: trimthenstep6: tcp_close.3: head "
1736		    "not locked", __func__));
1737		tp = tcp_close(tp);
1738		tcpstat.tcps_rcvafterclose++;
1739		rstreason = BANDLIM_UNLIMITED;
1740		goto dropwithreset;
1741	}
1742
1743	/*
1744	 * If segment ends after window, drop trailing data
1745	 * (and PUSH and FIN); if nothing left, just ACK.
1746	 */
1747	todrop = (th->th_seq+tlen) - (tp->rcv_nxt+tp->rcv_wnd);
1748	if (todrop > 0) {
1749		tcpstat.tcps_rcvpackafterwin++;
1750		if (todrop >= tlen) {
1751			tcpstat.tcps_rcvbyteafterwin += tlen;
1752			/*
1753			 * If a new connection request is received
1754			 * while in TIME_WAIT, drop the old connection
1755			 * and start over if the sequence numbers
1756			 * are above the previous ones.
1757			 */
1758			KASSERT(tp->t_state != TCPS_TIME_WAIT, ("%s: timewait",
1759			    __func__));
1760			if (thflags & TH_SYN &&
1761			    tp->t_state == TCPS_TIME_WAIT &&
1762			    SEQ_GT(th->th_seq, tp->rcv_nxt)) {
1763				KASSERT(headlocked, ("%s: trimthenstep6: "
1764				    "tcp_close.4: head not locked", __func__));
1765				tp = tcp_close(tp);
1766				/* XXX: Shouldn't be possible. */
1767				return (1);
1768			}
1769			/*
1770			 * If window is closed can only take segments at
1771			 * window edge, and have to drop data and PUSH from
1772			 * incoming segments.  Continue processing, but
1773			 * remember to ack.  Otherwise, drop segment
1774			 * and ack.
1775			 */
1776			if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
1777				tp->t_flags |= TF_ACKNOW;
1778				tcpstat.tcps_rcvwinprobe++;
1779			} else
1780				goto dropafterack;
1781		} else
1782			tcpstat.tcps_rcvbyteafterwin += todrop;
1783		m_adj(m, -todrop);
1784		tlen -= todrop;
1785		thflags &= ~(TH_PUSH|TH_FIN);
1786	}
1787
1788	/*
1789	 * If last ACK falls within this segment's sequence numbers,
1790	 * record its timestamp.
1791	 * NOTE:
1792	 * 1) That the test incorporates suggestions from the latest
1793	 *    proposal of the tcplw@cray.com list (Braden 1993/04/26).
1794	 * 2) That updating only on newer timestamps interferes with
1795	 *    our earlier PAWS tests, so this check should be solely
1796	 *    predicated on the sequence space of this segment.
1797	 * 3) That we modify the segment boundary check to be
1798	 *        Last.ACK.Sent <= SEG.SEQ + SEG.Len
1799	 *    instead of RFC1323's
1800	 *        Last.ACK.Sent < SEG.SEQ + SEG.Len,
1801	 *    This modified check allows us to overcome RFC1323's
1802	 *    limitations as described in Stevens TCP/IP Illustrated
1803	 *    Vol. 2 p.869. In such cases, we can still calculate the
1804	 *    RTT correctly when RCV.NXT == Last.ACK.Sent.
1805	 */
1806	if ((to.to_flags & TOF_TS) != 0 &&
1807	    SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
1808	    SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
1809		((thflags & (TH_SYN|TH_FIN)) != 0))) {
1810		tp->ts_recent_age = ticks;
1811		tp->ts_recent = to.to_tsval;
1812	}
1813
1814	/*
1815	 * If a SYN is in the window, then this is an
1816	 * error and we send an RST and drop the connection.
1817	 */
1818	if (thflags & TH_SYN) {
1819		KASSERT(headlocked, ("%s: tcp_drop: trimthenstep6: "
1820		    "head not locked", __func__));
1821		tp = tcp_drop(tp, ECONNRESET);
1822		rstreason = BANDLIM_UNLIMITED;
1823		goto drop;
1824	}
1825
1826	/*
1827	 * If the ACK bit is off:  if in SYN-RECEIVED state or SENDSYN
1828	 * flag is on (half-synchronized state), then queue data for
1829	 * later processing; else drop segment and return.
1830	 */
1831	if ((thflags & TH_ACK) == 0) {
1832		if (tp->t_state == TCPS_SYN_RECEIVED ||
1833		    (tp->t_flags & TF_NEEDSYN))
1834			goto step6;
1835		else if (tp->t_flags & TF_ACKNOW)
1836			goto dropafterack;
1837		else
1838			goto drop;
1839	}
1840
1841	/*
1842	 * Ack processing.
1843	 */
1844	switch (tp->t_state) {
1845
1846	/*
1847	 * In SYN_RECEIVED state, the ack ACKs our SYN, so enter
1848	 * ESTABLISHED state and continue processing.
1849	 * The ACK was checked above.
1850	 */
1851	case TCPS_SYN_RECEIVED:
1852
1853		tcpstat.tcps_connects++;
1854		soisconnected(so);
1855		/* Do window scaling? */
1856		if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
1857			(TF_RCVD_SCALE|TF_REQ_SCALE)) {
1858			tp->rcv_scale = tp->request_r_scale;
1859			tp->snd_wnd = tiwin;
1860		}
1861		/*
1862		 * Make transitions:
1863		 *      SYN-RECEIVED  -> ESTABLISHED
1864		 *      SYN-RECEIVED* -> FIN-WAIT-1
1865		 */
1866		tp->t_starttime = ticks;
1867		if (tp->t_flags & TF_NEEDFIN) {
1868			tp->t_state = TCPS_FIN_WAIT_1;
1869			tp->t_flags &= ~TF_NEEDFIN;
1870		} else {
1871			tp->t_state = TCPS_ESTABLISHED;
1872			callout_reset(tp->tt_keep, tcp_keepidle,
1873				      tcp_timer_keep, tp);
1874		}
1875		/*
1876		 * If segment contains data or ACK, will call tcp_reass()
1877		 * later; if not, do so now to pass queued data to user.
1878		 */
1879		if (tlen == 0 && (thflags & TH_FIN) == 0)
1880			(void) tcp_reass(tp, (struct tcphdr *)0, 0,
1881			    (struct mbuf *)0);
1882		tp->snd_wl1 = th->th_seq - 1;
1883		/* FALLTHROUGH */
1884
1885	/*
1886	 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
1887	 * ACKs.  If the ack is in the range
1888	 *	tp->snd_una < th->th_ack <= tp->snd_max
1889	 * then advance tp->snd_una to th->th_ack and drop
1890	 * data from the retransmission queue.  If this ACK reflects
1891	 * more up to date window information we update our window information.
1892	 */
1893	case TCPS_ESTABLISHED:
1894	case TCPS_FIN_WAIT_1:
1895	case TCPS_FIN_WAIT_2:
1896	case TCPS_CLOSE_WAIT:
1897	case TCPS_CLOSING:
1898	case TCPS_LAST_ACK:
1899	case TCPS_TIME_WAIT:
1900		KASSERT(tp->t_state != TCPS_TIME_WAIT, ("%s: timewait",
1901		    __func__));
1902		if (SEQ_GT(th->th_ack, tp->snd_max)) {
1903			tcpstat.tcps_rcvacktoomuch++;
1904			goto dropafterack;
1905		}
1906		if (tp->sack_enable &&
1907		    ((to.to_flags & TOF_SACK) ||
1908		     !TAILQ_EMPTY(&tp->snd_holes)))
1909			tcp_sack_doack(tp, &to, th->th_ack);
1910		if (SEQ_LEQ(th->th_ack, tp->snd_una)) {
1911			if (tlen == 0 && tiwin == tp->snd_wnd) {
1912				tcpstat.tcps_rcvdupack++;
1913				/*
1914				 * If we have outstanding data (other than
1915				 * a window probe), this is a completely
1916				 * duplicate ack (ie, window info didn't
1917				 * change), the ack is the biggest we've
1918				 * seen and we've seen exactly our rexmt
1919				 * threshhold of them, assume a packet
1920				 * has been dropped and retransmit it.
1921				 * Kludge snd_nxt & the congestion
1922				 * window so we send only this one
1923				 * packet.
1924				 *
1925				 * We know we're losing at the current
1926				 * window size so do congestion avoidance
1927				 * (set ssthresh to half the current window
1928				 * and pull our congestion window back to
1929				 * the new ssthresh).
1930				 *
1931				 * Dup acks mean that packets have left the
1932				 * network (they're now cached at the receiver)
1933				 * so bump cwnd by the amount in the receiver
1934				 * to keep a constant cwnd packets in the
1935				 * network.
1936				 */
1937				if (!callout_active(tp->tt_rexmt) ||
1938				    th->th_ack != tp->snd_una)
1939					tp->t_dupacks = 0;
1940				else if (++tp->t_dupacks > tcprexmtthresh ||
1941				    ((tcp_do_newreno || tp->sack_enable) &&
1942				     IN_FASTRECOVERY(tp))) {
1943					if (tp->sack_enable && IN_FASTRECOVERY(tp)) {
1944						int awnd;
1945
1946						/*
1947						 * Compute the amount of data in flight first.
1948						 * We can inject new data into the pipe iff
1949						 * we have less than 1/2 the original window's
1950						 * worth of data in flight.
1951						 */
1952						awnd = (tp->snd_nxt - tp->snd_fack) +
1953							tp->sackhint.sack_bytes_rexmit;
1954						if (awnd < tp->snd_ssthresh) {
1955							tp->snd_cwnd += tp->t_maxseg;
1956							if (tp->snd_cwnd > tp->snd_ssthresh)
1957								tp->snd_cwnd = tp->snd_ssthresh;
1958						}
1959					} else
1960						tp->snd_cwnd += tp->t_maxseg;
1961					(void) tcp_output(tp);
1962					goto drop;
1963				} else if (tp->t_dupacks == tcprexmtthresh) {
1964					tcp_seq onxt = tp->snd_nxt;
1965					u_int win;
1966
1967					/*
1968					 * If we're doing sack, check to
1969					 * see if we're already in sack
1970					 * recovery. If we're not doing sack,
1971					 * check to see if we're in newreno
1972					 * recovery.
1973					 */
1974					if (tp->sack_enable) {
1975						if (IN_FASTRECOVERY(tp)) {
1976							tp->t_dupacks = 0;
1977							break;
1978						}
1979					} else if (tcp_do_newreno) {
1980						if (SEQ_LEQ(th->th_ack,
1981						    tp->snd_recover)) {
1982							tp->t_dupacks = 0;
1983							break;
1984						}
1985					}
1986					win = min(tp->snd_wnd, tp->snd_cwnd) /
1987					    2 / tp->t_maxseg;
1988					if (win < 2)
1989						win = 2;
1990					tp->snd_ssthresh = win * tp->t_maxseg;
1991					ENTER_FASTRECOVERY(tp);
1992					tp->snd_recover = tp->snd_max;
1993					callout_stop(tp->tt_rexmt);
1994					tp->t_rtttime = 0;
1995					if (tp->sack_enable) {
1996						tcpstat.tcps_sack_recovery_episode++;
1997						tp->sack_newdata = tp->snd_nxt;
1998						tp->snd_cwnd = tp->t_maxseg;
1999						(void) tcp_output(tp);
2000						goto drop;
2001					}
2002					tp->snd_nxt = th->th_ack;
2003					tp->snd_cwnd = tp->t_maxseg;
2004					(void) tcp_output(tp);
2005					KASSERT(tp->snd_limited <= 2,
2006					    ("%s: tp->snd_limited too big",
2007					    __func__));
2008					tp->snd_cwnd = tp->snd_ssthresh +
2009					     tp->t_maxseg *
2010					     (tp->t_dupacks - tp->snd_limited);
2011					if (SEQ_GT(onxt, tp->snd_nxt))
2012						tp->snd_nxt = onxt;
2013					goto drop;
2014				} else if (tcp_do_rfc3042) {
2015					u_long oldcwnd = tp->snd_cwnd;
2016					tcp_seq oldsndmax = tp->snd_max;
2017					u_int sent;
2018
2019					KASSERT(tp->t_dupacks == 1 ||
2020					    tp->t_dupacks == 2,
2021					    ("%s: dupacks not 1 or 2",
2022					    __func__));
2023					if (tp->t_dupacks == 1)
2024						tp->snd_limited = 0;
2025					tp->snd_cwnd =
2026					    (tp->snd_nxt - tp->snd_una) +
2027					    (tp->t_dupacks - tp->snd_limited) *
2028					    tp->t_maxseg;
2029					(void) tcp_output(tp);
2030					sent = tp->snd_max - oldsndmax;
2031					if (sent > tp->t_maxseg) {
2032						KASSERT((tp->t_dupacks == 2 &&
2033						    tp->snd_limited == 0) ||
2034						   (sent == tp->t_maxseg + 1 &&
2035						    tp->t_flags & TF_SENTFIN),
2036						    ("%s: sent too much",
2037						    __func__));
2038						tp->snd_limited = 2;
2039					} else if (sent > 0)
2040						++tp->snd_limited;
2041					tp->snd_cwnd = oldcwnd;
2042					goto drop;
2043				}
2044			} else
2045				tp->t_dupacks = 0;
2046			break;
2047		}
2048
2049		KASSERT(SEQ_GT(th->th_ack, tp->snd_una),
2050		    ("%s: th_ack <= snd_una", __func__));
2051
2052		/*
2053		 * If the congestion window was inflated to account
2054		 * for the other side's cached packets, retract it.
2055		 */
2056		if (tcp_do_newreno || tp->sack_enable) {
2057			if (IN_FASTRECOVERY(tp)) {
2058				if (SEQ_LT(th->th_ack, tp->snd_recover)) {
2059					if (tp->sack_enable)
2060						tcp_sack_partialack(tp, th);
2061					else
2062						tcp_newreno_partial_ack(tp, th);
2063				} else {
2064					/*
2065					 * Out of fast recovery.
2066					 * Window inflation should have left us
2067					 * with approximately snd_ssthresh
2068					 * outstanding data.
2069					 * But in case we would be inclined to
2070					 * send a burst, better to do it via
2071					 * the slow start mechanism.
2072					 */
2073					if (SEQ_GT(th->th_ack +
2074							tp->snd_ssthresh,
2075						   tp->snd_max))
2076						tp->snd_cwnd = tp->snd_max -
2077								th->th_ack +
2078								tp->t_maxseg;
2079					else
2080						tp->snd_cwnd = tp->snd_ssthresh;
2081				}
2082			}
2083		} else {
2084			if (tp->t_dupacks >= tcprexmtthresh &&
2085			    tp->snd_cwnd > tp->snd_ssthresh)
2086				tp->snd_cwnd = tp->snd_ssthresh;
2087		}
2088		tp->t_dupacks = 0;
2089		/*
2090		 * If we reach this point, ACK is not a duplicate,
2091		 *     i.e., it ACKs something we sent.
2092		 */
2093		if (tp->t_flags & TF_NEEDSYN) {
2094			/*
2095			 * T/TCP: Connection was half-synchronized, and our
2096			 * SYN has been ACK'd (so connection is now fully
2097			 * synchronized).  Go to non-starred state,
2098			 * increment snd_una for ACK of SYN, and check if
2099			 * we can do window scaling.
2100			 */
2101			tp->t_flags &= ~TF_NEEDSYN;
2102			tp->snd_una++;
2103			/* Do window scaling? */
2104			if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
2105				(TF_RCVD_SCALE|TF_REQ_SCALE)) {
2106				tp->rcv_scale = tp->request_r_scale;
2107				/* Send window already scaled. */
2108			}
2109		}
2110
2111process_ACK:
2112		KASSERT(headlocked, ("%s: process_ACK: head not locked",
2113		    __func__));
2114		INP_LOCK_ASSERT(tp->t_inpcb);
2115
2116		acked = th->th_ack - tp->snd_una;
2117		tcpstat.tcps_rcvackpack++;
2118		tcpstat.tcps_rcvackbyte += acked;
2119
2120		/*
2121		 * If we just performed our first retransmit, and the ACK
2122		 * arrives within our recovery window, then it was a mistake
2123		 * to do the retransmit in the first place.  Recover our
2124		 * original cwnd and ssthresh, and proceed to transmit where
2125		 * we left off.
2126		 */
2127		if (tp->t_rxtshift == 1 && ticks < tp->t_badrxtwin) {
2128			++tcpstat.tcps_sndrexmitbad;
2129			tp->snd_cwnd = tp->snd_cwnd_prev;
2130			tp->snd_ssthresh = tp->snd_ssthresh_prev;
2131			tp->snd_recover = tp->snd_recover_prev;
2132			if (tp->t_flags & TF_WASFRECOVERY)
2133				ENTER_FASTRECOVERY(tp);
2134			tp->snd_nxt = tp->snd_max;
2135			tp->t_badrxtwin = 0;	/* XXX probably not required */
2136		}
2137
2138		/*
2139		 * If we have a timestamp reply, update smoothed
2140		 * round trip time.  If no timestamp is present but
2141		 * transmit timer is running and timed sequence
2142		 * number was acked, update smoothed round trip time.
2143		 * Since we now have an rtt measurement, cancel the
2144		 * timer backoff (cf., Phil Karn's retransmit alg.).
2145		 * Recompute the initial retransmit timer.
2146		 *
2147		 * Some boxes send broken timestamp replies
2148		 * during the SYN+ACK phase, ignore
2149		 * timestamps of 0 or we could calculate a
2150		 * huge RTT and blow up the retransmit timer.
2151		 */
2152		if ((to.to_flags & TOF_TS) != 0 &&
2153		    to.to_tsecr) {
2154			if (!tp->t_rttlow || tp->t_rttlow > ticks - to.to_tsecr)
2155				tp->t_rttlow = ticks - to.to_tsecr;
2156			tcp_xmit_timer(tp, ticks - to.to_tsecr + 1);
2157		} else if (tp->t_rtttime && SEQ_GT(th->th_ack, tp->t_rtseq)) {
2158			if (!tp->t_rttlow || tp->t_rttlow > ticks - tp->t_rtttime)
2159				tp->t_rttlow = ticks - tp->t_rtttime;
2160			tcp_xmit_timer(tp, ticks - tp->t_rtttime);
2161		}
2162		tcp_xmit_bandwidth_limit(tp, th->th_ack);
2163
2164		/*
2165		 * If all outstanding data is acked, stop retransmit
2166		 * timer and remember to restart (more output or persist).
2167		 * If there is more data to be acked, restart retransmit
2168		 * timer, using current (possibly backed-off) value.
2169		 */
2170		if (th->th_ack == tp->snd_max) {
2171			callout_stop(tp->tt_rexmt);
2172			needoutput = 1;
2173		} else if (!callout_active(tp->tt_persist))
2174			callout_reset(tp->tt_rexmt, tp->t_rxtcur,
2175				      tcp_timer_rexmt, tp);
2176
2177		/*
2178		 * If no data (only SYN) was ACK'd,
2179		 *    skip rest of ACK processing.
2180		 */
2181		if (acked == 0)
2182			goto step6;
2183
2184		/*
2185		 * When new data is acked, open the congestion window.
2186		 * If the window gives us less than ssthresh packets
2187		 * in flight, open exponentially (maxseg per packet).
2188		 * Otherwise open linearly: maxseg per window
2189		 * (maxseg^2 / cwnd per packet).
2190		 */
2191		if ((!tcp_do_newreno && !tp->sack_enable) ||
2192		    !IN_FASTRECOVERY(tp)) {
2193			u_int cw = tp->snd_cwnd;
2194			u_int incr = tp->t_maxseg;
2195			if (cw > tp->snd_ssthresh)
2196				incr = incr * incr / cw;
2197			tp->snd_cwnd = min(cw+incr, TCP_MAXWIN<<tp->snd_scale);
2198		}
2199		SOCKBUF_LOCK(&so->so_snd);
2200		if (acked > so->so_snd.sb_cc) {
2201			tp->snd_wnd -= so->so_snd.sb_cc;
2202			sbdrop_locked(&so->so_snd, (int)so->so_snd.sb_cc);
2203			ourfinisacked = 1;
2204		} else {
2205			sbdrop_locked(&so->so_snd, acked);
2206			tp->snd_wnd -= acked;
2207			ourfinisacked = 0;
2208		}
2209		sowwakeup_locked(so);
2210		/* detect una wraparound */
2211		if ((tcp_do_newreno || tp->sack_enable) &&
2212		    !IN_FASTRECOVERY(tp) &&
2213		    SEQ_GT(tp->snd_una, tp->snd_recover) &&
2214		    SEQ_LEQ(th->th_ack, tp->snd_recover))
2215			tp->snd_recover = th->th_ack - 1;
2216		if ((tcp_do_newreno || tp->sack_enable) &&
2217		    IN_FASTRECOVERY(tp) &&
2218		    SEQ_GEQ(th->th_ack, tp->snd_recover))
2219			EXIT_FASTRECOVERY(tp);
2220		tp->snd_una = th->th_ack;
2221		if (tp->sack_enable) {
2222			if (SEQ_GT(tp->snd_una, tp->snd_recover))
2223				tp->snd_recover = tp->snd_una;
2224		}
2225		if (SEQ_LT(tp->snd_nxt, tp->snd_una))
2226			tp->snd_nxt = tp->snd_una;
2227
2228		switch (tp->t_state) {
2229
2230		/*
2231		 * In FIN_WAIT_1 STATE in addition to the processing
2232		 * for the ESTABLISHED state if our FIN is now acknowledged
2233		 * then enter FIN_WAIT_2.
2234		 */
2235		case TCPS_FIN_WAIT_1:
2236			if (ourfinisacked) {
2237				/*
2238				 * If we can't receive any more
2239				 * data, then closing user can proceed.
2240				 * Starting the timer is contrary to the
2241				 * specification, but if we don't get a FIN
2242				 * we'll hang forever.
2243				 */
2244		/* XXXjl
2245		 * we should release the tp also, and use a
2246		 * compressed state.
2247		 */
2248				if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
2249					int timeout;
2250
2251					soisdisconnected(so);
2252					timeout = (tcp_fast_finwait2_recycle) ?
2253						tcp_finwait2_timeout : tcp_maxidle;
2254					callout_reset(tp->tt_2msl, timeout,
2255						      tcp_timer_2msl, tp);
2256				}
2257				tp->t_state = TCPS_FIN_WAIT_2;
2258			}
2259			break;
2260
2261		/*
2262		 * In CLOSING STATE in addition to the processing for
2263		 * the ESTABLISHED state if the ACK acknowledges our FIN
2264		 * then enter the TIME-WAIT state, otherwise ignore
2265		 * the segment.
2266		 */
2267		case TCPS_CLOSING:
2268			if (ourfinisacked) {
2269				KASSERT(headlocked, ("%s: process_ACK: "
2270				    "head not locked", __func__));
2271				tcp_twstart(tp);
2272				INP_INFO_WUNLOCK(&tcbinfo);
2273				headlocked = 0;
2274				m_freem(m);
2275				return (0);
2276			}
2277			break;
2278
2279		/*
2280		 * In LAST_ACK, we may still be waiting for data to drain
2281		 * and/or to be acked, as well as for the ack of our FIN.
2282		 * If our FIN is now acknowledged, delete the TCB,
2283		 * enter the closed state and return.
2284		 */
2285		case TCPS_LAST_ACK:
2286			if (ourfinisacked) {
2287				KASSERT(headlocked, ("%s: process_ACK: "
2288				    "tcp_close: head not locked", __func__));
2289				tp = tcp_close(tp);
2290				goto drop;
2291			}
2292			break;
2293
2294		/*
2295		 * In TIME_WAIT state the only thing that should arrive
2296		 * is a retransmission of the remote FIN.  Acknowledge
2297		 * it and restart the finack timer.
2298		 */
2299		case TCPS_TIME_WAIT:
2300			KASSERT(tp->t_state != TCPS_TIME_WAIT,
2301			    ("%s: timewait", __func__));
2302			callout_reset(tp->tt_2msl, 2 * tcp_msl,
2303				      tcp_timer_2msl, tp);
2304			goto dropafterack;
2305		}
2306	}
2307
2308step6:
2309	KASSERT(headlocked, ("%s: step6: head not locked", __func__));
2310	INP_LOCK_ASSERT(tp->t_inpcb);
2311
2312	/*
2313	 * Update window information.
2314	 * Don't look at window if no ACK: TAC's send garbage on first SYN.
2315	 */
2316	if ((thflags & TH_ACK) &&
2317	    (SEQ_LT(tp->snd_wl1, th->th_seq) ||
2318	    (tp->snd_wl1 == th->th_seq && (SEQ_LT(tp->snd_wl2, th->th_ack) ||
2319	     (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))))) {
2320		/* keep track of pure window updates */
2321		if (tlen == 0 &&
2322		    tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)
2323			tcpstat.tcps_rcvwinupd++;
2324		tp->snd_wnd = tiwin;
2325		tp->snd_wl1 = th->th_seq;
2326		tp->snd_wl2 = th->th_ack;
2327		if (tp->snd_wnd > tp->max_sndwnd)
2328			tp->max_sndwnd = tp->snd_wnd;
2329		needoutput = 1;
2330	}
2331
2332	/*
2333	 * Process segments with URG.
2334	 */
2335	if ((thflags & TH_URG) && th->th_urp &&
2336	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2337		/*
2338		 * This is a kludge, but if we receive and accept
2339		 * random urgent pointers, we'll crash in
2340		 * soreceive.  It's hard to imagine someone
2341		 * actually wanting to send this much urgent data.
2342		 */
2343		SOCKBUF_LOCK(&so->so_rcv);
2344		if (th->th_urp + so->so_rcv.sb_cc > sb_max) {
2345			th->th_urp = 0;			/* XXX */
2346			thflags &= ~TH_URG;		/* XXX */
2347			SOCKBUF_UNLOCK(&so->so_rcv);	/* XXX */
2348			goto dodata;			/* XXX */
2349		}
2350		/*
2351		 * If this segment advances the known urgent pointer,
2352		 * then mark the data stream.  This should not happen
2353		 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
2354		 * a FIN has been received from the remote side.
2355		 * In these states we ignore the URG.
2356		 *
2357		 * According to RFC961 (Assigned Protocols),
2358		 * the urgent pointer points to the last octet
2359		 * of urgent data.  We continue, however,
2360		 * to consider it to indicate the first octet
2361		 * of data past the urgent section as the original
2362		 * spec states (in one of two places).
2363		 */
2364		if (SEQ_GT(th->th_seq+th->th_urp, tp->rcv_up)) {
2365			tp->rcv_up = th->th_seq + th->th_urp;
2366			so->so_oobmark = so->so_rcv.sb_cc +
2367			    (tp->rcv_up - tp->rcv_nxt) - 1;
2368			if (so->so_oobmark == 0)
2369				so->so_rcv.sb_state |= SBS_RCVATMARK;
2370			sohasoutofband(so);
2371			tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
2372		}
2373		SOCKBUF_UNLOCK(&so->so_rcv);
2374		/*
2375		 * Remove out of band data so doesn't get presented to user.
2376		 * This can happen independent of advancing the URG pointer,
2377		 * but if two URG's are pending at once, some out-of-band
2378		 * data may creep in... ick.
2379		 */
2380		if (th->th_urp <= (u_long)tlen &&
2381		    !(so->so_options & SO_OOBINLINE)) {
2382			/* hdr drop is delayed */
2383			tcp_pulloutofband(so, th, m, drop_hdrlen);
2384		}
2385	} else {
2386		/*
2387		 * If no out of band data is expected,
2388		 * pull receive urgent pointer along
2389		 * with the receive window.
2390		 */
2391		if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
2392			tp->rcv_up = tp->rcv_nxt;
2393	}
2394dodata:							/* XXX */
2395	KASSERT(headlocked, ("%s: dodata: head not locked", __func__));
2396	INP_LOCK_ASSERT(tp->t_inpcb);
2397
2398	/*
2399	 * Process the segment text, merging it into the TCP sequencing queue,
2400	 * and arranging for acknowledgment of receipt if necessary.
2401	 * This process logically involves adjusting tp->rcv_wnd as data
2402	 * is presented to the user (this happens in tcp_usrreq.c,
2403	 * case PRU_RCVD).  If a FIN has already been received on this
2404	 * connection then we just ignore the text.
2405	 */
2406	if ((tlen || (thflags & TH_FIN)) &&
2407	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2408		tcp_seq save_start = th->th_seq;
2409		tcp_seq save_end = th->th_seq + tlen;
2410		m_adj(m, drop_hdrlen);	/* delayed header drop */
2411		/*
2412		 * Insert segment which includes th into TCP reassembly queue
2413		 * with control block tp.  Set thflags to whether reassembly now
2414		 * includes a segment with FIN.  This handles the common case
2415		 * inline (segment is the next to be received on an established
2416		 * connection, and the queue is empty), avoiding linkage into
2417		 * and removal from the queue and repetition of various
2418		 * conversions.
2419		 * Set DELACK for segments received in order, but ack
2420		 * immediately when segments are out of order (so
2421		 * fast retransmit can work).
2422		 */
2423		if (th->th_seq == tp->rcv_nxt &&
2424		    LIST_EMPTY(&tp->t_segq) &&
2425		    TCPS_HAVEESTABLISHED(tp->t_state)) {
2426			if (DELAY_ACK(tp))
2427				tp->t_flags |= TF_DELACK;
2428			else
2429				tp->t_flags |= TF_ACKNOW;
2430			tp->rcv_nxt += tlen;
2431			thflags = th->th_flags & TH_FIN;
2432			tcpstat.tcps_rcvpack++;
2433			tcpstat.tcps_rcvbyte += tlen;
2434			ND6_HINT(tp);
2435			SOCKBUF_LOCK(&so->so_rcv);
2436			if (so->so_rcv.sb_state & SBS_CANTRCVMORE)
2437				m_freem(m);
2438			else
2439				sbappendstream_locked(&so->so_rcv, m);
2440			sorwakeup_locked(so);
2441		} else {
2442			thflags = tcp_reass(tp, th, &tlen, m);
2443			tp->t_flags |= TF_ACKNOW;
2444		}
2445		if (tlen > 0 && tp->sack_enable)
2446			tcp_update_sack_list(tp, save_start, save_end);
2447#if 0
2448		/*
2449		 * Note the amount of data that peer has sent into
2450		 * our window, in order to estimate the sender's
2451		 * buffer size.
2452		 * XXX: Unused.
2453		 */
2454		len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
2455#endif
2456	} else {
2457		m_freem(m);
2458		thflags &= ~TH_FIN;
2459	}
2460
2461	/*
2462	 * If FIN is received ACK the FIN and let the user know
2463	 * that the connection is closing.
2464	 */
2465	if (thflags & TH_FIN) {
2466		if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2467			socantrcvmore(so);
2468			/*
2469			 * If connection is half-synchronized
2470			 * (ie NEEDSYN flag on) then delay ACK,
2471			 * so it may be piggybacked when SYN is sent.
2472			 * Otherwise, since we received a FIN then no
2473			 * more input can be expected, send ACK now.
2474			 */
2475			if (tp->t_flags & TF_NEEDSYN)
2476				tp->t_flags |= TF_DELACK;
2477			else
2478				tp->t_flags |= TF_ACKNOW;
2479			tp->rcv_nxt++;
2480		}
2481		switch (tp->t_state) {
2482
2483		/*
2484		 * In SYN_RECEIVED and ESTABLISHED STATES
2485		 * enter the CLOSE_WAIT state.
2486		 */
2487		case TCPS_SYN_RECEIVED:
2488			tp->t_starttime = ticks;
2489			/*FALLTHROUGH*/
2490		case TCPS_ESTABLISHED:
2491			tp->t_state = TCPS_CLOSE_WAIT;
2492			break;
2493
2494		/*
2495		 * If still in FIN_WAIT_1 STATE FIN has not been acked so
2496		 * enter the CLOSING state.
2497		 */
2498		case TCPS_FIN_WAIT_1:
2499			tp->t_state = TCPS_CLOSING;
2500			break;
2501
2502		/*
2503		 * In FIN_WAIT_2 state enter the TIME_WAIT state,
2504		 * starting the time-wait timer, turning off the other
2505		 * standard timers.
2506		 */
2507		case TCPS_FIN_WAIT_2:
2508			KASSERT(headlocked == 1, ("%s: dodata: "
2509			    "TCP_FIN_WAIT_2: head not locked", __func__));
2510			tcp_twstart(tp);
2511			INP_INFO_WUNLOCK(&tcbinfo);
2512			return (0);
2513
2514		/*
2515		 * In TIME_WAIT state restart the 2 MSL time_wait timer.
2516		 */
2517		case TCPS_TIME_WAIT:
2518			KASSERT(tp->t_state != TCPS_TIME_WAIT,
2519			    ("%s: timewait", __func__));
2520			callout_reset(tp->tt_2msl, 2 * tcp_msl,
2521				      tcp_timer_2msl, tp);
2522			break;
2523		}
2524	}
2525	INP_INFO_WUNLOCK(&tcbinfo);
2526	headlocked = 0;
2527#ifdef TCPDEBUG
2528	if (so->so_options & SO_DEBUG)
2529		tcp_trace(TA_INPUT, ostate, tp, (void *)tcp_saveipgen,
2530			  &tcp_savetcp, 0);
2531#endif
2532
2533	/*
2534	 * Return any desired output.
2535	 */
2536	if (needoutput || (tp->t_flags & TF_ACKNOW))
2537		(void) tcp_output(tp);
2538
2539check_delack:
2540	KASSERT(headlocked == 0, ("%s: check_delack: head locked",
2541	    __func__));
2542	INP_LOCK_ASSERT(tp->t_inpcb);
2543	if (tp->t_flags & TF_DELACK) {
2544		tp->t_flags &= ~TF_DELACK;
2545		callout_reset(tp->tt_delack, tcp_delacktime,
2546		    tcp_timer_delack, tp);
2547	}
2548	INP_UNLOCK(tp->t_inpcb);
2549	return (0);
2550
2551dropafterack:
2552	KASSERT(headlocked, ("%s: dropafterack: head not locked", __func__));
2553	/*
2554	 * Generate an ACK dropping incoming segment if it occupies
2555	 * sequence space, where the ACK reflects our state.
2556	 *
2557	 * We can now skip the test for the RST flag since all
2558	 * paths to this code happen after packets containing
2559	 * RST have been dropped.
2560	 *
2561	 * In the SYN-RECEIVED state, don't send an ACK unless the
2562	 * segment we received passes the SYN-RECEIVED ACK test.
2563	 * If it fails send a RST.  This breaks the loop in the
2564	 * "LAND" DoS attack, and also prevents an ACK storm
2565	 * between two listening ports that have been sent forged
2566	 * SYN segments, each with the source address of the other.
2567	 */
2568	if (tp->t_state == TCPS_SYN_RECEIVED && (thflags & TH_ACK) &&
2569	    (SEQ_GT(tp->snd_una, th->th_ack) ||
2570	     SEQ_GT(th->th_ack, tp->snd_max)) ) {
2571		rstreason = BANDLIM_RST_OPENPORT;
2572		goto dropwithreset;
2573	}
2574#ifdef TCPDEBUG
2575	if (so->so_options & SO_DEBUG)
2576		tcp_trace(TA_DROP, ostate, tp, (void *)tcp_saveipgen,
2577			  &tcp_savetcp, 0);
2578#endif
2579	KASSERT(headlocked, ("%s: headlocked should be 1", __func__));
2580	INP_INFO_WUNLOCK(&tcbinfo);
2581	tp->t_flags |= TF_ACKNOW;
2582	(void) tcp_output(tp);
2583	INP_UNLOCK(tp->t_inpcb);
2584	m_freem(m);
2585	return (0);
2586
2587dropwithreset:
2588	KASSERT(headlocked, ("%s: dropwithreset: head not locked", __func__));
2589
2590	tcp_dropwithreset(m, th, tp, tlen, rstreason);
2591
2592	if (tp != NULL)
2593		INP_UNLOCK(tp->t_inpcb);
2594	if (headlocked)
2595		INP_INFO_WUNLOCK(&tcbinfo);
2596	return (0);
2597
2598drop:
2599	/*
2600	 * Drop space held by incoming segment and return.
2601	 */
2602#ifdef TCPDEBUG
2603	if (tp == NULL || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
2604		tcp_trace(TA_DROP, ostate, tp, (void *)tcp_saveipgen,
2605			  &tcp_savetcp, 0);
2606#endif
2607	if (tp != NULL)
2608		INP_UNLOCK(tp->t_inpcb);
2609	if (headlocked)
2610		INP_INFO_WUNLOCK(&tcbinfo);
2611	m_freem(m);
2612	return (0);
2613}
2614
2615
2616/*
2617 * Issue RST on TCP segment.  The mbuf must still include the original
2618 * packet header.
2619 */
2620static void
2621tcp_dropwithreset(struct mbuf *m, struct tcphdr *th, struct tcpcb *tp,
2622    int tlen, int rstreason)
2623{
2624	struct ip *ip;
2625#ifdef INET6
2626	struct ip6_hdr *ip6;
2627#endif
2628
2629	/*
2630	 * Generate a RST, dropping incoming segment.
2631	 * Make ACK acceptable to originator of segment.
2632	 * Don't bother to respond if destination was broadcast/multicast.
2633	 */
2634	if ((th->th_flags & TH_RST) || m->m_flags & (M_BCAST|M_MCAST))
2635		goto drop;
2636#ifdef INET6
2637	if (mtod(m, struct ip *)->ip_v == 6) {
2638		ip6 = mtod(m, struct ip6_hdr *);
2639		if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) ||
2640		    IN6_IS_ADDR_MULTICAST(&ip6->ip6_src))
2641			goto drop;
2642		/* IPv6 anycast check is done at tcp6_input() */
2643	} else
2644#endif
2645	{
2646		ip = mtod(m, struct ip *);
2647		if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
2648		    IN_MULTICAST(ntohl(ip->ip_src.s_addr)) ||
2649		    ip->ip_src.s_addr == htonl(INADDR_BROADCAST) ||
2650		    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
2651			goto drop;
2652	}
2653
2654	/* Perform bandwidth limiting. */
2655	if (badport_bandlim(rstreason) < 0)
2656		goto drop;
2657
2658	/* tcp_respond consumes the mbuf chain. */
2659	if (th->th_flags & TH_ACK) {
2660		tcp_respond(tp, mtod(m, void *), th, m, (tcp_seq)0,
2661		    th->th_ack, TH_RST);
2662	} else {
2663		if (th->th_flags & TH_SYN)
2664			tlen++;
2665		tcp_respond(tp, mtod(m, void *), th, m, th->th_seq+tlen,
2666		    (tcp_seq)0, TH_RST|TH_ACK);
2667	}
2668	return;
2669drop:
2670	m_freem(m);
2671	return;
2672}
2673
2674/*
2675 * Parse TCP options and place in tcpopt.
2676 */
2677static void
2678tcp_dooptions(struct tcpopt *to, u_char *cp, int cnt, int flags)
2679{
2680	int opt, optlen;
2681
2682	to->to_flags = 0;
2683	for (; cnt > 0; cnt -= optlen, cp += optlen) {
2684		opt = cp[0];
2685		if (opt == TCPOPT_EOL)
2686			break;
2687		if (opt == TCPOPT_NOP)
2688			optlen = 1;
2689		else {
2690			if (cnt < 2)
2691				break;
2692			optlen = cp[1];
2693			if (optlen < 2 || optlen > cnt)
2694				break;
2695		}
2696		switch (opt) {
2697		case TCPOPT_MAXSEG:
2698			if (optlen != TCPOLEN_MAXSEG)
2699				continue;
2700			if (!(flags & TO_SYN))
2701				continue;
2702			to->to_flags |= TOF_MSS;
2703			bcopy((char *)cp + 2,
2704			    (char *)&to->to_mss, sizeof(to->to_mss));
2705			to->to_mss = ntohs(to->to_mss);
2706			break;
2707		case TCPOPT_WINDOW:
2708			if (optlen != TCPOLEN_WINDOW)
2709				continue;
2710			if (!(flags & TO_SYN))
2711				continue;
2712			to->to_flags |= TOF_SCALE;
2713			to->to_wscale = min(cp[2], TCP_MAX_WINSHIFT);
2714			break;
2715		case TCPOPT_TIMESTAMP:
2716			if (optlen != TCPOLEN_TIMESTAMP)
2717				continue;
2718			to->to_flags |= TOF_TS;
2719			bcopy((char *)cp + 2,
2720			    (char *)&to->to_tsval, sizeof(to->to_tsval));
2721			to->to_tsval = ntohl(to->to_tsval);
2722			bcopy((char *)cp + 6,
2723			    (char *)&to->to_tsecr, sizeof(to->to_tsecr));
2724			to->to_tsecr = ntohl(to->to_tsecr);
2725			break;
2726#ifdef TCP_SIGNATURE
2727		/*
2728		 * XXX In order to reply to a host which has set the
2729		 * TCP_SIGNATURE option in its initial SYN, we have to
2730		 * record the fact that the option was observed here
2731		 * for the syncache code to perform the correct response.
2732		 */
2733		case TCPOPT_SIGNATURE:
2734			if (optlen != TCPOLEN_SIGNATURE)
2735				continue;
2736			to->to_flags |= (TOF_SIGNATURE | TOF_SIGLEN);
2737			break;
2738#endif
2739		case TCPOPT_SACK_PERMITTED:
2740			if (optlen != TCPOLEN_SACK_PERMITTED)
2741				continue;
2742			if (!(flags & TO_SYN))
2743				continue;
2744			if (!tcp_do_sack)
2745				continue;
2746			to->to_flags |= TOF_SACKPERM;
2747			break;
2748		case TCPOPT_SACK:
2749			if (optlen <= 2 || (optlen - 2) % TCPOLEN_SACK != 0)
2750				continue;
2751			to->to_flags |= TOF_SACK;
2752			to->to_nsacks = (optlen - 2) / TCPOLEN_SACK;
2753			to->to_sacks = cp + 2;
2754			tcpstat.tcps_sack_rcv_blocks++;
2755			break;
2756		default:
2757			continue;
2758		}
2759	}
2760}
2761
2762/*
2763 * Pull out of band byte out of a segment so
2764 * it doesn't appear in the user's data queue.
2765 * It is still reflected in the segment length for
2766 * sequencing purposes.
2767 */
2768static void
2769tcp_pulloutofband(struct socket *so, struct tcphdr *th, struct mbuf *m,
2770    int off)
2771{
2772	int cnt = off + th->th_urp - 1;
2773
2774	while (cnt >= 0) {
2775		if (m->m_len > cnt) {
2776			char *cp = mtod(m, caddr_t) + cnt;
2777			struct tcpcb *tp = sototcpcb(so);
2778
2779			tp->t_iobc = *cp;
2780			tp->t_oobflags |= TCPOOB_HAVEDATA;
2781			bcopy(cp+1, cp, (unsigned)(m->m_len - cnt - 1));
2782			m->m_len--;
2783			if (m->m_flags & M_PKTHDR)
2784				m->m_pkthdr.len--;
2785			return;
2786		}
2787		cnt -= m->m_len;
2788		m = m->m_next;
2789		if (m == NULL)
2790			break;
2791	}
2792	panic("tcp_pulloutofband");
2793}
2794
2795/*
2796 * Collect new round-trip time estimate
2797 * and update averages and current timeout.
2798 */
2799static void
2800tcp_xmit_timer(struct tcpcb *tp, int rtt)
2801{
2802	int delta;
2803
2804	INP_LOCK_ASSERT(tp->t_inpcb);
2805
2806	tcpstat.tcps_rttupdated++;
2807	tp->t_rttupdated++;
2808	if (tp->t_srtt != 0) {
2809		/*
2810		 * srtt is stored as fixed point with 5 bits after the
2811		 * binary point (i.e., scaled by 8).  The following magic
2812		 * is equivalent to the smoothing algorithm in rfc793 with
2813		 * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed
2814		 * point).  Adjust rtt to origin 0.
2815		 */
2816		delta = ((rtt - 1) << TCP_DELTA_SHIFT)
2817			- (tp->t_srtt >> (TCP_RTT_SHIFT - TCP_DELTA_SHIFT));
2818
2819		if ((tp->t_srtt += delta) <= 0)
2820			tp->t_srtt = 1;
2821
2822		/*
2823		 * We accumulate a smoothed rtt variance (actually, a
2824		 * smoothed mean difference), then set the retransmit
2825		 * timer to smoothed rtt + 4 times the smoothed variance.
2826		 * rttvar is stored as fixed point with 4 bits after the
2827		 * binary point (scaled by 16).  The following is
2828		 * equivalent to rfc793 smoothing with an alpha of .75
2829		 * (rttvar = rttvar*3/4 + |delta| / 4).  This replaces
2830		 * rfc793's wired-in beta.
2831		 */
2832		if (delta < 0)
2833			delta = -delta;
2834		delta -= tp->t_rttvar >> (TCP_RTTVAR_SHIFT - TCP_DELTA_SHIFT);
2835		if ((tp->t_rttvar += delta) <= 0)
2836			tp->t_rttvar = 1;
2837		if (tp->t_rttbest > tp->t_srtt + tp->t_rttvar)
2838		    tp->t_rttbest = tp->t_srtt + tp->t_rttvar;
2839	} else {
2840		/*
2841		 * No rtt measurement yet - use the unsmoothed rtt.
2842		 * Set the variance to half the rtt (so our first
2843		 * retransmit happens at 3*rtt).
2844		 */
2845		tp->t_srtt = rtt << TCP_RTT_SHIFT;
2846		tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT - 1);
2847		tp->t_rttbest = tp->t_srtt + tp->t_rttvar;
2848	}
2849	tp->t_rtttime = 0;
2850	tp->t_rxtshift = 0;
2851
2852	/*
2853	 * the retransmit should happen at rtt + 4 * rttvar.
2854	 * Because of the way we do the smoothing, srtt and rttvar
2855	 * will each average +1/2 tick of bias.  When we compute
2856	 * the retransmit timer, we want 1/2 tick of rounding and
2857	 * 1 extra tick because of +-1/2 tick uncertainty in the
2858	 * firing of the timer.  The bias will give us exactly the
2859	 * 1.5 tick we need.  But, because the bias is
2860	 * statistical, we have to test that we don't drop below
2861	 * the minimum feasible timer (which is 2 ticks).
2862	 */
2863	TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
2864		      max(tp->t_rttmin, rtt + 2), TCPTV_REXMTMAX);
2865
2866	/*
2867	 * We received an ack for a packet that wasn't retransmitted;
2868	 * it is probably safe to discard any error indications we've
2869	 * received recently.  This isn't quite right, but close enough
2870	 * for now (a route might have failed after we sent a segment,
2871	 * and the return path might not be symmetrical).
2872	 */
2873	tp->t_softerror = 0;
2874}
2875
2876/*
2877 * Determine a reasonable value for maxseg size.
2878 * If the route is known, check route for mtu.
2879 * If none, use an mss that can be handled on the outgoing
2880 * interface without forcing IP to fragment; if bigger than
2881 * an mbuf cluster (MCLBYTES), round down to nearest multiple of MCLBYTES
2882 * to utilize large mbufs.  If no route is found, route has no mtu,
2883 * or the destination isn't local, use a default, hopefully conservative
2884 * size (usually 512 or the default IP max size, but no more than the mtu
2885 * of the interface), as we can't discover anything about intervening
2886 * gateways or networks.  We also initialize the congestion/slow start
2887 * window to be a single segment if the destination isn't local.
2888 * While looking at the routing entry, we also initialize other path-dependent
2889 * parameters from pre-set or cached values in the routing entry.
2890 *
2891 * Also take into account the space needed for options that we
2892 * send regularly.  Make maxseg shorter by that amount to assure
2893 * that we can send maxseg amount of data even when the options
2894 * are present.  Store the upper limit of the length of options plus
2895 * data in maxopd.
2896 *
2897 *
2898 * In case of T/TCP, we call this routine during implicit connection
2899 * setup as well (offer = -1), to initialize maxseg from the cached
2900 * MSS of our peer.
2901 *
2902 * NOTE that this routine is only called when we process an incoming
2903 * segment. Outgoing SYN/ACK MSS settings are handled in tcp_mssopt().
2904 */
2905void
2906tcp_mss(struct tcpcb *tp, int offer)
2907{
2908	int rtt, mss;
2909	u_long bufsize;
2910	u_long maxmtu;
2911	struct inpcb *inp = tp->t_inpcb;
2912	struct socket *so;
2913	struct hc_metrics_lite metrics;
2914	int origoffer = offer;
2915	int mtuflags = 0;
2916#ifdef INET6
2917	int isipv6 = ((inp->inp_vflag & INP_IPV6) != 0) ? 1 : 0;
2918	size_t min_protoh = isipv6 ?
2919			    sizeof (struct ip6_hdr) + sizeof (struct tcphdr) :
2920			    sizeof (struct tcpiphdr);
2921#else
2922	const size_t min_protoh = sizeof(struct tcpiphdr);
2923#endif
2924
2925	/* initialize */
2926#ifdef INET6
2927	if (isipv6) {
2928		maxmtu = tcp_maxmtu6(&inp->inp_inc, &mtuflags);
2929		tp->t_maxopd = tp->t_maxseg = tcp_v6mssdflt;
2930	} else
2931#endif
2932	{
2933		maxmtu = tcp_maxmtu(&inp->inp_inc, &mtuflags);
2934		tp->t_maxopd = tp->t_maxseg = tcp_mssdflt;
2935	}
2936	so = inp->inp_socket;
2937
2938	/*
2939	 * no route to sender, stay with default mss and return
2940	 */
2941	if (maxmtu == 0)
2942		return;
2943
2944	/* what have we got? */
2945	switch (offer) {
2946		case 0:
2947			/*
2948			 * Offer == 0 means that there was no MSS on the SYN
2949			 * segment, in this case we use tcp_mssdflt.
2950			 */
2951			offer =
2952#ifdef INET6
2953				isipv6 ? tcp_v6mssdflt :
2954#endif
2955				tcp_mssdflt;
2956			break;
2957
2958		case -1:
2959			/*
2960			 * Offer == -1 means that we didn't receive SYN yet.
2961			 */
2962			/* FALLTHROUGH */
2963
2964		default:
2965			/*
2966			 * Prevent DoS attack with too small MSS. Round up
2967			 * to at least minmss.
2968			 */
2969			offer = max(offer, tcp_minmss);
2970			/*
2971			 * Sanity check: make sure that maxopd will be large
2972			 * enough to allow some data on segments even if the
2973			 * all the option space is used (40bytes).  Otherwise
2974			 * funny things may happen in tcp_output.
2975			 */
2976			offer = max(offer, 64);
2977	}
2978
2979	/*
2980	 * rmx information is now retrieved from tcp_hostcache
2981	 */
2982	tcp_hc_get(&inp->inp_inc, &metrics);
2983
2984	/*
2985	 * if there's a discovered mtu int tcp hostcache, use it
2986	 * else, use the link mtu.
2987	 */
2988	if (metrics.rmx_mtu)
2989		mss = min(metrics.rmx_mtu, maxmtu) - min_protoh;
2990	else {
2991#ifdef INET6
2992		if (isipv6) {
2993			mss = maxmtu - min_protoh;
2994			if (!path_mtu_discovery &&
2995			    !in6_localaddr(&inp->in6p_faddr))
2996				mss = min(mss, tcp_v6mssdflt);
2997		} else
2998#endif
2999		{
3000			mss = maxmtu - min_protoh;
3001			if (!path_mtu_discovery &&
3002			    !in_localaddr(inp->inp_faddr))
3003				mss = min(mss, tcp_mssdflt);
3004		}
3005	}
3006	mss = min(mss, offer);
3007
3008	/*
3009	 * maxopd stores the maximum length of data AND options
3010	 * in a segment; maxseg is the amount of data in a normal
3011	 * segment.  We need to store this value (maxopd) apart
3012	 * from maxseg, because now every segment carries options
3013	 * and thus we normally have somewhat less data in segments.
3014	 */
3015	tp->t_maxopd = mss;
3016
3017	/*
3018	 * origoffer==-1 indicates, that no segments were received yet.
3019	 * In this case we just guess.
3020	 */
3021	if ((tp->t_flags & (TF_REQ_TSTMP|TF_NOOPT)) == TF_REQ_TSTMP &&
3022	    (origoffer == -1 ||
3023	     (tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP))
3024		mss -= TCPOLEN_TSTAMP_APPA;
3025	tp->t_maxseg = mss;
3026
3027#if	(MCLBYTES & (MCLBYTES - 1)) == 0
3028		if (mss > MCLBYTES)
3029			mss &= ~(MCLBYTES-1);
3030#else
3031		if (mss > MCLBYTES)
3032			mss = mss / MCLBYTES * MCLBYTES;
3033#endif
3034	tp->t_maxseg = mss;
3035
3036	/*
3037	 * If there's a pipesize, change the socket buffer to that size,
3038	 * don't change if sb_hiwat is different than default (then it
3039	 * has been changed on purpose with setsockopt).
3040	 * Make the socket buffers an integral number of mss units;
3041	 * if the mss is larger than the socket buffer, decrease the mss.
3042	 */
3043	SOCKBUF_LOCK(&so->so_snd);
3044	if ((so->so_snd.sb_hiwat == tcp_sendspace) && metrics.rmx_sendpipe)
3045		bufsize = metrics.rmx_sendpipe;
3046	else
3047		bufsize = so->so_snd.sb_hiwat;
3048	if (bufsize < mss)
3049		mss = bufsize;
3050	else {
3051		bufsize = roundup(bufsize, mss);
3052		if (bufsize > sb_max)
3053			bufsize = sb_max;
3054		if (bufsize > so->so_snd.sb_hiwat)
3055			(void)sbreserve_locked(&so->so_snd, bufsize, so, NULL);
3056	}
3057	SOCKBUF_UNLOCK(&so->so_snd);
3058	tp->t_maxseg = mss;
3059
3060	SOCKBUF_LOCK(&so->so_rcv);
3061	if ((so->so_rcv.sb_hiwat == tcp_recvspace) && metrics.rmx_recvpipe)
3062		bufsize = metrics.rmx_recvpipe;
3063	else
3064		bufsize = so->so_rcv.sb_hiwat;
3065	if (bufsize > mss) {
3066		bufsize = roundup(bufsize, mss);
3067		if (bufsize > sb_max)
3068			bufsize = sb_max;
3069		if (bufsize > so->so_rcv.sb_hiwat)
3070			(void)sbreserve_locked(&so->so_rcv, bufsize, so, NULL);
3071	}
3072	SOCKBUF_UNLOCK(&so->so_rcv);
3073	/*
3074	 * While we're here, check the others too
3075	 */
3076	if (tp->t_srtt == 0 && (rtt = metrics.rmx_rtt)) {
3077		tp->t_srtt = rtt;
3078		tp->t_rttbest = tp->t_srtt + TCP_RTT_SCALE;
3079		tcpstat.tcps_usedrtt++;
3080		if (metrics.rmx_rttvar) {
3081			tp->t_rttvar = metrics.rmx_rttvar;
3082			tcpstat.tcps_usedrttvar++;
3083		} else {
3084			/* default variation is +- 1 rtt */
3085			tp->t_rttvar =
3086			    tp->t_srtt * TCP_RTTVAR_SCALE / TCP_RTT_SCALE;
3087		}
3088		TCPT_RANGESET(tp->t_rxtcur,
3089			      ((tp->t_srtt >> 2) + tp->t_rttvar) >> 1,
3090			      tp->t_rttmin, TCPTV_REXMTMAX);
3091	}
3092	if (metrics.rmx_ssthresh) {
3093		/*
3094		 * There's some sort of gateway or interface
3095		 * buffer limit on the path.  Use this to set
3096		 * the slow start threshhold, but set the
3097		 * threshold to no less than 2*mss.
3098		 */
3099		tp->snd_ssthresh = max(2 * mss, metrics.rmx_ssthresh);
3100		tcpstat.tcps_usedssthresh++;
3101	}
3102	if (metrics.rmx_bandwidth)
3103		tp->snd_bandwidth = metrics.rmx_bandwidth;
3104
3105	/*
3106	 * Set the slow-start flight size depending on whether this
3107	 * is a local network or not.
3108	 *
3109	 * Extend this so we cache the cwnd too and retrieve it here.
3110	 * Make cwnd even bigger than RFC3390 suggests but only if we
3111	 * have previous experience with the remote host. Be careful
3112	 * not make cwnd bigger than remote receive window or our own
3113	 * send socket buffer. Maybe put some additional upper bound
3114	 * on the retrieved cwnd. Should do incremental updates to
3115	 * hostcache when cwnd collapses so next connection doesn't
3116	 * overloads the path again.
3117	 *
3118	 * RFC3390 says only do this if SYN or SYN/ACK didn't got lost.
3119	 * We currently check only in syncache_socket for that.
3120	 */
3121#define TCP_METRICS_CWND
3122#ifdef TCP_METRICS_CWND
3123	if (metrics.rmx_cwnd)
3124		tp->snd_cwnd = max(mss,
3125				min(metrics.rmx_cwnd / 2,
3126				 min(tp->snd_wnd, so->so_snd.sb_hiwat)));
3127	else
3128#endif
3129	if (tcp_do_rfc3390)
3130		tp->snd_cwnd = min(4 * mss, max(2 * mss, 4380));
3131#ifdef INET6
3132	else if ((isipv6 && in6_localaddr(&inp->in6p_faddr)) ||
3133		 (!isipv6 && in_localaddr(inp->inp_faddr)))
3134#else
3135	else if (in_localaddr(inp->inp_faddr))
3136#endif
3137		tp->snd_cwnd = mss * ss_fltsz_local;
3138	else
3139		tp->snd_cwnd = mss * ss_fltsz;
3140
3141	/* Check the interface for TSO capabilities. */
3142	if (mtuflags & CSUM_TSO)
3143		tp->t_flags |= TF_TSO;
3144}
3145
3146/*
3147 * Determine the MSS option to send on an outgoing SYN.
3148 */
3149int
3150tcp_mssopt(struct in_conninfo *inc)
3151{
3152	int mss = 0;
3153	u_long maxmtu = 0;
3154	u_long thcmtu = 0;
3155	size_t min_protoh;
3156#ifdef INET6
3157	int isipv6 = inc->inc_isipv6 ? 1 : 0;
3158#endif
3159
3160	KASSERT(inc != NULL, ("tcp_mssopt with NULL in_conninfo pointer"));
3161
3162#ifdef INET6
3163	if (isipv6) {
3164		mss = tcp_v6mssdflt;
3165		maxmtu = tcp_maxmtu6(inc, NULL);
3166		thcmtu = tcp_hc_getmtu(inc); /* IPv4 and IPv6 */
3167		min_protoh = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
3168	} else
3169#endif
3170	{
3171		mss = tcp_mssdflt;
3172		maxmtu = tcp_maxmtu(inc, NULL);
3173		thcmtu = tcp_hc_getmtu(inc); /* IPv4 and IPv6 */
3174		min_protoh = sizeof(struct tcpiphdr);
3175	}
3176	if (maxmtu && thcmtu)
3177		mss = min(maxmtu, thcmtu) - min_protoh;
3178	else if (maxmtu || thcmtu)
3179		mss = max(maxmtu, thcmtu) - min_protoh;
3180
3181	return (mss);
3182}
3183
3184
3185/*
3186 * On a partial ack arrives, force the retransmission of the
3187 * next unacknowledged segment.  Do not clear tp->t_dupacks.
3188 * By setting snd_nxt to ti_ack, this forces retransmission timer to
3189 * be started again.
3190 */
3191static void
3192tcp_newreno_partial_ack(struct tcpcb *tp, struct tcphdr *th)
3193{
3194	tcp_seq onxt = tp->snd_nxt;
3195	u_long  ocwnd = tp->snd_cwnd;
3196
3197	callout_stop(tp->tt_rexmt);
3198	tp->t_rtttime = 0;
3199	tp->snd_nxt = th->th_ack;
3200	/*
3201	 * Set snd_cwnd to one segment beyond acknowledged offset.
3202	 * (tp->snd_una has not yet been updated when this function is called.)
3203	 */
3204	tp->snd_cwnd = tp->t_maxseg + (th->th_ack - tp->snd_una);
3205	tp->t_flags |= TF_ACKNOW;
3206	(void) tcp_output(tp);
3207	tp->snd_cwnd = ocwnd;
3208	if (SEQ_GT(onxt, tp->snd_nxt))
3209		tp->snd_nxt = onxt;
3210	/*
3211	 * Partial window deflation.  Relies on fact that tp->snd_una
3212	 * not updated yet.
3213	 */
3214	if (tp->snd_cwnd > th->th_ack - tp->snd_una)
3215		tp->snd_cwnd -= th->th_ack - tp->snd_una;
3216	else
3217		tp->snd_cwnd = 0;
3218	tp->snd_cwnd += tp->t_maxseg;
3219}
3220
3221/*
3222 * Returns 1 if the TIME_WAIT state was killed and we should start over,
3223 * looking for a pcb in the listen state.  Returns 0 otherwise.
3224 */
3225static int
3226tcp_timewait(struct inpcb *inp, struct tcpopt *to, struct tcphdr *th,
3227    struct mbuf *m, int tlen)
3228{
3229	struct tcptw *tw;
3230	int thflags;
3231	tcp_seq seq;
3232#ifdef INET6
3233	int isipv6 = (mtod(m, struct ip *)->ip_v == 6) ? 1 : 0;
3234#else
3235	const int isipv6 = 0;
3236#endif
3237
3238	/* tcbinfo lock required for tcp_twclose(), tcp_timer_2msl_reset(). */
3239	INP_INFO_WLOCK_ASSERT(&tcbinfo);
3240	INP_LOCK_ASSERT(inp);
3241
3242	/*
3243	 * XXXRW: Time wait state for inpcb has been recycled, but inpcb is
3244	 * still present.  This is undesirable, but temporarily necessary
3245	 * until we work out how to handle inpcb's who's timewait state has
3246	 * been removed.
3247	 */
3248	tw = intotw(inp);
3249	if (tw == NULL)
3250		goto drop;
3251
3252	thflags = th->th_flags;
3253
3254	/*
3255	 * NOTE: for FIN_WAIT_2 (to be added later),
3256	 * must validate sequence number before accepting RST
3257	 */
3258
3259	/*
3260	 * If the segment contains RST:
3261	 *	Drop the segment - see Stevens, vol. 2, p. 964 and
3262	 *      RFC 1337.
3263	 */
3264	if (thflags & TH_RST)
3265		goto drop;
3266
3267#if 0
3268/* PAWS not needed at the moment */
3269	/*
3270	 * RFC 1323 PAWS: If we have a timestamp reply on this segment
3271	 * and it's less than ts_recent, drop it.
3272	 */
3273	if ((to.to_flags & TOF_TS) != 0 && tp->ts_recent &&
3274	    TSTMP_LT(to.to_tsval, tp->ts_recent)) {
3275		if ((thflags & TH_ACK) == 0)
3276			goto drop;
3277		goto ack;
3278	}
3279	/*
3280	 * ts_recent is never updated because we never accept new segments.
3281	 */
3282#endif
3283
3284	/*
3285	 * If a new connection request is received
3286	 * while in TIME_WAIT, drop the old connection
3287	 * and start over if the sequence numbers
3288	 * are above the previous ones.
3289	 */
3290	if ((thflags & TH_SYN) && SEQ_GT(th->th_seq, tw->rcv_nxt)) {
3291		tcp_twclose(tw, 0);
3292		return (1);
3293	}
3294
3295	/*
3296	 * Drop the the segment if it does not contain an ACK.
3297	 */
3298	if ((thflags & TH_ACK) == 0)
3299		goto drop;
3300
3301	/*
3302	 * Reset the 2MSL timer if this is a duplicate FIN.
3303	 */
3304	if (thflags & TH_FIN) {
3305		seq = th->th_seq + tlen + (thflags & TH_SYN ? 1 : 0);
3306		if (seq + 1 == tw->rcv_nxt)
3307			tcp_timer_2msl_reset(tw, 1);
3308	}
3309
3310	/*
3311	 * Acknowledge the segment if it has data or is not a duplicate ACK.
3312	 */
3313	if (thflags != TH_ACK || tlen != 0 ||
3314	    th->th_seq != tw->rcv_nxt || th->th_ack != tw->snd_nxt)
3315		tcp_twrespond(tw, TH_ACK);
3316	goto drop;
3317
3318	/*
3319	 * Generate a RST, dropping incoming segment.
3320	 * Make ACK acceptable to originator of segment.
3321	 * Don't bother to respond if destination was broadcast/multicast.
3322	 */
3323	if (m->m_flags & (M_BCAST|M_MCAST))
3324		goto drop;
3325	if (isipv6) {
3326		struct ip6_hdr *ip6;
3327
3328		/* IPv6 anycast check is done at tcp6_input() */
3329		ip6 = mtod(m, struct ip6_hdr *);
3330		if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) ||
3331		    IN6_IS_ADDR_MULTICAST(&ip6->ip6_src))
3332			goto drop;
3333	} else {
3334		struct ip *ip;
3335
3336		ip = mtod(m, struct ip *);
3337		if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
3338		    IN_MULTICAST(ntohl(ip->ip_src.s_addr)) ||
3339		    ip->ip_src.s_addr == htonl(INADDR_BROADCAST) ||
3340		    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
3341			goto drop;
3342	}
3343	if (thflags & TH_ACK) {
3344		tcp_respond(NULL,
3345		    mtod(m, void *), th, m, 0, th->th_ack, TH_RST);
3346	} else {
3347		seq = th->th_seq + (thflags & TH_SYN ? 1 : 0);
3348		tcp_respond(NULL,
3349		    mtod(m, void *), th, m, seq, 0, TH_RST|TH_ACK);
3350	}
3351	INP_UNLOCK(inp);
3352	return (0);
3353
3354drop:
3355	INP_UNLOCK(inp);
3356	m_freem(m);
3357	return (0);
3358}
3359