tcp_input.c revision 1541
1/*
2 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 *    must display the following acknowledgement:
15 *	This product includes software developed by the University of
16 *	California, Berkeley and its contributors.
17 * 4. Neither the name of the University nor the names of its contributors
18 *    may be used to endorse or promote products derived from this software
19 *    without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 *
33 *	@(#)tcp_input.c	8.5 (Berkeley) 4/10/94
34 */
35
36#ifndef TUBA_INCLUDE
37#include <sys/param.h>
38#include <sys/systm.h>
39#include <sys/malloc.h>
40#include <sys/mbuf.h>
41#include <sys/protosw.h>
42#include <sys/socket.h>
43#include <sys/socketvar.h>
44#include <sys/errno.h>
45
46#include <net/if.h>
47#include <net/route.h>
48
49#include <netinet/in.h>
50#include <netinet/in_systm.h>
51#include <netinet/ip.h>
52#include <netinet/in_pcb.h>
53#include <netinet/ip_var.h>
54#include <netinet/tcp.h>
55#include <netinet/tcp_fsm.h>
56#include <netinet/tcp_seq.h>
57#include <netinet/tcp_timer.h>
58#include <netinet/tcp_var.h>
59#include <netinet/tcpip.h>
60#include <netinet/tcp_debug.h>
61
62int	tcprexmtthresh = 3;
63struct	tcpiphdr tcp_saveti;
64struct	inpcb *tcp_last_inpcb = &tcb;
65
66extern u_long sb_max;
67
68#endif /* TUBA_INCLUDE */
69#define TCP_PAWS_IDLE	(24 * 24 * 60 * 60 * PR_SLOWHZ)
70
71/* for modulo comparisons of timestamps */
72#define TSTMP_LT(a,b)	((int)((a)-(b)) < 0)
73#define TSTMP_GEQ(a,b)	((int)((a)-(b)) >= 0)
74
75
76/*
77 * Insert segment ti into reassembly queue of tcp with
78 * control block tp.  Return TH_FIN if reassembly now includes
79 * a segment with FIN.  The macro form does the common case inline
80 * (segment is the next to be received on an established connection,
81 * and the queue is empty), avoiding linkage into and removal
82 * from the queue and repetition of various conversions.
83 * Set DELACK for segments received in order, but ack immediately
84 * when segments are out of order (so fast retransmit can work).
85 */
86#define	TCP_REASS(tp, ti, m, so, flags) { \
87	if ((ti)->ti_seq == (tp)->rcv_nxt && \
88	    (tp)->seg_next == (struct tcpiphdr *)(tp) && \
89	    (tp)->t_state == TCPS_ESTABLISHED) { \
90		tp->t_flags |= TF_DELACK; \
91		(tp)->rcv_nxt += (ti)->ti_len; \
92		flags = (ti)->ti_flags & TH_FIN; \
93		tcpstat.tcps_rcvpack++;\
94		tcpstat.tcps_rcvbyte += (ti)->ti_len;\
95		sbappend(&(so)->so_rcv, (m)); \
96		sorwakeup(so); \
97	} else { \
98		(flags) = tcp_reass((tp), (ti), (m)); \
99		tp->t_flags |= TF_ACKNOW; \
100	} \
101}
102#ifndef TUBA_INCLUDE
103
104int
105tcp_reass(tp, ti, m)
106	register struct tcpcb *tp;
107	register struct tcpiphdr *ti;
108	struct mbuf *m;
109{
110	register struct tcpiphdr *q;
111	struct socket *so = tp->t_inpcb->inp_socket;
112	int flags;
113
114	/*
115	 * Call with ti==0 after become established to
116	 * force pre-ESTABLISHED data up to user socket.
117	 */
118	if (ti == 0)
119		goto present;
120
121	/*
122	 * Find a segment which begins after this one does.
123	 */
124	for (q = tp->seg_next; q != (struct tcpiphdr *)tp;
125	    q = (struct tcpiphdr *)q->ti_next)
126		if (SEQ_GT(q->ti_seq, ti->ti_seq))
127			break;
128
129	/*
130	 * If there is a preceding segment, it may provide some of
131	 * our data already.  If so, drop the data from the incoming
132	 * segment.  If it provides all of our data, drop us.
133	 */
134	if ((struct tcpiphdr *)q->ti_prev != (struct tcpiphdr *)tp) {
135		register int i;
136		q = (struct tcpiphdr *)q->ti_prev;
137		/* conversion to int (in i) handles seq wraparound */
138		i = q->ti_seq + q->ti_len - ti->ti_seq;
139		if (i > 0) {
140			if (i >= ti->ti_len) {
141				tcpstat.tcps_rcvduppack++;
142				tcpstat.tcps_rcvdupbyte += ti->ti_len;
143				m_freem(m);
144				return (0);
145			}
146			m_adj(m, i);
147			ti->ti_len -= i;
148			ti->ti_seq += i;
149		}
150		q = (struct tcpiphdr *)(q->ti_next);
151	}
152	tcpstat.tcps_rcvoopack++;
153	tcpstat.tcps_rcvoobyte += ti->ti_len;
154	REASS_MBUF(ti) = m;		/* XXX */
155
156	/*
157	 * While we overlap succeeding segments trim them or,
158	 * if they are completely covered, dequeue them.
159	 */
160	while (q != (struct tcpiphdr *)tp) {
161		register int i = (ti->ti_seq + ti->ti_len) - q->ti_seq;
162		if (i <= 0)
163			break;
164		if (i < q->ti_len) {
165			q->ti_seq += i;
166			q->ti_len -= i;
167			m_adj(REASS_MBUF(q), i);
168			break;
169		}
170		q = (struct tcpiphdr *)q->ti_next;
171		m = REASS_MBUF((struct tcpiphdr *)q->ti_prev);
172		remque(q->ti_prev);
173		m_freem(m);
174	}
175
176	/*
177	 * Stick new segment in its place.
178	 */
179	insque(ti, q->ti_prev);
180
181present:
182	/*
183	 * Present data to user, advancing rcv_nxt through
184	 * completed sequence space.
185	 */
186	if (TCPS_HAVERCVDSYN(tp->t_state) == 0)
187		return (0);
188	ti = tp->seg_next;
189	if (ti == (struct tcpiphdr *)tp || ti->ti_seq != tp->rcv_nxt)
190		return (0);
191	if (tp->t_state == TCPS_SYN_RECEIVED && ti->ti_len)
192		return (0);
193	do {
194		tp->rcv_nxt += ti->ti_len;
195		flags = ti->ti_flags & TH_FIN;
196		remque(ti);
197		m = REASS_MBUF(ti);
198		ti = (struct tcpiphdr *)ti->ti_next;
199		if (so->so_state & SS_CANTRCVMORE)
200			m_freem(m);
201		else
202			sbappend(&so->so_rcv, m);
203	} while (ti != (struct tcpiphdr *)tp && ti->ti_seq == tp->rcv_nxt);
204	sorwakeup(so);
205	return (flags);
206}
207
208/*
209 * TCP input routine, follows pages 65-76 of the
210 * protocol specification dated September, 1981 very closely.
211 */
212void
213tcp_input(m, iphlen)
214	register struct mbuf *m;
215	int iphlen;
216{
217	register struct tcpiphdr *ti;
218	register struct inpcb *inp;
219	caddr_t optp = NULL;
220	int optlen;
221	int len, tlen, off;
222	register struct tcpcb *tp = 0;
223	register int tiflags;
224	struct socket *so;
225	int todrop, acked, ourfinisacked, needoutput = 0;
226	short ostate;
227	struct in_addr laddr;
228	int dropsocket = 0;
229	int iss = 0;
230	u_long tiwin, ts_val, ts_ecr;
231	int ts_present = 0;
232
233	tcpstat.tcps_rcvtotal++;
234	/*
235	 * Get IP and TCP header together in first mbuf.
236	 * Note: IP leaves IP header in first mbuf.
237	 */
238	ti = mtod(m, struct tcpiphdr *);
239	if (iphlen > sizeof (struct ip))
240		ip_stripoptions(m, (struct mbuf *)0);
241	if (m->m_len < sizeof (struct tcpiphdr)) {
242		if ((m = m_pullup(m, sizeof (struct tcpiphdr))) == 0) {
243			tcpstat.tcps_rcvshort++;
244			return;
245		}
246		ti = mtod(m, struct tcpiphdr *);
247	}
248
249	/*
250	 * Checksum extended TCP header and data.
251	 */
252	tlen = ((struct ip *)ti)->ip_len;
253	len = sizeof (struct ip) + tlen;
254	ti->ti_next = ti->ti_prev = 0;
255	ti->ti_x1 = 0;
256	ti->ti_len = (u_short)tlen;
257	HTONS(ti->ti_len);
258	if (ti->ti_sum = in_cksum(m, len)) {
259		tcpstat.tcps_rcvbadsum++;
260		goto drop;
261	}
262#endif /* TUBA_INCLUDE */
263
264	/*
265	 * Check that TCP offset makes sense,
266	 * pull out TCP options and adjust length.		XXX
267	 */
268	off = ti->ti_off << 2;
269	if (off < sizeof (struct tcphdr) || off > tlen) {
270		tcpstat.tcps_rcvbadoff++;
271		goto drop;
272	}
273	tlen -= off;
274	ti->ti_len = tlen;
275	if (off > sizeof (struct tcphdr)) {
276		if (m->m_len < sizeof(struct ip) + off) {
277			if ((m = m_pullup(m, sizeof (struct ip) + off)) == 0) {
278				tcpstat.tcps_rcvshort++;
279				return;
280			}
281			ti = mtod(m, struct tcpiphdr *);
282		}
283		optlen = off - sizeof (struct tcphdr);
284		optp = mtod(m, caddr_t) + sizeof (struct tcpiphdr);
285		/*
286		 * Do quick retrieval of timestamp options ("options
287		 * prediction?").  If timestamp is the only option and it's
288		 * formatted as recommended in RFC 1323 appendix A, we
289		 * quickly get the values now and not bother calling
290		 * tcp_dooptions(), etc.
291		 */
292		if ((optlen == TCPOLEN_TSTAMP_APPA ||
293		     (optlen > TCPOLEN_TSTAMP_APPA &&
294			optp[TCPOLEN_TSTAMP_APPA] == TCPOPT_EOL)) &&
295		     *(u_long *)optp == htonl(TCPOPT_TSTAMP_HDR) &&
296		     (ti->ti_flags & TH_SYN) == 0) {
297			ts_present = 1;
298			ts_val = ntohl(*(u_long *)(optp + 4));
299			ts_ecr = ntohl(*(u_long *)(optp + 8));
300			optp = NULL;	/* we've parsed the options */
301		}
302	}
303	tiflags = ti->ti_flags;
304
305	/*
306	 * Convert TCP protocol specific fields to host format.
307	 */
308	NTOHL(ti->ti_seq);
309	NTOHL(ti->ti_ack);
310	NTOHS(ti->ti_win);
311	NTOHS(ti->ti_urp);
312
313	/*
314	 * Locate pcb for segment.
315	 */
316findpcb:
317	inp = tcp_last_inpcb;
318	if (inp->inp_lport != ti->ti_dport ||
319	    inp->inp_fport != ti->ti_sport ||
320	    inp->inp_faddr.s_addr != ti->ti_src.s_addr ||
321	    inp->inp_laddr.s_addr != ti->ti_dst.s_addr) {
322		inp = in_pcblookup(&tcb, ti->ti_src, ti->ti_sport,
323		    ti->ti_dst, ti->ti_dport, INPLOOKUP_WILDCARD);
324		if (inp)
325			tcp_last_inpcb = inp;
326		++tcpstat.tcps_pcbcachemiss;
327	}
328
329	/*
330	 * If the state is CLOSED (i.e., TCB does not exist) then
331	 * all data in the incoming segment is discarded.
332	 * If the TCB exists but is in CLOSED state, it is embryonic,
333	 * but should either do a listen or a connect soon.
334	 */
335	if (inp == 0)
336		goto dropwithreset;
337	tp = intotcpcb(inp);
338	if (tp == 0)
339		goto dropwithreset;
340	if (tp->t_state == TCPS_CLOSED)
341		goto drop;
342
343	/* Unscale the window into a 32-bit value. */
344	if ((tiflags & TH_SYN) == 0)
345		tiwin = ti->ti_win << tp->snd_scale;
346	else
347		tiwin = ti->ti_win;
348
349	so = inp->inp_socket;
350	if (so->so_options & (SO_DEBUG|SO_ACCEPTCONN)) {
351		if (so->so_options & SO_DEBUG) {
352			ostate = tp->t_state;
353			tcp_saveti = *ti;
354		}
355		if (so->so_options & SO_ACCEPTCONN) {
356			so = sonewconn(so, 0);
357			if (so == 0)
358				goto drop;
359			/*
360			 * This is ugly, but ....
361			 *
362			 * Mark socket as temporary until we're
363			 * committed to keeping it.  The code at
364			 * ``drop'' and ``dropwithreset'' check the
365			 * flag dropsocket to see if the temporary
366			 * socket created here should be discarded.
367			 * We mark the socket as discardable until
368			 * we're committed to it below in TCPS_LISTEN.
369			 */
370			dropsocket++;
371			inp = (struct inpcb *)so->so_pcb;
372			inp->inp_laddr = ti->ti_dst;
373			inp->inp_lport = ti->ti_dport;
374#if BSD>=43
375			inp->inp_options = ip_srcroute();
376#endif
377			tp = intotcpcb(inp);
378			tp->t_state = TCPS_LISTEN;
379
380			/* Compute proper scaling value from buffer space
381			 */
382			while (tp->request_r_scale < TCP_MAX_WINSHIFT &&
383			   TCP_MAXWIN << tp->request_r_scale < so->so_rcv.sb_hiwat)
384				tp->request_r_scale++;
385		}
386	}
387
388	/*
389	 * Segment received on connection.
390	 * Reset idle time and keep-alive timer.
391	 */
392	tp->t_idle = 0;
393	tp->t_timer[TCPT_KEEP] = tcp_keepidle;
394
395	/*
396	 * Process options if not in LISTEN state,
397	 * else do it below (after getting remote address).
398	 */
399	if (optp && tp->t_state != TCPS_LISTEN)
400		tcp_dooptions(tp, optp, optlen, ti,
401			&ts_present, &ts_val, &ts_ecr);
402
403	/*
404	 * Header prediction: check for the two common cases
405	 * of a uni-directional data xfer.  If the packet has
406	 * no control flags, is in-sequence, the window didn't
407	 * change and we're not retransmitting, it's a
408	 * candidate.  If the length is zero and the ack moved
409	 * forward, we're the sender side of the xfer.  Just
410	 * free the data acked & wake any higher level process
411	 * that was blocked waiting for space.  If the length
412	 * is non-zero and the ack didn't move, we're the
413	 * receiver side.  If we're getting packets in-order
414	 * (the reassembly queue is empty), add the data to
415	 * the socket buffer and note that we need a delayed ack.
416	 */
417	if (tp->t_state == TCPS_ESTABLISHED &&
418	    (tiflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK)) == TH_ACK &&
419	    (!ts_present || TSTMP_GEQ(ts_val, tp->ts_recent)) &&
420	    ti->ti_seq == tp->rcv_nxt &&
421	    tiwin && tiwin == tp->snd_wnd &&
422	    tp->snd_nxt == tp->snd_max) {
423
424		/*
425		 * If last ACK falls within this segment's sequence numbers,
426		 *  record the timestamp.
427		 */
428		if (ts_present && SEQ_LEQ(ti->ti_seq, tp->last_ack_sent) &&
429		   SEQ_LT(tp->last_ack_sent, ti->ti_seq + ti->ti_len)) {
430			tp->ts_recent_age = tcp_now;
431			tp->ts_recent = ts_val;
432		}
433
434		if (ti->ti_len == 0) {
435			if (SEQ_GT(ti->ti_ack, tp->snd_una) &&
436			    SEQ_LEQ(ti->ti_ack, tp->snd_max) &&
437			    tp->snd_cwnd >= tp->snd_wnd) {
438				/*
439				 * this is a pure ack for outstanding data.
440				 */
441				++tcpstat.tcps_predack;
442				if (ts_present)
443					tcp_xmit_timer(tp, tcp_now-ts_ecr+1);
444				else if (tp->t_rtt &&
445					    SEQ_GT(ti->ti_ack, tp->t_rtseq))
446					tcp_xmit_timer(tp, tp->t_rtt);
447				acked = ti->ti_ack - tp->snd_una;
448				tcpstat.tcps_rcvackpack++;
449				tcpstat.tcps_rcvackbyte += acked;
450				sbdrop(&so->so_snd, acked);
451				tp->snd_una = ti->ti_ack;
452				m_freem(m);
453
454				/*
455				 * If all outstanding data are acked, stop
456				 * retransmit timer, otherwise restart timer
457				 * using current (possibly backed-off) value.
458				 * If process is waiting for space,
459				 * wakeup/selwakeup/signal.  If data
460				 * are ready to send, let tcp_output
461				 * decide between more output or persist.
462				 */
463				if (tp->snd_una == tp->snd_max)
464					tp->t_timer[TCPT_REXMT] = 0;
465				else if (tp->t_timer[TCPT_PERSIST] == 0)
466					tp->t_timer[TCPT_REXMT] = tp->t_rxtcur;
467
468				if (so->so_snd.sb_flags & SB_NOTIFY)
469					sowwakeup(so);
470				if (so->so_snd.sb_cc)
471					(void) tcp_output(tp);
472				return;
473			}
474		} else if (ti->ti_ack == tp->snd_una &&
475		    tp->seg_next == (struct tcpiphdr *)tp &&
476		    ti->ti_len <= sbspace(&so->so_rcv)) {
477			/*
478			 * this is a pure, in-sequence data packet
479			 * with nothing on the reassembly queue and
480			 * we have enough buffer space to take it.
481			 */
482			++tcpstat.tcps_preddat;
483			tp->rcv_nxt += ti->ti_len;
484			tcpstat.tcps_rcvpack++;
485			tcpstat.tcps_rcvbyte += ti->ti_len;
486			/*
487			 * Drop TCP, IP headers and TCP options then add data
488			 * to socket buffer.
489			 */
490			m->m_data += sizeof(struct tcpiphdr)+off-sizeof(struct tcphdr);
491			m->m_len -= sizeof(struct tcpiphdr)+off-sizeof(struct tcphdr);
492			sbappend(&so->so_rcv, m);
493			sorwakeup(so);
494			tp->t_flags |= TF_DELACK;
495			return;
496		}
497	}
498
499	/*
500	 * Drop TCP, IP headers and TCP options.
501	 */
502	m->m_data += sizeof(struct tcpiphdr)+off-sizeof(struct tcphdr);
503	m->m_len  -= sizeof(struct tcpiphdr)+off-sizeof(struct tcphdr);
504
505	/*
506	 * Calculate amount of space in receive window,
507	 * and then do TCP input processing.
508	 * Receive window is amount of space in rcv queue,
509	 * but not less than advertised window.
510	 */
511	{ int win;
512
513	win = sbspace(&so->so_rcv);
514	if (win < 0)
515		win = 0;
516	tp->rcv_wnd = max(win, (int)(tp->rcv_adv - tp->rcv_nxt));
517	}
518
519	switch (tp->t_state) {
520
521	/*
522	 * If the state is LISTEN then ignore segment if it contains an RST.
523	 * If the segment contains an ACK then it is bad and send a RST.
524	 * If it does not contain a SYN then it is not interesting; drop it.
525	 * Don't bother responding if the destination was a broadcast.
526	 * Otherwise initialize tp->rcv_nxt, and tp->irs, select an initial
527	 * tp->iss, and send a segment:
528	 *     <SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
529	 * Also initialize tp->snd_nxt to tp->iss+1 and tp->snd_una to tp->iss.
530	 * Fill in remote peer address fields if not previously specified.
531	 * Enter SYN_RECEIVED state, and process any other fields of this
532	 * segment in this state.
533	 */
534	case TCPS_LISTEN: {
535		struct mbuf *am;
536		register struct sockaddr_in *sin;
537
538		if (tiflags & TH_RST)
539			goto drop;
540		if (tiflags & TH_ACK)
541			goto dropwithreset;
542		if ((tiflags & TH_SYN) == 0)
543			goto drop;
544		/*
545		 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
546		 * in_broadcast() should never return true on a received
547		 * packet with M_BCAST not set.
548		 */
549		if (m->m_flags & (M_BCAST|M_MCAST) ||
550		    IN_MULTICAST(ti->ti_dst.s_addr))
551			goto drop;
552		am = m_get(M_DONTWAIT, MT_SONAME);	/* XXX */
553		if (am == NULL)
554			goto drop;
555		am->m_len = sizeof (struct sockaddr_in);
556		sin = mtod(am, struct sockaddr_in *);
557		sin->sin_family = AF_INET;
558		sin->sin_len = sizeof(*sin);
559		sin->sin_addr = ti->ti_src;
560		sin->sin_port = ti->ti_sport;
561		bzero((caddr_t)sin->sin_zero, sizeof(sin->sin_zero));
562		laddr = inp->inp_laddr;
563		if (inp->inp_laddr.s_addr == INADDR_ANY)
564			inp->inp_laddr = ti->ti_dst;
565		if (in_pcbconnect(inp, am)) {
566			inp->inp_laddr = laddr;
567			(void) m_free(am);
568			goto drop;
569		}
570		(void) m_free(am);
571		tp->t_template = tcp_template(tp);
572		if (tp->t_template == 0) {
573			tp = tcp_drop(tp, ENOBUFS);
574			dropsocket = 0;		/* socket is already gone */
575			goto drop;
576		}
577		if (optp)
578			tcp_dooptions(tp, optp, optlen, ti,
579				&ts_present, &ts_val, &ts_ecr);
580		if (iss)
581			tp->iss = iss;
582		else
583			tp->iss = tcp_iss;
584		tcp_iss += TCP_ISSINCR/2;
585		tp->irs = ti->ti_seq;
586		tcp_sendseqinit(tp);
587		tcp_rcvseqinit(tp);
588		tp->t_flags |= TF_ACKNOW;
589		tp->t_state = TCPS_SYN_RECEIVED;
590		tp->t_timer[TCPT_KEEP] = TCPTV_KEEP_INIT;
591		dropsocket = 0;		/* committed to socket */
592		tcpstat.tcps_accepts++;
593		goto trimthenstep6;
594		}
595
596	/*
597	 * If the state is SYN_SENT:
598	 *	if seg contains an ACK, but not for our SYN, drop the input.
599	 *	if seg contains a RST, then drop the connection.
600	 *	if seg does not contain SYN, then drop it.
601	 * Otherwise this is an acceptable SYN segment
602	 *	initialize tp->rcv_nxt and tp->irs
603	 *	if seg contains ack then advance tp->snd_una
604	 *	if SYN has been acked change to ESTABLISHED else SYN_RCVD state
605	 *	arrange for segment to be acked (eventually)
606	 *	continue processing rest of data/controls, beginning with URG
607	 */
608	case TCPS_SYN_SENT:
609		if ((tiflags & TH_ACK) &&
610		    (SEQ_LEQ(ti->ti_ack, tp->iss) ||
611		     SEQ_GT(ti->ti_ack, tp->snd_max)))
612			goto dropwithreset;
613		if (tiflags & TH_RST) {
614			if (tiflags & TH_ACK)
615				tp = tcp_drop(tp, ECONNREFUSED);
616			goto drop;
617		}
618		if ((tiflags & TH_SYN) == 0)
619			goto drop;
620		if (tiflags & TH_ACK) {
621			tp->snd_una = ti->ti_ack;
622			if (SEQ_LT(tp->snd_nxt, tp->snd_una))
623				tp->snd_nxt = tp->snd_una;
624		}
625		tp->t_timer[TCPT_REXMT] = 0;
626		tp->irs = ti->ti_seq;
627		tcp_rcvseqinit(tp);
628		tp->t_flags |= TF_ACKNOW;
629		if (tiflags & TH_ACK && SEQ_GT(tp->snd_una, tp->iss)) {
630			tcpstat.tcps_connects++;
631			soisconnected(so);
632			tp->t_state = TCPS_ESTABLISHED;
633			/* Do window scaling on this connection? */
634			if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
635				(TF_RCVD_SCALE|TF_REQ_SCALE)) {
636				tp->snd_scale = tp->requested_s_scale;
637				tp->rcv_scale = tp->request_r_scale;
638			}
639			(void) tcp_reass(tp, (struct tcpiphdr *)0,
640				(struct mbuf *)0);
641			/*
642			 * if we didn't have to retransmit the SYN,
643			 * use its rtt as our initial srtt & rtt var.
644			 */
645			if (tp->t_rtt)
646				tcp_xmit_timer(tp, tp->t_rtt);
647		} else
648			tp->t_state = TCPS_SYN_RECEIVED;
649
650trimthenstep6:
651		/*
652		 * Advance ti->ti_seq to correspond to first data byte.
653		 * If data, trim to stay within window,
654		 * dropping FIN if necessary.
655		 */
656		ti->ti_seq++;
657		if (ti->ti_len > tp->rcv_wnd) {
658			todrop = ti->ti_len - tp->rcv_wnd;
659			m_adj(m, -todrop);
660			ti->ti_len = tp->rcv_wnd;
661			tiflags &= ~TH_FIN;
662			tcpstat.tcps_rcvpackafterwin++;
663			tcpstat.tcps_rcvbyteafterwin += todrop;
664		}
665		tp->snd_wl1 = ti->ti_seq - 1;
666		tp->rcv_up = ti->ti_seq;
667		goto step6;
668	}
669
670	/*
671	 * States other than LISTEN or SYN_SENT.
672	 * First check timestamp, if present.
673	 * Then check that at least some bytes of segment are within
674	 * receive window.  If segment begins before rcv_nxt,
675	 * drop leading data (and SYN); if nothing left, just ack.
676	 *
677	 * RFC 1323 PAWS: If we have a timestamp reply on this segment
678	 * and it's less than ts_recent, drop it.
679	 */
680	if (ts_present && (tiflags & TH_RST) == 0 && tp->ts_recent &&
681	    TSTMP_LT(ts_val, tp->ts_recent)) {
682
683		/* Check to see if ts_recent is over 24 days old.  */
684		if ((int)(tcp_now - tp->ts_recent_age) > TCP_PAWS_IDLE) {
685			/*
686			 * Invalidate ts_recent.  If this segment updates
687			 * ts_recent, the age will be reset later and ts_recent
688			 * will get a valid value.  If it does not, setting
689			 * ts_recent to zero will at least satisfy the
690			 * requirement that zero be placed in the timestamp
691			 * echo reply when ts_recent isn't valid.  The
692			 * age isn't reset until we get a valid ts_recent
693			 * because we don't want out-of-order segments to be
694			 * dropped when ts_recent is old.
695			 */
696			tp->ts_recent = 0;
697		} else {
698			tcpstat.tcps_rcvduppack++;
699			tcpstat.tcps_rcvdupbyte += ti->ti_len;
700			tcpstat.tcps_pawsdrop++;
701			goto dropafterack;
702		}
703	}
704
705	todrop = tp->rcv_nxt - ti->ti_seq;
706	if (todrop > 0) {
707		if (tiflags & TH_SYN) {
708			tiflags &= ~TH_SYN;
709			ti->ti_seq++;
710			if (ti->ti_urp > 1)
711				ti->ti_urp--;
712			else
713				tiflags &= ~TH_URG;
714			todrop--;
715		}
716		if (todrop >= ti->ti_len) {
717			tcpstat.tcps_rcvduppack++;
718			tcpstat.tcps_rcvdupbyte += ti->ti_len;
719			/*
720			 * If segment is just one to the left of the window,
721			 * check two special cases:
722			 * 1. Don't toss RST in response to 4.2-style keepalive.
723			 * 2. If the only thing to drop is a FIN, we can drop
724			 *    it, but check the ACK or we will get into FIN
725			 *    wars if our FINs crossed (both CLOSING).
726			 * In either case, send ACK to resynchronize,
727			 * but keep on processing for RST or ACK.
728			 */
729			if ((tiflags & TH_FIN && todrop == ti->ti_len + 1)
730#ifdef TCP_COMPAT_42
731			  || (tiflags & TH_RST && ti->ti_seq == tp->rcv_nxt - 1)
732#endif
733			   ) {
734				todrop = ti->ti_len;
735				tiflags &= ~TH_FIN;
736				tp->t_flags |= TF_ACKNOW;
737			} else {
738				/*
739				 * Handle the case when a bound socket connects
740				 * to itself. Allow packets with a SYN and
741				 * an ACK to continue with the processing.
742				 */
743				if (todrop != 0 || (tiflags & TH_ACK) == 0)
744					goto dropafterack;
745			}
746		} else {
747			tcpstat.tcps_rcvpartduppack++;
748			tcpstat.tcps_rcvpartdupbyte += todrop;
749		}
750		m_adj(m, todrop);
751		ti->ti_seq += todrop;
752		ti->ti_len -= todrop;
753		if (ti->ti_urp > todrop)
754			ti->ti_urp -= todrop;
755		else {
756			tiflags &= ~TH_URG;
757			ti->ti_urp = 0;
758		}
759	}
760
761	/*
762	 * If new data are received on a connection after the
763	 * user processes are gone, then RST the other end.
764	 */
765	if ((so->so_state & SS_NOFDREF) &&
766	    tp->t_state > TCPS_CLOSE_WAIT && ti->ti_len) {
767		tp = tcp_close(tp);
768		tcpstat.tcps_rcvafterclose++;
769		goto dropwithreset;
770	}
771
772	/*
773	 * If segment ends after window, drop trailing data
774	 * (and PUSH and FIN); if nothing left, just ACK.
775	 */
776	todrop = (ti->ti_seq+ti->ti_len) - (tp->rcv_nxt+tp->rcv_wnd);
777	if (todrop > 0) {
778		tcpstat.tcps_rcvpackafterwin++;
779		if (todrop >= ti->ti_len) {
780			tcpstat.tcps_rcvbyteafterwin += ti->ti_len;
781			/*
782			 * If a new connection request is received
783			 * while in TIME_WAIT, drop the old connection
784			 * and start over if the sequence numbers
785			 * are above the previous ones.
786			 */
787			if (tiflags & TH_SYN &&
788			    tp->t_state == TCPS_TIME_WAIT &&
789			    SEQ_GT(ti->ti_seq, tp->rcv_nxt)) {
790				iss = tp->rcv_nxt + TCP_ISSINCR;
791				tp = tcp_close(tp);
792				goto findpcb;
793			}
794			/*
795			 * If window is closed can only take segments at
796			 * window edge, and have to drop data and PUSH from
797			 * incoming segments.  Continue processing, but
798			 * remember to ack.  Otherwise, drop segment
799			 * and ack.
800			 */
801			if (tp->rcv_wnd == 0 && ti->ti_seq == tp->rcv_nxt) {
802				tp->t_flags |= TF_ACKNOW;
803				tcpstat.tcps_rcvwinprobe++;
804			} else
805				goto dropafterack;
806		} else
807			tcpstat.tcps_rcvbyteafterwin += todrop;
808		m_adj(m, -todrop);
809		ti->ti_len -= todrop;
810		tiflags &= ~(TH_PUSH|TH_FIN);
811	}
812
813	/*
814	 * If last ACK falls within this segment's sequence numbers,
815	 * record its timestamp.
816	 */
817	if (ts_present && SEQ_LEQ(ti->ti_seq, tp->last_ack_sent) &&
818	    SEQ_LT(tp->last_ack_sent, ti->ti_seq + ti->ti_len +
819		   ((tiflags & (TH_SYN|TH_FIN)) != 0))) {
820		tp->ts_recent_age = tcp_now;
821		tp->ts_recent = ts_val;
822	}
823
824	/*
825	 * If the RST bit is set examine the state:
826	 *    SYN_RECEIVED STATE:
827	 *	If passive open, return to LISTEN state.
828	 *	If active open, inform user that connection was refused.
829	 *    ESTABLISHED, FIN_WAIT_1, FIN_WAIT2, CLOSE_WAIT STATES:
830	 *	Inform user that connection was reset, and close tcb.
831	 *    CLOSING, LAST_ACK, TIME_WAIT STATES
832	 *	Close the tcb.
833	 */
834	if (tiflags&TH_RST) switch (tp->t_state) {
835
836	case TCPS_SYN_RECEIVED:
837		so->so_error = ECONNREFUSED;
838		goto close;
839
840	case TCPS_ESTABLISHED:
841	case TCPS_FIN_WAIT_1:
842	case TCPS_FIN_WAIT_2:
843	case TCPS_CLOSE_WAIT:
844		so->so_error = ECONNRESET;
845	close:
846		tp->t_state = TCPS_CLOSED;
847		tcpstat.tcps_drops++;
848		tp = tcp_close(tp);
849		goto drop;
850
851	case TCPS_CLOSING:
852	case TCPS_LAST_ACK:
853	case TCPS_TIME_WAIT:
854		tp = tcp_close(tp);
855		goto drop;
856	}
857
858	/*
859	 * If a SYN is in the window, then this is an
860	 * error and we send an RST and drop the connection.
861	 */
862	if (tiflags & TH_SYN) {
863		tp = tcp_drop(tp, ECONNRESET);
864		goto dropwithreset;
865	}
866
867	/*
868	 * If the ACK bit is off we drop the segment and return.
869	 */
870	if ((tiflags & TH_ACK) == 0)
871		goto drop;
872
873	/*
874	 * Ack processing.
875	 */
876	switch (tp->t_state) {
877
878	/*
879	 * In SYN_RECEIVED state if the ack ACKs our SYN then enter
880	 * ESTABLISHED state and continue processing, otherwise
881	 * send an RST.
882	 */
883	case TCPS_SYN_RECEIVED:
884		if (SEQ_GT(tp->snd_una, ti->ti_ack) ||
885		    SEQ_GT(ti->ti_ack, tp->snd_max))
886			goto dropwithreset;
887		tcpstat.tcps_connects++;
888		soisconnected(so);
889		tp->t_state = TCPS_ESTABLISHED;
890		/* Do window scaling? */
891		if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
892			(TF_RCVD_SCALE|TF_REQ_SCALE)) {
893			tp->snd_scale = tp->requested_s_scale;
894			tp->rcv_scale = tp->request_r_scale;
895		}
896		(void) tcp_reass(tp, (struct tcpiphdr *)0, (struct mbuf *)0);
897		tp->snd_wl1 = ti->ti_seq - 1;
898		/* fall into ... */
899
900	/*
901	 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
902	 * ACKs.  If the ack is in the range
903	 *	tp->snd_una < ti->ti_ack <= tp->snd_max
904	 * then advance tp->snd_una to ti->ti_ack and drop
905	 * data from the retransmission queue.  If this ACK reflects
906	 * more up to date window information we update our window information.
907	 */
908	case TCPS_ESTABLISHED:
909	case TCPS_FIN_WAIT_1:
910	case TCPS_FIN_WAIT_2:
911	case TCPS_CLOSE_WAIT:
912	case TCPS_CLOSING:
913	case TCPS_LAST_ACK:
914	case TCPS_TIME_WAIT:
915
916		if (SEQ_LEQ(ti->ti_ack, tp->snd_una)) {
917			if (ti->ti_len == 0 && tiwin == tp->snd_wnd) {
918				tcpstat.tcps_rcvdupack++;
919				/*
920				 * If we have outstanding data (other than
921				 * a window probe), this is a completely
922				 * duplicate ack (ie, window info didn't
923				 * change), the ack is the biggest we've
924				 * seen and we've seen exactly our rexmt
925				 * threshhold of them, assume a packet
926				 * has been dropped and retransmit it.
927				 * Kludge snd_nxt & the congestion
928				 * window so we send only this one
929				 * packet.
930				 *
931				 * We know we're losing at the current
932				 * window size so do congestion avoidance
933				 * (set ssthresh to half the current window
934				 * and pull our congestion window back to
935				 * the new ssthresh).
936				 *
937				 * Dup acks mean that packets have left the
938				 * network (they're now cached at the receiver)
939				 * so bump cwnd by the amount in the receiver
940				 * to keep a constant cwnd packets in the
941				 * network.
942				 */
943				if (tp->t_timer[TCPT_REXMT] == 0 ||
944				    ti->ti_ack != tp->snd_una)
945					tp->t_dupacks = 0;
946				else if (++tp->t_dupacks == tcprexmtthresh) {
947					tcp_seq onxt = tp->snd_nxt;
948					u_int win =
949					    min(tp->snd_wnd, tp->snd_cwnd) / 2 /
950						tp->t_maxseg;
951
952					if (win < 2)
953						win = 2;
954					tp->snd_ssthresh = win * tp->t_maxseg;
955					tp->t_timer[TCPT_REXMT] = 0;
956					tp->t_rtt = 0;
957					tp->snd_nxt = ti->ti_ack;
958					tp->snd_cwnd = tp->t_maxseg;
959					(void) tcp_output(tp);
960					tp->snd_cwnd = tp->snd_ssthresh +
961					       tp->t_maxseg * tp->t_dupacks;
962					if (SEQ_GT(onxt, tp->snd_nxt))
963						tp->snd_nxt = onxt;
964					goto drop;
965				} else if (tp->t_dupacks > tcprexmtthresh) {
966					tp->snd_cwnd += tp->t_maxseg;
967					(void) tcp_output(tp);
968					goto drop;
969				}
970			} else
971				tp->t_dupacks = 0;
972			break;
973		}
974		/*
975		 * If the congestion window was inflated to account
976		 * for the other side's cached packets, retract it.
977		 */
978		if (tp->t_dupacks > tcprexmtthresh &&
979		    tp->snd_cwnd > tp->snd_ssthresh)
980			tp->snd_cwnd = tp->snd_ssthresh;
981		tp->t_dupacks = 0;
982		if (SEQ_GT(ti->ti_ack, tp->snd_max)) {
983			tcpstat.tcps_rcvacktoomuch++;
984			goto dropafterack;
985		}
986		acked = ti->ti_ack - tp->snd_una;
987		tcpstat.tcps_rcvackpack++;
988		tcpstat.tcps_rcvackbyte += acked;
989
990		/*
991		 * If we have a timestamp reply, update smoothed
992		 * round trip time.  If no timestamp is present but
993		 * transmit timer is running and timed sequence
994		 * number was acked, update smoothed round trip time.
995		 * Since we now have an rtt measurement, cancel the
996		 * timer backoff (cf., Phil Karn's retransmit alg.).
997		 * Recompute the initial retransmit timer.
998		 */
999		if (ts_present)
1000			tcp_xmit_timer(tp, tcp_now-ts_ecr+1);
1001		else if (tp->t_rtt && SEQ_GT(ti->ti_ack, tp->t_rtseq))
1002			tcp_xmit_timer(tp,tp->t_rtt);
1003
1004		/*
1005		 * If all outstanding data is acked, stop retransmit
1006		 * timer and remember to restart (more output or persist).
1007		 * If there is more data to be acked, restart retransmit
1008		 * timer, using current (possibly backed-off) value.
1009		 */
1010		if (ti->ti_ack == tp->snd_max) {
1011			tp->t_timer[TCPT_REXMT] = 0;
1012			needoutput = 1;
1013		} else if (tp->t_timer[TCPT_PERSIST] == 0)
1014			tp->t_timer[TCPT_REXMT] = tp->t_rxtcur;
1015		/*
1016		 * When new data is acked, open the congestion window.
1017		 * If the window gives us less than ssthresh packets
1018		 * in flight, open exponentially (maxseg per packet).
1019		 * Otherwise open linearly: maxseg per window
1020		 * (maxseg^2 / cwnd per packet), plus a constant
1021		 * fraction of a packet (maxseg/8) to help larger windows
1022		 * open quickly enough.
1023		 */
1024		{
1025		register u_int cw = tp->snd_cwnd;
1026		register u_int incr = tp->t_maxseg;
1027
1028		if (cw > tp->snd_ssthresh)
1029			incr = incr * incr / cw + incr / 8;
1030		tp->snd_cwnd = min(cw + incr, TCP_MAXWIN<<tp->snd_scale);
1031		}
1032		if (acked > so->so_snd.sb_cc) {
1033			tp->snd_wnd -= so->so_snd.sb_cc;
1034			sbdrop(&so->so_snd, (int)so->so_snd.sb_cc);
1035			ourfinisacked = 1;
1036		} else {
1037			sbdrop(&so->so_snd, acked);
1038			tp->snd_wnd -= acked;
1039			ourfinisacked = 0;
1040		}
1041		if (so->so_snd.sb_flags & SB_NOTIFY)
1042			sowwakeup(so);
1043		tp->snd_una = ti->ti_ack;
1044		if (SEQ_LT(tp->snd_nxt, tp->snd_una))
1045			tp->snd_nxt = tp->snd_una;
1046
1047		switch (tp->t_state) {
1048
1049		/*
1050		 * In FIN_WAIT_1 STATE in addition to the processing
1051		 * for the ESTABLISHED state if our FIN is now acknowledged
1052		 * then enter FIN_WAIT_2.
1053		 */
1054		case TCPS_FIN_WAIT_1:
1055			if (ourfinisacked) {
1056				/*
1057				 * If we can't receive any more
1058				 * data, then closing user can proceed.
1059				 * Starting the timer is contrary to the
1060				 * specification, but if we don't get a FIN
1061				 * we'll hang forever.
1062				 */
1063				if (so->so_state & SS_CANTRCVMORE) {
1064					soisdisconnected(so);
1065					tp->t_timer[TCPT_2MSL] = tcp_maxidle;
1066				}
1067				tp->t_state = TCPS_FIN_WAIT_2;
1068			}
1069			break;
1070
1071	 	/*
1072		 * In CLOSING STATE in addition to the processing for
1073		 * the ESTABLISHED state if the ACK acknowledges our FIN
1074		 * then enter the TIME-WAIT state, otherwise ignore
1075		 * the segment.
1076		 */
1077		case TCPS_CLOSING:
1078			if (ourfinisacked) {
1079				tp->t_state = TCPS_TIME_WAIT;
1080				tcp_canceltimers(tp);
1081				tp->t_timer[TCPT_2MSL] = 2 * TCPTV_MSL;
1082				soisdisconnected(so);
1083			}
1084			break;
1085
1086		/*
1087		 * In LAST_ACK, we may still be waiting for data to drain
1088		 * and/or to be acked, as well as for the ack of our FIN.
1089		 * If our FIN is now acknowledged, delete the TCB,
1090		 * enter the closed state and return.
1091		 */
1092		case TCPS_LAST_ACK:
1093			if (ourfinisacked) {
1094				tp = tcp_close(tp);
1095				goto drop;
1096			}
1097			break;
1098
1099		/*
1100		 * In TIME_WAIT state the only thing that should arrive
1101		 * is a retransmission of the remote FIN.  Acknowledge
1102		 * it and restart the finack timer.
1103		 */
1104		case TCPS_TIME_WAIT:
1105			tp->t_timer[TCPT_2MSL] = 2 * TCPTV_MSL;
1106			goto dropafterack;
1107		}
1108	}
1109
1110step6:
1111	/*
1112	 * Update window information.
1113	 * Don't look at window if no ACK: TAC's send garbage on first SYN.
1114	 */
1115	if ((tiflags & TH_ACK) &&
1116	    (SEQ_LT(tp->snd_wl1, ti->ti_seq) || tp->snd_wl1 == ti->ti_seq &&
1117	    (SEQ_LT(tp->snd_wl2, ti->ti_ack) ||
1118	     tp->snd_wl2 == ti->ti_ack && tiwin > tp->snd_wnd))) {
1119		/* keep track of pure window updates */
1120		if (ti->ti_len == 0 &&
1121		    tp->snd_wl2 == ti->ti_ack && tiwin > tp->snd_wnd)
1122			tcpstat.tcps_rcvwinupd++;
1123		tp->snd_wnd = tiwin;
1124		tp->snd_wl1 = ti->ti_seq;
1125		tp->snd_wl2 = ti->ti_ack;
1126		if (tp->snd_wnd > tp->max_sndwnd)
1127			tp->max_sndwnd = tp->snd_wnd;
1128		needoutput = 1;
1129	}
1130
1131	/*
1132	 * Process segments with URG.
1133	 */
1134	if ((tiflags & TH_URG) && ti->ti_urp &&
1135	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
1136		/*
1137		 * This is a kludge, but if we receive and accept
1138		 * random urgent pointers, we'll crash in
1139		 * soreceive.  It's hard to imagine someone
1140		 * actually wanting to send this much urgent data.
1141		 */
1142		if (ti->ti_urp + so->so_rcv.sb_cc > sb_max) {
1143			ti->ti_urp = 0;			/* XXX */
1144			tiflags &= ~TH_URG;		/* XXX */
1145			goto dodata;			/* XXX */
1146		}
1147		/*
1148		 * If this segment advances the known urgent pointer,
1149		 * then mark the data stream.  This should not happen
1150		 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
1151		 * a FIN has been received from the remote side.
1152		 * In these states we ignore the URG.
1153		 *
1154		 * According to RFC961 (Assigned Protocols),
1155		 * the urgent pointer points to the last octet
1156		 * of urgent data.  We continue, however,
1157		 * to consider it to indicate the first octet
1158		 * of data past the urgent section as the original
1159		 * spec states (in one of two places).
1160		 */
1161		if (SEQ_GT(ti->ti_seq+ti->ti_urp, tp->rcv_up)) {
1162			tp->rcv_up = ti->ti_seq + ti->ti_urp;
1163			so->so_oobmark = so->so_rcv.sb_cc +
1164			    (tp->rcv_up - tp->rcv_nxt) - 1;
1165			if (so->so_oobmark == 0)
1166				so->so_state |= SS_RCVATMARK;
1167			sohasoutofband(so);
1168			tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
1169		}
1170		/*
1171		 * Remove out of band data so doesn't get presented to user.
1172		 * This can happen independent of advancing the URG pointer,
1173		 * but if two URG's are pending at once, some out-of-band
1174		 * data may creep in... ick.
1175		 */
1176		if (ti->ti_urp <= ti->ti_len
1177#ifdef SO_OOBINLINE
1178		     && (so->so_options & SO_OOBINLINE) == 0
1179#endif
1180		     )
1181			tcp_pulloutofband(so, ti, m);
1182	} else
1183		/*
1184		 * If no out of band data is expected,
1185		 * pull receive urgent pointer along
1186		 * with the receive window.
1187		 */
1188		if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
1189			tp->rcv_up = tp->rcv_nxt;
1190dodata:							/* XXX */
1191
1192	/*
1193	 * Process the segment text, merging it into the TCP sequencing queue,
1194	 * and arranging for acknowledgment of receipt if necessary.
1195	 * This process logically involves adjusting tp->rcv_wnd as data
1196	 * is presented to the user (this happens in tcp_usrreq.c,
1197	 * case PRU_RCVD).  If a FIN has already been received on this
1198	 * connection then we just ignore the text.
1199	 */
1200	if ((ti->ti_len || (tiflags&TH_FIN)) &&
1201	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
1202		TCP_REASS(tp, ti, m, so, tiflags);
1203		/*
1204		 * Note the amount of data that peer has sent into
1205		 * our window, in order to estimate the sender's
1206		 * buffer size.
1207		 */
1208		len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
1209	} else {
1210		m_freem(m);
1211		tiflags &= ~TH_FIN;
1212	}
1213
1214	/*
1215	 * If FIN is received ACK the FIN and let the user know
1216	 * that the connection is closing.
1217	 */
1218	if (tiflags & TH_FIN) {
1219		if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
1220			socantrcvmore(so);
1221			tp->t_flags |= TF_ACKNOW;
1222			tp->rcv_nxt++;
1223		}
1224		switch (tp->t_state) {
1225
1226	 	/*
1227		 * In SYN_RECEIVED and ESTABLISHED STATES
1228		 * enter the CLOSE_WAIT state.
1229		 */
1230		case TCPS_SYN_RECEIVED:
1231		case TCPS_ESTABLISHED:
1232			tp->t_state = TCPS_CLOSE_WAIT;
1233			break;
1234
1235	 	/*
1236		 * If still in FIN_WAIT_1 STATE FIN has not been acked so
1237		 * enter the CLOSING state.
1238		 */
1239		case TCPS_FIN_WAIT_1:
1240			tp->t_state = TCPS_CLOSING;
1241			break;
1242
1243	 	/*
1244		 * In FIN_WAIT_2 state enter the TIME_WAIT state,
1245		 * starting the time-wait timer, turning off the other
1246		 * standard timers.
1247		 */
1248		case TCPS_FIN_WAIT_2:
1249			tp->t_state = TCPS_TIME_WAIT;
1250			tcp_canceltimers(tp);
1251			tp->t_timer[TCPT_2MSL] = 2 * TCPTV_MSL;
1252			soisdisconnected(so);
1253			break;
1254
1255		/*
1256		 * In TIME_WAIT state restart the 2 MSL time_wait timer.
1257		 */
1258		case TCPS_TIME_WAIT:
1259			tp->t_timer[TCPT_2MSL] = 2 * TCPTV_MSL;
1260			break;
1261		}
1262	}
1263	if (so->so_options & SO_DEBUG)
1264		tcp_trace(TA_INPUT, ostate, tp, &tcp_saveti, 0);
1265
1266	/*
1267	 * Return any desired output.
1268	 */
1269	if (needoutput || (tp->t_flags & TF_ACKNOW))
1270		(void) tcp_output(tp);
1271	return;
1272
1273dropafterack:
1274	/*
1275	 * Generate an ACK dropping incoming segment if it occupies
1276	 * sequence space, where the ACK reflects our state.
1277	 */
1278	if (tiflags & TH_RST)
1279		goto drop;
1280	m_freem(m);
1281	tp->t_flags |= TF_ACKNOW;
1282	(void) tcp_output(tp);
1283	return;
1284
1285dropwithreset:
1286	/*
1287	 * Generate a RST, dropping incoming segment.
1288	 * Make ACK acceptable to originator of segment.
1289	 * Don't bother to respond if destination was broadcast/multicast.
1290	 */
1291	if ((tiflags & TH_RST) || m->m_flags & (M_BCAST|M_MCAST) ||
1292	    IN_MULTICAST(ti->ti_dst.s_addr))
1293		goto drop;
1294	if (tiflags & TH_ACK)
1295		tcp_respond(tp, ti, m, (tcp_seq)0, ti->ti_ack, TH_RST);
1296	else {
1297		if (tiflags & TH_SYN)
1298			ti->ti_len++;
1299		tcp_respond(tp, ti, m, ti->ti_seq+ti->ti_len, (tcp_seq)0,
1300		    TH_RST|TH_ACK);
1301	}
1302	/* destroy temporarily created socket */
1303	if (dropsocket)
1304		(void) soabort(so);
1305	return;
1306
1307drop:
1308	/*
1309	 * Drop space held by incoming segment and return.
1310	 */
1311	if (tp && (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
1312		tcp_trace(TA_DROP, ostate, tp, &tcp_saveti, 0);
1313	m_freem(m);
1314	/* destroy temporarily created socket */
1315	if (dropsocket)
1316		(void) soabort(so);
1317	return;
1318#ifndef TUBA_INCLUDE
1319}
1320
1321void
1322tcp_dooptions(tp, cp, cnt, ti, ts_present, ts_val, ts_ecr)
1323	struct tcpcb *tp;
1324	u_char *cp;
1325	int cnt;
1326	struct tcpiphdr *ti;
1327	int *ts_present;
1328	u_long *ts_val, *ts_ecr;
1329{
1330	u_short mss;
1331	int opt, optlen;
1332
1333	for (; cnt > 0; cnt -= optlen, cp += optlen) {
1334		opt = cp[0];
1335		if (opt == TCPOPT_EOL)
1336			break;
1337		if (opt == TCPOPT_NOP)
1338			optlen = 1;
1339		else {
1340			optlen = cp[1];
1341			if (optlen <= 0)
1342				break;
1343		}
1344		switch (opt) {
1345
1346		default:
1347			continue;
1348
1349		case TCPOPT_MAXSEG:
1350			if (optlen != TCPOLEN_MAXSEG)
1351				continue;
1352			if (!(ti->ti_flags & TH_SYN))
1353				continue;
1354			bcopy((char *) cp + 2, (char *) &mss, sizeof(mss));
1355			NTOHS(mss);
1356			(void) tcp_mss(tp, mss);	/* sets t_maxseg */
1357			break;
1358
1359		case TCPOPT_WINDOW:
1360			if (optlen != TCPOLEN_WINDOW)
1361				continue;
1362			if (!(ti->ti_flags & TH_SYN))
1363				continue;
1364			tp->t_flags |= TF_RCVD_SCALE;
1365			tp->requested_s_scale = min(cp[2], TCP_MAX_WINSHIFT);
1366			break;
1367
1368		case TCPOPT_TIMESTAMP:
1369			if (optlen != TCPOLEN_TIMESTAMP)
1370				continue;
1371			*ts_present = 1;
1372			bcopy((char *)cp + 2, (char *) ts_val, sizeof(*ts_val));
1373			NTOHL(*ts_val);
1374			bcopy((char *)cp + 6, (char *) ts_ecr, sizeof(*ts_ecr));
1375			NTOHL(*ts_ecr);
1376
1377			/*
1378			 * A timestamp received in a SYN makes
1379			 * it ok to send timestamp requests and replies.
1380			 */
1381			if (ti->ti_flags & TH_SYN) {
1382				tp->t_flags |= TF_RCVD_TSTMP;
1383				tp->ts_recent = *ts_val;
1384				tp->ts_recent_age = tcp_now;
1385			}
1386			break;
1387		}
1388	}
1389}
1390
1391/*
1392 * Pull out of band byte out of a segment so
1393 * it doesn't appear in the user's data queue.
1394 * It is still reflected in the segment length for
1395 * sequencing purposes.
1396 */
1397void
1398tcp_pulloutofband(so, ti, m)
1399	struct socket *so;
1400	struct tcpiphdr *ti;
1401	register struct mbuf *m;
1402{
1403	int cnt = ti->ti_urp - 1;
1404
1405	while (cnt >= 0) {
1406		if (m->m_len > cnt) {
1407			char *cp = mtod(m, caddr_t) + cnt;
1408			struct tcpcb *tp = sototcpcb(so);
1409
1410			tp->t_iobc = *cp;
1411			tp->t_oobflags |= TCPOOB_HAVEDATA;
1412			bcopy(cp+1, cp, (unsigned)(m->m_len - cnt - 1));
1413			m->m_len--;
1414			return;
1415		}
1416		cnt -= m->m_len;
1417		m = m->m_next;
1418		if (m == 0)
1419			break;
1420	}
1421	panic("tcp_pulloutofband");
1422}
1423
1424/*
1425 * Collect new round-trip time estimate
1426 * and update averages and current timeout.
1427 */
1428void
1429tcp_xmit_timer(tp, rtt)
1430	register struct tcpcb *tp;
1431	short rtt;
1432{
1433	register short delta;
1434
1435	tcpstat.tcps_rttupdated++;
1436	if (tp->t_srtt != 0) {
1437		/*
1438		 * srtt is stored as fixed point with 3 bits after the
1439		 * binary point (i.e., scaled by 8).  The following magic
1440		 * is equivalent to the smoothing algorithm in rfc793 with
1441		 * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed
1442		 * point).  Adjust rtt to origin 0.
1443		 */
1444		delta = rtt - 1 - (tp->t_srtt >> TCP_RTT_SHIFT);
1445		if ((tp->t_srtt += delta) <= 0)
1446			tp->t_srtt = 1;
1447		/*
1448		 * We accumulate a smoothed rtt variance (actually, a
1449		 * smoothed mean difference), then set the retransmit
1450		 * timer to smoothed rtt + 4 times the smoothed variance.
1451		 * rttvar is stored as fixed point with 2 bits after the
1452		 * binary point (scaled by 4).  The following is
1453		 * equivalent to rfc793 smoothing with an alpha of .75
1454		 * (rttvar = rttvar*3/4 + |delta| / 4).  This replaces
1455		 * rfc793's wired-in beta.
1456		 */
1457		if (delta < 0)
1458			delta = -delta;
1459		delta -= (tp->t_rttvar >> TCP_RTTVAR_SHIFT);
1460		if ((tp->t_rttvar += delta) <= 0)
1461			tp->t_rttvar = 1;
1462	} else {
1463		/*
1464		 * No rtt measurement yet - use the unsmoothed rtt.
1465		 * Set the variance to half the rtt (so our first
1466		 * retransmit happens at 3*rtt).
1467		 */
1468		tp->t_srtt = rtt << TCP_RTT_SHIFT;
1469		tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT - 1);
1470	}
1471	tp->t_rtt = 0;
1472	tp->t_rxtshift = 0;
1473
1474	/*
1475	 * the retransmit should happen at rtt + 4 * rttvar.
1476	 * Because of the way we do the smoothing, srtt and rttvar
1477	 * will each average +1/2 tick of bias.  When we compute
1478	 * the retransmit timer, we want 1/2 tick of rounding and
1479	 * 1 extra tick because of +-1/2 tick uncertainty in the
1480	 * firing of the timer.  The bias will give us exactly the
1481	 * 1.5 tick we need.  But, because the bias is
1482	 * statistical, we have to test that we don't drop below
1483	 * the minimum feasible timer (which is 2 ticks).
1484	 */
1485	TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
1486	    tp->t_rttmin, TCPTV_REXMTMAX);
1487
1488	/*
1489	 * We received an ack for a packet that wasn't retransmitted;
1490	 * it is probably safe to discard any error indications we've
1491	 * received recently.  This isn't quite right, but close enough
1492	 * for now (a route might have failed after we sent a segment,
1493	 * and the return path might not be symmetrical).
1494	 */
1495	tp->t_softerror = 0;
1496}
1497
1498/*
1499 * Determine a reasonable value for maxseg size.
1500 * If the route is known, check route for mtu.
1501 * If none, use an mss that can be handled on the outgoing
1502 * interface without forcing IP to fragment; if bigger than
1503 * an mbuf cluster (MCLBYTES), round down to nearest multiple of MCLBYTES
1504 * to utilize large mbufs.  If no route is found, route has no mtu,
1505 * or the destination isn't local, use a default, hopefully conservative
1506 * size (usually 512 or the default IP max size, but no more than the mtu
1507 * of the interface), as we can't discover anything about intervening
1508 * gateways or networks.  We also initialize the congestion/slow start
1509 * window to be a single segment if the destination isn't local.
1510 * While looking at the routing entry, we also initialize other path-dependent
1511 * parameters from pre-set or cached values in the routing entry.
1512 */
1513int
1514tcp_mss(tp, offer)
1515	register struct tcpcb *tp;
1516	u_int offer;
1517{
1518	struct route *ro;
1519	register struct rtentry *rt;
1520	struct ifnet *ifp;
1521	register int rtt, mss;
1522	u_long bufsize;
1523	struct inpcb *inp;
1524	struct socket *so;
1525	extern int tcp_mssdflt;
1526
1527	inp = tp->t_inpcb;
1528	ro = &inp->inp_route;
1529
1530	if ((rt = ro->ro_rt) == (struct rtentry *)0) {
1531		/* No route yet, so try to acquire one */
1532		if (inp->inp_faddr.s_addr != INADDR_ANY) {
1533			ro->ro_dst.sa_family = AF_INET;
1534			ro->ro_dst.sa_len = sizeof(ro->ro_dst);
1535			((struct sockaddr_in *) &ro->ro_dst)->sin_addr =
1536				inp->inp_faddr;
1537			rtalloc(ro);
1538		}
1539		if ((rt = ro->ro_rt) == (struct rtentry *)0)
1540			return (tcp_mssdflt);
1541	}
1542	ifp = rt->rt_ifp;
1543	so = inp->inp_socket;
1544
1545#ifdef RTV_MTU	/* if route characteristics exist ... */
1546	/*
1547	 * While we're here, check if there's an initial rtt
1548	 * or rttvar.  Convert from the route-table units
1549	 * to scaled multiples of the slow timeout timer.
1550	 */
1551	if (tp->t_srtt == 0 && (rtt = rt->rt_rmx.rmx_rtt)) {
1552		/*
1553		 * XXX the lock bit for MTU indicates that the value
1554		 * is also a minimum value; this is subject to time.
1555		 */
1556		if (rt->rt_rmx.rmx_locks & RTV_RTT)
1557			tp->t_rttmin = rtt / (RTM_RTTUNIT / PR_SLOWHZ);
1558		tp->t_srtt = rtt / (RTM_RTTUNIT / (PR_SLOWHZ * TCP_RTT_SCALE));
1559		if (rt->rt_rmx.rmx_rttvar)
1560			tp->t_rttvar = rt->rt_rmx.rmx_rttvar /
1561			    (RTM_RTTUNIT / (PR_SLOWHZ * TCP_RTTVAR_SCALE));
1562		else
1563			/* default variation is +- 1 rtt */
1564			tp->t_rttvar =
1565			    tp->t_srtt * TCP_RTTVAR_SCALE / TCP_RTT_SCALE;
1566		TCPT_RANGESET(tp->t_rxtcur,
1567		    ((tp->t_srtt >> 2) + tp->t_rttvar) >> 1,
1568		    tp->t_rttmin, TCPTV_REXMTMAX);
1569	}
1570	/*
1571	 * if there's an mtu associated with the route, use it
1572	 */
1573	if (rt->rt_rmx.rmx_mtu)
1574		mss = rt->rt_rmx.rmx_mtu - sizeof(struct tcpiphdr);
1575	else
1576#endif /* RTV_MTU */
1577	{
1578		mss = ifp->if_mtu - sizeof(struct tcpiphdr);
1579#if	(MCLBYTES & (MCLBYTES - 1)) == 0
1580		if (mss > MCLBYTES)
1581			mss &= ~(MCLBYTES-1);
1582#else
1583		if (mss > MCLBYTES)
1584			mss = mss / MCLBYTES * MCLBYTES;
1585#endif
1586		if (!in_localaddr(inp->inp_faddr))
1587			mss = min(mss, tcp_mssdflt);
1588	}
1589	/*
1590	 * The current mss, t_maxseg, is initialized to the default value.
1591	 * If we compute a smaller value, reduce the current mss.
1592	 * If we compute a larger value, return it for use in sending
1593	 * a max seg size option, but don't store it for use
1594	 * unless we received an offer at least that large from peer.
1595	 * However, do not accept offers under 32 bytes.
1596	 */
1597	if (offer)
1598		mss = min(mss, offer);
1599	mss = max(mss, 32);		/* sanity */
1600	if (mss < tp->t_maxseg || offer != 0) {
1601		/*
1602		 * If there's a pipesize, change the socket buffer
1603		 * to that size.  Make the socket buffers an integral
1604		 * number of mss units; if the mss is larger than
1605		 * the socket buffer, decrease the mss.
1606		 */
1607#ifdef RTV_SPIPE
1608		if ((bufsize = rt->rt_rmx.rmx_sendpipe) == 0)
1609#endif
1610			bufsize = so->so_snd.sb_hiwat;
1611		if (bufsize < mss)
1612			mss = bufsize;
1613		else {
1614			bufsize = roundup(bufsize, mss);
1615			if (bufsize > sb_max)
1616				bufsize = sb_max;
1617			(void)sbreserve(&so->so_snd, bufsize);
1618		}
1619		tp->t_maxseg = mss;
1620
1621#ifdef RTV_RPIPE
1622		if ((bufsize = rt->rt_rmx.rmx_recvpipe) == 0)
1623#endif
1624			bufsize = so->so_rcv.sb_hiwat;
1625		if (bufsize > mss) {
1626			bufsize = roundup(bufsize, mss);
1627			if (bufsize > sb_max)
1628				bufsize = sb_max;
1629			(void)sbreserve(&so->so_rcv, bufsize);
1630		}
1631	}
1632	tp->snd_cwnd = mss;
1633
1634#ifdef RTV_SSTHRESH
1635	if (rt->rt_rmx.rmx_ssthresh) {
1636		/*
1637		 * There's some sort of gateway or interface
1638		 * buffer limit on the path.  Use this to set
1639		 * the slow start threshhold, but set the
1640		 * threshold to no less than 2*mss.
1641		 */
1642		tp->snd_ssthresh = max(2 * mss, rt->rt_rmx.rmx_ssthresh);
1643	}
1644#endif /* RTV_MTU */
1645	return (mss);
1646}
1647#endif /* TUBA_INCLUDE */
1648