tcp_input.c revision 149404
1/*-
2 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 4. Neither the name of the University nor the names of its contributors
14 *    may be used to endorse or promote products derived from this software
15 *    without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 *
29 *	@(#)tcp_input.c	8.12 (Berkeley) 5/24/95
30 * $FreeBSD: head/sys/netinet/tcp_input.c 149404 2005-08-24 02:48:45Z ps $
31 */
32
33#include "opt_ipfw.h"		/* for ipfw_fwd		*/
34#include "opt_inet.h"
35#include "opt_inet6.h"
36#include "opt_ipsec.h"
37#include "opt_mac.h"
38#include "opt_tcpdebug.h"
39#include "opt_tcp_input.h"
40#include "opt_tcp_sack.h"
41
42#include <sys/param.h>
43#include <sys/kernel.h>
44#include <sys/mac.h>
45#include <sys/malloc.h>
46#include <sys/mbuf.h>
47#include <sys/proc.h>		/* for proc0 declaration */
48#include <sys/protosw.h>
49#include <sys/signalvar.h>
50#include <sys/socket.h>
51#include <sys/socketvar.h>
52#include <sys/sysctl.h>
53#include <sys/syslog.h>
54#include <sys/systm.h>
55
56#include <machine/cpu.h>	/* before tcp_seq.h, for tcp_random18() */
57
58#include <vm/uma.h>
59
60#include <net/if.h>
61#include <net/route.h>
62
63#include <netinet/in.h>
64#include <netinet/in_pcb.h>
65#include <netinet/in_systm.h>
66#include <netinet/in_var.h>
67#include <netinet/ip.h>
68#include <netinet/ip_icmp.h>	/* for ICMP_BANDLIM		*/
69#include <netinet/icmp_var.h>	/* for ICMP_BANDLIM		*/
70#include <netinet/ip_var.h>
71#include <netinet/ip6.h>
72#include <netinet/icmp6.h>
73#include <netinet6/in6_pcb.h>
74#include <netinet6/ip6_var.h>
75#include <netinet6/nd6.h>
76#include <netinet/tcp.h>
77#include <netinet/tcp_fsm.h>
78#include <netinet/tcp_seq.h>
79#include <netinet/tcp_timer.h>
80#include <netinet/tcp_var.h>
81#include <netinet6/tcp6_var.h>
82#include <netinet/tcpip.h>
83#ifdef TCPDEBUG
84#include <netinet/tcp_debug.h>
85#endif /* TCPDEBUG */
86
87#ifdef FAST_IPSEC
88#include <netipsec/ipsec.h>
89#include <netipsec/ipsec6.h>
90#endif /*FAST_IPSEC*/
91
92#ifdef IPSEC
93#include <netinet6/ipsec.h>
94#include <netinet6/ipsec6.h>
95#include <netkey/key.h>
96#endif /*IPSEC*/
97
98#include <machine/in_cksum.h>
99
100static const int tcprexmtthresh = 3;
101
102struct	tcpstat tcpstat;
103SYSCTL_STRUCT(_net_inet_tcp, TCPCTL_STATS, stats, CTLFLAG_RW,
104    &tcpstat , tcpstat, "TCP statistics (struct tcpstat, netinet/tcp_var.h)");
105
106static int log_in_vain = 0;
107SYSCTL_INT(_net_inet_tcp, OID_AUTO, log_in_vain, CTLFLAG_RW,
108    &log_in_vain, 0, "Log all incoming TCP connections");
109
110static int blackhole = 0;
111SYSCTL_INT(_net_inet_tcp, OID_AUTO, blackhole, CTLFLAG_RW,
112	&blackhole, 0, "Do not send RST when dropping refused connections");
113
114int tcp_delack_enabled = 1;
115SYSCTL_INT(_net_inet_tcp, OID_AUTO, delayed_ack, CTLFLAG_RW,
116    &tcp_delack_enabled, 0,
117    "Delay ACK to try and piggyback it onto a data packet");
118
119#ifdef TCP_DROP_SYNFIN
120static int drop_synfin = 0;
121SYSCTL_INT(_net_inet_tcp, OID_AUTO, drop_synfin, CTLFLAG_RW,
122    &drop_synfin, 0, "Drop TCP packets with SYN+FIN set");
123#endif
124
125static int tcp_do_rfc3042 = 1;
126SYSCTL_INT(_net_inet_tcp, OID_AUTO, rfc3042, CTLFLAG_RW,
127    &tcp_do_rfc3042, 0, "Enable RFC 3042 (Limited Transmit)");
128
129static int tcp_do_rfc3390 = 1;
130SYSCTL_INT(_net_inet_tcp, OID_AUTO, rfc3390, CTLFLAG_RW,
131    &tcp_do_rfc3390, 0,
132    "Enable RFC 3390 (Increasing TCP's Initial Congestion Window)");
133
134static int tcp_insecure_rst = 0;
135SYSCTL_INT(_net_inet_tcp, OID_AUTO, insecure_rst, CTLFLAG_RW,
136    &tcp_insecure_rst, 0,
137    "Follow the old (insecure) criteria for accepting RST packets.");
138
139SYSCTL_NODE(_net_inet_tcp, OID_AUTO, reass, CTLFLAG_RW, 0,
140	    "TCP Segment Reassembly Queue");
141
142static int tcp_reass_maxseg = 0;
143SYSCTL_INT(_net_inet_tcp_reass, OID_AUTO, maxsegments, CTLFLAG_RDTUN,
144	   &tcp_reass_maxseg, 0,
145	   "Global maximum number of TCP Segments in Reassembly Queue");
146
147int tcp_reass_qsize = 0;
148SYSCTL_INT(_net_inet_tcp_reass, OID_AUTO, cursegments, CTLFLAG_RD,
149	   &tcp_reass_qsize, 0,
150	   "Global number of TCP Segments currently in Reassembly Queue");
151
152static int tcp_reass_maxqlen = 48;
153SYSCTL_INT(_net_inet_tcp_reass, OID_AUTO, maxqlen, CTLFLAG_RW,
154	   &tcp_reass_maxqlen, 0,
155	   "Maximum number of TCP Segments per individual Reassembly Queue");
156
157static int tcp_reass_overflows = 0;
158SYSCTL_INT(_net_inet_tcp_reass, OID_AUTO, overflows, CTLFLAG_RD,
159	   &tcp_reass_overflows, 0,
160	   "Global number of TCP Segment Reassembly Queue Overflows");
161
162struct inpcbhead tcb;
163#define	tcb6	tcb  /* for KAME src sync over BSD*'s */
164struct inpcbinfo tcbinfo;
165struct mtx	*tcbinfo_mtx;
166
167static void	 tcp_dooptions(struct tcpopt *, u_char *, int, int);
168
169static void	 tcp_pulloutofband(struct socket *,
170		     struct tcphdr *, struct mbuf *, int);
171static int	 tcp_reass(struct tcpcb *, struct tcphdr *, int *,
172		     struct mbuf *);
173static void	 tcp_xmit_timer(struct tcpcb *, int);
174static void	 tcp_newreno_partial_ack(struct tcpcb *, struct tcphdr *);
175static int	 tcp_timewait(struct tcptw *, struct tcpopt *,
176		     struct tcphdr *, struct mbuf *, int);
177
178/* Neighbor Discovery, Neighbor Unreachability Detection Upper layer hint. */
179#ifdef INET6
180#define ND6_HINT(tp) \
181do { \
182	if ((tp) && (tp)->t_inpcb && \
183	    ((tp)->t_inpcb->inp_vflag & INP_IPV6) != 0) \
184		nd6_nud_hint(NULL, NULL, 0); \
185} while (0)
186#else
187#define ND6_HINT(tp)
188#endif
189
190/*
191 * Indicate whether this ack should be delayed.  We can delay the ack if
192 *	- there is no delayed ack timer in progress and
193 *	- our last ack wasn't a 0-sized window.  We never want to delay
194 *	  the ack that opens up a 0-sized window and
195 *		- delayed acks are enabled or
196 *		- this is a half-synchronized T/TCP connection.
197 */
198#define DELAY_ACK(tp)							\
199	((!callout_active(tp->tt_delack) &&				\
200	    (tp->t_flags & TF_RXWIN0SENT) == 0) &&			\
201	    (tcp_delack_enabled || (tp->t_flags & TF_NEEDSYN)))
202
203/* Initialize TCP reassembly queue */
204uma_zone_t	tcp_reass_zone;
205void
206tcp_reass_init()
207{
208	tcp_reass_maxseg = nmbclusters / 16;
209	TUNABLE_INT_FETCH("net.inet.tcp.reass.maxsegments",
210	    &tcp_reass_maxseg);
211	tcp_reass_zone = uma_zcreate("tcpreass", sizeof (struct tseg_qent),
212	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
213	uma_zone_set_max(tcp_reass_zone, tcp_reass_maxseg);
214}
215
216static int
217tcp_reass(tp, th, tlenp, m)
218	register struct tcpcb *tp;
219	register struct tcphdr *th;
220	int *tlenp;
221	struct mbuf *m;
222{
223	struct tseg_qent *q;
224	struct tseg_qent *p = NULL;
225	struct tseg_qent *nq;
226	struct tseg_qent *te = NULL;
227	struct socket *so = tp->t_inpcb->inp_socket;
228	int flags;
229
230	INP_LOCK_ASSERT(tp->t_inpcb);
231
232	/*
233	 * XXX: tcp_reass() is rather inefficient with its data structures
234	 * and should be rewritten (see NetBSD for optimizations).  While
235	 * doing that it should move to its own file tcp_reass.c.
236	 */
237
238	/*
239	 * Call with th==NULL after become established to
240	 * force pre-ESTABLISHED data up to user socket.
241	 */
242	if (th == NULL)
243		goto present;
244
245	/*
246	 * Limit the number of segments in the reassembly queue to prevent
247	 * holding on to too many segments (and thus running out of mbufs).
248	 * Make sure to let the missing segment through which caused this
249	 * queue.  Always keep one global queue entry spare to be able to
250	 * process the missing segment.
251	 */
252	if (th->th_seq != tp->rcv_nxt &&
253	    (tcp_reass_qsize + 1 >= tcp_reass_maxseg ||
254	     tp->t_segqlen >= tcp_reass_maxqlen)) {
255		tcp_reass_overflows++;
256		tcpstat.tcps_rcvmemdrop++;
257		m_freem(m);
258		*tlenp = 0;
259		return (0);
260	}
261
262	/*
263	 * Allocate a new queue entry. If we can't, or hit the zone limit
264	 * just drop the pkt.
265	 */
266	te = uma_zalloc(tcp_reass_zone, M_NOWAIT);
267	if (te == NULL) {
268		tcpstat.tcps_rcvmemdrop++;
269		m_freem(m);
270		*tlenp = 0;
271		return (0);
272	}
273	tp->t_segqlen++;
274	tcp_reass_qsize++;
275
276	/*
277	 * Find a segment which begins after this one does.
278	 */
279	LIST_FOREACH(q, &tp->t_segq, tqe_q) {
280		if (SEQ_GT(q->tqe_th->th_seq, th->th_seq))
281			break;
282		p = q;
283	}
284
285	/*
286	 * If there is a preceding segment, it may provide some of
287	 * our data already.  If so, drop the data from the incoming
288	 * segment.  If it provides all of our data, drop us.
289	 */
290	if (p != NULL) {
291		register int i;
292		/* conversion to int (in i) handles seq wraparound */
293		i = p->tqe_th->th_seq + p->tqe_len - th->th_seq;
294		if (i > 0) {
295			if (i >= *tlenp) {
296				tcpstat.tcps_rcvduppack++;
297				tcpstat.tcps_rcvdupbyte += *tlenp;
298				m_freem(m);
299				uma_zfree(tcp_reass_zone, te);
300				tp->t_segqlen--;
301				tcp_reass_qsize--;
302				/*
303				 * Try to present any queued data
304				 * at the left window edge to the user.
305				 * This is needed after the 3-WHS
306				 * completes.
307				 */
308				goto present;	/* ??? */
309			}
310			m_adj(m, i);
311			*tlenp -= i;
312			th->th_seq += i;
313		}
314	}
315	tcpstat.tcps_rcvoopack++;
316	tcpstat.tcps_rcvoobyte += *tlenp;
317
318	/*
319	 * While we overlap succeeding segments trim them or,
320	 * if they are completely covered, dequeue them.
321	 */
322	while (q) {
323		register int i = (th->th_seq + *tlenp) - q->tqe_th->th_seq;
324		if (i <= 0)
325			break;
326		if (i < q->tqe_len) {
327			q->tqe_th->th_seq += i;
328			q->tqe_len -= i;
329			m_adj(q->tqe_m, i);
330			break;
331		}
332
333		nq = LIST_NEXT(q, tqe_q);
334		LIST_REMOVE(q, tqe_q);
335		m_freem(q->tqe_m);
336		uma_zfree(tcp_reass_zone, q);
337		tp->t_segqlen--;
338		tcp_reass_qsize--;
339		q = nq;
340	}
341
342	/* Insert the new segment queue entry into place. */
343	te->tqe_m = m;
344	te->tqe_th = th;
345	te->tqe_len = *tlenp;
346
347	if (p == NULL) {
348		LIST_INSERT_HEAD(&tp->t_segq, te, tqe_q);
349	} else {
350		LIST_INSERT_AFTER(p, te, tqe_q);
351	}
352
353present:
354	/*
355	 * Present data to user, advancing rcv_nxt through
356	 * completed sequence space.
357	 */
358	if (!TCPS_HAVEESTABLISHED(tp->t_state))
359		return (0);
360	q = LIST_FIRST(&tp->t_segq);
361	if (!q || q->tqe_th->th_seq != tp->rcv_nxt)
362		return (0);
363	SOCKBUF_LOCK(&so->so_rcv);
364	do {
365		tp->rcv_nxt += q->tqe_len;
366		flags = q->tqe_th->th_flags & TH_FIN;
367		nq = LIST_NEXT(q, tqe_q);
368		LIST_REMOVE(q, tqe_q);
369		if (so->so_rcv.sb_state & SBS_CANTRCVMORE)
370			m_freem(q->tqe_m);
371		else
372			sbappendstream_locked(&so->so_rcv, q->tqe_m);
373		uma_zfree(tcp_reass_zone, q);
374		tp->t_segqlen--;
375		tcp_reass_qsize--;
376		q = nq;
377	} while (q && q->tqe_th->th_seq == tp->rcv_nxt);
378	ND6_HINT(tp);
379	sorwakeup_locked(so);
380	return (flags);
381}
382
383/*
384 * TCP input routine, follows pages 65-76 of the
385 * protocol specification dated September, 1981 very closely.
386 */
387#ifdef INET6
388int
389tcp6_input(mp, offp, proto)
390	struct mbuf **mp;
391	int *offp, proto;
392{
393	register struct mbuf *m = *mp;
394	struct in6_ifaddr *ia6;
395
396	IP6_EXTHDR_CHECK(m, *offp, sizeof(struct tcphdr), IPPROTO_DONE);
397
398	/*
399	 * draft-itojun-ipv6-tcp-to-anycast
400	 * better place to put this in?
401	 */
402	ia6 = ip6_getdstifaddr(m);
403	if (ia6 && (ia6->ia6_flags & IN6_IFF_ANYCAST)) {
404		struct ip6_hdr *ip6;
405
406		ip6 = mtod(m, struct ip6_hdr *);
407		icmp6_error(m, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_ADDR,
408			    (caddr_t)&ip6->ip6_dst - (caddr_t)ip6);
409		return IPPROTO_DONE;
410	}
411
412	tcp_input(m, *offp);
413	return IPPROTO_DONE;
414}
415#endif
416
417void
418tcp_input(m, off0)
419	register struct mbuf *m;
420	int off0;
421{
422	register struct tcphdr *th;
423	register struct ip *ip = NULL;
424	register struct ipovly *ipov;
425	register struct inpcb *inp = NULL;
426	u_char *optp = NULL;
427	int optlen = 0;
428	int len, tlen, off;
429	int drop_hdrlen;
430	register struct tcpcb *tp = 0;
431	register int thflags;
432	struct socket *so = 0;
433	int todrop, acked, ourfinisacked, needoutput = 0;
434	u_long tiwin;
435	struct tcpopt to;		/* options in this segment */
436	int headlocked = 0;
437#ifdef IPFIREWALL_FORWARD
438	struct m_tag *fwd_tag;
439#endif
440	int rstreason; /* For badport_bandlim accounting purposes */
441
442	struct ip6_hdr *ip6 = NULL;
443#ifdef INET6
444	int isipv6;
445#else
446	const int isipv6 = 0;
447#endif
448
449#ifdef TCPDEBUG
450	/*
451	 * The size of tcp_saveipgen must be the size of the max ip header,
452	 * now IPv6.
453	 */
454	u_char tcp_saveipgen[40];
455	struct tcphdr tcp_savetcp;
456	short ostate = 0;
457#endif
458
459#ifdef INET6
460	isipv6 = (mtod(m, struct ip *)->ip_v == 6) ? 1 : 0;
461#endif
462	bzero((char *)&to, sizeof(to));
463
464	tcpstat.tcps_rcvtotal++;
465
466	if (isipv6) {
467#ifdef INET6
468		/* IP6_EXTHDR_CHECK() is already done at tcp6_input() */
469		ip6 = mtod(m, struct ip6_hdr *);
470		tlen = sizeof(*ip6) + ntohs(ip6->ip6_plen) - off0;
471		if (in6_cksum(m, IPPROTO_TCP, off0, tlen)) {
472			tcpstat.tcps_rcvbadsum++;
473			goto drop;
474		}
475		th = (struct tcphdr *)((caddr_t)ip6 + off0);
476
477		/*
478		 * Be proactive about unspecified IPv6 address in source.
479		 * As we use all-zero to indicate unbounded/unconnected pcb,
480		 * unspecified IPv6 address can be used to confuse us.
481		 *
482		 * Note that packets with unspecified IPv6 destination is
483		 * already dropped in ip6_input.
484		 */
485		if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) {
486			/* XXX stat */
487			goto drop;
488		}
489#else
490		th = NULL;		/* XXX: avoid compiler warning */
491#endif
492	} else {
493		/*
494		 * Get IP and TCP header together in first mbuf.
495		 * Note: IP leaves IP header in first mbuf.
496		 */
497		if (off0 > sizeof (struct ip)) {
498			ip_stripoptions(m, (struct mbuf *)0);
499			off0 = sizeof(struct ip);
500		}
501		if (m->m_len < sizeof (struct tcpiphdr)) {
502			if ((m = m_pullup(m, sizeof (struct tcpiphdr))) == 0) {
503				tcpstat.tcps_rcvshort++;
504				return;
505			}
506		}
507		ip = mtod(m, struct ip *);
508		ipov = (struct ipovly *)ip;
509		th = (struct tcphdr *)((caddr_t)ip + off0);
510		tlen = ip->ip_len;
511
512		if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) {
513			if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR)
514				th->th_sum = m->m_pkthdr.csum_data;
515			else
516				th->th_sum = in_pseudo(ip->ip_src.s_addr,
517						ip->ip_dst.s_addr,
518						htonl(m->m_pkthdr.csum_data +
519							ip->ip_len +
520							IPPROTO_TCP));
521			th->th_sum ^= 0xffff;
522#ifdef TCPDEBUG
523			ipov->ih_len = (u_short)tlen;
524			ipov->ih_len = htons(ipov->ih_len);
525#endif
526		} else {
527			/*
528			 * Checksum extended TCP header and data.
529			 */
530			len = sizeof (struct ip) + tlen;
531			bzero(ipov->ih_x1, sizeof(ipov->ih_x1));
532			ipov->ih_len = (u_short)tlen;
533			ipov->ih_len = htons(ipov->ih_len);
534			th->th_sum = in_cksum(m, len);
535		}
536		if (th->th_sum) {
537			tcpstat.tcps_rcvbadsum++;
538			goto drop;
539		}
540#ifdef INET6
541		/* Re-initialization for later version check */
542		ip->ip_v = IPVERSION;
543#endif
544	}
545
546	/*
547	 * Check that TCP offset makes sense,
548	 * pull out TCP options and adjust length.		XXX
549	 */
550	off = th->th_off << 2;
551	if (off < sizeof (struct tcphdr) || off > tlen) {
552		tcpstat.tcps_rcvbadoff++;
553		goto drop;
554	}
555	tlen -= off;	/* tlen is used instead of ti->ti_len */
556	if (off > sizeof (struct tcphdr)) {
557		if (isipv6) {
558#ifdef INET6
559			IP6_EXTHDR_CHECK(m, off0, off, );
560			ip6 = mtod(m, struct ip6_hdr *);
561			th = (struct tcphdr *)((caddr_t)ip6 + off0);
562#endif
563		} else {
564			if (m->m_len < sizeof(struct ip) + off) {
565				if ((m = m_pullup(m, sizeof (struct ip) + off))
566						== 0) {
567					tcpstat.tcps_rcvshort++;
568					return;
569				}
570				ip = mtod(m, struct ip *);
571				ipov = (struct ipovly *)ip;
572				th = (struct tcphdr *)((caddr_t)ip + off0);
573			}
574		}
575		optlen = off - sizeof (struct tcphdr);
576		optp = (u_char *)(th + 1);
577	}
578	thflags = th->th_flags;
579
580#ifdef TCP_DROP_SYNFIN
581	/*
582	 * If the drop_synfin option is enabled, drop all packets with
583	 * both the SYN and FIN bits set. This prevents e.g. nmap from
584	 * identifying the TCP/IP stack.
585	 *
586	 * This is a violation of the TCP specification.
587	 */
588	if (drop_synfin && (thflags & (TH_SYN|TH_FIN)) == (TH_SYN|TH_FIN))
589		goto drop;
590#endif
591
592	/*
593	 * Convert TCP protocol specific fields to host format.
594	 */
595	th->th_seq = ntohl(th->th_seq);
596	th->th_ack = ntohl(th->th_ack);
597	th->th_win = ntohs(th->th_win);
598	th->th_urp = ntohs(th->th_urp);
599
600	/*
601	 * Delay dropping TCP, IP headers, IPv6 ext headers, and TCP options,
602	 * until after ip6_savecontrol() is called and before other functions
603	 * which don't want those proto headers.
604	 * Because ip6_savecontrol() is going to parse the mbuf to
605	 * search for data to be passed up to user-land, it wants mbuf
606	 * parameters to be unchanged.
607	 * XXX: the call of ip6_savecontrol() has been obsoleted based on
608	 * latest version of the advanced API (20020110).
609	 */
610	drop_hdrlen = off0 + off;
611
612	/*
613	 * Locate pcb for segment.
614	 */
615	INP_INFO_WLOCK(&tcbinfo);
616	headlocked = 1;
617findpcb:
618	KASSERT(headlocked, ("tcp_input: findpcb: head not locked"));
619#ifdef IPFIREWALL_FORWARD
620	/* Grab info from PACKET_TAG_IPFORWARD tag prepended to the chain. */
621	fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL);
622
623	if (fwd_tag != NULL && isipv6 == 0) {	/* IPv6 support is not yet */
624		struct sockaddr_in *next_hop;
625
626		next_hop = (struct sockaddr_in *)(fwd_tag+1);
627		/*
628		 * Transparently forwarded. Pretend to be the destination.
629		 * already got one like this?
630		 */
631		inp = in_pcblookup_hash(&tcbinfo,
632					ip->ip_src, th->th_sport,
633					ip->ip_dst, th->th_dport,
634					0, m->m_pkthdr.rcvif);
635		if (!inp) {
636			/* It's new.  Try to find the ambushing socket. */
637			inp = in_pcblookup_hash(&tcbinfo,
638						ip->ip_src, th->th_sport,
639						next_hop->sin_addr,
640						next_hop->sin_port ?
641						    ntohs(next_hop->sin_port) :
642						    th->th_dport,
643						1, m->m_pkthdr.rcvif);
644		}
645		/* Remove the tag from the packet.  We don't need it anymore. */
646		m_tag_delete(m, fwd_tag);
647	} else {
648#endif /* IPFIREWALL_FORWARD */
649		if (isipv6) {
650#ifdef INET6
651			inp = in6_pcblookup_hash(&tcbinfo,
652						 &ip6->ip6_src, th->th_sport,
653						 &ip6->ip6_dst, th->th_dport,
654						 1, m->m_pkthdr.rcvif);
655#endif
656		} else
657			inp = in_pcblookup_hash(&tcbinfo,
658						ip->ip_src, th->th_sport,
659						ip->ip_dst, th->th_dport,
660						1, m->m_pkthdr.rcvif);
661#ifdef IPFIREWALL_FORWARD
662	}
663#endif /* IPFIREWALL_FORWARD */
664
665#if defined(IPSEC) || defined(FAST_IPSEC)
666#ifdef INET6
667	if (isipv6) {
668		if (inp != NULL && ipsec6_in_reject(m, inp)) {
669#ifdef IPSEC
670			ipsec6stat.in_polvio++;
671#endif
672			goto drop;
673		}
674	} else
675#endif /* INET6 */
676	if (inp != NULL && ipsec4_in_reject(m, inp)) {
677#ifdef IPSEC
678		ipsecstat.in_polvio++;
679#endif
680		goto drop;
681	}
682#endif /*IPSEC || FAST_IPSEC*/
683
684	/*
685	 * If the state is CLOSED (i.e., TCB does not exist) then
686	 * all data in the incoming segment is discarded.
687	 * If the TCB exists but is in CLOSED state, it is embryonic,
688	 * but should either do a listen or a connect soon.
689	 */
690	if (inp == NULL) {
691		if (log_in_vain) {
692#ifdef INET6
693			char dbuf[INET6_ADDRSTRLEN+2], sbuf[INET6_ADDRSTRLEN+2];
694#else
695			char dbuf[4*sizeof "123"], sbuf[4*sizeof "123"];
696#endif
697
698			if (isipv6) {
699#ifdef INET6
700				strcpy(dbuf, "[");
701				strcpy(sbuf, "[");
702				strcat(dbuf, ip6_sprintf(&ip6->ip6_dst));
703				strcat(sbuf, ip6_sprintf(&ip6->ip6_src));
704				strcat(dbuf, "]");
705				strcat(sbuf, "]");
706#endif
707			} else {
708				strcpy(dbuf, inet_ntoa(ip->ip_dst));
709				strcpy(sbuf, inet_ntoa(ip->ip_src));
710			}
711			switch (log_in_vain) {
712			case 1:
713				if ((thflags & TH_SYN) == 0)
714					break;
715				/* FALLTHROUGH */
716			case 2:
717				log(LOG_INFO,
718				    "Connection attempt to TCP %s:%d "
719				    "from %s:%d flags:0x%02x\n",
720				    dbuf, ntohs(th->th_dport), sbuf,
721				    ntohs(th->th_sport), thflags);
722				break;
723			default:
724				break;
725			}
726		}
727		if (blackhole) {
728			switch (blackhole) {
729			case 1:
730				if (thflags & TH_SYN)
731					goto drop;
732				break;
733			case 2:
734				goto drop;
735			default:
736				goto drop;
737			}
738		}
739		rstreason = BANDLIM_RST_CLOSEDPORT;
740		goto dropwithreset;
741	}
742	INP_LOCK(inp);
743
744	/* Check the minimum TTL for socket. */
745	if (inp->inp_ip_minttl && inp->inp_ip_minttl > ip->ip_ttl)
746		goto drop;
747
748	if (inp->inp_vflag & INP_TIMEWAIT) {
749		/*
750		 * The only option of relevance is TOF_CC, and only if
751		 * present in a SYN segment.  See tcp_timewait().
752		 */
753		if (thflags & TH_SYN)
754			tcp_dooptions(&to, optp, optlen, 1);
755		if (tcp_timewait((struct tcptw *)inp->inp_ppcb,
756		    &to, th, m, tlen))
757			goto findpcb;
758		/*
759		 * tcp_timewait unlocks inp.
760		 */
761		INP_INFO_WUNLOCK(&tcbinfo);
762		return;
763	}
764	tp = intotcpcb(inp);
765	if (tp == 0) {
766		INP_UNLOCK(inp);
767		rstreason = BANDLIM_RST_CLOSEDPORT;
768		goto dropwithreset;
769	}
770	if (tp->t_state == TCPS_CLOSED)
771		goto drop;
772
773	/* Unscale the window into a 32-bit value. */
774	if ((thflags & TH_SYN) == 0)
775		tiwin = th->th_win << tp->snd_scale;
776	else
777		tiwin = th->th_win;
778
779#ifdef MAC
780	INP_LOCK_ASSERT(inp);
781	if (mac_check_inpcb_deliver(inp, m))
782		goto drop;
783#endif
784	so = inp->inp_socket;
785#ifdef TCPDEBUG
786	if (so->so_options & SO_DEBUG) {
787		ostate = tp->t_state;
788		if (isipv6)
789			bcopy((char *)ip6, (char *)tcp_saveipgen, sizeof(*ip6));
790		else
791			bcopy((char *)ip, (char *)tcp_saveipgen, sizeof(*ip));
792		tcp_savetcp = *th;
793	}
794#endif
795	if (so->so_options & SO_ACCEPTCONN) {
796		struct in_conninfo inc;
797
798#ifdef INET6
799		inc.inc_isipv6 = isipv6;
800#endif
801		if (isipv6) {
802			inc.inc6_faddr = ip6->ip6_src;
803			inc.inc6_laddr = ip6->ip6_dst;
804		} else {
805			inc.inc_faddr = ip->ip_src;
806			inc.inc_laddr = ip->ip_dst;
807		}
808		inc.inc_fport = th->th_sport;
809		inc.inc_lport = th->th_dport;
810
811	        /*
812	         * If the state is LISTEN then ignore segment if it contains
813		 * a RST.  If the segment contains an ACK then it is bad and
814		 * send a RST.  If it does not contain a SYN then it is not
815		 * interesting; drop it.
816		 *
817		 * If the state is SYN_RECEIVED (syncache) and seg contains
818		 * an ACK, but not for our SYN/ACK, send a RST.  If the seg
819		 * contains a RST, check the sequence number to see if it
820		 * is a valid reset segment.
821		 */
822		if ((thflags & (TH_RST|TH_ACK|TH_SYN)) != TH_SYN) {
823			if ((thflags & (TH_RST|TH_ACK|TH_SYN)) == TH_ACK) {
824				if (!syncache_expand(&inc, th, &so, m)) {
825					/*
826					 * No syncache entry, or ACK was not
827					 * for our SYN/ACK.  Send a RST.
828					 */
829					tcpstat.tcps_badsyn++;
830					rstreason = BANDLIM_RST_OPENPORT;
831					goto dropwithreset;
832				}
833				if (so == NULL) {
834					/*
835					 * Could not complete 3-way handshake,
836					 * connection is being closed down, and
837					 * syncache will free mbuf.
838					 */
839					INP_UNLOCK(inp);
840					INP_INFO_WUNLOCK(&tcbinfo);
841					return;
842				}
843				/*
844				 * Socket is created in state SYN_RECEIVED.
845				 * Continue processing segment.
846				 */
847				INP_UNLOCK(inp);
848				inp = sotoinpcb(so);
849				INP_LOCK(inp);
850				tp = intotcpcb(inp);
851				/*
852				 * This is what would have happened in
853				 * tcp_output() when the SYN,ACK was sent.
854				 */
855				tp->snd_up = tp->snd_una;
856				tp->snd_max = tp->snd_nxt = tp->iss + 1;
857				tp->last_ack_sent = tp->rcv_nxt;
858				/*
859				 * RFC1323: The window in SYN & SYN/ACK
860				 * segments is never scaled.
861				 */
862				tp->snd_wnd = tiwin;	/* unscaled */
863				goto after_listen;
864			}
865			if (thflags & TH_RST) {
866				syncache_chkrst(&inc, th);
867				goto drop;
868			}
869			if (thflags & TH_ACK) {
870				syncache_badack(&inc);
871				tcpstat.tcps_badsyn++;
872				rstreason = BANDLIM_RST_OPENPORT;
873				goto dropwithreset;
874			}
875			goto drop;
876		}
877
878		/*
879		 * Segment's flags are (SYN) or (SYN|FIN).
880		 */
881#ifdef INET6
882		/*
883		 * If deprecated address is forbidden,
884		 * we do not accept SYN to deprecated interface
885		 * address to prevent any new inbound connection from
886		 * getting established.
887		 * When we do not accept SYN, we send a TCP RST,
888		 * with deprecated source address (instead of dropping
889		 * it).  We compromise it as it is much better for peer
890		 * to send a RST, and RST will be the final packet
891		 * for the exchange.
892		 *
893		 * If we do not forbid deprecated addresses, we accept
894		 * the SYN packet.  RFC2462 does not suggest dropping
895		 * SYN in this case.
896		 * If we decipher RFC2462 5.5.4, it says like this:
897		 * 1. use of deprecated addr with existing
898		 *    communication is okay - "SHOULD continue to be
899		 *    used"
900		 * 2. use of it with new communication:
901		 *   (2a) "SHOULD NOT be used if alternate address
902		 *        with sufficient scope is available"
903		 *   (2b) nothing mentioned otherwise.
904		 * Here we fall into (2b) case as we have no choice in
905		 * our source address selection - we must obey the peer.
906		 *
907		 * The wording in RFC2462 is confusing, and there are
908		 * multiple description text for deprecated address
909		 * handling - worse, they are not exactly the same.
910		 * I believe 5.5.4 is the best one, so we follow 5.5.4.
911		 */
912		if (isipv6 && !ip6_use_deprecated) {
913			struct in6_ifaddr *ia6;
914
915			if ((ia6 = ip6_getdstifaddr(m)) &&
916			    (ia6->ia6_flags & IN6_IFF_DEPRECATED)) {
917				INP_UNLOCK(inp);
918				tp = NULL;
919				rstreason = BANDLIM_RST_OPENPORT;
920				goto dropwithreset;
921			}
922		}
923#endif
924		/*
925		 * If it is from this socket, drop it, it must be forged.
926		 * Don't bother responding if the destination was a broadcast.
927		 */
928		if (th->th_dport == th->th_sport) {
929			if (isipv6) {
930				if (IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst,
931						       &ip6->ip6_src))
932					goto drop;
933			} else {
934				if (ip->ip_dst.s_addr == ip->ip_src.s_addr)
935					goto drop;
936			}
937		}
938		/*
939		 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
940		 *
941		 * Note that it is quite possible to receive unicast
942		 * link-layer packets with a broadcast IP address. Use
943		 * in_broadcast() to find them.
944		 */
945		if (m->m_flags & (M_BCAST|M_MCAST))
946			goto drop;
947		if (isipv6) {
948			if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) ||
949			    IN6_IS_ADDR_MULTICAST(&ip6->ip6_src))
950				goto drop;
951		} else {
952			if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
953			    IN_MULTICAST(ntohl(ip->ip_src.s_addr)) ||
954			    ip->ip_src.s_addr == htonl(INADDR_BROADCAST) ||
955			    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
956				goto drop;
957		}
958		/*
959		 * SYN appears to be valid; create compressed TCP state
960		 * for syncache, or perform t/tcp connection.
961		 */
962		if (so->so_qlen <= so->so_qlimit) {
963#ifdef TCPDEBUG
964			if (so->so_options & SO_DEBUG)
965				tcp_trace(TA_INPUT, ostate, tp,
966				    (void *)tcp_saveipgen, &tcp_savetcp, 0);
967#endif
968			tcp_dooptions(&to, optp, optlen, 1);
969			if (!syncache_add(&inc, &to, th, &so, m))
970				goto drop;
971			if (so == NULL) {
972				/*
973				 * Entry added to syncache, mbuf used to
974				 * send SYN,ACK packet.
975				 */
976				KASSERT(headlocked, ("headlocked"));
977				INP_UNLOCK(inp);
978				INP_INFO_WUNLOCK(&tcbinfo);
979				return;
980			}
981			/*
982			 * Segment passed TAO tests.
983			 */
984			INP_UNLOCK(inp);
985			inp = sotoinpcb(so);
986			INP_LOCK(inp);
987			tp = intotcpcb(inp);
988			tp->snd_wnd = tiwin;
989			tp->t_starttime = ticks;
990			tp->t_state = TCPS_ESTABLISHED;
991
992			/*
993			 * T/TCP logic:
994			 * If there is a FIN or if there is data, then
995			 * delay SYN,ACK(SYN) in the hope of piggy-backing
996			 * it on a response segment.  Otherwise must send
997			 * ACK now in case the other side is slow starting.
998			 */
999			if (thflags & TH_FIN || tlen != 0)
1000				tp->t_flags |= (TF_DELACK | TF_NEEDSYN);
1001			else
1002				tp->t_flags |= (TF_ACKNOW | TF_NEEDSYN);
1003			tcpstat.tcps_connects++;
1004			soisconnected(so);
1005			goto trimthenstep6;
1006		}
1007		goto drop;
1008	}
1009after_listen:
1010	KASSERT(headlocked, ("tcp_input: after_listen: head not locked"));
1011	INP_LOCK_ASSERT(inp);
1012
1013	/* XXX temp debugging */
1014	/* should not happen - syncache should pick up these connections */
1015	if (tp->t_state == TCPS_LISTEN)
1016		panic("tcp_input: TCPS_LISTEN");
1017
1018	/*
1019	 * This is the second part of the MSS DoS prevention code (after
1020	 * minmss on the sending side) and it deals with too many too small
1021	 * tcp packets in a too short timeframe (1 second).
1022	 *
1023	 * For every full second we count the number of received packets
1024	 * and bytes. If we get a lot of packets per second for this connection
1025	 * (tcp_minmssoverload) we take a closer look at it and compute the
1026	 * average packet size for the past second. If that is less than
1027	 * tcp_minmss we get too many packets with very small payload which
1028	 * is not good and burdens our system (and every packet generates
1029	 * a wakeup to the process connected to our socket). We can reasonable
1030	 * expect this to be small packet DoS attack to exhaust our CPU
1031	 * cycles.
1032	 *
1033	 * Care has to be taken for the minimum packet overload value. This
1034	 * value defines the minimum number of packets per second before we
1035	 * start to worry. This must not be too low to avoid killing for
1036	 * example interactive connections with many small packets like
1037	 * telnet or SSH.
1038	 *
1039	 * Setting either tcp_minmssoverload or tcp_minmss to "0" disables
1040	 * this check.
1041	 *
1042	 * Account for packet if payload packet, skip over ACK, etc.
1043	 */
1044	if (tcp_minmss && tcp_minmssoverload &&
1045	    tp->t_state == TCPS_ESTABLISHED && tlen > 0) {
1046		if ((unsigned int)(tp->rcv_second - ticks) < hz) {
1047			tp->rcv_pps++;
1048			tp->rcv_byps += tlen + off;
1049			if (tp->rcv_pps > tcp_minmssoverload) {
1050				if ((tp->rcv_byps / tp->rcv_pps) < tcp_minmss) {
1051					printf("too many small tcp packets from "
1052					       "%s:%u, av. %lubyte/packet, "
1053					       "dropping connection\n",
1054#ifdef INET6
1055						isipv6 ?
1056						ip6_sprintf(&inp->inp_inc.inc6_faddr) :
1057#endif
1058						inet_ntoa(inp->inp_inc.inc_faddr),
1059						inp->inp_inc.inc_fport,
1060						tp->rcv_byps / tp->rcv_pps);
1061					KASSERT(headlocked, ("tcp_input: "
1062					    "after_listen: tcp_drop: head "
1063					    "not locked"));
1064					tp = tcp_drop(tp, ECONNRESET);
1065					tcpstat.tcps_minmssdrops++;
1066					goto drop;
1067				}
1068			}
1069		} else {
1070			tp->rcv_second = ticks + hz;
1071			tp->rcv_pps = 1;
1072			tp->rcv_byps = tlen + off;
1073		}
1074	}
1075
1076	/*
1077	 * Segment received on connection.
1078	 * Reset idle time and keep-alive timer.
1079	 */
1080	tp->t_rcvtime = ticks;
1081	if (TCPS_HAVEESTABLISHED(tp->t_state))
1082		callout_reset(tp->tt_keep, tcp_keepidle, tcp_timer_keep, tp);
1083
1084	/*
1085	 * Process options only when we get SYN/ACK back. The SYN case
1086	 * for incoming connections is handled in tcp_syncache.
1087	 * XXX this is traditional behavior, may need to be cleaned up.
1088	 */
1089	tcp_dooptions(&to, optp, optlen, thflags & TH_SYN);
1090	if (tp->t_state == TCPS_SYN_SENT && (thflags & TH_SYN)) {
1091		if (to.to_flags & TOF_SCALE) {
1092			tp->t_flags |= TF_RCVD_SCALE;
1093			tp->requested_s_scale = to.to_requested_s_scale;
1094		}
1095		if (to.to_flags & TOF_TS) {
1096			tp->t_flags |= TF_RCVD_TSTMP;
1097			tp->ts_recent = to.to_tsval;
1098			tp->ts_recent_age = ticks;
1099		}
1100		if (to.to_flags & TOF_MSS)
1101			tcp_mss(tp, to.to_mss);
1102		if (tp->sack_enable) {
1103			if (!(to.to_flags & TOF_SACK))
1104				tp->sack_enable = 0;
1105			else
1106				tp->t_flags |= TF_SACK_PERMIT;
1107		}
1108
1109	}
1110
1111	/*
1112	 * Header prediction: check for the two common cases
1113	 * of a uni-directional data xfer.  If the packet has
1114	 * no control flags, is in-sequence, the window didn't
1115	 * change and we're not retransmitting, it's a
1116	 * candidate.  If the length is zero and the ack moved
1117	 * forward, we're the sender side of the xfer.  Just
1118	 * free the data acked & wake any higher level process
1119	 * that was blocked waiting for space.  If the length
1120	 * is non-zero and the ack didn't move, we're the
1121	 * receiver side.  If we're getting packets in-order
1122	 * (the reassembly queue is empty), add the data to
1123	 * the socket buffer and note that we need a delayed ack.
1124	 * Make sure that the hidden state-flags are also off.
1125	 * Since we check for TCPS_ESTABLISHED above, it can only
1126	 * be TH_NEEDSYN.
1127	 */
1128	if (tp->t_state == TCPS_ESTABLISHED &&
1129	    (thflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK)) == TH_ACK &&
1130	    ((tp->t_flags & (TF_NEEDSYN|TF_NEEDFIN)) == 0) &&
1131	    ((to.to_flags & TOF_TS) == 0 ||
1132	     TSTMP_GEQ(to.to_tsval, tp->ts_recent)) &&
1133	     th->th_seq == tp->rcv_nxt && tiwin && tiwin == tp->snd_wnd &&
1134	     tp->snd_nxt == tp->snd_max) {
1135
1136		/*
1137		 * If last ACK falls within this segment's sequence numbers,
1138		 * record the timestamp.
1139		 * NOTE that the test is modified according to the latest
1140		 * proposal of the tcplw@cray.com list (Braden 1993/04/26).
1141		 */
1142		if ((to.to_flags & TOF_TS) != 0 &&
1143		    SEQ_LEQ(th->th_seq, tp->last_ack_sent)) {
1144			tp->ts_recent_age = ticks;
1145			tp->ts_recent = to.to_tsval;
1146		}
1147
1148		if (tlen == 0) {
1149			if (SEQ_GT(th->th_ack, tp->snd_una) &&
1150			    SEQ_LEQ(th->th_ack, tp->snd_max) &&
1151			    tp->snd_cwnd >= tp->snd_wnd &&
1152			    ((!tcp_do_newreno && !tp->sack_enable &&
1153			      tp->t_dupacks < tcprexmtthresh) ||
1154			     ((tcp_do_newreno || tp->sack_enable) &&
1155			      !IN_FASTRECOVERY(tp) && to.to_nsacks == 0 &&
1156			      TAILQ_EMPTY(&tp->snd_holes)))) {
1157				KASSERT(headlocked, ("headlocked"));
1158				INP_INFO_WUNLOCK(&tcbinfo);
1159				headlocked = 0;
1160				/*
1161				 * this is a pure ack for outstanding data.
1162				 */
1163				++tcpstat.tcps_predack;
1164				/*
1165				 * "bad retransmit" recovery
1166				 */
1167				if (tp->t_rxtshift == 1 &&
1168				    ticks < tp->t_badrxtwin) {
1169					++tcpstat.tcps_sndrexmitbad;
1170					tp->snd_cwnd = tp->snd_cwnd_prev;
1171					tp->snd_ssthresh =
1172					    tp->snd_ssthresh_prev;
1173					tp->snd_recover = tp->snd_recover_prev;
1174					if (tp->t_flags & TF_WASFRECOVERY)
1175					    ENTER_FASTRECOVERY(tp);
1176					tp->snd_nxt = tp->snd_max;
1177					tp->t_badrxtwin = 0;
1178				}
1179
1180				/*
1181				 * Recalculate the transmit timer / rtt.
1182				 *
1183				 * Some boxes send broken timestamp replies
1184				 * during the SYN+ACK phase, ignore
1185				 * timestamps of 0 or we could calculate a
1186				 * huge RTT and blow up the retransmit timer.
1187				 */
1188				if ((to.to_flags & TOF_TS) != 0 &&
1189				    to.to_tsecr) {
1190					tcp_xmit_timer(tp,
1191					    ticks - to.to_tsecr + 1);
1192				} else if (tp->t_rtttime &&
1193					    SEQ_GT(th->th_ack, tp->t_rtseq)) {
1194					tcp_xmit_timer(tp,
1195							ticks - tp->t_rtttime);
1196				}
1197				tcp_xmit_bandwidth_limit(tp, th->th_ack);
1198				acked = th->th_ack - tp->snd_una;
1199				tcpstat.tcps_rcvackpack++;
1200				tcpstat.tcps_rcvackbyte += acked;
1201				sbdrop(&so->so_snd, acked);
1202				if (SEQ_GT(tp->snd_una, tp->snd_recover) &&
1203				    SEQ_LEQ(th->th_ack, tp->snd_recover))
1204					tp->snd_recover = th->th_ack - 1;
1205				tp->snd_una = th->th_ack;
1206				/*
1207				 * pull snd_wl2 up to prevent seq wrap relative
1208				 * to th_ack.
1209				 */
1210				tp->snd_wl2 = th->th_ack;
1211				tp->t_dupacks = 0;
1212				m_freem(m);
1213				ND6_HINT(tp); /* some progress has been done */
1214
1215				/*
1216				 * If all outstanding data are acked, stop
1217				 * retransmit timer, otherwise restart timer
1218				 * using current (possibly backed-off) value.
1219				 * If process is waiting for space,
1220				 * wakeup/selwakeup/signal.  If data
1221				 * are ready to send, let tcp_output
1222				 * decide between more output or persist.
1223
1224#ifdef TCPDEBUG
1225				if (so->so_options & SO_DEBUG)
1226					tcp_trace(TA_INPUT, ostate, tp,
1227					    (void *)tcp_saveipgen,
1228					    &tcp_savetcp, 0);
1229#endif
1230				 */
1231				if (tp->snd_una == tp->snd_max)
1232					callout_stop(tp->tt_rexmt);
1233				else if (!callout_active(tp->tt_persist))
1234					callout_reset(tp->tt_rexmt,
1235						      tp->t_rxtcur,
1236						      tcp_timer_rexmt, tp);
1237
1238				sowwakeup(so);
1239				if (so->so_snd.sb_cc)
1240					(void) tcp_output(tp);
1241				goto check_delack;
1242			}
1243		} else if (th->th_ack == tp->snd_una &&
1244		    LIST_EMPTY(&tp->t_segq) &&
1245		    tlen <= sbspace(&so->so_rcv)) {
1246			KASSERT(headlocked, ("headlocked"));
1247			INP_INFO_WUNLOCK(&tcbinfo);
1248			headlocked = 0;
1249			/*
1250			 * this is a pure, in-sequence data packet
1251			 * with nothing on the reassembly queue and
1252			 * we have enough buffer space to take it.
1253			 */
1254			/* Clean receiver SACK report if present */
1255			if (tp->sack_enable && tp->rcv_numsacks)
1256				tcp_clean_sackreport(tp);
1257			++tcpstat.tcps_preddat;
1258			tp->rcv_nxt += tlen;
1259			/*
1260			 * Pull snd_wl1 up to prevent seq wrap relative to
1261			 * th_seq.
1262			 */
1263			tp->snd_wl1 = th->th_seq;
1264			/*
1265			 * Pull rcv_up up to prevent seq wrap relative to
1266			 * rcv_nxt.
1267			 */
1268			tp->rcv_up = tp->rcv_nxt;
1269			tcpstat.tcps_rcvpack++;
1270			tcpstat.tcps_rcvbyte += tlen;
1271			ND6_HINT(tp);	/* some progress has been done */
1272			/*
1273#ifdef TCPDEBUG
1274			if (so->so_options & SO_DEBUG)
1275				tcp_trace(TA_INPUT, ostate, tp,
1276				    (void *)tcp_saveipgen, &tcp_savetcp, 0);
1277#endif
1278			 * Add data to socket buffer.
1279			 */
1280			SOCKBUF_LOCK(&so->so_rcv);
1281			if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
1282				m_freem(m);
1283			} else {
1284				m_adj(m, drop_hdrlen);	/* delayed header drop */
1285				sbappendstream_locked(&so->so_rcv, m);
1286			}
1287			sorwakeup_locked(so);
1288			if (DELAY_ACK(tp)) {
1289				tp->t_flags |= TF_DELACK;
1290			} else {
1291				tp->t_flags |= TF_ACKNOW;
1292				tcp_output(tp);
1293			}
1294			goto check_delack;
1295		}
1296	}
1297
1298	/*
1299	 * Calculate amount of space in receive window,
1300	 * and then do TCP input processing.
1301	 * Receive window is amount of space in rcv queue,
1302	 * but not less than advertised window.
1303	 */
1304	{ int win;
1305
1306	win = sbspace(&so->so_rcv);
1307	if (win < 0)
1308		win = 0;
1309	tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
1310	}
1311
1312	switch (tp->t_state) {
1313
1314	/*
1315	 * If the state is SYN_RECEIVED:
1316	 *	if seg contains an ACK, but not for our SYN/ACK, send a RST.
1317	 */
1318	case TCPS_SYN_RECEIVED:
1319		if ((thflags & TH_ACK) &&
1320		    (SEQ_LEQ(th->th_ack, tp->snd_una) ||
1321		     SEQ_GT(th->th_ack, tp->snd_max))) {
1322				rstreason = BANDLIM_RST_OPENPORT;
1323				goto dropwithreset;
1324		}
1325		break;
1326
1327	/*
1328	 * If the state is SYN_SENT:
1329	 *	if seg contains an ACK, but not for our SYN, drop the input.
1330	 *	if seg contains a RST, then drop the connection.
1331	 *	if seg does not contain SYN, then drop it.
1332	 * Otherwise this is an acceptable SYN segment
1333	 *	initialize tp->rcv_nxt and tp->irs
1334	 *	if seg contains ack then advance tp->snd_una
1335	 *	if SYN has been acked change to ESTABLISHED else SYN_RCVD state
1336	 *	arrange for segment to be acked (eventually)
1337	 *	continue processing rest of data/controls, beginning with URG
1338	 */
1339	case TCPS_SYN_SENT:
1340		if ((thflags & TH_ACK) &&
1341		    (SEQ_LEQ(th->th_ack, tp->iss) ||
1342		     SEQ_GT(th->th_ack, tp->snd_max))) {
1343			rstreason = BANDLIM_UNLIMITED;
1344			goto dropwithreset;
1345		}
1346		if (thflags & TH_RST) {
1347			if (thflags & TH_ACK) {
1348				KASSERT(headlocked, ("tcp_input: after_listen"
1349				    ": tcp_drop.2: head not locked"));
1350				tp = tcp_drop(tp, ECONNREFUSED);
1351			}
1352			goto drop;
1353		}
1354		if ((thflags & TH_SYN) == 0)
1355			goto drop;
1356		tp->snd_wnd = th->th_win;	/* initial send window */
1357
1358		tp->irs = th->th_seq;
1359		tcp_rcvseqinit(tp);
1360		if (thflags & TH_ACK) {
1361			tcpstat.tcps_connects++;
1362			soisconnected(so);
1363#ifdef MAC
1364			SOCK_LOCK(so);
1365			mac_set_socket_peer_from_mbuf(m, so);
1366			SOCK_UNLOCK(so);
1367#endif
1368			/* Do window scaling on this connection? */
1369			if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
1370				(TF_RCVD_SCALE|TF_REQ_SCALE)) {
1371				tp->snd_scale = tp->requested_s_scale;
1372				tp->rcv_scale = tp->request_r_scale;
1373			}
1374			tp->rcv_adv += tp->rcv_wnd;
1375			tp->snd_una++;		/* SYN is acked */
1376			/*
1377			 * If there's data, delay ACK; if there's also a FIN
1378			 * ACKNOW will be turned on later.
1379			 */
1380			if (DELAY_ACK(tp) && tlen != 0)
1381				callout_reset(tp->tt_delack, tcp_delacktime,
1382				    tcp_timer_delack, tp);
1383			else
1384				tp->t_flags |= TF_ACKNOW;
1385			/*
1386			 * Received <SYN,ACK> in SYN_SENT[*] state.
1387			 * Transitions:
1388			 *	SYN_SENT  --> ESTABLISHED
1389			 *	SYN_SENT* --> FIN_WAIT_1
1390			 */
1391			tp->t_starttime = ticks;
1392			if (tp->t_flags & TF_NEEDFIN) {
1393				tp->t_state = TCPS_FIN_WAIT_1;
1394				tp->t_flags &= ~TF_NEEDFIN;
1395				thflags &= ~TH_SYN;
1396			} else {
1397				tp->t_state = TCPS_ESTABLISHED;
1398				callout_reset(tp->tt_keep, tcp_keepidle,
1399					      tcp_timer_keep, tp);
1400			}
1401		} else {
1402			/*
1403			 * Received initial SYN in SYN-SENT[*] state =>
1404			 * simultaneous open.  If segment contains CC option
1405			 * and there is a cached CC, apply TAO test.
1406			 * If it succeeds, connection is * half-synchronized.
1407			 * Otherwise, do 3-way handshake:
1408			 *        SYN-SENT -> SYN-RECEIVED
1409			 *        SYN-SENT* -> SYN-RECEIVED*
1410			 * If there was no CC option, clear cached CC value.
1411			 */
1412			tp->t_flags |= TF_ACKNOW;
1413			callout_stop(tp->tt_rexmt);
1414			tp->t_state = TCPS_SYN_RECEIVED;
1415		}
1416
1417trimthenstep6:
1418		KASSERT(headlocked, ("tcp_input: trimthenstep6: head not "
1419		    "locked"));
1420		INP_LOCK_ASSERT(inp);
1421
1422		/*
1423		 * Advance th->th_seq to correspond to first data byte.
1424		 * If data, trim to stay within window,
1425		 * dropping FIN if necessary.
1426		 */
1427		th->th_seq++;
1428		if (tlen > tp->rcv_wnd) {
1429			todrop = tlen - tp->rcv_wnd;
1430			m_adj(m, -todrop);
1431			tlen = tp->rcv_wnd;
1432			thflags &= ~TH_FIN;
1433			tcpstat.tcps_rcvpackafterwin++;
1434			tcpstat.tcps_rcvbyteafterwin += todrop;
1435		}
1436		tp->snd_wl1 = th->th_seq - 1;
1437		tp->rcv_up = th->th_seq;
1438		/*
1439		 * Client side of transaction: already sent SYN and data.
1440		 * If the remote host used T/TCP to validate the SYN,
1441		 * our data will be ACK'd; if so, enter normal data segment
1442		 * processing in the middle of step 5, ack processing.
1443		 * Otherwise, goto step 6.
1444		 */
1445		if (thflags & TH_ACK)
1446			goto process_ACK;
1447
1448		goto step6;
1449
1450	/*
1451	 * If the state is LAST_ACK or CLOSING or TIME_WAIT:
1452	 *      do normal processing.
1453	 *
1454	 * NB: Leftover from RFC1644 T/TCP.  Cases to be reused later.
1455	 */
1456	case TCPS_LAST_ACK:
1457	case TCPS_CLOSING:
1458	case TCPS_TIME_WAIT:
1459		KASSERT(tp->t_state != TCPS_TIME_WAIT, ("timewait"));
1460		break;  /* continue normal processing */
1461	}
1462
1463	/*
1464	 * States other than LISTEN or SYN_SENT.
1465	 * First check the RST flag and sequence number since reset segments
1466	 * are exempt from the timestamp and connection count tests.  This
1467	 * fixes a bug introduced by the Stevens, vol. 2, p. 960 bugfix
1468	 * below which allowed reset segments in half the sequence space
1469	 * to fall though and be processed (which gives forged reset
1470	 * segments with a random sequence number a 50 percent chance of
1471	 * killing a connection).
1472	 * Then check timestamp, if present.
1473	 * Then check the connection count, if present.
1474	 * Then check that at least some bytes of segment are within
1475	 * receive window.  If segment begins before rcv_nxt,
1476	 * drop leading data (and SYN); if nothing left, just ack.
1477	 *
1478	 *
1479	 * If the RST bit is set, check the sequence number to see
1480	 * if this is a valid reset segment.
1481	 * RFC 793 page 37:
1482	 *   In all states except SYN-SENT, all reset (RST) segments
1483	 *   are validated by checking their SEQ-fields.  A reset is
1484	 *   valid if its sequence number is in the window.
1485	 * Note: this does not take into account delayed ACKs, so
1486	 *   we should test against last_ack_sent instead of rcv_nxt.
1487	 *   The sequence number in the reset segment is normally an
1488	 *   echo of our outgoing acknowlegement numbers, but some hosts
1489	 *   send a reset with the sequence number at the rightmost edge
1490	 *   of our receive window, and we have to handle this case.
1491	 * Note 2: Paul Watson's paper "Slipping in the Window" has shown
1492	 *   that brute force RST attacks are possible.  To combat this,
1493	 *   we use a much stricter check while in the ESTABLISHED state,
1494	 *   only accepting RSTs where the sequence number is equal to
1495	 *   last_ack_sent.  In all other states (the states in which a
1496	 *   RST is more likely), the more permissive check is used.
1497	 * If we have multiple segments in flight, the intial reset
1498	 * segment sequence numbers will be to the left of last_ack_sent,
1499	 * but they will eventually catch up.
1500	 * In any case, it never made sense to trim reset segments to
1501	 * fit the receive window since RFC 1122 says:
1502	 *   4.2.2.12  RST Segment: RFC-793 Section 3.4
1503	 *
1504	 *    A TCP SHOULD allow a received RST segment to include data.
1505	 *
1506	 *    DISCUSSION
1507	 *         It has been suggested that a RST segment could contain
1508	 *         ASCII text that encoded and explained the cause of the
1509	 *         RST.  No standard has yet been established for such
1510	 *         data.
1511	 *
1512	 * If the reset segment passes the sequence number test examine
1513	 * the state:
1514	 *    SYN_RECEIVED STATE:
1515	 *	If passive open, return to LISTEN state.
1516	 *	If active open, inform user that connection was refused.
1517	 *    ESTABLISHED, FIN_WAIT_1, FIN_WAIT_2, CLOSE_WAIT STATES:
1518	 *	Inform user that connection was reset, and close tcb.
1519	 *    CLOSING, LAST_ACK STATES:
1520	 *	Close the tcb.
1521	 *    TIME_WAIT STATE:
1522	 *	Drop the segment - see Stevens, vol. 2, p. 964 and
1523	 *      RFC 1337.
1524	 */
1525	if (thflags & TH_RST) {
1526		if ((SEQ_GEQ(th->th_seq, tp->last_ack_sent) &&
1527		    SEQ_LT(th->th_seq, tp->last_ack_sent + tp->rcv_wnd)) ||
1528		    (tp->rcv_wnd == 0 && tp->last_ack_sent == th->th_seq)) {
1529			switch (tp->t_state) {
1530
1531			case TCPS_SYN_RECEIVED:
1532				so->so_error = ECONNREFUSED;
1533				goto close;
1534
1535			case TCPS_ESTABLISHED:
1536				if (tp->last_ack_sent != th->th_seq &&
1537			 	    tcp_insecure_rst == 0) {
1538					tcpstat.tcps_badrst++;
1539					goto drop;
1540				}
1541			case TCPS_FIN_WAIT_1:
1542			case TCPS_FIN_WAIT_2:
1543			case TCPS_CLOSE_WAIT:
1544				so->so_error = ECONNRESET;
1545			close:
1546				tp->t_state = TCPS_CLOSED;
1547				tcpstat.tcps_drops++;
1548				KASSERT(headlocked, ("tcp_input: "
1549				    "trimthenstep6: tcp_close: head not "
1550				    "locked"));
1551				tp = tcp_close(tp);
1552				break;
1553
1554			case TCPS_CLOSING:
1555			case TCPS_LAST_ACK:
1556				KASSERT(headlocked, ("trimthenstep6: "
1557				    "tcp_close.2: head not locked"));
1558				tp = tcp_close(tp);
1559				break;
1560
1561			case TCPS_TIME_WAIT:
1562				KASSERT(tp->t_state != TCPS_TIME_WAIT,
1563				    ("timewait"));
1564				break;
1565			}
1566		}
1567		goto drop;
1568	}
1569
1570	/*
1571	 * RFC 1323 PAWS: If we have a timestamp reply on this segment
1572	 * and it's less than ts_recent, drop it.
1573	 */
1574	if ((to.to_flags & TOF_TS) != 0 && tp->ts_recent &&
1575	    TSTMP_LT(to.to_tsval, tp->ts_recent)) {
1576
1577		/* Check to see if ts_recent is over 24 days old.  */
1578		if ((int)(ticks - tp->ts_recent_age) > TCP_PAWS_IDLE) {
1579			/*
1580			 * Invalidate ts_recent.  If this segment updates
1581			 * ts_recent, the age will be reset later and ts_recent
1582			 * will get a valid value.  If it does not, setting
1583			 * ts_recent to zero will at least satisfy the
1584			 * requirement that zero be placed in the timestamp
1585			 * echo reply when ts_recent isn't valid.  The
1586			 * age isn't reset until we get a valid ts_recent
1587			 * because we don't want out-of-order segments to be
1588			 * dropped when ts_recent is old.
1589			 */
1590			tp->ts_recent = 0;
1591		} else {
1592			tcpstat.tcps_rcvduppack++;
1593			tcpstat.tcps_rcvdupbyte += tlen;
1594			tcpstat.tcps_pawsdrop++;
1595			if (tlen)
1596				goto dropafterack;
1597			goto drop;
1598		}
1599	}
1600
1601	/*
1602	 * In the SYN-RECEIVED state, validate that the packet belongs to
1603	 * this connection before trimming the data to fit the receive
1604	 * window.  Check the sequence number versus IRS since we know
1605	 * the sequence numbers haven't wrapped.  This is a partial fix
1606	 * for the "LAND" DoS attack.
1607	 */
1608	if (tp->t_state == TCPS_SYN_RECEIVED && SEQ_LT(th->th_seq, tp->irs)) {
1609		rstreason = BANDLIM_RST_OPENPORT;
1610		goto dropwithreset;
1611	}
1612
1613	todrop = tp->rcv_nxt - th->th_seq;
1614	if (todrop > 0) {
1615		if (thflags & TH_SYN) {
1616			thflags &= ~TH_SYN;
1617			th->th_seq++;
1618			if (th->th_urp > 1)
1619				th->th_urp--;
1620			else
1621				thflags &= ~TH_URG;
1622			todrop--;
1623		}
1624		/*
1625		 * Following if statement from Stevens, vol. 2, p. 960.
1626		 */
1627		if (todrop > tlen
1628		    || (todrop == tlen && (thflags & TH_FIN) == 0)) {
1629			/*
1630			 * Any valid FIN must be to the left of the window.
1631			 * At this point the FIN must be a duplicate or out
1632			 * of sequence; drop it.
1633			 */
1634			thflags &= ~TH_FIN;
1635
1636			/*
1637			 * Send an ACK to resynchronize and drop any data.
1638			 * But keep on processing for RST or ACK.
1639			 */
1640			tp->t_flags |= TF_ACKNOW;
1641			todrop = tlen;
1642			tcpstat.tcps_rcvduppack++;
1643			tcpstat.tcps_rcvdupbyte += todrop;
1644		} else {
1645			tcpstat.tcps_rcvpartduppack++;
1646			tcpstat.tcps_rcvpartdupbyte += todrop;
1647		}
1648		drop_hdrlen += todrop;	/* drop from the top afterwards */
1649		th->th_seq += todrop;
1650		tlen -= todrop;
1651		if (th->th_urp > todrop)
1652			th->th_urp -= todrop;
1653		else {
1654			thflags &= ~TH_URG;
1655			th->th_urp = 0;
1656		}
1657	}
1658
1659	/*
1660	 * If new data are received on a connection after the
1661	 * user processes are gone, then RST the other end.
1662	 */
1663	if ((so->so_state & SS_NOFDREF) &&
1664	    tp->t_state > TCPS_CLOSE_WAIT && tlen) {
1665		KASSERT(headlocked, ("trimthenstep6: tcp_close.3: head not "
1666		    "locked"));
1667		tp = tcp_close(tp);
1668		tcpstat.tcps_rcvafterclose++;
1669		rstreason = BANDLIM_UNLIMITED;
1670		goto dropwithreset;
1671	}
1672
1673	/*
1674	 * If segment ends after window, drop trailing data
1675	 * (and PUSH and FIN); if nothing left, just ACK.
1676	 */
1677	todrop = (th->th_seq+tlen) - (tp->rcv_nxt+tp->rcv_wnd);
1678	if (todrop > 0) {
1679		tcpstat.tcps_rcvpackafterwin++;
1680		if (todrop >= tlen) {
1681			tcpstat.tcps_rcvbyteafterwin += tlen;
1682			/*
1683			 * If a new connection request is received
1684			 * while in TIME_WAIT, drop the old connection
1685			 * and start over if the sequence numbers
1686			 * are above the previous ones.
1687			 */
1688			KASSERT(tp->t_state != TCPS_TIME_WAIT, ("timewait"));
1689			if (thflags & TH_SYN &&
1690			    tp->t_state == TCPS_TIME_WAIT &&
1691			    SEQ_GT(th->th_seq, tp->rcv_nxt)) {
1692				KASSERT(headlocked, ("trimthenstep6: "
1693				    "tcp_close.4: head not locked"));
1694				tp = tcp_close(tp);
1695				goto findpcb;
1696			}
1697			/*
1698			 * If window is closed can only take segments at
1699			 * window edge, and have to drop data and PUSH from
1700			 * incoming segments.  Continue processing, but
1701			 * remember to ack.  Otherwise, drop segment
1702			 * and ack.
1703			 */
1704			if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
1705				tp->t_flags |= TF_ACKNOW;
1706				tcpstat.tcps_rcvwinprobe++;
1707			} else
1708				goto dropafterack;
1709		} else
1710			tcpstat.tcps_rcvbyteafterwin += todrop;
1711		m_adj(m, -todrop);
1712		tlen -= todrop;
1713		thflags &= ~(TH_PUSH|TH_FIN);
1714	}
1715
1716	/*
1717	 * If last ACK falls within this segment's sequence numbers,
1718	 * record its timestamp.
1719	 * NOTE:
1720	 * 1) That the test incorporates suggestions from the latest
1721	 *    proposal of the tcplw@cray.com list (Braden 1993/04/26).
1722	 * 2) That updating only on newer timestamps interferes with
1723	 *    our earlier PAWS tests, so this check should be solely
1724	 *    predicated on the sequence space of this segment.
1725	 * 3) That we modify the segment boundary check to be
1726	 *        Last.ACK.Sent <= SEG.SEQ + SEG.Len
1727	 *    instead of RFC1323's
1728	 *        Last.ACK.Sent < SEG.SEQ + SEG.Len,
1729	 *    This modified check allows us to overcome RFC1323's
1730	 *    limitations as described in Stevens TCP/IP Illustrated
1731	 *    Vol. 2 p.869. In such cases, we can still calculate the
1732	 *    RTT correctly when RCV.NXT == Last.ACK.Sent.
1733	 */
1734	if ((to.to_flags & TOF_TS) != 0 &&
1735	    SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
1736	    SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
1737		((thflags & (TH_SYN|TH_FIN)) != 0))) {
1738		tp->ts_recent_age = ticks;
1739		tp->ts_recent = to.to_tsval;
1740	}
1741
1742	/*
1743	 * If a SYN is in the window, then this is an
1744	 * error and we send an RST and drop the connection.
1745	 */
1746	if (thflags & TH_SYN) {
1747		KASSERT(headlocked, ("tcp_input: tcp_drop: trimthenstep6: "
1748		    "head not locked"));
1749		tp = tcp_drop(tp, ECONNRESET);
1750		rstreason = BANDLIM_UNLIMITED;
1751		goto drop;
1752	}
1753
1754	/*
1755	 * If the ACK bit is off:  if in SYN-RECEIVED state or SENDSYN
1756	 * flag is on (half-synchronized state), then queue data for
1757	 * later processing; else drop segment and return.
1758	 */
1759	if ((thflags & TH_ACK) == 0) {
1760		if (tp->t_state == TCPS_SYN_RECEIVED ||
1761		    (tp->t_flags & TF_NEEDSYN))
1762			goto step6;
1763		else
1764			goto drop;
1765	}
1766
1767	/*
1768	 * Ack processing.
1769	 */
1770	switch (tp->t_state) {
1771
1772	/*
1773	 * In SYN_RECEIVED state, the ack ACKs our SYN, so enter
1774	 * ESTABLISHED state and continue processing.
1775	 * The ACK was checked above.
1776	 */
1777	case TCPS_SYN_RECEIVED:
1778
1779		tcpstat.tcps_connects++;
1780		soisconnected(so);
1781		/* Do window scaling? */
1782		if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
1783			(TF_RCVD_SCALE|TF_REQ_SCALE)) {
1784			tp->snd_scale = tp->requested_s_scale;
1785			tp->rcv_scale = tp->request_r_scale;
1786		}
1787		/*
1788		 * Make transitions:
1789		 *      SYN-RECEIVED  -> ESTABLISHED
1790		 *      SYN-RECEIVED* -> FIN-WAIT-1
1791		 */
1792		tp->t_starttime = ticks;
1793		if (tp->t_flags & TF_NEEDFIN) {
1794			tp->t_state = TCPS_FIN_WAIT_1;
1795			tp->t_flags &= ~TF_NEEDFIN;
1796		} else {
1797			tp->t_state = TCPS_ESTABLISHED;
1798			callout_reset(tp->tt_keep, tcp_keepidle,
1799				      tcp_timer_keep, tp);
1800		}
1801		/*
1802		 * If segment contains data or ACK, will call tcp_reass()
1803		 * later; if not, do so now to pass queued data to user.
1804		 */
1805		if (tlen == 0 && (thflags & TH_FIN) == 0)
1806			(void) tcp_reass(tp, (struct tcphdr *)0, 0,
1807			    (struct mbuf *)0);
1808		tp->snd_wl1 = th->th_seq - 1;
1809		/* FALLTHROUGH */
1810
1811	/*
1812	 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
1813	 * ACKs.  If the ack is in the range
1814	 *	tp->snd_una < th->th_ack <= tp->snd_max
1815	 * then advance tp->snd_una to th->th_ack and drop
1816	 * data from the retransmission queue.  If this ACK reflects
1817	 * more up to date window information we update our window information.
1818	 */
1819	case TCPS_ESTABLISHED:
1820	case TCPS_FIN_WAIT_1:
1821	case TCPS_FIN_WAIT_2:
1822	case TCPS_CLOSE_WAIT:
1823	case TCPS_CLOSING:
1824	case TCPS_LAST_ACK:
1825	case TCPS_TIME_WAIT:
1826		KASSERT(tp->t_state != TCPS_TIME_WAIT, ("timewait"));
1827		if (SEQ_GT(th->th_ack, tp->snd_max)) {
1828			tcpstat.tcps_rcvacktoomuch++;
1829			goto dropafterack;
1830		}
1831		if (tp->sack_enable &&
1832		    (to.to_nsacks > 0 || !TAILQ_EMPTY(&tp->snd_holes)))
1833			tcp_sack_doack(tp, &to, th->th_ack);
1834		if (SEQ_LEQ(th->th_ack, tp->snd_una)) {
1835			if (tlen == 0 && tiwin == tp->snd_wnd) {
1836				tcpstat.tcps_rcvdupack++;
1837				/*
1838				 * If we have outstanding data (other than
1839				 * a window probe), this is a completely
1840				 * duplicate ack (ie, window info didn't
1841				 * change), the ack is the biggest we've
1842				 * seen and we've seen exactly our rexmt
1843				 * threshhold of them, assume a packet
1844				 * has been dropped and retransmit it.
1845				 * Kludge snd_nxt & the congestion
1846				 * window so we send only this one
1847				 * packet.
1848				 *
1849				 * We know we're losing at the current
1850				 * window size so do congestion avoidance
1851				 * (set ssthresh to half the current window
1852				 * and pull our congestion window back to
1853				 * the new ssthresh).
1854				 *
1855				 * Dup acks mean that packets have left the
1856				 * network (they're now cached at the receiver)
1857				 * so bump cwnd by the amount in the receiver
1858				 * to keep a constant cwnd packets in the
1859				 * network.
1860				 */
1861				if (!callout_active(tp->tt_rexmt) ||
1862				    th->th_ack != tp->snd_una)
1863					tp->t_dupacks = 0;
1864				else if (++tp->t_dupacks > tcprexmtthresh ||
1865					 ((tcp_do_newreno || tp->sack_enable) &&
1866					  IN_FASTRECOVERY(tp))) {
1867                                        if (tp->sack_enable && IN_FASTRECOVERY(tp)) {
1868						int awnd;
1869
1870						/*
1871						 * Compute the amount of data in flight first.
1872						 * We can inject new data into the pipe iff
1873						 * we have less than 1/2 the original window's
1874						 * worth of data in flight.
1875						 */
1876						awnd = (tp->snd_nxt - tp->snd_fack) +
1877							tp->sackhint.sack_bytes_rexmit;
1878						if (awnd < tp->snd_ssthresh) {
1879							tp->snd_cwnd += tp->t_maxseg;
1880							if (tp->snd_cwnd > tp->snd_ssthresh)
1881								tp->snd_cwnd = tp->snd_ssthresh;
1882						}
1883					} else
1884						tp->snd_cwnd += tp->t_maxseg;
1885					(void) tcp_output(tp);
1886					goto drop;
1887				} else if (tp->t_dupacks == tcprexmtthresh) {
1888					tcp_seq onxt = tp->snd_nxt;
1889					u_int win;
1890
1891					/*
1892					 * If we're doing sack, check to
1893					 * see if we're already in sack
1894					 * recovery. If we're not doing sack,
1895					 * check to see if we're in newreno
1896					 * recovery.
1897					 */
1898					if (tp->sack_enable) {
1899						if (IN_FASTRECOVERY(tp)) {
1900							tp->t_dupacks = 0;
1901							break;
1902						}
1903					} else if (tcp_do_newreno) {
1904						if (SEQ_LEQ(th->th_ack,
1905						    tp->snd_recover)) {
1906							tp->t_dupacks = 0;
1907							break;
1908						}
1909					}
1910					win = min(tp->snd_wnd, tp->snd_cwnd) /
1911					    2 / tp->t_maxseg;
1912					if (win < 2)
1913						win = 2;
1914					tp->snd_ssthresh = win * tp->t_maxseg;
1915					ENTER_FASTRECOVERY(tp);
1916					tp->snd_recover = tp->snd_max;
1917					callout_stop(tp->tt_rexmt);
1918					tp->t_rtttime = 0;
1919					if (tp->sack_enable) {
1920						tcpstat.tcps_sack_recovery_episode++;
1921						tp->sack_newdata = tp->snd_nxt;
1922						tp->snd_cwnd = tp->t_maxseg;
1923						(void) tcp_output(tp);
1924						goto drop;
1925					}
1926					tp->snd_nxt = th->th_ack;
1927					tp->snd_cwnd = tp->t_maxseg;
1928					(void) tcp_output(tp);
1929					KASSERT(tp->snd_limited <= 2,
1930					    ("tp->snd_limited too big"));
1931					tp->snd_cwnd = tp->snd_ssthresh +
1932					     tp->t_maxseg *
1933					     (tp->t_dupacks - tp->snd_limited);
1934					if (SEQ_GT(onxt, tp->snd_nxt))
1935						tp->snd_nxt = onxt;
1936					goto drop;
1937				} else if (tcp_do_rfc3042) {
1938					u_long oldcwnd = tp->snd_cwnd;
1939					tcp_seq oldsndmax = tp->snd_max;
1940					u_int sent;
1941
1942					KASSERT(tp->t_dupacks == 1 ||
1943					    tp->t_dupacks == 2,
1944					    ("dupacks not 1 or 2"));
1945					if (tp->t_dupacks == 1)
1946						tp->snd_limited = 0;
1947					tp->snd_cwnd =
1948					    (tp->snd_nxt - tp->snd_una) +
1949					    (tp->t_dupacks - tp->snd_limited) *
1950					    tp->t_maxseg;
1951					(void) tcp_output(tp);
1952					sent = tp->snd_max - oldsndmax;
1953					if (sent > tp->t_maxseg) {
1954						KASSERT((tp->t_dupacks == 2 &&
1955						    tp->snd_limited == 0) ||
1956						   (sent == tp->t_maxseg + 1 &&
1957						    tp->t_flags & TF_SENTFIN),
1958						    ("sent too much"));
1959						tp->snd_limited = 2;
1960					} else if (sent > 0)
1961						++tp->snd_limited;
1962					tp->snd_cwnd = oldcwnd;
1963					goto drop;
1964				}
1965			} else
1966				tp->t_dupacks = 0;
1967			break;
1968		}
1969
1970		KASSERT(SEQ_GT(th->th_ack, tp->snd_una), ("th_ack <= snd_una"));
1971
1972		/*
1973		 * If the congestion window was inflated to account
1974		 * for the other side's cached packets, retract it.
1975		 */
1976		if (tcp_do_newreno || tp->sack_enable) {
1977			if (IN_FASTRECOVERY(tp)) {
1978				if (SEQ_LT(th->th_ack, tp->snd_recover)) {
1979					if (tp->sack_enable)
1980						tcp_sack_partialack(tp, th);
1981					else
1982						tcp_newreno_partial_ack(tp, th);
1983				} else {
1984					/*
1985					 * Out of fast recovery.
1986					 * Window inflation should have left us
1987					 * with approximately snd_ssthresh
1988					 * outstanding data.
1989					 * But in case we would be inclined to
1990					 * send a burst, better to do it via
1991					 * the slow start mechanism.
1992					 */
1993					if (SEQ_GT(th->th_ack +
1994							tp->snd_ssthresh,
1995						   tp->snd_max))
1996						tp->snd_cwnd = tp->snd_max -
1997								th->th_ack +
1998								tp->t_maxseg;
1999					else
2000						tp->snd_cwnd = tp->snd_ssthresh;
2001				}
2002			}
2003		} else {
2004			if (tp->t_dupacks >= tcprexmtthresh &&
2005			    tp->snd_cwnd > tp->snd_ssthresh)
2006				tp->snd_cwnd = tp->snd_ssthresh;
2007		}
2008		tp->t_dupacks = 0;
2009		/*
2010		 * If we reach this point, ACK is not a duplicate,
2011		 *     i.e., it ACKs something we sent.
2012		 */
2013		if (tp->t_flags & TF_NEEDSYN) {
2014			/*
2015			 * T/TCP: Connection was half-synchronized, and our
2016			 * SYN has been ACK'd (so connection is now fully
2017			 * synchronized).  Go to non-starred state,
2018			 * increment snd_una for ACK of SYN, and check if
2019			 * we can do window scaling.
2020			 */
2021			tp->t_flags &= ~TF_NEEDSYN;
2022			tp->snd_una++;
2023			/* Do window scaling? */
2024			if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
2025				(TF_RCVD_SCALE|TF_REQ_SCALE)) {
2026				tp->snd_scale = tp->requested_s_scale;
2027				tp->rcv_scale = tp->request_r_scale;
2028			}
2029		}
2030
2031process_ACK:
2032		KASSERT(headlocked, ("tcp_input: process_ACK: head not "
2033		    "locked"));
2034		INP_LOCK_ASSERT(inp);
2035
2036		acked = th->th_ack - tp->snd_una;
2037		tcpstat.tcps_rcvackpack++;
2038		tcpstat.tcps_rcvackbyte += acked;
2039
2040		/*
2041		 * If we just performed our first retransmit, and the ACK
2042		 * arrives within our recovery window, then it was a mistake
2043		 * to do the retransmit in the first place.  Recover our
2044		 * original cwnd and ssthresh, and proceed to transmit where
2045		 * we left off.
2046		 */
2047		if (tp->t_rxtshift == 1 && ticks < tp->t_badrxtwin) {
2048			++tcpstat.tcps_sndrexmitbad;
2049			tp->snd_cwnd = tp->snd_cwnd_prev;
2050			tp->snd_ssthresh = tp->snd_ssthresh_prev;
2051			tp->snd_recover = tp->snd_recover_prev;
2052			if (tp->t_flags & TF_WASFRECOVERY)
2053				ENTER_FASTRECOVERY(tp);
2054			tp->snd_nxt = tp->snd_max;
2055			tp->t_badrxtwin = 0;	/* XXX probably not required */
2056		}
2057
2058		/*
2059		 * If we have a timestamp reply, update smoothed
2060		 * round trip time.  If no timestamp is present but
2061		 * transmit timer is running and timed sequence
2062		 * number was acked, update smoothed round trip time.
2063		 * Since we now have an rtt measurement, cancel the
2064		 * timer backoff (cf., Phil Karn's retransmit alg.).
2065		 * Recompute the initial retransmit timer.
2066		 *
2067		 * Some boxes send broken timestamp replies
2068		 * during the SYN+ACK phase, ignore
2069		 * timestamps of 0 or we could calculate a
2070		 * huge RTT and blow up the retransmit timer.
2071		 */
2072		if ((to.to_flags & TOF_TS) != 0 &&
2073		    to.to_tsecr) {
2074			tcp_xmit_timer(tp, ticks - to.to_tsecr + 1);
2075		} else if (tp->t_rtttime && SEQ_GT(th->th_ack, tp->t_rtseq)) {
2076			tcp_xmit_timer(tp, ticks - tp->t_rtttime);
2077		}
2078		tcp_xmit_bandwidth_limit(tp, th->th_ack);
2079
2080		/*
2081		 * If all outstanding data is acked, stop retransmit
2082		 * timer and remember to restart (more output or persist).
2083		 * If there is more data to be acked, restart retransmit
2084		 * timer, using current (possibly backed-off) value.
2085		 */
2086		if (th->th_ack == tp->snd_max) {
2087			callout_stop(tp->tt_rexmt);
2088			needoutput = 1;
2089		} else if (!callout_active(tp->tt_persist))
2090			callout_reset(tp->tt_rexmt, tp->t_rxtcur,
2091				      tcp_timer_rexmt, tp);
2092
2093		/*
2094		 * If no data (only SYN) was ACK'd,
2095		 *    skip rest of ACK processing.
2096		 */
2097		if (acked == 0)
2098			goto step6;
2099
2100		/*
2101		 * When new data is acked, open the congestion window.
2102		 * If the window gives us less than ssthresh packets
2103		 * in flight, open exponentially (maxseg per packet).
2104		 * Otherwise open linearly: maxseg per window
2105		 * (maxseg^2 / cwnd per packet).
2106		 */
2107		if ((!tcp_do_newreno && !tp->sack_enable) ||
2108		    !IN_FASTRECOVERY(tp)) {
2109			register u_int cw = tp->snd_cwnd;
2110			register u_int incr = tp->t_maxseg;
2111			if (cw > tp->snd_ssthresh)
2112				incr = incr * incr / cw;
2113			tp->snd_cwnd = min(cw+incr, TCP_MAXWIN<<tp->snd_scale);
2114		}
2115		SOCKBUF_LOCK(&so->so_snd);
2116		if (acked > so->so_snd.sb_cc) {
2117			tp->snd_wnd -= so->so_snd.sb_cc;
2118			sbdrop_locked(&so->so_snd, (int)so->so_snd.sb_cc);
2119			ourfinisacked = 1;
2120		} else {
2121			sbdrop_locked(&so->so_snd, acked);
2122			tp->snd_wnd -= acked;
2123			ourfinisacked = 0;
2124		}
2125		sowwakeup_locked(so);
2126		/* detect una wraparound */
2127		if ((tcp_do_newreno || tp->sack_enable) &&
2128		    !IN_FASTRECOVERY(tp) &&
2129		    SEQ_GT(tp->snd_una, tp->snd_recover) &&
2130		    SEQ_LEQ(th->th_ack, tp->snd_recover))
2131			tp->snd_recover = th->th_ack - 1;
2132		if ((tcp_do_newreno || tp->sack_enable) &&
2133		    IN_FASTRECOVERY(tp) &&
2134		    SEQ_GEQ(th->th_ack, tp->snd_recover))
2135			EXIT_FASTRECOVERY(tp);
2136		tp->snd_una = th->th_ack;
2137		if (tp->sack_enable) {
2138			if (SEQ_GT(tp->snd_una, tp->snd_recover))
2139				tp->snd_recover = tp->snd_una;
2140		}
2141		if (SEQ_LT(tp->snd_nxt, tp->snd_una))
2142			tp->snd_nxt = tp->snd_una;
2143
2144		switch (tp->t_state) {
2145
2146		/*
2147		 * In FIN_WAIT_1 STATE in addition to the processing
2148		 * for the ESTABLISHED state if our FIN is now acknowledged
2149		 * then enter FIN_WAIT_2.
2150		 */
2151		case TCPS_FIN_WAIT_1:
2152			if (ourfinisacked) {
2153				/*
2154				 * If we can't receive any more
2155				 * data, then closing user can proceed.
2156				 * Starting the timer is contrary to the
2157				 * specification, but if we don't get a FIN
2158				 * we'll hang forever.
2159				 */
2160		/* XXXjl
2161		 * we should release the tp also, and use a
2162		 * compressed state.
2163		 */
2164				if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
2165					soisdisconnected(so);
2166					callout_reset(tp->tt_2msl, tcp_maxidle,
2167						      tcp_timer_2msl, tp);
2168				}
2169				tp->t_state = TCPS_FIN_WAIT_2;
2170			}
2171			break;
2172
2173		/*
2174		 * In CLOSING STATE in addition to the processing for
2175		 * the ESTABLISHED state if the ACK acknowledges our FIN
2176		 * then enter the TIME-WAIT state, otherwise ignore
2177		 * the segment.
2178		 */
2179		case TCPS_CLOSING:
2180			if (ourfinisacked) {
2181				KASSERT(headlocked, ("tcp_input: process_ACK: "
2182				    "head not locked"));
2183				tcp_twstart(tp);
2184				INP_INFO_WUNLOCK(&tcbinfo);
2185				m_freem(m);
2186				return;
2187			}
2188			break;
2189
2190		/*
2191		 * In LAST_ACK, we may still be waiting for data to drain
2192		 * and/or to be acked, as well as for the ack of our FIN.
2193		 * If our FIN is now acknowledged, delete the TCB,
2194		 * enter the closed state and return.
2195		 */
2196		case TCPS_LAST_ACK:
2197			if (ourfinisacked) {
2198				KASSERT(headlocked, ("tcp_input: process_ACK:"
2199				    " tcp_close: head not locked"));
2200				tp = tcp_close(tp);
2201				goto drop;
2202			}
2203			break;
2204
2205		/*
2206		 * In TIME_WAIT state the only thing that should arrive
2207		 * is a retransmission of the remote FIN.  Acknowledge
2208		 * it and restart the finack timer.
2209		 */
2210		case TCPS_TIME_WAIT:
2211			KASSERT(tp->t_state != TCPS_TIME_WAIT, ("timewait"));
2212			callout_reset(tp->tt_2msl, 2 * tcp_msl,
2213				      tcp_timer_2msl, tp);
2214			goto dropafterack;
2215		}
2216	}
2217
2218step6:
2219	KASSERT(headlocked, ("tcp_input: step6: head not locked"));
2220	INP_LOCK_ASSERT(inp);
2221
2222	/*
2223	 * Update window information.
2224	 * Don't look at window if no ACK: TAC's send garbage on first SYN.
2225	 */
2226	if ((thflags & TH_ACK) &&
2227	    (SEQ_LT(tp->snd_wl1, th->th_seq) ||
2228	    (tp->snd_wl1 == th->th_seq && (SEQ_LT(tp->snd_wl2, th->th_ack) ||
2229	     (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))))) {
2230		/* keep track of pure window updates */
2231		if (tlen == 0 &&
2232		    tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)
2233			tcpstat.tcps_rcvwinupd++;
2234		tp->snd_wnd = tiwin;
2235		tp->snd_wl1 = th->th_seq;
2236		tp->snd_wl2 = th->th_ack;
2237		if (tp->snd_wnd > tp->max_sndwnd)
2238			tp->max_sndwnd = tp->snd_wnd;
2239		needoutput = 1;
2240	}
2241
2242	/*
2243	 * Process segments with URG.
2244	 */
2245	if ((thflags & TH_URG) && th->th_urp &&
2246	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2247		/*
2248		 * This is a kludge, but if we receive and accept
2249		 * random urgent pointers, we'll crash in
2250		 * soreceive.  It's hard to imagine someone
2251		 * actually wanting to send this much urgent data.
2252		 */
2253		SOCKBUF_LOCK(&so->so_rcv);
2254		if (th->th_urp + so->so_rcv.sb_cc > sb_max) {
2255			th->th_urp = 0;			/* XXX */
2256			thflags &= ~TH_URG;		/* XXX */
2257			SOCKBUF_UNLOCK(&so->so_rcv);	/* XXX */
2258			goto dodata;			/* XXX */
2259		}
2260		/*
2261		 * If this segment advances the known urgent pointer,
2262		 * then mark the data stream.  This should not happen
2263		 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
2264		 * a FIN has been received from the remote side.
2265		 * In these states we ignore the URG.
2266		 *
2267		 * According to RFC961 (Assigned Protocols),
2268		 * the urgent pointer points to the last octet
2269		 * of urgent data.  We continue, however,
2270		 * to consider it to indicate the first octet
2271		 * of data past the urgent section as the original
2272		 * spec states (in one of two places).
2273		 */
2274		if (SEQ_GT(th->th_seq+th->th_urp, tp->rcv_up)) {
2275			tp->rcv_up = th->th_seq + th->th_urp;
2276			so->so_oobmark = so->so_rcv.sb_cc +
2277			    (tp->rcv_up - tp->rcv_nxt) - 1;
2278			if (so->so_oobmark == 0)
2279				so->so_rcv.sb_state |= SBS_RCVATMARK;
2280			sohasoutofband(so);
2281			tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
2282		}
2283		SOCKBUF_UNLOCK(&so->so_rcv);
2284		/*
2285		 * Remove out of band data so doesn't get presented to user.
2286		 * This can happen independent of advancing the URG pointer,
2287		 * but if two URG's are pending at once, some out-of-band
2288		 * data may creep in... ick.
2289		 */
2290		if (th->th_urp <= (u_long)tlen &&
2291		    !(so->so_options & SO_OOBINLINE)) {
2292			/* hdr drop is delayed */
2293			tcp_pulloutofband(so, th, m, drop_hdrlen);
2294		}
2295	} else {
2296		/*
2297		 * If no out of band data is expected,
2298		 * pull receive urgent pointer along
2299		 * with the receive window.
2300		 */
2301		if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
2302			tp->rcv_up = tp->rcv_nxt;
2303	}
2304dodata:							/* XXX */
2305	KASSERT(headlocked, ("tcp_input: dodata: head not locked"));
2306	INP_LOCK_ASSERT(inp);
2307
2308	/*
2309	 * Process the segment text, merging it into the TCP sequencing queue,
2310	 * and arranging for acknowledgment of receipt if necessary.
2311	 * This process logically involves adjusting tp->rcv_wnd as data
2312	 * is presented to the user (this happens in tcp_usrreq.c,
2313	 * case PRU_RCVD).  If a FIN has already been received on this
2314	 * connection then we just ignore the text.
2315	 */
2316	if ((tlen || (thflags & TH_FIN)) &&
2317	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2318		tcp_seq save_start = th->th_seq;
2319		tcp_seq save_end = th->th_seq + tlen;
2320		m_adj(m, drop_hdrlen);	/* delayed header drop */
2321		/*
2322		 * Insert segment which includes th into TCP reassembly queue
2323		 * with control block tp.  Set thflags to whether reassembly now
2324		 * includes a segment with FIN.  This handles the common case
2325		 * inline (segment is the next to be received on an established
2326		 * connection, and the queue is empty), avoiding linkage into
2327		 * and removal from the queue and repetition of various
2328		 * conversions.
2329		 * Set DELACK for segments received in order, but ack
2330		 * immediately when segments are out of order (so
2331		 * fast retransmit can work).
2332		 */
2333		if (th->th_seq == tp->rcv_nxt &&
2334		    LIST_EMPTY(&tp->t_segq) &&
2335		    TCPS_HAVEESTABLISHED(tp->t_state)) {
2336			if (DELAY_ACK(tp))
2337				tp->t_flags |= TF_DELACK;
2338			else
2339				tp->t_flags |= TF_ACKNOW;
2340			tp->rcv_nxt += tlen;
2341			thflags = th->th_flags & TH_FIN;
2342			tcpstat.tcps_rcvpack++;
2343			tcpstat.tcps_rcvbyte += tlen;
2344			ND6_HINT(tp);
2345			SOCKBUF_LOCK(&so->so_rcv);
2346			if (so->so_rcv.sb_state & SBS_CANTRCVMORE)
2347				m_freem(m);
2348			else
2349				sbappendstream_locked(&so->so_rcv, m);
2350			sorwakeup_locked(so);
2351		} else {
2352			thflags = tcp_reass(tp, th, &tlen, m);
2353			tp->t_flags |= TF_ACKNOW;
2354		}
2355		if (tlen > 0 && tp->sack_enable)
2356			tcp_update_sack_list(tp, save_start, save_end);
2357		/*
2358		 * Note the amount of data that peer has sent into
2359		 * our window, in order to estimate the sender's
2360		 * buffer size.
2361		 */
2362		len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
2363	} else {
2364		m_freem(m);
2365		thflags &= ~TH_FIN;
2366	}
2367
2368	/*
2369	 * If FIN is received ACK the FIN and let the user know
2370	 * that the connection is closing.
2371	 */
2372	if (thflags & TH_FIN) {
2373		if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2374			socantrcvmore(so);
2375			/*
2376			 * If connection is half-synchronized
2377			 * (ie NEEDSYN flag on) then delay ACK,
2378			 * so it may be piggybacked when SYN is sent.
2379			 * Otherwise, since we received a FIN then no
2380			 * more input can be expected, send ACK now.
2381			 */
2382			if (tp->t_flags & TF_NEEDSYN)
2383				tp->t_flags |= TF_DELACK;
2384			else
2385				tp->t_flags |= TF_ACKNOW;
2386			tp->rcv_nxt++;
2387		}
2388		switch (tp->t_state) {
2389
2390		/*
2391		 * In SYN_RECEIVED and ESTABLISHED STATES
2392		 * enter the CLOSE_WAIT state.
2393		 */
2394		case TCPS_SYN_RECEIVED:
2395			tp->t_starttime = ticks;
2396			/*FALLTHROUGH*/
2397		case TCPS_ESTABLISHED:
2398			tp->t_state = TCPS_CLOSE_WAIT;
2399			break;
2400
2401		/*
2402		 * If still in FIN_WAIT_1 STATE FIN has not been acked so
2403		 * enter the CLOSING state.
2404		 */
2405		case TCPS_FIN_WAIT_1:
2406			tp->t_state = TCPS_CLOSING;
2407			break;
2408
2409		/*
2410		 * In FIN_WAIT_2 state enter the TIME_WAIT state,
2411		 * starting the time-wait timer, turning off the other
2412		 * standard timers.
2413		 */
2414		case TCPS_FIN_WAIT_2:
2415			KASSERT(headlocked == 1, ("tcp_input: dodata: "
2416			    "TCP_FIN_WAIT_2: head not locked"));
2417			tcp_twstart(tp);
2418			INP_INFO_WUNLOCK(&tcbinfo);
2419			return;
2420
2421		/*
2422		 * In TIME_WAIT state restart the 2 MSL time_wait timer.
2423		 */
2424		case TCPS_TIME_WAIT:
2425			KASSERT(tp->t_state != TCPS_TIME_WAIT, ("timewait"));
2426			callout_reset(tp->tt_2msl, 2 * tcp_msl,
2427				      tcp_timer_2msl, tp);
2428			break;
2429		}
2430	}
2431	INP_INFO_WUNLOCK(&tcbinfo);
2432	headlocked = 0;
2433#ifdef TCPDEBUG
2434	if (so->so_options & SO_DEBUG)
2435		tcp_trace(TA_INPUT, ostate, tp, (void *)tcp_saveipgen,
2436			  &tcp_savetcp, 0);
2437#endif
2438
2439	/*
2440	 * Return any desired output.
2441	 */
2442	if (needoutput || (tp->t_flags & TF_ACKNOW))
2443		(void) tcp_output(tp);
2444
2445check_delack:
2446	KASSERT(headlocked == 0, ("tcp_input: check_delack: head locked"));
2447	INP_LOCK_ASSERT(inp);
2448	if (tp->t_flags & TF_DELACK) {
2449		tp->t_flags &= ~TF_DELACK;
2450		callout_reset(tp->tt_delack, tcp_delacktime,
2451		    tcp_timer_delack, tp);
2452	}
2453	INP_UNLOCK(inp);
2454	return;
2455
2456dropafterack:
2457	KASSERT(headlocked, ("tcp_input: dropafterack: head not locked"));
2458	/*
2459	 * Generate an ACK dropping incoming segment if it occupies
2460	 * sequence space, where the ACK reflects our state.
2461	 *
2462	 * We can now skip the test for the RST flag since all
2463	 * paths to this code happen after packets containing
2464	 * RST have been dropped.
2465	 *
2466	 * In the SYN-RECEIVED state, don't send an ACK unless the
2467	 * segment we received passes the SYN-RECEIVED ACK test.
2468	 * If it fails send a RST.  This breaks the loop in the
2469	 * "LAND" DoS attack, and also prevents an ACK storm
2470	 * between two listening ports that have been sent forged
2471	 * SYN segments, each with the source address of the other.
2472	 */
2473	if (tp->t_state == TCPS_SYN_RECEIVED && (thflags & TH_ACK) &&
2474	    (SEQ_GT(tp->snd_una, th->th_ack) ||
2475	     SEQ_GT(th->th_ack, tp->snd_max)) ) {
2476		rstreason = BANDLIM_RST_OPENPORT;
2477		goto dropwithreset;
2478	}
2479#ifdef TCPDEBUG
2480	if (so->so_options & SO_DEBUG)
2481		tcp_trace(TA_DROP, ostate, tp, (void *)tcp_saveipgen,
2482			  &tcp_savetcp, 0);
2483#endif
2484	KASSERT(headlocked, ("headlocked should be 1"));
2485	INP_INFO_WUNLOCK(&tcbinfo);
2486	tp->t_flags |= TF_ACKNOW;
2487	(void) tcp_output(tp);
2488	INP_UNLOCK(inp);
2489	m_freem(m);
2490	return;
2491
2492dropwithreset:
2493	KASSERT(headlocked, ("tcp_input: dropwithreset: head not locked"));
2494	/*
2495	 * Generate a RST, dropping incoming segment.
2496	 * Make ACK acceptable to originator of segment.
2497	 * Don't bother to respond if destination was broadcast/multicast.
2498	 */
2499	if ((thflags & TH_RST) || m->m_flags & (M_BCAST|M_MCAST))
2500		goto drop;
2501	if (isipv6) {
2502		if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) ||
2503		    IN6_IS_ADDR_MULTICAST(&ip6->ip6_src))
2504			goto drop;
2505	} else {
2506		if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
2507		    IN_MULTICAST(ntohl(ip->ip_src.s_addr)) ||
2508		    ip->ip_src.s_addr == htonl(INADDR_BROADCAST) ||
2509		    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
2510			goto drop;
2511	}
2512	/* IPv6 anycast check is done at tcp6_input() */
2513
2514	/*
2515	 * Perform bandwidth limiting.
2516	 */
2517	if (badport_bandlim(rstreason) < 0)
2518		goto drop;
2519
2520#ifdef TCPDEBUG
2521	if (tp == 0 || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
2522		tcp_trace(TA_DROP, ostate, tp, (void *)tcp_saveipgen,
2523			  &tcp_savetcp, 0);
2524#endif
2525
2526	if (thflags & TH_ACK)
2527		/* mtod() below is safe as long as hdr dropping is delayed */
2528		tcp_respond(tp, mtod(m, void *), th, m, (tcp_seq)0, th->th_ack,
2529			    TH_RST);
2530	else {
2531		if (thflags & TH_SYN)
2532			tlen++;
2533		/* mtod() below is safe as long as hdr dropping is delayed */
2534		tcp_respond(tp, mtod(m, void *), th, m, th->th_seq+tlen,
2535			    (tcp_seq)0, TH_RST|TH_ACK);
2536	}
2537
2538	if (tp)
2539		INP_UNLOCK(inp);
2540	if (headlocked)
2541		INP_INFO_WUNLOCK(&tcbinfo);
2542	return;
2543
2544drop:
2545	/*
2546	 * Drop space held by incoming segment and return.
2547	 */
2548#ifdef TCPDEBUG
2549	if (tp == 0 || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
2550		tcp_trace(TA_DROP, ostate, tp, (void *)tcp_saveipgen,
2551			  &tcp_savetcp, 0);
2552#endif
2553	if (tp)
2554		INP_UNLOCK(inp);
2555	if (headlocked)
2556		INP_INFO_WUNLOCK(&tcbinfo);
2557	m_freem(m);
2558	return;
2559}
2560
2561/*
2562 * Parse TCP options and place in tcpopt.
2563 */
2564static void
2565tcp_dooptions(to, cp, cnt, is_syn)
2566	struct tcpopt *to;
2567	u_char *cp;
2568	int cnt;
2569	int is_syn;
2570{
2571	int opt, optlen;
2572
2573	to->to_flags = 0;
2574	for (; cnt > 0; cnt -= optlen, cp += optlen) {
2575		opt = cp[0];
2576		if (opt == TCPOPT_EOL)
2577			break;
2578		if (opt == TCPOPT_NOP)
2579			optlen = 1;
2580		else {
2581			if (cnt < 2)
2582				break;
2583			optlen = cp[1];
2584			if (optlen < 2 || optlen > cnt)
2585				break;
2586		}
2587		switch (opt) {
2588		case TCPOPT_MAXSEG:
2589			if (optlen != TCPOLEN_MAXSEG)
2590				continue;
2591			if (!is_syn)
2592				continue;
2593			to->to_flags |= TOF_MSS;
2594			bcopy((char *)cp + 2,
2595			    (char *)&to->to_mss, sizeof(to->to_mss));
2596			to->to_mss = ntohs(to->to_mss);
2597			break;
2598		case TCPOPT_WINDOW:
2599			if (optlen != TCPOLEN_WINDOW)
2600				continue;
2601			if (! is_syn)
2602				continue;
2603			to->to_flags |= TOF_SCALE;
2604			to->to_requested_s_scale = min(cp[2], TCP_MAX_WINSHIFT);
2605			break;
2606		case TCPOPT_TIMESTAMP:
2607			if (optlen != TCPOLEN_TIMESTAMP)
2608				continue;
2609			to->to_flags |= TOF_TS;
2610			bcopy((char *)cp + 2,
2611			    (char *)&to->to_tsval, sizeof(to->to_tsval));
2612			to->to_tsval = ntohl(to->to_tsval);
2613			bcopy((char *)cp + 6,
2614			    (char *)&to->to_tsecr, sizeof(to->to_tsecr));
2615			to->to_tsecr = ntohl(to->to_tsecr);
2616			/*
2617			 * If echoed timestamp is later than the current time,
2618			 * fall back to non RFC1323 RTT calculation.
2619			 */
2620			if ((to->to_tsecr != 0) && TSTMP_GT(to->to_tsecr, ticks))
2621				to->to_tsecr = 0;
2622			break;
2623#ifdef TCP_SIGNATURE
2624		/*
2625		 * XXX In order to reply to a host which has set the
2626		 * TCP_SIGNATURE option in its initial SYN, we have to
2627		 * record the fact that the option was observed here
2628		 * for the syncache code to perform the correct response.
2629		 */
2630		case TCPOPT_SIGNATURE:
2631			if (optlen != TCPOLEN_SIGNATURE)
2632				continue;
2633			to->to_flags |= (TOF_SIGNATURE | TOF_SIGLEN);
2634			break;
2635#endif
2636		case TCPOPT_SACK_PERMITTED:
2637			if (!tcp_do_sack ||
2638			    optlen != TCPOLEN_SACK_PERMITTED)
2639				continue;
2640			if (is_syn) {
2641				/* MUST only be set on SYN */
2642				to->to_flags |= TOF_SACK;
2643			}
2644			break;
2645		case TCPOPT_SACK:
2646			if (optlen <= 2 || (optlen - 2) % TCPOLEN_SACK != 0)
2647				continue;
2648			to->to_nsacks = (optlen - 2) / TCPOLEN_SACK;
2649			to->to_sacks = cp + 2;
2650			tcpstat.tcps_sack_rcv_blocks++;
2651			break;
2652		default:
2653			continue;
2654		}
2655	}
2656}
2657
2658/*
2659 * Pull out of band byte out of a segment so
2660 * it doesn't appear in the user's data queue.
2661 * It is still reflected in the segment length for
2662 * sequencing purposes.
2663 */
2664static void
2665tcp_pulloutofband(so, th, m, off)
2666	struct socket *so;
2667	struct tcphdr *th;
2668	register struct mbuf *m;
2669	int off;		/* delayed to be droped hdrlen */
2670{
2671	int cnt = off + th->th_urp - 1;
2672
2673	while (cnt >= 0) {
2674		if (m->m_len > cnt) {
2675			char *cp = mtod(m, caddr_t) + cnt;
2676			struct tcpcb *tp = sototcpcb(so);
2677
2678			tp->t_iobc = *cp;
2679			tp->t_oobflags |= TCPOOB_HAVEDATA;
2680			bcopy(cp+1, cp, (unsigned)(m->m_len - cnt - 1));
2681			m->m_len--;
2682			if (m->m_flags & M_PKTHDR)
2683				m->m_pkthdr.len--;
2684			return;
2685		}
2686		cnt -= m->m_len;
2687		m = m->m_next;
2688		if (m == 0)
2689			break;
2690	}
2691	panic("tcp_pulloutofband");
2692}
2693
2694/*
2695 * Collect new round-trip time estimate
2696 * and update averages and current timeout.
2697 */
2698static void
2699tcp_xmit_timer(tp, rtt)
2700	register struct tcpcb *tp;
2701	int rtt;
2702{
2703	register int delta;
2704
2705	INP_LOCK_ASSERT(tp->t_inpcb);
2706
2707	tcpstat.tcps_rttupdated++;
2708	tp->t_rttupdated++;
2709	if (tp->t_srtt != 0) {
2710		/*
2711		 * srtt is stored as fixed point with 5 bits after the
2712		 * binary point (i.e., scaled by 8).  The following magic
2713		 * is equivalent to the smoothing algorithm in rfc793 with
2714		 * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed
2715		 * point).  Adjust rtt to origin 0.
2716		 */
2717		delta = ((rtt - 1) << TCP_DELTA_SHIFT)
2718			- (tp->t_srtt >> (TCP_RTT_SHIFT - TCP_DELTA_SHIFT));
2719
2720		if ((tp->t_srtt += delta) <= 0)
2721			tp->t_srtt = 1;
2722
2723		/*
2724		 * We accumulate a smoothed rtt variance (actually, a
2725		 * smoothed mean difference), then set the retransmit
2726		 * timer to smoothed rtt + 4 times the smoothed variance.
2727		 * rttvar is stored as fixed point with 4 bits after the
2728		 * binary point (scaled by 16).  The following is
2729		 * equivalent to rfc793 smoothing with an alpha of .75
2730		 * (rttvar = rttvar*3/4 + |delta| / 4).  This replaces
2731		 * rfc793's wired-in beta.
2732		 */
2733		if (delta < 0)
2734			delta = -delta;
2735		delta -= tp->t_rttvar >> (TCP_RTTVAR_SHIFT - TCP_DELTA_SHIFT);
2736		if ((tp->t_rttvar += delta) <= 0)
2737			tp->t_rttvar = 1;
2738		if (tp->t_rttbest > tp->t_srtt + tp->t_rttvar)
2739		    tp->t_rttbest = tp->t_srtt + tp->t_rttvar;
2740	} else {
2741		/*
2742		 * No rtt measurement yet - use the unsmoothed rtt.
2743		 * Set the variance to half the rtt (so our first
2744		 * retransmit happens at 3*rtt).
2745		 */
2746		tp->t_srtt = rtt << TCP_RTT_SHIFT;
2747		tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT - 1);
2748		tp->t_rttbest = tp->t_srtt + tp->t_rttvar;
2749	}
2750	tp->t_rtttime = 0;
2751	tp->t_rxtshift = 0;
2752
2753	/*
2754	 * the retransmit should happen at rtt + 4 * rttvar.
2755	 * Because of the way we do the smoothing, srtt and rttvar
2756	 * will each average +1/2 tick of bias.  When we compute
2757	 * the retransmit timer, we want 1/2 tick of rounding and
2758	 * 1 extra tick because of +-1/2 tick uncertainty in the
2759	 * firing of the timer.  The bias will give us exactly the
2760	 * 1.5 tick we need.  But, because the bias is
2761	 * statistical, we have to test that we don't drop below
2762	 * the minimum feasible timer (which is 2 ticks).
2763	 */
2764	TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
2765		      max(tp->t_rttmin, rtt + 2), TCPTV_REXMTMAX);
2766
2767	/*
2768	 * We received an ack for a packet that wasn't retransmitted;
2769	 * it is probably safe to discard any error indications we've
2770	 * received recently.  This isn't quite right, but close enough
2771	 * for now (a route might have failed after we sent a segment,
2772	 * and the return path might not be symmetrical).
2773	 */
2774	tp->t_softerror = 0;
2775}
2776
2777/*
2778 * Determine a reasonable value for maxseg size.
2779 * If the route is known, check route for mtu.
2780 * If none, use an mss that can be handled on the outgoing
2781 * interface without forcing IP to fragment; if bigger than
2782 * an mbuf cluster (MCLBYTES), round down to nearest multiple of MCLBYTES
2783 * to utilize large mbufs.  If no route is found, route has no mtu,
2784 * or the destination isn't local, use a default, hopefully conservative
2785 * size (usually 512 or the default IP max size, but no more than the mtu
2786 * of the interface), as we can't discover anything about intervening
2787 * gateways or networks.  We also initialize the congestion/slow start
2788 * window to be a single segment if the destination isn't local.
2789 * While looking at the routing entry, we also initialize other path-dependent
2790 * parameters from pre-set or cached values in the routing entry.
2791 *
2792 * Also take into account the space needed for options that we
2793 * send regularly.  Make maxseg shorter by that amount to assure
2794 * that we can send maxseg amount of data even when the options
2795 * are present.  Store the upper limit of the length of options plus
2796 * data in maxopd.
2797 *
2798 *
2799 * In case of T/TCP, we call this routine during implicit connection
2800 * setup as well (offer = -1), to initialize maxseg from the cached
2801 * MSS of our peer.
2802 *
2803 * NOTE that this routine is only called when we process an incoming
2804 * segment. Outgoing SYN/ACK MSS settings are handled in tcp_mssopt().
2805 */
2806void
2807tcp_mss(tp, offer)
2808	struct tcpcb *tp;
2809	int offer;
2810{
2811	int rtt, mss;
2812	u_long bufsize;
2813	u_long maxmtu;
2814	struct inpcb *inp = tp->t_inpcb;
2815	struct socket *so;
2816	struct hc_metrics_lite metrics;
2817	int origoffer = offer;
2818#ifdef INET6
2819	int isipv6 = ((inp->inp_vflag & INP_IPV6) != 0) ? 1 : 0;
2820	size_t min_protoh = isipv6 ?
2821			    sizeof (struct ip6_hdr) + sizeof (struct tcphdr) :
2822			    sizeof (struct tcpiphdr);
2823#else
2824	const size_t min_protoh = sizeof(struct tcpiphdr);
2825#endif
2826
2827	/* initialize */
2828#ifdef INET6
2829	if (isipv6) {
2830		maxmtu = tcp_maxmtu6(&inp->inp_inc);
2831		tp->t_maxopd = tp->t_maxseg = tcp_v6mssdflt;
2832	} else
2833#endif
2834	{
2835		maxmtu = tcp_maxmtu(&inp->inp_inc);
2836		tp->t_maxopd = tp->t_maxseg = tcp_mssdflt;
2837	}
2838	so = inp->inp_socket;
2839
2840	/*
2841	 * no route to sender, stay with default mss and return
2842	 */
2843	if (maxmtu == 0)
2844		return;
2845
2846	/* what have we got? */
2847	switch (offer) {
2848		case 0:
2849			/*
2850			 * Offer == 0 means that there was no MSS on the SYN
2851			 * segment, in this case we use tcp_mssdflt.
2852			 */
2853			offer =
2854#ifdef INET6
2855				isipv6 ? tcp_v6mssdflt :
2856#endif
2857				tcp_mssdflt;
2858			break;
2859
2860		case -1:
2861			/*
2862			 * Offer == -1 means that we didn't receive SYN yet.
2863			 */
2864			/* FALLTHROUGH */
2865
2866		default:
2867			/*
2868			 * Prevent DoS attack with too small MSS. Round up
2869			 * to at least minmss.
2870			 */
2871			offer = max(offer, tcp_minmss);
2872			/*
2873			 * Sanity check: make sure that maxopd will be large
2874			 * enough to allow some data on segments even if the
2875			 * all the option space is used (40bytes).  Otherwise
2876			 * funny things may happen in tcp_output.
2877			 */
2878			offer = max(offer, 64);
2879	}
2880
2881	/*
2882	 * rmx information is now retrieved from tcp_hostcache
2883	 */
2884	tcp_hc_get(&inp->inp_inc, &metrics);
2885
2886	/*
2887	 * if there's a discovered mtu int tcp hostcache, use it
2888	 * else, use the link mtu.
2889	 */
2890	if (metrics.rmx_mtu)
2891		mss = min(metrics.rmx_mtu, maxmtu) - min_protoh;
2892	else {
2893#ifdef INET6
2894		if (isipv6) {
2895			mss = maxmtu - min_protoh;
2896			if (!path_mtu_discovery &&
2897			    !in6_localaddr(&inp->in6p_faddr))
2898				mss = min(mss, tcp_v6mssdflt);
2899		} else
2900#endif
2901		{
2902			mss = maxmtu - min_protoh;
2903			if (!path_mtu_discovery &&
2904			    !in_localaddr(inp->inp_faddr))
2905				mss = min(mss, tcp_mssdflt);
2906		}
2907	}
2908	mss = min(mss, offer);
2909
2910	/*
2911	 * maxopd stores the maximum length of data AND options
2912	 * in a segment; maxseg is the amount of data in a normal
2913	 * segment.  We need to store this value (maxopd) apart
2914	 * from maxseg, because now every segment carries options
2915	 * and thus we normally have somewhat less data in segments.
2916	 */
2917	tp->t_maxopd = mss;
2918
2919	/*
2920	 * origoffer==-1 indicates, that no segments were received yet.
2921	 * In this case we just guess.
2922	 */
2923	if ((tp->t_flags & (TF_REQ_TSTMP|TF_NOOPT)) == TF_REQ_TSTMP &&
2924	    (origoffer == -1 ||
2925	     (tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP))
2926		mss -= TCPOLEN_TSTAMP_APPA;
2927	tp->t_maxseg = mss;
2928
2929#if	(MCLBYTES & (MCLBYTES - 1)) == 0
2930		if (mss > MCLBYTES)
2931			mss &= ~(MCLBYTES-1);
2932#else
2933		if (mss > MCLBYTES)
2934			mss = mss / MCLBYTES * MCLBYTES;
2935#endif
2936	tp->t_maxseg = mss;
2937
2938	/*
2939	 * If there's a pipesize, change the socket buffer to that size,
2940	 * don't change if sb_hiwat is different than default (then it
2941	 * has been changed on purpose with setsockopt).
2942	 * Make the socket buffers an integral number of mss units;
2943	 * if the mss is larger than the socket buffer, decrease the mss.
2944	 */
2945	SOCKBUF_LOCK(&so->so_snd);
2946	if ((so->so_snd.sb_hiwat == tcp_sendspace) && metrics.rmx_sendpipe)
2947		bufsize = metrics.rmx_sendpipe;
2948	else
2949		bufsize = so->so_snd.sb_hiwat;
2950	if (bufsize < mss)
2951		mss = bufsize;
2952	else {
2953		bufsize = roundup(bufsize, mss);
2954		if (bufsize > sb_max)
2955			bufsize = sb_max;
2956		if (bufsize > so->so_snd.sb_hiwat)
2957			(void)sbreserve_locked(&so->so_snd, bufsize, so, NULL);
2958	}
2959	SOCKBUF_UNLOCK(&so->so_snd);
2960	tp->t_maxseg = mss;
2961
2962	SOCKBUF_LOCK(&so->so_rcv);
2963	if ((so->so_rcv.sb_hiwat == tcp_recvspace) && metrics.rmx_recvpipe)
2964		bufsize = metrics.rmx_recvpipe;
2965	else
2966		bufsize = so->so_rcv.sb_hiwat;
2967	if (bufsize > mss) {
2968		bufsize = roundup(bufsize, mss);
2969		if (bufsize > sb_max)
2970			bufsize = sb_max;
2971		if (bufsize > so->so_rcv.sb_hiwat)
2972			(void)sbreserve_locked(&so->so_rcv, bufsize, so, NULL);
2973	}
2974	SOCKBUF_UNLOCK(&so->so_rcv);
2975	/*
2976	 * While we're here, check the others too
2977	 */
2978	if (tp->t_srtt == 0 && (rtt = metrics.rmx_rtt)) {
2979		tp->t_srtt = rtt;
2980		tp->t_rttbest = tp->t_srtt + TCP_RTT_SCALE;
2981		tcpstat.tcps_usedrtt++;
2982		if (metrics.rmx_rttvar) {
2983			tp->t_rttvar = metrics.rmx_rttvar;
2984			tcpstat.tcps_usedrttvar++;
2985		} else {
2986			/* default variation is +- 1 rtt */
2987			tp->t_rttvar =
2988			    tp->t_srtt * TCP_RTTVAR_SCALE / TCP_RTT_SCALE;
2989		}
2990		TCPT_RANGESET(tp->t_rxtcur,
2991			      ((tp->t_srtt >> 2) + tp->t_rttvar) >> 1,
2992			      tp->t_rttmin, TCPTV_REXMTMAX);
2993	}
2994	if (metrics.rmx_ssthresh) {
2995		/*
2996		 * There's some sort of gateway or interface
2997		 * buffer limit on the path.  Use this to set
2998		 * the slow start threshhold, but set the
2999		 * threshold to no less than 2*mss.
3000		 */
3001		tp->snd_ssthresh = max(2 * mss, metrics.rmx_ssthresh);
3002		tcpstat.tcps_usedssthresh++;
3003	}
3004	if (metrics.rmx_bandwidth)
3005		tp->snd_bandwidth = metrics.rmx_bandwidth;
3006
3007	/*
3008	 * Set the slow-start flight size depending on whether this
3009	 * is a local network or not.
3010	 *
3011	 * Extend this so we cache the cwnd too and retrieve it here.
3012	 * Make cwnd even bigger than RFC3390 suggests but only if we
3013	 * have previous experience with the remote host. Be careful
3014	 * not make cwnd bigger than remote receive window or our own
3015	 * send socket buffer. Maybe put some additional upper bound
3016	 * on the retrieved cwnd. Should do incremental updates to
3017	 * hostcache when cwnd collapses so next connection doesn't
3018	 * overloads the path again.
3019	 *
3020	 * RFC3390 says only do this if SYN or SYN/ACK didn't got lost.
3021	 * We currently check only in syncache_socket for that.
3022	 */
3023#define TCP_METRICS_CWND
3024#ifdef TCP_METRICS_CWND
3025	if (metrics.rmx_cwnd)
3026		tp->snd_cwnd = max(mss,
3027				min(metrics.rmx_cwnd / 2,
3028				 min(tp->snd_wnd, so->so_snd.sb_hiwat)));
3029	else
3030#endif
3031	if (tcp_do_rfc3390)
3032		tp->snd_cwnd = min(4 * mss, max(2 * mss, 4380));
3033#ifdef INET6
3034	else if ((isipv6 && in6_localaddr(&inp->in6p_faddr)) ||
3035		 (!isipv6 && in_localaddr(inp->inp_faddr)))
3036#else
3037	else if (in_localaddr(inp->inp_faddr))
3038#endif
3039		tp->snd_cwnd = mss * ss_fltsz_local;
3040	else
3041		tp->snd_cwnd = mss * ss_fltsz;
3042}
3043
3044/*
3045 * Determine the MSS option to send on an outgoing SYN.
3046 */
3047int
3048tcp_mssopt(inc)
3049	struct in_conninfo *inc;
3050{
3051	int mss = 0;
3052	u_long maxmtu = 0;
3053	u_long thcmtu = 0;
3054	size_t min_protoh;
3055#ifdef INET6
3056	int isipv6 = inc->inc_isipv6 ? 1 : 0;
3057#endif
3058
3059	KASSERT(inc != NULL, ("tcp_mssopt with NULL in_conninfo pointer"));
3060
3061#ifdef INET6
3062	if (isipv6) {
3063		mss = tcp_v6mssdflt;
3064		maxmtu = tcp_maxmtu6(inc);
3065		thcmtu = tcp_hc_getmtu(inc); /* IPv4 and IPv6 */
3066		min_protoh = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
3067	} else
3068#endif
3069	{
3070		mss = tcp_mssdflt;
3071		maxmtu = tcp_maxmtu(inc);
3072		thcmtu = tcp_hc_getmtu(inc); /* IPv4 and IPv6 */
3073		min_protoh = sizeof(struct tcpiphdr);
3074	}
3075	if (maxmtu && thcmtu)
3076		mss = min(maxmtu, thcmtu) - min_protoh;
3077	else if (maxmtu || thcmtu)
3078		mss = max(maxmtu, thcmtu) - min_protoh;
3079
3080	return (mss);
3081}
3082
3083
3084/*
3085 * On a partial ack arrives, force the retransmission of the
3086 * next unacknowledged segment.  Do not clear tp->t_dupacks.
3087 * By setting snd_nxt to ti_ack, this forces retransmission timer to
3088 * be started again.
3089 */
3090static void
3091tcp_newreno_partial_ack(tp, th)
3092	struct tcpcb *tp;
3093	struct tcphdr *th;
3094{
3095	tcp_seq onxt = tp->snd_nxt;
3096	u_long  ocwnd = tp->snd_cwnd;
3097
3098	callout_stop(tp->tt_rexmt);
3099	tp->t_rtttime = 0;
3100	tp->snd_nxt = th->th_ack;
3101	/*
3102	 * Set snd_cwnd to one segment beyond acknowledged offset.
3103	 * (tp->snd_una has not yet been updated when this function is called.)
3104	 */
3105	tp->snd_cwnd = tp->t_maxseg + (th->th_ack - tp->snd_una);
3106	tp->t_flags |= TF_ACKNOW;
3107	(void) tcp_output(tp);
3108	tp->snd_cwnd = ocwnd;
3109	if (SEQ_GT(onxt, tp->snd_nxt))
3110		tp->snd_nxt = onxt;
3111	/*
3112	 * Partial window deflation.  Relies on fact that tp->snd_una
3113	 * not updated yet.
3114	 */
3115	if (tp->snd_cwnd > th->th_ack - tp->snd_una)
3116		tp->snd_cwnd -= th->th_ack - tp->snd_una;
3117	else
3118		tp->snd_cwnd = 0;
3119	tp->snd_cwnd += tp->t_maxseg;
3120}
3121
3122/*
3123 * Returns 1 if the TIME_WAIT state was killed and we should start over,
3124 * looking for a pcb in the listen state.  Returns 0 otherwise.
3125 */
3126static int
3127tcp_timewait(tw, to, th, m, tlen)
3128	struct tcptw *tw;
3129	struct tcpopt *to;
3130	struct tcphdr *th;
3131	struct mbuf *m;
3132	int tlen;
3133{
3134	int thflags;
3135	tcp_seq seq;
3136#ifdef INET6
3137	int isipv6 = (mtod(m, struct ip *)->ip_v == 6) ? 1 : 0;
3138#else
3139	const int isipv6 = 0;
3140#endif
3141
3142	/* tcbinfo lock required for tcp_twclose(), tcp_2msl_reset. */
3143	INP_INFO_WLOCK_ASSERT(&tcbinfo);
3144	INP_LOCK_ASSERT(tw->tw_inpcb);
3145
3146	thflags = th->th_flags;
3147
3148	/*
3149	 * NOTE: for FIN_WAIT_2 (to be added later),
3150	 * must validate sequence number before accepting RST
3151	 */
3152
3153	/*
3154	 * If the segment contains RST:
3155	 *	Drop the segment - see Stevens, vol. 2, p. 964 and
3156	 *      RFC 1337.
3157	 */
3158	if (thflags & TH_RST)
3159		goto drop;
3160
3161#if 0
3162/* PAWS not needed at the moment */
3163	/*
3164	 * RFC 1323 PAWS: If we have a timestamp reply on this segment
3165	 * and it's less than ts_recent, drop it.
3166	 */
3167	if ((to.to_flags & TOF_TS) != 0 && tp->ts_recent &&
3168	    TSTMP_LT(to.to_tsval, tp->ts_recent)) {
3169		if ((thflags & TH_ACK) == 0)
3170			goto drop;
3171		goto ack;
3172	}
3173	/*
3174	 * ts_recent is never updated because we never accept new segments.
3175	 */
3176#endif
3177
3178	/*
3179	 * If a new connection request is received
3180	 * while in TIME_WAIT, drop the old connection
3181	 * and start over if the sequence numbers
3182	 * are above the previous ones.
3183	 */
3184	if ((thflags & TH_SYN) && SEQ_GT(th->th_seq, tw->rcv_nxt)) {
3185		(void) tcp_twclose(tw, 0);
3186		return (1);
3187	}
3188
3189	/*
3190	 * Drop the the segment if it does not contain an ACK.
3191	 */
3192	if ((thflags & TH_ACK) == 0)
3193		goto drop;
3194
3195	/*
3196	 * Reset the 2MSL timer if this is a duplicate FIN.
3197	 */
3198	if (thflags & TH_FIN) {
3199		seq = th->th_seq + tlen + (thflags & TH_SYN ? 1 : 0);
3200		if (seq + 1 == tw->rcv_nxt)
3201			tcp_timer_2msl_reset(tw, 2 * tcp_msl);
3202	}
3203
3204	/*
3205	 * Acknowledge the segment if it has data or is not a duplicate ACK.
3206	 */
3207	if (thflags != TH_ACK || tlen != 0 ||
3208	    th->th_seq != tw->rcv_nxt || th->th_ack != tw->snd_nxt)
3209		tcp_twrespond(tw, TH_ACK);
3210	goto drop;
3211
3212	/*
3213	 * Generate a RST, dropping incoming segment.
3214	 * Make ACK acceptable to originator of segment.
3215	 * Don't bother to respond if destination was broadcast/multicast.
3216	 */
3217	if (m->m_flags & (M_BCAST|M_MCAST))
3218		goto drop;
3219	if (isipv6) {
3220		struct ip6_hdr *ip6;
3221
3222		/* IPv6 anycast check is done at tcp6_input() */
3223		ip6 = mtod(m, struct ip6_hdr *);
3224		if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) ||
3225		    IN6_IS_ADDR_MULTICAST(&ip6->ip6_src))
3226			goto drop;
3227	} else {
3228		struct ip *ip;
3229
3230		ip = mtod(m, struct ip *);
3231		if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
3232		    IN_MULTICAST(ntohl(ip->ip_src.s_addr)) ||
3233		    ip->ip_src.s_addr == htonl(INADDR_BROADCAST) ||
3234		    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
3235			goto drop;
3236	}
3237	if (thflags & TH_ACK) {
3238		tcp_respond(NULL,
3239		    mtod(m, void *), th, m, 0, th->th_ack, TH_RST);
3240	} else {
3241		seq = th->th_seq + (thflags & TH_SYN ? 1 : 0);
3242		tcp_respond(NULL,
3243		    mtod(m, void *), th, m, seq, 0, TH_RST|TH_ACK);
3244	}
3245	INP_UNLOCK(tw->tw_inpcb);
3246	return (0);
3247
3248drop:
3249	INP_UNLOCK(tw->tw_inpcb);
3250	m_freem(m);
3251	return (0);
3252}
3253