tcp_input.c revision 155819
1/*-
2 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 4. Neither the name of the University nor the names of its contributors
14 *    may be used to endorse or promote products derived from this software
15 *    without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 *
29 *	@(#)tcp_input.c	8.12 (Berkeley) 5/24/95
30 * $FreeBSD: head/sys/netinet/tcp_input.c 155819 2006-02-18 17:05:00Z andre $
31 */
32
33#include "opt_ipfw.h"		/* for ipfw_fwd		*/
34#include "opt_inet.h"
35#include "opt_inet6.h"
36#include "opt_ipsec.h"
37#include "opt_mac.h"
38#include "opt_tcpdebug.h"
39#include "opt_tcp_input.h"
40#include "opt_tcp_sack.h"
41
42#include <sys/param.h>
43#include <sys/kernel.h>
44#include <sys/mac.h>
45#include <sys/malloc.h>
46#include <sys/mbuf.h>
47#include <sys/proc.h>		/* for proc0 declaration */
48#include <sys/protosw.h>
49#include <sys/signalvar.h>
50#include <sys/socket.h>
51#include <sys/socketvar.h>
52#include <sys/sysctl.h>
53#include <sys/syslog.h>
54#include <sys/systm.h>
55
56#include <machine/cpu.h>	/* before tcp_seq.h, for tcp_random18() */
57
58#include <vm/uma.h>
59
60#include <net/if.h>
61#include <net/route.h>
62
63#include <netinet/in.h>
64#include <netinet/in_pcb.h>
65#include <netinet/in_systm.h>
66#include <netinet/in_var.h>
67#include <netinet/ip.h>
68#include <netinet/ip_icmp.h>	/* required for icmp_var.h */
69#include <netinet/icmp_var.h>	/* for ICMP_BANDLIM */
70#include <netinet/ip_var.h>
71#include <netinet/ip_options.h>
72#include <netinet/ip6.h>
73#include <netinet/icmp6.h>
74#include <netinet6/in6_pcb.h>
75#include <netinet6/ip6_var.h>
76#include <netinet6/nd6.h>
77#include <netinet/tcp.h>
78#include <netinet/tcp_fsm.h>
79#include <netinet/tcp_seq.h>
80#include <netinet/tcp_timer.h>
81#include <netinet/tcp_var.h>
82#include <netinet6/tcp6_var.h>
83#include <netinet/tcpip.h>
84#ifdef TCPDEBUG
85#include <netinet/tcp_debug.h>
86#endif /* TCPDEBUG */
87
88#ifdef FAST_IPSEC
89#include <netipsec/ipsec.h>
90#include <netipsec/ipsec6.h>
91#endif /*FAST_IPSEC*/
92
93#ifdef IPSEC
94#include <netinet6/ipsec.h>
95#include <netinet6/ipsec6.h>
96#include <netkey/key.h>
97#endif /*IPSEC*/
98
99#include <machine/in_cksum.h>
100
101static const int tcprexmtthresh = 3;
102
103struct	tcpstat tcpstat;
104SYSCTL_STRUCT(_net_inet_tcp, TCPCTL_STATS, stats, CTLFLAG_RW,
105    &tcpstat , tcpstat, "TCP statistics (struct tcpstat, netinet/tcp_var.h)");
106
107static int log_in_vain = 0;
108SYSCTL_INT(_net_inet_tcp, OID_AUTO, log_in_vain, CTLFLAG_RW,
109    &log_in_vain, 0, "Log all incoming TCP connections");
110
111static int blackhole = 0;
112SYSCTL_INT(_net_inet_tcp, OID_AUTO, blackhole, CTLFLAG_RW,
113	&blackhole, 0, "Do not send RST when dropping refused connections");
114
115int tcp_delack_enabled = 1;
116SYSCTL_INT(_net_inet_tcp, OID_AUTO, delayed_ack, CTLFLAG_RW,
117    &tcp_delack_enabled, 0,
118    "Delay ACK to try and piggyback it onto a data packet");
119
120#ifdef TCP_DROP_SYNFIN
121static int drop_synfin = 0;
122SYSCTL_INT(_net_inet_tcp, OID_AUTO, drop_synfin, CTLFLAG_RW,
123    &drop_synfin, 0, "Drop TCP packets with SYN+FIN set");
124#endif
125
126static int tcp_do_rfc3042 = 1;
127SYSCTL_INT(_net_inet_tcp, OID_AUTO, rfc3042, CTLFLAG_RW,
128    &tcp_do_rfc3042, 0, "Enable RFC 3042 (Limited Transmit)");
129
130static int tcp_do_rfc3390 = 1;
131SYSCTL_INT(_net_inet_tcp, OID_AUTO, rfc3390, CTLFLAG_RW,
132    &tcp_do_rfc3390, 0,
133    "Enable RFC 3390 (Increasing TCP's Initial Congestion Window)");
134
135static int tcp_insecure_rst = 0;
136SYSCTL_INT(_net_inet_tcp, OID_AUTO, insecure_rst, CTLFLAG_RW,
137    &tcp_insecure_rst, 0,
138    "Follow the old (insecure) criteria for accepting RST packets.");
139
140SYSCTL_NODE(_net_inet_tcp, OID_AUTO, reass, CTLFLAG_RW, 0,
141	    "TCP Segment Reassembly Queue");
142
143static int tcp_reass_maxseg = 0;
144SYSCTL_INT(_net_inet_tcp_reass, OID_AUTO, maxsegments, CTLFLAG_RDTUN,
145	   &tcp_reass_maxseg, 0,
146	   "Global maximum number of TCP Segments in Reassembly Queue");
147
148int tcp_reass_qsize = 0;
149SYSCTL_INT(_net_inet_tcp_reass, OID_AUTO, cursegments, CTLFLAG_RD,
150	   &tcp_reass_qsize, 0,
151	   "Global number of TCP Segments currently in Reassembly Queue");
152
153static int tcp_reass_maxqlen = 48;
154SYSCTL_INT(_net_inet_tcp_reass, OID_AUTO, maxqlen, CTLFLAG_RW,
155	   &tcp_reass_maxqlen, 0,
156	   "Maximum number of TCP Segments per individual Reassembly Queue");
157
158static int tcp_reass_overflows = 0;
159SYSCTL_INT(_net_inet_tcp_reass, OID_AUTO, overflows, CTLFLAG_RD,
160	   &tcp_reass_overflows, 0,
161	   "Global number of TCP Segment Reassembly Queue Overflows");
162
163struct inpcbhead tcb;
164#define	tcb6	tcb  /* for KAME src sync over BSD*'s */
165struct inpcbinfo tcbinfo;
166struct mtx	*tcbinfo_mtx;
167
168static void	 tcp_dooptions(struct tcpopt *, u_char *, int, int);
169
170static void	 tcp_pulloutofband(struct socket *,
171		     struct tcphdr *, struct mbuf *, int);
172static int	 tcp_reass(struct tcpcb *, struct tcphdr *, int *,
173		     struct mbuf *);
174static void	 tcp_xmit_timer(struct tcpcb *, int);
175static void	 tcp_newreno_partial_ack(struct tcpcb *, struct tcphdr *);
176static int	 tcp_timewait(struct tcptw *, struct tcpopt *,
177		     struct tcphdr *, struct mbuf *, int);
178
179/* Neighbor Discovery, Neighbor Unreachability Detection Upper layer hint. */
180#ifdef INET6
181#define ND6_HINT(tp) \
182do { \
183	if ((tp) && (tp)->t_inpcb && \
184	    ((tp)->t_inpcb->inp_vflag & INP_IPV6) != 0) \
185		nd6_nud_hint(NULL, NULL, 0); \
186} while (0)
187#else
188#define ND6_HINT(tp)
189#endif
190
191/*
192 * Indicate whether this ack should be delayed.  We can delay the ack if
193 *	- there is no delayed ack timer in progress and
194 *	- our last ack wasn't a 0-sized window.  We never want to delay
195 *	  the ack that opens up a 0-sized window and
196 *		- delayed acks are enabled or
197 *		- this is a half-synchronized T/TCP connection.
198 */
199#define DELAY_ACK(tp)							\
200	((!callout_active(tp->tt_delack) &&				\
201	    (tp->t_flags & TF_RXWIN0SENT) == 0) &&			\
202	    (tcp_delack_enabled || (tp->t_flags & TF_NEEDSYN)))
203
204/* Initialize TCP reassembly queue */
205uma_zone_t	tcp_reass_zone;
206void
207tcp_reass_init()
208{
209	tcp_reass_maxseg = nmbclusters / 16;
210	TUNABLE_INT_FETCH("net.inet.tcp.reass.maxsegments",
211	    &tcp_reass_maxseg);
212	tcp_reass_zone = uma_zcreate("tcpreass", sizeof (struct tseg_qent),
213	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
214	uma_zone_set_max(tcp_reass_zone, tcp_reass_maxseg);
215}
216
217static int
218tcp_reass(tp, th, tlenp, m)
219	register struct tcpcb *tp;
220	register struct tcphdr *th;
221	int *tlenp;
222	struct mbuf *m;
223{
224	struct tseg_qent *q;
225	struct tseg_qent *p = NULL;
226	struct tseg_qent *nq;
227	struct tseg_qent *te = NULL;
228	struct socket *so = tp->t_inpcb->inp_socket;
229	int flags;
230
231	INP_LOCK_ASSERT(tp->t_inpcb);
232
233	/*
234	 * XXX: tcp_reass() is rather inefficient with its data structures
235	 * and should be rewritten (see NetBSD for optimizations).  While
236	 * doing that it should move to its own file tcp_reass.c.
237	 */
238
239	/*
240	 * Call with th==NULL after become established to
241	 * force pre-ESTABLISHED data up to user socket.
242	 */
243	if (th == NULL)
244		goto present;
245
246	/*
247	 * Limit the number of segments in the reassembly queue to prevent
248	 * holding on to too many segments (and thus running out of mbufs).
249	 * Make sure to let the missing segment through which caused this
250	 * queue.  Always keep one global queue entry spare to be able to
251	 * process the missing segment.
252	 */
253	if (th->th_seq != tp->rcv_nxt &&
254	    (tcp_reass_qsize + 1 >= tcp_reass_maxseg ||
255	     tp->t_segqlen >= tcp_reass_maxqlen)) {
256		tcp_reass_overflows++;
257		tcpstat.tcps_rcvmemdrop++;
258		m_freem(m);
259		*tlenp = 0;
260		return (0);
261	}
262
263	/*
264	 * Allocate a new queue entry. If we can't, or hit the zone limit
265	 * just drop the pkt.
266	 */
267	te = uma_zalloc(tcp_reass_zone, M_NOWAIT);
268	if (te == NULL) {
269		tcpstat.tcps_rcvmemdrop++;
270		m_freem(m);
271		*tlenp = 0;
272		return (0);
273	}
274	tp->t_segqlen++;
275	tcp_reass_qsize++;
276
277	/*
278	 * Find a segment which begins after this one does.
279	 */
280	LIST_FOREACH(q, &tp->t_segq, tqe_q) {
281		if (SEQ_GT(q->tqe_th->th_seq, th->th_seq))
282			break;
283		p = q;
284	}
285
286	/*
287	 * If there is a preceding segment, it may provide some of
288	 * our data already.  If so, drop the data from the incoming
289	 * segment.  If it provides all of our data, drop us.
290	 */
291	if (p != NULL) {
292		register int i;
293		/* conversion to int (in i) handles seq wraparound */
294		i = p->tqe_th->th_seq + p->tqe_len - th->th_seq;
295		if (i > 0) {
296			if (i >= *tlenp) {
297				tcpstat.tcps_rcvduppack++;
298				tcpstat.tcps_rcvdupbyte += *tlenp;
299				m_freem(m);
300				uma_zfree(tcp_reass_zone, te);
301				tp->t_segqlen--;
302				tcp_reass_qsize--;
303				/*
304				 * Try to present any queued data
305				 * at the left window edge to the user.
306				 * This is needed after the 3-WHS
307				 * completes.
308				 */
309				goto present;	/* ??? */
310			}
311			m_adj(m, i);
312			*tlenp -= i;
313			th->th_seq += i;
314		}
315	}
316	tcpstat.tcps_rcvoopack++;
317	tcpstat.tcps_rcvoobyte += *tlenp;
318
319	/*
320	 * While we overlap succeeding segments trim them or,
321	 * if they are completely covered, dequeue them.
322	 */
323	while (q) {
324		register int i = (th->th_seq + *tlenp) - q->tqe_th->th_seq;
325		if (i <= 0)
326			break;
327		if (i < q->tqe_len) {
328			q->tqe_th->th_seq += i;
329			q->tqe_len -= i;
330			m_adj(q->tqe_m, i);
331			break;
332		}
333
334		nq = LIST_NEXT(q, tqe_q);
335		LIST_REMOVE(q, tqe_q);
336		m_freem(q->tqe_m);
337		uma_zfree(tcp_reass_zone, q);
338		tp->t_segqlen--;
339		tcp_reass_qsize--;
340		q = nq;
341	}
342
343	/* Insert the new segment queue entry into place. */
344	te->tqe_m = m;
345	te->tqe_th = th;
346	te->tqe_len = *tlenp;
347
348	if (p == NULL) {
349		LIST_INSERT_HEAD(&tp->t_segq, te, tqe_q);
350	} else {
351		LIST_INSERT_AFTER(p, te, tqe_q);
352	}
353
354present:
355	/*
356	 * Present data to user, advancing rcv_nxt through
357	 * completed sequence space.
358	 */
359	if (!TCPS_HAVEESTABLISHED(tp->t_state))
360		return (0);
361	q = LIST_FIRST(&tp->t_segq);
362	if (!q || q->tqe_th->th_seq != tp->rcv_nxt)
363		return (0);
364	SOCKBUF_LOCK(&so->so_rcv);
365	do {
366		tp->rcv_nxt += q->tqe_len;
367		flags = q->tqe_th->th_flags & TH_FIN;
368		nq = LIST_NEXT(q, tqe_q);
369		LIST_REMOVE(q, tqe_q);
370		if (so->so_rcv.sb_state & SBS_CANTRCVMORE)
371			m_freem(q->tqe_m);
372		else
373			sbappendstream_locked(&so->so_rcv, q->tqe_m);
374		uma_zfree(tcp_reass_zone, q);
375		tp->t_segqlen--;
376		tcp_reass_qsize--;
377		q = nq;
378	} while (q && q->tqe_th->th_seq == tp->rcv_nxt);
379	ND6_HINT(tp);
380	sorwakeup_locked(so);
381	return (flags);
382}
383
384/*
385 * TCP input routine, follows pages 65-76 of the
386 * protocol specification dated September, 1981 very closely.
387 */
388#ifdef INET6
389int
390tcp6_input(mp, offp, proto)
391	struct mbuf **mp;
392	int *offp, proto;
393{
394	register struct mbuf *m = *mp;
395	struct in6_ifaddr *ia6;
396
397	IP6_EXTHDR_CHECK(m, *offp, sizeof(struct tcphdr), IPPROTO_DONE);
398
399	/*
400	 * draft-itojun-ipv6-tcp-to-anycast
401	 * better place to put this in?
402	 */
403	ia6 = ip6_getdstifaddr(m);
404	if (ia6 && (ia6->ia6_flags & IN6_IFF_ANYCAST)) {
405		struct ip6_hdr *ip6;
406
407		ip6 = mtod(m, struct ip6_hdr *);
408		icmp6_error(m, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_ADDR,
409			    (caddr_t)&ip6->ip6_dst - (caddr_t)ip6);
410		return IPPROTO_DONE;
411	}
412
413	tcp_input(m, *offp);
414	return IPPROTO_DONE;
415}
416#endif
417
418void
419tcp_input(m, off0)
420	register struct mbuf *m;
421	int off0;
422{
423	register struct tcphdr *th;
424	register struct ip *ip = NULL;
425	register struct ipovly *ipov;
426	register struct inpcb *inp = NULL;
427	u_char *optp = NULL;
428	int optlen = 0;
429	int len, tlen, off;
430	int drop_hdrlen;
431	register struct tcpcb *tp = 0;
432	register int thflags;
433	struct socket *so = 0;
434	int todrop, acked, ourfinisacked, needoutput = 0;
435	u_long tiwin;
436	struct tcpopt to;		/* options in this segment */
437	int headlocked = 0;
438#ifdef IPFIREWALL_FORWARD
439	struct m_tag *fwd_tag;
440#endif
441	int rstreason; /* For badport_bandlim accounting purposes */
442
443	struct ip6_hdr *ip6 = NULL;
444#ifdef INET6
445	int isipv6;
446#else
447	const int isipv6 = 0;
448#endif
449
450#ifdef TCPDEBUG
451	/*
452	 * The size of tcp_saveipgen must be the size of the max ip header,
453	 * now IPv6.
454	 */
455	u_char tcp_saveipgen[40];
456	struct tcphdr tcp_savetcp;
457	short ostate = 0;
458#endif
459
460#ifdef INET6
461	isipv6 = (mtod(m, struct ip *)->ip_v == 6) ? 1 : 0;
462#endif
463	bzero((char *)&to, sizeof(to));
464
465	tcpstat.tcps_rcvtotal++;
466
467	if (isipv6) {
468#ifdef INET6
469		/* IP6_EXTHDR_CHECK() is already done at tcp6_input() */
470		ip6 = mtod(m, struct ip6_hdr *);
471		tlen = sizeof(*ip6) + ntohs(ip6->ip6_plen) - off0;
472		if (in6_cksum(m, IPPROTO_TCP, off0, tlen)) {
473			tcpstat.tcps_rcvbadsum++;
474			goto drop;
475		}
476		th = (struct tcphdr *)((caddr_t)ip6 + off0);
477
478		/*
479		 * Be proactive about unspecified IPv6 address in source.
480		 * As we use all-zero to indicate unbounded/unconnected pcb,
481		 * unspecified IPv6 address can be used to confuse us.
482		 *
483		 * Note that packets with unspecified IPv6 destination is
484		 * already dropped in ip6_input.
485		 */
486		if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) {
487			/* XXX stat */
488			goto drop;
489		}
490#else
491		th = NULL;		/* XXX: avoid compiler warning */
492#endif
493	} else {
494		/*
495		 * Get IP and TCP header together in first mbuf.
496		 * Note: IP leaves IP header in first mbuf.
497		 */
498		if (off0 > sizeof (struct ip)) {
499			ip_stripoptions(m, (struct mbuf *)0);
500			off0 = sizeof(struct ip);
501		}
502		if (m->m_len < sizeof (struct tcpiphdr)) {
503			if ((m = m_pullup(m, sizeof (struct tcpiphdr))) == 0) {
504				tcpstat.tcps_rcvshort++;
505				return;
506			}
507		}
508		ip = mtod(m, struct ip *);
509		ipov = (struct ipovly *)ip;
510		th = (struct tcphdr *)((caddr_t)ip + off0);
511		tlen = ip->ip_len;
512
513		if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) {
514			if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR)
515				th->th_sum = m->m_pkthdr.csum_data;
516			else
517				th->th_sum = in_pseudo(ip->ip_src.s_addr,
518						ip->ip_dst.s_addr,
519						htonl(m->m_pkthdr.csum_data +
520							ip->ip_len +
521							IPPROTO_TCP));
522			th->th_sum ^= 0xffff;
523#ifdef TCPDEBUG
524			ipov->ih_len = (u_short)tlen;
525			ipov->ih_len = htons(ipov->ih_len);
526#endif
527		} else {
528			/*
529			 * Checksum extended TCP header and data.
530			 */
531			len = sizeof (struct ip) + tlen;
532			bzero(ipov->ih_x1, sizeof(ipov->ih_x1));
533			ipov->ih_len = (u_short)tlen;
534			ipov->ih_len = htons(ipov->ih_len);
535			th->th_sum = in_cksum(m, len);
536		}
537		if (th->th_sum) {
538			tcpstat.tcps_rcvbadsum++;
539			goto drop;
540		}
541#ifdef INET6
542		/* Re-initialization for later version check */
543		ip->ip_v = IPVERSION;
544#endif
545	}
546
547	/*
548	 * Check that TCP offset makes sense,
549	 * pull out TCP options and adjust length.		XXX
550	 */
551	off = th->th_off << 2;
552	if (off < sizeof (struct tcphdr) || off > tlen) {
553		tcpstat.tcps_rcvbadoff++;
554		goto drop;
555	}
556	tlen -= off;	/* tlen is used instead of ti->ti_len */
557	if (off > sizeof (struct tcphdr)) {
558		if (isipv6) {
559#ifdef INET6
560			IP6_EXTHDR_CHECK(m, off0, off, );
561			ip6 = mtod(m, struct ip6_hdr *);
562			th = (struct tcphdr *)((caddr_t)ip6 + off0);
563#endif
564		} else {
565			if (m->m_len < sizeof(struct ip) + off) {
566				if ((m = m_pullup(m, sizeof (struct ip) + off))
567						== 0) {
568					tcpstat.tcps_rcvshort++;
569					return;
570				}
571				ip = mtod(m, struct ip *);
572				ipov = (struct ipovly *)ip;
573				th = (struct tcphdr *)((caddr_t)ip + off0);
574			}
575		}
576		optlen = off - sizeof (struct tcphdr);
577		optp = (u_char *)(th + 1);
578	}
579	thflags = th->th_flags;
580
581#ifdef TCP_DROP_SYNFIN
582	/*
583	 * If the drop_synfin option is enabled, drop all packets with
584	 * both the SYN and FIN bits set. This prevents e.g. nmap from
585	 * identifying the TCP/IP stack.
586	 *
587	 * This is a violation of the TCP specification.
588	 */
589	if (drop_synfin && (thflags & (TH_SYN|TH_FIN)) == (TH_SYN|TH_FIN))
590		goto drop;
591#endif
592
593	/*
594	 * Convert TCP protocol specific fields to host format.
595	 */
596	th->th_seq = ntohl(th->th_seq);
597	th->th_ack = ntohl(th->th_ack);
598	th->th_win = ntohs(th->th_win);
599	th->th_urp = ntohs(th->th_urp);
600
601	/*
602	 * Delay dropping TCP, IP headers, IPv6 ext headers, and TCP options,
603	 * until after ip6_savecontrol() is called and before other functions
604	 * which don't want those proto headers.
605	 * Because ip6_savecontrol() is going to parse the mbuf to
606	 * search for data to be passed up to user-land, it wants mbuf
607	 * parameters to be unchanged.
608	 * XXX: the call of ip6_savecontrol() has been obsoleted based on
609	 * latest version of the advanced API (20020110).
610	 */
611	drop_hdrlen = off0 + off;
612
613	/*
614	 * Locate pcb for segment.
615	 */
616	INP_INFO_WLOCK(&tcbinfo);
617	headlocked = 1;
618findpcb:
619	KASSERT(headlocked, ("tcp_input: findpcb: head not locked"));
620#ifdef IPFIREWALL_FORWARD
621	/* Grab info from PACKET_TAG_IPFORWARD tag prepended to the chain. */
622	fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL);
623
624	if (fwd_tag != NULL && isipv6 == 0) {	/* IPv6 support is not yet */
625		struct sockaddr_in *next_hop;
626
627		next_hop = (struct sockaddr_in *)(fwd_tag+1);
628		/*
629		 * Transparently forwarded. Pretend to be the destination.
630		 * already got one like this?
631		 */
632		inp = in_pcblookup_hash(&tcbinfo,
633					ip->ip_src, th->th_sport,
634					ip->ip_dst, th->th_dport,
635					0, m->m_pkthdr.rcvif);
636		if (!inp) {
637			/* It's new.  Try to find the ambushing socket. */
638			inp = in_pcblookup_hash(&tcbinfo,
639						ip->ip_src, th->th_sport,
640						next_hop->sin_addr,
641						next_hop->sin_port ?
642						    ntohs(next_hop->sin_port) :
643						    th->th_dport,
644						1, m->m_pkthdr.rcvif);
645		}
646		/* Remove the tag from the packet.  We don't need it anymore. */
647		m_tag_delete(m, fwd_tag);
648	} else {
649#endif /* IPFIREWALL_FORWARD */
650		if (isipv6) {
651#ifdef INET6
652			inp = in6_pcblookup_hash(&tcbinfo,
653						 &ip6->ip6_src, th->th_sport,
654						 &ip6->ip6_dst, th->th_dport,
655						 1, m->m_pkthdr.rcvif);
656#endif
657		} else
658			inp = in_pcblookup_hash(&tcbinfo,
659						ip->ip_src, th->th_sport,
660						ip->ip_dst, th->th_dport,
661						1, m->m_pkthdr.rcvif);
662#ifdef IPFIREWALL_FORWARD
663	}
664#endif /* IPFIREWALL_FORWARD */
665
666#if defined(IPSEC) || defined(FAST_IPSEC)
667#ifdef INET6
668	if (isipv6) {
669		if (inp != NULL && ipsec6_in_reject(m, inp)) {
670#ifdef IPSEC
671			ipsec6stat.in_polvio++;
672#endif
673			goto drop;
674		}
675	} else
676#endif /* INET6 */
677	if (inp != NULL && ipsec4_in_reject(m, inp)) {
678#ifdef IPSEC
679		ipsecstat.in_polvio++;
680#endif
681		goto drop;
682	}
683#endif /*IPSEC || FAST_IPSEC*/
684
685	/*
686	 * If the state is CLOSED (i.e., TCB does not exist) then
687	 * all data in the incoming segment is discarded.
688	 * If the TCB exists but is in CLOSED state, it is embryonic,
689	 * but should either do a listen or a connect soon.
690	 */
691	if (inp == NULL) {
692		if (log_in_vain) {
693#ifdef INET6
694			char dbuf[INET6_ADDRSTRLEN+2], sbuf[INET6_ADDRSTRLEN+2];
695#else
696			char dbuf[4*sizeof "123"], sbuf[4*sizeof "123"];
697#endif
698
699			if (isipv6) {
700#ifdef INET6
701				strcpy(dbuf, "[");
702				strcpy(sbuf, "[");
703				strcat(dbuf, ip6_sprintf(&ip6->ip6_dst));
704				strcat(sbuf, ip6_sprintf(&ip6->ip6_src));
705				strcat(dbuf, "]");
706				strcat(sbuf, "]");
707#endif
708			} else {
709				strcpy(dbuf, inet_ntoa(ip->ip_dst));
710				strcpy(sbuf, inet_ntoa(ip->ip_src));
711			}
712			switch (log_in_vain) {
713			case 1:
714				if ((thflags & TH_SYN) == 0)
715					break;
716				/* FALLTHROUGH */
717			case 2:
718				log(LOG_INFO,
719				    "Connection attempt to TCP %s:%d "
720				    "from %s:%d flags:0x%02x\n",
721				    dbuf, ntohs(th->th_dport), sbuf,
722				    ntohs(th->th_sport), thflags);
723				break;
724			default:
725				break;
726			}
727		}
728		if (blackhole) {
729			switch (blackhole) {
730			case 1:
731				if (thflags & TH_SYN)
732					goto drop;
733				break;
734			case 2:
735				goto drop;
736			default:
737				goto drop;
738			}
739		}
740		rstreason = BANDLIM_RST_CLOSEDPORT;
741		goto dropwithreset;
742	}
743	INP_LOCK(inp);
744
745	/* Check the minimum TTL for socket. */
746	if (inp->inp_ip_minttl != 0) {
747#ifdef INET6
748		if (isipv6 && inp->inp_ip_minttl > ip6->ip6_hlim)
749			goto drop;
750		else
751#endif
752		if (inp->inp_ip_minttl > ip->ip_ttl)
753			goto drop;
754	}
755
756	if (inp->inp_vflag & INP_TIMEWAIT) {
757		/*
758		 * The only option of relevance is TOF_CC, and only if
759		 * present in a SYN segment.  See tcp_timewait().
760		 */
761		if (thflags & TH_SYN)
762			tcp_dooptions(&to, optp, optlen, 1);
763		if (tcp_timewait((struct tcptw *)inp->inp_ppcb,
764		    &to, th, m, tlen))
765			goto findpcb;
766		/*
767		 * tcp_timewait unlocks inp.
768		 */
769		INP_INFO_WUNLOCK(&tcbinfo);
770		return;
771	}
772	tp = intotcpcb(inp);
773	if (tp == 0) {
774		INP_UNLOCK(inp);
775		rstreason = BANDLIM_RST_CLOSEDPORT;
776		goto dropwithreset;
777	}
778	if (tp->t_state == TCPS_CLOSED)
779		goto drop;
780
781	/* Unscale the window into a 32-bit value. */
782	if ((thflags & TH_SYN) == 0)
783		tiwin = th->th_win << tp->snd_scale;
784	else
785		tiwin = th->th_win;
786
787#ifdef MAC
788	INP_LOCK_ASSERT(inp);
789	if (mac_check_inpcb_deliver(inp, m))
790		goto drop;
791#endif
792	so = inp->inp_socket;
793#ifdef TCPDEBUG
794	if (so->so_options & SO_DEBUG) {
795		ostate = tp->t_state;
796		if (isipv6)
797			bcopy((char *)ip6, (char *)tcp_saveipgen, sizeof(*ip6));
798		else
799			bcopy((char *)ip, (char *)tcp_saveipgen, sizeof(*ip));
800		tcp_savetcp = *th;
801	}
802#endif
803	if (so->so_options & SO_ACCEPTCONN) {
804		struct in_conninfo inc;
805
806#ifdef INET6
807		inc.inc_isipv6 = isipv6;
808#endif
809		if (isipv6) {
810			inc.inc6_faddr = ip6->ip6_src;
811			inc.inc6_laddr = ip6->ip6_dst;
812		} else {
813			inc.inc_faddr = ip->ip_src;
814			inc.inc_laddr = ip->ip_dst;
815		}
816		inc.inc_fport = th->th_sport;
817		inc.inc_lport = th->th_dport;
818
819	        /*
820	         * If the state is LISTEN then ignore segment if it contains
821		 * a RST.  If the segment contains an ACK then it is bad and
822		 * send a RST.  If it does not contain a SYN then it is not
823		 * interesting; drop it.
824		 *
825		 * If the state is SYN_RECEIVED (syncache) and seg contains
826		 * an ACK, but not for our SYN/ACK, send a RST.  If the seg
827		 * contains a RST, check the sequence number to see if it
828		 * is a valid reset segment.
829		 */
830		if ((thflags & (TH_RST|TH_ACK|TH_SYN)) != TH_SYN) {
831			if ((thflags & (TH_RST|TH_ACK|TH_SYN)) == TH_ACK) {
832				if (!syncache_expand(&inc, th, &so, m)) {
833					/*
834					 * No syncache entry, or ACK was not
835					 * for our SYN/ACK.  Send a RST.
836					 */
837					tcpstat.tcps_badsyn++;
838					rstreason = BANDLIM_RST_OPENPORT;
839					goto dropwithreset;
840				}
841				if (so == NULL) {
842					/*
843					 * Could not complete 3-way handshake,
844					 * connection is being closed down, and
845					 * syncache will free mbuf.
846					 */
847					INP_UNLOCK(inp);
848					INP_INFO_WUNLOCK(&tcbinfo);
849					return;
850				}
851				/*
852				 * Socket is created in state SYN_RECEIVED.
853				 * Continue processing segment.
854				 */
855				INP_UNLOCK(inp);
856				inp = sotoinpcb(so);
857				INP_LOCK(inp);
858				tp = intotcpcb(inp);
859				/*
860				 * This is what would have happened in
861				 * tcp_output() when the SYN,ACK was sent.
862				 */
863				tp->snd_up = tp->snd_una;
864				tp->snd_max = tp->snd_nxt = tp->iss + 1;
865				tp->last_ack_sent = tp->rcv_nxt;
866				/*
867				 * RFC1323: The window in SYN & SYN/ACK
868				 * segments is never scaled.
869				 */
870				tp->snd_wnd = tiwin;	/* unscaled */
871				goto after_listen;
872			}
873			if (thflags & TH_RST) {
874				syncache_chkrst(&inc, th);
875				goto drop;
876			}
877			if (thflags & TH_ACK) {
878				syncache_badack(&inc);
879				tcpstat.tcps_badsyn++;
880				rstreason = BANDLIM_RST_OPENPORT;
881				goto dropwithreset;
882			}
883			goto drop;
884		}
885
886		/*
887		 * Segment's flags are (SYN) or (SYN|FIN).
888		 */
889#ifdef INET6
890		/*
891		 * If deprecated address is forbidden,
892		 * we do not accept SYN to deprecated interface
893		 * address to prevent any new inbound connection from
894		 * getting established.
895		 * When we do not accept SYN, we send a TCP RST,
896		 * with deprecated source address (instead of dropping
897		 * it).  We compromise it as it is much better for peer
898		 * to send a RST, and RST will be the final packet
899		 * for the exchange.
900		 *
901		 * If we do not forbid deprecated addresses, we accept
902		 * the SYN packet.  RFC2462 does not suggest dropping
903		 * SYN in this case.
904		 * If we decipher RFC2462 5.5.4, it says like this:
905		 * 1. use of deprecated addr with existing
906		 *    communication is okay - "SHOULD continue to be
907		 *    used"
908		 * 2. use of it with new communication:
909		 *   (2a) "SHOULD NOT be used if alternate address
910		 *        with sufficient scope is available"
911		 *   (2b) nothing mentioned otherwise.
912		 * Here we fall into (2b) case as we have no choice in
913		 * our source address selection - we must obey the peer.
914		 *
915		 * The wording in RFC2462 is confusing, and there are
916		 * multiple description text for deprecated address
917		 * handling - worse, they are not exactly the same.
918		 * I believe 5.5.4 is the best one, so we follow 5.5.4.
919		 */
920		if (isipv6 && !ip6_use_deprecated) {
921			struct in6_ifaddr *ia6;
922
923			if ((ia6 = ip6_getdstifaddr(m)) &&
924			    (ia6->ia6_flags & IN6_IFF_DEPRECATED)) {
925				INP_UNLOCK(inp);
926				tp = NULL;
927				rstreason = BANDLIM_RST_OPENPORT;
928				goto dropwithreset;
929			}
930		}
931#endif
932		/*
933		 * If it is from this socket, drop it, it must be forged.
934		 * Don't bother responding if the destination was a broadcast.
935		 */
936		if (th->th_dport == th->th_sport) {
937			if (isipv6) {
938				if (IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst,
939						       &ip6->ip6_src))
940					goto drop;
941			} else {
942				if (ip->ip_dst.s_addr == ip->ip_src.s_addr)
943					goto drop;
944			}
945		}
946		/*
947		 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
948		 *
949		 * Note that it is quite possible to receive unicast
950		 * link-layer packets with a broadcast IP address. Use
951		 * in_broadcast() to find them.
952		 */
953		if (m->m_flags & (M_BCAST|M_MCAST))
954			goto drop;
955		if (isipv6) {
956			if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) ||
957			    IN6_IS_ADDR_MULTICAST(&ip6->ip6_src))
958				goto drop;
959		} else {
960			if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
961			    IN_MULTICAST(ntohl(ip->ip_src.s_addr)) ||
962			    ip->ip_src.s_addr == htonl(INADDR_BROADCAST) ||
963			    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
964				goto drop;
965		}
966		/*
967		 * SYN appears to be valid; create compressed TCP state
968		 * for syncache, or perform t/tcp connection.
969		 */
970		if (so->so_qlen <= so->so_qlimit) {
971#ifdef TCPDEBUG
972			if (so->so_options & SO_DEBUG)
973				tcp_trace(TA_INPUT, ostate, tp,
974				    (void *)tcp_saveipgen, &tcp_savetcp, 0);
975#endif
976			tcp_dooptions(&to, optp, optlen, 1);
977			if (!syncache_add(&inc, &to, th, &so, m))
978				goto drop;
979			if (so == NULL) {
980				/*
981				 * Entry added to syncache, mbuf used to
982				 * send SYN,ACK packet.
983				 */
984				KASSERT(headlocked, ("headlocked"));
985				INP_UNLOCK(inp);
986				INP_INFO_WUNLOCK(&tcbinfo);
987				return;
988			}
989			/*
990			 * Segment passed TAO tests.
991			 */
992			INP_UNLOCK(inp);
993			inp = sotoinpcb(so);
994			INP_LOCK(inp);
995			tp = intotcpcb(inp);
996			tp->snd_wnd = tiwin;
997			tp->t_starttime = ticks;
998			tp->t_state = TCPS_ESTABLISHED;
999
1000			/*
1001			 * T/TCP logic:
1002			 * If there is a FIN or if there is data, then
1003			 * delay SYN,ACK(SYN) in the hope of piggy-backing
1004			 * it on a response segment.  Otherwise must send
1005			 * ACK now in case the other side is slow starting.
1006			 */
1007			if (thflags & TH_FIN || tlen != 0)
1008				tp->t_flags |= (TF_DELACK | TF_NEEDSYN);
1009			else
1010				tp->t_flags |= (TF_ACKNOW | TF_NEEDSYN);
1011			tcpstat.tcps_connects++;
1012			soisconnected(so);
1013			goto trimthenstep6;
1014		}
1015		goto drop;
1016	}
1017after_listen:
1018	KASSERT(headlocked, ("tcp_input: after_listen: head not locked"));
1019	INP_LOCK_ASSERT(inp);
1020
1021	/* Syncache takes care of sockets in the listen state. */
1022	KASSERT(tp->t_state != TCPS_LISTEN, ("tcp_input: TCPS_LISTEN"));
1023
1024	/*
1025	 * This is the second part of the MSS DoS prevention code (after
1026	 * minmss on the sending side) and it deals with too many too small
1027	 * tcp packets in a too short timeframe (1 second).
1028	 *
1029	 * For every full second we count the number of received packets
1030	 * and bytes. If we get a lot of packets per second for this connection
1031	 * (tcp_minmssoverload) we take a closer look at it and compute the
1032	 * average packet size for the past second. If that is less than
1033	 * tcp_minmss we get too many packets with very small payload which
1034	 * is not good and burdens our system (and every packet generates
1035	 * a wakeup to the process connected to our socket). We can reasonable
1036	 * expect this to be small packet DoS attack to exhaust our CPU
1037	 * cycles.
1038	 *
1039	 * Care has to be taken for the minimum packet overload value. This
1040	 * value defines the minimum number of packets per second before we
1041	 * start to worry. This must not be too low to avoid killing for
1042	 * example interactive connections with many small packets like
1043	 * telnet or SSH.
1044	 *
1045	 * Setting either tcp_minmssoverload or tcp_minmss to "0" disables
1046	 * this check.
1047	 *
1048	 * Account for packet if payload packet, skip over ACK, etc.
1049	 */
1050	if (tcp_minmss && tcp_minmssoverload &&
1051	    tp->t_state == TCPS_ESTABLISHED && tlen > 0) {
1052		if ((unsigned int)(tp->rcv_second - ticks) < hz) {
1053			tp->rcv_pps++;
1054			tp->rcv_byps += tlen + off;
1055			if (tp->rcv_pps > tcp_minmssoverload) {
1056				if ((tp->rcv_byps / tp->rcv_pps) < tcp_minmss) {
1057					printf("too many small tcp packets from "
1058					       "%s:%u, av. %lubyte/packet, "
1059					       "dropping connection\n",
1060#ifdef INET6
1061						isipv6 ?
1062						ip6_sprintf(&inp->inp_inc.inc6_faddr) :
1063#endif
1064						inet_ntoa(inp->inp_inc.inc_faddr),
1065						inp->inp_inc.inc_fport,
1066						tp->rcv_byps / tp->rcv_pps);
1067					KASSERT(headlocked, ("tcp_input: "
1068					    "after_listen: tcp_drop: head "
1069					    "not locked"));
1070					tp = tcp_drop(tp, ECONNRESET);
1071					tcpstat.tcps_minmssdrops++;
1072					goto drop;
1073				}
1074			}
1075		} else {
1076			tp->rcv_second = ticks + hz;
1077			tp->rcv_pps = 1;
1078			tp->rcv_byps = tlen + off;
1079		}
1080	}
1081
1082	/*
1083	 * Segment received on connection.
1084	 * Reset idle time and keep-alive timer.
1085	 */
1086	tp->t_rcvtime = ticks;
1087	if (TCPS_HAVEESTABLISHED(tp->t_state))
1088		callout_reset(tp->tt_keep, tcp_keepidle, tcp_timer_keep, tp);
1089
1090	/*
1091	 * Process options only when we get SYN/ACK back. The SYN case
1092	 * for incoming connections is handled in tcp_syncache.
1093	 * XXX this is traditional behavior, may need to be cleaned up.
1094	 */
1095	tcp_dooptions(&to, optp, optlen, thflags & TH_SYN);
1096	if (tp->t_state == TCPS_SYN_SENT && (thflags & TH_SYN)) {
1097		if (to.to_flags & TOF_SCALE) {
1098			tp->t_flags |= TF_RCVD_SCALE;
1099			tp->requested_s_scale = to.to_requested_s_scale;
1100		}
1101		if (to.to_flags & TOF_TS) {
1102			tp->t_flags |= TF_RCVD_TSTMP;
1103			tp->ts_recent = to.to_tsval;
1104			tp->ts_recent_age = ticks;
1105		}
1106		if (to.to_flags & TOF_MSS)
1107			tcp_mss(tp, to.to_mss);
1108		if (tp->sack_enable) {
1109			if (!(to.to_flags & TOF_SACK))
1110				tp->sack_enable = 0;
1111			else
1112				tp->t_flags |= TF_SACK_PERMIT;
1113		}
1114
1115	}
1116
1117	/*
1118	 * Header prediction: check for the two common cases
1119	 * of a uni-directional data xfer.  If the packet has
1120	 * no control flags, is in-sequence, the window didn't
1121	 * change and we're not retransmitting, it's a
1122	 * candidate.  If the length is zero and the ack moved
1123	 * forward, we're the sender side of the xfer.  Just
1124	 * free the data acked & wake any higher level process
1125	 * that was blocked waiting for space.  If the length
1126	 * is non-zero and the ack didn't move, we're the
1127	 * receiver side.  If we're getting packets in-order
1128	 * (the reassembly queue is empty), add the data to
1129	 * the socket buffer and note that we need a delayed ack.
1130	 * Make sure that the hidden state-flags are also off.
1131	 * Since we check for TCPS_ESTABLISHED above, it can only
1132	 * be TH_NEEDSYN.
1133	 */
1134	if (tp->t_state == TCPS_ESTABLISHED &&
1135	    (thflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK)) == TH_ACK &&
1136	    ((tp->t_flags & (TF_NEEDSYN|TF_NEEDFIN)) == 0) &&
1137	    ((to.to_flags & TOF_TS) == 0 ||
1138	     TSTMP_GEQ(to.to_tsval, tp->ts_recent)) &&
1139	     th->th_seq == tp->rcv_nxt && tiwin && tiwin == tp->snd_wnd &&
1140	     tp->snd_nxt == tp->snd_max) {
1141
1142		/*
1143		 * If last ACK falls within this segment's sequence numbers,
1144		 * record the timestamp.
1145		 * NOTE that the test is modified according to the latest
1146		 * proposal of the tcplw@cray.com list (Braden 1993/04/26).
1147		 */
1148		if ((to.to_flags & TOF_TS) != 0 &&
1149		    SEQ_LEQ(th->th_seq, tp->last_ack_sent)) {
1150			tp->ts_recent_age = ticks;
1151			tp->ts_recent = to.to_tsval;
1152		}
1153
1154		if (tlen == 0) {
1155			if (SEQ_GT(th->th_ack, tp->snd_una) &&
1156			    SEQ_LEQ(th->th_ack, tp->snd_max) &&
1157			    tp->snd_cwnd >= tp->snd_wnd &&
1158			    ((!tcp_do_newreno && !tp->sack_enable &&
1159			      tp->t_dupacks < tcprexmtthresh) ||
1160			     ((tcp_do_newreno || tp->sack_enable) &&
1161			      !IN_FASTRECOVERY(tp) && to.to_nsacks == 0 &&
1162			      TAILQ_EMPTY(&tp->snd_holes)))) {
1163				KASSERT(headlocked, ("headlocked"));
1164				INP_INFO_WUNLOCK(&tcbinfo);
1165				headlocked = 0;
1166				/*
1167				 * this is a pure ack for outstanding data.
1168				 */
1169				++tcpstat.tcps_predack;
1170				/*
1171				 * "bad retransmit" recovery
1172				 */
1173				if (tp->t_rxtshift == 1 &&
1174				    ticks < tp->t_badrxtwin) {
1175					++tcpstat.tcps_sndrexmitbad;
1176					tp->snd_cwnd = tp->snd_cwnd_prev;
1177					tp->snd_ssthresh =
1178					    tp->snd_ssthresh_prev;
1179					tp->snd_recover = tp->snd_recover_prev;
1180					if (tp->t_flags & TF_WASFRECOVERY)
1181					    ENTER_FASTRECOVERY(tp);
1182					tp->snd_nxt = tp->snd_max;
1183					tp->t_badrxtwin = 0;
1184				}
1185
1186				/*
1187				 * Recalculate the transmit timer / rtt.
1188				 *
1189				 * Some boxes send broken timestamp replies
1190				 * during the SYN+ACK phase, ignore
1191				 * timestamps of 0 or we could calculate a
1192				 * huge RTT and blow up the retransmit timer.
1193				 */
1194				if ((to.to_flags & TOF_TS) != 0 &&
1195				    to.to_tsecr) {
1196					if (!tp->t_rttlow ||
1197					    tp->t_rttlow > ticks - to.to_tsecr)
1198						tp->t_rttlow = ticks - to.to_tsecr;
1199					tcp_xmit_timer(tp,
1200					    ticks - to.to_tsecr + 1);
1201				} else if (tp->t_rtttime &&
1202					    SEQ_GT(th->th_ack, tp->t_rtseq)) {
1203					if (!tp->t_rttlow ||
1204					    tp->t_rttlow > ticks - tp->t_rtttime)
1205						tp->t_rttlow = ticks - tp->t_rtttime;
1206					tcp_xmit_timer(tp,
1207							ticks - tp->t_rtttime);
1208				}
1209				tcp_xmit_bandwidth_limit(tp, th->th_ack);
1210				acked = th->th_ack - tp->snd_una;
1211				tcpstat.tcps_rcvackpack++;
1212				tcpstat.tcps_rcvackbyte += acked;
1213				sbdrop(&so->so_snd, acked);
1214				if (SEQ_GT(tp->snd_una, tp->snd_recover) &&
1215				    SEQ_LEQ(th->th_ack, tp->snd_recover))
1216					tp->snd_recover = th->th_ack - 1;
1217				tp->snd_una = th->th_ack;
1218				/*
1219				 * pull snd_wl2 up to prevent seq wrap relative
1220				 * to th_ack.
1221				 */
1222				tp->snd_wl2 = th->th_ack;
1223				tp->t_dupacks = 0;
1224				m_freem(m);
1225				ND6_HINT(tp); /* some progress has been done */
1226
1227				/*
1228				 * If all outstanding data are acked, stop
1229				 * retransmit timer, otherwise restart timer
1230				 * using current (possibly backed-off) value.
1231				 * If process is waiting for space,
1232				 * wakeup/selwakeup/signal.  If data
1233				 * are ready to send, let tcp_output
1234				 * decide between more output or persist.
1235
1236#ifdef TCPDEBUG
1237				if (so->so_options & SO_DEBUG)
1238					tcp_trace(TA_INPUT, ostate, tp,
1239					    (void *)tcp_saveipgen,
1240					    &tcp_savetcp, 0);
1241#endif
1242				 */
1243				if (tp->snd_una == tp->snd_max)
1244					callout_stop(tp->tt_rexmt);
1245				else if (!callout_active(tp->tt_persist))
1246					callout_reset(tp->tt_rexmt,
1247						      tp->t_rxtcur,
1248						      tcp_timer_rexmt, tp);
1249
1250				sowwakeup(so);
1251				if (so->so_snd.sb_cc)
1252					(void) tcp_output(tp);
1253				goto check_delack;
1254			}
1255		} else if (th->th_ack == tp->snd_una &&
1256		    LIST_EMPTY(&tp->t_segq) &&
1257		    tlen <= sbspace(&so->so_rcv)) {
1258			KASSERT(headlocked, ("headlocked"));
1259			INP_INFO_WUNLOCK(&tcbinfo);
1260			headlocked = 0;
1261			/*
1262			 * this is a pure, in-sequence data packet
1263			 * with nothing on the reassembly queue and
1264			 * we have enough buffer space to take it.
1265			 */
1266			/* Clean receiver SACK report if present */
1267			if (tp->sack_enable && tp->rcv_numsacks)
1268				tcp_clean_sackreport(tp);
1269			++tcpstat.tcps_preddat;
1270			tp->rcv_nxt += tlen;
1271			/*
1272			 * Pull snd_wl1 up to prevent seq wrap relative to
1273			 * th_seq.
1274			 */
1275			tp->snd_wl1 = th->th_seq;
1276			/*
1277			 * Pull rcv_up up to prevent seq wrap relative to
1278			 * rcv_nxt.
1279			 */
1280			tp->rcv_up = tp->rcv_nxt;
1281			tcpstat.tcps_rcvpack++;
1282			tcpstat.tcps_rcvbyte += tlen;
1283			ND6_HINT(tp);	/* some progress has been done */
1284			/*
1285#ifdef TCPDEBUG
1286			if (so->so_options & SO_DEBUG)
1287				tcp_trace(TA_INPUT, ostate, tp,
1288				    (void *)tcp_saveipgen, &tcp_savetcp, 0);
1289#endif
1290			 * Add data to socket buffer.
1291			 */
1292			SOCKBUF_LOCK(&so->so_rcv);
1293			if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
1294				m_freem(m);
1295			} else {
1296				m_adj(m, drop_hdrlen);	/* delayed header drop */
1297				sbappendstream_locked(&so->so_rcv, m);
1298			}
1299			sorwakeup_locked(so);
1300			if (DELAY_ACK(tp)) {
1301				tp->t_flags |= TF_DELACK;
1302			} else {
1303				tp->t_flags |= TF_ACKNOW;
1304				tcp_output(tp);
1305			}
1306			goto check_delack;
1307		}
1308	}
1309
1310	/*
1311	 * Calculate amount of space in receive window,
1312	 * and then do TCP input processing.
1313	 * Receive window is amount of space in rcv queue,
1314	 * but not less than advertised window.
1315	 */
1316	{ int win;
1317
1318	win = sbspace(&so->so_rcv);
1319	if (win < 0)
1320		win = 0;
1321	tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
1322	}
1323
1324	switch (tp->t_state) {
1325
1326	/*
1327	 * If the state is SYN_RECEIVED:
1328	 *	if seg contains an ACK, but not for our SYN/ACK, send a RST.
1329	 */
1330	case TCPS_SYN_RECEIVED:
1331		if ((thflags & TH_ACK) &&
1332		    (SEQ_LEQ(th->th_ack, tp->snd_una) ||
1333		     SEQ_GT(th->th_ack, tp->snd_max))) {
1334				rstreason = BANDLIM_RST_OPENPORT;
1335				goto dropwithreset;
1336		}
1337		break;
1338
1339	/*
1340	 * If the state is SYN_SENT:
1341	 *	if seg contains an ACK, but not for our SYN, drop the input.
1342	 *	if seg contains a RST, then drop the connection.
1343	 *	if seg does not contain SYN, then drop it.
1344	 * Otherwise this is an acceptable SYN segment
1345	 *	initialize tp->rcv_nxt and tp->irs
1346	 *	if seg contains ack then advance tp->snd_una
1347	 *	if SYN has been acked change to ESTABLISHED else SYN_RCVD state
1348	 *	arrange for segment to be acked (eventually)
1349	 *	continue processing rest of data/controls, beginning with URG
1350	 */
1351	case TCPS_SYN_SENT:
1352		if ((thflags & TH_ACK) &&
1353		    (SEQ_LEQ(th->th_ack, tp->iss) ||
1354		     SEQ_GT(th->th_ack, tp->snd_max))) {
1355			rstreason = BANDLIM_UNLIMITED;
1356			goto dropwithreset;
1357		}
1358		if (thflags & TH_RST) {
1359			if (thflags & TH_ACK) {
1360				KASSERT(headlocked, ("tcp_input: after_listen"
1361				    ": tcp_drop.2: head not locked"));
1362				tp = tcp_drop(tp, ECONNREFUSED);
1363			}
1364			goto drop;
1365		}
1366		if ((thflags & TH_SYN) == 0)
1367			goto drop;
1368		tp->snd_wnd = th->th_win;	/* initial send window */
1369
1370		tp->irs = th->th_seq;
1371		tcp_rcvseqinit(tp);
1372		if (thflags & TH_ACK) {
1373			tcpstat.tcps_connects++;
1374			soisconnected(so);
1375#ifdef MAC
1376			SOCK_LOCK(so);
1377			mac_set_socket_peer_from_mbuf(m, so);
1378			SOCK_UNLOCK(so);
1379#endif
1380			/* Do window scaling on this connection? */
1381			if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
1382				(TF_RCVD_SCALE|TF_REQ_SCALE)) {
1383				tp->snd_scale = tp->requested_s_scale;
1384				tp->rcv_scale = tp->request_r_scale;
1385			}
1386			tp->rcv_adv += tp->rcv_wnd;
1387			tp->snd_una++;		/* SYN is acked */
1388			/*
1389			 * If there's data, delay ACK; if there's also a FIN
1390			 * ACKNOW will be turned on later.
1391			 */
1392			if (DELAY_ACK(tp) && tlen != 0)
1393				callout_reset(tp->tt_delack, tcp_delacktime,
1394				    tcp_timer_delack, tp);
1395			else
1396				tp->t_flags |= TF_ACKNOW;
1397			/*
1398			 * Received <SYN,ACK> in SYN_SENT[*] state.
1399			 * Transitions:
1400			 *	SYN_SENT  --> ESTABLISHED
1401			 *	SYN_SENT* --> FIN_WAIT_1
1402			 */
1403			tp->t_starttime = ticks;
1404			if (tp->t_flags & TF_NEEDFIN) {
1405				tp->t_state = TCPS_FIN_WAIT_1;
1406				tp->t_flags &= ~TF_NEEDFIN;
1407				thflags &= ~TH_SYN;
1408			} else {
1409				tp->t_state = TCPS_ESTABLISHED;
1410				callout_reset(tp->tt_keep, tcp_keepidle,
1411					      tcp_timer_keep, tp);
1412			}
1413		} else {
1414			/*
1415			 * Received initial SYN in SYN-SENT[*] state =>
1416			 * simultaneous open.  If segment contains CC option
1417			 * and there is a cached CC, apply TAO test.
1418			 * If it succeeds, connection is * half-synchronized.
1419			 * Otherwise, do 3-way handshake:
1420			 *        SYN-SENT -> SYN-RECEIVED
1421			 *        SYN-SENT* -> SYN-RECEIVED*
1422			 * If there was no CC option, clear cached CC value.
1423			 */
1424			tp->t_flags |= TF_ACKNOW;
1425			callout_stop(tp->tt_rexmt);
1426			tp->t_state = TCPS_SYN_RECEIVED;
1427		}
1428
1429trimthenstep6:
1430		KASSERT(headlocked, ("tcp_input: trimthenstep6: head not "
1431		    "locked"));
1432		INP_LOCK_ASSERT(inp);
1433
1434		/*
1435		 * Advance th->th_seq to correspond to first data byte.
1436		 * If data, trim to stay within window,
1437		 * dropping FIN if necessary.
1438		 */
1439		th->th_seq++;
1440		if (tlen > tp->rcv_wnd) {
1441			todrop = tlen - tp->rcv_wnd;
1442			m_adj(m, -todrop);
1443			tlen = tp->rcv_wnd;
1444			thflags &= ~TH_FIN;
1445			tcpstat.tcps_rcvpackafterwin++;
1446			tcpstat.tcps_rcvbyteafterwin += todrop;
1447		}
1448		tp->snd_wl1 = th->th_seq - 1;
1449		tp->rcv_up = th->th_seq;
1450		/*
1451		 * Client side of transaction: already sent SYN and data.
1452		 * If the remote host used T/TCP to validate the SYN,
1453		 * our data will be ACK'd; if so, enter normal data segment
1454		 * processing in the middle of step 5, ack processing.
1455		 * Otherwise, goto step 6.
1456		 */
1457		if (thflags & TH_ACK)
1458			goto process_ACK;
1459
1460		goto step6;
1461
1462	/*
1463	 * If the state is LAST_ACK or CLOSING or TIME_WAIT:
1464	 *      do normal processing.
1465	 *
1466	 * NB: Leftover from RFC1644 T/TCP.  Cases to be reused later.
1467	 */
1468	case TCPS_LAST_ACK:
1469	case TCPS_CLOSING:
1470	case TCPS_TIME_WAIT:
1471		KASSERT(tp->t_state != TCPS_TIME_WAIT, ("timewait"));
1472		break;  /* continue normal processing */
1473	}
1474
1475	/*
1476	 * States other than LISTEN or SYN_SENT.
1477	 * First check the RST flag and sequence number since reset segments
1478	 * are exempt from the timestamp and connection count tests.  This
1479	 * fixes a bug introduced by the Stevens, vol. 2, p. 960 bugfix
1480	 * below which allowed reset segments in half the sequence space
1481	 * to fall though and be processed (which gives forged reset
1482	 * segments with a random sequence number a 50 percent chance of
1483	 * killing a connection).
1484	 * Then check timestamp, if present.
1485	 * Then check the connection count, if present.
1486	 * Then check that at least some bytes of segment are within
1487	 * receive window.  If segment begins before rcv_nxt,
1488	 * drop leading data (and SYN); if nothing left, just ack.
1489	 *
1490	 *
1491	 * If the RST bit is set, check the sequence number to see
1492	 * if this is a valid reset segment.
1493	 * RFC 793 page 37:
1494	 *   In all states except SYN-SENT, all reset (RST) segments
1495	 *   are validated by checking their SEQ-fields.  A reset is
1496	 *   valid if its sequence number is in the window.
1497	 * Note: this does not take into account delayed ACKs, so
1498	 *   we should test against last_ack_sent instead of rcv_nxt.
1499	 *   The sequence number in the reset segment is normally an
1500	 *   echo of our outgoing acknowlegement numbers, but some hosts
1501	 *   send a reset with the sequence number at the rightmost edge
1502	 *   of our receive window, and we have to handle this case.
1503	 * Note 2: Paul Watson's paper "Slipping in the Window" has shown
1504	 *   that brute force RST attacks are possible.  To combat this,
1505	 *   we use a much stricter check while in the ESTABLISHED state,
1506	 *   only accepting RSTs where the sequence number is equal to
1507	 *   last_ack_sent.  In all other states (the states in which a
1508	 *   RST is more likely), the more permissive check is used.
1509	 * If we have multiple segments in flight, the intial reset
1510	 * segment sequence numbers will be to the left of last_ack_sent,
1511	 * but they will eventually catch up.
1512	 * In any case, it never made sense to trim reset segments to
1513	 * fit the receive window since RFC 1122 says:
1514	 *   4.2.2.12  RST Segment: RFC-793 Section 3.4
1515	 *
1516	 *    A TCP SHOULD allow a received RST segment to include data.
1517	 *
1518	 *    DISCUSSION
1519	 *         It has been suggested that a RST segment could contain
1520	 *         ASCII text that encoded and explained the cause of the
1521	 *         RST.  No standard has yet been established for such
1522	 *         data.
1523	 *
1524	 * If the reset segment passes the sequence number test examine
1525	 * the state:
1526	 *    SYN_RECEIVED STATE:
1527	 *	If passive open, return to LISTEN state.
1528	 *	If active open, inform user that connection was refused.
1529	 *    ESTABLISHED, FIN_WAIT_1, FIN_WAIT_2, CLOSE_WAIT STATES:
1530	 *	Inform user that connection was reset, and close tcb.
1531	 *    CLOSING, LAST_ACK STATES:
1532	 *	Close the tcb.
1533	 *    TIME_WAIT STATE:
1534	 *	Drop the segment - see Stevens, vol. 2, p. 964 and
1535	 *      RFC 1337.
1536	 */
1537	if (thflags & TH_RST) {
1538		if ((SEQ_GEQ(th->th_seq, tp->last_ack_sent) &&
1539		    SEQ_LT(th->th_seq, tp->last_ack_sent + tp->rcv_wnd)) ||
1540		    (tp->rcv_wnd == 0 && tp->last_ack_sent == th->th_seq)) {
1541			switch (tp->t_state) {
1542
1543			case TCPS_SYN_RECEIVED:
1544				so->so_error = ECONNREFUSED;
1545				goto close;
1546
1547			case TCPS_ESTABLISHED:
1548				if (tp->last_ack_sent != th->th_seq &&
1549			 	    tcp_insecure_rst == 0) {
1550					tcpstat.tcps_badrst++;
1551					goto drop;
1552				}
1553			case TCPS_FIN_WAIT_1:
1554			case TCPS_FIN_WAIT_2:
1555			case TCPS_CLOSE_WAIT:
1556				so->so_error = ECONNRESET;
1557			close:
1558				tp->t_state = TCPS_CLOSED;
1559				tcpstat.tcps_drops++;
1560				KASSERT(headlocked, ("tcp_input: "
1561				    "trimthenstep6: tcp_close: head not "
1562				    "locked"));
1563				tp = tcp_close(tp);
1564				break;
1565
1566			case TCPS_CLOSING:
1567			case TCPS_LAST_ACK:
1568				KASSERT(headlocked, ("trimthenstep6: "
1569				    "tcp_close.2: head not locked"));
1570				tp = tcp_close(tp);
1571				break;
1572
1573			case TCPS_TIME_WAIT:
1574				KASSERT(tp->t_state != TCPS_TIME_WAIT,
1575				    ("timewait"));
1576				break;
1577			}
1578		}
1579		goto drop;
1580	}
1581
1582	/*
1583	 * RFC 1323 PAWS: If we have a timestamp reply on this segment
1584	 * and it's less than ts_recent, drop it.
1585	 */
1586	if ((to.to_flags & TOF_TS) != 0 && tp->ts_recent &&
1587	    TSTMP_LT(to.to_tsval, tp->ts_recent)) {
1588
1589		/* Check to see if ts_recent is over 24 days old.  */
1590		if ((int)(ticks - tp->ts_recent_age) > TCP_PAWS_IDLE) {
1591			/*
1592			 * Invalidate ts_recent.  If this segment updates
1593			 * ts_recent, the age will be reset later and ts_recent
1594			 * will get a valid value.  If it does not, setting
1595			 * ts_recent to zero will at least satisfy the
1596			 * requirement that zero be placed in the timestamp
1597			 * echo reply when ts_recent isn't valid.  The
1598			 * age isn't reset until we get a valid ts_recent
1599			 * because we don't want out-of-order segments to be
1600			 * dropped when ts_recent is old.
1601			 */
1602			tp->ts_recent = 0;
1603		} else {
1604			tcpstat.tcps_rcvduppack++;
1605			tcpstat.tcps_rcvdupbyte += tlen;
1606			tcpstat.tcps_pawsdrop++;
1607			if (tlen)
1608				goto dropafterack;
1609			goto drop;
1610		}
1611	}
1612
1613	/*
1614	 * In the SYN-RECEIVED state, validate that the packet belongs to
1615	 * this connection before trimming the data to fit the receive
1616	 * window.  Check the sequence number versus IRS since we know
1617	 * the sequence numbers haven't wrapped.  This is a partial fix
1618	 * for the "LAND" DoS attack.
1619	 */
1620	if (tp->t_state == TCPS_SYN_RECEIVED && SEQ_LT(th->th_seq, tp->irs)) {
1621		rstreason = BANDLIM_RST_OPENPORT;
1622		goto dropwithreset;
1623	}
1624
1625	todrop = tp->rcv_nxt - th->th_seq;
1626	if (todrop > 0) {
1627		if (thflags & TH_SYN) {
1628			thflags &= ~TH_SYN;
1629			th->th_seq++;
1630			if (th->th_urp > 1)
1631				th->th_urp--;
1632			else
1633				thflags &= ~TH_URG;
1634			todrop--;
1635		}
1636		/*
1637		 * Following if statement from Stevens, vol. 2, p. 960.
1638		 */
1639		if (todrop > tlen
1640		    || (todrop == tlen && (thflags & TH_FIN) == 0)) {
1641			/*
1642			 * Any valid FIN must be to the left of the window.
1643			 * At this point the FIN must be a duplicate or out
1644			 * of sequence; drop it.
1645			 */
1646			thflags &= ~TH_FIN;
1647
1648			/*
1649			 * Send an ACK to resynchronize and drop any data.
1650			 * But keep on processing for RST or ACK.
1651			 */
1652			tp->t_flags |= TF_ACKNOW;
1653			todrop = tlen;
1654			tcpstat.tcps_rcvduppack++;
1655			tcpstat.tcps_rcvdupbyte += todrop;
1656		} else {
1657			tcpstat.tcps_rcvpartduppack++;
1658			tcpstat.tcps_rcvpartdupbyte += todrop;
1659		}
1660		drop_hdrlen += todrop;	/* drop from the top afterwards */
1661		th->th_seq += todrop;
1662		tlen -= todrop;
1663		if (th->th_urp > todrop)
1664			th->th_urp -= todrop;
1665		else {
1666			thflags &= ~TH_URG;
1667			th->th_urp = 0;
1668		}
1669	}
1670
1671	/*
1672	 * If new data are received on a connection after the
1673	 * user processes are gone, then RST the other end.
1674	 */
1675	if ((so->so_state & SS_NOFDREF) &&
1676	    tp->t_state > TCPS_CLOSE_WAIT && tlen) {
1677		KASSERT(headlocked, ("trimthenstep6: tcp_close.3: head not "
1678		    "locked"));
1679		tp = tcp_close(tp);
1680		tcpstat.tcps_rcvafterclose++;
1681		rstreason = BANDLIM_UNLIMITED;
1682		goto dropwithreset;
1683	}
1684
1685	/*
1686	 * If segment ends after window, drop trailing data
1687	 * (and PUSH and FIN); if nothing left, just ACK.
1688	 */
1689	todrop = (th->th_seq+tlen) - (tp->rcv_nxt+tp->rcv_wnd);
1690	if (todrop > 0) {
1691		tcpstat.tcps_rcvpackafterwin++;
1692		if (todrop >= tlen) {
1693			tcpstat.tcps_rcvbyteafterwin += tlen;
1694			/*
1695			 * If a new connection request is received
1696			 * while in TIME_WAIT, drop the old connection
1697			 * and start over if the sequence numbers
1698			 * are above the previous ones.
1699			 */
1700			KASSERT(tp->t_state != TCPS_TIME_WAIT, ("timewait"));
1701			if (thflags & TH_SYN &&
1702			    tp->t_state == TCPS_TIME_WAIT &&
1703			    SEQ_GT(th->th_seq, tp->rcv_nxt)) {
1704				KASSERT(headlocked, ("trimthenstep6: "
1705				    "tcp_close.4: head not locked"));
1706				tp = tcp_close(tp);
1707				goto findpcb;
1708			}
1709			/*
1710			 * If window is closed can only take segments at
1711			 * window edge, and have to drop data and PUSH from
1712			 * incoming segments.  Continue processing, but
1713			 * remember to ack.  Otherwise, drop segment
1714			 * and ack.
1715			 */
1716			if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
1717				tp->t_flags |= TF_ACKNOW;
1718				tcpstat.tcps_rcvwinprobe++;
1719			} else
1720				goto dropafterack;
1721		} else
1722			tcpstat.tcps_rcvbyteafterwin += todrop;
1723		m_adj(m, -todrop);
1724		tlen -= todrop;
1725		thflags &= ~(TH_PUSH|TH_FIN);
1726	}
1727
1728	/*
1729	 * If last ACK falls within this segment's sequence numbers,
1730	 * record its timestamp.
1731	 * NOTE:
1732	 * 1) That the test incorporates suggestions from the latest
1733	 *    proposal of the tcplw@cray.com list (Braden 1993/04/26).
1734	 * 2) That updating only on newer timestamps interferes with
1735	 *    our earlier PAWS tests, so this check should be solely
1736	 *    predicated on the sequence space of this segment.
1737	 * 3) That we modify the segment boundary check to be
1738	 *        Last.ACK.Sent <= SEG.SEQ + SEG.Len
1739	 *    instead of RFC1323's
1740	 *        Last.ACK.Sent < SEG.SEQ + SEG.Len,
1741	 *    This modified check allows us to overcome RFC1323's
1742	 *    limitations as described in Stevens TCP/IP Illustrated
1743	 *    Vol. 2 p.869. In such cases, we can still calculate the
1744	 *    RTT correctly when RCV.NXT == Last.ACK.Sent.
1745	 */
1746	if ((to.to_flags & TOF_TS) != 0 &&
1747	    SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
1748	    SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
1749		((thflags & (TH_SYN|TH_FIN)) != 0))) {
1750		tp->ts_recent_age = ticks;
1751		tp->ts_recent = to.to_tsval;
1752	}
1753
1754	/*
1755	 * If a SYN is in the window, then this is an
1756	 * error and we send an RST and drop the connection.
1757	 */
1758	if (thflags & TH_SYN) {
1759		KASSERT(headlocked, ("tcp_input: tcp_drop: trimthenstep6: "
1760		    "head not locked"));
1761		tp = tcp_drop(tp, ECONNRESET);
1762		rstreason = BANDLIM_UNLIMITED;
1763		goto drop;
1764	}
1765
1766	/*
1767	 * If the ACK bit is off:  if in SYN-RECEIVED state or SENDSYN
1768	 * flag is on (half-synchronized state), then queue data for
1769	 * later processing; else drop segment and return.
1770	 */
1771	if ((thflags & TH_ACK) == 0) {
1772		if (tp->t_state == TCPS_SYN_RECEIVED ||
1773		    (tp->t_flags & TF_NEEDSYN))
1774			goto step6;
1775		else
1776			goto drop;
1777	}
1778
1779	/*
1780	 * Ack processing.
1781	 */
1782	switch (tp->t_state) {
1783
1784	/*
1785	 * In SYN_RECEIVED state, the ack ACKs our SYN, so enter
1786	 * ESTABLISHED state and continue processing.
1787	 * The ACK was checked above.
1788	 */
1789	case TCPS_SYN_RECEIVED:
1790
1791		tcpstat.tcps_connects++;
1792		soisconnected(so);
1793		/* Do window scaling? */
1794		if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
1795			(TF_RCVD_SCALE|TF_REQ_SCALE)) {
1796			tp->snd_scale = tp->requested_s_scale;
1797			tp->rcv_scale = tp->request_r_scale;
1798		}
1799		/*
1800		 * Make transitions:
1801		 *      SYN-RECEIVED  -> ESTABLISHED
1802		 *      SYN-RECEIVED* -> FIN-WAIT-1
1803		 */
1804		tp->t_starttime = ticks;
1805		if (tp->t_flags & TF_NEEDFIN) {
1806			tp->t_state = TCPS_FIN_WAIT_1;
1807			tp->t_flags &= ~TF_NEEDFIN;
1808		} else {
1809			tp->t_state = TCPS_ESTABLISHED;
1810			callout_reset(tp->tt_keep, tcp_keepidle,
1811				      tcp_timer_keep, tp);
1812		}
1813		/*
1814		 * If segment contains data or ACK, will call tcp_reass()
1815		 * later; if not, do so now to pass queued data to user.
1816		 */
1817		if (tlen == 0 && (thflags & TH_FIN) == 0)
1818			(void) tcp_reass(tp, (struct tcphdr *)0, 0,
1819			    (struct mbuf *)0);
1820		tp->snd_wl1 = th->th_seq - 1;
1821		/* FALLTHROUGH */
1822
1823	/*
1824	 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
1825	 * ACKs.  If the ack is in the range
1826	 *	tp->snd_una < th->th_ack <= tp->snd_max
1827	 * then advance tp->snd_una to th->th_ack and drop
1828	 * data from the retransmission queue.  If this ACK reflects
1829	 * more up to date window information we update our window information.
1830	 */
1831	case TCPS_ESTABLISHED:
1832	case TCPS_FIN_WAIT_1:
1833	case TCPS_FIN_WAIT_2:
1834	case TCPS_CLOSE_WAIT:
1835	case TCPS_CLOSING:
1836	case TCPS_LAST_ACK:
1837	case TCPS_TIME_WAIT:
1838		KASSERT(tp->t_state != TCPS_TIME_WAIT, ("timewait"));
1839		if (SEQ_GT(th->th_ack, tp->snd_max)) {
1840			tcpstat.tcps_rcvacktoomuch++;
1841			goto dropafterack;
1842		}
1843		if (tp->sack_enable &&
1844		    (to.to_nsacks > 0 || !TAILQ_EMPTY(&tp->snd_holes)))
1845			tcp_sack_doack(tp, &to, th->th_ack);
1846		if (SEQ_LEQ(th->th_ack, tp->snd_una)) {
1847			if (tlen == 0 && tiwin == tp->snd_wnd) {
1848				tcpstat.tcps_rcvdupack++;
1849				/*
1850				 * If we have outstanding data (other than
1851				 * a window probe), this is a completely
1852				 * duplicate ack (ie, window info didn't
1853				 * change), the ack is the biggest we've
1854				 * seen and we've seen exactly our rexmt
1855				 * threshhold of them, assume a packet
1856				 * has been dropped and retransmit it.
1857				 * Kludge snd_nxt & the congestion
1858				 * window so we send only this one
1859				 * packet.
1860				 *
1861				 * We know we're losing at the current
1862				 * window size so do congestion avoidance
1863				 * (set ssthresh to half the current window
1864				 * and pull our congestion window back to
1865				 * the new ssthresh).
1866				 *
1867				 * Dup acks mean that packets have left the
1868				 * network (they're now cached at the receiver)
1869				 * so bump cwnd by the amount in the receiver
1870				 * to keep a constant cwnd packets in the
1871				 * network.
1872				 */
1873				if (!callout_active(tp->tt_rexmt) ||
1874				    th->th_ack != tp->snd_una)
1875					tp->t_dupacks = 0;
1876				else if (++tp->t_dupacks > tcprexmtthresh ||
1877					 ((tcp_do_newreno || tp->sack_enable) &&
1878					  IN_FASTRECOVERY(tp))) {
1879                                        if (tp->sack_enable && IN_FASTRECOVERY(tp)) {
1880						int awnd;
1881
1882						/*
1883						 * Compute the amount of data in flight first.
1884						 * We can inject new data into the pipe iff
1885						 * we have less than 1/2 the original window's
1886						 * worth of data in flight.
1887						 */
1888						awnd = (tp->snd_nxt - tp->snd_fack) +
1889							tp->sackhint.sack_bytes_rexmit;
1890						if (awnd < tp->snd_ssthresh) {
1891							tp->snd_cwnd += tp->t_maxseg;
1892							if (tp->snd_cwnd > tp->snd_ssthresh)
1893								tp->snd_cwnd = tp->snd_ssthresh;
1894						}
1895					} else
1896						tp->snd_cwnd += tp->t_maxseg;
1897					(void) tcp_output(tp);
1898					goto drop;
1899				} else if (tp->t_dupacks == tcprexmtthresh) {
1900					tcp_seq onxt = tp->snd_nxt;
1901					u_int win;
1902
1903					/*
1904					 * If we're doing sack, check to
1905					 * see if we're already in sack
1906					 * recovery. If we're not doing sack,
1907					 * check to see if we're in newreno
1908					 * recovery.
1909					 */
1910					if (tp->sack_enable) {
1911						if (IN_FASTRECOVERY(tp)) {
1912							tp->t_dupacks = 0;
1913							break;
1914						}
1915					} else if (tcp_do_newreno) {
1916						if (SEQ_LEQ(th->th_ack,
1917						    tp->snd_recover)) {
1918							tp->t_dupacks = 0;
1919							break;
1920						}
1921					}
1922					win = min(tp->snd_wnd, tp->snd_cwnd) /
1923					    2 / tp->t_maxseg;
1924					if (win < 2)
1925						win = 2;
1926					tp->snd_ssthresh = win * tp->t_maxseg;
1927					ENTER_FASTRECOVERY(tp);
1928					tp->snd_recover = tp->snd_max;
1929					callout_stop(tp->tt_rexmt);
1930					tp->t_rtttime = 0;
1931					if (tp->sack_enable) {
1932						tcpstat.tcps_sack_recovery_episode++;
1933						tp->sack_newdata = tp->snd_nxt;
1934						tp->snd_cwnd = tp->t_maxseg;
1935						(void) tcp_output(tp);
1936						goto drop;
1937					}
1938					tp->snd_nxt = th->th_ack;
1939					tp->snd_cwnd = tp->t_maxseg;
1940					(void) tcp_output(tp);
1941					KASSERT(tp->snd_limited <= 2,
1942					    ("tp->snd_limited too big"));
1943					tp->snd_cwnd = tp->snd_ssthresh +
1944					     tp->t_maxseg *
1945					     (tp->t_dupacks - tp->snd_limited);
1946					if (SEQ_GT(onxt, tp->snd_nxt))
1947						tp->snd_nxt = onxt;
1948					goto drop;
1949				} else if (tcp_do_rfc3042) {
1950					u_long oldcwnd = tp->snd_cwnd;
1951					tcp_seq oldsndmax = tp->snd_max;
1952					u_int sent;
1953
1954					KASSERT(tp->t_dupacks == 1 ||
1955					    tp->t_dupacks == 2,
1956					    ("dupacks not 1 or 2"));
1957					if (tp->t_dupacks == 1)
1958						tp->snd_limited = 0;
1959					tp->snd_cwnd =
1960					    (tp->snd_nxt - tp->snd_una) +
1961					    (tp->t_dupacks - tp->snd_limited) *
1962					    tp->t_maxseg;
1963					(void) tcp_output(tp);
1964					sent = tp->snd_max - oldsndmax;
1965					if (sent > tp->t_maxseg) {
1966						KASSERT((tp->t_dupacks == 2 &&
1967						    tp->snd_limited == 0) ||
1968						   (sent == tp->t_maxseg + 1 &&
1969						    tp->t_flags & TF_SENTFIN),
1970						    ("sent too much"));
1971						tp->snd_limited = 2;
1972					} else if (sent > 0)
1973						++tp->snd_limited;
1974					tp->snd_cwnd = oldcwnd;
1975					goto drop;
1976				}
1977			} else
1978				tp->t_dupacks = 0;
1979			break;
1980		}
1981
1982		KASSERT(SEQ_GT(th->th_ack, tp->snd_una), ("th_ack <= snd_una"));
1983
1984		/*
1985		 * If the congestion window was inflated to account
1986		 * for the other side's cached packets, retract it.
1987		 */
1988		if (tcp_do_newreno || tp->sack_enable) {
1989			if (IN_FASTRECOVERY(tp)) {
1990				if (SEQ_LT(th->th_ack, tp->snd_recover)) {
1991					if (tp->sack_enable)
1992						tcp_sack_partialack(tp, th);
1993					else
1994						tcp_newreno_partial_ack(tp, th);
1995				} else {
1996					/*
1997					 * Out of fast recovery.
1998					 * Window inflation should have left us
1999					 * with approximately snd_ssthresh
2000					 * outstanding data.
2001					 * But in case we would be inclined to
2002					 * send a burst, better to do it via
2003					 * the slow start mechanism.
2004					 */
2005					if (SEQ_GT(th->th_ack +
2006							tp->snd_ssthresh,
2007						   tp->snd_max))
2008						tp->snd_cwnd = tp->snd_max -
2009								th->th_ack +
2010								tp->t_maxseg;
2011					else
2012						tp->snd_cwnd = tp->snd_ssthresh;
2013				}
2014			}
2015		} else {
2016			if (tp->t_dupacks >= tcprexmtthresh &&
2017			    tp->snd_cwnd > tp->snd_ssthresh)
2018				tp->snd_cwnd = tp->snd_ssthresh;
2019		}
2020		tp->t_dupacks = 0;
2021		/*
2022		 * If we reach this point, ACK is not a duplicate,
2023		 *     i.e., it ACKs something we sent.
2024		 */
2025		if (tp->t_flags & TF_NEEDSYN) {
2026			/*
2027			 * T/TCP: Connection was half-synchronized, and our
2028			 * SYN has been ACK'd (so connection is now fully
2029			 * synchronized).  Go to non-starred state,
2030			 * increment snd_una for ACK of SYN, and check if
2031			 * we can do window scaling.
2032			 */
2033			tp->t_flags &= ~TF_NEEDSYN;
2034			tp->snd_una++;
2035			/* Do window scaling? */
2036			if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
2037				(TF_RCVD_SCALE|TF_REQ_SCALE)) {
2038				tp->snd_scale = tp->requested_s_scale;
2039				tp->rcv_scale = tp->request_r_scale;
2040			}
2041		}
2042
2043process_ACK:
2044		KASSERT(headlocked, ("tcp_input: process_ACK: head not "
2045		    "locked"));
2046		INP_LOCK_ASSERT(inp);
2047
2048		acked = th->th_ack - tp->snd_una;
2049		tcpstat.tcps_rcvackpack++;
2050		tcpstat.tcps_rcvackbyte += acked;
2051
2052		/*
2053		 * If we just performed our first retransmit, and the ACK
2054		 * arrives within our recovery window, then it was a mistake
2055		 * to do the retransmit in the first place.  Recover our
2056		 * original cwnd and ssthresh, and proceed to transmit where
2057		 * we left off.
2058		 */
2059		if (tp->t_rxtshift == 1 && ticks < tp->t_badrxtwin) {
2060			++tcpstat.tcps_sndrexmitbad;
2061			tp->snd_cwnd = tp->snd_cwnd_prev;
2062			tp->snd_ssthresh = tp->snd_ssthresh_prev;
2063			tp->snd_recover = tp->snd_recover_prev;
2064			if (tp->t_flags & TF_WASFRECOVERY)
2065				ENTER_FASTRECOVERY(tp);
2066			tp->snd_nxt = tp->snd_max;
2067			tp->t_badrxtwin = 0;	/* XXX probably not required */
2068		}
2069
2070		/*
2071		 * If we have a timestamp reply, update smoothed
2072		 * round trip time.  If no timestamp is present but
2073		 * transmit timer is running and timed sequence
2074		 * number was acked, update smoothed round trip time.
2075		 * Since we now have an rtt measurement, cancel the
2076		 * timer backoff (cf., Phil Karn's retransmit alg.).
2077		 * Recompute the initial retransmit timer.
2078		 *
2079		 * Some boxes send broken timestamp replies
2080		 * during the SYN+ACK phase, ignore
2081		 * timestamps of 0 or we could calculate a
2082		 * huge RTT and blow up the retransmit timer.
2083		 */
2084		if ((to.to_flags & TOF_TS) != 0 &&
2085		    to.to_tsecr) {
2086			if (!tp->t_rttlow || tp->t_rttlow > ticks - to.to_tsecr)
2087				tp->t_rttlow = ticks - to.to_tsecr;
2088			tcp_xmit_timer(tp, ticks - to.to_tsecr + 1);
2089		} else if (tp->t_rtttime && SEQ_GT(th->th_ack, tp->t_rtseq)) {
2090			if (!tp->t_rttlow || tp->t_rttlow > ticks - tp->t_rtttime)
2091				tp->t_rttlow = ticks - tp->t_rtttime;
2092			tcp_xmit_timer(tp, ticks - tp->t_rtttime);
2093		}
2094		tcp_xmit_bandwidth_limit(tp, th->th_ack);
2095
2096		/*
2097		 * If all outstanding data is acked, stop retransmit
2098		 * timer and remember to restart (more output or persist).
2099		 * If there is more data to be acked, restart retransmit
2100		 * timer, using current (possibly backed-off) value.
2101		 */
2102		if (th->th_ack == tp->snd_max) {
2103			callout_stop(tp->tt_rexmt);
2104			needoutput = 1;
2105		} else if (!callout_active(tp->tt_persist))
2106			callout_reset(tp->tt_rexmt, tp->t_rxtcur,
2107				      tcp_timer_rexmt, tp);
2108
2109		/*
2110		 * If no data (only SYN) was ACK'd,
2111		 *    skip rest of ACK processing.
2112		 */
2113		if (acked == 0)
2114			goto step6;
2115
2116		/*
2117		 * When new data is acked, open the congestion window.
2118		 * If the window gives us less than ssthresh packets
2119		 * in flight, open exponentially (maxseg per packet).
2120		 * Otherwise open linearly: maxseg per window
2121		 * (maxseg^2 / cwnd per packet).
2122		 */
2123		if ((!tcp_do_newreno && !tp->sack_enable) ||
2124		    !IN_FASTRECOVERY(tp)) {
2125			register u_int cw = tp->snd_cwnd;
2126			register u_int incr = tp->t_maxseg;
2127			if (cw > tp->snd_ssthresh)
2128				incr = incr * incr / cw;
2129			tp->snd_cwnd = min(cw+incr, TCP_MAXWIN<<tp->snd_scale);
2130		}
2131		SOCKBUF_LOCK(&so->so_snd);
2132		if (acked > so->so_snd.sb_cc) {
2133			tp->snd_wnd -= so->so_snd.sb_cc;
2134			sbdrop_locked(&so->so_snd, (int)so->so_snd.sb_cc);
2135			ourfinisacked = 1;
2136		} else {
2137			sbdrop_locked(&so->so_snd, acked);
2138			tp->snd_wnd -= acked;
2139			ourfinisacked = 0;
2140		}
2141		sowwakeup_locked(so);
2142		/* detect una wraparound */
2143		if ((tcp_do_newreno || tp->sack_enable) &&
2144		    !IN_FASTRECOVERY(tp) &&
2145		    SEQ_GT(tp->snd_una, tp->snd_recover) &&
2146		    SEQ_LEQ(th->th_ack, tp->snd_recover))
2147			tp->snd_recover = th->th_ack - 1;
2148		if ((tcp_do_newreno || tp->sack_enable) &&
2149		    IN_FASTRECOVERY(tp) &&
2150		    SEQ_GEQ(th->th_ack, tp->snd_recover))
2151			EXIT_FASTRECOVERY(tp);
2152		tp->snd_una = th->th_ack;
2153		if (tp->sack_enable) {
2154			if (SEQ_GT(tp->snd_una, tp->snd_recover))
2155				tp->snd_recover = tp->snd_una;
2156		}
2157		if (SEQ_LT(tp->snd_nxt, tp->snd_una))
2158			tp->snd_nxt = tp->snd_una;
2159
2160		switch (tp->t_state) {
2161
2162		/*
2163		 * In FIN_WAIT_1 STATE in addition to the processing
2164		 * for the ESTABLISHED state if our FIN is now acknowledged
2165		 * then enter FIN_WAIT_2.
2166		 */
2167		case TCPS_FIN_WAIT_1:
2168			if (ourfinisacked) {
2169				/*
2170				 * If we can't receive any more
2171				 * data, then closing user can proceed.
2172				 * Starting the timer is contrary to the
2173				 * specification, but if we don't get a FIN
2174				 * we'll hang forever.
2175				 */
2176		/* XXXjl
2177		 * we should release the tp also, and use a
2178		 * compressed state.
2179		 */
2180				if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
2181					soisdisconnected(so);
2182					callout_reset(tp->tt_2msl, tcp_maxidle,
2183						      tcp_timer_2msl, tp);
2184				}
2185				tp->t_state = TCPS_FIN_WAIT_2;
2186			}
2187			break;
2188
2189		/*
2190		 * In CLOSING STATE in addition to the processing for
2191		 * the ESTABLISHED state if the ACK acknowledges our FIN
2192		 * then enter the TIME-WAIT state, otherwise ignore
2193		 * the segment.
2194		 */
2195		case TCPS_CLOSING:
2196			if (ourfinisacked) {
2197				KASSERT(headlocked, ("tcp_input: process_ACK: "
2198				    "head not locked"));
2199				tcp_twstart(tp);
2200				INP_INFO_WUNLOCK(&tcbinfo);
2201				m_freem(m);
2202				return;
2203			}
2204			break;
2205
2206		/*
2207		 * In LAST_ACK, we may still be waiting for data to drain
2208		 * and/or to be acked, as well as for the ack of our FIN.
2209		 * If our FIN is now acknowledged, delete the TCB,
2210		 * enter the closed state and return.
2211		 */
2212		case TCPS_LAST_ACK:
2213			if (ourfinisacked) {
2214				KASSERT(headlocked, ("tcp_input: process_ACK:"
2215				    " tcp_close: head not locked"));
2216				tp = tcp_close(tp);
2217				goto drop;
2218			}
2219			break;
2220
2221		/*
2222		 * In TIME_WAIT state the only thing that should arrive
2223		 * is a retransmission of the remote FIN.  Acknowledge
2224		 * it and restart the finack timer.
2225		 */
2226		case TCPS_TIME_WAIT:
2227			KASSERT(tp->t_state != TCPS_TIME_WAIT, ("timewait"));
2228			callout_reset(tp->tt_2msl, 2 * tcp_msl,
2229				      tcp_timer_2msl, tp);
2230			goto dropafterack;
2231		}
2232	}
2233
2234step6:
2235	KASSERT(headlocked, ("tcp_input: step6: head not locked"));
2236	INP_LOCK_ASSERT(inp);
2237
2238	/*
2239	 * Update window information.
2240	 * Don't look at window if no ACK: TAC's send garbage on first SYN.
2241	 */
2242	if ((thflags & TH_ACK) &&
2243	    (SEQ_LT(tp->snd_wl1, th->th_seq) ||
2244	    (tp->snd_wl1 == th->th_seq && (SEQ_LT(tp->snd_wl2, th->th_ack) ||
2245	     (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))))) {
2246		/* keep track of pure window updates */
2247		if (tlen == 0 &&
2248		    tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)
2249			tcpstat.tcps_rcvwinupd++;
2250		tp->snd_wnd = tiwin;
2251		tp->snd_wl1 = th->th_seq;
2252		tp->snd_wl2 = th->th_ack;
2253		if (tp->snd_wnd > tp->max_sndwnd)
2254			tp->max_sndwnd = tp->snd_wnd;
2255		needoutput = 1;
2256	}
2257
2258	/*
2259	 * Process segments with URG.
2260	 */
2261	if ((thflags & TH_URG) && th->th_urp &&
2262	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2263		/*
2264		 * This is a kludge, but if we receive and accept
2265		 * random urgent pointers, we'll crash in
2266		 * soreceive.  It's hard to imagine someone
2267		 * actually wanting to send this much urgent data.
2268		 */
2269		SOCKBUF_LOCK(&so->so_rcv);
2270		if (th->th_urp + so->so_rcv.sb_cc > sb_max) {
2271			th->th_urp = 0;			/* XXX */
2272			thflags &= ~TH_URG;		/* XXX */
2273			SOCKBUF_UNLOCK(&so->so_rcv);	/* XXX */
2274			goto dodata;			/* XXX */
2275		}
2276		/*
2277		 * If this segment advances the known urgent pointer,
2278		 * then mark the data stream.  This should not happen
2279		 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
2280		 * a FIN has been received from the remote side.
2281		 * In these states we ignore the URG.
2282		 *
2283		 * According to RFC961 (Assigned Protocols),
2284		 * the urgent pointer points to the last octet
2285		 * of urgent data.  We continue, however,
2286		 * to consider it to indicate the first octet
2287		 * of data past the urgent section as the original
2288		 * spec states (in one of two places).
2289		 */
2290		if (SEQ_GT(th->th_seq+th->th_urp, tp->rcv_up)) {
2291			tp->rcv_up = th->th_seq + th->th_urp;
2292			so->so_oobmark = so->so_rcv.sb_cc +
2293			    (tp->rcv_up - tp->rcv_nxt) - 1;
2294			if (so->so_oobmark == 0)
2295				so->so_rcv.sb_state |= SBS_RCVATMARK;
2296			sohasoutofband(so);
2297			tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
2298		}
2299		SOCKBUF_UNLOCK(&so->so_rcv);
2300		/*
2301		 * Remove out of band data so doesn't get presented to user.
2302		 * This can happen independent of advancing the URG pointer,
2303		 * but if two URG's are pending at once, some out-of-band
2304		 * data may creep in... ick.
2305		 */
2306		if (th->th_urp <= (u_long)tlen &&
2307		    !(so->so_options & SO_OOBINLINE)) {
2308			/* hdr drop is delayed */
2309			tcp_pulloutofband(so, th, m, drop_hdrlen);
2310		}
2311	} else {
2312		/*
2313		 * If no out of band data is expected,
2314		 * pull receive urgent pointer along
2315		 * with the receive window.
2316		 */
2317		if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
2318			tp->rcv_up = tp->rcv_nxt;
2319	}
2320dodata:							/* XXX */
2321	KASSERT(headlocked, ("tcp_input: dodata: head not locked"));
2322	INP_LOCK_ASSERT(inp);
2323
2324	/*
2325	 * Process the segment text, merging it into the TCP sequencing queue,
2326	 * and arranging for acknowledgment of receipt if necessary.
2327	 * This process logically involves adjusting tp->rcv_wnd as data
2328	 * is presented to the user (this happens in tcp_usrreq.c,
2329	 * case PRU_RCVD).  If a FIN has already been received on this
2330	 * connection then we just ignore the text.
2331	 */
2332	if ((tlen || (thflags & TH_FIN)) &&
2333	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2334		tcp_seq save_start = th->th_seq;
2335		tcp_seq save_end = th->th_seq + tlen;
2336		m_adj(m, drop_hdrlen);	/* delayed header drop */
2337		/*
2338		 * Insert segment which includes th into TCP reassembly queue
2339		 * with control block tp.  Set thflags to whether reassembly now
2340		 * includes a segment with FIN.  This handles the common case
2341		 * inline (segment is the next to be received on an established
2342		 * connection, and the queue is empty), avoiding linkage into
2343		 * and removal from the queue and repetition of various
2344		 * conversions.
2345		 * Set DELACK for segments received in order, but ack
2346		 * immediately when segments are out of order (so
2347		 * fast retransmit can work).
2348		 */
2349		if (th->th_seq == tp->rcv_nxt &&
2350		    LIST_EMPTY(&tp->t_segq) &&
2351		    TCPS_HAVEESTABLISHED(tp->t_state)) {
2352			if (DELAY_ACK(tp))
2353				tp->t_flags |= TF_DELACK;
2354			else
2355				tp->t_flags |= TF_ACKNOW;
2356			tp->rcv_nxt += tlen;
2357			thflags = th->th_flags & TH_FIN;
2358			tcpstat.tcps_rcvpack++;
2359			tcpstat.tcps_rcvbyte += tlen;
2360			ND6_HINT(tp);
2361			SOCKBUF_LOCK(&so->so_rcv);
2362			if (so->so_rcv.sb_state & SBS_CANTRCVMORE)
2363				m_freem(m);
2364			else
2365				sbappendstream_locked(&so->so_rcv, m);
2366			sorwakeup_locked(so);
2367		} else {
2368			thflags = tcp_reass(tp, th, &tlen, m);
2369			tp->t_flags |= TF_ACKNOW;
2370		}
2371		if (tlen > 0 && tp->sack_enable)
2372			tcp_update_sack_list(tp, save_start, save_end);
2373		/*
2374		 * Note the amount of data that peer has sent into
2375		 * our window, in order to estimate the sender's
2376		 * buffer size.
2377		 */
2378		len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
2379	} else {
2380		m_freem(m);
2381		thflags &= ~TH_FIN;
2382	}
2383
2384	/*
2385	 * If FIN is received ACK the FIN and let the user know
2386	 * that the connection is closing.
2387	 */
2388	if (thflags & TH_FIN) {
2389		if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2390			socantrcvmore(so);
2391			/*
2392			 * If connection is half-synchronized
2393			 * (ie NEEDSYN flag on) then delay ACK,
2394			 * so it may be piggybacked when SYN is sent.
2395			 * Otherwise, since we received a FIN then no
2396			 * more input can be expected, send ACK now.
2397			 */
2398			if (tp->t_flags & TF_NEEDSYN)
2399				tp->t_flags |= TF_DELACK;
2400			else
2401				tp->t_flags |= TF_ACKNOW;
2402			tp->rcv_nxt++;
2403		}
2404		switch (tp->t_state) {
2405
2406		/*
2407		 * In SYN_RECEIVED and ESTABLISHED STATES
2408		 * enter the CLOSE_WAIT state.
2409		 */
2410		case TCPS_SYN_RECEIVED:
2411			tp->t_starttime = ticks;
2412			/*FALLTHROUGH*/
2413		case TCPS_ESTABLISHED:
2414			tp->t_state = TCPS_CLOSE_WAIT;
2415			break;
2416
2417		/*
2418		 * If still in FIN_WAIT_1 STATE FIN has not been acked so
2419		 * enter the CLOSING state.
2420		 */
2421		case TCPS_FIN_WAIT_1:
2422			tp->t_state = TCPS_CLOSING;
2423			break;
2424
2425		/*
2426		 * In FIN_WAIT_2 state enter the TIME_WAIT state,
2427		 * starting the time-wait timer, turning off the other
2428		 * standard timers.
2429		 */
2430		case TCPS_FIN_WAIT_2:
2431			KASSERT(headlocked == 1, ("tcp_input: dodata: "
2432			    "TCP_FIN_WAIT_2: head not locked"));
2433			tcp_twstart(tp);
2434			INP_INFO_WUNLOCK(&tcbinfo);
2435			return;
2436
2437		/*
2438		 * In TIME_WAIT state restart the 2 MSL time_wait timer.
2439		 */
2440		case TCPS_TIME_WAIT:
2441			KASSERT(tp->t_state != TCPS_TIME_WAIT, ("timewait"));
2442			callout_reset(tp->tt_2msl, 2 * tcp_msl,
2443				      tcp_timer_2msl, tp);
2444			break;
2445		}
2446	}
2447	INP_INFO_WUNLOCK(&tcbinfo);
2448	headlocked = 0;
2449#ifdef TCPDEBUG
2450	if (so->so_options & SO_DEBUG)
2451		tcp_trace(TA_INPUT, ostate, tp, (void *)tcp_saveipgen,
2452			  &tcp_savetcp, 0);
2453#endif
2454
2455	/*
2456	 * Return any desired output.
2457	 */
2458	if (needoutput || (tp->t_flags & TF_ACKNOW))
2459		(void) tcp_output(tp);
2460
2461check_delack:
2462	KASSERT(headlocked == 0, ("tcp_input: check_delack: head locked"));
2463	INP_LOCK_ASSERT(inp);
2464	if (tp->t_flags & TF_DELACK) {
2465		tp->t_flags &= ~TF_DELACK;
2466		callout_reset(tp->tt_delack, tcp_delacktime,
2467		    tcp_timer_delack, tp);
2468	}
2469	INP_UNLOCK(inp);
2470	return;
2471
2472dropafterack:
2473	KASSERT(headlocked, ("tcp_input: dropafterack: head not locked"));
2474	/*
2475	 * Generate an ACK dropping incoming segment if it occupies
2476	 * sequence space, where the ACK reflects our state.
2477	 *
2478	 * We can now skip the test for the RST flag since all
2479	 * paths to this code happen after packets containing
2480	 * RST have been dropped.
2481	 *
2482	 * In the SYN-RECEIVED state, don't send an ACK unless the
2483	 * segment we received passes the SYN-RECEIVED ACK test.
2484	 * If it fails send a RST.  This breaks the loop in the
2485	 * "LAND" DoS attack, and also prevents an ACK storm
2486	 * between two listening ports that have been sent forged
2487	 * SYN segments, each with the source address of the other.
2488	 */
2489	if (tp->t_state == TCPS_SYN_RECEIVED && (thflags & TH_ACK) &&
2490	    (SEQ_GT(tp->snd_una, th->th_ack) ||
2491	     SEQ_GT(th->th_ack, tp->snd_max)) ) {
2492		rstreason = BANDLIM_RST_OPENPORT;
2493		goto dropwithreset;
2494	}
2495#ifdef TCPDEBUG
2496	if (so->so_options & SO_DEBUG)
2497		tcp_trace(TA_DROP, ostate, tp, (void *)tcp_saveipgen,
2498			  &tcp_savetcp, 0);
2499#endif
2500	KASSERT(headlocked, ("headlocked should be 1"));
2501	INP_INFO_WUNLOCK(&tcbinfo);
2502	tp->t_flags |= TF_ACKNOW;
2503	(void) tcp_output(tp);
2504	INP_UNLOCK(inp);
2505	m_freem(m);
2506	return;
2507
2508dropwithreset:
2509	KASSERT(headlocked, ("tcp_input: dropwithreset: head not locked"));
2510	/*
2511	 * Generate a RST, dropping incoming segment.
2512	 * Make ACK acceptable to originator of segment.
2513	 * Don't bother to respond if destination was broadcast/multicast.
2514	 */
2515	if ((thflags & TH_RST) || m->m_flags & (M_BCAST|M_MCAST))
2516		goto drop;
2517	if (isipv6) {
2518		if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) ||
2519		    IN6_IS_ADDR_MULTICAST(&ip6->ip6_src))
2520			goto drop;
2521	} else {
2522		if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
2523		    IN_MULTICAST(ntohl(ip->ip_src.s_addr)) ||
2524		    ip->ip_src.s_addr == htonl(INADDR_BROADCAST) ||
2525		    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
2526			goto drop;
2527	}
2528	/* IPv6 anycast check is done at tcp6_input() */
2529
2530	/*
2531	 * Perform bandwidth limiting.
2532	 */
2533	if (badport_bandlim(rstreason) < 0)
2534		goto drop;
2535
2536#ifdef TCPDEBUG
2537	if (tp == 0 || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
2538		tcp_trace(TA_DROP, ostate, tp, (void *)tcp_saveipgen,
2539			  &tcp_savetcp, 0);
2540#endif
2541
2542	if (thflags & TH_ACK)
2543		/* mtod() below is safe as long as hdr dropping is delayed */
2544		tcp_respond(tp, mtod(m, void *), th, m, (tcp_seq)0, th->th_ack,
2545			    TH_RST);
2546	else {
2547		if (thflags & TH_SYN)
2548			tlen++;
2549		/* mtod() below is safe as long as hdr dropping is delayed */
2550		tcp_respond(tp, mtod(m, void *), th, m, th->th_seq+tlen,
2551			    (tcp_seq)0, TH_RST|TH_ACK);
2552	}
2553
2554	if (tp)
2555		INP_UNLOCK(inp);
2556	if (headlocked)
2557		INP_INFO_WUNLOCK(&tcbinfo);
2558	return;
2559
2560drop:
2561	/*
2562	 * Drop space held by incoming segment and return.
2563	 */
2564#ifdef TCPDEBUG
2565	if (tp == 0 || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
2566		tcp_trace(TA_DROP, ostate, tp, (void *)tcp_saveipgen,
2567			  &tcp_savetcp, 0);
2568#endif
2569	if (tp)
2570		INP_UNLOCK(inp);
2571	if (headlocked)
2572		INP_INFO_WUNLOCK(&tcbinfo);
2573	m_freem(m);
2574	return;
2575}
2576
2577/*
2578 * Parse TCP options and place in tcpopt.
2579 */
2580static void
2581tcp_dooptions(to, cp, cnt, is_syn)
2582	struct tcpopt *to;
2583	u_char *cp;
2584	int cnt;
2585	int is_syn;
2586{
2587	int opt, optlen;
2588
2589	to->to_flags = 0;
2590	for (; cnt > 0; cnt -= optlen, cp += optlen) {
2591		opt = cp[0];
2592		if (opt == TCPOPT_EOL)
2593			break;
2594		if (opt == TCPOPT_NOP)
2595			optlen = 1;
2596		else {
2597			if (cnt < 2)
2598				break;
2599			optlen = cp[1];
2600			if (optlen < 2 || optlen > cnt)
2601				break;
2602		}
2603		switch (opt) {
2604		case TCPOPT_MAXSEG:
2605			if (optlen != TCPOLEN_MAXSEG)
2606				continue;
2607			if (!is_syn)
2608				continue;
2609			to->to_flags |= TOF_MSS;
2610			bcopy((char *)cp + 2,
2611			    (char *)&to->to_mss, sizeof(to->to_mss));
2612			to->to_mss = ntohs(to->to_mss);
2613			break;
2614		case TCPOPT_WINDOW:
2615			if (optlen != TCPOLEN_WINDOW)
2616				continue;
2617			if (! is_syn)
2618				continue;
2619			to->to_flags |= TOF_SCALE;
2620			to->to_requested_s_scale = min(cp[2], TCP_MAX_WINSHIFT);
2621			break;
2622		case TCPOPT_TIMESTAMP:
2623			if (optlen != TCPOLEN_TIMESTAMP)
2624				continue;
2625			to->to_flags |= TOF_TS;
2626			bcopy((char *)cp + 2,
2627			    (char *)&to->to_tsval, sizeof(to->to_tsval));
2628			to->to_tsval = ntohl(to->to_tsval);
2629			bcopy((char *)cp + 6,
2630			    (char *)&to->to_tsecr, sizeof(to->to_tsecr));
2631			to->to_tsecr = ntohl(to->to_tsecr);
2632			/*
2633			 * If echoed timestamp is later than the current time,
2634			 * fall back to non RFC1323 RTT calculation.
2635			 */
2636			if ((to->to_tsecr != 0) && TSTMP_GT(to->to_tsecr, ticks))
2637				to->to_tsecr = 0;
2638			break;
2639#ifdef TCP_SIGNATURE
2640		/*
2641		 * XXX In order to reply to a host which has set the
2642		 * TCP_SIGNATURE option in its initial SYN, we have to
2643		 * record the fact that the option was observed here
2644		 * for the syncache code to perform the correct response.
2645		 */
2646		case TCPOPT_SIGNATURE:
2647			if (optlen != TCPOLEN_SIGNATURE)
2648				continue;
2649			to->to_flags |= (TOF_SIGNATURE | TOF_SIGLEN);
2650			break;
2651#endif
2652		case TCPOPT_SACK_PERMITTED:
2653			if (!tcp_do_sack ||
2654			    optlen != TCPOLEN_SACK_PERMITTED)
2655				continue;
2656			if (is_syn) {
2657				/* MUST only be set on SYN */
2658				to->to_flags |= TOF_SACK;
2659			}
2660			break;
2661		case TCPOPT_SACK:
2662			if (optlen <= 2 || (optlen - 2) % TCPOLEN_SACK != 0)
2663				continue;
2664			to->to_nsacks = (optlen - 2) / TCPOLEN_SACK;
2665			to->to_sacks = cp + 2;
2666			tcpstat.tcps_sack_rcv_blocks++;
2667			break;
2668		default:
2669			continue;
2670		}
2671	}
2672}
2673
2674/*
2675 * Pull out of band byte out of a segment so
2676 * it doesn't appear in the user's data queue.
2677 * It is still reflected in the segment length for
2678 * sequencing purposes.
2679 */
2680static void
2681tcp_pulloutofband(so, th, m, off)
2682	struct socket *so;
2683	struct tcphdr *th;
2684	register struct mbuf *m;
2685	int off;		/* delayed to be droped hdrlen */
2686{
2687	int cnt = off + th->th_urp - 1;
2688
2689	while (cnt >= 0) {
2690		if (m->m_len > cnt) {
2691			char *cp = mtod(m, caddr_t) + cnt;
2692			struct tcpcb *tp = sototcpcb(so);
2693
2694			tp->t_iobc = *cp;
2695			tp->t_oobflags |= TCPOOB_HAVEDATA;
2696			bcopy(cp+1, cp, (unsigned)(m->m_len - cnt - 1));
2697			m->m_len--;
2698			if (m->m_flags & M_PKTHDR)
2699				m->m_pkthdr.len--;
2700			return;
2701		}
2702		cnt -= m->m_len;
2703		m = m->m_next;
2704		if (m == 0)
2705			break;
2706	}
2707	panic("tcp_pulloutofband");
2708}
2709
2710/*
2711 * Collect new round-trip time estimate
2712 * and update averages and current timeout.
2713 */
2714static void
2715tcp_xmit_timer(tp, rtt)
2716	register struct tcpcb *tp;
2717	int rtt;
2718{
2719	register int delta;
2720
2721	INP_LOCK_ASSERT(tp->t_inpcb);
2722
2723	tcpstat.tcps_rttupdated++;
2724	tp->t_rttupdated++;
2725	if (tp->t_srtt != 0) {
2726		/*
2727		 * srtt is stored as fixed point with 5 bits after the
2728		 * binary point (i.e., scaled by 8).  The following magic
2729		 * is equivalent to the smoothing algorithm in rfc793 with
2730		 * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed
2731		 * point).  Adjust rtt to origin 0.
2732		 */
2733		delta = ((rtt - 1) << TCP_DELTA_SHIFT)
2734			- (tp->t_srtt >> (TCP_RTT_SHIFT - TCP_DELTA_SHIFT));
2735
2736		if ((tp->t_srtt += delta) <= 0)
2737			tp->t_srtt = 1;
2738
2739		/*
2740		 * We accumulate a smoothed rtt variance (actually, a
2741		 * smoothed mean difference), then set the retransmit
2742		 * timer to smoothed rtt + 4 times the smoothed variance.
2743		 * rttvar is stored as fixed point with 4 bits after the
2744		 * binary point (scaled by 16).  The following is
2745		 * equivalent to rfc793 smoothing with an alpha of .75
2746		 * (rttvar = rttvar*3/4 + |delta| / 4).  This replaces
2747		 * rfc793's wired-in beta.
2748		 */
2749		if (delta < 0)
2750			delta = -delta;
2751		delta -= tp->t_rttvar >> (TCP_RTTVAR_SHIFT - TCP_DELTA_SHIFT);
2752		if ((tp->t_rttvar += delta) <= 0)
2753			tp->t_rttvar = 1;
2754		if (tp->t_rttbest > tp->t_srtt + tp->t_rttvar)
2755		    tp->t_rttbest = tp->t_srtt + tp->t_rttvar;
2756	} else {
2757		/*
2758		 * No rtt measurement yet - use the unsmoothed rtt.
2759		 * Set the variance to half the rtt (so our first
2760		 * retransmit happens at 3*rtt).
2761		 */
2762		tp->t_srtt = rtt << TCP_RTT_SHIFT;
2763		tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT - 1);
2764		tp->t_rttbest = tp->t_srtt + tp->t_rttvar;
2765	}
2766	tp->t_rtttime = 0;
2767	tp->t_rxtshift = 0;
2768
2769	/*
2770	 * the retransmit should happen at rtt + 4 * rttvar.
2771	 * Because of the way we do the smoothing, srtt and rttvar
2772	 * will each average +1/2 tick of bias.  When we compute
2773	 * the retransmit timer, we want 1/2 tick of rounding and
2774	 * 1 extra tick because of +-1/2 tick uncertainty in the
2775	 * firing of the timer.  The bias will give us exactly the
2776	 * 1.5 tick we need.  But, because the bias is
2777	 * statistical, we have to test that we don't drop below
2778	 * the minimum feasible timer (which is 2 ticks).
2779	 */
2780	TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
2781		      max(tp->t_rttmin, rtt + 2), TCPTV_REXMTMAX);
2782
2783	/*
2784	 * We received an ack for a packet that wasn't retransmitted;
2785	 * it is probably safe to discard any error indications we've
2786	 * received recently.  This isn't quite right, but close enough
2787	 * for now (a route might have failed after we sent a segment,
2788	 * and the return path might not be symmetrical).
2789	 */
2790	tp->t_softerror = 0;
2791}
2792
2793/*
2794 * Determine a reasonable value for maxseg size.
2795 * If the route is known, check route for mtu.
2796 * If none, use an mss that can be handled on the outgoing
2797 * interface without forcing IP to fragment; if bigger than
2798 * an mbuf cluster (MCLBYTES), round down to nearest multiple of MCLBYTES
2799 * to utilize large mbufs.  If no route is found, route has no mtu,
2800 * or the destination isn't local, use a default, hopefully conservative
2801 * size (usually 512 or the default IP max size, but no more than the mtu
2802 * of the interface), as we can't discover anything about intervening
2803 * gateways or networks.  We also initialize the congestion/slow start
2804 * window to be a single segment if the destination isn't local.
2805 * While looking at the routing entry, we also initialize other path-dependent
2806 * parameters from pre-set or cached values in the routing entry.
2807 *
2808 * Also take into account the space needed for options that we
2809 * send regularly.  Make maxseg shorter by that amount to assure
2810 * that we can send maxseg amount of data even when the options
2811 * are present.  Store the upper limit of the length of options plus
2812 * data in maxopd.
2813 *
2814 *
2815 * In case of T/TCP, we call this routine during implicit connection
2816 * setup as well (offer = -1), to initialize maxseg from the cached
2817 * MSS of our peer.
2818 *
2819 * NOTE that this routine is only called when we process an incoming
2820 * segment. Outgoing SYN/ACK MSS settings are handled in tcp_mssopt().
2821 */
2822void
2823tcp_mss(tp, offer)
2824	struct tcpcb *tp;
2825	int offer;
2826{
2827	int rtt, mss;
2828	u_long bufsize;
2829	u_long maxmtu;
2830	struct inpcb *inp = tp->t_inpcb;
2831	struct socket *so;
2832	struct hc_metrics_lite metrics;
2833	int origoffer = offer;
2834#ifdef INET6
2835	int isipv6 = ((inp->inp_vflag & INP_IPV6) != 0) ? 1 : 0;
2836	size_t min_protoh = isipv6 ?
2837			    sizeof (struct ip6_hdr) + sizeof (struct tcphdr) :
2838			    sizeof (struct tcpiphdr);
2839#else
2840	const size_t min_protoh = sizeof(struct tcpiphdr);
2841#endif
2842
2843	/* initialize */
2844#ifdef INET6
2845	if (isipv6) {
2846		maxmtu = tcp_maxmtu6(&inp->inp_inc);
2847		tp->t_maxopd = tp->t_maxseg = tcp_v6mssdflt;
2848	} else
2849#endif
2850	{
2851		maxmtu = tcp_maxmtu(&inp->inp_inc);
2852		tp->t_maxopd = tp->t_maxseg = tcp_mssdflt;
2853	}
2854	so = inp->inp_socket;
2855
2856	/*
2857	 * no route to sender, stay with default mss and return
2858	 */
2859	if (maxmtu == 0)
2860		return;
2861
2862	/* what have we got? */
2863	switch (offer) {
2864		case 0:
2865			/*
2866			 * Offer == 0 means that there was no MSS on the SYN
2867			 * segment, in this case we use tcp_mssdflt.
2868			 */
2869			offer =
2870#ifdef INET6
2871				isipv6 ? tcp_v6mssdflt :
2872#endif
2873				tcp_mssdflt;
2874			break;
2875
2876		case -1:
2877			/*
2878			 * Offer == -1 means that we didn't receive SYN yet.
2879			 */
2880			/* FALLTHROUGH */
2881
2882		default:
2883			/*
2884			 * Prevent DoS attack with too small MSS. Round up
2885			 * to at least minmss.
2886			 */
2887			offer = max(offer, tcp_minmss);
2888			/*
2889			 * Sanity check: make sure that maxopd will be large
2890			 * enough to allow some data on segments even if the
2891			 * all the option space is used (40bytes).  Otherwise
2892			 * funny things may happen in tcp_output.
2893			 */
2894			offer = max(offer, 64);
2895	}
2896
2897	/*
2898	 * rmx information is now retrieved from tcp_hostcache
2899	 */
2900	tcp_hc_get(&inp->inp_inc, &metrics);
2901
2902	/*
2903	 * if there's a discovered mtu int tcp hostcache, use it
2904	 * else, use the link mtu.
2905	 */
2906	if (metrics.rmx_mtu)
2907		mss = min(metrics.rmx_mtu, maxmtu) - min_protoh;
2908	else {
2909#ifdef INET6
2910		if (isipv6) {
2911			mss = maxmtu - min_protoh;
2912			if (!path_mtu_discovery &&
2913			    !in6_localaddr(&inp->in6p_faddr))
2914				mss = min(mss, tcp_v6mssdflt);
2915		} else
2916#endif
2917		{
2918			mss = maxmtu - min_protoh;
2919			if (!path_mtu_discovery &&
2920			    !in_localaddr(inp->inp_faddr))
2921				mss = min(mss, tcp_mssdflt);
2922		}
2923	}
2924	mss = min(mss, offer);
2925
2926	/*
2927	 * maxopd stores the maximum length of data AND options
2928	 * in a segment; maxseg is the amount of data in a normal
2929	 * segment.  We need to store this value (maxopd) apart
2930	 * from maxseg, because now every segment carries options
2931	 * and thus we normally have somewhat less data in segments.
2932	 */
2933	tp->t_maxopd = mss;
2934
2935	/*
2936	 * origoffer==-1 indicates, that no segments were received yet.
2937	 * In this case we just guess.
2938	 */
2939	if ((tp->t_flags & (TF_REQ_TSTMP|TF_NOOPT)) == TF_REQ_TSTMP &&
2940	    (origoffer == -1 ||
2941	     (tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP))
2942		mss -= TCPOLEN_TSTAMP_APPA;
2943	tp->t_maxseg = mss;
2944
2945#if	(MCLBYTES & (MCLBYTES - 1)) == 0
2946		if (mss > MCLBYTES)
2947			mss &= ~(MCLBYTES-1);
2948#else
2949		if (mss > MCLBYTES)
2950			mss = mss / MCLBYTES * MCLBYTES;
2951#endif
2952	tp->t_maxseg = mss;
2953
2954	/*
2955	 * If there's a pipesize, change the socket buffer to that size,
2956	 * don't change if sb_hiwat is different than default (then it
2957	 * has been changed on purpose with setsockopt).
2958	 * Make the socket buffers an integral number of mss units;
2959	 * if the mss is larger than the socket buffer, decrease the mss.
2960	 */
2961	SOCKBUF_LOCK(&so->so_snd);
2962	if ((so->so_snd.sb_hiwat == tcp_sendspace) && metrics.rmx_sendpipe)
2963		bufsize = metrics.rmx_sendpipe;
2964	else
2965		bufsize = so->so_snd.sb_hiwat;
2966	if (bufsize < mss)
2967		mss = bufsize;
2968	else {
2969		bufsize = roundup(bufsize, mss);
2970		if (bufsize > sb_max)
2971			bufsize = sb_max;
2972		if (bufsize > so->so_snd.sb_hiwat)
2973			(void)sbreserve_locked(&so->so_snd, bufsize, so, NULL);
2974	}
2975	SOCKBUF_UNLOCK(&so->so_snd);
2976	tp->t_maxseg = mss;
2977
2978	SOCKBUF_LOCK(&so->so_rcv);
2979	if ((so->so_rcv.sb_hiwat == tcp_recvspace) && metrics.rmx_recvpipe)
2980		bufsize = metrics.rmx_recvpipe;
2981	else
2982		bufsize = so->so_rcv.sb_hiwat;
2983	if (bufsize > mss) {
2984		bufsize = roundup(bufsize, mss);
2985		if (bufsize > sb_max)
2986			bufsize = sb_max;
2987		if (bufsize > so->so_rcv.sb_hiwat)
2988			(void)sbreserve_locked(&so->so_rcv, bufsize, so, NULL);
2989	}
2990	SOCKBUF_UNLOCK(&so->so_rcv);
2991	/*
2992	 * While we're here, check the others too
2993	 */
2994	if (tp->t_srtt == 0 && (rtt = metrics.rmx_rtt)) {
2995		tp->t_srtt = rtt;
2996		tp->t_rttbest = tp->t_srtt + TCP_RTT_SCALE;
2997		tcpstat.tcps_usedrtt++;
2998		if (metrics.rmx_rttvar) {
2999			tp->t_rttvar = metrics.rmx_rttvar;
3000			tcpstat.tcps_usedrttvar++;
3001		} else {
3002			/* default variation is +- 1 rtt */
3003			tp->t_rttvar =
3004			    tp->t_srtt * TCP_RTTVAR_SCALE / TCP_RTT_SCALE;
3005		}
3006		TCPT_RANGESET(tp->t_rxtcur,
3007			      ((tp->t_srtt >> 2) + tp->t_rttvar) >> 1,
3008			      tp->t_rttmin, TCPTV_REXMTMAX);
3009	}
3010	if (metrics.rmx_ssthresh) {
3011		/*
3012		 * There's some sort of gateway or interface
3013		 * buffer limit on the path.  Use this to set
3014		 * the slow start threshhold, but set the
3015		 * threshold to no less than 2*mss.
3016		 */
3017		tp->snd_ssthresh = max(2 * mss, metrics.rmx_ssthresh);
3018		tcpstat.tcps_usedssthresh++;
3019	}
3020	if (metrics.rmx_bandwidth)
3021		tp->snd_bandwidth = metrics.rmx_bandwidth;
3022
3023	/*
3024	 * Set the slow-start flight size depending on whether this
3025	 * is a local network or not.
3026	 *
3027	 * Extend this so we cache the cwnd too and retrieve it here.
3028	 * Make cwnd even bigger than RFC3390 suggests but only if we
3029	 * have previous experience with the remote host. Be careful
3030	 * not make cwnd bigger than remote receive window or our own
3031	 * send socket buffer. Maybe put some additional upper bound
3032	 * on the retrieved cwnd. Should do incremental updates to
3033	 * hostcache when cwnd collapses so next connection doesn't
3034	 * overloads the path again.
3035	 *
3036	 * RFC3390 says only do this if SYN or SYN/ACK didn't got lost.
3037	 * We currently check only in syncache_socket for that.
3038	 */
3039#define TCP_METRICS_CWND
3040#ifdef TCP_METRICS_CWND
3041	if (metrics.rmx_cwnd)
3042		tp->snd_cwnd = max(mss,
3043				min(metrics.rmx_cwnd / 2,
3044				 min(tp->snd_wnd, so->so_snd.sb_hiwat)));
3045	else
3046#endif
3047	if (tcp_do_rfc3390)
3048		tp->snd_cwnd = min(4 * mss, max(2 * mss, 4380));
3049#ifdef INET6
3050	else if ((isipv6 && in6_localaddr(&inp->in6p_faddr)) ||
3051		 (!isipv6 && in_localaddr(inp->inp_faddr)))
3052#else
3053	else if (in_localaddr(inp->inp_faddr))
3054#endif
3055		tp->snd_cwnd = mss * ss_fltsz_local;
3056	else
3057		tp->snd_cwnd = mss * ss_fltsz;
3058}
3059
3060/*
3061 * Determine the MSS option to send on an outgoing SYN.
3062 */
3063int
3064tcp_mssopt(inc)
3065	struct in_conninfo *inc;
3066{
3067	int mss = 0;
3068	u_long maxmtu = 0;
3069	u_long thcmtu = 0;
3070	size_t min_protoh;
3071#ifdef INET6
3072	int isipv6 = inc->inc_isipv6 ? 1 : 0;
3073#endif
3074
3075	KASSERT(inc != NULL, ("tcp_mssopt with NULL in_conninfo pointer"));
3076
3077#ifdef INET6
3078	if (isipv6) {
3079		mss = tcp_v6mssdflt;
3080		maxmtu = tcp_maxmtu6(inc);
3081		thcmtu = tcp_hc_getmtu(inc); /* IPv4 and IPv6 */
3082		min_protoh = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
3083	} else
3084#endif
3085	{
3086		mss = tcp_mssdflt;
3087		maxmtu = tcp_maxmtu(inc);
3088		thcmtu = tcp_hc_getmtu(inc); /* IPv4 and IPv6 */
3089		min_protoh = sizeof(struct tcpiphdr);
3090	}
3091	if (maxmtu && thcmtu)
3092		mss = min(maxmtu, thcmtu) - min_protoh;
3093	else if (maxmtu || thcmtu)
3094		mss = max(maxmtu, thcmtu) - min_protoh;
3095
3096	return (mss);
3097}
3098
3099
3100/*
3101 * On a partial ack arrives, force the retransmission of the
3102 * next unacknowledged segment.  Do not clear tp->t_dupacks.
3103 * By setting snd_nxt to ti_ack, this forces retransmission timer to
3104 * be started again.
3105 */
3106static void
3107tcp_newreno_partial_ack(tp, th)
3108	struct tcpcb *tp;
3109	struct tcphdr *th;
3110{
3111	tcp_seq onxt = tp->snd_nxt;
3112	u_long  ocwnd = tp->snd_cwnd;
3113
3114	callout_stop(tp->tt_rexmt);
3115	tp->t_rtttime = 0;
3116	tp->snd_nxt = th->th_ack;
3117	/*
3118	 * Set snd_cwnd to one segment beyond acknowledged offset.
3119	 * (tp->snd_una has not yet been updated when this function is called.)
3120	 */
3121	tp->snd_cwnd = tp->t_maxseg + (th->th_ack - tp->snd_una);
3122	tp->t_flags |= TF_ACKNOW;
3123	(void) tcp_output(tp);
3124	tp->snd_cwnd = ocwnd;
3125	if (SEQ_GT(onxt, tp->snd_nxt))
3126		tp->snd_nxt = onxt;
3127	/*
3128	 * Partial window deflation.  Relies on fact that tp->snd_una
3129	 * not updated yet.
3130	 */
3131	if (tp->snd_cwnd > th->th_ack - tp->snd_una)
3132		tp->snd_cwnd -= th->th_ack - tp->snd_una;
3133	else
3134		tp->snd_cwnd = 0;
3135	tp->snd_cwnd += tp->t_maxseg;
3136}
3137
3138/*
3139 * Returns 1 if the TIME_WAIT state was killed and we should start over,
3140 * looking for a pcb in the listen state.  Returns 0 otherwise.
3141 */
3142static int
3143tcp_timewait(tw, to, th, m, tlen)
3144	struct tcptw *tw;
3145	struct tcpopt *to;
3146	struct tcphdr *th;
3147	struct mbuf *m;
3148	int tlen;
3149{
3150	int thflags;
3151	tcp_seq seq;
3152#ifdef INET6
3153	int isipv6 = (mtod(m, struct ip *)->ip_v == 6) ? 1 : 0;
3154#else
3155	const int isipv6 = 0;
3156#endif
3157
3158	/* tcbinfo lock required for tcp_twclose(), tcp_2msl_reset. */
3159	INP_INFO_WLOCK_ASSERT(&tcbinfo);
3160	INP_LOCK_ASSERT(tw->tw_inpcb);
3161
3162	thflags = th->th_flags;
3163
3164	/*
3165	 * NOTE: for FIN_WAIT_2 (to be added later),
3166	 * must validate sequence number before accepting RST
3167	 */
3168
3169	/*
3170	 * If the segment contains RST:
3171	 *	Drop the segment - see Stevens, vol. 2, p. 964 and
3172	 *      RFC 1337.
3173	 */
3174	if (thflags & TH_RST)
3175		goto drop;
3176
3177#if 0
3178/* PAWS not needed at the moment */
3179	/*
3180	 * RFC 1323 PAWS: If we have a timestamp reply on this segment
3181	 * and it's less than ts_recent, drop it.
3182	 */
3183	if ((to.to_flags & TOF_TS) != 0 && tp->ts_recent &&
3184	    TSTMP_LT(to.to_tsval, tp->ts_recent)) {
3185		if ((thflags & TH_ACK) == 0)
3186			goto drop;
3187		goto ack;
3188	}
3189	/*
3190	 * ts_recent is never updated because we never accept new segments.
3191	 */
3192#endif
3193
3194	/*
3195	 * If a new connection request is received
3196	 * while in TIME_WAIT, drop the old connection
3197	 * and start over if the sequence numbers
3198	 * are above the previous ones.
3199	 */
3200	if ((thflags & TH_SYN) && SEQ_GT(th->th_seq, tw->rcv_nxt)) {
3201		(void) tcp_twclose(tw, 0);
3202		return (1);
3203	}
3204
3205	/*
3206	 * Drop the the segment if it does not contain an ACK.
3207	 */
3208	if ((thflags & TH_ACK) == 0)
3209		goto drop;
3210
3211	/*
3212	 * Reset the 2MSL timer if this is a duplicate FIN.
3213	 */
3214	if (thflags & TH_FIN) {
3215		seq = th->th_seq + tlen + (thflags & TH_SYN ? 1 : 0);
3216		if (seq + 1 == tw->rcv_nxt)
3217			tcp_timer_2msl_reset(tw, 2 * tcp_msl);
3218	}
3219
3220	/*
3221	 * Acknowledge the segment if it has data or is not a duplicate ACK.
3222	 */
3223	if (thflags != TH_ACK || tlen != 0 ||
3224	    th->th_seq != tw->rcv_nxt || th->th_ack != tw->snd_nxt)
3225		tcp_twrespond(tw, TH_ACK);
3226	goto drop;
3227
3228	/*
3229	 * Generate a RST, dropping incoming segment.
3230	 * Make ACK acceptable to originator of segment.
3231	 * Don't bother to respond if destination was broadcast/multicast.
3232	 */
3233	if (m->m_flags & (M_BCAST|M_MCAST))
3234		goto drop;
3235	if (isipv6) {
3236		struct ip6_hdr *ip6;
3237
3238		/* IPv6 anycast check is done at tcp6_input() */
3239		ip6 = mtod(m, struct ip6_hdr *);
3240		if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) ||
3241		    IN6_IS_ADDR_MULTICAST(&ip6->ip6_src))
3242			goto drop;
3243	} else {
3244		struct ip *ip;
3245
3246		ip = mtod(m, struct ip *);
3247		if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
3248		    IN_MULTICAST(ntohl(ip->ip_src.s_addr)) ||
3249		    ip->ip_src.s_addr == htonl(INADDR_BROADCAST) ||
3250		    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
3251			goto drop;
3252	}
3253	if (thflags & TH_ACK) {
3254		tcp_respond(NULL,
3255		    mtod(m, void *), th, m, 0, th->th_ack, TH_RST);
3256	} else {
3257		seq = th->th_seq + (thflags & TH_SYN ? 1 : 0);
3258		tcp_respond(NULL,
3259		    mtod(m, void *), th, m, seq, 0, TH_RST|TH_ACK);
3260	}
3261	INP_UNLOCK(tw->tw_inpcb);
3262	return (0);
3263
3264drop:
3265	INP_UNLOCK(tw->tw_inpcb);
3266	m_freem(m);
3267	return (0);
3268}
3269