tcp_input.c revision 142031
1/*-
2 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 4. Neither the name of the University nor the names of its contributors
14 *    may be used to endorse or promote products derived from this software
15 *    without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 *
29 *	@(#)tcp_input.c	8.12 (Berkeley) 5/24/95
30 * $FreeBSD: head/sys/netinet/tcp_input.c 142031 2005-02-17 23:04:56Z ps $
31 */
32
33#include "opt_ipfw.h"		/* for ipfw_fwd		*/
34#include "opt_inet.h"
35#include "opt_inet6.h"
36#include "opt_ipsec.h"
37#include "opt_mac.h"
38#include "opt_tcpdebug.h"
39#include "opt_tcp_input.h"
40#include "opt_tcp_sack.h"
41
42#include <sys/param.h>
43#include <sys/kernel.h>
44#include <sys/mac.h>
45#include <sys/malloc.h>
46#include <sys/mbuf.h>
47#include <sys/proc.h>		/* for proc0 declaration */
48#include <sys/protosw.h>
49#include <sys/signalvar.h>
50#include <sys/socket.h>
51#include <sys/socketvar.h>
52#include <sys/sysctl.h>
53#include <sys/syslog.h>
54#include <sys/systm.h>
55
56#include <machine/cpu.h>	/* before tcp_seq.h, for tcp_random18() */
57
58#include <vm/uma.h>
59
60#include <net/if.h>
61#include <net/route.h>
62
63#include <netinet/in.h>
64#include <netinet/in_pcb.h>
65#include <netinet/in_systm.h>
66#include <netinet/in_var.h>
67#include <netinet/ip.h>
68#include <netinet/ip_icmp.h>	/* for ICMP_BANDLIM		*/
69#include <netinet/icmp_var.h>	/* for ICMP_BANDLIM		*/
70#include <netinet/ip_var.h>
71#include <netinet/ip6.h>
72#include <netinet/icmp6.h>
73#include <netinet6/in6_pcb.h>
74#include <netinet6/ip6_var.h>
75#include <netinet6/nd6.h>
76#include <netinet/tcp.h>
77#include <netinet/tcp_fsm.h>
78#include <netinet/tcp_seq.h>
79#include <netinet/tcp_timer.h>
80#include <netinet/tcp_var.h>
81#include <netinet6/tcp6_var.h>
82#include <netinet/tcpip.h>
83#ifdef TCPDEBUG
84#include <netinet/tcp_debug.h>
85#endif /* TCPDEBUG */
86
87#ifdef FAST_IPSEC
88#include <netipsec/ipsec.h>
89#include <netipsec/ipsec6.h>
90#endif /*FAST_IPSEC*/
91
92#ifdef IPSEC
93#include <netinet6/ipsec.h>
94#include <netinet6/ipsec6.h>
95#include <netkey/key.h>
96#endif /*IPSEC*/
97
98#include <machine/in_cksum.h>
99
100static const int tcprexmtthresh = 3;
101
102struct	tcpstat tcpstat;
103SYSCTL_STRUCT(_net_inet_tcp, TCPCTL_STATS, stats, CTLFLAG_RW,
104    &tcpstat , tcpstat, "TCP statistics (struct tcpstat, netinet/tcp_var.h)");
105
106static int log_in_vain = 0;
107SYSCTL_INT(_net_inet_tcp, OID_AUTO, log_in_vain, CTLFLAG_RW,
108    &log_in_vain, 0, "Log all incoming TCP connections");
109
110static int blackhole = 0;
111SYSCTL_INT(_net_inet_tcp, OID_AUTO, blackhole, CTLFLAG_RW,
112	&blackhole, 0, "Do not send RST when dropping refused connections");
113
114int tcp_delack_enabled = 1;
115SYSCTL_INT(_net_inet_tcp, OID_AUTO, delayed_ack, CTLFLAG_RW,
116    &tcp_delack_enabled, 0,
117    "Delay ACK to try and piggyback it onto a data packet");
118
119#ifdef TCP_DROP_SYNFIN
120static int drop_synfin = 0;
121SYSCTL_INT(_net_inet_tcp, OID_AUTO, drop_synfin, CTLFLAG_RW,
122    &drop_synfin, 0, "Drop TCP packets with SYN+FIN set");
123#endif
124
125static int tcp_do_rfc3042 = 1;
126SYSCTL_INT(_net_inet_tcp, OID_AUTO, rfc3042, CTLFLAG_RW,
127    &tcp_do_rfc3042, 0, "Enable RFC 3042 (Limited Transmit)");
128
129static int tcp_do_rfc3390 = 1;
130SYSCTL_INT(_net_inet_tcp, OID_AUTO, rfc3390, CTLFLAG_RW,
131    &tcp_do_rfc3390, 0,
132    "Enable RFC 3390 (Increasing TCP's Initial Congestion Window)");
133
134static int tcp_insecure_rst = 0;
135SYSCTL_INT(_net_inet_tcp, OID_AUTO, insecure_rst, CTLFLAG_RW,
136    &tcp_insecure_rst, 0,
137    "Follow the old (insecure) criteria for accepting RST packets.");
138
139SYSCTL_NODE(_net_inet_tcp, OID_AUTO, reass, CTLFLAG_RW, 0,
140	    "TCP Segment Reassembly Queue");
141
142static int tcp_reass_maxseg = 0;
143SYSCTL_INT(_net_inet_tcp_reass, OID_AUTO, maxsegments, CTLFLAG_RDTUN,
144	   &tcp_reass_maxseg, 0,
145	   "Global maximum number of TCP Segments in Reassembly Queue");
146
147int tcp_reass_qsize = 0;
148SYSCTL_INT(_net_inet_tcp_reass, OID_AUTO, cursegments, CTLFLAG_RD,
149	   &tcp_reass_qsize, 0,
150	   "Global number of TCP Segments currently in Reassembly Queue");
151
152static int tcp_reass_maxqlen = 48;
153SYSCTL_INT(_net_inet_tcp_reass, OID_AUTO, maxqlen, CTLFLAG_RW,
154	   &tcp_reass_maxqlen, 0,
155	   "Maximum number of TCP Segments per individual Reassembly Queue");
156
157static int tcp_reass_overflows = 0;
158SYSCTL_INT(_net_inet_tcp_reass, OID_AUTO, overflows, CTLFLAG_RD,
159	   &tcp_reass_overflows, 0,
160	   "Global number of TCP Segment Reassembly Queue Overflows");
161
162struct inpcbhead tcb;
163#define	tcb6	tcb  /* for KAME src sync over BSD*'s */
164struct inpcbinfo tcbinfo;
165struct mtx	*tcbinfo_mtx;
166
167static void	 tcp_dooptions(struct tcpcb *, struct tcpopt *, u_char *,
168		     int, int, struct tcphdr *);
169
170static void	 tcp_pulloutofband(struct socket *,
171		     struct tcphdr *, struct mbuf *, int);
172static int	 tcp_reass(struct tcpcb *, struct tcphdr *, int *,
173		     struct mbuf *);
174static void	 tcp_xmit_timer(struct tcpcb *, int);
175static void	 tcp_newreno_partial_ack(struct tcpcb *, struct tcphdr *);
176static int	 tcp_timewait(struct tcptw *, struct tcpopt *,
177		     struct tcphdr *, struct mbuf *, int);
178
179/* Neighbor Discovery, Neighbor Unreachability Detection Upper layer hint. */
180#ifdef INET6
181#define ND6_HINT(tp) \
182do { \
183	if ((tp) && (tp)->t_inpcb && \
184	    ((tp)->t_inpcb->inp_vflag & INP_IPV6) != 0) \
185		nd6_nud_hint(NULL, NULL, 0); \
186} while (0)
187#else
188#define ND6_HINT(tp)
189#endif
190
191/*
192 * Indicate whether this ack should be delayed.  We can delay the ack if
193 *	- there is no delayed ack timer in progress and
194 *	- our last ack wasn't a 0-sized window.  We never want to delay
195 *	  the ack that opens up a 0-sized window and
196 *		- delayed acks are enabled or
197 *		- this is a half-synchronized T/TCP connection.
198 */
199#define DELAY_ACK(tp)							\
200	((!callout_active(tp->tt_delack) &&				\
201	    (tp->t_flags & TF_RXWIN0SENT) == 0) &&			\
202	    (tcp_delack_enabled || (tp->t_flags & TF_NEEDSYN)))
203
204/* Initialize TCP reassembly queue */
205uma_zone_t	tcp_reass_zone;
206void
207tcp_reass_init()
208{
209	tcp_reass_maxseg = nmbclusters / 16;
210	TUNABLE_INT_FETCH("net.inet.tcp.reass.maxsegments",
211	    &tcp_reass_maxseg);
212	tcp_reass_zone = uma_zcreate("tcpreass", sizeof (struct tseg_qent),
213	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
214	uma_zone_set_max(tcp_reass_zone, tcp_reass_maxseg);
215}
216
217static int
218tcp_reass(tp, th, tlenp, m)
219	register struct tcpcb *tp;
220	register struct tcphdr *th;
221	int *tlenp;
222	struct mbuf *m;
223{
224	struct tseg_qent *q;
225	struct tseg_qent *p = NULL;
226	struct tseg_qent *nq;
227	struct tseg_qent *te = NULL;
228	struct socket *so = tp->t_inpcb->inp_socket;
229	int flags;
230
231	INP_LOCK_ASSERT(tp->t_inpcb);
232
233	/*
234	 * XXX: tcp_reass() is rather inefficient with its data structures
235	 * and should be rewritten (see NetBSD for optimizations).  While
236	 * doing that it should move to its own file tcp_reass.c.
237	 */
238
239	/*
240	 * Call with th==NULL after become established to
241	 * force pre-ESTABLISHED data up to user socket.
242	 */
243	if (th == NULL)
244		goto present;
245
246	/*
247	 * Limit the number of segments in the reassembly queue to prevent
248	 * holding on to too many segments (and thus running out of mbufs).
249	 * Make sure to let the missing segment through which caused this
250	 * queue.  Always keep one global queue entry spare to be able to
251	 * process the missing segment.
252	 */
253	if (th->th_seq != tp->rcv_nxt &&
254	    (tcp_reass_qsize + 1 >= tcp_reass_maxseg ||
255	     tp->t_segqlen >= tcp_reass_maxqlen)) {
256		tcp_reass_overflows++;
257		tcpstat.tcps_rcvmemdrop++;
258		m_freem(m);
259		return (0);
260	}
261
262	/*
263	 * Allocate a new queue entry. If we can't, or hit the zone limit
264	 * just drop the pkt.
265	 */
266	te = uma_zalloc(tcp_reass_zone, M_NOWAIT);
267	if (te == NULL) {
268		tcpstat.tcps_rcvmemdrop++;
269		m_freem(m);
270		return (0);
271	}
272	tp->t_segqlen++;
273	tcp_reass_qsize++;
274
275	/*
276	 * Find a segment which begins after this one does.
277	 */
278	LIST_FOREACH(q, &tp->t_segq, tqe_q) {
279		if (SEQ_GT(q->tqe_th->th_seq, th->th_seq))
280			break;
281		p = q;
282	}
283
284	/*
285	 * If there is a preceding segment, it may provide some of
286	 * our data already.  If so, drop the data from the incoming
287	 * segment.  If it provides all of our data, drop us.
288	 */
289	if (p != NULL) {
290		register int i;
291		/* conversion to int (in i) handles seq wraparound */
292		i = p->tqe_th->th_seq + p->tqe_len - th->th_seq;
293		if (i > 0) {
294			if (i >= *tlenp) {
295				tcpstat.tcps_rcvduppack++;
296				tcpstat.tcps_rcvdupbyte += *tlenp;
297				m_freem(m);
298				uma_zfree(tcp_reass_zone, te);
299				tp->t_segqlen--;
300				tcp_reass_qsize--;
301				/*
302				 * Try to present any queued data
303				 * at the left window edge to the user.
304				 * This is needed after the 3-WHS
305				 * completes.
306				 */
307				goto present;	/* ??? */
308			}
309			m_adj(m, i);
310			*tlenp -= i;
311			th->th_seq += i;
312		}
313	}
314	tcpstat.tcps_rcvoopack++;
315	tcpstat.tcps_rcvoobyte += *tlenp;
316
317	/*
318	 * While we overlap succeeding segments trim them or,
319	 * if they are completely covered, dequeue them.
320	 */
321	while (q) {
322		register int i = (th->th_seq + *tlenp) - q->tqe_th->th_seq;
323		if (i <= 0)
324			break;
325		if (i < q->tqe_len) {
326			q->tqe_th->th_seq += i;
327			q->tqe_len -= i;
328			m_adj(q->tqe_m, i);
329			break;
330		}
331
332		nq = LIST_NEXT(q, tqe_q);
333		LIST_REMOVE(q, tqe_q);
334		m_freem(q->tqe_m);
335		uma_zfree(tcp_reass_zone, q);
336		tp->t_segqlen--;
337		tcp_reass_qsize--;
338		q = nq;
339	}
340
341	/* Insert the new segment queue entry into place. */
342	te->tqe_m = m;
343	te->tqe_th = th;
344	te->tqe_len = *tlenp;
345
346	if (p == NULL) {
347		LIST_INSERT_HEAD(&tp->t_segq, te, tqe_q);
348	} else {
349		LIST_INSERT_AFTER(p, te, tqe_q);
350	}
351
352present:
353	/*
354	 * Present data to user, advancing rcv_nxt through
355	 * completed sequence space.
356	 */
357	if (!TCPS_HAVEESTABLISHED(tp->t_state))
358		return (0);
359	q = LIST_FIRST(&tp->t_segq);
360	if (!q || q->tqe_th->th_seq != tp->rcv_nxt)
361		return (0);
362	SOCKBUF_LOCK(&so->so_rcv);
363	do {
364		tp->rcv_nxt += q->tqe_len;
365		flags = q->tqe_th->th_flags & TH_FIN;
366		nq = LIST_NEXT(q, tqe_q);
367		LIST_REMOVE(q, tqe_q);
368		if (so->so_rcv.sb_state & SBS_CANTRCVMORE)
369			m_freem(q->tqe_m);
370		else
371			sbappendstream_locked(&so->so_rcv, q->tqe_m);
372		uma_zfree(tcp_reass_zone, q);
373		tp->t_segqlen--;
374		tcp_reass_qsize--;
375		q = nq;
376	} while (q && q->tqe_th->th_seq == tp->rcv_nxt);
377	ND6_HINT(tp);
378	sorwakeup_locked(so);
379	return (flags);
380}
381
382/*
383 * TCP input routine, follows pages 65-76 of the
384 * protocol specification dated September, 1981 very closely.
385 */
386#ifdef INET6
387int
388tcp6_input(mp, offp, proto)
389	struct mbuf **mp;
390	int *offp, proto;
391{
392	register struct mbuf *m = *mp;
393	struct in6_ifaddr *ia6;
394
395	IP6_EXTHDR_CHECK(m, *offp, sizeof(struct tcphdr), IPPROTO_DONE);
396
397	/*
398	 * draft-itojun-ipv6-tcp-to-anycast
399	 * better place to put this in?
400	 */
401	ia6 = ip6_getdstifaddr(m);
402	if (ia6 && (ia6->ia6_flags & IN6_IFF_ANYCAST)) {
403		struct ip6_hdr *ip6;
404
405		ip6 = mtod(m, struct ip6_hdr *);
406		icmp6_error(m, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_ADDR,
407			    (caddr_t)&ip6->ip6_dst - (caddr_t)ip6);
408		return IPPROTO_DONE;
409	}
410
411	tcp_input(m, *offp);
412	return IPPROTO_DONE;
413}
414#endif
415
416void
417tcp_input(m, off0)
418	register struct mbuf *m;
419	int off0;
420{
421	register struct tcphdr *th;
422	register struct ip *ip = NULL;
423	register struct ipovly *ipov;
424	register struct inpcb *inp = NULL;
425	u_char *optp = NULL;
426	int optlen = 0;
427	int len, tlen, off;
428	int drop_hdrlen;
429	register struct tcpcb *tp = 0;
430	register int thflags;
431	struct socket *so = 0;
432	int todrop, acked, ourfinisacked, needoutput = 0;
433	u_long tiwin;
434	struct tcpopt to;		/* options in this segment */
435	int headlocked = 0;
436#ifdef IPFIREWALL_FORWARD
437	struct m_tag *fwd_tag;
438#endif
439	int rstreason; /* For badport_bandlim accounting purposes */
440
441	struct ip6_hdr *ip6 = NULL;
442#ifdef INET6
443	int isipv6;
444#else
445	const int isipv6 = 0;
446#endif
447
448#ifdef TCPDEBUG
449	/*
450	 * The size of tcp_saveipgen must be the size of the max ip header,
451	 * now IPv6.
452	 */
453	u_char tcp_saveipgen[40];
454	struct tcphdr tcp_savetcp;
455	short ostate = 0;
456#endif
457
458#ifdef INET6
459	isipv6 = (mtod(m, struct ip *)->ip_v == 6) ? 1 : 0;
460#endif
461	bzero((char *)&to, sizeof(to));
462
463	tcpstat.tcps_rcvtotal++;
464
465	if (isipv6) {
466#ifdef INET6
467		/* IP6_EXTHDR_CHECK() is already done at tcp6_input() */
468		ip6 = mtod(m, struct ip6_hdr *);
469		tlen = sizeof(*ip6) + ntohs(ip6->ip6_plen) - off0;
470		if (in6_cksum(m, IPPROTO_TCP, off0, tlen)) {
471			tcpstat.tcps_rcvbadsum++;
472			goto drop;
473		}
474		th = (struct tcphdr *)((caddr_t)ip6 + off0);
475
476		/*
477		 * Be proactive about unspecified IPv6 address in source.
478		 * As we use all-zero to indicate unbounded/unconnected pcb,
479		 * unspecified IPv6 address can be used to confuse us.
480		 *
481		 * Note that packets with unspecified IPv6 destination is
482		 * already dropped in ip6_input.
483		 */
484		if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) {
485			/* XXX stat */
486			goto drop;
487		}
488#else
489		th = NULL;		/* XXX: avoid compiler warning */
490#endif
491	} else {
492		/*
493		 * Get IP and TCP header together in first mbuf.
494		 * Note: IP leaves IP header in first mbuf.
495		 */
496		if (off0 > sizeof (struct ip)) {
497			ip_stripoptions(m, (struct mbuf *)0);
498			off0 = sizeof(struct ip);
499		}
500		if (m->m_len < sizeof (struct tcpiphdr)) {
501			if ((m = m_pullup(m, sizeof (struct tcpiphdr))) == 0) {
502				tcpstat.tcps_rcvshort++;
503				return;
504			}
505		}
506		ip = mtod(m, struct ip *);
507		ipov = (struct ipovly *)ip;
508		th = (struct tcphdr *)((caddr_t)ip + off0);
509		tlen = ip->ip_len;
510
511		if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) {
512			if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR)
513				th->th_sum = m->m_pkthdr.csum_data;
514			else
515				th->th_sum = in_pseudo(ip->ip_src.s_addr,
516						ip->ip_dst.s_addr,
517						htonl(m->m_pkthdr.csum_data +
518							ip->ip_len +
519							IPPROTO_TCP));
520			th->th_sum ^= 0xffff;
521#ifdef TCPDEBUG
522			ipov->ih_len = (u_short)tlen;
523			ipov->ih_len = htons(ipov->ih_len);
524#endif
525		} else {
526			/*
527			 * Checksum extended TCP header and data.
528			 */
529			len = sizeof (struct ip) + tlen;
530			bzero(ipov->ih_x1, sizeof(ipov->ih_x1));
531			ipov->ih_len = (u_short)tlen;
532			ipov->ih_len = htons(ipov->ih_len);
533			th->th_sum = in_cksum(m, len);
534		}
535		if (th->th_sum) {
536			tcpstat.tcps_rcvbadsum++;
537			goto drop;
538		}
539#ifdef INET6
540		/* Re-initialization for later version check */
541		ip->ip_v = IPVERSION;
542#endif
543	}
544
545	/*
546	 * Check that TCP offset makes sense,
547	 * pull out TCP options and adjust length.		XXX
548	 */
549	off = th->th_off << 2;
550	if (off < sizeof (struct tcphdr) || off > tlen) {
551		tcpstat.tcps_rcvbadoff++;
552		goto drop;
553	}
554	tlen -= off;	/* tlen is used instead of ti->ti_len */
555	if (off > sizeof (struct tcphdr)) {
556		if (isipv6) {
557#ifdef INET6
558			IP6_EXTHDR_CHECK(m, off0, off, );
559			ip6 = mtod(m, struct ip6_hdr *);
560			th = (struct tcphdr *)((caddr_t)ip6 + off0);
561#endif
562		} else {
563			if (m->m_len < sizeof(struct ip) + off) {
564				if ((m = m_pullup(m, sizeof (struct ip) + off))
565						== 0) {
566					tcpstat.tcps_rcvshort++;
567					return;
568				}
569				ip = mtod(m, struct ip *);
570				ipov = (struct ipovly *)ip;
571				th = (struct tcphdr *)((caddr_t)ip + off0);
572			}
573		}
574		optlen = off - sizeof (struct tcphdr);
575		optp = (u_char *)(th + 1);
576	}
577	thflags = th->th_flags;
578
579#ifdef TCP_DROP_SYNFIN
580	/*
581	 * If the drop_synfin option is enabled, drop all packets with
582	 * both the SYN and FIN bits set. This prevents e.g. nmap from
583	 * identifying the TCP/IP stack.
584	 *
585	 * This is a violation of the TCP specification.
586	 */
587	if (drop_synfin && (thflags & (TH_SYN|TH_FIN)) == (TH_SYN|TH_FIN))
588		goto drop;
589#endif
590
591	/*
592	 * Convert TCP protocol specific fields to host format.
593	 */
594	th->th_seq = ntohl(th->th_seq);
595	th->th_ack = ntohl(th->th_ack);
596	th->th_win = ntohs(th->th_win);
597	th->th_urp = ntohs(th->th_urp);
598
599	/*
600	 * Delay dropping TCP, IP headers, IPv6 ext headers, and TCP options,
601	 * until after ip6_savecontrol() is called and before other functions
602	 * which don't want those proto headers.
603	 * Because ip6_savecontrol() is going to parse the mbuf to
604	 * search for data to be passed up to user-land, it wants mbuf
605	 * parameters to be unchanged.
606	 * XXX: the call of ip6_savecontrol() has been obsoleted based on
607	 * latest version of the advanced API (20020110).
608	 */
609	drop_hdrlen = off0 + off;
610
611	/*
612	 * Locate pcb for segment.
613	 */
614	INP_INFO_WLOCK(&tcbinfo);
615	headlocked = 1;
616findpcb:
617	KASSERT(headlocked, ("tcp_input: findpcb: head not locked"));
618#ifdef IPFIREWALL_FORWARD
619	/* Grab info from PACKET_TAG_IPFORWARD tag prepended to the chain. */
620	fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL);
621
622	if (fwd_tag != NULL && isipv6 == 0) {	/* IPv6 support is not yet */
623		struct sockaddr_in *next_hop;
624
625		next_hop = (struct sockaddr_in *)(fwd_tag+1);
626		/*
627		 * Transparently forwarded. Pretend to be the destination.
628		 * already got one like this?
629		 */
630		inp = in_pcblookup_hash(&tcbinfo,
631					ip->ip_src, th->th_sport,
632					ip->ip_dst, th->th_dport,
633					0, m->m_pkthdr.rcvif);
634		if (!inp) {
635			/* It's new.  Try to find the ambushing socket. */
636			inp = in_pcblookup_hash(&tcbinfo,
637						ip->ip_src, th->th_sport,
638						next_hop->sin_addr,
639						next_hop->sin_port ?
640						    ntohs(next_hop->sin_port) :
641						    th->th_dport,
642						1, m->m_pkthdr.rcvif);
643		}
644		/* Remove the tag from the packet.  We don't need it anymore. */
645		m_tag_delete(m, fwd_tag);
646	} else {
647#endif /* IPFIREWALL_FORWARD */
648		if (isipv6) {
649#ifdef INET6
650			inp = in6_pcblookup_hash(&tcbinfo,
651						 &ip6->ip6_src, th->th_sport,
652						 &ip6->ip6_dst, th->th_dport,
653						 1, m->m_pkthdr.rcvif);
654#endif
655		} else
656			inp = in_pcblookup_hash(&tcbinfo,
657						ip->ip_src, th->th_sport,
658						ip->ip_dst, th->th_dport,
659						1, m->m_pkthdr.rcvif);
660#ifdef IPFIREWALL_FORWARD
661	}
662#endif /* IPFIREWALL_FORWARD */
663
664#if defined(IPSEC) || defined(FAST_IPSEC)
665#ifdef INET6
666	if (isipv6) {
667		if (inp != NULL && ipsec6_in_reject(m, inp)) {
668#ifdef IPSEC
669			ipsec6stat.in_polvio++;
670#endif
671			goto drop;
672		}
673	} else
674#endif /* INET6 */
675	if (inp != NULL && ipsec4_in_reject(m, inp)) {
676#ifdef IPSEC
677		ipsecstat.in_polvio++;
678#endif
679		goto drop;
680	}
681#endif /*IPSEC || FAST_IPSEC*/
682
683	/*
684	 * If the state is CLOSED (i.e., TCB does not exist) then
685	 * all data in the incoming segment is discarded.
686	 * If the TCB exists but is in CLOSED state, it is embryonic,
687	 * but should either do a listen or a connect soon.
688	 */
689	if (inp == NULL) {
690		if (log_in_vain) {
691#ifdef INET6
692			char dbuf[INET6_ADDRSTRLEN+2], sbuf[INET6_ADDRSTRLEN+2];
693#else
694			char dbuf[4*sizeof "123"], sbuf[4*sizeof "123"];
695#endif
696
697			if (isipv6) {
698#ifdef INET6
699				strcpy(dbuf, "[");
700				strcpy(sbuf, "[");
701				strcat(dbuf, ip6_sprintf(&ip6->ip6_dst));
702				strcat(sbuf, ip6_sprintf(&ip6->ip6_src));
703				strcat(dbuf, "]");
704				strcat(sbuf, "]");
705#endif
706			} else {
707				strcpy(dbuf, inet_ntoa(ip->ip_dst));
708				strcpy(sbuf, inet_ntoa(ip->ip_src));
709			}
710			switch (log_in_vain) {
711			case 1:
712				if ((thflags & TH_SYN) == 0)
713					break;
714				/* FALLTHROUGH */
715			case 2:
716				log(LOG_INFO,
717				    "Connection attempt to TCP %s:%d "
718				    "from %s:%d flags:0x%02x\n",
719				    dbuf, ntohs(th->th_dport), sbuf,
720				    ntohs(th->th_sport), thflags);
721				break;
722			default:
723				break;
724			}
725		}
726		if (blackhole) {
727			switch (blackhole) {
728			case 1:
729				if (thflags & TH_SYN)
730					goto drop;
731				break;
732			case 2:
733				goto drop;
734			default:
735				goto drop;
736			}
737		}
738		rstreason = BANDLIM_RST_CLOSEDPORT;
739		goto dropwithreset;
740	}
741	INP_LOCK(inp);
742	if (inp->inp_vflag & INP_TIMEWAIT) {
743		/*
744		 * The only option of relevance is TOF_CC, and only if
745		 * present in a SYN segment.  See tcp_timewait().
746		 */
747		if (thflags & TH_SYN)
748			tcp_dooptions((struct tcpcb *)NULL, &to, optp, optlen, 1, th);
749		if (tcp_timewait((struct tcptw *)inp->inp_ppcb,
750		    &to, th, m, tlen))
751			goto findpcb;
752		/*
753		 * tcp_timewait unlocks inp.
754		 */
755		INP_INFO_WUNLOCK(&tcbinfo);
756		return;
757	}
758	tp = intotcpcb(inp);
759	if (tp == 0) {
760		INP_UNLOCK(inp);
761		rstreason = BANDLIM_RST_CLOSEDPORT;
762		goto dropwithreset;
763	}
764	if (tp->t_state == TCPS_CLOSED)
765		goto drop;
766
767	/* Unscale the window into a 32-bit value. */
768	if ((thflags & TH_SYN) == 0)
769		tiwin = th->th_win << tp->snd_scale;
770	else
771		tiwin = th->th_win;
772
773#ifdef MAC
774	INP_LOCK_ASSERT(inp);
775	if (mac_check_inpcb_deliver(inp, m))
776		goto drop;
777#endif
778	so = inp->inp_socket;
779#ifdef TCPDEBUG
780	if (so->so_options & SO_DEBUG) {
781		ostate = tp->t_state;
782		if (isipv6)
783			bcopy((char *)ip6, (char *)tcp_saveipgen, sizeof(*ip6));
784		else
785			bcopy((char *)ip, (char *)tcp_saveipgen, sizeof(*ip));
786		tcp_savetcp = *th;
787	}
788#endif
789	if (so->so_options & SO_ACCEPTCONN) {
790		struct in_conninfo inc;
791
792#ifdef INET6
793		inc.inc_isipv6 = isipv6;
794#endif
795		if (isipv6) {
796			inc.inc6_faddr = ip6->ip6_src;
797			inc.inc6_laddr = ip6->ip6_dst;
798		} else {
799			inc.inc_faddr = ip->ip_src;
800			inc.inc_laddr = ip->ip_dst;
801		}
802		inc.inc_fport = th->th_sport;
803		inc.inc_lport = th->th_dport;
804
805	        /*
806	         * If the state is LISTEN then ignore segment if it contains
807		 * a RST.  If the segment contains an ACK then it is bad and
808		 * send a RST.  If it does not contain a SYN then it is not
809		 * interesting; drop it.
810		 *
811		 * If the state is SYN_RECEIVED (syncache) and seg contains
812		 * an ACK, but not for our SYN/ACK, send a RST.  If the seg
813		 * contains a RST, check the sequence number to see if it
814		 * is a valid reset segment.
815		 */
816		if ((thflags & (TH_RST|TH_ACK|TH_SYN)) != TH_SYN) {
817			if ((thflags & (TH_RST|TH_ACK|TH_SYN)) == TH_ACK) {
818				if (!syncache_expand(&inc, th, &so, m)) {
819					/*
820					 * No syncache entry, or ACK was not
821					 * for our SYN/ACK.  Send a RST.
822					 */
823					tcpstat.tcps_badsyn++;
824					rstreason = BANDLIM_RST_OPENPORT;
825					goto dropwithreset;
826				}
827				if (so == NULL) {
828					/*
829					 * Could not complete 3-way handshake,
830					 * connection is being closed down, and
831					 * syncache will free mbuf.
832					 */
833					INP_UNLOCK(inp);
834					INP_INFO_WUNLOCK(&tcbinfo);
835					return;
836				}
837				/*
838				 * Socket is created in state SYN_RECEIVED.
839				 * Continue processing segment.
840				 */
841				INP_UNLOCK(inp);
842				inp = sotoinpcb(so);
843				INP_LOCK(inp);
844				tp = intotcpcb(inp);
845				/*
846				 * This is what would have happened in
847				 * tcp_output() when the SYN,ACK was sent.
848				 */
849				tp->snd_up = tp->snd_una;
850				tp->snd_max = tp->snd_nxt = tp->iss + 1;
851				tp->last_ack_sent = tp->rcv_nxt;
852				/*
853				 * RFC1323: The window in SYN & SYN/ACK
854				 * segments is never scaled.
855				 */
856				tp->snd_wnd = tiwin;	/* unscaled */
857				goto after_listen;
858			}
859			if (thflags & TH_RST) {
860				syncache_chkrst(&inc, th);
861				goto drop;
862			}
863			if (thflags & TH_ACK) {
864				syncache_badack(&inc);
865				tcpstat.tcps_badsyn++;
866				rstreason = BANDLIM_RST_OPENPORT;
867				goto dropwithreset;
868			}
869			goto drop;
870		}
871
872		/*
873		 * Segment's flags are (SYN) or (SYN|FIN).
874		 */
875#ifdef INET6
876		/*
877		 * If deprecated address is forbidden,
878		 * we do not accept SYN to deprecated interface
879		 * address to prevent any new inbound connection from
880		 * getting established.
881		 * When we do not accept SYN, we send a TCP RST,
882		 * with deprecated source address (instead of dropping
883		 * it).  We compromise it as it is much better for peer
884		 * to send a RST, and RST will be the final packet
885		 * for the exchange.
886		 *
887		 * If we do not forbid deprecated addresses, we accept
888		 * the SYN packet.  RFC2462 does not suggest dropping
889		 * SYN in this case.
890		 * If we decipher RFC2462 5.5.4, it says like this:
891		 * 1. use of deprecated addr with existing
892		 *    communication is okay - "SHOULD continue to be
893		 *    used"
894		 * 2. use of it with new communication:
895		 *   (2a) "SHOULD NOT be used if alternate address
896		 *        with sufficient scope is available"
897		 *   (2b) nothing mentioned otherwise.
898		 * Here we fall into (2b) case as we have no choice in
899		 * our source address selection - we must obey the peer.
900		 *
901		 * The wording in RFC2462 is confusing, and there are
902		 * multiple description text for deprecated address
903		 * handling - worse, they are not exactly the same.
904		 * I believe 5.5.4 is the best one, so we follow 5.5.4.
905		 */
906		if (isipv6 && !ip6_use_deprecated) {
907			struct in6_ifaddr *ia6;
908
909			if ((ia6 = ip6_getdstifaddr(m)) &&
910			    (ia6->ia6_flags & IN6_IFF_DEPRECATED)) {
911				INP_UNLOCK(inp);
912				tp = NULL;
913				rstreason = BANDLIM_RST_OPENPORT;
914				goto dropwithreset;
915			}
916		}
917#endif
918		/*
919		 * If it is from this socket, drop it, it must be forged.
920		 * Don't bother responding if the destination was a broadcast.
921		 */
922		if (th->th_dport == th->th_sport) {
923			if (isipv6) {
924				if (IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst,
925						       &ip6->ip6_src))
926					goto drop;
927			} else {
928				if (ip->ip_dst.s_addr == ip->ip_src.s_addr)
929					goto drop;
930			}
931		}
932		/*
933		 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
934		 *
935		 * Note that it is quite possible to receive unicast
936		 * link-layer packets with a broadcast IP address. Use
937		 * in_broadcast() to find them.
938		 */
939		if (m->m_flags & (M_BCAST|M_MCAST))
940			goto drop;
941		if (isipv6) {
942			if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) ||
943			    IN6_IS_ADDR_MULTICAST(&ip6->ip6_src))
944				goto drop;
945		} else {
946			if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
947			    IN_MULTICAST(ntohl(ip->ip_src.s_addr)) ||
948			    ip->ip_src.s_addr == htonl(INADDR_BROADCAST) ||
949			    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
950				goto drop;
951		}
952		/*
953		 * SYN appears to be valid; create compressed TCP state
954		 * for syncache, or perform t/tcp connection.
955		 */
956		if (so->so_qlen <= so->so_qlimit) {
957#ifdef TCPDEBUG
958			if (so->so_options & SO_DEBUG)
959				tcp_trace(TA_INPUT, ostate, tp,
960				    (void *)tcp_saveipgen, &tcp_savetcp, 0);
961#endif
962			tcp_dooptions(tp, &to, optp, optlen, 1, th);
963			if (!syncache_add(&inc, &to, th, &so, m))
964				goto drop;
965			if (so == NULL) {
966				/*
967				 * Entry added to syncache, mbuf used to
968				 * send SYN,ACK packet.
969				 */
970				KASSERT(headlocked, ("headlocked"));
971				INP_UNLOCK(inp);
972				INP_INFO_WUNLOCK(&tcbinfo);
973				return;
974			}
975			/*
976			 * Segment passed TAO tests.
977			 */
978			INP_UNLOCK(inp);
979			inp = sotoinpcb(so);
980			INP_LOCK(inp);
981			tp = intotcpcb(inp);
982			tp->snd_wnd = tiwin;
983			tp->t_starttime = ticks;
984			tp->t_state = TCPS_ESTABLISHED;
985
986			/*
987			 * T/TCP logic:
988			 * If there is a FIN or if there is data, then
989			 * delay SYN,ACK(SYN) in the hope of piggy-backing
990			 * it on a response segment.  Otherwise must send
991			 * ACK now in case the other side is slow starting.
992			 */
993			if (thflags & TH_FIN || tlen != 0)
994				tp->t_flags |= (TF_DELACK | TF_NEEDSYN);
995			else
996				tp->t_flags |= (TF_ACKNOW | TF_NEEDSYN);
997			tcpstat.tcps_connects++;
998			soisconnected(so);
999			goto trimthenstep6;
1000		}
1001		goto drop;
1002	}
1003after_listen:
1004	KASSERT(headlocked, ("tcp_input: after_listen: head not locked"));
1005	INP_LOCK_ASSERT(inp);
1006
1007	/* XXX temp debugging */
1008	/* should not happen - syncache should pick up these connections */
1009	if (tp->t_state == TCPS_LISTEN)
1010		panic("tcp_input: TCPS_LISTEN");
1011
1012	/*
1013	 * This is the second part of the MSS DoS prevention code (after
1014	 * minmss on the sending side) and it deals with too many too small
1015	 * tcp packets in a too short timeframe (1 second).
1016	 *
1017	 * For every full second we count the number of received packets
1018	 * and bytes. If we get a lot of packets per second for this connection
1019	 * (tcp_minmssoverload) we take a closer look at it and compute the
1020	 * average packet size for the past second. If that is less than
1021	 * tcp_minmss we get too many packets with very small payload which
1022	 * is not good and burdens our system (and every packet generates
1023	 * a wakeup to the process connected to our socket). We can reasonable
1024	 * expect this to be small packet DoS attack to exhaust our CPU
1025	 * cycles.
1026	 *
1027	 * Care has to be taken for the minimum packet overload value. This
1028	 * value defines the minimum number of packets per second before we
1029	 * start to worry. This must not be too low to avoid killing for
1030	 * example interactive connections with many small packets like
1031	 * telnet or SSH.
1032	 *
1033	 * Setting either tcp_minmssoverload or tcp_minmss to "0" disables
1034	 * this check.
1035	 *
1036	 * Account for packet if payload packet, skip over ACK, etc.
1037	 */
1038	if (tcp_minmss && tcp_minmssoverload &&
1039	    tp->t_state == TCPS_ESTABLISHED && tlen > 0) {
1040		if (tp->rcv_second > ticks) {
1041			tp->rcv_pps++;
1042			tp->rcv_byps += tlen + off;
1043			if (tp->rcv_pps > tcp_minmssoverload) {
1044				if ((tp->rcv_byps / tp->rcv_pps) < tcp_minmss) {
1045					printf("too many small tcp packets from "
1046					       "%s:%u, av. %lubyte/packet, "
1047					       "dropping connection\n",
1048#ifdef INET6
1049						isipv6 ?
1050						ip6_sprintf(&inp->inp_inc.inc6_faddr) :
1051#endif
1052						inet_ntoa(inp->inp_inc.inc_faddr),
1053						inp->inp_inc.inc_fport,
1054						tp->rcv_byps / tp->rcv_pps);
1055					tp = tcp_drop(tp, ECONNRESET);
1056					tcpstat.tcps_minmssdrops++;
1057					goto drop;
1058				}
1059			}
1060		} else {
1061			tp->rcv_second = ticks + hz;
1062			tp->rcv_pps = 1;
1063			tp->rcv_byps = tlen + off;
1064		}
1065	}
1066
1067	/*
1068	 * Segment received on connection.
1069	 * Reset idle time and keep-alive timer.
1070	 */
1071	tp->t_rcvtime = ticks;
1072	if (TCPS_HAVEESTABLISHED(tp->t_state))
1073		callout_reset(tp->tt_keep, tcp_keepidle, tcp_timer_keep, tp);
1074
1075	/*
1076	 * Process options only when we get SYN/ACK back. The SYN case
1077	 * for incoming connections is handled in tcp_syncache.
1078	 * XXX this is traditional behavior, may need to be cleaned up.
1079	 */
1080	tcp_dooptions(tp, &to, optp, optlen, thflags & TH_SYN, th);
1081	if (thflags & TH_SYN) {
1082		if (to.to_flags & TOF_SCALE) {
1083			tp->t_flags |= TF_RCVD_SCALE;
1084			tp->requested_s_scale = to.to_requested_s_scale;
1085		}
1086		if (to.to_flags & TOF_TS) {
1087			tp->t_flags |= TF_RCVD_TSTMP;
1088			tp->ts_recent = to.to_tsval;
1089			tp->ts_recent_age = ticks;
1090		}
1091		if (to.to_flags & TOF_MSS)
1092			tcp_mss(tp, to.to_mss);
1093		if (tp->sack_enable) {
1094			if (!(to.to_flags & TOF_SACK))
1095				tp->sack_enable = 0;
1096			else
1097				tp->t_flags |= TF_SACK_PERMIT;
1098		}
1099
1100	}
1101
1102	if (tp->sack_enable) {
1103		/* Delete stale (cumulatively acked) SACK holes */
1104		tcp_del_sackholes(tp, th);
1105	}
1106
1107	/*
1108	 * Header prediction: check for the two common cases
1109	 * of a uni-directional data xfer.  If the packet has
1110	 * no control flags, is in-sequence, the window didn't
1111	 * change and we're not retransmitting, it's a
1112	 * candidate.  If the length is zero and the ack moved
1113	 * forward, we're the sender side of the xfer.  Just
1114	 * free the data acked & wake any higher level process
1115	 * that was blocked waiting for space.  If the length
1116	 * is non-zero and the ack didn't move, we're the
1117	 * receiver side.  If we're getting packets in-order
1118	 * (the reassembly queue is empty), add the data to
1119	 * the socket buffer and note that we need a delayed ack.
1120	 * Make sure that the hidden state-flags are also off.
1121	 * Since we check for TCPS_ESTABLISHED above, it can only
1122	 * be TH_NEEDSYN.
1123	 */
1124	if (tp->t_state == TCPS_ESTABLISHED &&
1125	    (thflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK)) == TH_ACK &&
1126	    ((tp->t_flags & (TF_NEEDSYN|TF_NEEDFIN)) == 0) &&
1127	    ((to.to_flags & TOF_TS) == 0 ||
1128	     TSTMP_GEQ(to.to_tsval, tp->ts_recent)) &&
1129	     th->th_seq == tp->rcv_nxt && tiwin && tiwin == tp->snd_wnd &&
1130	     tp->snd_nxt == tp->snd_max) {
1131
1132		/*
1133		 * If last ACK falls within this segment's sequence numbers,
1134		 * record the timestamp.
1135		 * NOTE that the test is modified according to the latest
1136		 * proposal of the tcplw@cray.com list (Braden 1993/04/26).
1137		 */
1138		if ((to.to_flags & TOF_TS) != 0 &&
1139		    SEQ_LEQ(th->th_seq, tp->last_ack_sent)) {
1140			tp->ts_recent_age = ticks;
1141			tp->ts_recent = to.to_tsval;
1142		}
1143
1144		if (tlen == 0) {
1145			if (SEQ_GT(th->th_ack, tp->snd_una) &&
1146			    SEQ_LEQ(th->th_ack, tp->snd_max) &&
1147			    tp->snd_cwnd >= tp->snd_wnd &&
1148			    ((!tcp_do_newreno && !tp->sack_enable &&
1149			      tp->t_dupacks < tcprexmtthresh) ||
1150			     ((tcp_do_newreno || tp->sack_enable) &&
1151			      !IN_FASTRECOVERY(tp)))) {
1152				KASSERT(headlocked, ("headlocked"));
1153				INP_INFO_WUNLOCK(&tcbinfo);
1154				headlocked = 0;
1155				/*
1156				 * this is a pure ack for outstanding data.
1157				 */
1158				++tcpstat.tcps_predack;
1159				/*
1160				 * "bad retransmit" recovery
1161				 */
1162				if (tp->t_rxtshift == 1 &&
1163				    ticks < tp->t_badrxtwin) {
1164					++tcpstat.tcps_sndrexmitbad;
1165					tp->snd_cwnd = tp->snd_cwnd_prev;
1166					tp->snd_ssthresh =
1167					    tp->snd_ssthresh_prev;
1168					tp->snd_recover = tp->snd_recover_prev;
1169					if (tp->t_flags & TF_WASFRECOVERY)
1170					    ENTER_FASTRECOVERY(tp);
1171					tp->snd_nxt = tp->snd_max;
1172					tp->t_badrxtwin = 0;
1173				}
1174
1175				/*
1176				 * Recalculate the transmit timer / rtt.
1177				 *
1178				 * Some boxes send broken timestamp replies
1179				 * during the SYN+ACK phase, ignore
1180				 * timestamps of 0 or we could calculate a
1181				 * huge RTT and blow up the retransmit timer.
1182				 */
1183				if ((to.to_flags & TOF_TS) != 0 &&
1184				    to.to_tsecr) {
1185					tcp_xmit_timer(tp,
1186					    ticks - to.to_tsecr + 1);
1187				} else if (tp->t_rtttime &&
1188					    SEQ_GT(th->th_ack, tp->t_rtseq)) {
1189					tcp_xmit_timer(tp,
1190							ticks - tp->t_rtttime);
1191				}
1192				tcp_xmit_bandwidth_limit(tp, th->th_ack);
1193				acked = th->th_ack - tp->snd_una;
1194				tcpstat.tcps_rcvackpack++;
1195				tcpstat.tcps_rcvackbyte += acked;
1196				sbdrop(&so->so_snd, acked);
1197				if (SEQ_GT(tp->snd_una, tp->snd_recover) &&
1198				    SEQ_LEQ(th->th_ack, tp->snd_recover))
1199					tp->snd_recover = th->th_ack - 1;
1200				tp->snd_una = th->th_ack;
1201				/*
1202				 * pull snd_wl2 up to prevent seq wrap relative
1203				 * to th_ack.
1204				 */
1205				tp->snd_wl2 = th->th_ack;
1206				tp->t_dupacks = 0;
1207				m_freem(m);
1208				ND6_HINT(tp); /* some progress has been done */
1209
1210				/*
1211				 * If all outstanding data are acked, stop
1212				 * retransmit timer, otherwise restart timer
1213				 * using current (possibly backed-off) value.
1214				 * If process is waiting for space,
1215				 * wakeup/selwakeup/signal.  If data
1216				 * are ready to send, let tcp_output
1217				 * decide between more output or persist.
1218
1219#ifdef TCPDEBUG
1220				if (so->so_options & SO_DEBUG)
1221					tcp_trace(TA_INPUT, ostate, tp,
1222					    (void *)tcp_saveipgen,
1223					    &tcp_savetcp, 0);
1224#endif
1225				 */
1226				if (tp->snd_una == tp->snd_max)
1227					callout_stop(tp->tt_rexmt);
1228				else if (!callout_active(tp->tt_persist))
1229					callout_reset(tp->tt_rexmt,
1230						      tp->t_rxtcur,
1231						      tcp_timer_rexmt, tp);
1232
1233				sowwakeup(so);
1234				if (so->so_snd.sb_cc)
1235					(void) tcp_output(tp);
1236				goto check_delack;
1237			}
1238		} else if (th->th_ack == tp->snd_una &&
1239		    LIST_EMPTY(&tp->t_segq) &&
1240		    tlen <= sbspace(&so->so_rcv)) {
1241			KASSERT(headlocked, ("headlocked"));
1242			INP_INFO_WUNLOCK(&tcbinfo);
1243			headlocked = 0;
1244			/*
1245			 * this is a pure, in-sequence data packet
1246			 * with nothing on the reassembly queue and
1247			 * we have enough buffer space to take it.
1248			 */
1249			/* Clean receiver SACK report if present */
1250			if (tp->sack_enable && tp->rcv_numsacks)
1251				tcp_clean_sackreport(tp);
1252			++tcpstat.tcps_preddat;
1253			tp->rcv_nxt += tlen;
1254			/*
1255			 * Pull snd_wl1 up to prevent seq wrap relative to
1256			 * th_seq.
1257			 */
1258			tp->snd_wl1 = th->th_seq;
1259			/*
1260			 * Pull rcv_up up to prevent seq wrap relative to
1261			 * rcv_nxt.
1262			 */
1263			tp->rcv_up = tp->rcv_nxt;
1264			tcpstat.tcps_rcvpack++;
1265			tcpstat.tcps_rcvbyte += tlen;
1266			ND6_HINT(tp);	/* some progress has been done */
1267			/*
1268#ifdef TCPDEBUG
1269			if (so->so_options & SO_DEBUG)
1270				tcp_trace(TA_INPUT, ostate, tp,
1271				    (void *)tcp_saveipgen, &tcp_savetcp, 0);
1272#endif
1273			 * Add data to socket buffer.
1274			 */
1275			SOCKBUF_LOCK(&so->so_rcv);
1276			if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
1277				m_freem(m);
1278			} else {
1279				m_adj(m, drop_hdrlen);	/* delayed header drop */
1280				sbappendstream_locked(&so->so_rcv, m);
1281			}
1282			sorwakeup_locked(so);
1283			if (DELAY_ACK(tp)) {
1284				tp->t_flags |= TF_DELACK;
1285			} else {
1286				tp->t_flags |= TF_ACKNOW;
1287				tcp_output(tp);
1288			}
1289			goto check_delack;
1290		}
1291	}
1292
1293	/*
1294	 * Calculate amount of space in receive window,
1295	 * and then do TCP input processing.
1296	 * Receive window is amount of space in rcv queue,
1297	 * but not less than advertised window.
1298	 */
1299	{ int win;
1300
1301	win = sbspace(&so->so_rcv);
1302	if (win < 0)
1303		win = 0;
1304	tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
1305	}
1306
1307	switch (tp->t_state) {
1308
1309	/*
1310	 * If the state is SYN_RECEIVED:
1311	 *	if seg contains an ACK, but not for our SYN/ACK, send a RST.
1312	 */
1313	case TCPS_SYN_RECEIVED:
1314		if ((thflags & TH_ACK) &&
1315		    (SEQ_LEQ(th->th_ack, tp->snd_una) ||
1316		     SEQ_GT(th->th_ack, tp->snd_max))) {
1317				rstreason = BANDLIM_RST_OPENPORT;
1318				goto dropwithreset;
1319		}
1320		break;
1321
1322	/*
1323	 * If the state is SYN_SENT:
1324	 *	if seg contains an ACK, but not for our SYN, drop the input.
1325	 *	if seg contains a RST, then drop the connection.
1326	 *	if seg does not contain SYN, then drop it.
1327	 * Otherwise this is an acceptable SYN segment
1328	 *	initialize tp->rcv_nxt and tp->irs
1329	 *	if seg contains ack then advance tp->snd_una
1330	 *	if SYN has been acked change to ESTABLISHED else SYN_RCVD state
1331	 *	arrange for segment to be acked (eventually)
1332	 *	continue processing rest of data/controls, beginning with URG
1333	 */
1334	case TCPS_SYN_SENT:
1335		if ((thflags & TH_ACK) &&
1336		    (SEQ_LEQ(th->th_ack, tp->iss) ||
1337		     SEQ_GT(th->th_ack, tp->snd_max))) {
1338			rstreason = BANDLIM_UNLIMITED;
1339			goto dropwithreset;
1340		}
1341		if (thflags & TH_RST) {
1342			if (thflags & TH_ACK)
1343				tp = tcp_drop(tp, ECONNREFUSED);
1344			goto drop;
1345		}
1346		if ((thflags & TH_SYN) == 0)
1347			goto drop;
1348		tp->snd_wnd = th->th_win;	/* initial send window */
1349
1350		tp->irs = th->th_seq;
1351		tcp_rcvseqinit(tp);
1352		if (thflags & TH_ACK) {
1353			tcpstat.tcps_connects++;
1354			soisconnected(so);
1355#ifdef MAC
1356			SOCK_LOCK(so);
1357			mac_set_socket_peer_from_mbuf(m, so);
1358			SOCK_UNLOCK(so);
1359#endif
1360			/* Do window scaling on this connection? */
1361			if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
1362				(TF_RCVD_SCALE|TF_REQ_SCALE)) {
1363				tp->snd_scale = tp->requested_s_scale;
1364				tp->rcv_scale = tp->request_r_scale;
1365			}
1366			tp->rcv_adv += tp->rcv_wnd;
1367			tp->snd_una++;		/* SYN is acked */
1368			/*
1369			 * If there's data, delay ACK; if there's also a FIN
1370			 * ACKNOW will be turned on later.
1371			 */
1372			if (DELAY_ACK(tp) && tlen != 0)
1373				callout_reset(tp->tt_delack, tcp_delacktime,
1374				    tcp_timer_delack, tp);
1375			else
1376				tp->t_flags |= TF_ACKNOW;
1377			/*
1378			 * Received <SYN,ACK> in SYN_SENT[*] state.
1379			 * Transitions:
1380			 *	SYN_SENT  --> ESTABLISHED
1381			 *	SYN_SENT* --> FIN_WAIT_1
1382			 */
1383			tp->t_starttime = ticks;
1384			if (tp->t_flags & TF_NEEDFIN) {
1385				tp->t_state = TCPS_FIN_WAIT_1;
1386				tp->t_flags &= ~TF_NEEDFIN;
1387				thflags &= ~TH_SYN;
1388			} else {
1389				tp->t_state = TCPS_ESTABLISHED;
1390				callout_reset(tp->tt_keep, tcp_keepidle,
1391					      tcp_timer_keep, tp);
1392			}
1393		} else {
1394			/*
1395			 * Received initial SYN in SYN-SENT[*] state =>
1396			 * simultaneous open.  If segment contains CC option
1397			 * and there is a cached CC, apply TAO test.
1398			 * If it succeeds, connection is * half-synchronized.
1399			 * Otherwise, do 3-way handshake:
1400			 *        SYN-SENT -> SYN-RECEIVED
1401			 *        SYN-SENT* -> SYN-RECEIVED*
1402			 * If there was no CC option, clear cached CC value.
1403			 */
1404			tp->t_flags |= TF_ACKNOW;
1405			callout_stop(tp->tt_rexmt);
1406			tp->t_state = TCPS_SYN_RECEIVED;
1407		}
1408
1409trimthenstep6:
1410		KASSERT(headlocked, ("tcp_input: trimthenstep6: head not "
1411		    "locked"));
1412		INP_LOCK_ASSERT(inp);
1413
1414		/*
1415		 * Advance th->th_seq to correspond to first data byte.
1416		 * If data, trim to stay within window,
1417		 * dropping FIN if necessary.
1418		 */
1419		th->th_seq++;
1420		if (tlen > tp->rcv_wnd) {
1421			todrop = tlen - tp->rcv_wnd;
1422			m_adj(m, -todrop);
1423			tlen = tp->rcv_wnd;
1424			thflags &= ~TH_FIN;
1425			tcpstat.tcps_rcvpackafterwin++;
1426			tcpstat.tcps_rcvbyteafterwin += todrop;
1427		}
1428		tp->snd_wl1 = th->th_seq - 1;
1429		tp->rcv_up = th->th_seq;
1430		/*
1431		 * Client side of transaction: already sent SYN and data.
1432		 * If the remote host used T/TCP to validate the SYN,
1433		 * our data will be ACK'd; if so, enter normal data segment
1434		 * processing in the middle of step 5, ack processing.
1435		 * Otherwise, goto step 6.
1436		 */
1437		if (thflags & TH_ACK)
1438			goto process_ACK;
1439
1440		goto step6;
1441
1442	/*
1443	 * If the state is LAST_ACK or CLOSING or TIME_WAIT:
1444	 *      do normal processing.
1445	 *
1446	 * NB: Leftover from RFC1644 T/TCP.  Cases to be reused later.
1447	 */
1448	case TCPS_LAST_ACK:
1449	case TCPS_CLOSING:
1450	case TCPS_TIME_WAIT:
1451		KASSERT(tp->t_state != TCPS_TIME_WAIT, ("timewait"));
1452		break;  /* continue normal processing */
1453	}
1454
1455	/*
1456	 * States other than LISTEN or SYN_SENT.
1457	 * First check the RST flag and sequence number since reset segments
1458	 * are exempt from the timestamp and connection count tests.  This
1459	 * fixes a bug introduced by the Stevens, vol. 2, p. 960 bugfix
1460	 * below which allowed reset segments in half the sequence space
1461	 * to fall though and be processed (which gives forged reset
1462	 * segments with a random sequence number a 50 percent chance of
1463	 * killing a connection).
1464	 * Then check timestamp, if present.
1465	 * Then check the connection count, if present.
1466	 * Then check that at least some bytes of segment are within
1467	 * receive window.  If segment begins before rcv_nxt,
1468	 * drop leading data (and SYN); if nothing left, just ack.
1469	 *
1470	 *
1471	 * If the RST bit is set, check the sequence number to see
1472	 * if this is a valid reset segment.
1473	 * RFC 793 page 37:
1474	 *   In all states except SYN-SENT, all reset (RST) segments
1475	 *   are validated by checking their SEQ-fields.  A reset is
1476	 *   valid if its sequence number is in the window.
1477	 * Note: this does not take into account delayed ACKs, so
1478	 *   we should test against last_ack_sent instead of rcv_nxt.
1479	 *   The sequence number in the reset segment is normally an
1480	 *   echo of our outgoing acknowlegement numbers, but some hosts
1481	 *   send a reset with the sequence number at the rightmost edge
1482	 *   of our receive window, and we have to handle this case.
1483	 * Note 2: Paul Watson's paper "Slipping in the Window" has shown
1484	 *   that brute force RST attacks are possible.  To combat this,
1485	 *   we use a much stricter check while in the ESTABLISHED state,
1486	 *   only accepting RSTs where the sequence number is equal to
1487	 *   last_ack_sent.  In all other states (the states in which a
1488	 *   RST is more likely), the more permissive check is used.
1489	 * If we have multiple segments in flight, the intial reset
1490	 * segment sequence numbers will be to the left of last_ack_sent,
1491	 * but they will eventually catch up.
1492	 * In any case, it never made sense to trim reset segments to
1493	 * fit the receive window since RFC 1122 says:
1494	 *   4.2.2.12  RST Segment: RFC-793 Section 3.4
1495	 *
1496	 *    A TCP SHOULD allow a received RST segment to include data.
1497	 *
1498	 *    DISCUSSION
1499	 *         It has been suggested that a RST segment could contain
1500	 *         ASCII text that encoded and explained the cause of the
1501	 *         RST.  No standard has yet been established for such
1502	 *         data.
1503	 *
1504	 * If the reset segment passes the sequence number test examine
1505	 * the state:
1506	 *    SYN_RECEIVED STATE:
1507	 *	If passive open, return to LISTEN state.
1508	 *	If active open, inform user that connection was refused.
1509	 *    ESTABLISHED, FIN_WAIT_1, FIN_WAIT_2, CLOSE_WAIT STATES:
1510	 *	Inform user that connection was reset, and close tcb.
1511	 *    CLOSING, LAST_ACK STATES:
1512	 *	Close the tcb.
1513	 *    TIME_WAIT STATE:
1514	 *	Drop the segment - see Stevens, vol. 2, p. 964 and
1515	 *      RFC 1337.
1516	 */
1517	if (thflags & TH_RST) {
1518		if ((SEQ_GEQ(th->th_seq, tp->last_ack_sent) &&
1519		    SEQ_LT(th->th_seq, tp->last_ack_sent + tp->rcv_wnd)) ||
1520		    (tp->rcv_wnd == 0 && tp->last_ack_sent == th->th_seq)) {
1521			switch (tp->t_state) {
1522
1523			case TCPS_SYN_RECEIVED:
1524				so->so_error = ECONNREFUSED;
1525				goto close;
1526
1527			case TCPS_ESTABLISHED:
1528				if (tp->last_ack_sent != th->th_seq &&
1529			 	    tcp_insecure_rst == 0) {
1530					tcpstat.tcps_badrst++;
1531					goto drop;
1532				}
1533			case TCPS_FIN_WAIT_1:
1534			case TCPS_FIN_WAIT_2:
1535			case TCPS_CLOSE_WAIT:
1536				so->so_error = ECONNRESET;
1537			close:
1538				tp->t_state = TCPS_CLOSED;
1539				tcpstat.tcps_drops++;
1540				tp = tcp_close(tp);
1541				break;
1542
1543			case TCPS_CLOSING:
1544			case TCPS_LAST_ACK:
1545				tp = tcp_close(tp);
1546				break;
1547
1548			case TCPS_TIME_WAIT:
1549				KASSERT(tp->t_state != TCPS_TIME_WAIT,
1550				    ("timewait"));
1551				break;
1552			}
1553		}
1554		goto drop;
1555	}
1556
1557	/*
1558	 * RFC 1323 PAWS: If we have a timestamp reply on this segment
1559	 * and it's less than ts_recent, drop it.
1560	 */
1561	if ((to.to_flags & TOF_TS) != 0 && tp->ts_recent &&
1562	    TSTMP_LT(to.to_tsval, tp->ts_recent)) {
1563
1564		/* Check to see if ts_recent is over 24 days old.  */
1565		if ((int)(ticks - tp->ts_recent_age) > TCP_PAWS_IDLE) {
1566			/*
1567			 * Invalidate ts_recent.  If this segment updates
1568			 * ts_recent, the age will be reset later and ts_recent
1569			 * will get a valid value.  If it does not, setting
1570			 * ts_recent to zero will at least satisfy the
1571			 * requirement that zero be placed in the timestamp
1572			 * echo reply when ts_recent isn't valid.  The
1573			 * age isn't reset until we get a valid ts_recent
1574			 * because we don't want out-of-order segments to be
1575			 * dropped when ts_recent is old.
1576			 */
1577			tp->ts_recent = 0;
1578		} else {
1579			tcpstat.tcps_rcvduppack++;
1580			tcpstat.tcps_rcvdupbyte += tlen;
1581			tcpstat.tcps_pawsdrop++;
1582			if (tlen)
1583				goto dropafterack;
1584			goto drop;
1585		}
1586	}
1587
1588	/*
1589	 * In the SYN-RECEIVED state, validate that the packet belongs to
1590	 * this connection before trimming the data to fit the receive
1591	 * window.  Check the sequence number versus IRS since we know
1592	 * the sequence numbers haven't wrapped.  This is a partial fix
1593	 * for the "LAND" DoS attack.
1594	 */
1595	if (tp->t_state == TCPS_SYN_RECEIVED && SEQ_LT(th->th_seq, tp->irs)) {
1596		rstreason = BANDLIM_RST_OPENPORT;
1597		goto dropwithreset;
1598	}
1599
1600	todrop = tp->rcv_nxt - th->th_seq;
1601	if (todrop > 0) {
1602		if (thflags & TH_SYN) {
1603			thflags &= ~TH_SYN;
1604			th->th_seq++;
1605			if (th->th_urp > 1)
1606				th->th_urp--;
1607			else
1608				thflags &= ~TH_URG;
1609			todrop--;
1610		}
1611		/*
1612		 * Following if statement from Stevens, vol. 2, p. 960.
1613		 */
1614		if (todrop > tlen
1615		    || (todrop == tlen && (thflags & TH_FIN) == 0)) {
1616			/*
1617			 * Any valid FIN must be to the left of the window.
1618			 * At this point the FIN must be a duplicate or out
1619			 * of sequence; drop it.
1620			 */
1621			thflags &= ~TH_FIN;
1622
1623			/*
1624			 * Send an ACK to resynchronize and drop any data.
1625			 * But keep on processing for RST or ACK.
1626			 */
1627			tp->t_flags |= TF_ACKNOW;
1628			todrop = tlen;
1629			tcpstat.tcps_rcvduppack++;
1630			tcpstat.tcps_rcvdupbyte += todrop;
1631		} else {
1632			tcpstat.tcps_rcvpartduppack++;
1633			tcpstat.tcps_rcvpartdupbyte += todrop;
1634		}
1635		drop_hdrlen += todrop;	/* drop from the top afterwards */
1636		th->th_seq += todrop;
1637		tlen -= todrop;
1638		if (th->th_urp > todrop)
1639			th->th_urp -= todrop;
1640		else {
1641			thflags &= ~TH_URG;
1642			th->th_urp = 0;
1643		}
1644	}
1645
1646	/*
1647	 * If new data are received on a connection after the
1648	 * user processes are gone, then RST the other end.
1649	 */
1650	if ((so->so_state & SS_NOFDREF) &&
1651	    tp->t_state > TCPS_CLOSE_WAIT && tlen) {
1652		tp = tcp_close(tp);
1653		tcpstat.tcps_rcvafterclose++;
1654		rstreason = BANDLIM_UNLIMITED;
1655		goto dropwithreset;
1656	}
1657
1658	/*
1659	 * If segment ends after window, drop trailing data
1660	 * (and PUSH and FIN); if nothing left, just ACK.
1661	 */
1662	todrop = (th->th_seq+tlen) - (tp->rcv_nxt+tp->rcv_wnd);
1663	if (todrop > 0) {
1664		tcpstat.tcps_rcvpackafterwin++;
1665		if (todrop >= tlen) {
1666			tcpstat.tcps_rcvbyteafterwin += tlen;
1667			/*
1668			 * If a new connection request is received
1669			 * while in TIME_WAIT, drop the old connection
1670			 * and start over if the sequence numbers
1671			 * are above the previous ones.
1672			 */
1673			KASSERT(tp->t_state != TCPS_TIME_WAIT, ("timewait"));
1674			if (thflags & TH_SYN &&
1675			    tp->t_state == TCPS_TIME_WAIT &&
1676			    SEQ_GT(th->th_seq, tp->rcv_nxt)) {
1677				tp = tcp_close(tp);
1678				goto findpcb;
1679			}
1680			/*
1681			 * If window is closed can only take segments at
1682			 * window edge, and have to drop data and PUSH from
1683			 * incoming segments.  Continue processing, but
1684			 * remember to ack.  Otherwise, drop segment
1685			 * and ack.
1686			 */
1687			if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
1688				tp->t_flags |= TF_ACKNOW;
1689				tcpstat.tcps_rcvwinprobe++;
1690			} else
1691				goto dropafterack;
1692		} else
1693			tcpstat.tcps_rcvbyteafterwin += todrop;
1694		m_adj(m, -todrop);
1695		tlen -= todrop;
1696		thflags &= ~(TH_PUSH|TH_FIN);
1697	}
1698
1699	/*
1700	 * If last ACK falls within this segment's sequence numbers,
1701	 * record its timestamp.
1702	 * NOTE that the test is modified according to the latest
1703	 * proposal of the tcplw@cray.com list (Braden 1993/04/26).
1704	 */
1705	if ((to.to_flags & TOF_TS) != 0 &&
1706	    SEQ_LEQ(th->th_seq, tp->last_ack_sent)) {
1707		tp->ts_recent_age = ticks;
1708		tp->ts_recent = to.to_tsval;
1709	}
1710
1711	/*
1712	 * If a SYN is in the window, then this is an
1713	 * error and we send an RST and drop the connection.
1714	 */
1715	if (thflags & TH_SYN) {
1716		tp = tcp_drop(tp, ECONNRESET);
1717		rstreason = BANDLIM_UNLIMITED;
1718		goto drop;
1719	}
1720
1721	/*
1722	 * If the ACK bit is off:  if in SYN-RECEIVED state or SENDSYN
1723	 * flag is on (half-synchronized state), then queue data for
1724	 * later processing; else drop segment and return.
1725	 */
1726	if ((thflags & TH_ACK) == 0) {
1727		if (tp->t_state == TCPS_SYN_RECEIVED ||
1728		    (tp->t_flags & TF_NEEDSYN))
1729			goto step6;
1730		else
1731			goto drop;
1732	}
1733
1734	/*
1735	 * Ack processing.
1736	 */
1737	switch (tp->t_state) {
1738
1739	/*
1740	 * In SYN_RECEIVED state, the ack ACKs our SYN, so enter
1741	 * ESTABLISHED state and continue processing.
1742	 * The ACK was checked above.
1743	 */
1744	case TCPS_SYN_RECEIVED:
1745
1746		tcpstat.tcps_connects++;
1747		soisconnected(so);
1748		/* Do window scaling? */
1749		if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
1750			(TF_RCVD_SCALE|TF_REQ_SCALE)) {
1751			tp->snd_scale = tp->requested_s_scale;
1752			tp->rcv_scale = tp->request_r_scale;
1753		}
1754		/*
1755		 * Make transitions:
1756		 *      SYN-RECEIVED  -> ESTABLISHED
1757		 *      SYN-RECEIVED* -> FIN-WAIT-1
1758		 */
1759		tp->t_starttime = ticks;
1760		if (tp->t_flags & TF_NEEDFIN) {
1761			tp->t_state = TCPS_FIN_WAIT_1;
1762			tp->t_flags &= ~TF_NEEDFIN;
1763		} else {
1764			tp->t_state = TCPS_ESTABLISHED;
1765			callout_reset(tp->tt_keep, tcp_keepidle,
1766				      tcp_timer_keep, tp);
1767		}
1768		/*
1769		 * If segment contains data or ACK, will call tcp_reass()
1770		 * later; if not, do so now to pass queued data to user.
1771		 */
1772		if (tlen == 0 && (thflags & TH_FIN) == 0)
1773			(void) tcp_reass(tp, (struct tcphdr *)0, 0,
1774			    (struct mbuf *)0);
1775		tp->snd_wl1 = th->th_seq - 1;
1776		/* FALLTHROUGH */
1777
1778	/*
1779	 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
1780	 * ACKs.  If the ack is in the range
1781	 *	tp->snd_una < th->th_ack <= tp->snd_max
1782	 * then advance tp->snd_una to th->th_ack and drop
1783	 * data from the retransmission queue.  If this ACK reflects
1784	 * more up to date window information we update our window information.
1785	 */
1786	case TCPS_ESTABLISHED:
1787	case TCPS_FIN_WAIT_1:
1788	case TCPS_FIN_WAIT_2:
1789	case TCPS_CLOSE_WAIT:
1790	case TCPS_CLOSING:
1791	case TCPS_LAST_ACK:
1792	case TCPS_TIME_WAIT:
1793		KASSERT(tp->t_state != TCPS_TIME_WAIT, ("timewait"));
1794		if (SEQ_LEQ(th->th_ack, tp->snd_una)) {
1795			if (tlen == 0 && tiwin == tp->snd_wnd) {
1796				tcpstat.tcps_rcvdupack++;
1797				/*
1798				 * If we have outstanding data (other than
1799				 * a window probe), this is a completely
1800				 * duplicate ack (ie, window info didn't
1801				 * change), the ack is the biggest we've
1802				 * seen and we've seen exactly our rexmt
1803				 * threshhold of them, assume a packet
1804				 * has been dropped and retransmit it.
1805				 * Kludge snd_nxt & the congestion
1806				 * window so we send only this one
1807				 * packet.
1808				 *
1809				 * We know we're losing at the current
1810				 * window size so do congestion avoidance
1811				 * (set ssthresh to half the current window
1812				 * and pull our congestion window back to
1813				 * the new ssthresh).
1814				 *
1815				 * Dup acks mean that packets have left the
1816				 * network (they're now cached at the receiver)
1817				 * so bump cwnd by the amount in the receiver
1818				 * to keep a constant cwnd packets in the
1819				 * network.
1820				 */
1821				if (!callout_active(tp->tt_rexmt) ||
1822				    th->th_ack != tp->snd_una)
1823					tp->t_dupacks = 0;
1824				else if (++tp->t_dupacks > tcprexmtthresh ||
1825					 ((tcp_do_newreno || tp->sack_enable) &&
1826					  IN_FASTRECOVERY(tp))) {
1827					tp->snd_cwnd += tp->t_maxseg;
1828					(void) tcp_output(tp);
1829					goto drop;
1830				} else if (tp->t_dupacks == tcprexmtthresh) {
1831					tcp_seq onxt = tp->snd_nxt;
1832					u_int win;
1833
1834					/*
1835					 * If we're doing sack, check to
1836					 * see if we're already in sack
1837					 * recovery. If we're not doing sack,
1838					 * check to see if we're in newreno
1839					 * recovery.
1840					 */
1841					if (tp->sack_enable) {
1842						if (IN_FASTRECOVERY(tp)) {
1843							tp->t_dupacks = 0;
1844							break;
1845						}
1846					} else if (tcp_do_newreno) {
1847						if (SEQ_LEQ(th->th_ack,
1848						    tp->snd_recover)) {
1849							tp->t_dupacks = 0;
1850							break;
1851						}
1852					}
1853					win = min(tp->snd_wnd, tp->snd_cwnd) /
1854					    2 / tp->t_maxseg;
1855					if (win < 2)
1856						win = 2;
1857					tp->snd_ssthresh = win * tp->t_maxseg;
1858					ENTER_FASTRECOVERY(tp);
1859					tp->snd_recover = tp->snd_max;
1860					callout_stop(tp->tt_rexmt);
1861					tp->t_rtttime = 0;
1862					if (tp->sack_enable) {
1863						tcpstat.tcps_sack_recovery_episode++;
1864						tp->sack_newdata = tp->snd_nxt;
1865						tp->snd_cwnd = tp->t_maxseg;
1866						(void) tcp_output(tp);
1867						goto drop;
1868					}
1869					tp->snd_nxt = th->th_ack;
1870					tp->snd_cwnd = tp->t_maxseg;
1871					(void) tcp_output(tp);
1872					KASSERT(tp->snd_limited <= 2,
1873					    ("tp->snd_limited too big"));
1874					tp->snd_cwnd = tp->snd_ssthresh +
1875					     tp->t_maxseg *
1876					     (tp->t_dupacks - tp->snd_limited);
1877					if (SEQ_GT(onxt, tp->snd_nxt))
1878						tp->snd_nxt = onxt;
1879					goto drop;
1880				} else if (tcp_do_rfc3042) {
1881					u_long oldcwnd = tp->snd_cwnd;
1882					tcp_seq oldsndmax = tp->snd_max;
1883					u_int sent;
1884
1885					KASSERT(tp->t_dupacks == 1 ||
1886					    tp->t_dupacks == 2,
1887					    ("dupacks not 1 or 2"));
1888					if (tp->t_dupacks == 1)
1889						tp->snd_limited = 0;
1890					tp->snd_cwnd =
1891					    (tp->snd_nxt - tp->snd_una) +
1892					    (tp->t_dupacks - tp->snd_limited) *
1893					    tp->t_maxseg;
1894					(void) tcp_output(tp);
1895					sent = tp->snd_max - oldsndmax;
1896					if (sent > tp->t_maxseg) {
1897						KASSERT((tp->t_dupacks == 2 &&
1898						    tp->snd_limited == 0) ||
1899						   (sent == tp->t_maxseg + 1 &&
1900						    tp->t_flags & TF_SENTFIN),
1901						    ("sent too much"));
1902						tp->snd_limited = 2;
1903					} else if (sent > 0)
1904						++tp->snd_limited;
1905					tp->snd_cwnd = oldcwnd;
1906					goto drop;
1907				}
1908			} else
1909				tp->t_dupacks = 0;
1910			break;
1911		}
1912
1913		KASSERT(SEQ_GT(th->th_ack, tp->snd_una), ("th_ack <= snd_una"));
1914
1915		/*
1916		 * If the congestion window was inflated to account
1917		 * for the other side's cached packets, retract it.
1918		 */
1919		if (tcp_do_newreno || tp->sack_enable) {
1920			if (IN_FASTRECOVERY(tp)) {
1921				if (SEQ_LT(th->th_ack, tp->snd_recover)) {
1922					if (tp->sack_enable)
1923						tcp_sack_partialack(tp, th);
1924					else
1925						tcp_newreno_partial_ack(tp, th);
1926				} else {
1927					/*
1928					 * Out of fast recovery.
1929					 * Window inflation should have left us
1930					 * with approximately snd_ssthresh
1931					 * outstanding data.
1932					 * But in case we would be inclined to
1933					 * send a burst, better to do it via
1934					 * the slow start mechanism.
1935					 */
1936					if (SEQ_GT(th->th_ack +
1937							tp->snd_ssthresh,
1938						   tp->snd_max))
1939						tp->snd_cwnd = tp->snd_max -
1940								th->th_ack +
1941								tp->t_maxseg;
1942					else
1943						tp->snd_cwnd = tp->snd_ssthresh;
1944				}
1945			}
1946		} else {
1947			if (tp->t_dupacks >= tcprexmtthresh &&
1948			    tp->snd_cwnd > tp->snd_ssthresh)
1949				tp->snd_cwnd = tp->snd_ssthresh;
1950		}
1951		tp->t_dupacks = 0;
1952		if (SEQ_GT(th->th_ack, tp->snd_max)) {
1953			tcpstat.tcps_rcvacktoomuch++;
1954			goto dropafterack;
1955		}
1956		/*
1957		 * If we reach this point, ACK is not a duplicate,
1958		 *     i.e., it ACKs something we sent.
1959		 */
1960		if (tp->t_flags & TF_NEEDSYN) {
1961			/*
1962			 * T/TCP: Connection was half-synchronized, and our
1963			 * SYN has been ACK'd (so connection is now fully
1964			 * synchronized).  Go to non-starred state,
1965			 * increment snd_una for ACK of SYN, and check if
1966			 * we can do window scaling.
1967			 */
1968			tp->t_flags &= ~TF_NEEDSYN;
1969			tp->snd_una++;
1970			/* Do window scaling? */
1971			if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
1972				(TF_RCVD_SCALE|TF_REQ_SCALE)) {
1973				tp->snd_scale = tp->requested_s_scale;
1974				tp->rcv_scale = tp->request_r_scale;
1975			}
1976		}
1977
1978process_ACK:
1979		KASSERT(headlocked, ("tcp_input: process_ACK: head not "
1980		    "locked"));
1981		INP_LOCK_ASSERT(inp);
1982
1983		acked = th->th_ack - tp->snd_una;
1984		tcpstat.tcps_rcvackpack++;
1985		tcpstat.tcps_rcvackbyte += acked;
1986
1987		/*
1988		 * If we just performed our first retransmit, and the ACK
1989		 * arrives within our recovery window, then it was a mistake
1990		 * to do the retransmit in the first place.  Recover our
1991		 * original cwnd and ssthresh, and proceed to transmit where
1992		 * we left off.
1993		 */
1994		if (tp->t_rxtshift == 1 && ticks < tp->t_badrxtwin) {
1995			++tcpstat.tcps_sndrexmitbad;
1996			tp->snd_cwnd = tp->snd_cwnd_prev;
1997			tp->snd_ssthresh = tp->snd_ssthresh_prev;
1998			tp->snd_recover = tp->snd_recover_prev;
1999			if (tp->t_flags & TF_WASFRECOVERY)
2000				ENTER_FASTRECOVERY(tp);
2001			tp->snd_nxt = tp->snd_max;
2002			tp->t_badrxtwin = 0;	/* XXX probably not required */
2003		}
2004
2005		/*
2006		 * If we have a timestamp reply, update smoothed
2007		 * round trip time.  If no timestamp is present but
2008		 * transmit timer is running and timed sequence
2009		 * number was acked, update smoothed round trip time.
2010		 * Since we now have an rtt measurement, cancel the
2011		 * timer backoff (cf., Phil Karn's retransmit alg.).
2012		 * Recompute the initial retransmit timer.
2013		 *
2014		 * Some boxes send broken timestamp replies
2015		 * during the SYN+ACK phase, ignore
2016		 * timestamps of 0 or we could calculate a
2017		 * huge RTT and blow up the retransmit timer.
2018		 */
2019		if ((to.to_flags & TOF_TS) != 0 &&
2020		    to.to_tsecr) {
2021			tcp_xmit_timer(tp, ticks - to.to_tsecr + 1);
2022		} else if (tp->t_rtttime && SEQ_GT(th->th_ack, tp->t_rtseq)) {
2023			tcp_xmit_timer(tp, ticks - tp->t_rtttime);
2024		}
2025		tcp_xmit_bandwidth_limit(tp, th->th_ack);
2026
2027		/*
2028		 * If all outstanding data is acked, stop retransmit
2029		 * timer and remember to restart (more output or persist).
2030		 * If there is more data to be acked, restart retransmit
2031		 * timer, using current (possibly backed-off) value.
2032		 */
2033		if (th->th_ack == tp->snd_max) {
2034			callout_stop(tp->tt_rexmt);
2035			needoutput = 1;
2036		} else if (!callout_active(tp->tt_persist))
2037			callout_reset(tp->tt_rexmt, tp->t_rxtcur,
2038				      tcp_timer_rexmt, tp);
2039
2040		/*
2041		 * If no data (only SYN) was ACK'd,
2042		 *    skip rest of ACK processing.
2043		 */
2044		if (acked == 0)
2045			goto step6;
2046
2047		/*
2048		 * When new data is acked, open the congestion window.
2049		 * If the window gives us less than ssthresh packets
2050		 * in flight, open exponentially (maxseg per packet).
2051		 * Otherwise open linearly: maxseg per window
2052		 * (maxseg^2 / cwnd per packet).
2053		 */
2054		if ((!tcp_do_newreno && !tp->sack_enable) ||
2055		    !IN_FASTRECOVERY(tp)) {
2056			register u_int cw = tp->snd_cwnd;
2057			register u_int incr = tp->t_maxseg;
2058			if (cw > tp->snd_ssthresh)
2059				incr = incr * incr / cw;
2060			tp->snd_cwnd = min(cw+incr, TCP_MAXWIN<<tp->snd_scale);
2061		}
2062		SOCKBUF_LOCK(&so->so_snd);
2063		if (acked > so->so_snd.sb_cc) {
2064			tp->snd_wnd -= so->so_snd.sb_cc;
2065			sbdrop_locked(&so->so_snd, (int)so->so_snd.sb_cc);
2066			ourfinisacked = 1;
2067		} else {
2068			sbdrop_locked(&so->so_snd, acked);
2069			tp->snd_wnd -= acked;
2070			ourfinisacked = 0;
2071		}
2072		sowwakeup_locked(so);
2073		/* detect una wraparound */
2074		if ((tcp_do_newreno || tp->sack_enable) &&
2075		    !IN_FASTRECOVERY(tp) &&
2076		    SEQ_GT(tp->snd_una, tp->snd_recover) &&
2077		    SEQ_LEQ(th->th_ack, tp->snd_recover))
2078			tp->snd_recover = th->th_ack - 1;
2079		if ((tcp_do_newreno || tp->sack_enable) &&
2080		    IN_FASTRECOVERY(tp) &&
2081		    SEQ_GEQ(th->th_ack, tp->snd_recover))
2082			EXIT_FASTRECOVERY(tp);
2083		tp->snd_una = th->th_ack;
2084		if (tp->sack_enable) {
2085			if (SEQ_GT(tp->snd_una, tp->snd_recover))
2086				tp->snd_recover = tp->snd_una;
2087		}
2088		if (SEQ_LT(tp->snd_nxt, tp->snd_una))
2089			tp->snd_nxt = tp->snd_una;
2090
2091		switch (tp->t_state) {
2092
2093		/*
2094		 * In FIN_WAIT_1 STATE in addition to the processing
2095		 * for the ESTABLISHED state if our FIN is now acknowledged
2096		 * then enter FIN_WAIT_2.
2097		 */
2098		case TCPS_FIN_WAIT_1:
2099			if (ourfinisacked) {
2100				/*
2101				 * If we can't receive any more
2102				 * data, then closing user can proceed.
2103				 * Starting the timer is contrary to the
2104				 * specification, but if we don't get a FIN
2105				 * we'll hang forever.
2106				 */
2107		/* XXXjl
2108		 * we should release the tp also, and use a
2109		 * compressed state.
2110		 */
2111				if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
2112					soisdisconnected(so);
2113					callout_reset(tp->tt_2msl, tcp_maxidle,
2114						      tcp_timer_2msl, tp);
2115				}
2116				tp->t_state = TCPS_FIN_WAIT_2;
2117			}
2118			break;
2119
2120		/*
2121		 * In CLOSING STATE in addition to the processing for
2122		 * the ESTABLISHED state if the ACK acknowledges our FIN
2123		 * then enter the TIME-WAIT state, otherwise ignore
2124		 * the segment.
2125		 */
2126		case TCPS_CLOSING:
2127			if (ourfinisacked) {
2128				KASSERT(headlocked, ("tcp_input: process_ACK: "
2129				    "head not locked"));
2130				tcp_twstart(tp);
2131				INP_INFO_WUNLOCK(&tcbinfo);
2132				m_freem(m);
2133				return;
2134			}
2135			break;
2136
2137		/*
2138		 * In LAST_ACK, we may still be waiting for data to drain
2139		 * and/or to be acked, as well as for the ack of our FIN.
2140		 * If our FIN is now acknowledged, delete the TCB,
2141		 * enter the closed state and return.
2142		 */
2143		case TCPS_LAST_ACK:
2144			if (ourfinisacked) {
2145				tp = tcp_close(tp);
2146				goto drop;
2147			}
2148			break;
2149
2150		/*
2151		 * In TIME_WAIT state the only thing that should arrive
2152		 * is a retransmission of the remote FIN.  Acknowledge
2153		 * it and restart the finack timer.
2154		 */
2155		case TCPS_TIME_WAIT:
2156			KASSERT(tp->t_state != TCPS_TIME_WAIT, ("timewait"));
2157			callout_reset(tp->tt_2msl, 2 * tcp_msl,
2158				      tcp_timer_2msl, tp);
2159			goto dropafterack;
2160		}
2161	}
2162
2163step6:
2164	KASSERT(headlocked, ("tcp_input: step6: head not locked"));
2165	INP_LOCK_ASSERT(inp);
2166
2167	/*
2168	 * Update window information.
2169	 * Don't look at window if no ACK: TAC's send garbage on first SYN.
2170	 */
2171	if ((thflags & TH_ACK) &&
2172	    (SEQ_LT(tp->snd_wl1, th->th_seq) ||
2173	    (tp->snd_wl1 == th->th_seq && (SEQ_LT(tp->snd_wl2, th->th_ack) ||
2174	     (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))))) {
2175		/* keep track of pure window updates */
2176		if (tlen == 0 &&
2177		    tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)
2178			tcpstat.tcps_rcvwinupd++;
2179		tp->snd_wnd = tiwin;
2180		tp->snd_wl1 = th->th_seq;
2181		tp->snd_wl2 = th->th_ack;
2182		if (tp->snd_wnd > tp->max_sndwnd)
2183			tp->max_sndwnd = tp->snd_wnd;
2184		needoutput = 1;
2185	}
2186
2187	/*
2188	 * Process segments with URG.
2189	 */
2190	if ((thflags & TH_URG) && th->th_urp &&
2191	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2192		/*
2193		 * This is a kludge, but if we receive and accept
2194		 * random urgent pointers, we'll crash in
2195		 * soreceive.  It's hard to imagine someone
2196		 * actually wanting to send this much urgent data.
2197		 */
2198		SOCKBUF_LOCK(&so->so_rcv);
2199		if (th->th_urp + so->so_rcv.sb_cc > sb_max) {
2200			th->th_urp = 0;			/* XXX */
2201			thflags &= ~TH_URG;		/* XXX */
2202			SOCKBUF_UNLOCK(&so->so_rcv);	/* XXX */
2203			goto dodata;			/* XXX */
2204		}
2205		/*
2206		 * If this segment advances the known urgent pointer,
2207		 * then mark the data stream.  This should not happen
2208		 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
2209		 * a FIN has been received from the remote side.
2210		 * In these states we ignore the URG.
2211		 *
2212		 * According to RFC961 (Assigned Protocols),
2213		 * the urgent pointer points to the last octet
2214		 * of urgent data.  We continue, however,
2215		 * to consider it to indicate the first octet
2216		 * of data past the urgent section as the original
2217		 * spec states (in one of two places).
2218		 */
2219		if (SEQ_GT(th->th_seq+th->th_urp, tp->rcv_up)) {
2220			tp->rcv_up = th->th_seq + th->th_urp;
2221			so->so_oobmark = so->so_rcv.sb_cc +
2222			    (tp->rcv_up - tp->rcv_nxt) - 1;
2223			if (so->so_oobmark == 0)
2224				so->so_rcv.sb_state |= SBS_RCVATMARK;
2225			sohasoutofband(so);
2226			tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
2227		}
2228		SOCKBUF_UNLOCK(&so->so_rcv);
2229		/*
2230		 * Remove out of band data so doesn't get presented to user.
2231		 * This can happen independent of advancing the URG pointer,
2232		 * but if two URG's are pending at once, some out-of-band
2233		 * data may creep in... ick.
2234		 */
2235		if (th->th_urp <= (u_long)tlen &&
2236		    !(so->so_options & SO_OOBINLINE)) {
2237			/* hdr drop is delayed */
2238			tcp_pulloutofband(so, th, m, drop_hdrlen);
2239		}
2240	} else {
2241		/*
2242		 * If no out of band data is expected,
2243		 * pull receive urgent pointer along
2244		 * with the receive window.
2245		 */
2246		if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
2247			tp->rcv_up = tp->rcv_nxt;
2248	}
2249dodata:							/* XXX */
2250	KASSERT(headlocked, ("tcp_input: dodata: head not locked"));
2251	INP_LOCK_ASSERT(inp);
2252
2253	/*
2254	 * Process the segment text, merging it into the TCP sequencing queue,
2255	 * and arranging for acknowledgment of receipt if necessary.
2256	 * This process logically involves adjusting tp->rcv_wnd as data
2257	 * is presented to the user (this happens in tcp_usrreq.c,
2258	 * case PRU_RCVD).  If a FIN has already been received on this
2259	 * connection then we just ignore the text.
2260	 */
2261	if ((tlen || (thflags & TH_FIN)) &&
2262	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2263		m_adj(m, drop_hdrlen);	/* delayed header drop */
2264		/*
2265		 * Insert segment which includes th into TCP reassembly queue
2266		 * with control block tp.  Set thflags to whether reassembly now
2267		 * includes a segment with FIN.  This handles the common case
2268		 * inline (segment is the next to be received on an established
2269		 * connection, and the queue is empty), avoiding linkage into
2270		 * and removal from the queue and repetition of various
2271		 * conversions.
2272		 * Set DELACK for segments received in order, but ack
2273		 * immediately when segments are out of order (so
2274		 * fast retransmit can work).
2275		 */
2276		if (th->th_seq == tp->rcv_nxt &&
2277		    LIST_EMPTY(&tp->t_segq) &&
2278		    TCPS_HAVEESTABLISHED(tp->t_state)) {
2279			if (DELAY_ACK(tp))
2280				tp->t_flags |= TF_DELACK;
2281			else
2282				tp->t_flags |= TF_ACKNOW;
2283			tp->rcv_nxt += tlen;
2284			thflags = th->th_flags & TH_FIN;
2285			tcpstat.tcps_rcvpack++;
2286			tcpstat.tcps_rcvbyte += tlen;
2287			ND6_HINT(tp);
2288			SOCKBUF_LOCK(&so->so_rcv);
2289			if (so->so_rcv.sb_state & SBS_CANTRCVMORE)
2290				m_freem(m);
2291			else
2292				sbappendstream_locked(&so->so_rcv, m);
2293			sorwakeup_locked(so);
2294		} else {
2295			thflags = tcp_reass(tp, th, &tlen, m);
2296			tp->t_flags |= TF_ACKNOW;
2297		}
2298		if (tp->sack_enable)
2299			tcp_update_sack_list(tp, th->th_seq, th->th_seq + tlen);
2300		/*
2301		 * Note the amount of data that peer has sent into
2302		 * our window, in order to estimate the sender's
2303		 * buffer size.
2304		 */
2305		len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
2306	} else {
2307		m_freem(m);
2308		thflags &= ~TH_FIN;
2309	}
2310
2311	/*
2312	 * If FIN is received ACK the FIN and let the user know
2313	 * that the connection is closing.
2314	 */
2315	if (thflags & TH_FIN) {
2316		if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2317			socantrcvmore(so);
2318			/*
2319			 * If connection is half-synchronized
2320			 * (ie NEEDSYN flag on) then delay ACK,
2321			 * so it may be piggybacked when SYN is sent.
2322			 * Otherwise, since we received a FIN then no
2323			 * more input can be expected, send ACK now.
2324			 */
2325			if (tp->t_flags & TF_NEEDSYN)
2326				tp->t_flags |= TF_DELACK;
2327			else
2328				tp->t_flags |= TF_ACKNOW;
2329			tp->rcv_nxt++;
2330		}
2331		switch (tp->t_state) {
2332
2333		/*
2334		 * In SYN_RECEIVED and ESTABLISHED STATES
2335		 * enter the CLOSE_WAIT state.
2336		 */
2337		case TCPS_SYN_RECEIVED:
2338			tp->t_starttime = ticks;
2339			/*FALLTHROUGH*/
2340		case TCPS_ESTABLISHED:
2341			tp->t_state = TCPS_CLOSE_WAIT;
2342			break;
2343
2344		/*
2345		 * If still in FIN_WAIT_1 STATE FIN has not been acked so
2346		 * enter the CLOSING state.
2347		 */
2348		case TCPS_FIN_WAIT_1:
2349			tp->t_state = TCPS_CLOSING;
2350			break;
2351
2352		/*
2353		 * In FIN_WAIT_2 state enter the TIME_WAIT state,
2354		 * starting the time-wait timer, turning off the other
2355		 * standard timers.
2356		 */
2357		case TCPS_FIN_WAIT_2:
2358			KASSERT(headlocked == 1, ("tcp_input: dodata: "
2359			    "TCP_FIN_WAIT_2: head not locked"));
2360			tcp_twstart(tp);
2361			INP_INFO_WUNLOCK(&tcbinfo);
2362			return;
2363
2364		/*
2365		 * In TIME_WAIT state restart the 2 MSL time_wait timer.
2366		 */
2367		case TCPS_TIME_WAIT:
2368			KASSERT(tp->t_state != TCPS_TIME_WAIT, ("timewait"));
2369			callout_reset(tp->tt_2msl, 2 * tcp_msl,
2370				      tcp_timer_2msl, tp);
2371			break;
2372		}
2373	}
2374	INP_INFO_WUNLOCK(&tcbinfo);
2375	headlocked = 0;
2376#ifdef TCPDEBUG
2377	if (so->so_options & SO_DEBUG)
2378		tcp_trace(TA_INPUT, ostate, tp, (void *)tcp_saveipgen,
2379			  &tcp_savetcp, 0);
2380#endif
2381
2382	/*
2383	 * Return any desired output.
2384	 */
2385	if (needoutput || (tp->t_flags & TF_ACKNOW))
2386		(void) tcp_output(tp);
2387
2388check_delack:
2389	KASSERT(headlocked == 0, ("tcp_input: check_delack: head locked"));
2390	INP_LOCK_ASSERT(inp);
2391	if (tp->t_flags & TF_DELACK) {
2392		tp->t_flags &= ~TF_DELACK;
2393		callout_reset(tp->tt_delack, tcp_delacktime,
2394		    tcp_timer_delack, tp);
2395	}
2396	INP_UNLOCK(inp);
2397	return;
2398
2399dropafterack:
2400	KASSERT(headlocked, ("tcp_input: dropafterack: head not locked"));
2401	/*
2402	 * Generate an ACK dropping incoming segment if it occupies
2403	 * sequence space, where the ACK reflects our state.
2404	 *
2405	 * We can now skip the test for the RST flag since all
2406	 * paths to this code happen after packets containing
2407	 * RST have been dropped.
2408	 *
2409	 * In the SYN-RECEIVED state, don't send an ACK unless the
2410	 * segment we received passes the SYN-RECEIVED ACK test.
2411	 * If it fails send a RST.  This breaks the loop in the
2412	 * "LAND" DoS attack, and also prevents an ACK storm
2413	 * between two listening ports that have been sent forged
2414	 * SYN segments, each with the source address of the other.
2415	 */
2416	if (tp->t_state == TCPS_SYN_RECEIVED && (thflags & TH_ACK) &&
2417	    (SEQ_GT(tp->snd_una, th->th_ack) ||
2418	     SEQ_GT(th->th_ack, tp->snd_max)) ) {
2419		rstreason = BANDLIM_RST_OPENPORT;
2420		goto dropwithreset;
2421	}
2422#ifdef TCPDEBUG
2423	if (so->so_options & SO_DEBUG)
2424		tcp_trace(TA_DROP, ostate, tp, (void *)tcp_saveipgen,
2425			  &tcp_savetcp, 0);
2426#endif
2427	KASSERT(headlocked, ("headlocked should be 1"));
2428	INP_INFO_WUNLOCK(&tcbinfo);
2429	tp->t_flags |= TF_ACKNOW;
2430	(void) tcp_output(tp);
2431	INP_UNLOCK(inp);
2432	m_freem(m);
2433	return;
2434
2435dropwithreset:
2436	KASSERT(headlocked, ("tcp_input: dropwithreset: head not locked"));
2437	/*
2438	 * Generate a RST, dropping incoming segment.
2439	 * Make ACK acceptable to originator of segment.
2440	 * Don't bother to respond if destination was broadcast/multicast.
2441	 */
2442	if ((thflags & TH_RST) || m->m_flags & (M_BCAST|M_MCAST))
2443		goto drop;
2444	if (isipv6) {
2445		if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) ||
2446		    IN6_IS_ADDR_MULTICAST(&ip6->ip6_src))
2447			goto drop;
2448	} else {
2449		if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
2450		    IN_MULTICAST(ntohl(ip->ip_src.s_addr)) ||
2451		    ip->ip_src.s_addr == htonl(INADDR_BROADCAST) ||
2452		    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
2453			goto drop;
2454	}
2455	/* IPv6 anycast check is done at tcp6_input() */
2456
2457	/*
2458	 * Perform bandwidth limiting.
2459	 */
2460	if (badport_bandlim(rstreason) < 0)
2461		goto drop;
2462
2463#ifdef TCPDEBUG
2464	if (tp == 0 || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
2465		tcp_trace(TA_DROP, ostate, tp, (void *)tcp_saveipgen,
2466			  &tcp_savetcp, 0);
2467#endif
2468
2469	if (thflags & TH_ACK)
2470		/* mtod() below is safe as long as hdr dropping is delayed */
2471		tcp_respond(tp, mtod(m, void *), th, m, (tcp_seq)0, th->th_ack,
2472			    TH_RST);
2473	else {
2474		if (thflags & TH_SYN)
2475			tlen++;
2476		/* mtod() below is safe as long as hdr dropping is delayed */
2477		tcp_respond(tp, mtod(m, void *), th, m, th->th_seq+tlen,
2478			    (tcp_seq)0, TH_RST|TH_ACK);
2479	}
2480
2481	if (tp)
2482		INP_UNLOCK(inp);
2483	if (headlocked)
2484		INP_INFO_WUNLOCK(&tcbinfo);
2485	return;
2486
2487drop:
2488	/*
2489	 * Drop space held by incoming segment and return.
2490	 */
2491#ifdef TCPDEBUG
2492	if (tp == 0 || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
2493		tcp_trace(TA_DROP, ostate, tp, (void *)tcp_saveipgen,
2494			  &tcp_savetcp, 0);
2495#endif
2496	if (tp)
2497		INP_UNLOCK(inp);
2498	if (headlocked)
2499		INP_INFO_WUNLOCK(&tcbinfo);
2500	m_freem(m);
2501	return;
2502}
2503
2504/*
2505 * Parse TCP options and place in tcpopt.
2506 */
2507static void
2508tcp_dooptions(tp, to, cp, cnt, is_syn, th)
2509	struct tcpcb *tp;
2510	struct tcpopt *to;
2511	u_char *cp;
2512	int cnt;
2513	int is_syn;
2514	struct tcphdr *th;
2515{
2516	int opt, optlen;
2517
2518	to->to_flags = 0;
2519	for (; cnt > 0; cnt -= optlen, cp += optlen) {
2520		opt = cp[0];
2521		if (opt == TCPOPT_EOL)
2522			break;
2523		if (opt == TCPOPT_NOP)
2524			optlen = 1;
2525		else {
2526			if (cnt < 2)
2527				break;
2528			optlen = cp[1];
2529			if (optlen < 2 || optlen > cnt)
2530				break;
2531		}
2532		switch (opt) {
2533		case TCPOPT_MAXSEG:
2534			if (optlen != TCPOLEN_MAXSEG)
2535				continue;
2536			if (!is_syn)
2537				continue;
2538			to->to_flags |= TOF_MSS;
2539			bcopy((char *)cp + 2,
2540			    (char *)&to->to_mss, sizeof(to->to_mss));
2541			to->to_mss = ntohs(to->to_mss);
2542			break;
2543		case TCPOPT_WINDOW:
2544			if (optlen != TCPOLEN_WINDOW)
2545				continue;
2546			if (! is_syn)
2547				continue;
2548			to->to_flags |= TOF_SCALE;
2549			to->to_requested_s_scale = min(cp[2], TCP_MAX_WINSHIFT);
2550			break;
2551		case TCPOPT_TIMESTAMP:
2552			if (optlen != TCPOLEN_TIMESTAMP)
2553				continue;
2554			to->to_flags |= TOF_TS;
2555			bcopy((char *)cp + 2,
2556			    (char *)&to->to_tsval, sizeof(to->to_tsval));
2557			to->to_tsval = ntohl(to->to_tsval);
2558			bcopy((char *)cp + 6,
2559			    (char *)&to->to_tsecr, sizeof(to->to_tsecr));
2560			to->to_tsecr = ntohl(to->to_tsecr);
2561			break;
2562#ifdef TCP_SIGNATURE
2563		/*
2564		 * XXX In order to reply to a host which has set the
2565		 * TCP_SIGNATURE option in its initial SYN, we have to
2566		 * record the fact that the option was observed here
2567		 * for the syncache code to perform the correct response.
2568		 */
2569		case TCPOPT_SIGNATURE:
2570			if (optlen != TCPOLEN_SIGNATURE)
2571				continue;
2572			to->to_flags |= (TOF_SIGNATURE | TOF_SIGLEN);
2573			break;
2574#endif
2575		case TCPOPT_SACK_PERMITTED:
2576			if (!tcp_do_sack ||
2577			    optlen != TCPOLEN_SACK_PERMITTED)
2578				continue;
2579			if (is_syn) {
2580				/* MUST only be set on SYN */
2581				to->to_flags |= TOF_SACK;
2582			}
2583			break;
2584
2585		case TCPOPT_SACK:
2586			if (!tp || tcp_sack_option(tp, th, cp, optlen))
2587				continue;
2588			break;
2589		default:
2590			continue;
2591		}
2592	}
2593}
2594
2595/*
2596 * Pull out of band byte out of a segment so
2597 * it doesn't appear in the user's data queue.
2598 * It is still reflected in the segment length for
2599 * sequencing purposes.
2600 */
2601static void
2602tcp_pulloutofband(so, th, m, off)
2603	struct socket *so;
2604	struct tcphdr *th;
2605	register struct mbuf *m;
2606	int off;		/* delayed to be droped hdrlen */
2607{
2608	int cnt = off + th->th_urp - 1;
2609
2610	while (cnt >= 0) {
2611		if (m->m_len > cnt) {
2612			char *cp = mtod(m, caddr_t) + cnt;
2613			struct tcpcb *tp = sototcpcb(so);
2614
2615			tp->t_iobc = *cp;
2616			tp->t_oobflags |= TCPOOB_HAVEDATA;
2617			bcopy(cp+1, cp, (unsigned)(m->m_len - cnt - 1));
2618			m->m_len--;
2619			if (m->m_flags & M_PKTHDR)
2620				m->m_pkthdr.len--;
2621			return;
2622		}
2623		cnt -= m->m_len;
2624		m = m->m_next;
2625		if (m == 0)
2626			break;
2627	}
2628	panic("tcp_pulloutofband");
2629}
2630
2631/*
2632 * Collect new round-trip time estimate
2633 * and update averages and current timeout.
2634 */
2635static void
2636tcp_xmit_timer(tp, rtt)
2637	register struct tcpcb *tp;
2638	int rtt;
2639{
2640	register int delta;
2641
2642	INP_LOCK_ASSERT(tp->t_inpcb);
2643
2644	tcpstat.tcps_rttupdated++;
2645	tp->t_rttupdated++;
2646	if (tp->t_srtt != 0) {
2647		/*
2648		 * srtt is stored as fixed point with 5 bits after the
2649		 * binary point (i.e., scaled by 8).  The following magic
2650		 * is equivalent to the smoothing algorithm in rfc793 with
2651		 * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed
2652		 * point).  Adjust rtt to origin 0.
2653		 */
2654		delta = ((rtt - 1) << TCP_DELTA_SHIFT)
2655			- (tp->t_srtt >> (TCP_RTT_SHIFT - TCP_DELTA_SHIFT));
2656
2657		if ((tp->t_srtt += delta) <= 0)
2658			tp->t_srtt = 1;
2659
2660		/*
2661		 * We accumulate a smoothed rtt variance (actually, a
2662		 * smoothed mean difference), then set the retransmit
2663		 * timer to smoothed rtt + 4 times the smoothed variance.
2664		 * rttvar is stored as fixed point with 4 bits after the
2665		 * binary point (scaled by 16).  The following is
2666		 * equivalent to rfc793 smoothing with an alpha of .75
2667		 * (rttvar = rttvar*3/4 + |delta| / 4).  This replaces
2668		 * rfc793's wired-in beta.
2669		 */
2670		if (delta < 0)
2671			delta = -delta;
2672		delta -= tp->t_rttvar >> (TCP_RTTVAR_SHIFT - TCP_DELTA_SHIFT);
2673		if ((tp->t_rttvar += delta) <= 0)
2674			tp->t_rttvar = 1;
2675		if (tp->t_rttbest > tp->t_srtt + tp->t_rttvar)
2676		    tp->t_rttbest = tp->t_srtt + tp->t_rttvar;
2677	} else {
2678		/*
2679		 * No rtt measurement yet - use the unsmoothed rtt.
2680		 * Set the variance to half the rtt (so our first
2681		 * retransmit happens at 3*rtt).
2682		 */
2683		tp->t_srtt = rtt << TCP_RTT_SHIFT;
2684		tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT - 1);
2685		tp->t_rttbest = tp->t_srtt + tp->t_rttvar;
2686	}
2687	tp->t_rtttime = 0;
2688	tp->t_rxtshift = 0;
2689
2690	/*
2691	 * the retransmit should happen at rtt + 4 * rttvar.
2692	 * Because of the way we do the smoothing, srtt and rttvar
2693	 * will each average +1/2 tick of bias.  When we compute
2694	 * the retransmit timer, we want 1/2 tick of rounding and
2695	 * 1 extra tick because of +-1/2 tick uncertainty in the
2696	 * firing of the timer.  The bias will give us exactly the
2697	 * 1.5 tick we need.  But, because the bias is
2698	 * statistical, we have to test that we don't drop below
2699	 * the minimum feasible timer (which is 2 ticks).
2700	 */
2701	TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
2702		      max(tp->t_rttmin, rtt + 2), TCPTV_REXMTMAX);
2703
2704	/*
2705	 * We received an ack for a packet that wasn't retransmitted;
2706	 * it is probably safe to discard any error indications we've
2707	 * received recently.  This isn't quite right, but close enough
2708	 * for now (a route might have failed after we sent a segment,
2709	 * and the return path might not be symmetrical).
2710	 */
2711	tp->t_softerror = 0;
2712}
2713
2714/*
2715 * Determine a reasonable value for maxseg size.
2716 * If the route is known, check route for mtu.
2717 * If none, use an mss that can be handled on the outgoing
2718 * interface without forcing IP to fragment; if bigger than
2719 * an mbuf cluster (MCLBYTES), round down to nearest multiple of MCLBYTES
2720 * to utilize large mbufs.  If no route is found, route has no mtu,
2721 * or the destination isn't local, use a default, hopefully conservative
2722 * size (usually 512 or the default IP max size, but no more than the mtu
2723 * of the interface), as we can't discover anything about intervening
2724 * gateways or networks.  We also initialize the congestion/slow start
2725 * window to be a single segment if the destination isn't local.
2726 * While looking at the routing entry, we also initialize other path-dependent
2727 * parameters from pre-set or cached values in the routing entry.
2728 *
2729 * Also take into account the space needed for options that we
2730 * send regularly.  Make maxseg shorter by that amount to assure
2731 * that we can send maxseg amount of data even when the options
2732 * are present.  Store the upper limit of the length of options plus
2733 * data in maxopd.
2734 *
2735 *
2736 * In case of T/TCP, we call this routine during implicit connection
2737 * setup as well (offer = -1), to initialize maxseg from the cached
2738 * MSS of our peer.
2739 *
2740 * NOTE that this routine is only called when we process an incoming
2741 * segment. Outgoing SYN/ACK MSS settings are handled in tcp_mssopt().
2742 */
2743void
2744tcp_mss(tp, offer)
2745	struct tcpcb *tp;
2746	int offer;
2747{
2748	int rtt, mss;
2749	u_long bufsize;
2750	u_long maxmtu;
2751	struct inpcb *inp = tp->t_inpcb;
2752	struct socket *so;
2753	struct hc_metrics_lite metrics;
2754	int origoffer = offer;
2755#ifdef INET6
2756	int isipv6 = ((inp->inp_vflag & INP_IPV6) != 0) ? 1 : 0;
2757	size_t min_protoh = isipv6 ?
2758			    sizeof (struct ip6_hdr) + sizeof (struct tcphdr) :
2759			    sizeof (struct tcpiphdr);
2760#else
2761	const size_t min_protoh = sizeof(struct tcpiphdr);
2762#endif
2763
2764	/* initialize */
2765#ifdef INET6
2766	if (isipv6) {
2767		maxmtu = tcp_maxmtu6(&inp->inp_inc);
2768		tp->t_maxopd = tp->t_maxseg = tcp_v6mssdflt;
2769	} else
2770#endif
2771	{
2772		maxmtu = tcp_maxmtu(&inp->inp_inc);
2773		tp->t_maxopd = tp->t_maxseg = tcp_mssdflt;
2774	}
2775	so = inp->inp_socket;
2776
2777	/*
2778	 * no route to sender, stay with default mss and return
2779	 */
2780	if (maxmtu == 0)
2781		return;
2782
2783	/* what have we got? */
2784	switch (offer) {
2785		case 0:
2786			/*
2787			 * Offer == 0 means that there was no MSS on the SYN
2788			 * segment, in this case we use tcp_mssdflt.
2789			 */
2790			offer =
2791#ifdef INET6
2792				isipv6 ? tcp_v6mssdflt :
2793#endif
2794				tcp_mssdflt;
2795			break;
2796
2797		case -1:
2798			/*
2799			 * Offer == -1 means that we didn't receive SYN yet.
2800			 */
2801			/* FALLTHROUGH */
2802
2803		default:
2804			/*
2805			 * Prevent DoS attack with too small MSS. Round up
2806			 * to at least minmss.
2807			 */
2808			offer = max(offer, tcp_minmss);
2809			/*
2810			 * Sanity check: make sure that maxopd will be large
2811			 * enough to allow some data on segments even if the
2812			 * all the option space is used (40bytes).  Otherwise
2813			 * funny things may happen in tcp_output.
2814			 */
2815			offer = max(offer, 64);
2816	}
2817
2818	/*
2819	 * rmx information is now retrieved from tcp_hostcache
2820	 */
2821	tcp_hc_get(&inp->inp_inc, &metrics);
2822
2823	/*
2824	 * if there's a discovered mtu int tcp hostcache, use it
2825	 * else, use the link mtu.
2826	 */
2827	if (metrics.rmx_mtu)
2828		mss = min(metrics.rmx_mtu, maxmtu) - min_protoh;
2829	else {
2830#ifdef INET6
2831		if (isipv6) {
2832			mss = maxmtu - min_protoh;
2833			if (!path_mtu_discovery &&
2834			    !in6_localaddr(&inp->in6p_faddr))
2835				mss = min(mss, tcp_v6mssdflt);
2836		} else
2837#endif
2838		{
2839			mss = maxmtu - min_protoh;
2840			if (!path_mtu_discovery &&
2841			    !in_localaddr(inp->inp_faddr))
2842				mss = min(mss, tcp_mssdflt);
2843		}
2844	}
2845	mss = min(mss, offer);
2846
2847	/*
2848	 * maxopd stores the maximum length of data AND options
2849	 * in a segment; maxseg is the amount of data in a normal
2850	 * segment.  We need to store this value (maxopd) apart
2851	 * from maxseg, because now every segment carries options
2852	 * and thus we normally have somewhat less data in segments.
2853	 */
2854	tp->t_maxopd = mss;
2855
2856	/*
2857	 * origoffer==-1 indicates, that no segments were received yet.
2858	 * In this case we just guess.
2859	 */
2860	if ((tp->t_flags & (TF_REQ_TSTMP|TF_NOOPT)) == TF_REQ_TSTMP &&
2861	    (origoffer == -1 ||
2862	     (tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP))
2863		mss -= TCPOLEN_TSTAMP_APPA;
2864	tp->t_maxseg = mss;
2865
2866#if	(MCLBYTES & (MCLBYTES - 1)) == 0
2867		if (mss > MCLBYTES)
2868			mss &= ~(MCLBYTES-1);
2869#else
2870		if (mss > MCLBYTES)
2871			mss = mss / MCLBYTES * MCLBYTES;
2872#endif
2873	tp->t_maxseg = mss;
2874
2875	/*
2876	 * If there's a pipesize, change the socket buffer to that size,
2877	 * don't change if sb_hiwat is different than default (then it
2878	 * has been changed on purpose with setsockopt).
2879	 * Make the socket buffers an integral number of mss units;
2880	 * if the mss is larger than the socket buffer, decrease the mss.
2881	 */
2882	SOCKBUF_LOCK(&so->so_snd);
2883	if ((so->so_snd.sb_hiwat == tcp_sendspace) && metrics.rmx_sendpipe)
2884		bufsize = metrics.rmx_sendpipe;
2885	else
2886		bufsize = so->so_snd.sb_hiwat;
2887	if (bufsize < mss)
2888		mss = bufsize;
2889	else {
2890		bufsize = roundup(bufsize, mss);
2891		if (bufsize > sb_max)
2892			bufsize = sb_max;
2893		if (bufsize > so->so_snd.sb_hiwat)
2894			(void)sbreserve_locked(&so->so_snd, bufsize, so, NULL);
2895	}
2896	SOCKBUF_UNLOCK(&so->so_snd);
2897	tp->t_maxseg = mss;
2898
2899	SOCKBUF_LOCK(&so->so_rcv);
2900	if ((so->so_rcv.sb_hiwat == tcp_recvspace) && metrics.rmx_recvpipe)
2901		bufsize = metrics.rmx_recvpipe;
2902	else
2903		bufsize = so->so_rcv.sb_hiwat;
2904	if (bufsize > mss) {
2905		bufsize = roundup(bufsize, mss);
2906		if (bufsize > sb_max)
2907			bufsize = sb_max;
2908		if (bufsize > so->so_rcv.sb_hiwat)
2909			(void)sbreserve_locked(&so->so_rcv, bufsize, so, NULL);
2910	}
2911	SOCKBUF_UNLOCK(&so->so_rcv);
2912	/*
2913	 * While we're here, check the others too
2914	 */
2915	if (tp->t_srtt == 0 && (rtt = metrics.rmx_rtt)) {
2916		tp->t_srtt = rtt;
2917		tp->t_rttbest = tp->t_srtt + TCP_RTT_SCALE;
2918		tcpstat.tcps_usedrtt++;
2919		if (metrics.rmx_rttvar) {
2920			tp->t_rttvar = metrics.rmx_rttvar;
2921			tcpstat.tcps_usedrttvar++;
2922		} else {
2923			/* default variation is +- 1 rtt */
2924			tp->t_rttvar =
2925			    tp->t_srtt * TCP_RTTVAR_SCALE / TCP_RTT_SCALE;
2926		}
2927		TCPT_RANGESET(tp->t_rxtcur,
2928			      ((tp->t_srtt >> 2) + tp->t_rttvar) >> 1,
2929			      tp->t_rttmin, TCPTV_REXMTMAX);
2930	}
2931	if (metrics.rmx_ssthresh) {
2932		/*
2933		 * There's some sort of gateway or interface
2934		 * buffer limit on the path.  Use this to set
2935		 * the slow start threshhold, but set the
2936		 * threshold to no less than 2*mss.
2937		 */
2938		tp->snd_ssthresh = max(2 * mss, metrics.rmx_ssthresh);
2939		tcpstat.tcps_usedssthresh++;
2940	}
2941	if (metrics.rmx_bandwidth)
2942		tp->snd_bandwidth = metrics.rmx_bandwidth;
2943
2944	/*
2945	 * Set the slow-start flight size depending on whether this
2946	 * is a local network or not.
2947	 *
2948	 * Extend this so we cache the cwnd too and retrieve it here.
2949	 * Make cwnd even bigger than RFC3390 suggests but only if we
2950	 * have previous experience with the remote host. Be careful
2951	 * not make cwnd bigger than remote receive window or our own
2952	 * send socket buffer. Maybe put some additional upper bound
2953	 * on the retrieved cwnd. Should do incremental updates to
2954	 * hostcache when cwnd collapses so next connection doesn't
2955	 * overloads the path again.
2956	 *
2957	 * RFC3390 says only do this if SYN or SYN/ACK didn't got lost.
2958	 * We currently check only in syncache_socket for that.
2959	 */
2960#define TCP_METRICS_CWND
2961#ifdef TCP_METRICS_CWND
2962	if (metrics.rmx_cwnd)
2963		tp->snd_cwnd = max(mss,
2964				min(metrics.rmx_cwnd / 2,
2965				 min(tp->snd_wnd, so->so_snd.sb_hiwat)));
2966	else
2967#endif
2968	if (tcp_do_rfc3390)
2969		tp->snd_cwnd = min(4 * mss, max(2 * mss, 4380));
2970#ifdef INET6
2971	else if ((isipv6 && in6_localaddr(&inp->in6p_faddr)) ||
2972		 (!isipv6 && in_localaddr(inp->inp_faddr)))
2973#else
2974	else if (in_localaddr(inp->inp_faddr))
2975#endif
2976		tp->snd_cwnd = mss * ss_fltsz_local;
2977	else
2978		tp->snd_cwnd = mss * ss_fltsz;
2979}
2980
2981/*
2982 * Determine the MSS option to send on an outgoing SYN.
2983 */
2984int
2985tcp_mssopt(inc)
2986	struct in_conninfo *inc;
2987{
2988	int mss = 0;
2989	u_long maxmtu = 0;
2990	u_long thcmtu = 0;
2991	size_t min_protoh;
2992#ifdef INET6
2993	int isipv6 = inc->inc_isipv6 ? 1 : 0;
2994#endif
2995
2996	KASSERT(inc != NULL, ("tcp_mssopt with NULL in_conninfo pointer"));
2997
2998#ifdef INET6
2999	if (isipv6) {
3000		mss = tcp_v6mssdflt;
3001		maxmtu = tcp_maxmtu6(inc);
3002		thcmtu = tcp_hc_getmtu(inc); /* IPv4 and IPv6 */
3003		min_protoh = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
3004	} else
3005#endif
3006	{
3007		mss = tcp_mssdflt;
3008		maxmtu = tcp_maxmtu(inc);
3009		thcmtu = tcp_hc_getmtu(inc); /* IPv4 and IPv6 */
3010		min_protoh = sizeof(struct tcpiphdr);
3011	}
3012	if (maxmtu && thcmtu)
3013		mss = min(maxmtu, thcmtu) - min_protoh;
3014	else if (maxmtu || thcmtu)
3015		mss = max(maxmtu, thcmtu) - min_protoh;
3016
3017	return (mss);
3018}
3019
3020
3021/*
3022 * On a partial ack arrives, force the retransmission of the
3023 * next unacknowledged segment.  Do not clear tp->t_dupacks.
3024 * By setting snd_nxt to ti_ack, this forces retransmission timer to
3025 * be started again.
3026 */
3027static void
3028tcp_newreno_partial_ack(tp, th)
3029	struct tcpcb *tp;
3030	struct tcphdr *th;
3031{
3032	tcp_seq onxt = tp->snd_nxt;
3033	u_long  ocwnd = tp->snd_cwnd;
3034
3035	callout_stop(tp->tt_rexmt);
3036	tp->t_rtttime = 0;
3037	tp->snd_nxt = th->th_ack;
3038	/*
3039	 * Set snd_cwnd to one segment beyond acknowledged offset.
3040	 * (tp->snd_una has not yet been updated when this function is called.)
3041	 */
3042	tp->snd_cwnd = tp->t_maxseg + (th->th_ack - tp->snd_una);
3043	tp->t_flags |= TF_ACKNOW;
3044	(void) tcp_output(tp);
3045	tp->snd_cwnd = ocwnd;
3046	if (SEQ_GT(onxt, tp->snd_nxt))
3047		tp->snd_nxt = onxt;
3048	/*
3049	 * Partial window deflation.  Relies on fact that tp->snd_una
3050	 * not updated yet.
3051	 */
3052	tp->snd_cwnd -= (th->th_ack - tp->snd_una - tp->t_maxseg);
3053}
3054
3055/*
3056 * Returns 1 if the TIME_WAIT state was killed and we should start over,
3057 * looking for a pcb in the listen state.  Returns 0 otherwise.
3058 */
3059static int
3060tcp_timewait(tw, to, th, m, tlen)
3061	struct tcptw *tw;
3062	struct tcpopt *to;
3063	struct tcphdr *th;
3064	struct mbuf *m;
3065	int tlen;
3066{
3067	int thflags;
3068	tcp_seq seq;
3069#ifdef INET6
3070	int isipv6 = (mtod(m, struct ip *)->ip_v == 6) ? 1 : 0;
3071#else
3072	const int isipv6 = 0;
3073#endif
3074
3075	/* tcbinfo lock required for tcp_twclose(), tcp_2msl_reset. */
3076	INP_INFO_WLOCK_ASSERT(&tcbinfo);
3077	INP_LOCK_ASSERT(tw->tw_inpcb);
3078
3079	thflags = th->th_flags;
3080
3081	/*
3082	 * NOTE: for FIN_WAIT_2 (to be added later),
3083	 * must validate sequence number before accepting RST
3084	 */
3085
3086	/*
3087	 * If the segment contains RST:
3088	 *	Drop the segment - see Stevens, vol. 2, p. 964 and
3089	 *      RFC 1337.
3090	 */
3091	if (thflags & TH_RST)
3092		goto drop;
3093
3094#if 0
3095/* PAWS not needed at the moment */
3096	/*
3097	 * RFC 1323 PAWS: If we have a timestamp reply on this segment
3098	 * and it's less than ts_recent, drop it.
3099	 */
3100	if ((to.to_flags & TOF_TS) != 0 && tp->ts_recent &&
3101	    TSTMP_LT(to.to_tsval, tp->ts_recent)) {
3102		if ((thflags & TH_ACK) == 0)
3103			goto drop;
3104		goto ack;
3105	}
3106	/*
3107	 * ts_recent is never updated because we never accept new segments.
3108	 */
3109#endif
3110
3111	/*
3112	 * If a new connection request is received
3113	 * while in TIME_WAIT, drop the old connection
3114	 * and start over if the sequence numbers
3115	 * are above the previous ones.
3116	 */
3117	if ((thflags & TH_SYN) && SEQ_GT(th->th_seq, tw->rcv_nxt)) {
3118		(void) tcp_twclose(tw, 0);
3119		return (1);
3120	}
3121
3122	/*
3123	 * Drop the the segment if it does not contain an ACK.
3124	 */
3125	if ((thflags & TH_ACK) == 0)
3126		goto drop;
3127
3128	/*
3129	 * Reset the 2MSL timer if this is a duplicate FIN.
3130	 */
3131	if (thflags & TH_FIN) {
3132		seq = th->th_seq + tlen + (thflags & TH_SYN ? 1 : 0);
3133		if (seq + 1 == tw->rcv_nxt)
3134			tcp_timer_2msl_reset(tw, 2 * tcp_msl);
3135	}
3136
3137	/*
3138	 * Acknowledge the segment if it has data or is not a duplicate ACK.
3139	 */
3140	if (thflags != TH_ACK || tlen != 0 ||
3141	    th->th_seq != tw->rcv_nxt || th->th_ack != tw->snd_nxt)
3142		tcp_twrespond(tw, TH_ACK);
3143	goto drop;
3144
3145	/*
3146	 * Generate a RST, dropping incoming segment.
3147	 * Make ACK acceptable to originator of segment.
3148	 * Don't bother to respond if destination was broadcast/multicast.
3149	 */
3150	if (m->m_flags & (M_BCAST|M_MCAST))
3151		goto drop;
3152	if (isipv6) {
3153		struct ip6_hdr *ip6;
3154
3155		/* IPv6 anycast check is done at tcp6_input() */
3156		ip6 = mtod(m, struct ip6_hdr *);
3157		if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) ||
3158		    IN6_IS_ADDR_MULTICAST(&ip6->ip6_src))
3159			goto drop;
3160	} else {
3161		struct ip *ip;
3162
3163		ip = mtod(m, struct ip *);
3164		if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
3165		    IN_MULTICAST(ntohl(ip->ip_src.s_addr)) ||
3166		    ip->ip_src.s_addr == htonl(INADDR_BROADCAST) ||
3167		    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
3168			goto drop;
3169	}
3170	if (thflags & TH_ACK) {
3171		tcp_respond(NULL,
3172		    mtod(m, void *), th, m, 0, th->th_ack, TH_RST);
3173	} else {
3174		seq = th->th_seq + (thflags & TH_SYN ? 1 : 0);
3175		tcp_respond(NULL,
3176		    mtod(m, void *), th, m, seq, 0, TH_RST|TH_ACK);
3177	}
3178	INP_UNLOCK(tw->tw_inpcb);
3179	return (0);
3180
3181drop:
3182	INP_UNLOCK(tw->tw_inpcb);
3183	m_freem(m);
3184	return (0);
3185}
3186