tcp_input.c revision 147734
1/*-
2 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 4. Neither the name of the University nor the names of its contributors
14 *    may be used to endorse or promote products derived from this software
15 *    without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 *
29 *	@(#)tcp_input.c	8.12 (Berkeley) 5/24/95
30 * $FreeBSD: head/sys/netinet/tcp_input.c 147734 2005-07-01 22:52:46Z ps $
31 */
32
33#include "opt_ipfw.h"		/* for ipfw_fwd		*/
34#include "opt_inet.h"
35#include "opt_inet6.h"
36#include "opt_ipsec.h"
37#include "opt_mac.h"
38#include "opt_tcpdebug.h"
39#include "opt_tcp_input.h"
40#include "opt_tcp_sack.h"
41
42#include <sys/param.h>
43#include <sys/kernel.h>
44#include <sys/mac.h>
45#include <sys/malloc.h>
46#include <sys/mbuf.h>
47#include <sys/proc.h>		/* for proc0 declaration */
48#include <sys/protosw.h>
49#include <sys/signalvar.h>
50#include <sys/socket.h>
51#include <sys/socketvar.h>
52#include <sys/sysctl.h>
53#include <sys/syslog.h>
54#include <sys/systm.h>
55
56#include <machine/cpu.h>	/* before tcp_seq.h, for tcp_random18() */
57
58#include <vm/uma.h>
59
60#include <net/if.h>
61#include <net/route.h>
62
63#include <netinet/in.h>
64#include <netinet/in_pcb.h>
65#include <netinet/in_systm.h>
66#include <netinet/in_var.h>
67#include <netinet/ip.h>
68#include <netinet/ip_icmp.h>	/* for ICMP_BANDLIM		*/
69#include <netinet/icmp_var.h>	/* for ICMP_BANDLIM		*/
70#include <netinet/ip_var.h>
71#include <netinet/ip6.h>
72#include <netinet/icmp6.h>
73#include <netinet6/in6_pcb.h>
74#include <netinet6/ip6_var.h>
75#include <netinet6/nd6.h>
76#include <netinet/tcp.h>
77#include <netinet/tcp_fsm.h>
78#include <netinet/tcp_seq.h>
79#include <netinet/tcp_timer.h>
80#include <netinet/tcp_var.h>
81#include <netinet6/tcp6_var.h>
82#include <netinet/tcpip.h>
83#ifdef TCPDEBUG
84#include <netinet/tcp_debug.h>
85#endif /* TCPDEBUG */
86
87#ifdef FAST_IPSEC
88#include <netipsec/ipsec.h>
89#include <netipsec/ipsec6.h>
90#endif /*FAST_IPSEC*/
91
92#ifdef IPSEC
93#include <netinet6/ipsec.h>
94#include <netinet6/ipsec6.h>
95#include <netkey/key.h>
96#endif /*IPSEC*/
97
98#include <machine/in_cksum.h>
99
100static const int tcprexmtthresh = 3;
101
102struct	tcpstat tcpstat;
103SYSCTL_STRUCT(_net_inet_tcp, TCPCTL_STATS, stats, CTLFLAG_RW,
104    &tcpstat , tcpstat, "TCP statistics (struct tcpstat, netinet/tcp_var.h)");
105
106static int log_in_vain = 0;
107SYSCTL_INT(_net_inet_tcp, OID_AUTO, log_in_vain, CTLFLAG_RW,
108    &log_in_vain, 0, "Log all incoming TCP connections");
109
110static int blackhole = 0;
111SYSCTL_INT(_net_inet_tcp, OID_AUTO, blackhole, CTLFLAG_RW,
112	&blackhole, 0, "Do not send RST when dropping refused connections");
113
114int tcp_delack_enabled = 1;
115SYSCTL_INT(_net_inet_tcp, OID_AUTO, delayed_ack, CTLFLAG_RW,
116    &tcp_delack_enabled, 0,
117    "Delay ACK to try and piggyback it onto a data packet");
118
119#ifdef TCP_DROP_SYNFIN
120static int drop_synfin = 0;
121SYSCTL_INT(_net_inet_tcp, OID_AUTO, drop_synfin, CTLFLAG_RW,
122    &drop_synfin, 0, "Drop TCP packets with SYN+FIN set");
123#endif
124
125static int tcp_do_rfc3042 = 1;
126SYSCTL_INT(_net_inet_tcp, OID_AUTO, rfc3042, CTLFLAG_RW,
127    &tcp_do_rfc3042, 0, "Enable RFC 3042 (Limited Transmit)");
128
129static int tcp_do_rfc3390 = 1;
130SYSCTL_INT(_net_inet_tcp, OID_AUTO, rfc3390, CTLFLAG_RW,
131    &tcp_do_rfc3390, 0,
132    "Enable RFC 3390 (Increasing TCP's Initial Congestion Window)");
133
134static int tcp_insecure_rst = 0;
135SYSCTL_INT(_net_inet_tcp, OID_AUTO, insecure_rst, CTLFLAG_RW,
136    &tcp_insecure_rst, 0,
137    "Follow the old (insecure) criteria for accepting RST packets.");
138
139SYSCTL_NODE(_net_inet_tcp, OID_AUTO, reass, CTLFLAG_RW, 0,
140	    "TCP Segment Reassembly Queue");
141
142static int tcp_reass_maxseg = 0;
143SYSCTL_INT(_net_inet_tcp_reass, OID_AUTO, maxsegments, CTLFLAG_RDTUN,
144	   &tcp_reass_maxseg, 0,
145	   "Global maximum number of TCP Segments in Reassembly Queue");
146
147int tcp_reass_qsize = 0;
148SYSCTL_INT(_net_inet_tcp_reass, OID_AUTO, cursegments, CTLFLAG_RD,
149	   &tcp_reass_qsize, 0,
150	   "Global number of TCP Segments currently in Reassembly Queue");
151
152static int tcp_reass_maxqlen = 48;
153SYSCTL_INT(_net_inet_tcp_reass, OID_AUTO, maxqlen, CTLFLAG_RW,
154	   &tcp_reass_maxqlen, 0,
155	   "Maximum number of TCP Segments per individual Reassembly Queue");
156
157static int tcp_reass_overflows = 0;
158SYSCTL_INT(_net_inet_tcp_reass, OID_AUTO, overflows, CTLFLAG_RD,
159	   &tcp_reass_overflows, 0,
160	   "Global number of TCP Segment Reassembly Queue Overflows");
161
162struct inpcbhead tcb;
163#define	tcb6	tcb  /* for KAME src sync over BSD*'s */
164struct inpcbinfo tcbinfo;
165struct mtx	*tcbinfo_mtx;
166
167static void	 tcp_dooptions(struct tcpopt *, u_char *, int, int);
168
169static void	 tcp_pulloutofband(struct socket *,
170		     struct tcphdr *, struct mbuf *, int);
171static int	 tcp_reass(struct tcpcb *, struct tcphdr *, int *,
172		     struct mbuf *);
173static void	 tcp_xmit_timer(struct tcpcb *, int);
174static void	 tcp_newreno_partial_ack(struct tcpcb *, struct tcphdr *);
175static int	 tcp_timewait(struct tcptw *, struct tcpopt *,
176		     struct tcphdr *, struct mbuf *, int);
177
178/* Neighbor Discovery, Neighbor Unreachability Detection Upper layer hint. */
179#ifdef INET6
180#define ND6_HINT(tp) \
181do { \
182	if ((tp) && (tp)->t_inpcb && \
183	    ((tp)->t_inpcb->inp_vflag & INP_IPV6) != 0) \
184		nd6_nud_hint(NULL, NULL, 0); \
185} while (0)
186#else
187#define ND6_HINT(tp)
188#endif
189
190/*
191 * Indicate whether this ack should be delayed.  We can delay the ack if
192 *	- there is no delayed ack timer in progress and
193 *	- our last ack wasn't a 0-sized window.  We never want to delay
194 *	  the ack that opens up a 0-sized window and
195 *		- delayed acks are enabled or
196 *		- this is a half-synchronized T/TCP connection.
197 */
198#define DELAY_ACK(tp)							\
199	((!callout_active(tp->tt_delack) &&				\
200	    (tp->t_flags & TF_RXWIN0SENT) == 0) &&			\
201	    (tcp_delack_enabled || (tp->t_flags & TF_NEEDSYN)))
202
203/* Initialize TCP reassembly queue */
204uma_zone_t	tcp_reass_zone;
205void
206tcp_reass_init()
207{
208	tcp_reass_maxseg = nmbclusters / 16;
209	TUNABLE_INT_FETCH("net.inet.tcp.reass.maxsegments",
210	    &tcp_reass_maxseg);
211	tcp_reass_zone = uma_zcreate("tcpreass", sizeof (struct tseg_qent),
212	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
213	uma_zone_set_max(tcp_reass_zone, tcp_reass_maxseg);
214}
215
216static int
217tcp_reass(tp, th, tlenp, m)
218	register struct tcpcb *tp;
219	register struct tcphdr *th;
220	int *tlenp;
221	struct mbuf *m;
222{
223	struct tseg_qent *q;
224	struct tseg_qent *p = NULL;
225	struct tseg_qent *nq;
226	struct tseg_qent *te = NULL;
227	struct socket *so = tp->t_inpcb->inp_socket;
228	int flags;
229
230	INP_LOCK_ASSERT(tp->t_inpcb);
231
232	/*
233	 * XXX: tcp_reass() is rather inefficient with its data structures
234	 * and should be rewritten (see NetBSD for optimizations).  While
235	 * doing that it should move to its own file tcp_reass.c.
236	 */
237
238	/*
239	 * Call with th==NULL after become established to
240	 * force pre-ESTABLISHED data up to user socket.
241	 */
242	if (th == NULL)
243		goto present;
244
245	/*
246	 * Limit the number of segments in the reassembly queue to prevent
247	 * holding on to too many segments (and thus running out of mbufs).
248	 * Make sure to let the missing segment through which caused this
249	 * queue.  Always keep one global queue entry spare to be able to
250	 * process the missing segment.
251	 */
252	if (th->th_seq != tp->rcv_nxt &&
253	    (tcp_reass_qsize + 1 >= tcp_reass_maxseg ||
254	     tp->t_segqlen >= tcp_reass_maxqlen)) {
255		tcp_reass_overflows++;
256		tcpstat.tcps_rcvmemdrop++;
257		m_freem(m);
258		*tlenp = 0;
259		return (0);
260	}
261
262	/*
263	 * Allocate a new queue entry. If we can't, or hit the zone limit
264	 * just drop the pkt.
265	 */
266	te = uma_zalloc(tcp_reass_zone, M_NOWAIT);
267	if (te == NULL) {
268		tcpstat.tcps_rcvmemdrop++;
269		m_freem(m);
270		*tlenp = 0;
271		return (0);
272	}
273	tp->t_segqlen++;
274	tcp_reass_qsize++;
275
276	/*
277	 * Find a segment which begins after this one does.
278	 */
279	LIST_FOREACH(q, &tp->t_segq, tqe_q) {
280		if (SEQ_GT(q->tqe_th->th_seq, th->th_seq))
281			break;
282		p = q;
283	}
284
285	/*
286	 * If there is a preceding segment, it may provide some of
287	 * our data already.  If so, drop the data from the incoming
288	 * segment.  If it provides all of our data, drop us.
289	 */
290	if (p != NULL) {
291		register int i;
292		/* conversion to int (in i) handles seq wraparound */
293		i = p->tqe_th->th_seq + p->tqe_len - th->th_seq;
294		if (i > 0) {
295			if (i >= *tlenp) {
296				tcpstat.tcps_rcvduppack++;
297				tcpstat.tcps_rcvdupbyte += *tlenp;
298				m_freem(m);
299				uma_zfree(tcp_reass_zone, te);
300				tp->t_segqlen--;
301				tcp_reass_qsize--;
302				/*
303				 * Try to present any queued data
304				 * at the left window edge to the user.
305				 * This is needed after the 3-WHS
306				 * completes.
307				 */
308				goto present;	/* ??? */
309			}
310			m_adj(m, i);
311			*tlenp -= i;
312			th->th_seq += i;
313		}
314	}
315	tcpstat.tcps_rcvoopack++;
316	tcpstat.tcps_rcvoobyte += *tlenp;
317
318	/*
319	 * While we overlap succeeding segments trim them or,
320	 * if they are completely covered, dequeue them.
321	 */
322	while (q) {
323		register int i = (th->th_seq + *tlenp) - q->tqe_th->th_seq;
324		if (i <= 0)
325			break;
326		if (i < q->tqe_len) {
327			q->tqe_th->th_seq += i;
328			q->tqe_len -= i;
329			m_adj(q->tqe_m, i);
330			break;
331		}
332
333		nq = LIST_NEXT(q, tqe_q);
334		LIST_REMOVE(q, tqe_q);
335		m_freem(q->tqe_m);
336		uma_zfree(tcp_reass_zone, q);
337		tp->t_segqlen--;
338		tcp_reass_qsize--;
339		q = nq;
340	}
341
342	/* Insert the new segment queue entry into place. */
343	te->tqe_m = m;
344	te->tqe_th = th;
345	te->tqe_len = *tlenp;
346
347	if (p == NULL) {
348		LIST_INSERT_HEAD(&tp->t_segq, te, tqe_q);
349	} else {
350		LIST_INSERT_AFTER(p, te, tqe_q);
351	}
352
353present:
354	/*
355	 * Present data to user, advancing rcv_nxt through
356	 * completed sequence space.
357	 */
358	if (!TCPS_HAVEESTABLISHED(tp->t_state))
359		return (0);
360	q = LIST_FIRST(&tp->t_segq);
361	if (!q || q->tqe_th->th_seq != tp->rcv_nxt)
362		return (0);
363	SOCKBUF_LOCK(&so->so_rcv);
364	do {
365		tp->rcv_nxt += q->tqe_len;
366		flags = q->tqe_th->th_flags & TH_FIN;
367		nq = LIST_NEXT(q, tqe_q);
368		LIST_REMOVE(q, tqe_q);
369		if (so->so_rcv.sb_state & SBS_CANTRCVMORE)
370			m_freem(q->tqe_m);
371		else
372			sbappendstream_locked(&so->so_rcv, q->tqe_m);
373		uma_zfree(tcp_reass_zone, q);
374		tp->t_segqlen--;
375		tcp_reass_qsize--;
376		q = nq;
377	} while (q && q->tqe_th->th_seq == tp->rcv_nxt);
378	ND6_HINT(tp);
379	sorwakeup_locked(so);
380	return (flags);
381}
382
383/*
384 * TCP input routine, follows pages 65-76 of the
385 * protocol specification dated September, 1981 very closely.
386 */
387#ifdef INET6
388int
389tcp6_input(mp, offp, proto)
390	struct mbuf **mp;
391	int *offp, proto;
392{
393	register struct mbuf *m = *mp;
394	struct in6_ifaddr *ia6;
395
396	IP6_EXTHDR_CHECK(m, *offp, sizeof(struct tcphdr), IPPROTO_DONE);
397
398	/*
399	 * draft-itojun-ipv6-tcp-to-anycast
400	 * better place to put this in?
401	 */
402	ia6 = ip6_getdstifaddr(m);
403	if (ia6 && (ia6->ia6_flags & IN6_IFF_ANYCAST)) {
404		struct ip6_hdr *ip6;
405
406		ip6 = mtod(m, struct ip6_hdr *);
407		icmp6_error(m, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_ADDR,
408			    (caddr_t)&ip6->ip6_dst - (caddr_t)ip6);
409		return IPPROTO_DONE;
410	}
411
412	tcp_input(m, *offp);
413	return IPPROTO_DONE;
414}
415#endif
416
417void
418tcp_input(m, off0)
419	register struct mbuf *m;
420	int off0;
421{
422	register struct tcphdr *th;
423	register struct ip *ip = NULL;
424	register struct ipovly *ipov;
425	register struct inpcb *inp = NULL;
426	u_char *optp = NULL;
427	int optlen = 0;
428	int len, tlen, off;
429	int drop_hdrlen;
430	register struct tcpcb *tp = 0;
431	register int thflags;
432	struct socket *so = 0;
433	int todrop, acked, ourfinisacked, needoutput = 0;
434	u_long tiwin;
435	struct tcpopt to;		/* options in this segment */
436	int headlocked = 0;
437#ifdef IPFIREWALL_FORWARD
438	struct m_tag *fwd_tag;
439#endif
440	int rstreason; /* For badport_bandlim accounting purposes */
441
442	struct ip6_hdr *ip6 = NULL;
443#ifdef INET6
444	int isipv6;
445#else
446	const int isipv6 = 0;
447#endif
448
449#ifdef TCPDEBUG
450	/*
451	 * The size of tcp_saveipgen must be the size of the max ip header,
452	 * now IPv6.
453	 */
454	u_char tcp_saveipgen[40];
455	struct tcphdr tcp_savetcp;
456	short ostate = 0;
457#endif
458
459#ifdef INET6
460	isipv6 = (mtod(m, struct ip *)->ip_v == 6) ? 1 : 0;
461#endif
462	bzero((char *)&to, sizeof(to));
463
464	tcpstat.tcps_rcvtotal++;
465
466	if (isipv6) {
467#ifdef INET6
468		/* IP6_EXTHDR_CHECK() is already done at tcp6_input() */
469		ip6 = mtod(m, struct ip6_hdr *);
470		tlen = sizeof(*ip6) + ntohs(ip6->ip6_plen) - off0;
471		if (in6_cksum(m, IPPROTO_TCP, off0, tlen)) {
472			tcpstat.tcps_rcvbadsum++;
473			goto drop;
474		}
475		th = (struct tcphdr *)((caddr_t)ip6 + off0);
476
477		/*
478		 * Be proactive about unspecified IPv6 address in source.
479		 * As we use all-zero to indicate unbounded/unconnected pcb,
480		 * unspecified IPv6 address can be used to confuse us.
481		 *
482		 * Note that packets with unspecified IPv6 destination is
483		 * already dropped in ip6_input.
484		 */
485		if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) {
486			/* XXX stat */
487			goto drop;
488		}
489#else
490		th = NULL;		/* XXX: avoid compiler warning */
491#endif
492	} else {
493		/*
494		 * Get IP and TCP header together in first mbuf.
495		 * Note: IP leaves IP header in first mbuf.
496		 */
497		if (off0 > sizeof (struct ip)) {
498			ip_stripoptions(m, (struct mbuf *)0);
499			off0 = sizeof(struct ip);
500		}
501		if (m->m_len < sizeof (struct tcpiphdr)) {
502			if ((m = m_pullup(m, sizeof (struct tcpiphdr))) == 0) {
503				tcpstat.tcps_rcvshort++;
504				return;
505			}
506		}
507		ip = mtod(m, struct ip *);
508		ipov = (struct ipovly *)ip;
509		th = (struct tcphdr *)((caddr_t)ip + off0);
510		tlen = ip->ip_len;
511
512		if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) {
513			if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR)
514				th->th_sum = m->m_pkthdr.csum_data;
515			else
516				th->th_sum = in_pseudo(ip->ip_src.s_addr,
517						ip->ip_dst.s_addr,
518						htonl(m->m_pkthdr.csum_data +
519							ip->ip_len +
520							IPPROTO_TCP));
521			th->th_sum ^= 0xffff;
522#ifdef TCPDEBUG
523			ipov->ih_len = (u_short)tlen;
524			ipov->ih_len = htons(ipov->ih_len);
525#endif
526		} else {
527			/*
528			 * Checksum extended TCP header and data.
529			 */
530			len = sizeof (struct ip) + tlen;
531			bzero(ipov->ih_x1, sizeof(ipov->ih_x1));
532			ipov->ih_len = (u_short)tlen;
533			ipov->ih_len = htons(ipov->ih_len);
534			th->th_sum = in_cksum(m, len);
535		}
536		if (th->th_sum) {
537			tcpstat.tcps_rcvbadsum++;
538			goto drop;
539		}
540#ifdef INET6
541		/* Re-initialization for later version check */
542		ip->ip_v = IPVERSION;
543#endif
544	}
545
546	/*
547	 * Check that TCP offset makes sense,
548	 * pull out TCP options and adjust length.		XXX
549	 */
550	off = th->th_off << 2;
551	if (off < sizeof (struct tcphdr) || off > tlen) {
552		tcpstat.tcps_rcvbadoff++;
553		goto drop;
554	}
555	tlen -= off;	/* tlen is used instead of ti->ti_len */
556	if (off > sizeof (struct tcphdr)) {
557		if (isipv6) {
558#ifdef INET6
559			IP6_EXTHDR_CHECK(m, off0, off, );
560			ip6 = mtod(m, struct ip6_hdr *);
561			th = (struct tcphdr *)((caddr_t)ip6 + off0);
562#endif
563		} else {
564			if (m->m_len < sizeof(struct ip) + off) {
565				if ((m = m_pullup(m, sizeof (struct ip) + off))
566						== 0) {
567					tcpstat.tcps_rcvshort++;
568					return;
569				}
570				ip = mtod(m, struct ip *);
571				ipov = (struct ipovly *)ip;
572				th = (struct tcphdr *)((caddr_t)ip + off0);
573			}
574		}
575		optlen = off - sizeof (struct tcphdr);
576		optp = (u_char *)(th + 1);
577	}
578	thflags = th->th_flags;
579
580#ifdef TCP_DROP_SYNFIN
581	/*
582	 * If the drop_synfin option is enabled, drop all packets with
583	 * both the SYN and FIN bits set. This prevents e.g. nmap from
584	 * identifying the TCP/IP stack.
585	 *
586	 * This is a violation of the TCP specification.
587	 */
588	if (drop_synfin && (thflags & (TH_SYN|TH_FIN)) == (TH_SYN|TH_FIN))
589		goto drop;
590#endif
591
592	/*
593	 * Convert TCP protocol specific fields to host format.
594	 */
595	th->th_seq = ntohl(th->th_seq);
596	th->th_ack = ntohl(th->th_ack);
597	th->th_win = ntohs(th->th_win);
598	th->th_urp = ntohs(th->th_urp);
599
600	/*
601	 * Delay dropping TCP, IP headers, IPv6 ext headers, and TCP options,
602	 * until after ip6_savecontrol() is called and before other functions
603	 * which don't want those proto headers.
604	 * Because ip6_savecontrol() is going to parse the mbuf to
605	 * search for data to be passed up to user-land, it wants mbuf
606	 * parameters to be unchanged.
607	 * XXX: the call of ip6_savecontrol() has been obsoleted based on
608	 * latest version of the advanced API (20020110).
609	 */
610	drop_hdrlen = off0 + off;
611
612	/*
613	 * Locate pcb for segment.
614	 */
615	INP_INFO_WLOCK(&tcbinfo);
616	headlocked = 1;
617findpcb:
618	KASSERT(headlocked, ("tcp_input: findpcb: head not locked"));
619#ifdef IPFIREWALL_FORWARD
620	/* Grab info from PACKET_TAG_IPFORWARD tag prepended to the chain. */
621	fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL);
622
623	if (fwd_tag != NULL && isipv6 == 0) {	/* IPv6 support is not yet */
624		struct sockaddr_in *next_hop;
625
626		next_hop = (struct sockaddr_in *)(fwd_tag+1);
627		/*
628		 * Transparently forwarded. Pretend to be the destination.
629		 * already got one like this?
630		 */
631		inp = in_pcblookup_hash(&tcbinfo,
632					ip->ip_src, th->th_sport,
633					ip->ip_dst, th->th_dport,
634					0, m->m_pkthdr.rcvif);
635		if (!inp) {
636			/* It's new.  Try to find the ambushing socket. */
637			inp = in_pcblookup_hash(&tcbinfo,
638						ip->ip_src, th->th_sport,
639						next_hop->sin_addr,
640						next_hop->sin_port ?
641						    ntohs(next_hop->sin_port) :
642						    th->th_dport,
643						1, m->m_pkthdr.rcvif);
644		}
645		/* Remove the tag from the packet.  We don't need it anymore. */
646		m_tag_delete(m, fwd_tag);
647	} else {
648#endif /* IPFIREWALL_FORWARD */
649		if (isipv6) {
650#ifdef INET6
651			inp = in6_pcblookup_hash(&tcbinfo,
652						 &ip6->ip6_src, th->th_sport,
653						 &ip6->ip6_dst, th->th_dport,
654						 1, m->m_pkthdr.rcvif);
655#endif
656		} else
657			inp = in_pcblookup_hash(&tcbinfo,
658						ip->ip_src, th->th_sport,
659						ip->ip_dst, th->th_dport,
660						1, m->m_pkthdr.rcvif);
661#ifdef IPFIREWALL_FORWARD
662	}
663#endif /* IPFIREWALL_FORWARD */
664
665#if defined(IPSEC) || defined(FAST_IPSEC)
666#ifdef INET6
667	if (isipv6) {
668		if (inp != NULL && ipsec6_in_reject(m, inp)) {
669#ifdef IPSEC
670			ipsec6stat.in_polvio++;
671#endif
672			goto drop;
673		}
674	} else
675#endif /* INET6 */
676	if (inp != NULL && ipsec4_in_reject(m, inp)) {
677#ifdef IPSEC
678		ipsecstat.in_polvio++;
679#endif
680		goto drop;
681	}
682#endif /*IPSEC || FAST_IPSEC*/
683
684	/*
685	 * If the state is CLOSED (i.e., TCB does not exist) then
686	 * all data in the incoming segment is discarded.
687	 * If the TCB exists but is in CLOSED state, it is embryonic,
688	 * but should either do a listen or a connect soon.
689	 */
690	if (inp == NULL) {
691		if (log_in_vain) {
692#ifdef INET6
693			char dbuf[INET6_ADDRSTRLEN+2], sbuf[INET6_ADDRSTRLEN+2];
694#else
695			char dbuf[4*sizeof "123"], sbuf[4*sizeof "123"];
696#endif
697
698			if (isipv6) {
699#ifdef INET6
700				strcpy(dbuf, "[");
701				strcpy(sbuf, "[");
702				strcat(dbuf, ip6_sprintf(&ip6->ip6_dst));
703				strcat(sbuf, ip6_sprintf(&ip6->ip6_src));
704				strcat(dbuf, "]");
705				strcat(sbuf, "]");
706#endif
707			} else {
708				strcpy(dbuf, inet_ntoa(ip->ip_dst));
709				strcpy(sbuf, inet_ntoa(ip->ip_src));
710			}
711			switch (log_in_vain) {
712			case 1:
713				if ((thflags & TH_SYN) == 0)
714					break;
715				/* FALLTHROUGH */
716			case 2:
717				log(LOG_INFO,
718				    "Connection attempt to TCP %s:%d "
719				    "from %s:%d flags:0x%02x\n",
720				    dbuf, ntohs(th->th_dport), sbuf,
721				    ntohs(th->th_sport), thflags);
722				break;
723			default:
724				break;
725			}
726		}
727		if (blackhole) {
728			switch (blackhole) {
729			case 1:
730				if (thflags & TH_SYN)
731					goto drop;
732				break;
733			case 2:
734				goto drop;
735			default:
736				goto drop;
737			}
738		}
739		rstreason = BANDLIM_RST_CLOSEDPORT;
740		goto dropwithreset;
741	}
742	INP_LOCK(inp);
743	if (inp->inp_vflag & INP_TIMEWAIT) {
744		/*
745		 * The only option of relevance is TOF_CC, and only if
746		 * present in a SYN segment.  See tcp_timewait().
747		 */
748		if (thflags & TH_SYN)
749			tcp_dooptions(&to, optp, optlen, 1);
750		if (tcp_timewait((struct tcptw *)inp->inp_ppcb,
751		    &to, th, m, tlen))
752			goto findpcb;
753		/*
754		 * tcp_timewait unlocks inp.
755		 */
756		INP_INFO_WUNLOCK(&tcbinfo);
757		return;
758	}
759	tp = intotcpcb(inp);
760	if (tp == 0) {
761		INP_UNLOCK(inp);
762		rstreason = BANDLIM_RST_CLOSEDPORT;
763		goto dropwithreset;
764	}
765	if (tp->t_state == TCPS_CLOSED)
766		goto drop;
767
768	/* Unscale the window into a 32-bit value. */
769	if ((thflags & TH_SYN) == 0)
770		tiwin = th->th_win << tp->snd_scale;
771	else
772		tiwin = th->th_win;
773
774#ifdef MAC
775	INP_LOCK_ASSERT(inp);
776	if (mac_check_inpcb_deliver(inp, m))
777		goto drop;
778#endif
779	so = inp->inp_socket;
780#ifdef TCPDEBUG
781	if (so->so_options & SO_DEBUG) {
782		ostate = tp->t_state;
783		if (isipv6)
784			bcopy((char *)ip6, (char *)tcp_saveipgen, sizeof(*ip6));
785		else
786			bcopy((char *)ip, (char *)tcp_saveipgen, sizeof(*ip));
787		tcp_savetcp = *th;
788	}
789#endif
790	if (so->so_options & SO_ACCEPTCONN) {
791		struct in_conninfo inc;
792
793#ifdef INET6
794		inc.inc_isipv6 = isipv6;
795#endif
796		if (isipv6) {
797			inc.inc6_faddr = ip6->ip6_src;
798			inc.inc6_laddr = ip6->ip6_dst;
799		} else {
800			inc.inc_faddr = ip->ip_src;
801			inc.inc_laddr = ip->ip_dst;
802		}
803		inc.inc_fport = th->th_sport;
804		inc.inc_lport = th->th_dport;
805
806	        /*
807	         * If the state is LISTEN then ignore segment if it contains
808		 * a RST.  If the segment contains an ACK then it is bad and
809		 * send a RST.  If it does not contain a SYN then it is not
810		 * interesting; drop it.
811		 *
812		 * If the state is SYN_RECEIVED (syncache) and seg contains
813		 * an ACK, but not for our SYN/ACK, send a RST.  If the seg
814		 * contains a RST, check the sequence number to see if it
815		 * is a valid reset segment.
816		 */
817		if ((thflags & (TH_RST|TH_ACK|TH_SYN)) != TH_SYN) {
818			if ((thflags & (TH_RST|TH_ACK|TH_SYN)) == TH_ACK) {
819				if (!syncache_expand(&inc, th, &so, m)) {
820					/*
821					 * No syncache entry, or ACK was not
822					 * for our SYN/ACK.  Send a RST.
823					 */
824					tcpstat.tcps_badsyn++;
825					rstreason = BANDLIM_RST_OPENPORT;
826					goto dropwithreset;
827				}
828				if (so == NULL) {
829					/*
830					 * Could not complete 3-way handshake,
831					 * connection is being closed down, and
832					 * syncache will free mbuf.
833					 */
834					INP_UNLOCK(inp);
835					INP_INFO_WUNLOCK(&tcbinfo);
836					return;
837				}
838				/*
839				 * Socket is created in state SYN_RECEIVED.
840				 * Continue processing segment.
841				 */
842				INP_UNLOCK(inp);
843				inp = sotoinpcb(so);
844				INP_LOCK(inp);
845				tp = intotcpcb(inp);
846				/*
847				 * This is what would have happened in
848				 * tcp_output() when the SYN,ACK was sent.
849				 */
850				tp->snd_up = tp->snd_una;
851				tp->snd_max = tp->snd_nxt = tp->iss + 1;
852				tp->last_ack_sent = tp->rcv_nxt;
853				/*
854				 * RFC1323: The window in SYN & SYN/ACK
855				 * segments is never scaled.
856				 */
857				tp->snd_wnd = tiwin;	/* unscaled */
858				goto after_listen;
859			}
860			if (thflags & TH_RST) {
861				syncache_chkrst(&inc, th);
862				goto drop;
863			}
864			if (thflags & TH_ACK) {
865				syncache_badack(&inc);
866				tcpstat.tcps_badsyn++;
867				rstreason = BANDLIM_RST_OPENPORT;
868				goto dropwithreset;
869			}
870			goto drop;
871		}
872
873		/*
874		 * Segment's flags are (SYN) or (SYN|FIN).
875		 */
876#ifdef INET6
877		/*
878		 * If deprecated address is forbidden,
879		 * we do not accept SYN to deprecated interface
880		 * address to prevent any new inbound connection from
881		 * getting established.
882		 * When we do not accept SYN, we send a TCP RST,
883		 * with deprecated source address (instead of dropping
884		 * it).  We compromise it as it is much better for peer
885		 * to send a RST, and RST will be the final packet
886		 * for the exchange.
887		 *
888		 * If we do not forbid deprecated addresses, we accept
889		 * the SYN packet.  RFC2462 does not suggest dropping
890		 * SYN in this case.
891		 * If we decipher RFC2462 5.5.4, it says like this:
892		 * 1. use of deprecated addr with existing
893		 *    communication is okay - "SHOULD continue to be
894		 *    used"
895		 * 2. use of it with new communication:
896		 *   (2a) "SHOULD NOT be used if alternate address
897		 *        with sufficient scope is available"
898		 *   (2b) nothing mentioned otherwise.
899		 * Here we fall into (2b) case as we have no choice in
900		 * our source address selection - we must obey the peer.
901		 *
902		 * The wording in RFC2462 is confusing, and there are
903		 * multiple description text for deprecated address
904		 * handling - worse, they are not exactly the same.
905		 * I believe 5.5.4 is the best one, so we follow 5.5.4.
906		 */
907		if (isipv6 && !ip6_use_deprecated) {
908			struct in6_ifaddr *ia6;
909
910			if ((ia6 = ip6_getdstifaddr(m)) &&
911			    (ia6->ia6_flags & IN6_IFF_DEPRECATED)) {
912				INP_UNLOCK(inp);
913				tp = NULL;
914				rstreason = BANDLIM_RST_OPENPORT;
915				goto dropwithreset;
916			}
917		}
918#endif
919		/*
920		 * If it is from this socket, drop it, it must be forged.
921		 * Don't bother responding if the destination was a broadcast.
922		 */
923		if (th->th_dport == th->th_sport) {
924			if (isipv6) {
925				if (IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst,
926						       &ip6->ip6_src))
927					goto drop;
928			} else {
929				if (ip->ip_dst.s_addr == ip->ip_src.s_addr)
930					goto drop;
931			}
932		}
933		/*
934		 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
935		 *
936		 * Note that it is quite possible to receive unicast
937		 * link-layer packets with a broadcast IP address. Use
938		 * in_broadcast() to find them.
939		 */
940		if (m->m_flags & (M_BCAST|M_MCAST))
941			goto drop;
942		if (isipv6) {
943			if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) ||
944			    IN6_IS_ADDR_MULTICAST(&ip6->ip6_src))
945				goto drop;
946		} else {
947			if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
948			    IN_MULTICAST(ntohl(ip->ip_src.s_addr)) ||
949			    ip->ip_src.s_addr == htonl(INADDR_BROADCAST) ||
950			    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
951				goto drop;
952		}
953		/*
954		 * SYN appears to be valid; create compressed TCP state
955		 * for syncache, or perform t/tcp connection.
956		 */
957		if (so->so_qlen <= so->so_qlimit) {
958#ifdef TCPDEBUG
959			if (so->so_options & SO_DEBUG)
960				tcp_trace(TA_INPUT, ostate, tp,
961				    (void *)tcp_saveipgen, &tcp_savetcp, 0);
962#endif
963			tcp_dooptions(&to, optp, optlen, 1);
964			if (!syncache_add(&inc, &to, th, &so, m))
965				goto drop;
966			if (so == NULL) {
967				/*
968				 * Entry added to syncache, mbuf used to
969				 * send SYN,ACK packet.
970				 */
971				KASSERT(headlocked, ("headlocked"));
972				INP_UNLOCK(inp);
973				INP_INFO_WUNLOCK(&tcbinfo);
974				return;
975			}
976			/*
977			 * Segment passed TAO tests.
978			 */
979			INP_UNLOCK(inp);
980			inp = sotoinpcb(so);
981			INP_LOCK(inp);
982			tp = intotcpcb(inp);
983			tp->snd_wnd = tiwin;
984			tp->t_starttime = ticks;
985			tp->t_state = TCPS_ESTABLISHED;
986
987			/*
988			 * T/TCP logic:
989			 * If there is a FIN or if there is data, then
990			 * delay SYN,ACK(SYN) in the hope of piggy-backing
991			 * it on a response segment.  Otherwise must send
992			 * ACK now in case the other side is slow starting.
993			 */
994			if (thflags & TH_FIN || tlen != 0)
995				tp->t_flags |= (TF_DELACK | TF_NEEDSYN);
996			else
997				tp->t_flags |= (TF_ACKNOW | TF_NEEDSYN);
998			tcpstat.tcps_connects++;
999			soisconnected(so);
1000			goto trimthenstep6;
1001		}
1002		goto drop;
1003	}
1004after_listen:
1005	KASSERT(headlocked, ("tcp_input: after_listen: head not locked"));
1006	INP_LOCK_ASSERT(inp);
1007
1008	/* XXX temp debugging */
1009	/* should not happen - syncache should pick up these connections */
1010	if (tp->t_state == TCPS_LISTEN)
1011		panic("tcp_input: TCPS_LISTEN");
1012
1013	/*
1014	 * This is the second part of the MSS DoS prevention code (after
1015	 * minmss on the sending side) and it deals with too many too small
1016	 * tcp packets in a too short timeframe (1 second).
1017	 *
1018	 * For every full second we count the number of received packets
1019	 * and bytes. If we get a lot of packets per second for this connection
1020	 * (tcp_minmssoverload) we take a closer look at it and compute the
1021	 * average packet size for the past second. If that is less than
1022	 * tcp_minmss we get too many packets with very small payload which
1023	 * is not good and burdens our system (and every packet generates
1024	 * a wakeup to the process connected to our socket). We can reasonable
1025	 * expect this to be small packet DoS attack to exhaust our CPU
1026	 * cycles.
1027	 *
1028	 * Care has to be taken for the minimum packet overload value. This
1029	 * value defines the minimum number of packets per second before we
1030	 * start to worry. This must not be too low to avoid killing for
1031	 * example interactive connections with many small packets like
1032	 * telnet or SSH.
1033	 *
1034	 * Setting either tcp_minmssoverload or tcp_minmss to "0" disables
1035	 * this check.
1036	 *
1037	 * Account for packet if payload packet, skip over ACK, etc.
1038	 */
1039	if (tcp_minmss && tcp_minmssoverload &&
1040	    tp->t_state == TCPS_ESTABLISHED && tlen > 0) {
1041		if ((unsigned int)(tp->rcv_second - ticks) < hz) {
1042			tp->rcv_pps++;
1043			tp->rcv_byps += tlen + off;
1044			if (tp->rcv_pps > tcp_minmssoverload) {
1045				if ((tp->rcv_byps / tp->rcv_pps) < tcp_minmss) {
1046					printf("too many small tcp packets from "
1047					       "%s:%u, av. %lubyte/packet, "
1048					       "dropping connection\n",
1049#ifdef INET6
1050						isipv6 ?
1051						ip6_sprintf(&inp->inp_inc.inc6_faddr) :
1052#endif
1053						inet_ntoa(inp->inp_inc.inc_faddr),
1054						inp->inp_inc.inc_fport,
1055						tp->rcv_byps / tp->rcv_pps);
1056					KASSERT(headlocked, ("tcp_input: "
1057					    "after_listen: tcp_drop: head "
1058					    "not locked"));
1059					tp = tcp_drop(tp, ECONNRESET);
1060					tcpstat.tcps_minmssdrops++;
1061					goto drop;
1062				}
1063			}
1064		} else {
1065			tp->rcv_second = ticks + hz;
1066			tp->rcv_pps = 1;
1067			tp->rcv_byps = tlen + off;
1068		}
1069	}
1070
1071	/*
1072	 * Segment received on connection.
1073	 * Reset idle time and keep-alive timer.
1074	 */
1075	tp->t_rcvtime = ticks;
1076	if (TCPS_HAVEESTABLISHED(tp->t_state))
1077		callout_reset(tp->tt_keep, tcp_keepidle, tcp_timer_keep, tp);
1078
1079	/*
1080	 * Process options only when we get SYN/ACK back. The SYN case
1081	 * for incoming connections is handled in tcp_syncache.
1082	 * XXX this is traditional behavior, may need to be cleaned up.
1083	 */
1084	tcp_dooptions(&to, optp, optlen, thflags & TH_SYN);
1085	if (tp->t_state == TCPS_SYN_SENT && (thflags & TH_SYN)) {
1086		if (to.to_flags & TOF_SCALE) {
1087			tp->t_flags |= TF_RCVD_SCALE;
1088			tp->requested_s_scale = to.to_requested_s_scale;
1089		}
1090		if (to.to_flags & TOF_TS) {
1091			tp->t_flags |= TF_RCVD_TSTMP;
1092			tp->ts_recent = to.to_tsval;
1093			tp->ts_recent_age = ticks;
1094		}
1095		if (to.to_flags & TOF_MSS)
1096			tcp_mss(tp, to.to_mss);
1097		if (tp->sack_enable) {
1098			if (!(to.to_flags & TOF_SACK))
1099				tp->sack_enable = 0;
1100			else
1101				tp->t_flags |= TF_SACK_PERMIT;
1102		}
1103
1104	}
1105
1106	/*
1107	 * Header prediction: check for the two common cases
1108	 * of a uni-directional data xfer.  If the packet has
1109	 * no control flags, is in-sequence, the window didn't
1110	 * change and we're not retransmitting, it's a
1111	 * candidate.  If the length is zero and the ack moved
1112	 * forward, we're the sender side of the xfer.  Just
1113	 * free the data acked & wake any higher level process
1114	 * that was blocked waiting for space.  If the length
1115	 * is non-zero and the ack didn't move, we're the
1116	 * receiver side.  If we're getting packets in-order
1117	 * (the reassembly queue is empty), add the data to
1118	 * the socket buffer and note that we need a delayed ack.
1119	 * Make sure that the hidden state-flags are also off.
1120	 * Since we check for TCPS_ESTABLISHED above, it can only
1121	 * be TH_NEEDSYN.
1122	 */
1123	if (tp->t_state == TCPS_ESTABLISHED &&
1124	    (thflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK)) == TH_ACK &&
1125	    ((tp->t_flags & (TF_NEEDSYN|TF_NEEDFIN)) == 0) &&
1126	    ((to.to_flags & TOF_TS) == 0 ||
1127	     TSTMP_GEQ(to.to_tsval, tp->ts_recent)) &&
1128	     th->th_seq == tp->rcv_nxt && tiwin && tiwin == tp->snd_wnd &&
1129	     tp->snd_nxt == tp->snd_max) {
1130
1131		/*
1132		 * If last ACK falls within this segment's sequence numbers,
1133		 * record the timestamp.
1134		 * NOTE that the test is modified according to the latest
1135		 * proposal of the tcplw@cray.com list (Braden 1993/04/26).
1136		 */
1137		if ((to.to_flags & TOF_TS) != 0 &&
1138		    SEQ_LEQ(th->th_seq, tp->last_ack_sent)) {
1139			tp->ts_recent_age = ticks;
1140			tp->ts_recent = to.to_tsval;
1141		}
1142
1143		if (tlen == 0) {
1144			if (SEQ_GT(th->th_ack, tp->snd_una) &&
1145			    SEQ_LEQ(th->th_ack, tp->snd_max) &&
1146			    tp->snd_cwnd >= tp->snd_wnd &&
1147			    ((!tcp_do_newreno && !tp->sack_enable &&
1148			      tp->t_dupacks < tcprexmtthresh) ||
1149			     ((tcp_do_newreno || tp->sack_enable) &&
1150			      !IN_FASTRECOVERY(tp) && to.to_nsacks == 0))) {
1151				KASSERT(headlocked, ("headlocked"));
1152				INP_INFO_WUNLOCK(&tcbinfo);
1153				headlocked = 0;
1154				/*
1155				 * this is a pure ack for outstanding data.
1156				 */
1157				++tcpstat.tcps_predack;
1158				/*
1159				 * "bad retransmit" recovery
1160				 */
1161				if (tp->t_rxtshift == 1 &&
1162				    ticks < tp->t_badrxtwin) {
1163					++tcpstat.tcps_sndrexmitbad;
1164					tp->snd_cwnd = tp->snd_cwnd_prev;
1165					tp->snd_ssthresh =
1166					    tp->snd_ssthresh_prev;
1167					tp->snd_recover = tp->snd_recover_prev;
1168					if (tp->t_flags & TF_WASFRECOVERY)
1169					    ENTER_FASTRECOVERY(tp);
1170					tp->snd_nxt = tp->snd_max;
1171					tp->t_badrxtwin = 0;
1172				}
1173
1174				/*
1175				 * Recalculate the transmit timer / rtt.
1176				 *
1177				 * Some boxes send broken timestamp replies
1178				 * during the SYN+ACK phase, ignore
1179				 * timestamps of 0 or we could calculate a
1180				 * huge RTT and blow up the retransmit timer.
1181				 */
1182				if ((to.to_flags & TOF_TS) != 0 &&
1183				    to.to_tsecr) {
1184					tcp_xmit_timer(tp,
1185					    ticks - to.to_tsecr + 1);
1186				} else if (tp->t_rtttime &&
1187					    SEQ_GT(th->th_ack, tp->t_rtseq)) {
1188					tcp_xmit_timer(tp,
1189							ticks - tp->t_rtttime);
1190				}
1191				tcp_xmit_bandwidth_limit(tp, th->th_ack);
1192				acked = th->th_ack - tp->snd_una;
1193				tcpstat.tcps_rcvackpack++;
1194				tcpstat.tcps_rcvackbyte += acked;
1195				sbdrop(&so->so_snd, acked);
1196				if (SEQ_GT(tp->snd_una, tp->snd_recover) &&
1197				    SEQ_LEQ(th->th_ack, tp->snd_recover))
1198					tp->snd_recover = th->th_ack - 1;
1199				tp->snd_una = th->th_ack;
1200				/*
1201				 * pull snd_wl2 up to prevent seq wrap relative
1202				 * to th_ack.
1203				 */
1204				tp->snd_wl2 = th->th_ack;
1205				tp->t_dupacks = 0;
1206				m_freem(m);
1207				ND6_HINT(tp); /* some progress has been done */
1208
1209				/*
1210				 * If all outstanding data are acked, stop
1211				 * retransmit timer, otherwise restart timer
1212				 * using current (possibly backed-off) value.
1213				 * If process is waiting for space,
1214				 * wakeup/selwakeup/signal.  If data
1215				 * are ready to send, let tcp_output
1216				 * decide between more output or persist.
1217
1218#ifdef TCPDEBUG
1219				if (so->so_options & SO_DEBUG)
1220					tcp_trace(TA_INPUT, ostate, tp,
1221					    (void *)tcp_saveipgen,
1222					    &tcp_savetcp, 0);
1223#endif
1224				 */
1225				if (tp->snd_una == tp->snd_max)
1226					callout_stop(tp->tt_rexmt);
1227				else if (!callout_active(tp->tt_persist))
1228					callout_reset(tp->tt_rexmt,
1229						      tp->t_rxtcur,
1230						      tcp_timer_rexmt, tp);
1231
1232				sowwakeup(so);
1233				if (so->so_snd.sb_cc)
1234					(void) tcp_output(tp);
1235				goto check_delack;
1236			}
1237		} else if (th->th_ack == tp->snd_una &&
1238		    LIST_EMPTY(&tp->t_segq) &&
1239		    tlen <= sbspace(&so->so_rcv)) {
1240			KASSERT(headlocked, ("headlocked"));
1241			INP_INFO_WUNLOCK(&tcbinfo);
1242			headlocked = 0;
1243			/*
1244			 * this is a pure, in-sequence data packet
1245			 * with nothing on the reassembly queue and
1246			 * we have enough buffer space to take it.
1247			 */
1248			/* Clean receiver SACK report if present */
1249			if (tp->sack_enable && tp->rcv_numsacks)
1250				tcp_clean_sackreport(tp);
1251			++tcpstat.tcps_preddat;
1252			tp->rcv_nxt += tlen;
1253			/*
1254			 * Pull snd_wl1 up to prevent seq wrap relative to
1255			 * th_seq.
1256			 */
1257			tp->snd_wl1 = th->th_seq;
1258			/*
1259			 * Pull rcv_up up to prevent seq wrap relative to
1260			 * rcv_nxt.
1261			 */
1262			tp->rcv_up = tp->rcv_nxt;
1263			tcpstat.tcps_rcvpack++;
1264			tcpstat.tcps_rcvbyte += tlen;
1265			ND6_HINT(tp);	/* some progress has been done */
1266			/*
1267#ifdef TCPDEBUG
1268			if (so->so_options & SO_DEBUG)
1269				tcp_trace(TA_INPUT, ostate, tp,
1270				    (void *)tcp_saveipgen, &tcp_savetcp, 0);
1271#endif
1272			 * Add data to socket buffer.
1273			 */
1274			SOCKBUF_LOCK(&so->so_rcv);
1275			if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
1276				m_freem(m);
1277			} else {
1278				m_adj(m, drop_hdrlen);	/* delayed header drop */
1279				sbappendstream_locked(&so->so_rcv, m);
1280			}
1281			sorwakeup_locked(so);
1282			if (DELAY_ACK(tp)) {
1283				tp->t_flags |= TF_DELACK;
1284			} else {
1285				tp->t_flags |= TF_ACKNOW;
1286				tcp_output(tp);
1287			}
1288			goto check_delack;
1289		}
1290	}
1291
1292	/*
1293	 * Calculate amount of space in receive window,
1294	 * and then do TCP input processing.
1295	 * Receive window is amount of space in rcv queue,
1296	 * but not less than advertised window.
1297	 */
1298	{ int win;
1299
1300	win = sbspace(&so->so_rcv);
1301	if (win < 0)
1302		win = 0;
1303	tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
1304	}
1305
1306	switch (tp->t_state) {
1307
1308	/*
1309	 * If the state is SYN_RECEIVED:
1310	 *	if seg contains an ACK, but not for our SYN/ACK, send a RST.
1311	 */
1312	case TCPS_SYN_RECEIVED:
1313		if ((thflags & TH_ACK) &&
1314		    (SEQ_LEQ(th->th_ack, tp->snd_una) ||
1315		     SEQ_GT(th->th_ack, tp->snd_max))) {
1316				rstreason = BANDLIM_RST_OPENPORT;
1317				goto dropwithreset;
1318		}
1319		break;
1320
1321	/*
1322	 * If the state is SYN_SENT:
1323	 *	if seg contains an ACK, but not for our SYN, drop the input.
1324	 *	if seg contains a RST, then drop the connection.
1325	 *	if seg does not contain SYN, then drop it.
1326	 * Otherwise this is an acceptable SYN segment
1327	 *	initialize tp->rcv_nxt and tp->irs
1328	 *	if seg contains ack then advance tp->snd_una
1329	 *	if SYN has been acked change to ESTABLISHED else SYN_RCVD state
1330	 *	arrange for segment to be acked (eventually)
1331	 *	continue processing rest of data/controls, beginning with URG
1332	 */
1333	case TCPS_SYN_SENT:
1334		if ((thflags & TH_ACK) &&
1335		    (SEQ_LEQ(th->th_ack, tp->iss) ||
1336		     SEQ_GT(th->th_ack, tp->snd_max))) {
1337			rstreason = BANDLIM_UNLIMITED;
1338			goto dropwithreset;
1339		}
1340		if (thflags & TH_RST) {
1341			if (thflags & TH_ACK) {
1342				KASSERT(headlocked, ("tcp_input: after_listen"
1343				    ": tcp_drop.2: head not locked"));
1344				tp = tcp_drop(tp, ECONNREFUSED);
1345			}
1346			goto drop;
1347		}
1348		if ((thflags & TH_SYN) == 0)
1349			goto drop;
1350		tp->snd_wnd = th->th_win;	/* initial send window */
1351
1352		tp->irs = th->th_seq;
1353		tcp_rcvseqinit(tp);
1354		if (thflags & TH_ACK) {
1355			tcpstat.tcps_connects++;
1356			soisconnected(so);
1357#ifdef MAC
1358			SOCK_LOCK(so);
1359			mac_set_socket_peer_from_mbuf(m, so);
1360			SOCK_UNLOCK(so);
1361#endif
1362			/* Do window scaling on this connection? */
1363			if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
1364				(TF_RCVD_SCALE|TF_REQ_SCALE)) {
1365				tp->snd_scale = tp->requested_s_scale;
1366				tp->rcv_scale = tp->request_r_scale;
1367			}
1368			tp->rcv_adv += tp->rcv_wnd;
1369			tp->snd_una++;		/* SYN is acked */
1370			/*
1371			 * If there's data, delay ACK; if there's also a FIN
1372			 * ACKNOW will be turned on later.
1373			 */
1374			if (DELAY_ACK(tp) && tlen != 0)
1375				callout_reset(tp->tt_delack, tcp_delacktime,
1376				    tcp_timer_delack, tp);
1377			else
1378				tp->t_flags |= TF_ACKNOW;
1379			/*
1380			 * Received <SYN,ACK> in SYN_SENT[*] state.
1381			 * Transitions:
1382			 *	SYN_SENT  --> ESTABLISHED
1383			 *	SYN_SENT* --> FIN_WAIT_1
1384			 */
1385			tp->t_starttime = ticks;
1386			if (tp->t_flags & TF_NEEDFIN) {
1387				tp->t_state = TCPS_FIN_WAIT_1;
1388				tp->t_flags &= ~TF_NEEDFIN;
1389				thflags &= ~TH_SYN;
1390			} else {
1391				tp->t_state = TCPS_ESTABLISHED;
1392				callout_reset(tp->tt_keep, tcp_keepidle,
1393					      tcp_timer_keep, tp);
1394			}
1395		} else {
1396			/*
1397			 * Received initial SYN in SYN-SENT[*] state =>
1398			 * simultaneous open.  If segment contains CC option
1399			 * and there is a cached CC, apply TAO test.
1400			 * If it succeeds, connection is * half-synchronized.
1401			 * Otherwise, do 3-way handshake:
1402			 *        SYN-SENT -> SYN-RECEIVED
1403			 *        SYN-SENT* -> SYN-RECEIVED*
1404			 * If there was no CC option, clear cached CC value.
1405			 */
1406			tp->t_flags |= TF_ACKNOW;
1407			callout_stop(tp->tt_rexmt);
1408			tp->t_state = TCPS_SYN_RECEIVED;
1409		}
1410
1411trimthenstep6:
1412		KASSERT(headlocked, ("tcp_input: trimthenstep6: head not "
1413		    "locked"));
1414		INP_LOCK_ASSERT(inp);
1415
1416		/*
1417		 * Advance th->th_seq to correspond to first data byte.
1418		 * If data, trim to stay within window,
1419		 * dropping FIN if necessary.
1420		 */
1421		th->th_seq++;
1422		if (tlen > tp->rcv_wnd) {
1423			todrop = tlen - tp->rcv_wnd;
1424			m_adj(m, -todrop);
1425			tlen = tp->rcv_wnd;
1426			thflags &= ~TH_FIN;
1427			tcpstat.tcps_rcvpackafterwin++;
1428			tcpstat.tcps_rcvbyteafterwin += todrop;
1429		}
1430		tp->snd_wl1 = th->th_seq - 1;
1431		tp->rcv_up = th->th_seq;
1432		/*
1433		 * Client side of transaction: already sent SYN and data.
1434		 * If the remote host used T/TCP to validate the SYN,
1435		 * our data will be ACK'd; if so, enter normal data segment
1436		 * processing in the middle of step 5, ack processing.
1437		 * Otherwise, goto step 6.
1438		 */
1439		if (thflags & TH_ACK)
1440			goto process_ACK;
1441
1442		goto step6;
1443
1444	/*
1445	 * If the state is LAST_ACK or CLOSING or TIME_WAIT:
1446	 *      do normal processing.
1447	 *
1448	 * NB: Leftover from RFC1644 T/TCP.  Cases to be reused later.
1449	 */
1450	case TCPS_LAST_ACK:
1451	case TCPS_CLOSING:
1452	case TCPS_TIME_WAIT:
1453		KASSERT(tp->t_state != TCPS_TIME_WAIT, ("timewait"));
1454		break;  /* continue normal processing */
1455	}
1456
1457	/*
1458	 * States other than LISTEN or SYN_SENT.
1459	 * First check the RST flag and sequence number since reset segments
1460	 * are exempt from the timestamp and connection count tests.  This
1461	 * fixes a bug introduced by the Stevens, vol. 2, p. 960 bugfix
1462	 * below which allowed reset segments in half the sequence space
1463	 * to fall though and be processed (which gives forged reset
1464	 * segments with a random sequence number a 50 percent chance of
1465	 * killing a connection).
1466	 * Then check timestamp, if present.
1467	 * Then check the connection count, if present.
1468	 * Then check that at least some bytes of segment are within
1469	 * receive window.  If segment begins before rcv_nxt,
1470	 * drop leading data (and SYN); if nothing left, just ack.
1471	 *
1472	 *
1473	 * If the RST bit is set, check the sequence number to see
1474	 * if this is a valid reset segment.
1475	 * RFC 793 page 37:
1476	 *   In all states except SYN-SENT, all reset (RST) segments
1477	 *   are validated by checking their SEQ-fields.  A reset is
1478	 *   valid if its sequence number is in the window.
1479	 * Note: this does not take into account delayed ACKs, so
1480	 *   we should test against last_ack_sent instead of rcv_nxt.
1481	 *   The sequence number in the reset segment is normally an
1482	 *   echo of our outgoing acknowlegement numbers, but some hosts
1483	 *   send a reset with the sequence number at the rightmost edge
1484	 *   of our receive window, and we have to handle this case.
1485	 * Note 2: Paul Watson's paper "Slipping in the Window" has shown
1486	 *   that brute force RST attacks are possible.  To combat this,
1487	 *   we use a much stricter check while in the ESTABLISHED state,
1488	 *   only accepting RSTs where the sequence number is equal to
1489	 *   last_ack_sent.  In all other states (the states in which a
1490	 *   RST is more likely), the more permissive check is used.
1491	 * If we have multiple segments in flight, the intial reset
1492	 * segment sequence numbers will be to the left of last_ack_sent,
1493	 * but they will eventually catch up.
1494	 * In any case, it never made sense to trim reset segments to
1495	 * fit the receive window since RFC 1122 says:
1496	 *   4.2.2.12  RST Segment: RFC-793 Section 3.4
1497	 *
1498	 *    A TCP SHOULD allow a received RST segment to include data.
1499	 *
1500	 *    DISCUSSION
1501	 *         It has been suggested that a RST segment could contain
1502	 *         ASCII text that encoded and explained the cause of the
1503	 *         RST.  No standard has yet been established for such
1504	 *         data.
1505	 *
1506	 * If the reset segment passes the sequence number test examine
1507	 * the state:
1508	 *    SYN_RECEIVED STATE:
1509	 *	If passive open, return to LISTEN state.
1510	 *	If active open, inform user that connection was refused.
1511	 *    ESTABLISHED, FIN_WAIT_1, FIN_WAIT_2, CLOSE_WAIT STATES:
1512	 *	Inform user that connection was reset, and close tcb.
1513	 *    CLOSING, LAST_ACK STATES:
1514	 *	Close the tcb.
1515	 *    TIME_WAIT STATE:
1516	 *	Drop the segment - see Stevens, vol. 2, p. 964 and
1517	 *      RFC 1337.
1518	 */
1519	if (thflags & TH_RST) {
1520		if ((SEQ_GEQ(th->th_seq, tp->last_ack_sent) &&
1521		    SEQ_LT(th->th_seq, tp->last_ack_sent + tp->rcv_wnd)) ||
1522		    (tp->rcv_wnd == 0 && tp->last_ack_sent == th->th_seq)) {
1523			switch (tp->t_state) {
1524
1525			case TCPS_SYN_RECEIVED:
1526				so->so_error = ECONNREFUSED;
1527				goto close;
1528
1529			case TCPS_ESTABLISHED:
1530				if (tp->last_ack_sent != th->th_seq &&
1531			 	    tcp_insecure_rst == 0) {
1532					tcpstat.tcps_badrst++;
1533					goto drop;
1534				}
1535			case TCPS_FIN_WAIT_1:
1536			case TCPS_FIN_WAIT_2:
1537			case TCPS_CLOSE_WAIT:
1538				so->so_error = ECONNRESET;
1539			close:
1540				tp->t_state = TCPS_CLOSED;
1541				tcpstat.tcps_drops++;
1542				KASSERT(headlocked, ("tcp_input: "
1543				    "trimthenstep6: tcp_close: head not "
1544				    "locked"));
1545				tp = tcp_close(tp);
1546				break;
1547
1548			case TCPS_CLOSING:
1549			case TCPS_LAST_ACK:
1550				KASSERT(headlocked, ("trimthenstep6: "
1551				    "tcp_close.2: head not locked"));
1552				tp = tcp_close(tp);
1553				break;
1554
1555			case TCPS_TIME_WAIT:
1556				KASSERT(tp->t_state != TCPS_TIME_WAIT,
1557				    ("timewait"));
1558				break;
1559			}
1560		}
1561		goto drop;
1562	}
1563
1564	/*
1565	 * RFC 1323 PAWS: If we have a timestamp reply on this segment
1566	 * and it's less than ts_recent, drop it.
1567	 */
1568	if ((to.to_flags & TOF_TS) != 0 && tp->ts_recent &&
1569	    TSTMP_LT(to.to_tsval, tp->ts_recent)) {
1570
1571		/* Check to see if ts_recent is over 24 days old.  */
1572		if ((int)(ticks - tp->ts_recent_age) > TCP_PAWS_IDLE) {
1573			/*
1574			 * Invalidate ts_recent.  If this segment updates
1575			 * ts_recent, the age will be reset later and ts_recent
1576			 * will get a valid value.  If it does not, setting
1577			 * ts_recent to zero will at least satisfy the
1578			 * requirement that zero be placed in the timestamp
1579			 * echo reply when ts_recent isn't valid.  The
1580			 * age isn't reset until we get a valid ts_recent
1581			 * because we don't want out-of-order segments to be
1582			 * dropped when ts_recent is old.
1583			 */
1584			tp->ts_recent = 0;
1585		} else {
1586			tcpstat.tcps_rcvduppack++;
1587			tcpstat.tcps_rcvdupbyte += tlen;
1588			tcpstat.tcps_pawsdrop++;
1589			if (tlen)
1590				goto dropafterack;
1591			goto drop;
1592		}
1593	}
1594
1595	/*
1596	 * In the SYN-RECEIVED state, validate that the packet belongs to
1597	 * this connection before trimming the data to fit the receive
1598	 * window.  Check the sequence number versus IRS since we know
1599	 * the sequence numbers haven't wrapped.  This is a partial fix
1600	 * for the "LAND" DoS attack.
1601	 */
1602	if (tp->t_state == TCPS_SYN_RECEIVED && SEQ_LT(th->th_seq, tp->irs)) {
1603		rstreason = BANDLIM_RST_OPENPORT;
1604		goto dropwithreset;
1605	}
1606
1607	todrop = tp->rcv_nxt - th->th_seq;
1608	if (todrop > 0) {
1609		if (thflags & TH_SYN) {
1610			thflags &= ~TH_SYN;
1611			th->th_seq++;
1612			if (th->th_urp > 1)
1613				th->th_urp--;
1614			else
1615				thflags &= ~TH_URG;
1616			todrop--;
1617		}
1618		/*
1619		 * Following if statement from Stevens, vol. 2, p. 960.
1620		 */
1621		if (todrop > tlen
1622		    || (todrop == tlen && (thflags & TH_FIN) == 0)) {
1623			/*
1624			 * Any valid FIN must be to the left of the window.
1625			 * At this point the FIN must be a duplicate or out
1626			 * of sequence; drop it.
1627			 */
1628			thflags &= ~TH_FIN;
1629
1630			/*
1631			 * Send an ACK to resynchronize and drop any data.
1632			 * But keep on processing for RST or ACK.
1633			 */
1634			tp->t_flags |= TF_ACKNOW;
1635			todrop = tlen;
1636			tcpstat.tcps_rcvduppack++;
1637			tcpstat.tcps_rcvdupbyte += todrop;
1638		} else {
1639			tcpstat.tcps_rcvpartduppack++;
1640			tcpstat.tcps_rcvpartdupbyte += todrop;
1641		}
1642		drop_hdrlen += todrop;	/* drop from the top afterwards */
1643		th->th_seq += todrop;
1644		tlen -= todrop;
1645		if (th->th_urp > todrop)
1646			th->th_urp -= todrop;
1647		else {
1648			thflags &= ~TH_URG;
1649			th->th_urp = 0;
1650		}
1651	}
1652
1653	/*
1654	 * If new data are received on a connection after the
1655	 * user processes are gone, then RST the other end.
1656	 */
1657	if ((so->so_state & SS_NOFDREF) &&
1658	    tp->t_state > TCPS_CLOSE_WAIT && tlen) {
1659		KASSERT(headlocked, ("trimthenstep6: tcp_close.3: head not "
1660		    "locked"));
1661		tp = tcp_close(tp);
1662		tcpstat.tcps_rcvafterclose++;
1663		rstreason = BANDLIM_UNLIMITED;
1664		goto dropwithreset;
1665	}
1666
1667	/*
1668	 * If segment ends after window, drop trailing data
1669	 * (and PUSH and FIN); if nothing left, just ACK.
1670	 */
1671	todrop = (th->th_seq+tlen) - (tp->rcv_nxt+tp->rcv_wnd);
1672	if (todrop > 0) {
1673		tcpstat.tcps_rcvpackafterwin++;
1674		if (todrop >= tlen) {
1675			tcpstat.tcps_rcvbyteafterwin += tlen;
1676			/*
1677			 * If a new connection request is received
1678			 * while in TIME_WAIT, drop the old connection
1679			 * and start over if the sequence numbers
1680			 * are above the previous ones.
1681			 */
1682			KASSERT(tp->t_state != TCPS_TIME_WAIT, ("timewait"));
1683			if (thflags & TH_SYN &&
1684			    tp->t_state == TCPS_TIME_WAIT &&
1685			    SEQ_GT(th->th_seq, tp->rcv_nxt)) {
1686				KASSERT(headlocked, ("trimthenstep6: "
1687				    "tcp_close.4: head not locked"));
1688				tp = tcp_close(tp);
1689				goto findpcb;
1690			}
1691			/*
1692			 * If window is closed can only take segments at
1693			 * window edge, and have to drop data and PUSH from
1694			 * incoming segments.  Continue processing, but
1695			 * remember to ack.  Otherwise, drop segment
1696			 * and ack.
1697			 */
1698			if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
1699				tp->t_flags |= TF_ACKNOW;
1700				tcpstat.tcps_rcvwinprobe++;
1701			} else
1702				goto dropafterack;
1703		} else
1704			tcpstat.tcps_rcvbyteafterwin += todrop;
1705		m_adj(m, -todrop);
1706		tlen -= todrop;
1707		thflags &= ~(TH_PUSH|TH_FIN);
1708	}
1709
1710	/*
1711	 * If last ACK falls within this segment's sequence numbers,
1712	 * record its timestamp.
1713	 * NOTE:
1714	 * 1) That the test incorporates suggestions from the latest
1715	 *    proposal of the tcplw@cray.com list (Braden 1993/04/26).
1716	 * 2) That updating only on newer timestamps interferes with
1717	 *    our earlier PAWS tests, so this check should be solely
1718	 *    predicated on the sequence space of this segment.
1719	 * 3) That we modify the segment boundary check to be
1720	 *        Last.ACK.Sent <= SEG.SEQ + SEG.Len
1721	 *    instead of RFC1323's
1722	 *        Last.ACK.Sent < SEG.SEQ + SEG.Len,
1723	 *    This modified check allows us to overcome RFC1323's
1724	 *    limitations as described in Stevens TCP/IP Illustrated
1725	 *    Vol. 2 p.869. In such cases, we can still calculate the
1726	 *    RTT correctly when RCV.NXT == Last.ACK.Sent.
1727	 */
1728	if ((to.to_flags & TOF_TS) != 0 &&
1729	    SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
1730	    SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
1731		((thflags & (TH_SYN|TH_FIN)) != 0))) {
1732		tp->ts_recent_age = ticks;
1733		tp->ts_recent = to.to_tsval;
1734	}
1735
1736	/*
1737	 * If a SYN is in the window, then this is an
1738	 * error and we send an RST and drop the connection.
1739	 */
1740	if (thflags & TH_SYN) {
1741		KASSERT(headlocked, ("tcp_input: tcp_drop: trimthenstep6: "
1742		    "head not locked"));
1743		tp = tcp_drop(tp, ECONNRESET);
1744		rstreason = BANDLIM_UNLIMITED;
1745		goto drop;
1746	}
1747
1748	/*
1749	 * If the ACK bit is off:  if in SYN-RECEIVED state or SENDSYN
1750	 * flag is on (half-synchronized state), then queue data for
1751	 * later processing; else drop segment and return.
1752	 */
1753	if ((thflags & TH_ACK) == 0) {
1754		if (tp->t_state == TCPS_SYN_RECEIVED ||
1755		    (tp->t_flags & TF_NEEDSYN))
1756			goto step6;
1757		else
1758			goto drop;
1759	}
1760
1761	/*
1762	 * Ack processing.
1763	 */
1764	switch (tp->t_state) {
1765
1766	/*
1767	 * In SYN_RECEIVED state, the ack ACKs our SYN, so enter
1768	 * ESTABLISHED state and continue processing.
1769	 * The ACK was checked above.
1770	 */
1771	case TCPS_SYN_RECEIVED:
1772
1773		tcpstat.tcps_connects++;
1774		soisconnected(so);
1775		/* Do window scaling? */
1776		if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
1777			(TF_RCVD_SCALE|TF_REQ_SCALE)) {
1778			tp->snd_scale = tp->requested_s_scale;
1779			tp->rcv_scale = tp->request_r_scale;
1780		}
1781		/*
1782		 * Make transitions:
1783		 *      SYN-RECEIVED  -> ESTABLISHED
1784		 *      SYN-RECEIVED* -> FIN-WAIT-1
1785		 */
1786		tp->t_starttime = ticks;
1787		if (tp->t_flags & TF_NEEDFIN) {
1788			tp->t_state = TCPS_FIN_WAIT_1;
1789			tp->t_flags &= ~TF_NEEDFIN;
1790		} else {
1791			tp->t_state = TCPS_ESTABLISHED;
1792			callout_reset(tp->tt_keep, tcp_keepidle,
1793				      tcp_timer_keep, tp);
1794		}
1795		/*
1796		 * If segment contains data or ACK, will call tcp_reass()
1797		 * later; if not, do so now to pass queued data to user.
1798		 */
1799		if (tlen == 0 && (thflags & TH_FIN) == 0)
1800			(void) tcp_reass(tp, (struct tcphdr *)0, 0,
1801			    (struct mbuf *)0);
1802		tp->snd_wl1 = th->th_seq - 1;
1803		/* FALLTHROUGH */
1804
1805	/*
1806	 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
1807	 * ACKs.  If the ack is in the range
1808	 *	tp->snd_una < th->th_ack <= tp->snd_max
1809	 * then advance tp->snd_una to th->th_ack and drop
1810	 * data from the retransmission queue.  If this ACK reflects
1811	 * more up to date window information we update our window information.
1812	 */
1813	case TCPS_ESTABLISHED:
1814	case TCPS_FIN_WAIT_1:
1815	case TCPS_FIN_WAIT_2:
1816	case TCPS_CLOSE_WAIT:
1817	case TCPS_CLOSING:
1818	case TCPS_LAST_ACK:
1819	case TCPS_TIME_WAIT:
1820		KASSERT(tp->t_state != TCPS_TIME_WAIT, ("timewait"));
1821		if (SEQ_GT(th->th_ack, tp->snd_max)) {
1822			tcpstat.tcps_rcvacktoomuch++;
1823			goto dropafterack;
1824		}
1825		if (tp->sack_enable)
1826			tcp_sack_doack(tp, &to, th->th_ack);
1827		if (SEQ_LEQ(th->th_ack, tp->snd_una)) {
1828			if (tlen == 0 && tiwin == tp->snd_wnd) {
1829				tcpstat.tcps_rcvdupack++;
1830				/*
1831				 * If we have outstanding data (other than
1832				 * a window probe), this is a completely
1833				 * duplicate ack (ie, window info didn't
1834				 * change), the ack is the biggest we've
1835				 * seen and we've seen exactly our rexmt
1836				 * threshhold of them, assume a packet
1837				 * has been dropped and retransmit it.
1838				 * Kludge snd_nxt & the congestion
1839				 * window so we send only this one
1840				 * packet.
1841				 *
1842				 * We know we're losing at the current
1843				 * window size so do congestion avoidance
1844				 * (set ssthresh to half the current window
1845				 * and pull our congestion window back to
1846				 * the new ssthresh).
1847				 *
1848				 * Dup acks mean that packets have left the
1849				 * network (they're now cached at the receiver)
1850				 * so bump cwnd by the amount in the receiver
1851				 * to keep a constant cwnd packets in the
1852				 * network.
1853				 */
1854				if (!callout_active(tp->tt_rexmt) ||
1855				    th->th_ack != tp->snd_una)
1856					tp->t_dupacks = 0;
1857				else if (++tp->t_dupacks > tcprexmtthresh ||
1858					 ((tcp_do_newreno || tp->sack_enable) &&
1859					  IN_FASTRECOVERY(tp))) {
1860                                        if (tp->sack_enable && IN_FASTRECOVERY(tp)) {
1861						int awnd;
1862
1863						/*
1864						 * Compute the amount of data in flight first.
1865						 * We can inject new data into the pipe iff
1866						 * we have less than 1/2 the original window's
1867						 * worth of data in flight.
1868						 */
1869						awnd = (tp->snd_nxt - tp->snd_fack) +
1870							tp->sackhint.sack_bytes_rexmit;
1871						if (awnd < tp->snd_ssthresh) {
1872							tp->snd_cwnd += tp->t_maxseg;
1873							if (tp->snd_cwnd > tp->snd_ssthresh)
1874								tp->snd_cwnd = tp->snd_ssthresh;
1875						}
1876					} else
1877						tp->snd_cwnd += tp->t_maxseg;
1878					(void) tcp_output(tp);
1879					goto drop;
1880				} else if (tp->t_dupacks == tcprexmtthresh) {
1881					tcp_seq onxt = tp->snd_nxt;
1882					u_int win;
1883
1884					/*
1885					 * If we're doing sack, check to
1886					 * see if we're already in sack
1887					 * recovery. If we're not doing sack,
1888					 * check to see if we're in newreno
1889					 * recovery.
1890					 */
1891					if (tp->sack_enable) {
1892						if (IN_FASTRECOVERY(tp)) {
1893							tp->t_dupacks = 0;
1894							break;
1895						}
1896					} else if (tcp_do_newreno) {
1897						if (SEQ_LEQ(th->th_ack,
1898						    tp->snd_recover)) {
1899							tp->t_dupacks = 0;
1900							break;
1901						}
1902					}
1903					win = min(tp->snd_wnd, tp->snd_cwnd) /
1904					    2 / tp->t_maxseg;
1905					if (win < 2)
1906						win = 2;
1907					tp->snd_ssthresh = win * tp->t_maxseg;
1908					ENTER_FASTRECOVERY(tp);
1909					tp->snd_recover = tp->snd_max;
1910					callout_stop(tp->tt_rexmt);
1911					tp->t_rtttime = 0;
1912					if (tp->sack_enable) {
1913						KASSERT(tp->sackhint.
1914							sack_bytes_rexmit == 0,
1915							("sackhint rexmit == 0"));
1916						tcpstat.tcps_sack_recovery_episode++;
1917						tp->sack_newdata = tp->snd_nxt;
1918						tp->snd_cwnd = tp->t_maxseg;
1919						(void) tcp_output(tp);
1920						goto drop;
1921					}
1922					tp->snd_nxt = th->th_ack;
1923					tp->snd_cwnd = tp->t_maxseg;
1924					(void) tcp_output(tp);
1925					KASSERT(tp->snd_limited <= 2,
1926					    ("tp->snd_limited too big"));
1927					tp->snd_cwnd = tp->snd_ssthresh +
1928					     tp->t_maxseg *
1929					     (tp->t_dupacks - tp->snd_limited);
1930					if (SEQ_GT(onxt, tp->snd_nxt))
1931						tp->snd_nxt = onxt;
1932					goto drop;
1933				} else if (tcp_do_rfc3042) {
1934					u_long oldcwnd = tp->snd_cwnd;
1935					tcp_seq oldsndmax = tp->snd_max;
1936					u_int sent;
1937
1938					KASSERT(tp->t_dupacks == 1 ||
1939					    tp->t_dupacks == 2,
1940					    ("dupacks not 1 or 2"));
1941					if (tp->t_dupacks == 1)
1942						tp->snd_limited = 0;
1943					tp->snd_cwnd =
1944					    (tp->snd_nxt - tp->snd_una) +
1945					    (tp->t_dupacks - tp->snd_limited) *
1946					    tp->t_maxseg;
1947					(void) tcp_output(tp);
1948					sent = tp->snd_max - oldsndmax;
1949					if (sent > tp->t_maxseg) {
1950						KASSERT((tp->t_dupacks == 2 &&
1951						    tp->snd_limited == 0) ||
1952						   (sent == tp->t_maxseg + 1 &&
1953						    tp->t_flags & TF_SENTFIN),
1954						    ("sent too much"));
1955						tp->snd_limited = 2;
1956					} else if (sent > 0)
1957						++tp->snd_limited;
1958					tp->snd_cwnd = oldcwnd;
1959					goto drop;
1960				}
1961			} else
1962				tp->t_dupacks = 0;
1963			break;
1964		}
1965
1966		KASSERT(SEQ_GT(th->th_ack, tp->snd_una), ("th_ack <= snd_una"));
1967
1968		/*
1969		 * If the congestion window was inflated to account
1970		 * for the other side's cached packets, retract it.
1971		 */
1972		if (tcp_do_newreno || tp->sack_enable) {
1973			if (IN_FASTRECOVERY(tp)) {
1974				if (SEQ_LT(th->th_ack, tp->snd_recover)) {
1975					if (tp->sack_enable)
1976						tcp_sack_partialack(tp, th);
1977					else
1978						tcp_newreno_partial_ack(tp, th);
1979				} else {
1980					/*
1981					 * Out of fast recovery.
1982					 * Window inflation should have left us
1983					 * with approximately snd_ssthresh
1984					 * outstanding data.
1985					 * But in case we would be inclined to
1986					 * send a burst, better to do it via
1987					 * the slow start mechanism.
1988					 */
1989					if (SEQ_GT(th->th_ack +
1990							tp->snd_ssthresh,
1991						   tp->snd_max))
1992						tp->snd_cwnd = tp->snd_max -
1993								th->th_ack +
1994								tp->t_maxseg;
1995					else
1996						tp->snd_cwnd = tp->snd_ssthresh;
1997				}
1998			}
1999		} else {
2000			if (tp->t_dupacks >= tcprexmtthresh &&
2001			    tp->snd_cwnd > tp->snd_ssthresh)
2002				tp->snd_cwnd = tp->snd_ssthresh;
2003		}
2004		tp->t_dupacks = 0;
2005		/*
2006		 * If we reach this point, ACK is not a duplicate,
2007		 *     i.e., it ACKs something we sent.
2008		 */
2009		if (tp->t_flags & TF_NEEDSYN) {
2010			/*
2011			 * T/TCP: Connection was half-synchronized, and our
2012			 * SYN has been ACK'd (so connection is now fully
2013			 * synchronized).  Go to non-starred state,
2014			 * increment snd_una for ACK of SYN, and check if
2015			 * we can do window scaling.
2016			 */
2017			tp->t_flags &= ~TF_NEEDSYN;
2018			tp->snd_una++;
2019			/* Do window scaling? */
2020			if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
2021				(TF_RCVD_SCALE|TF_REQ_SCALE)) {
2022				tp->snd_scale = tp->requested_s_scale;
2023				tp->rcv_scale = tp->request_r_scale;
2024			}
2025		}
2026
2027process_ACK:
2028		KASSERT(headlocked, ("tcp_input: process_ACK: head not "
2029		    "locked"));
2030		INP_LOCK_ASSERT(inp);
2031
2032		acked = th->th_ack - tp->snd_una;
2033		tcpstat.tcps_rcvackpack++;
2034		tcpstat.tcps_rcvackbyte += acked;
2035
2036		/*
2037		 * If we just performed our first retransmit, and the ACK
2038		 * arrives within our recovery window, then it was a mistake
2039		 * to do the retransmit in the first place.  Recover our
2040		 * original cwnd and ssthresh, and proceed to transmit where
2041		 * we left off.
2042		 */
2043		if (tp->t_rxtshift == 1 && ticks < tp->t_badrxtwin) {
2044			++tcpstat.tcps_sndrexmitbad;
2045			tp->snd_cwnd = tp->snd_cwnd_prev;
2046			tp->snd_ssthresh = tp->snd_ssthresh_prev;
2047			tp->snd_recover = tp->snd_recover_prev;
2048			if (tp->t_flags & TF_WASFRECOVERY)
2049				ENTER_FASTRECOVERY(tp);
2050			tp->snd_nxt = tp->snd_max;
2051			tp->t_badrxtwin = 0;	/* XXX probably not required */
2052		}
2053
2054		/*
2055		 * If we have a timestamp reply, update smoothed
2056		 * round trip time.  If no timestamp is present but
2057		 * transmit timer is running and timed sequence
2058		 * number was acked, update smoothed round trip time.
2059		 * Since we now have an rtt measurement, cancel the
2060		 * timer backoff (cf., Phil Karn's retransmit alg.).
2061		 * Recompute the initial retransmit timer.
2062		 *
2063		 * Some boxes send broken timestamp replies
2064		 * during the SYN+ACK phase, ignore
2065		 * timestamps of 0 or we could calculate a
2066		 * huge RTT and blow up the retransmit timer.
2067		 */
2068		if ((to.to_flags & TOF_TS) != 0 &&
2069		    to.to_tsecr) {
2070			tcp_xmit_timer(tp, ticks - to.to_tsecr + 1);
2071		} else if (tp->t_rtttime && SEQ_GT(th->th_ack, tp->t_rtseq)) {
2072			tcp_xmit_timer(tp, ticks - tp->t_rtttime);
2073		}
2074		tcp_xmit_bandwidth_limit(tp, th->th_ack);
2075
2076		/*
2077		 * If all outstanding data is acked, stop retransmit
2078		 * timer and remember to restart (more output or persist).
2079		 * If there is more data to be acked, restart retransmit
2080		 * timer, using current (possibly backed-off) value.
2081		 */
2082		if (th->th_ack == tp->snd_max) {
2083			callout_stop(tp->tt_rexmt);
2084			needoutput = 1;
2085		} else if (!callout_active(tp->tt_persist))
2086			callout_reset(tp->tt_rexmt, tp->t_rxtcur,
2087				      tcp_timer_rexmt, tp);
2088
2089		/*
2090		 * If no data (only SYN) was ACK'd,
2091		 *    skip rest of ACK processing.
2092		 */
2093		if (acked == 0)
2094			goto step6;
2095
2096		/*
2097		 * When new data is acked, open the congestion window.
2098		 * If the window gives us less than ssthresh packets
2099		 * in flight, open exponentially (maxseg per packet).
2100		 * Otherwise open linearly: maxseg per window
2101		 * (maxseg^2 / cwnd per packet).
2102		 */
2103		if ((!tcp_do_newreno && !tp->sack_enable) ||
2104		    !IN_FASTRECOVERY(tp)) {
2105			register u_int cw = tp->snd_cwnd;
2106			register u_int incr = tp->t_maxseg;
2107			if (cw > tp->snd_ssthresh)
2108				incr = incr * incr / cw;
2109			tp->snd_cwnd = min(cw+incr, TCP_MAXWIN<<tp->snd_scale);
2110		}
2111		SOCKBUF_LOCK(&so->so_snd);
2112		if (acked > so->so_snd.sb_cc) {
2113			tp->snd_wnd -= so->so_snd.sb_cc;
2114			sbdrop_locked(&so->so_snd, (int)so->so_snd.sb_cc);
2115			ourfinisacked = 1;
2116		} else {
2117			sbdrop_locked(&so->so_snd, acked);
2118			tp->snd_wnd -= acked;
2119			ourfinisacked = 0;
2120		}
2121		sowwakeup_locked(so);
2122		/* detect una wraparound */
2123		if ((tcp_do_newreno || tp->sack_enable) &&
2124		    !IN_FASTRECOVERY(tp) &&
2125		    SEQ_GT(tp->snd_una, tp->snd_recover) &&
2126		    SEQ_LEQ(th->th_ack, tp->snd_recover))
2127			tp->snd_recover = th->th_ack - 1;
2128		if ((tcp_do_newreno || tp->sack_enable) &&
2129		    IN_FASTRECOVERY(tp) &&
2130		    SEQ_GEQ(th->th_ack, tp->snd_recover))
2131			EXIT_FASTRECOVERY(tp);
2132		tp->snd_una = th->th_ack;
2133		if (tp->sack_enable) {
2134			if (SEQ_GT(tp->snd_una, tp->snd_recover))
2135				tp->snd_recover = tp->snd_una;
2136		}
2137		if (SEQ_LT(tp->snd_nxt, tp->snd_una))
2138			tp->snd_nxt = tp->snd_una;
2139
2140		switch (tp->t_state) {
2141
2142		/*
2143		 * In FIN_WAIT_1 STATE in addition to the processing
2144		 * for the ESTABLISHED state if our FIN is now acknowledged
2145		 * then enter FIN_WAIT_2.
2146		 */
2147		case TCPS_FIN_WAIT_1:
2148			if (ourfinisacked) {
2149				/*
2150				 * If we can't receive any more
2151				 * data, then closing user can proceed.
2152				 * Starting the timer is contrary to the
2153				 * specification, but if we don't get a FIN
2154				 * we'll hang forever.
2155				 */
2156		/* XXXjl
2157		 * we should release the tp also, and use a
2158		 * compressed state.
2159		 */
2160				if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
2161					soisdisconnected(so);
2162					callout_reset(tp->tt_2msl, tcp_maxidle,
2163						      tcp_timer_2msl, tp);
2164				}
2165				tp->t_state = TCPS_FIN_WAIT_2;
2166			}
2167			break;
2168
2169		/*
2170		 * In CLOSING STATE in addition to the processing for
2171		 * the ESTABLISHED state if the ACK acknowledges our FIN
2172		 * then enter the TIME-WAIT state, otherwise ignore
2173		 * the segment.
2174		 */
2175		case TCPS_CLOSING:
2176			if (ourfinisacked) {
2177				KASSERT(headlocked, ("tcp_input: process_ACK: "
2178				    "head not locked"));
2179				tcp_twstart(tp);
2180				INP_INFO_WUNLOCK(&tcbinfo);
2181				m_freem(m);
2182				return;
2183			}
2184			break;
2185
2186		/*
2187		 * In LAST_ACK, we may still be waiting for data to drain
2188		 * and/or to be acked, as well as for the ack of our FIN.
2189		 * If our FIN is now acknowledged, delete the TCB,
2190		 * enter the closed state and return.
2191		 */
2192		case TCPS_LAST_ACK:
2193			if (ourfinisacked) {
2194				KASSERT(headlocked, ("tcp_input: process_ACK:"
2195				    " tcp_close: head not locked"));
2196				tp = tcp_close(tp);
2197				goto drop;
2198			}
2199			break;
2200
2201		/*
2202		 * In TIME_WAIT state the only thing that should arrive
2203		 * is a retransmission of the remote FIN.  Acknowledge
2204		 * it and restart the finack timer.
2205		 */
2206		case TCPS_TIME_WAIT:
2207			KASSERT(tp->t_state != TCPS_TIME_WAIT, ("timewait"));
2208			callout_reset(tp->tt_2msl, 2 * tcp_msl,
2209				      tcp_timer_2msl, tp);
2210			goto dropafterack;
2211		}
2212	}
2213
2214step6:
2215	KASSERT(headlocked, ("tcp_input: step6: head not locked"));
2216	INP_LOCK_ASSERT(inp);
2217
2218	/*
2219	 * Update window information.
2220	 * Don't look at window if no ACK: TAC's send garbage on first SYN.
2221	 */
2222	if ((thflags & TH_ACK) &&
2223	    (SEQ_LT(tp->snd_wl1, th->th_seq) ||
2224	    (tp->snd_wl1 == th->th_seq && (SEQ_LT(tp->snd_wl2, th->th_ack) ||
2225	     (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))))) {
2226		/* keep track of pure window updates */
2227		if (tlen == 0 &&
2228		    tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)
2229			tcpstat.tcps_rcvwinupd++;
2230		tp->snd_wnd = tiwin;
2231		tp->snd_wl1 = th->th_seq;
2232		tp->snd_wl2 = th->th_ack;
2233		if (tp->snd_wnd > tp->max_sndwnd)
2234			tp->max_sndwnd = tp->snd_wnd;
2235		needoutput = 1;
2236	}
2237
2238	/*
2239	 * Process segments with URG.
2240	 */
2241	if ((thflags & TH_URG) && th->th_urp &&
2242	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2243		/*
2244		 * This is a kludge, but if we receive and accept
2245		 * random urgent pointers, we'll crash in
2246		 * soreceive.  It's hard to imagine someone
2247		 * actually wanting to send this much urgent data.
2248		 */
2249		SOCKBUF_LOCK(&so->so_rcv);
2250		if (th->th_urp + so->so_rcv.sb_cc > sb_max) {
2251			th->th_urp = 0;			/* XXX */
2252			thflags &= ~TH_URG;		/* XXX */
2253			SOCKBUF_UNLOCK(&so->so_rcv);	/* XXX */
2254			goto dodata;			/* XXX */
2255		}
2256		/*
2257		 * If this segment advances the known urgent pointer,
2258		 * then mark the data stream.  This should not happen
2259		 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
2260		 * a FIN has been received from the remote side.
2261		 * In these states we ignore the URG.
2262		 *
2263		 * According to RFC961 (Assigned Protocols),
2264		 * the urgent pointer points to the last octet
2265		 * of urgent data.  We continue, however,
2266		 * to consider it to indicate the first octet
2267		 * of data past the urgent section as the original
2268		 * spec states (in one of two places).
2269		 */
2270		if (SEQ_GT(th->th_seq+th->th_urp, tp->rcv_up)) {
2271			tp->rcv_up = th->th_seq + th->th_urp;
2272			so->so_oobmark = so->so_rcv.sb_cc +
2273			    (tp->rcv_up - tp->rcv_nxt) - 1;
2274			if (so->so_oobmark == 0)
2275				so->so_rcv.sb_state |= SBS_RCVATMARK;
2276			sohasoutofband(so);
2277			tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
2278		}
2279		SOCKBUF_UNLOCK(&so->so_rcv);
2280		/*
2281		 * Remove out of band data so doesn't get presented to user.
2282		 * This can happen independent of advancing the URG pointer,
2283		 * but if two URG's are pending at once, some out-of-band
2284		 * data may creep in... ick.
2285		 */
2286		if (th->th_urp <= (u_long)tlen &&
2287		    !(so->so_options & SO_OOBINLINE)) {
2288			/* hdr drop is delayed */
2289			tcp_pulloutofband(so, th, m, drop_hdrlen);
2290		}
2291	} else {
2292		/*
2293		 * If no out of band data is expected,
2294		 * pull receive urgent pointer along
2295		 * with the receive window.
2296		 */
2297		if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
2298			tp->rcv_up = tp->rcv_nxt;
2299	}
2300dodata:							/* XXX */
2301	KASSERT(headlocked, ("tcp_input: dodata: head not locked"));
2302	INP_LOCK_ASSERT(inp);
2303
2304	/*
2305	 * Process the segment text, merging it into the TCP sequencing queue,
2306	 * and arranging for acknowledgment of receipt if necessary.
2307	 * This process logically involves adjusting tp->rcv_wnd as data
2308	 * is presented to the user (this happens in tcp_usrreq.c,
2309	 * case PRU_RCVD).  If a FIN has already been received on this
2310	 * connection then we just ignore the text.
2311	 */
2312	if ((tlen || (thflags & TH_FIN)) &&
2313	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2314		tcp_seq save_start = th->th_seq;
2315		tcp_seq save_end = th->th_seq + tlen;
2316		m_adj(m, drop_hdrlen);	/* delayed header drop */
2317		/*
2318		 * Insert segment which includes th into TCP reassembly queue
2319		 * with control block tp.  Set thflags to whether reassembly now
2320		 * includes a segment with FIN.  This handles the common case
2321		 * inline (segment is the next to be received on an established
2322		 * connection, and the queue is empty), avoiding linkage into
2323		 * and removal from the queue and repetition of various
2324		 * conversions.
2325		 * Set DELACK for segments received in order, but ack
2326		 * immediately when segments are out of order (so
2327		 * fast retransmit can work).
2328		 */
2329		if (th->th_seq == tp->rcv_nxt &&
2330		    LIST_EMPTY(&tp->t_segq) &&
2331		    TCPS_HAVEESTABLISHED(tp->t_state)) {
2332			if (DELAY_ACK(tp))
2333				tp->t_flags |= TF_DELACK;
2334			else
2335				tp->t_flags |= TF_ACKNOW;
2336			tp->rcv_nxt += tlen;
2337			thflags = th->th_flags & TH_FIN;
2338			tcpstat.tcps_rcvpack++;
2339			tcpstat.tcps_rcvbyte += tlen;
2340			ND6_HINT(tp);
2341			SOCKBUF_LOCK(&so->so_rcv);
2342			if (so->so_rcv.sb_state & SBS_CANTRCVMORE)
2343				m_freem(m);
2344			else
2345				sbappendstream_locked(&so->so_rcv, m);
2346			sorwakeup_locked(so);
2347		} else {
2348			thflags = tcp_reass(tp, th, &tlen, m);
2349			tp->t_flags |= TF_ACKNOW;
2350		}
2351		if (tlen > 0 && tp->sack_enable)
2352			tcp_update_sack_list(tp, save_start, save_end);
2353		/*
2354		 * Note the amount of data that peer has sent into
2355		 * our window, in order to estimate the sender's
2356		 * buffer size.
2357		 */
2358		len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
2359	} else {
2360		m_freem(m);
2361		thflags &= ~TH_FIN;
2362	}
2363
2364	/*
2365	 * If FIN is received ACK the FIN and let the user know
2366	 * that the connection is closing.
2367	 */
2368	if (thflags & TH_FIN) {
2369		if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2370			socantrcvmore(so);
2371			/*
2372			 * If connection is half-synchronized
2373			 * (ie NEEDSYN flag on) then delay ACK,
2374			 * so it may be piggybacked when SYN is sent.
2375			 * Otherwise, since we received a FIN then no
2376			 * more input can be expected, send ACK now.
2377			 */
2378			if (tp->t_flags & TF_NEEDSYN)
2379				tp->t_flags |= TF_DELACK;
2380			else
2381				tp->t_flags |= TF_ACKNOW;
2382			tp->rcv_nxt++;
2383		}
2384		switch (tp->t_state) {
2385
2386		/*
2387		 * In SYN_RECEIVED and ESTABLISHED STATES
2388		 * enter the CLOSE_WAIT state.
2389		 */
2390		case TCPS_SYN_RECEIVED:
2391			tp->t_starttime = ticks;
2392			/*FALLTHROUGH*/
2393		case TCPS_ESTABLISHED:
2394			tp->t_state = TCPS_CLOSE_WAIT;
2395			break;
2396
2397		/*
2398		 * If still in FIN_WAIT_1 STATE FIN has not been acked so
2399		 * enter the CLOSING state.
2400		 */
2401		case TCPS_FIN_WAIT_1:
2402			tp->t_state = TCPS_CLOSING;
2403			break;
2404
2405		/*
2406		 * In FIN_WAIT_2 state enter the TIME_WAIT state,
2407		 * starting the time-wait timer, turning off the other
2408		 * standard timers.
2409		 */
2410		case TCPS_FIN_WAIT_2:
2411			KASSERT(headlocked == 1, ("tcp_input: dodata: "
2412			    "TCP_FIN_WAIT_2: head not locked"));
2413			tcp_twstart(tp);
2414			INP_INFO_WUNLOCK(&tcbinfo);
2415			return;
2416
2417		/*
2418		 * In TIME_WAIT state restart the 2 MSL time_wait timer.
2419		 */
2420		case TCPS_TIME_WAIT:
2421			KASSERT(tp->t_state != TCPS_TIME_WAIT, ("timewait"));
2422			callout_reset(tp->tt_2msl, 2 * tcp_msl,
2423				      tcp_timer_2msl, tp);
2424			break;
2425		}
2426	}
2427	INP_INFO_WUNLOCK(&tcbinfo);
2428	headlocked = 0;
2429#ifdef TCPDEBUG
2430	if (so->so_options & SO_DEBUG)
2431		tcp_trace(TA_INPUT, ostate, tp, (void *)tcp_saveipgen,
2432			  &tcp_savetcp, 0);
2433#endif
2434
2435	/*
2436	 * Return any desired output.
2437	 */
2438	if (needoutput || (tp->t_flags & TF_ACKNOW))
2439		(void) tcp_output(tp);
2440
2441check_delack:
2442	KASSERT(headlocked == 0, ("tcp_input: check_delack: head locked"));
2443	INP_LOCK_ASSERT(inp);
2444	if (tp->t_flags & TF_DELACK) {
2445		tp->t_flags &= ~TF_DELACK;
2446		callout_reset(tp->tt_delack, tcp_delacktime,
2447		    tcp_timer_delack, tp);
2448	}
2449	INP_UNLOCK(inp);
2450	return;
2451
2452dropafterack:
2453	KASSERT(headlocked, ("tcp_input: dropafterack: head not locked"));
2454	/*
2455	 * Generate an ACK dropping incoming segment if it occupies
2456	 * sequence space, where the ACK reflects our state.
2457	 *
2458	 * We can now skip the test for the RST flag since all
2459	 * paths to this code happen after packets containing
2460	 * RST have been dropped.
2461	 *
2462	 * In the SYN-RECEIVED state, don't send an ACK unless the
2463	 * segment we received passes the SYN-RECEIVED ACK test.
2464	 * If it fails send a RST.  This breaks the loop in the
2465	 * "LAND" DoS attack, and also prevents an ACK storm
2466	 * between two listening ports that have been sent forged
2467	 * SYN segments, each with the source address of the other.
2468	 */
2469	if (tp->t_state == TCPS_SYN_RECEIVED && (thflags & TH_ACK) &&
2470	    (SEQ_GT(tp->snd_una, th->th_ack) ||
2471	     SEQ_GT(th->th_ack, tp->snd_max)) ) {
2472		rstreason = BANDLIM_RST_OPENPORT;
2473		goto dropwithreset;
2474	}
2475#ifdef TCPDEBUG
2476	if (so->so_options & SO_DEBUG)
2477		tcp_trace(TA_DROP, ostate, tp, (void *)tcp_saveipgen,
2478			  &tcp_savetcp, 0);
2479#endif
2480	KASSERT(headlocked, ("headlocked should be 1"));
2481	INP_INFO_WUNLOCK(&tcbinfo);
2482	tp->t_flags |= TF_ACKNOW;
2483	(void) tcp_output(tp);
2484	INP_UNLOCK(inp);
2485	m_freem(m);
2486	return;
2487
2488dropwithreset:
2489	KASSERT(headlocked, ("tcp_input: dropwithreset: head not locked"));
2490	/*
2491	 * Generate a RST, dropping incoming segment.
2492	 * Make ACK acceptable to originator of segment.
2493	 * Don't bother to respond if destination was broadcast/multicast.
2494	 */
2495	if ((thflags & TH_RST) || m->m_flags & (M_BCAST|M_MCAST))
2496		goto drop;
2497	if (isipv6) {
2498		if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) ||
2499		    IN6_IS_ADDR_MULTICAST(&ip6->ip6_src))
2500			goto drop;
2501	} else {
2502		if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
2503		    IN_MULTICAST(ntohl(ip->ip_src.s_addr)) ||
2504		    ip->ip_src.s_addr == htonl(INADDR_BROADCAST) ||
2505		    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
2506			goto drop;
2507	}
2508	/* IPv6 anycast check is done at tcp6_input() */
2509
2510	/*
2511	 * Perform bandwidth limiting.
2512	 */
2513	if (badport_bandlim(rstreason) < 0)
2514		goto drop;
2515
2516#ifdef TCPDEBUG
2517	if (tp == 0 || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
2518		tcp_trace(TA_DROP, ostate, tp, (void *)tcp_saveipgen,
2519			  &tcp_savetcp, 0);
2520#endif
2521
2522	if (thflags & TH_ACK)
2523		/* mtod() below is safe as long as hdr dropping is delayed */
2524		tcp_respond(tp, mtod(m, void *), th, m, (tcp_seq)0, th->th_ack,
2525			    TH_RST);
2526	else {
2527		if (thflags & TH_SYN)
2528			tlen++;
2529		/* mtod() below is safe as long as hdr dropping is delayed */
2530		tcp_respond(tp, mtod(m, void *), th, m, th->th_seq+tlen,
2531			    (tcp_seq)0, TH_RST|TH_ACK);
2532	}
2533
2534	if (tp)
2535		INP_UNLOCK(inp);
2536	if (headlocked)
2537		INP_INFO_WUNLOCK(&tcbinfo);
2538	return;
2539
2540drop:
2541	/*
2542	 * Drop space held by incoming segment and return.
2543	 */
2544#ifdef TCPDEBUG
2545	if (tp == 0 || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
2546		tcp_trace(TA_DROP, ostate, tp, (void *)tcp_saveipgen,
2547			  &tcp_savetcp, 0);
2548#endif
2549	if (tp)
2550		INP_UNLOCK(inp);
2551	if (headlocked)
2552		INP_INFO_WUNLOCK(&tcbinfo);
2553	m_freem(m);
2554	return;
2555}
2556
2557/*
2558 * Parse TCP options and place in tcpopt.
2559 */
2560static void
2561tcp_dooptions(to, cp, cnt, is_syn)
2562	struct tcpopt *to;
2563	u_char *cp;
2564	int cnt;
2565	int is_syn;
2566{
2567	int opt, optlen;
2568
2569	to->to_flags = 0;
2570	for (; cnt > 0; cnt -= optlen, cp += optlen) {
2571		opt = cp[0];
2572		if (opt == TCPOPT_EOL)
2573			break;
2574		if (opt == TCPOPT_NOP)
2575			optlen = 1;
2576		else {
2577			if (cnt < 2)
2578				break;
2579			optlen = cp[1];
2580			if (optlen < 2 || optlen > cnt)
2581				break;
2582		}
2583		switch (opt) {
2584		case TCPOPT_MAXSEG:
2585			if (optlen != TCPOLEN_MAXSEG)
2586				continue;
2587			if (!is_syn)
2588				continue;
2589			to->to_flags |= TOF_MSS;
2590			bcopy((char *)cp + 2,
2591			    (char *)&to->to_mss, sizeof(to->to_mss));
2592			to->to_mss = ntohs(to->to_mss);
2593			break;
2594		case TCPOPT_WINDOW:
2595			if (optlen != TCPOLEN_WINDOW)
2596				continue;
2597			if (! is_syn)
2598				continue;
2599			to->to_flags |= TOF_SCALE;
2600			to->to_requested_s_scale = min(cp[2], TCP_MAX_WINSHIFT);
2601			break;
2602		case TCPOPT_TIMESTAMP:
2603			if (optlen != TCPOLEN_TIMESTAMP)
2604				continue;
2605			to->to_flags |= TOF_TS;
2606			bcopy((char *)cp + 2,
2607			    (char *)&to->to_tsval, sizeof(to->to_tsval));
2608			to->to_tsval = ntohl(to->to_tsval);
2609			bcopy((char *)cp + 6,
2610			    (char *)&to->to_tsecr, sizeof(to->to_tsecr));
2611			to->to_tsecr = ntohl(to->to_tsecr);
2612			/*
2613			 * If echoed timestamp is later than the current time,
2614			 * fall back to non RFC1323 RTT calculation.
2615			 */
2616			if ((to->to_tsecr != 0) && TSTMP_GT(to->to_tsecr, ticks))
2617				to->to_tsecr = 0;
2618			break;
2619#ifdef TCP_SIGNATURE
2620		/*
2621		 * XXX In order to reply to a host which has set the
2622		 * TCP_SIGNATURE option in its initial SYN, we have to
2623		 * record the fact that the option was observed here
2624		 * for the syncache code to perform the correct response.
2625		 */
2626		case TCPOPT_SIGNATURE:
2627			if (optlen != TCPOLEN_SIGNATURE)
2628				continue;
2629			to->to_flags |= (TOF_SIGNATURE | TOF_SIGLEN);
2630			break;
2631#endif
2632		case TCPOPT_SACK_PERMITTED:
2633			if (!tcp_do_sack ||
2634			    optlen != TCPOLEN_SACK_PERMITTED)
2635				continue;
2636			if (is_syn) {
2637				/* MUST only be set on SYN */
2638				to->to_flags |= TOF_SACK;
2639			}
2640			break;
2641		case TCPOPT_SACK:
2642			if (optlen <= 2 || (optlen - 2) % TCPOLEN_SACK != 0)
2643				continue;
2644			to->to_nsacks = (optlen - 2) / TCPOLEN_SACK;
2645			to->to_sacks = cp + 2;
2646			tcpstat.tcps_sack_rcv_blocks++;
2647			break;
2648		default:
2649			continue;
2650		}
2651	}
2652}
2653
2654/*
2655 * Pull out of band byte out of a segment so
2656 * it doesn't appear in the user's data queue.
2657 * It is still reflected in the segment length for
2658 * sequencing purposes.
2659 */
2660static void
2661tcp_pulloutofband(so, th, m, off)
2662	struct socket *so;
2663	struct tcphdr *th;
2664	register struct mbuf *m;
2665	int off;		/* delayed to be droped hdrlen */
2666{
2667	int cnt = off + th->th_urp - 1;
2668
2669	while (cnt >= 0) {
2670		if (m->m_len > cnt) {
2671			char *cp = mtod(m, caddr_t) + cnt;
2672			struct tcpcb *tp = sototcpcb(so);
2673
2674			tp->t_iobc = *cp;
2675			tp->t_oobflags |= TCPOOB_HAVEDATA;
2676			bcopy(cp+1, cp, (unsigned)(m->m_len - cnt - 1));
2677			m->m_len--;
2678			if (m->m_flags & M_PKTHDR)
2679				m->m_pkthdr.len--;
2680			return;
2681		}
2682		cnt -= m->m_len;
2683		m = m->m_next;
2684		if (m == 0)
2685			break;
2686	}
2687	panic("tcp_pulloutofband");
2688}
2689
2690/*
2691 * Collect new round-trip time estimate
2692 * and update averages and current timeout.
2693 */
2694static void
2695tcp_xmit_timer(tp, rtt)
2696	register struct tcpcb *tp;
2697	int rtt;
2698{
2699	register int delta;
2700
2701	INP_LOCK_ASSERT(tp->t_inpcb);
2702
2703	tcpstat.tcps_rttupdated++;
2704	tp->t_rttupdated++;
2705	if (tp->t_srtt != 0) {
2706		/*
2707		 * srtt is stored as fixed point with 5 bits after the
2708		 * binary point (i.e., scaled by 8).  The following magic
2709		 * is equivalent to the smoothing algorithm in rfc793 with
2710		 * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed
2711		 * point).  Adjust rtt to origin 0.
2712		 */
2713		delta = ((rtt - 1) << TCP_DELTA_SHIFT)
2714			- (tp->t_srtt >> (TCP_RTT_SHIFT - TCP_DELTA_SHIFT));
2715
2716		if ((tp->t_srtt += delta) <= 0)
2717			tp->t_srtt = 1;
2718
2719		/*
2720		 * We accumulate a smoothed rtt variance (actually, a
2721		 * smoothed mean difference), then set the retransmit
2722		 * timer to smoothed rtt + 4 times the smoothed variance.
2723		 * rttvar is stored as fixed point with 4 bits after the
2724		 * binary point (scaled by 16).  The following is
2725		 * equivalent to rfc793 smoothing with an alpha of .75
2726		 * (rttvar = rttvar*3/4 + |delta| / 4).  This replaces
2727		 * rfc793's wired-in beta.
2728		 */
2729		if (delta < 0)
2730			delta = -delta;
2731		delta -= tp->t_rttvar >> (TCP_RTTVAR_SHIFT - TCP_DELTA_SHIFT);
2732		if ((tp->t_rttvar += delta) <= 0)
2733			tp->t_rttvar = 1;
2734		if (tp->t_rttbest > tp->t_srtt + tp->t_rttvar)
2735		    tp->t_rttbest = tp->t_srtt + tp->t_rttvar;
2736	} else {
2737		/*
2738		 * No rtt measurement yet - use the unsmoothed rtt.
2739		 * Set the variance to half the rtt (so our first
2740		 * retransmit happens at 3*rtt).
2741		 */
2742		tp->t_srtt = rtt << TCP_RTT_SHIFT;
2743		tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT - 1);
2744		tp->t_rttbest = tp->t_srtt + tp->t_rttvar;
2745	}
2746	tp->t_rtttime = 0;
2747	tp->t_rxtshift = 0;
2748
2749	/*
2750	 * the retransmit should happen at rtt + 4 * rttvar.
2751	 * Because of the way we do the smoothing, srtt and rttvar
2752	 * will each average +1/2 tick of bias.  When we compute
2753	 * the retransmit timer, we want 1/2 tick of rounding and
2754	 * 1 extra tick because of +-1/2 tick uncertainty in the
2755	 * firing of the timer.  The bias will give us exactly the
2756	 * 1.5 tick we need.  But, because the bias is
2757	 * statistical, we have to test that we don't drop below
2758	 * the minimum feasible timer (which is 2 ticks).
2759	 */
2760	TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
2761		      max(tp->t_rttmin, rtt + 2), TCPTV_REXMTMAX);
2762
2763	/*
2764	 * We received an ack for a packet that wasn't retransmitted;
2765	 * it is probably safe to discard any error indications we've
2766	 * received recently.  This isn't quite right, but close enough
2767	 * for now (a route might have failed after we sent a segment,
2768	 * and the return path might not be symmetrical).
2769	 */
2770	tp->t_softerror = 0;
2771}
2772
2773/*
2774 * Determine a reasonable value for maxseg size.
2775 * If the route is known, check route for mtu.
2776 * If none, use an mss that can be handled on the outgoing
2777 * interface without forcing IP to fragment; if bigger than
2778 * an mbuf cluster (MCLBYTES), round down to nearest multiple of MCLBYTES
2779 * to utilize large mbufs.  If no route is found, route has no mtu,
2780 * or the destination isn't local, use a default, hopefully conservative
2781 * size (usually 512 or the default IP max size, but no more than the mtu
2782 * of the interface), as we can't discover anything about intervening
2783 * gateways or networks.  We also initialize the congestion/slow start
2784 * window to be a single segment if the destination isn't local.
2785 * While looking at the routing entry, we also initialize other path-dependent
2786 * parameters from pre-set or cached values in the routing entry.
2787 *
2788 * Also take into account the space needed for options that we
2789 * send regularly.  Make maxseg shorter by that amount to assure
2790 * that we can send maxseg amount of data even when the options
2791 * are present.  Store the upper limit of the length of options plus
2792 * data in maxopd.
2793 *
2794 *
2795 * In case of T/TCP, we call this routine during implicit connection
2796 * setup as well (offer = -1), to initialize maxseg from the cached
2797 * MSS of our peer.
2798 *
2799 * NOTE that this routine is only called when we process an incoming
2800 * segment. Outgoing SYN/ACK MSS settings are handled in tcp_mssopt().
2801 */
2802void
2803tcp_mss(tp, offer)
2804	struct tcpcb *tp;
2805	int offer;
2806{
2807	int rtt, mss;
2808	u_long bufsize;
2809	u_long maxmtu;
2810	struct inpcb *inp = tp->t_inpcb;
2811	struct socket *so;
2812	struct hc_metrics_lite metrics;
2813	int origoffer = offer;
2814#ifdef INET6
2815	int isipv6 = ((inp->inp_vflag & INP_IPV6) != 0) ? 1 : 0;
2816	size_t min_protoh = isipv6 ?
2817			    sizeof (struct ip6_hdr) + sizeof (struct tcphdr) :
2818			    sizeof (struct tcpiphdr);
2819#else
2820	const size_t min_protoh = sizeof(struct tcpiphdr);
2821#endif
2822
2823	/* initialize */
2824#ifdef INET6
2825	if (isipv6) {
2826		maxmtu = tcp_maxmtu6(&inp->inp_inc);
2827		tp->t_maxopd = tp->t_maxseg = tcp_v6mssdflt;
2828	} else
2829#endif
2830	{
2831		maxmtu = tcp_maxmtu(&inp->inp_inc);
2832		tp->t_maxopd = tp->t_maxseg = tcp_mssdflt;
2833	}
2834	so = inp->inp_socket;
2835
2836	/*
2837	 * no route to sender, stay with default mss and return
2838	 */
2839	if (maxmtu == 0)
2840		return;
2841
2842	/* what have we got? */
2843	switch (offer) {
2844		case 0:
2845			/*
2846			 * Offer == 0 means that there was no MSS on the SYN
2847			 * segment, in this case we use tcp_mssdflt.
2848			 */
2849			offer =
2850#ifdef INET6
2851				isipv6 ? tcp_v6mssdflt :
2852#endif
2853				tcp_mssdflt;
2854			break;
2855
2856		case -1:
2857			/*
2858			 * Offer == -1 means that we didn't receive SYN yet.
2859			 */
2860			/* FALLTHROUGH */
2861
2862		default:
2863			/*
2864			 * Prevent DoS attack with too small MSS. Round up
2865			 * to at least minmss.
2866			 */
2867			offer = max(offer, tcp_minmss);
2868			/*
2869			 * Sanity check: make sure that maxopd will be large
2870			 * enough to allow some data on segments even if the
2871			 * all the option space is used (40bytes).  Otherwise
2872			 * funny things may happen in tcp_output.
2873			 */
2874			offer = max(offer, 64);
2875	}
2876
2877	/*
2878	 * rmx information is now retrieved from tcp_hostcache
2879	 */
2880	tcp_hc_get(&inp->inp_inc, &metrics);
2881
2882	/*
2883	 * if there's a discovered mtu int tcp hostcache, use it
2884	 * else, use the link mtu.
2885	 */
2886	if (metrics.rmx_mtu)
2887		mss = min(metrics.rmx_mtu, maxmtu) - min_protoh;
2888	else {
2889#ifdef INET6
2890		if (isipv6) {
2891			mss = maxmtu - min_protoh;
2892			if (!path_mtu_discovery &&
2893			    !in6_localaddr(&inp->in6p_faddr))
2894				mss = min(mss, tcp_v6mssdflt);
2895		} else
2896#endif
2897		{
2898			mss = maxmtu - min_protoh;
2899			if (!path_mtu_discovery &&
2900			    !in_localaddr(inp->inp_faddr))
2901				mss = min(mss, tcp_mssdflt);
2902		}
2903	}
2904	mss = min(mss, offer);
2905
2906	/*
2907	 * maxopd stores the maximum length of data AND options
2908	 * in a segment; maxseg is the amount of data in a normal
2909	 * segment.  We need to store this value (maxopd) apart
2910	 * from maxseg, because now every segment carries options
2911	 * and thus we normally have somewhat less data in segments.
2912	 */
2913	tp->t_maxopd = mss;
2914
2915	/*
2916	 * origoffer==-1 indicates, that no segments were received yet.
2917	 * In this case we just guess.
2918	 */
2919	if ((tp->t_flags & (TF_REQ_TSTMP|TF_NOOPT)) == TF_REQ_TSTMP &&
2920	    (origoffer == -1 ||
2921	     (tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP))
2922		mss -= TCPOLEN_TSTAMP_APPA;
2923	tp->t_maxseg = mss;
2924
2925#if	(MCLBYTES & (MCLBYTES - 1)) == 0
2926		if (mss > MCLBYTES)
2927			mss &= ~(MCLBYTES-1);
2928#else
2929		if (mss > MCLBYTES)
2930			mss = mss / MCLBYTES * MCLBYTES;
2931#endif
2932	tp->t_maxseg = mss;
2933
2934	/*
2935	 * If there's a pipesize, change the socket buffer to that size,
2936	 * don't change if sb_hiwat is different than default (then it
2937	 * has been changed on purpose with setsockopt).
2938	 * Make the socket buffers an integral number of mss units;
2939	 * if the mss is larger than the socket buffer, decrease the mss.
2940	 */
2941	SOCKBUF_LOCK(&so->so_snd);
2942	if ((so->so_snd.sb_hiwat == tcp_sendspace) && metrics.rmx_sendpipe)
2943		bufsize = metrics.rmx_sendpipe;
2944	else
2945		bufsize = so->so_snd.sb_hiwat;
2946	if (bufsize < mss)
2947		mss = bufsize;
2948	else {
2949		bufsize = roundup(bufsize, mss);
2950		if (bufsize > sb_max)
2951			bufsize = sb_max;
2952		if (bufsize > so->so_snd.sb_hiwat)
2953			(void)sbreserve_locked(&so->so_snd, bufsize, so, NULL);
2954	}
2955	SOCKBUF_UNLOCK(&so->so_snd);
2956	tp->t_maxseg = mss;
2957
2958	SOCKBUF_LOCK(&so->so_rcv);
2959	if ((so->so_rcv.sb_hiwat == tcp_recvspace) && metrics.rmx_recvpipe)
2960		bufsize = metrics.rmx_recvpipe;
2961	else
2962		bufsize = so->so_rcv.sb_hiwat;
2963	if (bufsize > mss) {
2964		bufsize = roundup(bufsize, mss);
2965		if (bufsize > sb_max)
2966			bufsize = sb_max;
2967		if (bufsize > so->so_rcv.sb_hiwat)
2968			(void)sbreserve_locked(&so->so_rcv, bufsize, so, NULL);
2969	}
2970	SOCKBUF_UNLOCK(&so->so_rcv);
2971	/*
2972	 * While we're here, check the others too
2973	 */
2974	if (tp->t_srtt == 0 && (rtt = metrics.rmx_rtt)) {
2975		tp->t_srtt = rtt;
2976		tp->t_rttbest = tp->t_srtt + TCP_RTT_SCALE;
2977		tcpstat.tcps_usedrtt++;
2978		if (metrics.rmx_rttvar) {
2979			tp->t_rttvar = metrics.rmx_rttvar;
2980			tcpstat.tcps_usedrttvar++;
2981		} else {
2982			/* default variation is +- 1 rtt */
2983			tp->t_rttvar =
2984			    tp->t_srtt * TCP_RTTVAR_SCALE / TCP_RTT_SCALE;
2985		}
2986		TCPT_RANGESET(tp->t_rxtcur,
2987			      ((tp->t_srtt >> 2) + tp->t_rttvar) >> 1,
2988			      tp->t_rttmin, TCPTV_REXMTMAX);
2989	}
2990	if (metrics.rmx_ssthresh) {
2991		/*
2992		 * There's some sort of gateway or interface
2993		 * buffer limit on the path.  Use this to set
2994		 * the slow start threshhold, but set the
2995		 * threshold to no less than 2*mss.
2996		 */
2997		tp->snd_ssthresh = max(2 * mss, metrics.rmx_ssthresh);
2998		tcpstat.tcps_usedssthresh++;
2999	}
3000	if (metrics.rmx_bandwidth)
3001		tp->snd_bandwidth = metrics.rmx_bandwidth;
3002
3003	/*
3004	 * Set the slow-start flight size depending on whether this
3005	 * is a local network or not.
3006	 *
3007	 * Extend this so we cache the cwnd too and retrieve it here.
3008	 * Make cwnd even bigger than RFC3390 suggests but only if we
3009	 * have previous experience with the remote host. Be careful
3010	 * not make cwnd bigger than remote receive window or our own
3011	 * send socket buffer. Maybe put some additional upper bound
3012	 * on the retrieved cwnd. Should do incremental updates to
3013	 * hostcache when cwnd collapses so next connection doesn't
3014	 * overloads the path again.
3015	 *
3016	 * RFC3390 says only do this if SYN or SYN/ACK didn't got lost.
3017	 * We currently check only in syncache_socket for that.
3018	 */
3019#define TCP_METRICS_CWND
3020#ifdef TCP_METRICS_CWND
3021	if (metrics.rmx_cwnd)
3022		tp->snd_cwnd = max(mss,
3023				min(metrics.rmx_cwnd / 2,
3024				 min(tp->snd_wnd, so->so_snd.sb_hiwat)));
3025	else
3026#endif
3027	if (tcp_do_rfc3390)
3028		tp->snd_cwnd = min(4 * mss, max(2 * mss, 4380));
3029#ifdef INET6
3030	else if ((isipv6 && in6_localaddr(&inp->in6p_faddr)) ||
3031		 (!isipv6 && in_localaddr(inp->inp_faddr)))
3032#else
3033	else if (in_localaddr(inp->inp_faddr))
3034#endif
3035		tp->snd_cwnd = mss * ss_fltsz_local;
3036	else
3037		tp->snd_cwnd = mss * ss_fltsz;
3038}
3039
3040/*
3041 * Determine the MSS option to send on an outgoing SYN.
3042 */
3043int
3044tcp_mssopt(inc)
3045	struct in_conninfo *inc;
3046{
3047	int mss = 0;
3048	u_long maxmtu = 0;
3049	u_long thcmtu = 0;
3050	size_t min_protoh;
3051#ifdef INET6
3052	int isipv6 = inc->inc_isipv6 ? 1 : 0;
3053#endif
3054
3055	KASSERT(inc != NULL, ("tcp_mssopt with NULL in_conninfo pointer"));
3056
3057#ifdef INET6
3058	if (isipv6) {
3059		mss = tcp_v6mssdflt;
3060		maxmtu = tcp_maxmtu6(inc);
3061		thcmtu = tcp_hc_getmtu(inc); /* IPv4 and IPv6 */
3062		min_protoh = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
3063	} else
3064#endif
3065	{
3066		mss = tcp_mssdflt;
3067		maxmtu = tcp_maxmtu(inc);
3068		thcmtu = tcp_hc_getmtu(inc); /* IPv4 and IPv6 */
3069		min_protoh = sizeof(struct tcpiphdr);
3070	}
3071	if (maxmtu && thcmtu)
3072		mss = min(maxmtu, thcmtu) - min_protoh;
3073	else if (maxmtu || thcmtu)
3074		mss = max(maxmtu, thcmtu) - min_protoh;
3075
3076	return (mss);
3077}
3078
3079
3080/*
3081 * On a partial ack arrives, force the retransmission of the
3082 * next unacknowledged segment.  Do not clear tp->t_dupacks.
3083 * By setting snd_nxt to ti_ack, this forces retransmission timer to
3084 * be started again.
3085 */
3086static void
3087tcp_newreno_partial_ack(tp, th)
3088	struct tcpcb *tp;
3089	struct tcphdr *th;
3090{
3091	tcp_seq onxt = tp->snd_nxt;
3092	u_long  ocwnd = tp->snd_cwnd;
3093
3094	callout_stop(tp->tt_rexmt);
3095	tp->t_rtttime = 0;
3096	tp->snd_nxt = th->th_ack;
3097	/*
3098	 * Set snd_cwnd to one segment beyond acknowledged offset.
3099	 * (tp->snd_una has not yet been updated when this function is called.)
3100	 */
3101	tp->snd_cwnd = tp->t_maxseg + (th->th_ack - tp->snd_una);
3102	tp->t_flags |= TF_ACKNOW;
3103	(void) tcp_output(tp);
3104	tp->snd_cwnd = ocwnd;
3105	if (SEQ_GT(onxt, tp->snd_nxt))
3106		tp->snd_nxt = onxt;
3107	/*
3108	 * Partial window deflation.  Relies on fact that tp->snd_una
3109	 * not updated yet.
3110	 */
3111	tp->snd_cwnd -= (th->th_ack - tp->snd_una - tp->t_maxseg);
3112}
3113
3114/*
3115 * Returns 1 if the TIME_WAIT state was killed and we should start over,
3116 * looking for a pcb in the listen state.  Returns 0 otherwise.
3117 */
3118static int
3119tcp_timewait(tw, to, th, m, tlen)
3120	struct tcptw *tw;
3121	struct tcpopt *to;
3122	struct tcphdr *th;
3123	struct mbuf *m;
3124	int tlen;
3125{
3126	int thflags;
3127	tcp_seq seq;
3128#ifdef INET6
3129	int isipv6 = (mtod(m, struct ip *)->ip_v == 6) ? 1 : 0;
3130#else
3131	const int isipv6 = 0;
3132#endif
3133
3134	/* tcbinfo lock required for tcp_twclose(), tcp_2msl_reset. */
3135	INP_INFO_WLOCK_ASSERT(&tcbinfo);
3136	INP_LOCK_ASSERT(tw->tw_inpcb);
3137
3138	thflags = th->th_flags;
3139
3140	/*
3141	 * NOTE: for FIN_WAIT_2 (to be added later),
3142	 * must validate sequence number before accepting RST
3143	 */
3144
3145	/*
3146	 * If the segment contains RST:
3147	 *	Drop the segment - see Stevens, vol. 2, p. 964 and
3148	 *      RFC 1337.
3149	 */
3150	if (thflags & TH_RST)
3151		goto drop;
3152
3153#if 0
3154/* PAWS not needed at the moment */
3155	/*
3156	 * RFC 1323 PAWS: If we have a timestamp reply on this segment
3157	 * and it's less than ts_recent, drop it.
3158	 */
3159	if ((to.to_flags & TOF_TS) != 0 && tp->ts_recent &&
3160	    TSTMP_LT(to.to_tsval, tp->ts_recent)) {
3161		if ((thflags & TH_ACK) == 0)
3162			goto drop;
3163		goto ack;
3164	}
3165	/*
3166	 * ts_recent is never updated because we never accept new segments.
3167	 */
3168#endif
3169
3170	/*
3171	 * If a new connection request is received
3172	 * while in TIME_WAIT, drop the old connection
3173	 * and start over if the sequence numbers
3174	 * are above the previous ones.
3175	 */
3176	if ((thflags & TH_SYN) && SEQ_GT(th->th_seq, tw->rcv_nxt)) {
3177		(void) tcp_twclose(tw, 0);
3178		return (1);
3179	}
3180
3181	/*
3182	 * Drop the the segment if it does not contain an ACK.
3183	 */
3184	if ((thflags & TH_ACK) == 0)
3185		goto drop;
3186
3187	/*
3188	 * Reset the 2MSL timer if this is a duplicate FIN.
3189	 */
3190	if (thflags & TH_FIN) {
3191		seq = th->th_seq + tlen + (thflags & TH_SYN ? 1 : 0);
3192		if (seq + 1 == tw->rcv_nxt)
3193			tcp_timer_2msl_reset(tw, 2 * tcp_msl);
3194	}
3195
3196	/*
3197	 * Acknowledge the segment if it has data or is not a duplicate ACK.
3198	 */
3199	if (thflags != TH_ACK || tlen != 0 ||
3200	    th->th_seq != tw->rcv_nxt || th->th_ack != tw->snd_nxt)
3201		tcp_twrespond(tw, TH_ACK);
3202	goto drop;
3203
3204	/*
3205	 * Generate a RST, dropping incoming segment.
3206	 * Make ACK acceptable to originator of segment.
3207	 * Don't bother to respond if destination was broadcast/multicast.
3208	 */
3209	if (m->m_flags & (M_BCAST|M_MCAST))
3210		goto drop;
3211	if (isipv6) {
3212		struct ip6_hdr *ip6;
3213
3214		/* IPv6 anycast check is done at tcp6_input() */
3215		ip6 = mtod(m, struct ip6_hdr *);
3216		if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) ||
3217		    IN6_IS_ADDR_MULTICAST(&ip6->ip6_src))
3218			goto drop;
3219	} else {
3220		struct ip *ip;
3221
3222		ip = mtod(m, struct ip *);
3223		if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
3224		    IN_MULTICAST(ntohl(ip->ip_src.s_addr)) ||
3225		    ip->ip_src.s_addr == htonl(INADDR_BROADCAST) ||
3226		    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
3227			goto drop;
3228	}
3229	if (thflags & TH_ACK) {
3230		tcp_respond(NULL,
3231		    mtod(m, void *), th, m, 0, th->th_ack, TH_RST);
3232	} else {
3233		seq = th->th_seq + (thflags & TH_SYN ? 1 : 0);
3234		tcp_respond(NULL,
3235		    mtod(m, void *), th, m, seq, 0, TH_RST|TH_ACK);
3236	}
3237	INP_UNLOCK(tw->tw_inpcb);
3238	return (0);
3239
3240drop:
3241	INP_UNLOCK(tw->tw_inpcb);
3242	m_freem(m);
3243	return (0);
3244}
3245