tcp_input.c revision 112191
1/*
2 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 *    must display the following acknowledgement:
15 *	This product includes software developed by the University of
16 *	California, Berkeley and its contributors.
17 * 4. Neither the name of the University nor the names of its contributors
18 *    may be used to endorse or promote products derived from this software
19 *    without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 *
33 *	@(#)tcp_input.c	8.12 (Berkeley) 5/24/95
34 * $FreeBSD: head/sys/netinet/tcp_input.c 112191 2003-03-13 11:46:57Z hsu $
35 */
36
37#include "opt_ipfw.h"		/* for ipfw_fwd		*/
38#include "opt_inet6.h"
39#include "opt_ipsec.h"
40#include "opt_mac.h"
41#include "opt_tcpdebug.h"
42#include "opt_tcp_input.h"
43
44#include <sys/param.h>
45#include <sys/kernel.h>
46#include <sys/mac.h>
47#include <sys/malloc.h>
48#include <sys/mbuf.h>
49#include <sys/proc.h>		/* for proc0 declaration */
50#include <sys/protosw.h>
51#include <sys/signalvar.h>
52#include <sys/socket.h>
53#include <sys/socketvar.h>
54#include <sys/sysctl.h>
55#include <sys/syslog.h>
56#include <sys/systm.h>
57
58#include <machine/cpu.h>	/* before tcp_seq.h, for tcp_random18() */
59
60#include <net/if.h>
61#include <net/route.h>
62
63#include <netinet/in.h>
64#include <netinet/in_pcb.h>
65#include <netinet/in_systm.h>
66#include <netinet/in_var.h>
67#include <netinet/ip.h>
68#include <netinet/ip_icmp.h>	/* for ICMP_BANDLIM		*/
69#include <netinet/icmp_var.h>	/* for ICMP_BANDLIM		*/
70#include <netinet/ip_var.h>
71#include <netinet/ip6.h>
72#include <netinet/icmp6.h>
73#include <netinet6/in6_pcb.h>
74#include <netinet6/ip6_var.h>
75#include <netinet6/nd6.h>
76#include <netinet/tcp.h>
77#include <netinet/tcp_fsm.h>
78#include <netinet/tcp_seq.h>
79#include <netinet/tcp_timer.h>
80#include <netinet/tcp_var.h>
81#include <netinet6/tcp6_var.h>
82#include <netinet/tcpip.h>
83#ifdef TCPDEBUG
84#include <netinet/tcp_debug.h>
85#endif /* TCPDEBUG */
86
87#ifdef FAST_IPSEC
88#include <netipsec/ipsec.h>
89#include <netipsec/ipsec6.h>
90#endif /*FAST_IPSEC*/
91
92#ifdef IPSEC
93#include <netinet6/ipsec.h>
94#include <netinet6/ipsec6.h>
95#include <netkey/key.h>
96#endif /*IPSEC*/
97
98#include <machine/in_cksum.h>
99
100MALLOC_DEFINE(M_TSEGQ, "tseg_qent", "TCP segment queue entry");
101
102static const int tcprexmtthresh = 3;
103tcp_cc	tcp_ccgen;
104
105struct	tcpstat tcpstat;
106SYSCTL_STRUCT(_net_inet_tcp, TCPCTL_STATS, stats, CTLFLAG_RW,
107    &tcpstat , tcpstat, "TCP statistics (struct tcpstat, netinet/tcp_var.h)");
108
109static int log_in_vain = 0;
110SYSCTL_INT(_net_inet_tcp, OID_AUTO, log_in_vain, CTLFLAG_RW,
111    &log_in_vain, 0, "Log all incoming TCP connections");
112
113static int blackhole = 0;
114SYSCTL_INT(_net_inet_tcp, OID_AUTO, blackhole, CTLFLAG_RW,
115	&blackhole, 0, "Do not send RST when dropping refused connections");
116
117int tcp_delack_enabled = 1;
118SYSCTL_INT(_net_inet_tcp, OID_AUTO, delayed_ack, CTLFLAG_RW,
119    &tcp_delack_enabled, 0,
120    "Delay ACK to try and piggyback it onto a data packet");
121
122#ifdef TCP_DROP_SYNFIN
123static int drop_synfin = 0;
124SYSCTL_INT(_net_inet_tcp, OID_AUTO, drop_synfin, CTLFLAG_RW,
125    &drop_synfin, 0, "Drop TCP packets with SYN+FIN set");
126#endif
127
128static int tcp_do_rfc3042 = 0;
129SYSCTL_INT(_net_inet_tcp, OID_AUTO, rfc3042, CTLFLAG_RW,
130    &tcp_do_rfc3042, 0, "Enable RFC 3042 (Limited Transmit)");
131
132static int tcp_do_rfc3390 = 0;
133SYSCTL_INT(_net_inet_tcp, OID_AUTO, rfc3390, CTLFLAG_RW,
134    &tcp_do_rfc3390, 0,
135    "Enable RFC 3390 (Increasing TCP's Initial Congestion Window)");
136
137struct inpcbhead tcb;
138#define	tcb6	tcb  /* for KAME src sync over BSD*'s */
139struct inpcbinfo tcbinfo;
140struct mtx	*tcbinfo_mtx;
141
142static void	 tcp_dooptions(struct tcpopt *, u_char *, int, int);
143static void	 tcp_pulloutofband(struct socket *,
144		     struct tcphdr *, struct mbuf *, int);
145static int	 tcp_reass(struct tcpcb *, struct tcphdr *, int *,
146		     struct mbuf *);
147static void	 tcp_xmit_timer(struct tcpcb *, int);
148static void	 tcp_newreno_partial_ack(struct tcpcb *, struct tcphdr *);
149static int	 tcp_timewait(struct tcptw *, struct tcpopt *,
150		     struct tcphdr *, struct mbuf *, int);
151
152/* Neighbor Discovery, Neighbor Unreachability Detection Upper layer hint. */
153#ifdef INET6
154#define ND6_HINT(tp) \
155do { \
156	if ((tp) && (tp)->t_inpcb && \
157	    ((tp)->t_inpcb->inp_vflag & INP_IPV6) != 0 && \
158	    (tp)->t_inpcb->in6p_route.ro_rt) \
159		nd6_nud_hint((tp)->t_inpcb->in6p_route.ro_rt, NULL, 0); \
160} while (0)
161#else
162#define ND6_HINT(tp)
163#endif
164
165/*
166 * Indicate whether this ack should be delayed.  We can delay the ack if
167 *	- there is no delayed ack timer in progress and
168 *	- our last ack wasn't a 0-sized window.  We never want to delay
169 *	  the ack that opens up a 0-sized window and
170 *		- delayed acks are enabled or
171 *		- this is a half-synchronized T/TCP connection.
172 */
173#define DELAY_ACK(tp)							\
174	((!callout_active(tp->tt_delack) &&				\
175	    (tp->t_flags & TF_RXWIN0SENT) == 0) &&			\
176	    (tcp_delack_enabled || (tp->t_flags & TF_NEEDSYN)))
177
178static int
179tcp_reass(tp, th, tlenp, m)
180	register struct tcpcb *tp;
181	register struct tcphdr *th;
182	int *tlenp;
183	struct mbuf *m;
184{
185	struct tseg_qent *q;
186	struct tseg_qent *p = NULL;
187	struct tseg_qent *nq;
188	struct tseg_qent *te;
189	struct socket *so = tp->t_inpcb->inp_socket;
190	int flags;
191
192	/*
193	 * Call with th==0 after become established to
194	 * force pre-ESTABLISHED data up to user socket.
195	 */
196	if (th == 0)
197		goto present;
198
199	/* Allocate a new queue entry. If we can't, just drop the pkt. XXX */
200	MALLOC(te, struct tseg_qent *, sizeof (struct tseg_qent), M_TSEGQ,
201	       M_NOWAIT);
202	if (te == NULL) {
203		tcpstat.tcps_rcvmemdrop++;
204		m_freem(m);
205		return (0);
206	}
207
208	/*
209	 * Find a segment which begins after this one does.
210	 */
211	LIST_FOREACH(q, &tp->t_segq, tqe_q) {
212		if (SEQ_GT(q->tqe_th->th_seq, th->th_seq))
213			break;
214		p = q;
215	}
216
217	/*
218	 * If there is a preceding segment, it may provide some of
219	 * our data already.  If so, drop the data from the incoming
220	 * segment.  If it provides all of our data, drop us.
221	 */
222	if (p != NULL) {
223		register int i;
224		/* conversion to int (in i) handles seq wraparound */
225		i = p->tqe_th->th_seq + p->tqe_len - th->th_seq;
226		if (i > 0) {
227			if (i >= *tlenp) {
228				tcpstat.tcps_rcvduppack++;
229				tcpstat.tcps_rcvdupbyte += *tlenp;
230				m_freem(m);
231				FREE(te, M_TSEGQ);
232				/*
233				 * Try to present any queued data
234				 * at the left window edge to the user.
235				 * This is needed after the 3-WHS
236				 * completes.
237				 */
238				goto present;	/* ??? */
239			}
240			m_adj(m, i);
241			*tlenp -= i;
242			th->th_seq += i;
243		}
244	}
245	tcpstat.tcps_rcvoopack++;
246	tcpstat.tcps_rcvoobyte += *tlenp;
247
248	/*
249	 * While we overlap succeeding segments trim them or,
250	 * if they are completely covered, dequeue them.
251	 */
252	while (q) {
253		register int i = (th->th_seq + *tlenp) - q->tqe_th->th_seq;
254		if (i <= 0)
255			break;
256		if (i < q->tqe_len) {
257			q->tqe_th->th_seq += i;
258			q->tqe_len -= i;
259			m_adj(q->tqe_m, i);
260			break;
261		}
262
263		nq = LIST_NEXT(q, tqe_q);
264		LIST_REMOVE(q, tqe_q);
265		m_freem(q->tqe_m);
266		FREE(q, M_TSEGQ);
267		q = nq;
268	}
269
270	/* Insert the new segment queue entry into place. */
271	te->tqe_m = m;
272	te->tqe_th = th;
273	te->tqe_len = *tlenp;
274
275	if (p == NULL) {
276		LIST_INSERT_HEAD(&tp->t_segq, te, tqe_q);
277	} else {
278		LIST_INSERT_AFTER(p, te, tqe_q);
279	}
280
281present:
282	/*
283	 * Present data to user, advancing rcv_nxt through
284	 * completed sequence space.
285	 */
286	if (!TCPS_HAVEESTABLISHED(tp->t_state))
287		return (0);
288	q = LIST_FIRST(&tp->t_segq);
289	if (!q || q->tqe_th->th_seq != tp->rcv_nxt)
290		return (0);
291	do {
292		tp->rcv_nxt += q->tqe_len;
293		flags = q->tqe_th->th_flags & TH_FIN;
294		nq = LIST_NEXT(q, tqe_q);
295		LIST_REMOVE(q, tqe_q);
296		if (so->so_state & SS_CANTRCVMORE)
297			m_freem(q->tqe_m);
298		else
299			sbappend(&so->so_rcv, q->tqe_m);
300		FREE(q, M_TSEGQ);
301		q = nq;
302	} while (q && q->tqe_th->th_seq == tp->rcv_nxt);
303	ND6_HINT(tp);
304	sorwakeup(so);
305	return (flags);
306}
307
308/*
309 * TCP input routine, follows pages 65-76 of the
310 * protocol specification dated September, 1981 very closely.
311 */
312#ifdef INET6
313int
314tcp6_input(mp, offp, proto)
315	struct mbuf **mp;
316	int *offp, proto;
317{
318	register struct mbuf *m = *mp;
319	struct in6_ifaddr *ia6;
320
321	IP6_EXTHDR_CHECK(m, *offp, sizeof(struct tcphdr), IPPROTO_DONE);
322
323	/*
324	 * draft-itojun-ipv6-tcp-to-anycast
325	 * better place to put this in?
326	 */
327	ia6 = ip6_getdstifaddr(m);
328	if (ia6 && (ia6->ia6_flags & IN6_IFF_ANYCAST)) {
329		struct ip6_hdr *ip6;
330
331		ip6 = mtod(m, struct ip6_hdr *);
332		icmp6_error(m, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_ADDR,
333			    (caddr_t)&ip6->ip6_dst - (caddr_t)ip6);
334		return IPPROTO_DONE;
335	}
336
337	tcp_input(m, *offp);
338	return IPPROTO_DONE;
339}
340#endif
341
342void
343tcp_input(m, off0)
344	register struct mbuf *m;
345	int off0;
346{
347	register struct tcphdr *th;
348	register struct ip *ip = NULL;
349	register struct ipovly *ipov;
350	register struct inpcb *inp = NULL;
351	u_char *optp = NULL;
352	int optlen = 0;
353	int len, tlen, off;
354	int drop_hdrlen;
355	register struct tcpcb *tp = 0;
356	register int thflags;
357	struct socket *so = 0;
358	int todrop, acked, ourfinisacked, needoutput = 0;
359	u_long tiwin;
360	struct tcpopt to;		/* options in this segment */
361	struct rmxp_tao *taop;		/* pointer to our TAO cache entry */
362	struct rmxp_tao	tao_noncached;	/* in case there's no cached entry */
363	int headlocked = 0;
364	struct sockaddr_in *next_hop = NULL;
365	int rstreason; /* For badport_bandlim accounting purposes */
366
367	struct ip6_hdr *ip6 = NULL;
368#ifdef INET6
369	int isipv6;
370#else
371	const int isipv6 = 0;
372#endif
373
374#ifdef TCPDEBUG
375	/*
376	 * The size of tcp_saveipgen must be the size of the max ip header,
377	 * now IPv6.
378	 */
379	u_char tcp_saveipgen[40];
380	struct tcphdr tcp_savetcp;
381	short ostate = 0;
382#endif
383
384	/* Grab info from MT_TAG mbufs prepended to the chain. */
385	for (;m && m->m_type == MT_TAG; m = m->m_next) {
386		if (m->_m_tag_id == PACKET_TAG_IPFORWARD)
387			next_hop = (struct sockaddr_in *)m->m_hdr.mh_data;
388	}
389#ifdef INET6
390	isipv6 = (mtod(m, struct ip *)->ip_v == 6) ? 1 : 0;
391#endif
392	bzero((char *)&to, sizeof(to));
393
394	tcpstat.tcps_rcvtotal++;
395
396	if (isipv6) {
397		/* IP6_EXTHDR_CHECK() is already done at tcp6_input() */
398		ip6 = mtod(m, struct ip6_hdr *);
399		tlen = sizeof(*ip6) + ntohs(ip6->ip6_plen) - off0;
400		if (in6_cksum(m, IPPROTO_TCP, off0, tlen)) {
401			tcpstat.tcps_rcvbadsum++;
402			goto drop;
403		}
404		th = (struct tcphdr *)((caddr_t)ip6 + off0);
405
406		/*
407		 * Be proactive about unspecified IPv6 address in source.
408		 * As we use all-zero to indicate unbounded/unconnected pcb,
409		 * unspecified IPv6 address can be used to confuse us.
410		 *
411		 * Note that packets with unspecified IPv6 destination is
412		 * already dropped in ip6_input.
413		 */
414		if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) {
415			/* XXX stat */
416			goto drop;
417		}
418	} else {
419		/*
420		 * Get IP and TCP header together in first mbuf.
421		 * Note: IP leaves IP header in first mbuf.
422		 */
423		if (off0 > sizeof (struct ip)) {
424			ip_stripoptions(m, (struct mbuf *)0);
425			off0 = sizeof(struct ip);
426		}
427		if (m->m_len < sizeof (struct tcpiphdr)) {
428			if ((m = m_pullup(m, sizeof (struct tcpiphdr))) == 0) {
429				tcpstat.tcps_rcvshort++;
430				return;
431			}
432		}
433		ip = mtod(m, struct ip *);
434		ipov = (struct ipovly *)ip;
435		th = (struct tcphdr *)((caddr_t)ip + off0);
436		tlen = ip->ip_len;
437
438		if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) {
439			if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR)
440				th->th_sum = m->m_pkthdr.csum_data;
441			else
442				th->th_sum = in_pseudo(ip->ip_src.s_addr,
443						ip->ip_dst.s_addr,
444						htonl(m->m_pkthdr.csum_data +
445							ip->ip_len +
446							IPPROTO_TCP));
447			th->th_sum ^= 0xffff;
448		} else {
449			/*
450			 * Checksum extended TCP header and data.
451			 */
452			len = sizeof (struct ip) + tlen;
453			bzero(ipov->ih_x1, sizeof(ipov->ih_x1));
454			ipov->ih_len = (u_short)tlen;
455			ipov->ih_len = htons(ipov->ih_len);
456			th->th_sum = in_cksum(m, len);
457		}
458		if (th->th_sum) {
459			tcpstat.tcps_rcvbadsum++;
460			goto drop;
461		}
462#ifdef INET6
463		/* Re-initialization for later version check */
464		ip->ip_v = IPVERSION;
465#endif
466	}
467
468	/*
469	 * Check that TCP offset makes sense,
470	 * pull out TCP options and adjust length.		XXX
471	 */
472	off = th->th_off << 2;
473	if (off < sizeof (struct tcphdr) || off > tlen) {
474		tcpstat.tcps_rcvbadoff++;
475		goto drop;
476	}
477	tlen -= off;	/* tlen is used instead of ti->ti_len */
478	if (off > sizeof (struct tcphdr)) {
479		if (isipv6) {
480			IP6_EXTHDR_CHECK(m, off0, off, );
481			ip6 = mtod(m, struct ip6_hdr *);
482			th = (struct tcphdr *)((caddr_t)ip6 + off0);
483		} else {
484			if (m->m_len < sizeof(struct ip) + off) {
485				if ((m = m_pullup(m, sizeof (struct ip) + off))
486						== 0) {
487					tcpstat.tcps_rcvshort++;
488					return;
489				}
490				ip = mtod(m, struct ip *);
491				ipov = (struct ipovly *)ip;
492				th = (struct tcphdr *)((caddr_t)ip + off0);
493			}
494		}
495		optlen = off - sizeof (struct tcphdr);
496		optp = (u_char *)(th + 1);
497	}
498	thflags = th->th_flags;
499
500#ifdef TCP_DROP_SYNFIN
501	/*
502	 * If the drop_synfin option is enabled, drop all packets with
503	 * both the SYN and FIN bits set. This prevents e.g. nmap from
504	 * identifying the TCP/IP stack.
505	 *
506	 * This is a violation of the TCP specification.
507	 */
508	if (drop_synfin && (thflags & (TH_SYN|TH_FIN)) == (TH_SYN|TH_FIN))
509		goto drop;
510#endif
511
512	/*
513	 * Convert TCP protocol specific fields to host format.
514	 */
515	th->th_seq = ntohl(th->th_seq);
516	th->th_ack = ntohl(th->th_ack);
517	th->th_win = ntohs(th->th_win);
518	th->th_urp = ntohs(th->th_urp);
519
520	/*
521	 * Delay dropping TCP, IP headers, IPv6 ext headers, and TCP options,
522	 * until after ip6_savecontrol() is called and before other functions
523	 * which don't want those proto headers.
524	 * Because ip6_savecontrol() is going to parse the mbuf to
525	 * search for data to be passed up to user-land, it wants mbuf
526	 * parameters to be unchanged.
527	 * XXX: the call of ip6_savecontrol() has been obsoleted based on
528	 * latest version of the advanced API (20020110).
529	 */
530	drop_hdrlen = off0 + off;
531
532	/*
533	 * Locate pcb for segment.
534	 */
535	INP_INFO_WLOCK(&tcbinfo);
536	headlocked = 1;
537findpcb:
538	/* IPFIREWALL_FORWARD section */
539	if (next_hop != NULL && isipv6 == 0) {	/* IPv6 support is not yet */
540		/*
541		 * Transparently forwarded. Pretend to be the destination.
542		 * already got one like this?
543		 */
544		inp = in_pcblookup_hash(&tcbinfo, ip->ip_src, th->th_sport,
545					ip->ip_dst, th->th_dport,
546					0, m->m_pkthdr.rcvif);
547		if (!inp) {
548			/* It's new.  Try find the ambushing socket. */
549			inp = in_pcblookup_hash(&tcbinfo,
550						ip->ip_src, th->th_sport,
551						next_hop->sin_addr,
552						next_hop->sin_port ?
553						    ntohs(next_hop->sin_port) :
554						    th->th_dport,
555						1, m->m_pkthdr.rcvif);
556		}
557	} else {
558		if (isipv6)
559			inp = in6_pcblookup_hash(&tcbinfo,
560						 &ip6->ip6_src, th->th_sport,
561						 &ip6->ip6_dst, th->th_dport,
562						 1, m->m_pkthdr.rcvif);
563		else
564			inp = in_pcblookup_hash(&tcbinfo,
565						ip->ip_src, th->th_sport,
566						ip->ip_dst, th->th_dport,
567						1, m->m_pkthdr.rcvif);
568      }
569
570#ifdef IPSEC
571	if (isipv6) {
572		if (inp != NULL && ipsec6_in_reject_so(m, inp->inp_socket)) {
573			ipsec6stat.in_polvio++;
574			goto drop;
575		}
576	} else {
577		if (inp != NULL && ipsec4_in_reject_so(m, inp->inp_socket)) {
578			ipsecstat.in_polvio++;
579			goto drop;
580		}
581	}
582#endif
583#ifdef FAST_IPSEC
584	if (isipv6) {
585		if (inp != NULL && ipsec6_in_reject(m, inp)) {
586			goto drop;
587		}
588	} else
589	if (inp != NULL && ipsec4_in_reject(m, inp)) {
590		goto drop;
591	}
592#endif /*FAST_IPSEC*/
593
594	/*
595	 * If the state is CLOSED (i.e., TCB does not exist) then
596	 * all data in the incoming segment is discarded.
597	 * If the TCB exists but is in CLOSED state, it is embryonic,
598	 * but should either do a listen or a connect soon.
599	 */
600	if (inp == NULL) {
601		if (log_in_vain) {
602#ifdef INET6
603			char dbuf[INET6_ADDRSTRLEN+2], sbuf[INET6_ADDRSTRLEN+2];
604#else
605			char dbuf[4*sizeof "123"], sbuf[4*sizeof "123"];
606#endif
607
608			if (isipv6) {
609				strcpy(dbuf, "[");
610				strcpy(sbuf, "[");
611				strcat(dbuf, ip6_sprintf(&ip6->ip6_dst));
612				strcat(sbuf, ip6_sprintf(&ip6->ip6_src));
613				strcat(dbuf, "]");
614				strcat(sbuf, "]");
615			} else {
616				strcpy(dbuf, inet_ntoa(ip->ip_dst));
617				strcpy(sbuf, inet_ntoa(ip->ip_src));
618			}
619			switch (log_in_vain) {
620			case 1:
621				if ((thflags & TH_SYN) == 0)
622					break;
623			case 2:
624				log(LOG_INFO,
625				    "Connection attempt to TCP %s:%d "
626				    "from %s:%d flags:0x%02x\n",
627				    dbuf, ntohs(th->th_dport), sbuf,
628				    ntohs(th->th_sport), thflags);
629				break;
630			default:
631				break;
632			}
633		}
634		if (blackhole) {
635			switch (blackhole) {
636			case 1:
637				if (thflags & TH_SYN)
638					goto drop;
639				break;
640			case 2:
641				goto drop;
642			default:
643				goto drop;
644			}
645		}
646		rstreason = BANDLIM_RST_CLOSEDPORT;
647		goto dropwithreset;
648	}
649	INP_LOCK(inp);
650	if (inp->inp_vflag & INP_TIMEWAIT) {
651		/*
652		 * The only option of relevance is TOF_CC, and only if
653		 * present in a SYN segment.  See tcp_timewait().
654		 */
655		if (thflags & TH_SYN)
656			tcp_dooptions(&to, optp, optlen, 1);
657		if (tcp_timewait((struct tcptw *)inp->inp_ppcb,
658		    &to, th, m, tlen))
659			goto findpcb;
660		/*
661		 * tcp_timewait unlocks inp.
662		 */
663		INP_INFO_WUNLOCK(&tcbinfo);
664		return;
665	}
666	tp = intotcpcb(inp);
667	if (tp == 0) {
668		INP_UNLOCK(inp);
669		rstreason = BANDLIM_RST_CLOSEDPORT;
670		goto dropwithreset;
671	}
672	if (tp->t_state == TCPS_CLOSED)
673		goto drop;
674
675	/* Unscale the window into a 32-bit value. */
676	if ((thflags & TH_SYN) == 0)
677		tiwin = th->th_win << tp->snd_scale;
678	else
679		tiwin = th->th_win;
680
681	so = inp->inp_socket;
682#ifdef MAC
683	if (mac_check_socket_deliver(so, m))
684		goto drop;
685#endif
686#ifdef TCPDEBUG
687	if (so->so_options & SO_DEBUG) {
688		ostate = tp->t_state;
689		if (isipv6)
690			bcopy((char *)ip6, (char *)tcp_saveipgen, sizeof(*ip6));
691		else
692			bcopy((char *)ip, (char *)tcp_saveipgen, sizeof(*ip));
693		tcp_savetcp = *th;
694	}
695#endif
696	if (so->so_options & SO_ACCEPTCONN) {
697		struct in_conninfo inc;
698
699#ifdef INET6
700		inc.inc_isipv6 = isipv6;
701#endif
702		if (isipv6) {
703			inc.inc6_faddr = ip6->ip6_src;
704			inc.inc6_laddr = ip6->ip6_dst;
705			inc.inc6_route.ro_rt = NULL;		/* XXX */
706		} else {
707			inc.inc_faddr = ip->ip_src;
708			inc.inc_laddr = ip->ip_dst;
709			inc.inc_route.ro_rt = NULL;		/* XXX */
710		}
711		inc.inc_fport = th->th_sport;
712		inc.inc_lport = th->th_dport;
713
714	        /*
715	         * If the state is LISTEN then ignore segment if it contains
716		 * a RST.  If the segment contains an ACK then it is bad and
717		 * send a RST.  If it does not contain a SYN then it is not
718		 * interesting; drop it.
719		 *
720		 * If the state is SYN_RECEIVED (syncache) and seg contains
721		 * an ACK, but not for our SYN/ACK, send a RST.  If the seg
722		 * contains a RST, check the sequence number to see if it
723		 * is a valid reset segment.
724		 */
725		if ((thflags & (TH_RST|TH_ACK|TH_SYN)) != TH_SYN) {
726			if ((thflags & (TH_RST|TH_ACK|TH_SYN)) == TH_ACK) {
727				if (!syncache_expand(&inc, th, &so, m)) {
728					/*
729					 * No syncache entry, or ACK was not
730					 * for our SYN/ACK.  Send a RST.
731					 */
732					tcpstat.tcps_badsyn++;
733					rstreason = BANDLIM_RST_OPENPORT;
734					goto dropwithreset;
735				}
736				if (so == NULL) {
737					/*
738					 * Could not complete 3-way handshake,
739					 * connection is being closed down, and
740					 * syncache will free mbuf.
741					 */
742					INP_UNLOCK(inp);
743					INP_INFO_WUNLOCK(&tcbinfo);
744					return;
745				}
746				/*
747				 * Socket is created in state SYN_RECEIVED.
748				 * Continue processing segment.
749				 */
750				INP_UNLOCK(inp);
751				inp = sotoinpcb(so);
752				INP_LOCK(inp);
753				tp = intotcpcb(inp);
754				/*
755				 * This is what would have happened in
756				 * tcp_output() when the SYN,ACK was sent.
757				 */
758				tp->snd_up = tp->snd_una;
759				tp->snd_max = tp->snd_nxt = tp->iss + 1;
760				tp->last_ack_sent = tp->rcv_nxt;
761				/*
762				 * RFC1323: The window in SYN & SYN/ACK
763				 * segments is never scaled.
764				 */
765				tp->snd_wnd = tiwin;	/* unscaled */
766				goto after_listen;
767			}
768			if (thflags & TH_RST) {
769				syncache_chkrst(&inc, th);
770				goto drop;
771			}
772			if (thflags & TH_ACK) {
773				syncache_badack(&inc);
774				tcpstat.tcps_badsyn++;
775				rstreason = BANDLIM_RST_OPENPORT;
776				goto dropwithreset;
777			}
778			goto drop;
779		}
780
781		/*
782		 * Segment's flags are (SYN) or (SYN|FIN).
783		 */
784#ifdef INET6
785		/*
786		 * If deprecated address is forbidden,
787		 * we do not accept SYN to deprecated interface
788		 * address to prevent any new inbound connection from
789		 * getting established.
790		 * When we do not accept SYN, we send a TCP RST,
791		 * with deprecated source address (instead of dropping
792		 * it).  We compromise it as it is much better for peer
793		 * to send a RST, and RST will be the final packet
794		 * for the exchange.
795		 *
796		 * If we do not forbid deprecated addresses, we accept
797		 * the SYN packet.  RFC2462 does not suggest dropping
798		 * SYN in this case.
799		 * If we decipher RFC2462 5.5.4, it says like this:
800		 * 1. use of deprecated addr with existing
801		 *    communication is okay - "SHOULD continue to be
802		 *    used"
803		 * 2. use of it with new communication:
804		 *   (2a) "SHOULD NOT be used if alternate address
805		 *        with sufficient scope is available"
806		 *   (2b) nothing mentioned otherwise.
807		 * Here we fall into (2b) case as we have no choice in
808		 * our source address selection - we must obey the peer.
809		 *
810		 * The wording in RFC2462 is confusing, and there are
811		 * multiple description text for deprecated address
812		 * handling - worse, they are not exactly the same.
813		 * I believe 5.5.4 is the best one, so we follow 5.5.4.
814		 */
815		if (isipv6 && !ip6_use_deprecated) {
816			struct in6_ifaddr *ia6;
817
818			if ((ia6 = ip6_getdstifaddr(m)) &&
819			    (ia6->ia6_flags & IN6_IFF_DEPRECATED)) {
820				INP_UNLOCK(inp);
821				tp = NULL;
822				rstreason = BANDLIM_RST_OPENPORT;
823				goto dropwithreset;
824			}
825		}
826#endif
827		/*
828		 * If it is from this socket, drop it, it must be forged.
829		 * Don't bother responding if the destination was a broadcast.
830		 */
831		if (th->th_dport == th->th_sport) {
832			if (isipv6) {
833				if (IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst,
834						       &ip6->ip6_src))
835					goto drop;
836			} else {
837				if (ip->ip_dst.s_addr == ip->ip_src.s_addr)
838					goto drop;
839			}
840		}
841		/*
842		 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
843		 *
844		 * Note that it is quite possible to receive unicast
845		 * link-layer packets with a broadcast IP address. Use
846		 * in_broadcast() to find them.
847		 */
848		if (m->m_flags & (M_BCAST|M_MCAST))
849			goto drop;
850		if (isipv6) {
851			if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) ||
852			    IN6_IS_ADDR_MULTICAST(&ip6->ip6_src))
853				goto drop;
854		} else {
855			if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
856			    IN_MULTICAST(ntohl(ip->ip_src.s_addr)) ||
857			    ip->ip_src.s_addr == htonl(INADDR_BROADCAST) ||
858			    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
859				goto drop;
860		}
861		/*
862		 * SYN appears to be valid; create compressed TCP state
863		 * for syncache, or perform t/tcp connection.
864		 */
865		if (so->so_qlen <= so->so_qlimit) {
866			tcp_dooptions(&to, optp, optlen, 1);
867			if (!syncache_add(&inc, &to, th, &so, m))
868				goto drop;
869			if (so == NULL) {
870				/*
871				 * Entry added to syncache, mbuf used to
872				 * send SYN,ACK packet.
873				 */
874				KASSERT(headlocked, ("headlocked"));
875				INP_UNLOCK(inp);
876				INP_INFO_WUNLOCK(&tcbinfo);
877				return;
878			}
879			/*
880			 * Segment passed TAO tests.
881			 */
882			INP_UNLOCK(inp);
883			inp = sotoinpcb(so);
884			INP_LOCK(inp);
885			tp = intotcpcb(inp);
886			tp->snd_wnd = tiwin;
887			tp->t_starttime = ticks;
888			tp->t_state = TCPS_ESTABLISHED;
889
890			/*
891			 * T/TCP logic:
892			 * If there is a FIN or if there is data, then
893			 * delay SYN,ACK(SYN) in the hope of piggy-backing
894			 * it on a response segment.  Otherwise must send
895			 * ACK now in case the other side is slow starting.
896			 */
897			if (thflags & TH_FIN || tlen != 0)
898				tp->t_flags |= (TF_DELACK | TF_NEEDSYN);
899			else
900				tp->t_flags |= (TF_ACKNOW | TF_NEEDSYN);
901			tcpstat.tcps_connects++;
902			soisconnected(so);
903			goto trimthenstep6;
904		}
905		goto drop;
906	}
907after_listen:
908
909/* XXX temp debugging */
910	/* should not happen - syncache should pick up these connections */
911	if (tp->t_state == TCPS_LISTEN)
912		panic("tcp_input: TCPS_LISTEN");
913
914	/*
915	 * Segment received on connection.
916	 * Reset idle time and keep-alive timer.
917	 */
918	tp->t_rcvtime = ticks;
919	if (TCPS_HAVEESTABLISHED(tp->t_state))
920		callout_reset(tp->tt_keep, tcp_keepidle, tcp_timer_keep, tp);
921
922	/*
923	 * Process options.
924	 * XXX this is tradtitional behavior, may need to be cleaned up.
925	 */
926	tcp_dooptions(&to, optp, optlen, thflags & TH_SYN);
927	if (thflags & TH_SYN) {
928		if (to.to_flags & TOF_SCALE) {
929			tp->t_flags |= TF_RCVD_SCALE;
930			tp->requested_s_scale = to.to_requested_s_scale;
931		}
932		if (to.to_flags & TOF_TS) {
933			tp->t_flags |= TF_RCVD_TSTMP;
934			tp->ts_recent = to.to_tsval;
935			tp->ts_recent_age = ticks;
936		}
937		if (to.to_flags & (TOF_CC|TOF_CCNEW))
938			tp->t_flags |= TF_RCVD_CC;
939		if (to.to_flags & TOF_MSS)
940			tcp_mss(tp, to.to_mss);
941	}
942
943	/*
944	 * Header prediction: check for the two common cases
945	 * of a uni-directional data xfer.  If the packet has
946	 * no control flags, is in-sequence, the window didn't
947	 * change and we're not retransmitting, it's a
948	 * candidate.  If the length is zero and the ack moved
949	 * forward, we're the sender side of the xfer.  Just
950	 * free the data acked & wake any higher level process
951	 * that was blocked waiting for space.  If the length
952	 * is non-zero and the ack didn't move, we're the
953	 * receiver side.  If we're getting packets in-order
954	 * (the reassembly queue is empty), add the data to
955	 * the socket buffer and note that we need a delayed ack.
956	 * Make sure that the hidden state-flags are also off.
957	 * Since we check for TCPS_ESTABLISHED above, it can only
958	 * be TH_NEEDSYN.
959	 */
960	if (tp->t_state == TCPS_ESTABLISHED &&
961	    (thflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK)) == TH_ACK &&
962	    ((tp->t_flags & (TF_NEEDSYN|TF_NEEDFIN)) == 0) &&
963	    ((to.to_flags & TOF_TS) == 0 ||
964	     TSTMP_GEQ(to.to_tsval, tp->ts_recent)) &&
965	    /*
966	     * Using the CC option is compulsory if once started:
967	     *   the segment is OK if no T/TCP was negotiated or
968	     *   if the segment has a CC option equal to CCrecv
969	     */
970	    ((tp->t_flags & (TF_REQ_CC|TF_RCVD_CC)) != (TF_REQ_CC|TF_RCVD_CC) ||
971	     ((to.to_flags & TOF_CC) != 0 && to.to_cc == tp->cc_recv)) &&
972	    th->th_seq == tp->rcv_nxt &&
973	    tiwin && tiwin == tp->snd_wnd &&
974	    tp->snd_nxt == tp->snd_max) {
975
976		/*
977		 * If last ACK falls within this segment's sequence numbers,
978		 * record the timestamp.
979		 * NOTE that the test is modified according to the latest
980		 * proposal of the tcplw@cray.com list (Braden 1993/04/26).
981		 */
982		if ((to.to_flags & TOF_TS) != 0 &&
983		    SEQ_LEQ(th->th_seq, tp->last_ack_sent)) {
984			tp->ts_recent_age = ticks;
985			tp->ts_recent = to.to_tsval;
986		}
987
988		if (tlen == 0) {
989			if (SEQ_GT(th->th_ack, tp->snd_una) &&
990			    SEQ_LEQ(th->th_ack, tp->snd_max) &&
991			    tp->snd_cwnd >= tp->snd_wnd &&
992			    ((!tcp_do_newreno &&
993			      tp->t_dupacks < tcprexmtthresh) ||
994			     (tcp_do_newreno &&
995			      !SEQ_LT(tp->snd_una, tp->snd_recover)))) {
996				KASSERT(headlocked, ("headlocked"));
997				INP_INFO_WUNLOCK(&tcbinfo);
998				/*
999				 * this is a pure ack for outstanding data.
1000				 */
1001				++tcpstat.tcps_predack;
1002				/*
1003				 * "bad retransmit" recovery
1004				 */
1005				if (tp->t_rxtshift == 1 &&
1006				    ticks < tp->t_badrxtwin) {
1007					++tcpstat.tcps_sndrexmitbad;
1008					tp->snd_cwnd = tp->snd_cwnd_prev;
1009					tp->snd_ssthresh =
1010					    tp->snd_ssthresh_prev;
1011					tp->snd_high = tp->snd_high_prev;
1012					tp->snd_nxt = tp->snd_max;
1013					tp->t_badrxtwin = 0;
1014				}
1015
1016				/*
1017				 * Recalculate the transmit timer / rtt.
1018				 *
1019				 * Some boxes send broken timestamp replies
1020				 * during the SYN+ACK phase, ignore
1021				 * timestamps of 0 or we could calculate a
1022				 * huge RTT and blow up the retransmit timer.
1023				 */
1024				if ((to.to_flags & TOF_TS) != 0 &&
1025				    to.to_tsecr) {
1026					tcp_xmit_timer(tp,
1027					    ticks - to.to_tsecr + 1);
1028				} else if (tp->t_rtttime &&
1029					    SEQ_GT(th->th_ack, tp->t_rtseq)) {
1030					tcp_xmit_timer(tp,
1031							ticks - tp->t_rtttime);
1032				}
1033				tcp_xmit_bandwidth_limit(tp, th->th_ack);
1034				acked = th->th_ack - tp->snd_una;
1035				tcpstat.tcps_rcvackpack++;
1036				tcpstat.tcps_rcvackbyte += acked;
1037				sbdrop(&so->so_snd, acked);
1038				if (SEQ_GT(tp->snd_una, tp->snd_high) &&
1039				    SEQ_LEQ(th->th_ack, tp->snd_high))
1040					tp->snd_high = th->th_ack - 1;
1041				tp->snd_una = tp->snd_recover = th->th_ack;
1042				/*
1043				 * pull snd_wl2 up to prevent seq wrap relative
1044				 * to th_ack.
1045				 */
1046				tp->snd_wl2 = th->th_ack;
1047				tp->t_dupacks = 0;
1048				m_freem(m);
1049				ND6_HINT(tp); /* some progress has been done */
1050
1051				/*
1052				 * If all outstanding data are acked, stop
1053				 * retransmit timer, otherwise restart timer
1054				 * using current (possibly backed-off) value.
1055				 * If process is waiting for space,
1056				 * wakeup/selwakeup/signal.  If data
1057				 * are ready to send, let tcp_output
1058				 * decide between more output or persist.
1059				 */
1060				if (tp->snd_una == tp->snd_max)
1061					callout_stop(tp->tt_rexmt);
1062				else if (!callout_active(tp->tt_persist))
1063					callout_reset(tp->tt_rexmt,
1064						      tp->t_rxtcur,
1065						      tcp_timer_rexmt, tp);
1066
1067				sowwakeup(so);
1068				if (so->so_snd.sb_cc)
1069					(void) tcp_output(tp);
1070				goto check_delack;
1071			}
1072		} else if (th->th_ack == tp->snd_una &&
1073		    LIST_EMPTY(&tp->t_segq) &&
1074		    tlen <= sbspace(&so->so_rcv)) {
1075			KASSERT(headlocked, ("headlocked"));
1076			INP_INFO_WUNLOCK(&tcbinfo);
1077			/*
1078			 * this is a pure, in-sequence data packet
1079			 * with nothing on the reassembly queue and
1080			 * we have enough buffer space to take it.
1081			 */
1082			++tcpstat.tcps_preddat;
1083			tp->rcv_nxt += tlen;
1084			/*
1085			 * Pull snd_wl1 up to prevent seq wrap relative to
1086			 * th_seq.
1087			 */
1088			tp->snd_wl1 = th->th_seq;
1089			/*
1090			 * Pull rcv_up up to prevent seq wrap relative to
1091			 * rcv_nxt.
1092			 */
1093			tp->rcv_up = tp->rcv_nxt;
1094			tcpstat.tcps_rcvpack++;
1095			tcpstat.tcps_rcvbyte += tlen;
1096			ND6_HINT(tp);	/* some progress has been done */
1097			/*
1098			 * Add data to socket buffer.
1099			 */
1100			if (so->so_state & SS_CANTRCVMORE) {
1101				m_freem(m);
1102			} else {
1103				m_adj(m, drop_hdrlen);	/* delayed header drop */
1104				sbappend(&so->so_rcv, m);
1105			}
1106			sorwakeup(so);
1107			if (DELAY_ACK(tp)) {
1108				tp->t_flags |= TF_DELACK;
1109			} else {
1110				tp->t_flags |= TF_ACKNOW;
1111				tcp_output(tp);
1112			}
1113			goto check_delack;
1114		}
1115	}
1116
1117	/*
1118	 * Calculate amount of space in receive window,
1119	 * and then do TCP input processing.
1120	 * Receive window is amount of space in rcv queue,
1121	 * but not less than advertised window.
1122	 */
1123	{ int win;
1124
1125	win = sbspace(&so->so_rcv);
1126	if (win < 0)
1127		win = 0;
1128	tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
1129	}
1130
1131	switch (tp->t_state) {
1132
1133	/*
1134	 * If the state is SYN_RECEIVED:
1135	 *	if seg contains an ACK, but not for our SYN/ACK, send a RST.
1136	 */
1137	case TCPS_SYN_RECEIVED:
1138		if ((thflags & TH_ACK) &&
1139		    (SEQ_LEQ(th->th_ack, tp->snd_una) ||
1140		     SEQ_GT(th->th_ack, tp->snd_max))) {
1141				rstreason = BANDLIM_RST_OPENPORT;
1142				goto dropwithreset;
1143		}
1144		break;
1145
1146	/*
1147	 * If the state is SYN_SENT:
1148	 *	if seg contains an ACK, but not for our SYN, drop the input.
1149	 *	if seg contains a RST, then drop the connection.
1150	 *	if seg does not contain SYN, then drop it.
1151	 * Otherwise this is an acceptable SYN segment
1152	 *	initialize tp->rcv_nxt and tp->irs
1153	 *	if seg contains ack then advance tp->snd_una
1154	 *	if SYN has been acked change to ESTABLISHED else SYN_RCVD state
1155	 *	arrange for segment to be acked (eventually)
1156	 *	continue processing rest of data/controls, beginning with URG
1157	 */
1158	case TCPS_SYN_SENT:
1159		if ((taop = tcp_gettaocache(&inp->inp_inc)) == NULL) {
1160			taop = &tao_noncached;
1161			bzero(taop, sizeof(*taop));
1162		}
1163
1164		if ((thflags & TH_ACK) &&
1165		    (SEQ_LEQ(th->th_ack, tp->iss) ||
1166		     SEQ_GT(th->th_ack, tp->snd_max))) {
1167			/*
1168			 * If we have a cached CCsent for the remote host,
1169			 * hence we haven't just crashed and restarted,
1170			 * do not send a RST.  This may be a retransmission
1171			 * from the other side after our earlier ACK was lost.
1172			 * Our new SYN, when it arrives, will serve as the
1173			 * needed ACK.
1174			 */
1175			if (taop->tao_ccsent != 0)
1176				goto drop;
1177			else {
1178				rstreason = BANDLIM_UNLIMITED;
1179				goto dropwithreset;
1180			}
1181		}
1182		if (thflags & TH_RST) {
1183			if (thflags & TH_ACK)
1184				tp = tcp_drop(tp, ECONNREFUSED);
1185			goto drop;
1186		}
1187		if ((thflags & TH_SYN) == 0)
1188			goto drop;
1189		tp->snd_wnd = th->th_win;	/* initial send window */
1190		tp->cc_recv = to.to_cc;		/* foreign CC */
1191
1192		tp->irs = th->th_seq;
1193		tcp_rcvseqinit(tp);
1194		if (thflags & TH_ACK) {
1195			/*
1196			 * Our SYN was acked.  If segment contains CC.ECHO
1197			 * option, check it to make sure this segment really
1198			 * matches our SYN.  If not, just drop it as old
1199			 * duplicate, but send an RST if we're still playing
1200			 * by the old rules.  If no CC.ECHO option, make sure
1201			 * we don't get fooled into using T/TCP.
1202			 */
1203			if (to.to_flags & TOF_CCECHO) {
1204				if (tp->cc_send != to.to_ccecho) {
1205					if (taop->tao_ccsent != 0)
1206						goto drop;
1207					else {
1208						rstreason = BANDLIM_UNLIMITED;
1209						goto dropwithreset;
1210					}
1211				}
1212			} else
1213				tp->t_flags &= ~TF_RCVD_CC;
1214			tcpstat.tcps_connects++;
1215			soisconnected(so);
1216#ifdef MAC
1217			mac_set_socket_peer_from_mbuf(m, so);
1218#endif
1219			/* Do window scaling on this connection? */
1220			if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
1221				(TF_RCVD_SCALE|TF_REQ_SCALE)) {
1222				tp->snd_scale = tp->requested_s_scale;
1223				tp->rcv_scale = tp->request_r_scale;
1224			}
1225			/* Segment is acceptable, update cache if undefined. */
1226			if (taop->tao_ccsent == 0)
1227				taop->tao_ccsent = to.to_ccecho;
1228
1229			tp->rcv_adv += tp->rcv_wnd;
1230			tp->snd_una++;		/* SYN is acked */
1231			/*
1232			 * If there's data, delay ACK; if there's also a FIN
1233			 * ACKNOW will be turned on later.
1234			 */
1235			if (DELAY_ACK(tp) && tlen != 0)
1236                                callout_reset(tp->tt_delack, tcp_delacktime,
1237                                    tcp_timer_delack, tp);
1238			else
1239				tp->t_flags |= TF_ACKNOW;
1240			/*
1241			 * Received <SYN,ACK> in SYN_SENT[*] state.
1242			 * Transitions:
1243			 *	SYN_SENT  --> ESTABLISHED
1244			 *	SYN_SENT* --> FIN_WAIT_1
1245			 */
1246			tp->t_starttime = ticks;
1247			if (tp->t_flags & TF_NEEDFIN) {
1248				tp->t_state = TCPS_FIN_WAIT_1;
1249				tp->t_flags &= ~TF_NEEDFIN;
1250				thflags &= ~TH_SYN;
1251			} else {
1252				tp->t_state = TCPS_ESTABLISHED;
1253				callout_reset(tp->tt_keep, tcp_keepidle,
1254					      tcp_timer_keep, tp);
1255			}
1256		} else {
1257			/*
1258		 	 * Received initial SYN in SYN-SENT[*] state =>
1259		 	 * simultaneous open.  If segment contains CC option
1260		 	 * and there is a cached CC, apply TAO test.
1261		 	 * If it succeeds, connection is * half-synchronized.
1262		 	 * Otherwise, do 3-way handshake:
1263		 	 *        SYN-SENT -> SYN-RECEIVED
1264		 	 *        SYN-SENT* -> SYN-RECEIVED*
1265		 	 * If there was no CC option, clear cached CC value.
1266		 	 */
1267			tp->t_flags |= TF_ACKNOW;
1268			callout_stop(tp->tt_rexmt);
1269			if (to.to_flags & TOF_CC) {
1270				if (taop->tao_cc != 0 &&
1271				    CC_GT(to.to_cc, taop->tao_cc)) {
1272					/*
1273					 * update cache and make transition:
1274					 *        SYN-SENT -> ESTABLISHED*
1275					 *        SYN-SENT* -> FIN-WAIT-1*
1276					 */
1277					taop->tao_cc = to.to_cc;
1278					tp->t_starttime = ticks;
1279					if (tp->t_flags & TF_NEEDFIN) {
1280						tp->t_state = TCPS_FIN_WAIT_1;
1281						tp->t_flags &= ~TF_NEEDFIN;
1282					} else {
1283						tp->t_state = TCPS_ESTABLISHED;
1284						callout_reset(tp->tt_keep,
1285							      tcp_keepidle,
1286							      tcp_timer_keep,
1287							      tp);
1288					}
1289					tp->t_flags |= TF_NEEDSYN;
1290				} else
1291					tp->t_state = TCPS_SYN_RECEIVED;
1292			} else {
1293				/* CC.NEW or no option => invalidate cache */
1294				taop->tao_cc = 0;
1295				tp->t_state = TCPS_SYN_RECEIVED;
1296			}
1297		}
1298
1299trimthenstep6:
1300		/*
1301		 * Advance th->th_seq to correspond to first data byte.
1302		 * If data, trim to stay within window,
1303		 * dropping FIN if necessary.
1304		 */
1305		th->th_seq++;
1306		if (tlen > tp->rcv_wnd) {
1307			todrop = tlen - tp->rcv_wnd;
1308			m_adj(m, -todrop);
1309			tlen = tp->rcv_wnd;
1310			thflags &= ~TH_FIN;
1311			tcpstat.tcps_rcvpackafterwin++;
1312			tcpstat.tcps_rcvbyteafterwin += todrop;
1313		}
1314		tp->snd_wl1 = th->th_seq - 1;
1315		tp->rcv_up = th->th_seq;
1316		/*
1317		 * Client side of transaction: already sent SYN and data.
1318		 * If the remote host used T/TCP to validate the SYN,
1319		 * our data will be ACK'd; if so, enter normal data segment
1320		 * processing in the middle of step 5, ack processing.
1321		 * Otherwise, goto step 6.
1322		 */
1323 		if (thflags & TH_ACK)
1324			goto process_ACK;
1325
1326		goto step6;
1327
1328	/*
1329	 * If the state is LAST_ACK or CLOSING or TIME_WAIT:
1330	 *	if segment contains a SYN and CC [not CC.NEW] option:
1331	 *              if state == TIME_WAIT and connection duration > MSL,
1332	 *                  drop packet and send RST;
1333	 *
1334	 *		if SEG.CC > CCrecv then is new SYN, and can implicitly
1335	 *		    ack the FIN (and data) in retransmission queue.
1336	 *                  Complete close and delete TCPCB.  Then reprocess
1337	 *                  segment, hoping to find new TCPCB in LISTEN state;
1338	 *
1339	 *		else must be old SYN; drop it.
1340	 *      else do normal processing.
1341	 */
1342	case TCPS_LAST_ACK:
1343	case TCPS_CLOSING:
1344	case TCPS_TIME_WAIT:
1345		KASSERT(tp->t_state != TCPS_TIME_WAIT, ("timewait"));
1346		if ((thflags & TH_SYN) &&
1347		    (to.to_flags & TOF_CC) && tp->cc_recv != 0) {
1348			if (tp->t_state == TCPS_TIME_WAIT &&
1349					(ticks - tp->t_starttime) > tcp_msl) {
1350				rstreason = BANDLIM_UNLIMITED;
1351				goto dropwithreset;
1352			}
1353			if (CC_GT(to.to_cc, tp->cc_recv)) {
1354				tp = tcp_close(tp);
1355				goto findpcb;
1356			}
1357			else
1358				goto drop;
1359		}
1360 		break;  /* continue normal processing */
1361	}
1362
1363	/*
1364	 * States other than LISTEN or SYN_SENT.
1365	 * First check the RST flag and sequence number since reset segments
1366	 * are exempt from the timestamp and connection count tests.  This
1367	 * fixes a bug introduced by the Stevens, vol. 2, p. 960 bugfix
1368	 * below which allowed reset segments in half the sequence space
1369	 * to fall though and be processed (which gives forged reset
1370	 * segments with a random sequence number a 50 percent chance of
1371	 * killing a connection).
1372	 * Then check timestamp, if present.
1373	 * Then check the connection count, if present.
1374	 * Then check that at least some bytes of segment are within
1375	 * receive window.  If segment begins before rcv_nxt,
1376	 * drop leading data (and SYN); if nothing left, just ack.
1377	 *
1378	 *
1379	 * If the RST bit is set, check the sequence number to see
1380	 * if this is a valid reset segment.
1381	 * RFC 793 page 37:
1382	 *   In all states except SYN-SENT, all reset (RST) segments
1383	 *   are validated by checking their SEQ-fields.  A reset is
1384	 *   valid if its sequence number is in the window.
1385	 * Note: this does not take into account delayed ACKs, so
1386	 *   we should test against last_ack_sent instead of rcv_nxt.
1387	 *   The sequence number in the reset segment is normally an
1388	 *   echo of our outgoing acknowlegement numbers, but some hosts
1389	 *   send a reset with the sequence number at the rightmost edge
1390	 *   of our receive window, and we have to handle this case.
1391	 * If we have multiple segments in flight, the intial reset
1392	 * segment sequence numbers will be to the left of last_ack_sent,
1393	 * but they will eventually catch up.
1394	 * In any case, it never made sense to trim reset segments to
1395	 * fit the receive window since RFC 1122 says:
1396	 *   4.2.2.12  RST Segment: RFC-793 Section 3.4
1397	 *
1398	 *    A TCP SHOULD allow a received RST segment to include data.
1399	 *
1400	 *    DISCUSSION
1401	 *         It has been suggested that a RST segment could contain
1402	 *         ASCII text that encoded and explained the cause of the
1403	 *         RST.  No standard has yet been established for such
1404	 *         data.
1405	 *
1406	 * If the reset segment passes the sequence number test examine
1407	 * the state:
1408	 *    SYN_RECEIVED STATE:
1409	 *	If passive open, return to LISTEN state.
1410	 *	If active open, inform user that connection was refused.
1411	 *    ESTABLISHED, FIN_WAIT_1, FIN_WAIT_2, CLOSE_WAIT STATES:
1412	 *	Inform user that connection was reset, and close tcb.
1413	 *    CLOSING, LAST_ACK STATES:
1414	 *	Close the tcb.
1415	 *    TIME_WAIT STATE:
1416	 *	Drop the segment - see Stevens, vol. 2, p. 964 and
1417	 *      RFC 1337.
1418	 */
1419	if (thflags & TH_RST) {
1420		if (SEQ_GEQ(th->th_seq, tp->last_ack_sent) &&
1421		    SEQ_LT(th->th_seq, tp->last_ack_sent + tp->rcv_wnd)) {
1422			switch (tp->t_state) {
1423
1424			case TCPS_SYN_RECEIVED:
1425				so->so_error = ECONNREFUSED;
1426				goto close;
1427
1428			case TCPS_ESTABLISHED:
1429			case TCPS_FIN_WAIT_1:
1430			case TCPS_FIN_WAIT_2:
1431			case TCPS_CLOSE_WAIT:
1432				so->so_error = ECONNRESET;
1433			close:
1434				tp->t_state = TCPS_CLOSED;
1435				tcpstat.tcps_drops++;
1436				tp = tcp_close(tp);
1437				break;
1438
1439			case TCPS_CLOSING:
1440			case TCPS_LAST_ACK:
1441				tp = tcp_close(tp);
1442				break;
1443
1444			case TCPS_TIME_WAIT:
1445				KASSERT(tp->t_state != TCPS_TIME_WAIT,
1446				    ("timewait"));
1447				break;
1448			}
1449		}
1450		goto drop;
1451	}
1452
1453	/*
1454	 * RFC 1323 PAWS: If we have a timestamp reply on this segment
1455	 * and it's less than ts_recent, drop it.
1456	 */
1457	if ((to.to_flags & TOF_TS) != 0 && tp->ts_recent &&
1458	    TSTMP_LT(to.to_tsval, tp->ts_recent)) {
1459
1460		/* Check to see if ts_recent is over 24 days old.  */
1461		if ((int)(ticks - tp->ts_recent_age) > TCP_PAWS_IDLE) {
1462			/*
1463			 * Invalidate ts_recent.  If this segment updates
1464			 * ts_recent, the age will be reset later and ts_recent
1465			 * will get a valid value.  If it does not, setting
1466			 * ts_recent to zero will at least satisfy the
1467			 * requirement that zero be placed in the timestamp
1468			 * echo reply when ts_recent isn't valid.  The
1469			 * age isn't reset until we get a valid ts_recent
1470			 * because we don't want out-of-order segments to be
1471			 * dropped when ts_recent is old.
1472			 */
1473			tp->ts_recent = 0;
1474		} else {
1475			tcpstat.tcps_rcvduppack++;
1476			tcpstat.tcps_rcvdupbyte += tlen;
1477			tcpstat.tcps_pawsdrop++;
1478			if (tlen)
1479				goto dropafterack;
1480			goto drop;
1481		}
1482	}
1483
1484	/*
1485	 * T/TCP mechanism
1486	 *   If T/TCP was negotiated and the segment doesn't have CC,
1487	 *   or if its CC is wrong then drop the segment.
1488	 *   RST segments do not have to comply with this.
1489	 */
1490	if ((tp->t_flags & (TF_REQ_CC|TF_RCVD_CC)) == (TF_REQ_CC|TF_RCVD_CC) &&
1491	    ((to.to_flags & TOF_CC) == 0 || tp->cc_recv != to.to_cc))
1492 		goto dropafterack;
1493
1494	/*
1495	 * In the SYN-RECEIVED state, validate that the packet belongs to
1496	 * this connection before trimming the data to fit the receive
1497	 * window.  Check the sequence number versus IRS since we know
1498	 * the sequence numbers haven't wrapped.  This is a partial fix
1499	 * for the "LAND" DoS attack.
1500	 */
1501	if (tp->t_state == TCPS_SYN_RECEIVED && SEQ_LT(th->th_seq, tp->irs)) {
1502		rstreason = BANDLIM_RST_OPENPORT;
1503		goto dropwithreset;
1504	}
1505
1506	todrop = tp->rcv_nxt - th->th_seq;
1507	if (todrop > 0) {
1508		if (thflags & TH_SYN) {
1509			thflags &= ~TH_SYN;
1510			th->th_seq++;
1511			if (th->th_urp > 1)
1512				th->th_urp--;
1513			else
1514				thflags &= ~TH_URG;
1515			todrop--;
1516		}
1517		/*
1518		 * Following if statement from Stevens, vol. 2, p. 960.
1519		 */
1520		if (todrop > tlen
1521		    || (todrop == tlen && (thflags & TH_FIN) == 0)) {
1522			/*
1523			 * Any valid FIN must be to the left of the window.
1524			 * At this point the FIN must be a duplicate or out
1525			 * of sequence; drop it.
1526			 */
1527			thflags &= ~TH_FIN;
1528
1529			/*
1530			 * Send an ACK to resynchronize and drop any data.
1531			 * But keep on processing for RST or ACK.
1532			 */
1533			tp->t_flags |= TF_ACKNOW;
1534			todrop = tlen;
1535			tcpstat.tcps_rcvduppack++;
1536			tcpstat.tcps_rcvdupbyte += todrop;
1537		} else {
1538			tcpstat.tcps_rcvpartduppack++;
1539			tcpstat.tcps_rcvpartdupbyte += todrop;
1540		}
1541		drop_hdrlen += todrop;	/* drop from the top afterwards */
1542		th->th_seq += todrop;
1543		tlen -= todrop;
1544		if (th->th_urp > todrop)
1545			th->th_urp -= todrop;
1546		else {
1547			thflags &= ~TH_URG;
1548			th->th_urp = 0;
1549		}
1550	}
1551
1552	/*
1553	 * If new data are received on a connection after the
1554	 * user processes are gone, then RST the other end.
1555	 */
1556	if ((so->so_state & SS_NOFDREF) &&
1557	    tp->t_state > TCPS_CLOSE_WAIT && tlen) {
1558		tp = tcp_close(tp);
1559		tcpstat.tcps_rcvafterclose++;
1560		rstreason = BANDLIM_UNLIMITED;
1561		goto dropwithreset;
1562	}
1563
1564	/*
1565	 * If segment ends after window, drop trailing data
1566	 * (and PUSH and FIN); if nothing left, just ACK.
1567	 */
1568	todrop = (th->th_seq+tlen) - (tp->rcv_nxt+tp->rcv_wnd);
1569	if (todrop > 0) {
1570		tcpstat.tcps_rcvpackafterwin++;
1571		if (todrop >= tlen) {
1572			tcpstat.tcps_rcvbyteafterwin += tlen;
1573			/*
1574			 * If a new connection request is received
1575			 * while in TIME_WAIT, drop the old connection
1576			 * and start over if the sequence numbers
1577			 * are above the previous ones.
1578			 */
1579			KASSERT(tp->t_state != TCPS_TIME_WAIT, ("timewait"));
1580			if (thflags & TH_SYN &&
1581			    tp->t_state == TCPS_TIME_WAIT &&
1582			    SEQ_GT(th->th_seq, tp->rcv_nxt)) {
1583				tp = tcp_close(tp);
1584				goto findpcb;
1585			}
1586			/*
1587			 * If window is closed can only take segments at
1588			 * window edge, and have to drop data and PUSH from
1589			 * incoming segments.  Continue processing, but
1590			 * remember to ack.  Otherwise, drop segment
1591			 * and ack.
1592			 */
1593			if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
1594				tp->t_flags |= TF_ACKNOW;
1595				tcpstat.tcps_rcvwinprobe++;
1596			} else
1597				goto dropafterack;
1598		} else
1599			tcpstat.tcps_rcvbyteafterwin += todrop;
1600		m_adj(m, -todrop);
1601		tlen -= todrop;
1602		thflags &= ~(TH_PUSH|TH_FIN);
1603	}
1604
1605	/*
1606	 * If last ACK falls within this segment's sequence numbers,
1607	 * record its timestamp.
1608	 * NOTE that the test is modified according to the latest
1609	 * proposal of the tcplw@cray.com list (Braden 1993/04/26).
1610	 */
1611	if ((to.to_flags & TOF_TS) != 0 &&
1612	    SEQ_LEQ(th->th_seq, tp->last_ack_sent)) {
1613		tp->ts_recent_age = ticks;
1614		tp->ts_recent = to.to_tsval;
1615	}
1616
1617	/*
1618	 * If a SYN is in the window, then this is an
1619	 * error and we send an RST and drop the connection.
1620	 */
1621	if (thflags & TH_SYN) {
1622		tp = tcp_drop(tp, ECONNRESET);
1623		rstreason = BANDLIM_UNLIMITED;
1624		goto dropwithreset;
1625	}
1626
1627	/*
1628	 * If the ACK bit is off:  if in SYN-RECEIVED state or SENDSYN
1629	 * flag is on (half-synchronized state), then queue data for
1630	 * later processing; else drop segment and return.
1631	 */
1632	if ((thflags & TH_ACK) == 0) {
1633		if (tp->t_state == TCPS_SYN_RECEIVED ||
1634		    (tp->t_flags & TF_NEEDSYN))
1635			goto step6;
1636		else
1637			goto drop;
1638	}
1639
1640	/*
1641	 * Ack processing.
1642	 */
1643	switch (tp->t_state) {
1644
1645	/*
1646	 * In SYN_RECEIVED state, the ack ACKs our SYN, so enter
1647	 * ESTABLISHED state and continue processing.
1648	 * The ACK was checked above.
1649	 */
1650	case TCPS_SYN_RECEIVED:
1651
1652		tcpstat.tcps_connects++;
1653		soisconnected(so);
1654		/* Do window scaling? */
1655		if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
1656			(TF_RCVD_SCALE|TF_REQ_SCALE)) {
1657			tp->snd_scale = tp->requested_s_scale;
1658			tp->rcv_scale = tp->request_r_scale;
1659		}
1660		/*
1661		 * Upon successful completion of 3-way handshake,
1662		 * update cache.CC if it was undefined, pass any queued
1663		 * data to the user, and advance state appropriately.
1664		 */
1665		if ((taop = tcp_gettaocache(&inp->inp_inc)) != NULL &&
1666		    taop->tao_cc == 0)
1667			taop->tao_cc = tp->cc_recv;
1668
1669		/*
1670		 * Make transitions:
1671		 *      SYN-RECEIVED  -> ESTABLISHED
1672		 *      SYN-RECEIVED* -> FIN-WAIT-1
1673		 */
1674		tp->t_starttime = ticks;
1675		if (tp->t_flags & TF_NEEDFIN) {
1676			tp->t_state = TCPS_FIN_WAIT_1;
1677			tp->t_flags &= ~TF_NEEDFIN;
1678		} else {
1679			tp->t_state = TCPS_ESTABLISHED;
1680			callout_reset(tp->tt_keep, tcp_keepidle,
1681				      tcp_timer_keep, tp);
1682		}
1683		/*
1684		 * If segment contains data or ACK, will call tcp_reass()
1685		 * later; if not, do so now to pass queued data to user.
1686		 */
1687		if (tlen == 0 && (thflags & TH_FIN) == 0)
1688			(void) tcp_reass(tp, (struct tcphdr *)0, 0,
1689			    (struct mbuf *)0);
1690		tp->snd_wl1 = th->th_seq - 1;
1691		/* FALLTHROUGH */
1692
1693	/*
1694	 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
1695	 * ACKs.  If the ack is in the range
1696	 *	tp->snd_una < th->th_ack <= tp->snd_max
1697	 * then advance tp->snd_una to th->th_ack and drop
1698	 * data from the retransmission queue.  If this ACK reflects
1699	 * more up to date window information we update our window information.
1700	 */
1701	case TCPS_ESTABLISHED:
1702	case TCPS_FIN_WAIT_1:
1703	case TCPS_FIN_WAIT_2:
1704	case TCPS_CLOSE_WAIT:
1705	case TCPS_CLOSING:
1706	case TCPS_LAST_ACK:
1707	case TCPS_TIME_WAIT:
1708		KASSERT(tp->t_state != TCPS_TIME_WAIT, ("timewait"));
1709		if (SEQ_LEQ(th->th_ack, tp->snd_una)) {
1710			if (tlen == 0 && tiwin == tp->snd_wnd) {
1711				tcpstat.tcps_rcvdupack++;
1712				/*
1713				 * If we have outstanding data (other than
1714				 * a window probe), this is a completely
1715				 * duplicate ack (ie, window info didn't
1716				 * change), the ack is the biggest we've
1717				 * seen and we've seen exactly our rexmt
1718				 * threshhold of them, assume a packet
1719				 * has been dropped and retransmit it.
1720				 * Kludge snd_nxt & the congestion
1721				 * window so we send only this one
1722				 * packet.
1723				 *
1724				 * We know we're losing at the current
1725				 * window size so do congestion avoidance
1726				 * (set ssthresh to half the current window
1727				 * and pull our congestion window back to
1728				 * the new ssthresh).
1729				 *
1730				 * Dup acks mean that packets have left the
1731				 * network (they're now cached at the receiver)
1732				 * so bump cwnd by the amount in the receiver
1733				 * to keep a constant cwnd packets in the
1734				 * network.
1735				 */
1736				if (!callout_active(tp->tt_rexmt) ||
1737				    th->th_ack != tp->snd_una)
1738					tp->t_dupacks = 0;
1739				else if (++tp->t_dupacks > tcprexmtthresh ||
1740					 (tcp_do_newreno &&
1741					  SEQ_LT(tp->snd_una,
1742					  	 tp->snd_recover))) {
1743					tp->snd_cwnd += tp->t_maxseg;
1744					(void) tcp_output(tp);
1745					goto drop;
1746				} else if (tp->t_dupacks == tcprexmtthresh) {
1747					tcp_seq onxt = tp->snd_nxt;
1748					u_int win;
1749					if (tcp_do_newreno &&
1750					    SEQ_LEQ(th->th_ack, tp->snd_high)) {
1751						tp->t_dupacks = 0;
1752						break;
1753					}
1754					win = min(tp->snd_wnd, tp->snd_cwnd) /
1755					    2 / tp->t_maxseg;
1756					if (win < 2)
1757						win = 2;
1758					tp->snd_ssthresh = win * tp->t_maxseg;
1759					tp->snd_recover = tp->snd_max;
1760					callout_stop(tp->tt_rexmt);
1761					tp->t_rtttime = 0;
1762					tp->snd_nxt = th->th_ack;
1763					tp->snd_cwnd = tp->t_maxseg;
1764					(void) tcp_output(tp);
1765					tp->snd_cwnd = tp->snd_ssthresh +
1766						tp->t_maxseg * tp->t_dupacks;
1767					if (SEQ_GT(onxt, tp->snd_nxt))
1768						tp->snd_nxt = onxt;
1769					goto drop;
1770				} else if (tcp_do_rfc3042) {
1771					u_long oldcwnd = tp->snd_cwnd;
1772					KASSERT(tp->t_dupacks == 1 ||
1773					    tp->t_dupacks == 2,
1774					    ("dupacks not 1 or 2"));
1775					tp->snd_cwnd += tp->t_dupacks *
1776								tp->t_maxseg;
1777					(void) tcp_output(tp);
1778					tp->snd_cwnd = oldcwnd;
1779					goto drop;
1780				}
1781			} else
1782				tp->t_dupacks = 0;
1783			break;
1784		}
1785
1786		KASSERT(SEQ_GT(th->th_ack, tp->snd_una), ("th_ack <= snd_una"));
1787
1788		/*
1789		 * If the congestion window was inflated to account
1790		 * for the other side's cached packets, retract it.
1791		 */
1792		if (tcp_do_newreno) {
1793			if (SEQ_LT(tp->snd_una, tp->snd_recover)) {
1794				if (SEQ_LT(th->th_ack, tp->snd_recover)) {
1795					tcp_newreno_partial_ack(tp, th);
1796				} else {
1797					/*
1798					 * Window inflation should have left us
1799					 * with approximately snd_ssthresh
1800					 * outstanding data.
1801					 * But in case we would be inclined to
1802					 * send a burst, better to do it via
1803					 * the slow start mechanism.
1804					 */
1805					if (SEQ_GT(th->th_ack +
1806							tp->snd_ssthresh,
1807						   tp->snd_max))
1808						tp->snd_cwnd = tp->snd_max -
1809								th->th_ack +
1810								tp->t_maxseg;
1811					else
1812						tp->snd_cwnd = tp->snd_ssthresh;
1813				}
1814			}
1815                } else {
1816                        if (tp->t_dupacks >= tcprexmtthresh &&
1817                            tp->snd_cwnd > tp->snd_ssthresh)
1818				tp->snd_cwnd = tp->snd_ssthresh;
1819                }
1820		tp->t_dupacks = 0;
1821		if (SEQ_GT(th->th_ack, tp->snd_max)) {
1822			tcpstat.tcps_rcvacktoomuch++;
1823			goto dropafterack;
1824		}
1825		/*
1826		 * If we reach this point, ACK is not a duplicate,
1827		 *     i.e., it ACKs something we sent.
1828		 */
1829		if (tp->t_flags & TF_NEEDSYN) {
1830			/*
1831			 * T/TCP: Connection was half-synchronized, and our
1832			 * SYN has been ACK'd (so connection is now fully
1833			 * synchronized).  Go to non-starred state,
1834			 * increment snd_una for ACK of SYN, and check if
1835			 * we can do window scaling.
1836			 */
1837			tp->t_flags &= ~TF_NEEDSYN;
1838			tp->snd_una++;
1839			/* Do window scaling? */
1840			if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
1841				(TF_RCVD_SCALE|TF_REQ_SCALE)) {
1842				tp->snd_scale = tp->requested_s_scale;
1843				tp->rcv_scale = tp->request_r_scale;
1844			}
1845		}
1846
1847process_ACK:
1848		acked = th->th_ack - tp->snd_una;
1849		tcpstat.tcps_rcvackpack++;
1850		tcpstat.tcps_rcvackbyte += acked;
1851
1852		/*
1853		 * If we just performed our first retransmit, and the ACK
1854		 * arrives within our recovery window, then it was a mistake
1855		 * to do the retransmit in the first place.  Recover our
1856		 * original cwnd and ssthresh, and proceed to transmit where
1857		 * we left off.
1858		 */
1859		if (tp->t_rxtshift == 1 && ticks < tp->t_badrxtwin) {
1860			++tcpstat.tcps_sndrexmitbad;
1861			tp->snd_cwnd = tp->snd_cwnd_prev;
1862			tp->snd_ssthresh = tp->snd_ssthresh_prev;
1863			tp->snd_high = tp->snd_high_prev;
1864			tp->snd_nxt = tp->snd_max;
1865			tp->t_badrxtwin = 0;	/* XXX probably not required */
1866		}
1867
1868		/*
1869		 * If we have a timestamp reply, update smoothed
1870		 * round trip time.  If no timestamp is present but
1871		 * transmit timer is running and timed sequence
1872		 * number was acked, update smoothed round trip time.
1873		 * Since we now have an rtt measurement, cancel the
1874		 * timer backoff (cf., Phil Karn's retransmit alg.).
1875		 * Recompute the initial retransmit timer.
1876		 *
1877		 * Some boxes send broken timestamp replies
1878		 * during the SYN+ACK phase, ignore
1879		 * timestamps of 0 or we could calculate a
1880		 * huge RTT and blow up the retransmit timer.
1881		 */
1882		if ((to.to_flags & TOF_TS) != 0 &&
1883		    to.to_tsecr) {
1884			tcp_xmit_timer(tp, ticks - to.to_tsecr + 1);
1885		} else if (tp->t_rtttime && SEQ_GT(th->th_ack, tp->t_rtseq)) {
1886			tcp_xmit_timer(tp, ticks - tp->t_rtttime);
1887		}
1888		tcp_xmit_bandwidth_limit(tp, th->th_ack);
1889
1890		/*
1891		 * If all outstanding data is acked, stop retransmit
1892		 * timer and remember to restart (more output or persist).
1893		 * If there is more data to be acked, restart retransmit
1894		 * timer, using current (possibly backed-off) value.
1895		 */
1896		if (th->th_ack == tp->snd_max) {
1897			callout_stop(tp->tt_rexmt);
1898			needoutput = 1;
1899		} else if (!callout_active(tp->tt_persist))
1900			callout_reset(tp->tt_rexmt, tp->t_rxtcur,
1901				      tcp_timer_rexmt, tp);
1902
1903		/*
1904		 * If no data (only SYN) was ACK'd,
1905		 *    skip rest of ACK processing.
1906		 */
1907		if (acked == 0)
1908			goto step6;
1909
1910		/*
1911		 * When new data is acked, open the congestion window.
1912		 * If the window gives us less than ssthresh packets
1913		 * in flight, open exponentially (maxseg per packet).
1914		 * Otherwise open linearly: maxseg per window
1915		 * (maxseg^2 / cwnd per packet).
1916		 */
1917		if (!tcp_do_newreno || SEQ_GEQ(tp->snd_una, tp->snd_recover)) {
1918			register u_int cw = tp->snd_cwnd;
1919			register u_int incr = tp->t_maxseg;
1920			if (cw > tp->snd_ssthresh)
1921				incr = incr * incr / cw;
1922			tp->snd_cwnd = min(cw+incr, TCP_MAXWIN<<tp->snd_scale);
1923		}
1924		if (acked > so->so_snd.sb_cc) {
1925			tp->snd_wnd -= so->so_snd.sb_cc;
1926			sbdrop(&so->so_snd, (int)so->so_snd.sb_cc);
1927			ourfinisacked = 1;
1928		} else {
1929			sbdrop(&so->so_snd, acked);
1930			tp->snd_wnd -= acked;
1931			ourfinisacked = 0;
1932		}
1933		sowwakeup(so);
1934		/* detect una wraparound */
1935		if (SEQ_GEQ(tp->snd_una, tp->snd_recover) &&
1936		    SEQ_LT(th->th_ack, tp->snd_recover))
1937			tp->snd_recover = th->th_ack;
1938		if (SEQ_GT(tp->snd_una, tp->snd_high) &&
1939		    SEQ_LEQ(th->th_ack, tp->snd_high))
1940			tp->snd_high = th->th_ack - 1;
1941		tp->snd_una = th->th_ack;
1942		if (SEQ_LT(tp->snd_nxt, tp->snd_una))
1943			tp->snd_nxt = tp->snd_una;
1944
1945		switch (tp->t_state) {
1946
1947		/*
1948		 * In FIN_WAIT_1 STATE in addition to the processing
1949		 * for the ESTABLISHED state if our FIN is now acknowledged
1950		 * then enter FIN_WAIT_2.
1951		 */
1952		case TCPS_FIN_WAIT_1:
1953			if (ourfinisacked) {
1954				/*
1955				 * If we can't receive any more
1956				 * data, then closing user can proceed.
1957				 * Starting the timer is contrary to the
1958				 * specification, but if we don't get a FIN
1959				 * we'll hang forever.
1960				 */
1961		/* XXXjl
1962		 * we should release the tp also, and use a
1963		 * compressed state.
1964		 */
1965				if (so->so_state & SS_CANTRCVMORE) {
1966					soisdisconnected(so);
1967					callout_reset(tp->tt_2msl, tcp_maxidle,
1968						      tcp_timer_2msl, tp);
1969				}
1970				tp->t_state = TCPS_FIN_WAIT_2;
1971			}
1972			break;
1973
1974	 	/*
1975		 * In CLOSING STATE in addition to the processing for
1976		 * the ESTABLISHED state if the ACK acknowledges our FIN
1977		 * then enter the TIME-WAIT state, otherwise ignore
1978		 * the segment.
1979		 */
1980		case TCPS_CLOSING:
1981			if (ourfinisacked) {
1982				KASSERT(headlocked, ("headlocked"));
1983				tcp_twstart(tp);
1984				INP_INFO_WUNLOCK(&tcbinfo);
1985				m_freem(m);
1986				return;
1987			}
1988			break;
1989
1990		/*
1991		 * In LAST_ACK, we may still be waiting for data to drain
1992		 * and/or to be acked, as well as for the ack of our FIN.
1993		 * If our FIN is now acknowledged, delete the TCB,
1994		 * enter the closed state and return.
1995		 */
1996		case TCPS_LAST_ACK:
1997			if (ourfinisacked) {
1998				tp = tcp_close(tp);
1999				goto drop;
2000			}
2001			break;
2002
2003		/*
2004		 * In TIME_WAIT state the only thing that should arrive
2005		 * is a retransmission of the remote FIN.  Acknowledge
2006		 * it and restart the finack timer.
2007		 */
2008		case TCPS_TIME_WAIT:
2009			KASSERT(tp->t_state != TCPS_TIME_WAIT, ("timewait"));
2010			callout_reset(tp->tt_2msl, 2 * tcp_msl,
2011				      tcp_timer_2msl, tp);
2012			goto dropafterack;
2013		}
2014	}
2015
2016step6:
2017	/*
2018	 * Update window information.
2019	 * Don't look at window if no ACK: TAC's send garbage on first SYN.
2020	 */
2021	if ((thflags & TH_ACK) &&
2022	    (SEQ_LT(tp->snd_wl1, th->th_seq) ||
2023	    (tp->snd_wl1 == th->th_seq && (SEQ_LT(tp->snd_wl2, th->th_ack) ||
2024	     (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))))) {
2025		/* keep track of pure window updates */
2026		if (tlen == 0 &&
2027		    tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)
2028			tcpstat.tcps_rcvwinupd++;
2029		tp->snd_wnd = tiwin;
2030		tp->snd_wl1 = th->th_seq;
2031		tp->snd_wl2 = th->th_ack;
2032		if (tp->snd_wnd > tp->max_sndwnd)
2033			tp->max_sndwnd = tp->snd_wnd;
2034		needoutput = 1;
2035	}
2036
2037	/*
2038	 * Process segments with URG.
2039	 */
2040	if ((thflags & TH_URG) && th->th_urp &&
2041	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2042		/*
2043		 * This is a kludge, but if we receive and accept
2044		 * random urgent pointers, we'll crash in
2045		 * soreceive.  It's hard to imagine someone
2046		 * actually wanting to send this much urgent data.
2047		 */
2048		if (th->th_urp + so->so_rcv.sb_cc > sb_max) {
2049			th->th_urp = 0;			/* XXX */
2050			thflags &= ~TH_URG;		/* XXX */
2051			goto dodata;			/* XXX */
2052		}
2053		/*
2054		 * If this segment advances the known urgent pointer,
2055		 * then mark the data stream.  This should not happen
2056		 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
2057		 * a FIN has been received from the remote side.
2058		 * In these states we ignore the URG.
2059		 *
2060		 * According to RFC961 (Assigned Protocols),
2061		 * the urgent pointer points to the last octet
2062		 * of urgent data.  We continue, however,
2063		 * to consider it to indicate the first octet
2064		 * of data past the urgent section as the original
2065		 * spec states (in one of two places).
2066		 */
2067		if (SEQ_GT(th->th_seq+th->th_urp, tp->rcv_up)) {
2068			tp->rcv_up = th->th_seq + th->th_urp;
2069			so->so_oobmark = so->so_rcv.sb_cc +
2070			    (tp->rcv_up - tp->rcv_nxt) - 1;
2071			if (so->so_oobmark == 0)
2072				so->so_state |= SS_RCVATMARK;
2073			sohasoutofband(so);
2074			tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
2075		}
2076		/*
2077		 * Remove out of band data so doesn't get presented to user.
2078		 * This can happen independent of advancing the URG pointer,
2079		 * but if two URG's are pending at once, some out-of-band
2080		 * data may creep in... ick.
2081		 */
2082		if (th->th_urp <= (u_long)tlen &&
2083		    !(so->so_options & SO_OOBINLINE)) {
2084			/* hdr drop is delayed */
2085			tcp_pulloutofband(so, th, m, drop_hdrlen);
2086		}
2087	} else {
2088		/*
2089		 * If no out of band data is expected,
2090		 * pull receive urgent pointer along
2091		 * with the receive window.
2092		 */
2093		if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
2094			tp->rcv_up = tp->rcv_nxt;
2095	}
2096dodata:							/* XXX */
2097	KASSERT(headlocked, ("headlocked"));
2098	/*
2099	 * Process the segment text, merging it into the TCP sequencing queue,
2100	 * and arranging for acknowledgment of receipt if necessary.
2101	 * This process logically involves adjusting tp->rcv_wnd as data
2102	 * is presented to the user (this happens in tcp_usrreq.c,
2103	 * case PRU_RCVD).  If a FIN has already been received on this
2104	 * connection then we just ignore the text.
2105	 */
2106	if ((tlen || (thflags & TH_FIN)) &&
2107	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2108		m_adj(m, drop_hdrlen);	/* delayed header drop */
2109		/*
2110		 * Insert segment which includes th into TCP reassembly queue
2111		 * with control block tp.  Set thflags to whether reassembly now
2112		 * includes a segment with FIN.  This handles the common case
2113		 * inline (segment is the next to be received on an established
2114		 * connection, and the queue is empty), avoiding linkage into
2115		 * and removal from the queue and repetition of various
2116		 * conversions.
2117		 * Set DELACK for segments received in order, but ack
2118		 * immediately when segments are out of order (so
2119		 * fast retransmit can work).
2120		 */
2121		if (th->th_seq == tp->rcv_nxt &&
2122		    LIST_EMPTY(&tp->t_segq) &&
2123		    TCPS_HAVEESTABLISHED(tp->t_state)) {
2124			if (DELAY_ACK(tp))
2125				tp->t_flags |= TF_DELACK;
2126			else
2127				tp->t_flags |= TF_ACKNOW;
2128			tp->rcv_nxt += tlen;
2129			thflags = th->th_flags & TH_FIN;
2130			tcpstat.tcps_rcvpack++;
2131			tcpstat.tcps_rcvbyte += tlen;
2132			ND6_HINT(tp);
2133			if (so->so_state & SS_CANTRCVMORE)
2134				m_freem(m);
2135			else
2136				sbappend(&so->so_rcv, m);
2137			sorwakeup(so);
2138		} else {
2139			thflags = tcp_reass(tp, th, &tlen, m);
2140			tp->t_flags |= TF_ACKNOW;
2141		}
2142
2143		/*
2144		 * Note the amount of data that peer has sent into
2145		 * our window, in order to estimate the sender's
2146		 * buffer size.
2147		 */
2148		len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
2149	} else {
2150		m_freem(m);
2151		thflags &= ~TH_FIN;
2152	}
2153
2154	/*
2155	 * If FIN is received ACK the FIN and let the user know
2156	 * that the connection is closing.
2157	 */
2158	if (thflags & TH_FIN) {
2159		if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2160			socantrcvmore(so);
2161			/*
2162			 * If connection is half-synchronized
2163			 * (ie NEEDSYN flag on) then delay ACK,
2164			 * so it may be piggybacked when SYN is sent.
2165			 * Otherwise, since we received a FIN then no
2166			 * more input can be expected, send ACK now.
2167			 */
2168			if (tp->t_flags & TF_NEEDSYN)
2169				tp->t_flags |= TF_DELACK;
2170			else
2171				tp->t_flags |= TF_ACKNOW;
2172			tp->rcv_nxt++;
2173		}
2174		switch (tp->t_state) {
2175
2176	 	/*
2177		 * In SYN_RECEIVED and ESTABLISHED STATES
2178		 * enter the CLOSE_WAIT state.
2179		 */
2180		case TCPS_SYN_RECEIVED:
2181			tp->t_starttime = ticks;
2182			/*FALLTHROUGH*/
2183		case TCPS_ESTABLISHED:
2184			tp->t_state = TCPS_CLOSE_WAIT;
2185			break;
2186
2187	 	/*
2188		 * If still in FIN_WAIT_1 STATE FIN has not been acked so
2189		 * enter the CLOSING state.
2190		 */
2191		case TCPS_FIN_WAIT_1:
2192			tp->t_state = TCPS_CLOSING;
2193			break;
2194
2195	 	/*
2196		 * In FIN_WAIT_2 state enter the TIME_WAIT state,
2197		 * starting the time-wait timer, turning off the other
2198		 * standard timers.
2199		 */
2200		case TCPS_FIN_WAIT_2:
2201			KASSERT(headlocked == 1, ("headlocked should be 1"));
2202			tcp_twstart(tp);
2203			INP_INFO_WUNLOCK(&tcbinfo);
2204			return;
2205
2206		/*
2207		 * In TIME_WAIT state restart the 2 MSL time_wait timer.
2208		 */
2209		case TCPS_TIME_WAIT:
2210			KASSERT(tp->t_state != TCPS_TIME_WAIT, ("timewait"));
2211			callout_reset(tp->tt_2msl, 2 * tcp_msl,
2212				      tcp_timer_2msl, tp);
2213			break;
2214		}
2215	}
2216	INP_INFO_WUNLOCK(&tcbinfo);
2217#ifdef TCPDEBUG
2218	if (so->so_options & SO_DEBUG)
2219		tcp_trace(TA_INPUT, ostate, tp, (void *)tcp_saveipgen,
2220			  &tcp_savetcp, 0);
2221#endif
2222
2223	/*
2224	 * Return any desired output.
2225	 */
2226	if (needoutput || (tp->t_flags & TF_ACKNOW))
2227		(void) tcp_output(tp);
2228
2229check_delack:
2230	if (tp->t_flags & TF_DELACK) {
2231		tp->t_flags &= ~TF_DELACK;
2232		callout_reset(tp->tt_delack, tcp_delacktime,
2233		    tcp_timer_delack, tp);
2234	}
2235	INP_UNLOCK(inp);
2236	return;
2237
2238dropafterack:
2239	/*
2240	 * Generate an ACK dropping incoming segment if it occupies
2241	 * sequence space, where the ACK reflects our state.
2242	 *
2243	 * We can now skip the test for the RST flag since all
2244	 * paths to this code happen after packets containing
2245	 * RST have been dropped.
2246	 *
2247	 * In the SYN-RECEIVED state, don't send an ACK unless the
2248	 * segment we received passes the SYN-RECEIVED ACK test.
2249	 * If it fails send a RST.  This breaks the loop in the
2250	 * "LAND" DoS attack, and also prevents an ACK storm
2251	 * between two listening ports that have been sent forged
2252	 * SYN segments, each with the source address of the other.
2253	 */
2254	if (tp->t_state == TCPS_SYN_RECEIVED && (thflags & TH_ACK) &&
2255	    (SEQ_GT(tp->snd_una, th->th_ack) ||
2256	     SEQ_GT(th->th_ack, tp->snd_max)) ) {
2257		rstreason = BANDLIM_RST_OPENPORT;
2258		goto dropwithreset;
2259	}
2260#ifdef TCPDEBUG
2261	if (so->so_options & SO_DEBUG)
2262		tcp_trace(TA_DROP, ostate, tp, (void *)tcp_saveipgen,
2263			  &tcp_savetcp, 0);
2264#endif
2265	KASSERT(headlocked, ("headlocked should be 1"));
2266	INP_INFO_WUNLOCK(&tcbinfo);
2267	m_freem(m);
2268	tp->t_flags |= TF_ACKNOW;
2269	(void) tcp_output(tp);
2270	INP_UNLOCK(inp);
2271	return;
2272
2273dropwithreset:
2274	/*
2275	 * Generate a RST, dropping incoming segment.
2276	 * Make ACK acceptable to originator of segment.
2277	 * Don't bother to respond if destination was broadcast/multicast.
2278	 */
2279	if ((thflags & TH_RST) || m->m_flags & (M_BCAST|M_MCAST))
2280		goto drop;
2281	if (isipv6) {
2282		if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) ||
2283		    IN6_IS_ADDR_MULTICAST(&ip6->ip6_src))
2284			goto drop;
2285	} else {
2286		if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
2287		    IN_MULTICAST(ntohl(ip->ip_src.s_addr)) ||
2288	    	    ip->ip_src.s_addr == htonl(INADDR_BROADCAST) ||
2289	    	    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
2290			goto drop;
2291	}
2292	/* IPv6 anycast check is done at tcp6_input() */
2293
2294	/*
2295	 * Perform bandwidth limiting.
2296	 */
2297	if (badport_bandlim(rstreason) < 0)
2298		goto drop;
2299
2300#ifdef TCPDEBUG
2301	if (tp == 0 || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
2302		tcp_trace(TA_DROP, ostate, tp, (void *)tcp_saveipgen,
2303			  &tcp_savetcp, 0);
2304#endif
2305
2306	if (tp)
2307		INP_UNLOCK(inp);
2308
2309	if (thflags & TH_ACK)
2310		/* mtod() below is safe as long as hdr dropping is delayed */
2311		tcp_respond(tp, mtod(m, void *), th, m, (tcp_seq)0, th->th_ack,
2312			    TH_RST);
2313	else {
2314		if (thflags & TH_SYN)
2315			tlen++;
2316		/* mtod() below is safe as long as hdr dropping is delayed */
2317		tcp_respond(tp, mtod(m, void *), th, m, th->th_seq+tlen,
2318			    (tcp_seq)0, TH_RST|TH_ACK);
2319	}
2320	if (headlocked)
2321		INP_INFO_WUNLOCK(&tcbinfo);
2322	return;
2323
2324drop:
2325	/*
2326	 * Drop space held by incoming segment and return.
2327	 */
2328#ifdef TCPDEBUG
2329	if (tp == 0 || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
2330		tcp_trace(TA_DROP, ostate, tp, (void *)tcp_saveipgen,
2331			  &tcp_savetcp, 0);
2332#endif
2333	if (tp)
2334		INP_UNLOCK(inp);
2335	m_freem(m);
2336	if (headlocked)
2337		INP_INFO_WUNLOCK(&tcbinfo);
2338	return;
2339}
2340
2341/*
2342 * Parse TCP options and place in tcpopt.
2343 */
2344static void
2345tcp_dooptions(to, cp, cnt, is_syn)
2346	struct tcpopt *to;
2347	u_char *cp;
2348	int cnt;
2349{
2350	int opt, optlen;
2351
2352	to->to_flags = 0;
2353	for (; cnt > 0; cnt -= optlen, cp += optlen) {
2354		opt = cp[0];
2355		if (opt == TCPOPT_EOL)
2356			break;
2357		if (opt == TCPOPT_NOP)
2358			optlen = 1;
2359		else {
2360			if (cnt < 2)
2361				break;
2362			optlen = cp[1];
2363			if (optlen < 2 || optlen > cnt)
2364				break;
2365		}
2366		switch (opt) {
2367		case TCPOPT_MAXSEG:
2368			if (optlen != TCPOLEN_MAXSEG)
2369				continue;
2370			if (!is_syn)
2371				continue;
2372			to->to_flags |= TOF_MSS;
2373			bcopy((char *)cp + 2,
2374			    (char *)&to->to_mss, sizeof(to->to_mss));
2375			to->to_mss = ntohs(to->to_mss);
2376			break;
2377		case TCPOPT_WINDOW:
2378			if (optlen != TCPOLEN_WINDOW)
2379				continue;
2380			if (! is_syn)
2381				continue;
2382			to->to_flags |= TOF_SCALE;
2383			to->to_requested_s_scale = min(cp[2], TCP_MAX_WINSHIFT);
2384			break;
2385		case TCPOPT_TIMESTAMP:
2386			if (optlen != TCPOLEN_TIMESTAMP)
2387				continue;
2388			to->to_flags |= TOF_TS;
2389			bcopy((char *)cp + 2,
2390			    (char *)&to->to_tsval, sizeof(to->to_tsval));
2391			to->to_tsval = ntohl(to->to_tsval);
2392			bcopy((char *)cp + 6,
2393			    (char *)&to->to_tsecr, sizeof(to->to_tsecr));
2394			to->to_tsecr = ntohl(to->to_tsecr);
2395			break;
2396		case TCPOPT_CC:
2397			if (optlen != TCPOLEN_CC)
2398				continue;
2399			to->to_flags |= TOF_CC;
2400			bcopy((char *)cp + 2,
2401			    (char *)&to->to_cc, sizeof(to->to_cc));
2402			to->to_cc = ntohl(to->to_cc);
2403			break;
2404		case TCPOPT_CCNEW:
2405			if (optlen != TCPOLEN_CC)
2406				continue;
2407			if (!is_syn)
2408				continue;
2409			to->to_flags |= TOF_CCNEW;
2410			bcopy((char *)cp + 2,
2411			    (char *)&to->to_cc, sizeof(to->to_cc));
2412			to->to_cc = ntohl(to->to_cc);
2413			break;
2414		case TCPOPT_CCECHO:
2415			if (optlen != TCPOLEN_CC)
2416				continue;
2417			if (!is_syn)
2418				continue;
2419			to->to_flags |= TOF_CCECHO;
2420			bcopy((char *)cp + 2,
2421			    (char *)&to->to_ccecho, sizeof(to->to_ccecho));
2422			to->to_ccecho = ntohl(to->to_ccecho);
2423			break;
2424		default:
2425			continue;
2426		}
2427	}
2428}
2429
2430/*
2431 * Pull out of band byte out of a segment so
2432 * it doesn't appear in the user's data queue.
2433 * It is still reflected in the segment length for
2434 * sequencing purposes.
2435 */
2436static void
2437tcp_pulloutofband(so, th, m, off)
2438	struct socket *so;
2439	struct tcphdr *th;
2440	register struct mbuf *m;
2441	int off;		/* delayed to be droped hdrlen */
2442{
2443	int cnt = off + th->th_urp - 1;
2444
2445	while (cnt >= 0) {
2446		if (m->m_len > cnt) {
2447			char *cp = mtod(m, caddr_t) + cnt;
2448			struct tcpcb *tp = sototcpcb(so);
2449
2450			tp->t_iobc = *cp;
2451			tp->t_oobflags |= TCPOOB_HAVEDATA;
2452			bcopy(cp+1, cp, (unsigned)(m->m_len - cnt - 1));
2453			m->m_len--;
2454			if (m->m_flags & M_PKTHDR)
2455				m->m_pkthdr.len--;
2456			return;
2457		}
2458		cnt -= m->m_len;
2459		m = m->m_next;
2460		if (m == 0)
2461			break;
2462	}
2463	panic("tcp_pulloutofband");
2464}
2465
2466/*
2467 * Collect new round-trip time estimate
2468 * and update averages and current timeout.
2469 */
2470static void
2471tcp_xmit_timer(tp, rtt)
2472	register struct tcpcb *tp;
2473	int rtt;
2474{
2475	register int delta;
2476
2477	tcpstat.tcps_rttupdated++;
2478	tp->t_rttupdated++;
2479	if (tp->t_srtt != 0) {
2480		/*
2481		 * srtt is stored as fixed point with 5 bits after the
2482		 * binary point (i.e., scaled by 8).  The following magic
2483		 * is equivalent to the smoothing algorithm in rfc793 with
2484		 * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed
2485		 * point).  Adjust rtt to origin 0.
2486		 */
2487		delta = ((rtt - 1) << TCP_DELTA_SHIFT)
2488			- (tp->t_srtt >> (TCP_RTT_SHIFT - TCP_DELTA_SHIFT));
2489
2490		if ((tp->t_srtt += delta) <= 0)
2491			tp->t_srtt = 1;
2492
2493		/*
2494		 * We accumulate a smoothed rtt variance (actually, a
2495		 * smoothed mean difference), then set the retransmit
2496		 * timer to smoothed rtt + 4 times the smoothed variance.
2497		 * rttvar is stored as fixed point with 4 bits after the
2498		 * binary point (scaled by 16).  The following is
2499		 * equivalent to rfc793 smoothing with an alpha of .75
2500		 * (rttvar = rttvar*3/4 + |delta| / 4).  This replaces
2501		 * rfc793's wired-in beta.
2502		 */
2503		if (delta < 0)
2504			delta = -delta;
2505		delta -= tp->t_rttvar >> (TCP_RTTVAR_SHIFT - TCP_DELTA_SHIFT);
2506		if ((tp->t_rttvar += delta) <= 0)
2507			tp->t_rttvar = 1;
2508		if (tp->t_rttbest > tp->t_srtt + tp->t_rttvar)
2509		    tp->t_rttbest = tp->t_srtt + tp->t_rttvar;
2510	} else {
2511		/*
2512		 * No rtt measurement yet - use the unsmoothed rtt.
2513		 * Set the variance to half the rtt (so our first
2514		 * retransmit happens at 3*rtt).
2515		 */
2516		tp->t_srtt = rtt << TCP_RTT_SHIFT;
2517		tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT - 1);
2518		tp->t_rttbest = tp->t_srtt + tp->t_rttvar;
2519	}
2520	tp->t_rtttime = 0;
2521	tp->t_rxtshift = 0;
2522
2523	/*
2524	 * the retransmit should happen at rtt + 4 * rttvar.
2525	 * Because of the way we do the smoothing, srtt and rttvar
2526	 * will each average +1/2 tick of bias.  When we compute
2527	 * the retransmit timer, we want 1/2 tick of rounding and
2528	 * 1 extra tick because of +-1/2 tick uncertainty in the
2529	 * firing of the timer.  The bias will give us exactly the
2530	 * 1.5 tick we need.  But, because the bias is
2531	 * statistical, we have to test that we don't drop below
2532	 * the minimum feasible timer (which is 2 ticks).
2533	 */
2534	TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
2535		      max(tp->t_rttmin, rtt + 2), TCPTV_REXMTMAX);
2536
2537	/*
2538	 * We received an ack for a packet that wasn't retransmitted;
2539	 * it is probably safe to discard any error indications we've
2540	 * received recently.  This isn't quite right, but close enough
2541	 * for now (a route might have failed after we sent a segment,
2542	 * and the return path might not be symmetrical).
2543	 */
2544	tp->t_softerror = 0;
2545}
2546
2547/*
2548 * Determine a reasonable value for maxseg size.
2549 * If the route is known, check route for mtu.
2550 * If none, use an mss that can be handled on the outgoing
2551 * interface without forcing IP to fragment; if bigger than
2552 * an mbuf cluster (MCLBYTES), round down to nearest multiple of MCLBYTES
2553 * to utilize large mbufs.  If no route is found, route has no mtu,
2554 * or the destination isn't local, use a default, hopefully conservative
2555 * size (usually 512 or the default IP max size, but no more than the mtu
2556 * of the interface), as we can't discover anything about intervening
2557 * gateways or networks.  We also initialize the congestion/slow start
2558 * window to be a single segment if the destination isn't local.
2559 * While looking at the routing entry, we also initialize other path-dependent
2560 * parameters from pre-set or cached values in the routing entry.
2561 *
2562 * Also take into account the space needed for options that we
2563 * send regularly.  Make maxseg shorter by that amount to assure
2564 * that we can send maxseg amount of data even when the options
2565 * are present.  Store the upper limit of the length of options plus
2566 * data in maxopd.
2567 *
2568 * NOTE that this routine is only called when we process an incoming
2569 * segment, for outgoing segments only tcp_mssopt is called.
2570 *
2571 * In case of T/TCP, we call this routine during implicit connection
2572 * setup as well (offer = -1), to initialize maxseg from the cached
2573 * MSS of our peer.
2574 */
2575void
2576tcp_mss(tp, offer)
2577	struct tcpcb *tp;
2578	int offer;
2579{
2580	register struct rtentry *rt;
2581	struct ifnet *ifp;
2582	register int rtt, mss;
2583	u_long bufsize;
2584	struct inpcb *inp = tp->t_inpcb;
2585	struct socket *so;
2586	struct rmxp_tao *taop;
2587	int origoffer = offer;
2588#ifdef INET6
2589	int isipv6 = ((inp->inp_vflag & INP_IPV6) != 0) ? 1 : 0;
2590	size_t min_protoh = isipv6 ?
2591			    sizeof (struct ip6_hdr) + sizeof (struct tcphdr) :
2592			    sizeof (struct tcpiphdr);
2593#else
2594	const int isipv6 = 0;
2595	const size_t min_protoh = sizeof (struct tcpiphdr);
2596#endif
2597
2598	if (isipv6)
2599		rt = tcp_rtlookup6(&inp->inp_inc);
2600	else
2601		rt = tcp_rtlookup(&inp->inp_inc);
2602	if (rt == NULL) {
2603		tp->t_maxopd = tp->t_maxseg =
2604				isipv6 ? tcp_v6mssdflt : tcp_mssdflt;
2605		return;
2606	}
2607	ifp = rt->rt_ifp;
2608	so = inp->inp_socket;
2609
2610	taop = rmx_taop(rt->rt_rmx);
2611	/*
2612	 * Offer == -1 means that we didn't receive SYN yet,
2613	 * use cached value in that case;
2614	 */
2615	if (offer == -1)
2616		offer = taop->tao_mssopt;
2617	/*
2618	 * Offer == 0 means that there was no MSS on the SYN segment,
2619	 * in this case we use tcp_mssdflt.
2620	 */
2621	if (offer == 0)
2622		offer = isipv6 ? tcp_v6mssdflt : tcp_mssdflt;
2623	else
2624		/*
2625		 * Sanity check: make sure that maxopd will be large
2626		 * enough to allow some data on segments even is the
2627		 * all the option space is used (40bytes).  Otherwise
2628		 * funny things may happen in tcp_output.
2629		 */
2630		offer = max(offer, 64);
2631	taop->tao_mssopt = offer;
2632
2633	/*
2634	 * While we're here, check if there's an initial rtt
2635	 * or rttvar.  Convert from the route-table units
2636	 * to scaled multiples of the slow timeout timer.
2637	 */
2638	if (tp->t_srtt == 0 && (rtt = rt->rt_rmx.rmx_rtt)) {
2639		/*
2640		 * XXX the lock bit for RTT indicates that the value
2641		 * is also a minimum value; this is subject to time.
2642		 */
2643		if (rt->rt_rmx.rmx_locks & RTV_RTT)
2644			tp->t_rttmin = rtt / (RTM_RTTUNIT / hz);
2645		tp->t_srtt = rtt / (RTM_RTTUNIT / (hz * TCP_RTT_SCALE));
2646		tp->t_rttbest = tp->t_srtt + TCP_RTT_SCALE;
2647		tcpstat.tcps_usedrtt++;
2648		if (rt->rt_rmx.rmx_rttvar) {
2649			tp->t_rttvar = rt->rt_rmx.rmx_rttvar /
2650			    (RTM_RTTUNIT / (hz * TCP_RTTVAR_SCALE));
2651			tcpstat.tcps_usedrttvar++;
2652		} else {
2653			/* default variation is +- 1 rtt */
2654			tp->t_rttvar =
2655			    tp->t_srtt * TCP_RTTVAR_SCALE / TCP_RTT_SCALE;
2656		}
2657		TCPT_RANGESET(tp->t_rxtcur,
2658			      ((tp->t_srtt >> 2) + tp->t_rttvar) >> 1,
2659			      tp->t_rttmin, TCPTV_REXMTMAX);
2660	}
2661	/*
2662	 * if there's an mtu associated with the route, use it
2663	 * else, use the link mtu.
2664	 */
2665	if (rt->rt_rmx.rmx_mtu)
2666		mss = rt->rt_rmx.rmx_mtu - min_protoh;
2667	else {
2668		if (isipv6) {
2669			mss = nd_ifinfo[rt->rt_ifp->if_index].linkmtu -
2670				min_protoh;
2671			if (!in6_localaddr(&inp->in6p_faddr))
2672				mss = min(mss, tcp_v6mssdflt);
2673		} else {
2674			mss = ifp->if_mtu - min_protoh;
2675			if (!in_localaddr(inp->inp_faddr))
2676				mss = min(mss, tcp_mssdflt);
2677		}
2678	}
2679	mss = min(mss, offer);
2680	/*
2681	 * maxopd stores the maximum length of data AND options
2682	 * in a segment; maxseg is the amount of data in a normal
2683	 * segment.  We need to store this value (maxopd) apart
2684	 * from maxseg, because now every segment carries options
2685	 * and thus we normally have somewhat less data in segments.
2686	 */
2687	tp->t_maxopd = mss;
2688
2689	/*
2690	 * In case of T/TCP, origoffer==-1 indicates, that no segments
2691	 * were received yet.  In this case we just guess, otherwise
2692	 * we do the same as before T/TCP.
2693	 */
2694 	if ((tp->t_flags & (TF_REQ_TSTMP|TF_NOOPT)) == TF_REQ_TSTMP &&
2695	    (origoffer == -1 ||
2696	     (tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP))
2697		mss -= TCPOLEN_TSTAMP_APPA;
2698 	if ((tp->t_flags & (TF_REQ_CC|TF_NOOPT)) == TF_REQ_CC &&
2699	    (origoffer == -1 ||
2700	     (tp->t_flags & TF_RCVD_CC) == TF_RCVD_CC))
2701		mss -= TCPOLEN_CC_APPA;
2702
2703#if	(MCLBYTES & (MCLBYTES - 1)) == 0
2704		if (mss > MCLBYTES)
2705			mss &= ~(MCLBYTES-1);
2706#else
2707		if (mss > MCLBYTES)
2708			mss = mss / MCLBYTES * MCLBYTES;
2709#endif
2710	/*
2711	 * If there's a pipesize, change the socket buffer
2712	 * to that size.  Make the socket buffers an integral
2713	 * number of mss units; if the mss is larger than
2714	 * the socket buffer, decrease the mss.
2715	 */
2716#ifdef RTV_SPIPE
2717	if ((bufsize = rt->rt_rmx.rmx_sendpipe) == 0)
2718#endif
2719		bufsize = so->so_snd.sb_hiwat;
2720	if (bufsize < mss)
2721		mss = bufsize;
2722	else {
2723		bufsize = roundup(bufsize, mss);
2724		if (bufsize > sb_max)
2725			bufsize = sb_max;
2726		if (bufsize > so->so_snd.sb_hiwat)
2727			(void)sbreserve(&so->so_snd, bufsize, so, NULL);
2728	}
2729	tp->t_maxseg = mss;
2730
2731#ifdef RTV_RPIPE
2732	if ((bufsize = rt->rt_rmx.rmx_recvpipe) == 0)
2733#endif
2734		bufsize = so->so_rcv.sb_hiwat;
2735	if (bufsize > mss) {
2736		bufsize = roundup(bufsize, mss);
2737		if (bufsize > sb_max)
2738			bufsize = sb_max;
2739		if (bufsize > so->so_rcv.sb_hiwat)
2740			(void)sbreserve(&so->so_rcv, bufsize, so, NULL);
2741	}
2742
2743	/*
2744	 * Set the slow-start flight size depending on whether this
2745	 * is a local network or not.
2746	 */
2747	if (tcp_do_rfc3390)
2748		tp->snd_cwnd = min(4 * mss, max(2 * mss, 4380));
2749	else if ((isipv6 && in6_localaddr(&inp->in6p_faddr)) ||
2750	    (!isipv6 && in_localaddr(inp->inp_faddr)))
2751		tp->snd_cwnd = mss * ss_fltsz_local;
2752	else
2753		tp->snd_cwnd = mss * ss_fltsz;
2754
2755	if (rt->rt_rmx.rmx_ssthresh) {
2756		/*
2757		 * There's some sort of gateway or interface
2758		 * buffer limit on the path.  Use this to set
2759		 * the slow start threshhold, but set the
2760		 * threshold to no less than 2*mss.
2761		 */
2762		tp->snd_ssthresh = max(2 * mss, rt->rt_rmx.rmx_ssthresh);
2763		tcpstat.tcps_usedssthresh++;
2764	}
2765}
2766
2767/*
2768 * Determine the MSS option to send on an outgoing SYN.
2769 */
2770int
2771tcp_mssopt(tp)
2772	struct tcpcb *tp;
2773{
2774	struct rtentry *rt;
2775#ifdef INET6
2776	int isipv6 = ((tp->t_inpcb->inp_vflag & INP_IPV6) != 0) ? 1 : 0;
2777	size_t min_protoh = isipv6 ?
2778			    sizeof (struct ip6_hdr) + sizeof (struct tcphdr) :
2779			    sizeof (struct tcpiphdr);
2780#else
2781	const int isipv6 = 0;
2782	const size_t min_protoh = sizeof (struct tcpiphdr);
2783#endif
2784
2785	if (isipv6)
2786		rt = tcp_rtlookup6(&tp->t_inpcb->inp_inc);
2787	else
2788		rt = tcp_rtlookup(&tp->t_inpcb->inp_inc);
2789	if (rt == NULL)
2790		return (isipv6 ? tcp_v6mssdflt : tcp_mssdflt);
2791
2792	return (rt->rt_ifp->if_mtu - min_protoh);
2793}
2794
2795
2796/*
2797 * On a partial ack arrives, force the retransmission of the
2798 * next unacknowledged segment.  Do not clear tp->t_dupacks.
2799 * By setting snd_nxt to ti_ack, this forces retransmission timer to
2800 * be started again.
2801 */
2802static void
2803tcp_newreno_partial_ack(tp, th)
2804	struct tcpcb *tp;
2805	struct tcphdr *th;
2806{
2807	tcp_seq onxt = tp->snd_nxt;
2808	u_long  ocwnd = tp->snd_cwnd;
2809
2810	callout_stop(tp->tt_rexmt);
2811	tp->t_rtttime = 0;
2812	tp->snd_nxt = th->th_ack;
2813	/*
2814	 * Set snd_cwnd to one segment beyond acknowledged offset.
2815	 * (tp->snd_una has not yet been updated when this function is called.)
2816	 */
2817	tp->snd_cwnd = tp->t_maxseg + (th->th_ack - tp->snd_una);
2818	tp->t_flags |= TF_ACKNOW;
2819	(void) tcp_output(tp);
2820	tp->snd_cwnd = ocwnd;
2821	if (SEQ_GT(onxt, tp->snd_nxt))
2822		tp->snd_nxt = onxt;
2823	/*
2824	 * Partial window deflation.  Relies on fact that tp->snd_una
2825	 * not updated yet.
2826	 */
2827	tp->snd_cwnd -= (th->th_ack - tp->snd_una - tp->t_maxseg);
2828}
2829
2830/*
2831 * Returns 1 if the TIME_WAIT state was killed and we should start over,
2832 * looking for a pcb in the listen state.  Returns 0 otherwise.
2833 */
2834static int
2835tcp_timewait(tw, to, th, m, tlen)
2836	struct tcptw *tw;
2837	struct tcpopt *to;
2838	struct tcphdr *th;
2839	struct mbuf *m;
2840	int tlen;
2841{
2842	int thflags;
2843	tcp_seq seq;
2844#ifdef INET6
2845	int isipv6 = (mtod(m, struct ip *)->ip_v == 6) ? 1 : 0;
2846#else
2847	const int isipv6 = 0;
2848#endif
2849
2850	thflags = th->th_flags;
2851
2852	/*
2853	 * NOTE: for FIN_WAIT_2 (to be added later),
2854	 * must validate sequence number before accepting RST
2855	 */
2856
2857	/*
2858	 * If the segment contains RST:
2859	 *	Drop the segment - see Stevens, vol. 2, p. 964 and
2860	 *      RFC 1337.
2861	 */
2862	if (thflags & TH_RST)
2863		goto drop;
2864
2865	/*
2866	 * If segment contains a SYN and CC [not CC.NEW] option:
2867	 * 	if connection duration > MSL, drop packet and send RST;
2868	 *
2869	 *	if SEG.CC > CCrecv then is new SYN.
2870	 *	    Complete close and delete TCPCB.  Then reprocess
2871	 *	    segment, hoping to find new TCPCB in LISTEN state;
2872	 *
2873	 *	else must be old SYN; drop it.
2874	 * else do normal processing.
2875	 */
2876	if ((thflags & TH_SYN) && (to->to_flags & TOF_CC) && tw->cc_recv != 0) {
2877		if ((ticks - tw->t_starttime) > tcp_msl)
2878			goto reset;
2879		if (CC_GT(to->to_cc, tw->cc_recv)) {
2880			(void) tcp_twclose(tw, 0);
2881			return (1);
2882		}
2883		goto drop;
2884	}
2885
2886#if 0
2887/* PAWS not needed at the moment */
2888	/*
2889	 * RFC 1323 PAWS: If we have a timestamp reply on this segment
2890	 * and it's less than ts_recent, drop it.
2891	 */
2892	if ((to.to_flags & TOF_TS) != 0 && tp->ts_recent &&
2893	    TSTMP_LT(to.to_tsval, tp->ts_recent)) {
2894		if ((thflags & TH_ACK) == 0)
2895			goto drop;
2896		goto ack;
2897	}
2898	/*
2899	 * ts_recent is never updated because we never accept new segments.
2900	 */
2901#endif
2902
2903	/*
2904	 * If a new connection request is received
2905	 * while in TIME_WAIT, drop the old connection
2906	 * and start over if the sequence numbers
2907	 * are above the previous ones.
2908	 */
2909	if ((thflags & TH_SYN) && SEQ_GT(th->th_seq, tw->rcv_nxt)) {
2910		(void) tcp_twclose(tw, 0);
2911		return (1);
2912	}
2913
2914	/*
2915	 * Drop the the segment if it does not contain an ACK.
2916	 */
2917	if ((thflags & TH_ACK) == 0)
2918		goto drop;
2919
2920	/*
2921	 * Reset the 2MSL timer if this is a duplicate FIN.
2922	 */
2923	if (thflags & TH_FIN) {
2924		seq = th->th_seq + tlen + (thflags & TH_SYN ? 1 : 0);
2925		if (seq + 1 == tw->rcv_nxt)
2926			tcp_timer_2msl_reset(tw, 2 * tcp_msl);
2927	}
2928
2929	/*
2930	 * Acknowledge the segment if it has data or is not a duplicate ACK.
2931	 */
2932	if (thflags != TH_ACK || tlen != 0 ||
2933	    th->th_seq != tw->rcv_nxt || th->th_ack != tw->snd_nxt)
2934		tcp_twrespond(tw, TH_ACK);
2935	goto drop;
2936
2937reset:
2938	/*
2939	 * Generate a RST, dropping incoming segment.
2940	 * Make ACK acceptable to originator of segment.
2941	 * Don't bother to respond if destination was broadcast/multicast.
2942	 */
2943	if (m->m_flags & (M_BCAST|M_MCAST))
2944		goto drop;
2945	if (isipv6) {
2946		struct ip6_hdr *ip6;
2947
2948		/* IPv6 anycast check is done at tcp6_input() */
2949		ip6 = mtod(m, struct ip6_hdr *);
2950		if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) ||
2951		    IN6_IS_ADDR_MULTICAST(&ip6->ip6_src))
2952			goto drop;
2953	} else {
2954		struct ip *ip;
2955
2956		ip = mtod(m, struct ip *);
2957		if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
2958		    IN_MULTICAST(ntohl(ip->ip_src.s_addr)) ||
2959		    ip->ip_src.s_addr == htonl(INADDR_BROADCAST) ||
2960		    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
2961			goto drop;
2962	}
2963	if (thflags & TH_ACK) {
2964		tcp_respond(NULL,
2965		    mtod(m, void *), th, m, 0, th->th_ack, TH_RST);
2966	} else {
2967		seq = th->th_seq + (thflags & TH_SYN ? 1 : 0);
2968		tcp_respond(NULL,
2969		    mtod(m, void *), th, m, seq, 0, TH_RST|TH_ACK);
2970	}
2971	INP_UNLOCK(tw->tw_inpcb);
2972	return (0);
2973
2974drop:
2975	INP_UNLOCK(tw->tw_inpcb);
2976	m_freem(m);
2977	return (0);
2978}
2979