ip_mroute.c revision 77574
1/*
2 * IP multicast forwarding procedures
3 *
4 * Written by David Waitzman, BBN Labs, August 1988.
5 * Modified by Steve Deering, Stanford, February 1989.
6 * Modified by Mark J. Steiglitz, Stanford, May, 1991
7 * Modified by Van Jacobson, LBL, January 1993
8 * Modified by Ajit Thyagarajan, PARC, August 1993
9 * Modified by Bill Fenner, PARC, April 1995
10 *
11 * MROUTING Revision: 3.5
12 * $FreeBSD: head/sys/netinet/ip_mroute.c 77574 2001-06-01 10:02:28Z kris $
13 */
14
15#include "opt_mrouting.h"
16#include "opt_random_ip_id.h"
17
18#include <sys/param.h>
19#include <sys/systm.h>
20#include <sys/malloc.h>
21#include <sys/mbuf.h>
22#include <sys/socket.h>
23#include <sys/socketvar.h>
24#include <sys/protosw.h>
25#include <sys/time.h>
26#include <sys/kernel.h>
27#include <sys/sockio.h>
28#include <sys/syslog.h>
29#include <net/if.h>
30#include <net/route.h>
31#include <netinet/in.h>
32#include <netinet/in_systm.h>
33#include <netinet/ip.h>
34#include <netinet/ip_var.h>
35#include <netinet/in_var.h>
36#include <netinet/igmp.h>
37#include <netinet/ip_mroute.h>
38#include <netinet/udp.h>
39#include <machine/in_cksum.h>
40
41#ifndef NTOHL
42#if BYTE_ORDER != BIG_ENDIAN
43#define NTOHL(d) ((d) = ntohl((d)))
44#define NTOHS(d) ((d) = ntohs((u_short)(d)))
45#define HTONL(d) ((d) = htonl((d)))
46#define HTONS(d) ((d) = htons((u_short)(d)))
47#else
48#define NTOHL(d)
49#define NTOHS(d)
50#define HTONL(d)
51#define HTONS(d)
52#endif
53#endif
54
55#ifndef MROUTING
56extern u_long	_ip_mcast_src __P((int vifi));
57extern int	_ip_mforward __P((struct ip *ip, struct ifnet *ifp,
58				  struct mbuf *m, struct ip_moptions *imo));
59extern int	_ip_mrouter_done __P((void));
60extern int	_ip_mrouter_get __P((struct socket *so, struct sockopt *sopt));
61extern int	_ip_mrouter_set __P((struct socket *so, struct sockopt *sopt));
62extern int	_mrt_ioctl __P((int req, caddr_t data, struct proc *p));
63
64/*
65 * Dummy routines and globals used when multicast routing is not compiled in.
66 */
67
68struct socket  *ip_mrouter  = NULL;
69u_int		rsvpdebug = 0;
70
71int
72_ip_mrouter_set(so, sopt)
73	struct socket *so;
74	struct sockopt *sopt;
75{
76	return(EOPNOTSUPP);
77}
78
79int (*ip_mrouter_set)(struct socket *, struct sockopt *) = _ip_mrouter_set;
80
81
82int
83_ip_mrouter_get(so, sopt)
84	struct socket *so;
85	struct sockopt *sopt;
86{
87	return(EOPNOTSUPP);
88}
89
90int (*ip_mrouter_get)(struct socket *, struct sockopt *) = _ip_mrouter_get;
91
92int
93_ip_mrouter_done()
94{
95	return(0);
96}
97
98int (*ip_mrouter_done)(void) = _ip_mrouter_done;
99
100int
101_ip_mforward(ip, ifp, m, imo)
102	struct ip *ip;
103	struct ifnet *ifp;
104	struct mbuf *m;
105	struct ip_moptions *imo;
106{
107	return(0);
108}
109
110int (*ip_mforward)(struct ip *, struct ifnet *, struct mbuf *,
111		   struct ip_moptions *) = _ip_mforward;
112
113int
114_mrt_ioctl(int req, caddr_t data, struct proc *p)
115{
116	return EOPNOTSUPP;
117}
118
119int (*mrt_ioctl)(int, caddr_t, struct proc *) = _mrt_ioctl;
120
121void
122rsvp_input(m, off, proto)		/* XXX must fixup manually */
123	struct mbuf *m;
124	int off;
125	int proto;
126{
127    /* Can still get packets with rsvp_on = 0 if there is a local member
128     * of the group to which the RSVP packet is addressed.  But in this
129     * case we want to throw the packet away.
130     */
131    if (!rsvp_on) {
132	m_freem(m);
133	return;
134    }
135
136    if (ip_rsvpd != NULL) {
137	if (rsvpdebug)
138	    printf("rsvp_input: Sending packet up old-style socket\n");
139	rip_input(m, off, proto);
140	return;
141    }
142    /* Drop the packet */
143    m_freem(m);
144}
145
146void ipip_input(struct mbuf *m, int off, int proto) { /* XXX must fixup manually */
147	rip_input(m, off, proto);
148}
149
150int (*legal_vif_num)(int) = 0;
151
152/*
153 * This should never be called, since IP_MULTICAST_VIF should fail, but
154 * just in case it does get called, the code a little lower in ip_output
155 * will assign the packet a local address.
156 */
157u_long
158_ip_mcast_src(int vifi) { return INADDR_ANY; }
159u_long (*ip_mcast_src)(int) = _ip_mcast_src;
160
161int
162ip_rsvp_vif_init(so, sopt)
163    struct socket *so;
164    struct sockopt *sopt;
165{
166    return(EINVAL);
167}
168
169int
170ip_rsvp_vif_done(so, sopt)
171    struct socket *so;
172    struct sockopt *sopt;
173{
174    return(EINVAL);
175}
176
177void
178ip_rsvp_force_done(so)
179    struct socket *so;
180{
181    return;
182}
183
184#else /* MROUTING */
185
186#define M_HASCL(m)	((m)->m_flags & M_EXT)
187
188#define INSIZ		sizeof(struct in_addr)
189#define	same(a1, a2) \
190	(bcmp((caddr_t)(a1), (caddr_t)(a2), INSIZ) == 0)
191
192static MALLOC_DEFINE(M_MRTABLE, "mroutetbl", "multicast routing tables");
193
194/*
195 * Globals.  All but ip_mrouter and ip_mrtproto could be static,
196 * except for netstat or debugging purposes.
197 */
198#ifndef MROUTE_LKM
199struct socket  *ip_mrouter  = NULL;
200static struct mrtstat	mrtstat;
201#else /* MROUTE_LKM */
202extern void	X_ipip_input __P((struct mbuf *m, int iphlen));
203extern struct mrtstat mrtstat;
204static int ip_mrtproto;
205#endif
206
207#define NO_RTE_FOUND 	0x1
208#define RTE_FOUND	0x2
209
210static struct mfc	*mfctable[MFCTBLSIZ];
211static u_char		nexpire[MFCTBLSIZ];
212static struct vif	viftable[MAXVIFS];
213static u_int	mrtdebug = 0;	  /* debug level 	*/
214#define		DEBUG_MFC	0x02
215#define		DEBUG_FORWARD	0x04
216#define		DEBUG_EXPIRE	0x08
217#define		DEBUG_XMIT	0x10
218static u_int  	tbfdebug = 0;     /* tbf debug level 	*/
219static u_int	rsvpdebug = 0;	  /* rsvp debug level   */
220
221static struct callout_handle expire_upcalls_ch;
222
223#define		EXPIRE_TIMEOUT	(hz / 4)	/* 4x / second		*/
224#define		UPCALL_EXPIRE	6		/* number of timeouts	*/
225
226/*
227 * Define the token bucket filter structures
228 * tbftable -> each vif has one of these for storing info
229 */
230
231static struct tbf tbftable[MAXVIFS];
232#define		TBF_REPROCESS	(hz / 100)	/* 100x / second */
233
234/*
235 * 'Interfaces' associated with decapsulator (so we can tell
236 * packets that went through it from ones that get reflected
237 * by a broken gateway).  These interfaces are never linked into
238 * the system ifnet list & no routes point to them.  I.e., packets
239 * can't be sent this way.  They only exist as a placeholder for
240 * multicast source verification.
241 */
242static struct ifnet multicast_decap_if[MAXVIFS];
243
244#define ENCAP_TTL 64
245#define ENCAP_PROTO IPPROTO_IPIP	/* 4 */
246
247/* prototype IP hdr for encapsulated packets */
248static struct ip multicast_encap_iphdr = {
249#if BYTE_ORDER == LITTLE_ENDIAN
250	sizeof(struct ip) >> 2, IPVERSION,
251#else
252	IPVERSION, sizeof(struct ip) >> 2,
253#endif
254	0,				/* tos */
255	sizeof(struct ip),		/* total length */
256	0,				/* id */
257	0,				/* frag offset */
258	ENCAP_TTL, ENCAP_PROTO,
259	0,				/* checksum */
260};
261
262/*
263 * Private variables.
264 */
265static vifi_t	   numvifs = 0;
266static int have_encap_tunnel = 0;
267
268/*
269 * one-back cache used by ipip_input to locate a tunnel's vif
270 * given a datagram's src ip address.
271 */
272static u_long last_encap_src;
273static struct vif *last_encap_vif;
274
275static u_long	X_ip_mcast_src __P((int vifi));
276static int	X_ip_mforward __P((struct ip *ip, struct ifnet *ifp, struct mbuf *m, struct ip_moptions *imo));
277static int	X_ip_mrouter_done __P((void));
278static int	X_ip_mrouter_get __P((struct socket *so, struct sockopt *m));
279static int	X_ip_mrouter_set __P((struct socket *so, struct sockopt *m));
280static int	X_legal_vif_num __P((int vif));
281static int	X_mrt_ioctl __P((int cmd, caddr_t data));
282
283static int get_sg_cnt(struct sioc_sg_req *);
284static int get_vif_cnt(struct sioc_vif_req *);
285static int ip_mrouter_init(struct socket *, int);
286static int add_vif(struct vifctl *);
287static int del_vif(vifi_t);
288static int add_mfc(struct mfcctl *);
289static int del_mfc(struct mfcctl *);
290static int socket_send(struct socket *, struct mbuf *, struct sockaddr_in *);
291static int set_assert(int);
292static void expire_upcalls(void *);
293static int ip_mdq(struct mbuf *, struct ifnet *, struct mfc *,
294		  vifi_t);
295static void phyint_send(struct ip *, struct vif *, struct mbuf *);
296static void encap_send(struct ip *, struct vif *, struct mbuf *);
297static void tbf_control(struct vif *, struct mbuf *, struct ip *, u_long);
298static void tbf_queue(struct vif *, struct mbuf *);
299static void tbf_process_q(struct vif *);
300static void tbf_reprocess_q(void *);
301static int tbf_dq_sel(struct vif *, struct ip *);
302static void tbf_send_packet(struct vif *, struct mbuf *);
303static void tbf_update_tokens(struct vif *);
304static int priority(struct vif *, struct ip *);
305void multiencap_decap(struct mbuf *);
306
307/*
308 * whether or not special PIM assert processing is enabled.
309 */
310static int pim_assert;
311/*
312 * Rate limit for assert notification messages, in usec
313 */
314#define ASSERT_MSG_TIME		3000000
315
316/*
317 * Hash function for a source, group entry
318 */
319#define MFCHASH(a, g) MFCHASHMOD(((a) >> 20) ^ ((a) >> 10) ^ (a) ^ \
320			((g) >> 20) ^ ((g) >> 10) ^ (g))
321
322/*
323 * Find a route for a given origin IP address and Multicast group address
324 * Type of service parameter to be added in the future!!!
325 */
326
327#define MFCFIND(o, g, rt) { \
328	register struct mfc *_rt = mfctable[MFCHASH(o,g)]; \
329	rt = NULL; \
330	++mrtstat.mrts_mfc_lookups; \
331	while (_rt) { \
332		if ((_rt->mfc_origin.s_addr == o) && \
333		    (_rt->mfc_mcastgrp.s_addr == g) && \
334		    (_rt->mfc_stall == NULL)) { \
335			rt = _rt; \
336			break; \
337		} \
338		_rt = _rt->mfc_next; \
339	} \
340	if (rt == NULL) { \
341		++mrtstat.mrts_mfc_misses; \
342	} \
343}
344
345
346/*
347 * Macros to compute elapsed time efficiently
348 * Borrowed from Van Jacobson's scheduling code
349 */
350#define TV_DELTA(a, b, delta) { \
351	    register int xxs; \
352		\
353	    delta = (a).tv_usec - (b).tv_usec; \
354	    if ((xxs = (a).tv_sec - (b).tv_sec)) { \
355	       switch (xxs) { \
356		      case 2: \
357			  delta += 1000000; \
358			      /* fall through */ \
359		      case 1: \
360			  delta += 1000000; \
361			  break; \
362		      default: \
363			  delta += (1000000 * xxs); \
364	       } \
365	    } \
366}
367
368#define TV_LT(a, b) (((a).tv_usec < (b).tv_usec && \
369	      (a).tv_sec <= (b).tv_sec) || (a).tv_sec < (b).tv_sec)
370
371#ifdef UPCALL_TIMING
372u_long upcall_data[51];
373static void collate(struct timeval *);
374#endif /* UPCALL_TIMING */
375
376
377/*
378 * Handle MRT setsockopt commands to modify the multicast routing tables.
379 */
380static int
381X_ip_mrouter_set(so, sopt)
382	struct socket *so;
383	struct sockopt *sopt;
384{
385	int	error, optval;
386	vifi_t	vifi;
387	struct	vifctl vifc;
388	struct	mfcctl mfc;
389
390	if (so != ip_mrouter && sopt->sopt_name != MRT_INIT)
391		return (EPERM);
392
393	error = 0;
394	switch (sopt->sopt_name) {
395	case MRT_INIT:
396		error = sooptcopyin(sopt, &optval, sizeof optval,
397				    sizeof optval);
398		if (error)
399			break;
400		error = ip_mrouter_init(so, optval);
401		break;
402
403	case MRT_DONE:
404		error = ip_mrouter_done();
405		break;
406
407	case MRT_ADD_VIF:
408		error = sooptcopyin(sopt, &vifc, sizeof vifc, sizeof vifc);
409		if (error)
410			break;
411		error = add_vif(&vifc);
412		break;
413
414	case MRT_DEL_VIF:
415		error = sooptcopyin(sopt, &vifi, sizeof vifi, sizeof vifi);
416		if (error)
417			break;
418		error = del_vif(vifi);
419		break;
420
421	case MRT_ADD_MFC:
422	case MRT_DEL_MFC:
423		error = sooptcopyin(sopt, &mfc, sizeof mfc, sizeof mfc);
424		if (error)
425			break;
426		if (sopt->sopt_name == MRT_ADD_MFC)
427			error = add_mfc(&mfc);
428		else
429			error = del_mfc(&mfc);
430		break;
431
432	case MRT_ASSERT:
433		error = sooptcopyin(sopt, &optval, sizeof optval,
434				    sizeof optval);
435		if (error)
436			break;
437		set_assert(optval);
438		break;
439
440	default:
441		error = EOPNOTSUPP;
442		break;
443	}
444	return (error);
445}
446
447#ifndef MROUTE_LKM
448int (*ip_mrouter_set)(struct socket *, struct sockopt *) = X_ip_mrouter_set;
449#endif
450
451/*
452 * Handle MRT getsockopt commands
453 */
454static int
455X_ip_mrouter_get(so, sopt)
456	struct socket *so;
457	struct sockopt *sopt;
458{
459	int error;
460	static int version = 0x0305; /* !!! why is this here? XXX */
461
462	switch (sopt->sopt_name) {
463	case MRT_VERSION:
464		error = sooptcopyout(sopt, &version, sizeof version);
465		break;
466
467	case MRT_ASSERT:
468		error = sooptcopyout(sopt, &pim_assert, sizeof pim_assert);
469		break;
470	default:
471		error = EOPNOTSUPP;
472		break;
473	}
474	return (error);
475}
476
477#ifndef MROUTE_LKM
478int (*ip_mrouter_get)(struct socket *, struct sockopt *) = X_ip_mrouter_get;
479#endif
480
481/*
482 * Handle ioctl commands to obtain information from the cache
483 */
484static int
485X_mrt_ioctl(cmd, data)
486    int cmd;
487    caddr_t data;
488{
489    int error = 0;
490
491    switch (cmd) {
492	case (SIOCGETVIFCNT):
493	    return (get_vif_cnt((struct sioc_vif_req *)data));
494	    break;
495	case (SIOCGETSGCNT):
496	    return (get_sg_cnt((struct sioc_sg_req *)data));
497	    break;
498	default:
499	    return (EINVAL);
500	    break;
501    }
502    return error;
503}
504
505#ifndef MROUTE_LKM
506int (*mrt_ioctl)(int, caddr_t) = X_mrt_ioctl;
507#endif
508
509/*
510 * returns the packet, byte, rpf-failure count for the source group provided
511 */
512static int
513get_sg_cnt(req)
514    register struct sioc_sg_req *req;
515{
516    register struct mfc *rt;
517    int s;
518
519    s = splnet();
520    MFCFIND(req->src.s_addr, req->grp.s_addr, rt);
521    splx(s);
522    if (rt != NULL) {
523	req->pktcnt = rt->mfc_pkt_cnt;
524	req->bytecnt = rt->mfc_byte_cnt;
525	req->wrong_if = rt->mfc_wrong_if;
526    } else
527	req->pktcnt = req->bytecnt = req->wrong_if = 0xffffffff;
528
529    return 0;
530}
531
532/*
533 * returns the input and output packet and byte counts on the vif provided
534 */
535static int
536get_vif_cnt(req)
537    register struct sioc_vif_req *req;
538{
539    register vifi_t vifi = req->vifi;
540
541    if (vifi >= numvifs) return EINVAL;
542
543    req->icount = viftable[vifi].v_pkt_in;
544    req->ocount = viftable[vifi].v_pkt_out;
545    req->ibytes = viftable[vifi].v_bytes_in;
546    req->obytes = viftable[vifi].v_bytes_out;
547
548    return 0;
549}
550
551/*
552 * Enable multicast routing
553 */
554static int
555ip_mrouter_init(so, version)
556	struct socket *so;
557	int version;
558{
559    if (mrtdebug)
560	log(LOG_DEBUG,"ip_mrouter_init: so_type = %d, pr_protocol = %d\n",
561		so->so_type, so->so_proto->pr_protocol);
562
563    if (so->so_type != SOCK_RAW ||
564	so->so_proto->pr_protocol != IPPROTO_IGMP) return EOPNOTSUPP;
565
566    if (version != 1)
567	return ENOPROTOOPT;
568
569    if (ip_mrouter != NULL) return EADDRINUSE;
570
571    ip_mrouter = so;
572
573    bzero((caddr_t)mfctable, sizeof(mfctable));
574    bzero((caddr_t)nexpire, sizeof(nexpire));
575
576    pim_assert = 0;
577
578    expire_upcalls_ch = timeout(expire_upcalls, (caddr_t)NULL, EXPIRE_TIMEOUT);
579
580    if (mrtdebug)
581	log(LOG_DEBUG, "ip_mrouter_init\n");
582
583    return 0;
584}
585
586/*
587 * Disable multicast routing
588 */
589static int
590X_ip_mrouter_done()
591{
592    vifi_t vifi;
593    int i;
594    struct ifnet *ifp;
595    struct ifreq ifr;
596    struct mfc *rt;
597    struct rtdetq *rte;
598    int s;
599
600    s = splnet();
601
602    /*
603     * For each phyint in use, disable promiscuous reception of all IP
604     * multicasts.
605     */
606    for (vifi = 0; vifi < numvifs; vifi++) {
607	if (viftable[vifi].v_lcl_addr.s_addr != 0 &&
608	    !(viftable[vifi].v_flags & VIFF_TUNNEL)) {
609	    ((struct sockaddr_in *)&(ifr.ifr_addr))->sin_family = AF_INET;
610	    ((struct sockaddr_in *)&(ifr.ifr_addr))->sin_addr.s_addr
611								= INADDR_ANY;
612	    ifp = viftable[vifi].v_ifp;
613	    if_allmulti(ifp, 0);
614	}
615    }
616    bzero((caddr_t)tbftable, sizeof(tbftable));
617    bzero((caddr_t)viftable, sizeof(viftable));
618    numvifs = 0;
619    pim_assert = 0;
620
621    untimeout(expire_upcalls, (caddr_t)NULL, expire_upcalls_ch);
622
623    /*
624     * Free all multicast forwarding cache entries.
625     */
626    for (i = 0; i < MFCTBLSIZ; i++) {
627	for (rt = mfctable[i]; rt != NULL; ) {
628	    struct mfc *nr = rt->mfc_next;
629
630	    for (rte = rt->mfc_stall; rte != NULL; ) {
631		struct rtdetq *n = rte->next;
632
633		m_freem(rte->m);
634		free(rte, M_MRTABLE);
635		rte = n;
636	    }
637	    free(rt, M_MRTABLE);
638	    rt = nr;
639	}
640    }
641
642    bzero((caddr_t)mfctable, sizeof(mfctable));
643
644    /*
645     * Reset de-encapsulation cache
646     */
647    last_encap_src = 0;
648    last_encap_vif = NULL;
649    have_encap_tunnel = 0;
650
651    ip_mrouter = NULL;
652
653    splx(s);
654
655    if (mrtdebug)
656	log(LOG_DEBUG, "ip_mrouter_done\n");
657
658    return 0;
659}
660
661#ifndef MROUTE_LKM
662int (*ip_mrouter_done)(void) = X_ip_mrouter_done;
663#endif
664
665/*
666 * Set PIM assert processing global
667 */
668static int
669set_assert(i)
670	int i;
671{
672    if ((i != 1) && (i != 0))
673	return EINVAL;
674
675    pim_assert = i;
676
677    return 0;
678}
679
680/*
681 * Add a vif to the vif table
682 */
683static int
684add_vif(vifcp)
685    register struct vifctl *vifcp;
686{
687    register struct vif *vifp = viftable + vifcp->vifc_vifi;
688    static struct sockaddr_in sin = {sizeof sin, AF_INET};
689    struct ifaddr *ifa;
690    struct ifnet *ifp;
691    int error, s;
692    struct tbf *v_tbf = tbftable + vifcp->vifc_vifi;
693
694    if (vifcp->vifc_vifi >= MAXVIFS)  return EINVAL;
695    if (vifp->v_lcl_addr.s_addr != 0) return EADDRINUSE;
696
697    /* Find the interface with an address in AF_INET family */
698    sin.sin_addr = vifcp->vifc_lcl_addr;
699    ifa = ifa_ifwithaddr((struct sockaddr *)&sin);
700    if (ifa == 0) return EADDRNOTAVAIL;
701    ifp = ifa->ifa_ifp;
702
703    if (vifcp->vifc_flags & VIFF_TUNNEL) {
704	if ((vifcp->vifc_flags & VIFF_SRCRT) == 0) {
705		/*
706		 * An encapsulating tunnel is wanted.  Tell ipip_input() to
707		 * start paying attention to encapsulated packets.
708		 */
709		if (have_encap_tunnel == 0) {
710			have_encap_tunnel = 1;
711			for (s = 0; s < MAXVIFS; ++s) {
712				multicast_decap_if[s].if_name = "mdecap";
713				multicast_decap_if[s].if_unit = s;
714			}
715		}
716		/*
717		 * Set interface to fake encapsulator interface
718		 */
719		ifp = &multicast_decap_if[vifcp->vifc_vifi];
720		/*
721		 * Prepare cached route entry
722		 */
723		bzero(&vifp->v_route, sizeof(vifp->v_route));
724	} else {
725	    log(LOG_ERR, "source routed tunnels not supported\n");
726	    return EOPNOTSUPP;
727	}
728    } else {
729	/* Make sure the interface supports multicast */
730	if ((ifp->if_flags & IFF_MULTICAST) == 0)
731	    return EOPNOTSUPP;
732
733	/* Enable promiscuous reception of all IP multicasts from the if */
734	s = splnet();
735	error = if_allmulti(ifp, 1);
736	splx(s);
737	if (error)
738	    return error;
739    }
740
741    s = splnet();
742    /* define parameters for the tbf structure */
743    vifp->v_tbf = v_tbf;
744    GET_TIME(vifp->v_tbf->tbf_last_pkt_t);
745    vifp->v_tbf->tbf_n_tok = 0;
746    vifp->v_tbf->tbf_q_len = 0;
747    vifp->v_tbf->tbf_max_q_len = MAXQSIZE;
748    vifp->v_tbf->tbf_q = vifp->v_tbf->tbf_t = NULL;
749
750    vifp->v_flags     = vifcp->vifc_flags;
751    vifp->v_threshold = vifcp->vifc_threshold;
752    vifp->v_lcl_addr  = vifcp->vifc_lcl_addr;
753    vifp->v_rmt_addr  = vifcp->vifc_rmt_addr;
754    vifp->v_ifp       = ifp;
755    /* scaling up here allows division by 1024 in critical code */
756    vifp->v_rate_limit= vifcp->vifc_rate_limit * 1024 / 1000;
757    vifp->v_rsvp_on   = 0;
758    vifp->v_rsvpd     = NULL;
759    /* initialize per vif pkt counters */
760    vifp->v_pkt_in    = 0;
761    vifp->v_pkt_out   = 0;
762    vifp->v_bytes_in  = 0;
763    vifp->v_bytes_out = 0;
764    splx(s);
765
766    /* Adjust numvifs up if the vifi is higher than numvifs */
767    if (numvifs <= vifcp->vifc_vifi) numvifs = vifcp->vifc_vifi + 1;
768
769    if (mrtdebug)
770	log(LOG_DEBUG, "add_vif #%d, lcladdr %lx, %s %lx, thresh %x, rate %d\n",
771	    vifcp->vifc_vifi,
772	    (u_long)ntohl(vifcp->vifc_lcl_addr.s_addr),
773	    (vifcp->vifc_flags & VIFF_TUNNEL) ? "rmtaddr" : "mask",
774	    (u_long)ntohl(vifcp->vifc_rmt_addr.s_addr),
775	    vifcp->vifc_threshold,
776	    vifcp->vifc_rate_limit);
777
778    return 0;
779}
780
781/*
782 * Delete a vif from the vif table
783 */
784static int
785del_vif(vifi)
786	vifi_t vifi;
787{
788    register struct vif *vifp = &viftable[vifi];
789    register struct mbuf *m;
790    struct ifnet *ifp;
791    struct ifreq ifr;
792    int s;
793
794    if (vifi >= numvifs) return EINVAL;
795    if (vifp->v_lcl_addr.s_addr == 0) return EADDRNOTAVAIL;
796
797    s = splnet();
798
799    if (!(vifp->v_flags & VIFF_TUNNEL)) {
800	((struct sockaddr_in *)&(ifr.ifr_addr))->sin_family = AF_INET;
801	((struct sockaddr_in *)&(ifr.ifr_addr))->sin_addr.s_addr = INADDR_ANY;
802	ifp = vifp->v_ifp;
803	if_allmulti(ifp, 0);
804    }
805
806    if (vifp == last_encap_vif) {
807	last_encap_vif = 0;
808	last_encap_src = 0;
809    }
810
811    /*
812     * Free packets queued at the interface
813     */
814    while (vifp->v_tbf->tbf_q) {
815	m = vifp->v_tbf->tbf_q;
816	vifp->v_tbf->tbf_q = m->m_act;
817	m_freem(m);
818    }
819
820    bzero((caddr_t)vifp->v_tbf, sizeof(*(vifp->v_tbf)));
821    bzero((caddr_t)vifp, sizeof (*vifp));
822
823    if (mrtdebug)
824      log(LOG_DEBUG, "del_vif %d, numvifs %d\n", vifi, numvifs);
825
826    /* Adjust numvifs down */
827    for (vifi = numvifs; vifi > 0; vifi--)
828	if (viftable[vifi-1].v_lcl_addr.s_addr != 0) break;
829    numvifs = vifi;
830
831    splx(s);
832
833    return 0;
834}
835
836/*
837 * Add an mfc entry
838 */
839static int
840add_mfc(mfccp)
841    struct mfcctl *mfccp;
842{
843    struct mfc *rt;
844    u_long hash;
845    struct rtdetq *rte;
846    register u_short nstl;
847    int s;
848    int i;
849
850    MFCFIND(mfccp->mfcc_origin.s_addr, mfccp->mfcc_mcastgrp.s_addr, rt);
851
852    /* If an entry already exists, just update the fields */
853    if (rt) {
854	if (mrtdebug & DEBUG_MFC)
855	    log(LOG_DEBUG,"add_mfc update o %lx g %lx p %x\n",
856		(u_long)ntohl(mfccp->mfcc_origin.s_addr),
857		(u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr),
858		mfccp->mfcc_parent);
859
860	s = splnet();
861	rt->mfc_parent = mfccp->mfcc_parent;
862	for (i = 0; i < numvifs; i++)
863	    rt->mfc_ttls[i] = mfccp->mfcc_ttls[i];
864	splx(s);
865	return 0;
866    }
867
868    /*
869     * Find the entry for which the upcall was made and update
870     */
871    s = splnet();
872    hash = MFCHASH(mfccp->mfcc_origin.s_addr, mfccp->mfcc_mcastgrp.s_addr);
873    for (rt = mfctable[hash], nstl = 0; rt; rt = rt->mfc_next) {
874
875	if ((rt->mfc_origin.s_addr == mfccp->mfcc_origin.s_addr) &&
876	    (rt->mfc_mcastgrp.s_addr == mfccp->mfcc_mcastgrp.s_addr) &&
877	    (rt->mfc_stall != NULL)) {
878
879	    if (nstl++)
880		log(LOG_ERR, "add_mfc %s o %lx g %lx p %x dbx %p\n",
881		    "multiple kernel entries",
882		    (u_long)ntohl(mfccp->mfcc_origin.s_addr),
883		    (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr),
884		    mfccp->mfcc_parent, (void *)rt->mfc_stall);
885
886	    if (mrtdebug & DEBUG_MFC)
887		log(LOG_DEBUG,"add_mfc o %lx g %lx p %x dbg %p\n",
888		    (u_long)ntohl(mfccp->mfcc_origin.s_addr),
889		    (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr),
890		    mfccp->mfcc_parent, (void *)rt->mfc_stall);
891
892	    rt->mfc_origin     = mfccp->mfcc_origin;
893	    rt->mfc_mcastgrp   = mfccp->mfcc_mcastgrp;
894	    rt->mfc_parent     = mfccp->mfcc_parent;
895	    for (i = 0; i < numvifs; i++)
896		rt->mfc_ttls[i] = mfccp->mfcc_ttls[i];
897	    /* initialize pkt counters per src-grp */
898	    rt->mfc_pkt_cnt    = 0;
899	    rt->mfc_byte_cnt   = 0;
900	    rt->mfc_wrong_if   = 0;
901	    rt->mfc_last_assert.tv_sec = rt->mfc_last_assert.tv_usec = 0;
902
903	    rt->mfc_expire = 0;	/* Don't clean this guy up */
904	    nexpire[hash]--;
905
906	    /* free packets Qed at the end of this entry */
907	    for (rte = rt->mfc_stall; rte != NULL; ) {
908		struct rtdetq *n = rte->next;
909
910		ip_mdq(rte->m, rte->ifp, rt, -1);
911		m_freem(rte->m);
912#ifdef UPCALL_TIMING
913		collate(&(rte->t));
914#endif /* UPCALL_TIMING */
915		free(rte, M_MRTABLE);
916		rte = n;
917	    }
918	    rt->mfc_stall = NULL;
919	}
920    }
921
922    /*
923     * It is possible that an entry is being inserted without an upcall
924     */
925    if (nstl == 0) {
926	if (mrtdebug & DEBUG_MFC)
927	    log(LOG_DEBUG,"add_mfc no upcall h %lu o %lx g %lx p %x\n",
928		hash, (u_long)ntohl(mfccp->mfcc_origin.s_addr),
929		(u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr),
930		mfccp->mfcc_parent);
931
932	for (rt = mfctable[hash]; rt != NULL; rt = rt->mfc_next) {
933
934	    if ((rt->mfc_origin.s_addr == mfccp->mfcc_origin.s_addr) &&
935		(rt->mfc_mcastgrp.s_addr == mfccp->mfcc_mcastgrp.s_addr)) {
936
937		rt->mfc_origin     = mfccp->mfcc_origin;
938		rt->mfc_mcastgrp   = mfccp->mfcc_mcastgrp;
939		rt->mfc_parent     = mfccp->mfcc_parent;
940		for (i = 0; i < numvifs; i++)
941		    rt->mfc_ttls[i] = mfccp->mfcc_ttls[i];
942		/* initialize pkt counters per src-grp */
943		rt->mfc_pkt_cnt    = 0;
944		rt->mfc_byte_cnt   = 0;
945		rt->mfc_wrong_if   = 0;
946		rt->mfc_last_assert.tv_sec = rt->mfc_last_assert.tv_usec = 0;
947		if (rt->mfc_expire)
948		    nexpire[hash]--;
949		rt->mfc_expire	   = 0;
950	    }
951	}
952	if (rt == NULL) {
953	    /* no upcall, so make a new entry */
954	    rt = (struct mfc *)malloc(sizeof(*rt), M_MRTABLE, M_NOWAIT);
955	    if (rt == NULL) {
956		splx(s);
957		return ENOBUFS;
958	    }
959
960	    /* insert new entry at head of hash chain */
961	    rt->mfc_origin     = mfccp->mfcc_origin;
962	    rt->mfc_mcastgrp   = mfccp->mfcc_mcastgrp;
963	    rt->mfc_parent     = mfccp->mfcc_parent;
964	    for (i = 0; i < numvifs; i++)
965		    rt->mfc_ttls[i] = mfccp->mfcc_ttls[i];
966	    /* initialize pkt counters per src-grp */
967	    rt->mfc_pkt_cnt    = 0;
968	    rt->mfc_byte_cnt   = 0;
969	    rt->mfc_wrong_if   = 0;
970	    rt->mfc_last_assert.tv_sec = rt->mfc_last_assert.tv_usec = 0;
971	    rt->mfc_expire     = 0;
972	    rt->mfc_stall      = NULL;
973
974	    /* link into table */
975	    rt->mfc_next = mfctable[hash];
976	    mfctable[hash] = rt;
977	}
978    }
979    splx(s);
980    return 0;
981}
982
983#ifdef UPCALL_TIMING
984/*
985 * collect delay statistics on the upcalls
986 */
987static void collate(t)
988register struct timeval *t;
989{
990    register u_long d;
991    register struct timeval tp;
992    register u_long delta;
993
994    GET_TIME(tp);
995
996    if (TV_LT(*t, tp))
997    {
998	TV_DELTA(tp, *t, delta);
999
1000	d = delta >> 10;
1001	if (d > 50)
1002	    d = 50;
1003
1004	++upcall_data[d];
1005    }
1006}
1007#endif /* UPCALL_TIMING */
1008
1009/*
1010 * Delete an mfc entry
1011 */
1012static int
1013del_mfc(mfccp)
1014    struct mfcctl *mfccp;
1015{
1016    struct in_addr 	origin;
1017    struct in_addr 	mcastgrp;
1018    struct mfc 		*rt;
1019    struct mfc	 	**nptr;
1020    u_long 		hash;
1021    int s;
1022
1023    origin = mfccp->mfcc_origin;
1024    mcastgrp = mfccp->mfcc_mcastgrp;
1025    hash = MFCHASH(origin.s_addr, mcastgrp.s_addr);
1026
1027    if (mrtdebug & DEBUG_MFC)
1028	log(LOG_DEBUG,"del_mfc orig %lx mcastgrp %lx\n",
1029	    (u_long)ntohl(origin.s_addr), (u_long)ntohl(mcastgrp.s_addr));
1030
1031    s = splnet();
1032
1033    nptr = &mfctable[hash];
1034    while ((rt = *nptr) != NULL) {
1035	if (origin.s_addr == rt->mfc_origin.s_addr &&
1036	    mcastgrp.s_addr == rt->mfc_mcastgrp.s_addr &&
1037	    rt->mfc_stall == NULL)
1038	    break;
1039
1040	nptr = &rt->mfc_next;
1041    }
1042    if (rt == NULL) {
1043	splx(s);
1044	return EADDRNOTAVAIL;
1045    }
1046
1047    *nptr = rt->mfc_next;
1048    free(rt, M_MRTABLE);
1049
1050    splx(s);
1051
1052    return 0;
1053}
1054
1055/*
1056 * Send a message to mrouted on the multicast routing socket
1057 */
1058static int
1059socket_send(s, mm, src)
1060	struct socket *s;
1061	struct mbuf *mm;
1062	struct sockaddr_in *src;
1063{
1064	if (s) {
1065		if (sbappendaddr(&s->so_rcv,
1066				 (struct sockaddr *)src,
1067				 mm, (struct mbuf *)0) != 0) {
1068			sorwakeup(s);
1069			return 0;
1070		}
1071	}
1072	m_freem(mm);
1073	return -1;
1074}
1075
1076/*
1077 * IP multicast forwarding function. This function assumes that the packet
1078 * pointed to by "ip" has arrived on (or is about to be sent to) the interface
1079 * pointed to by "ifp", and the packet is to be relayed to other networks
1080 * that have members of the packet's destination IP multicast group.
1081 *
1082 * The packet is returned unscathed to the caller, unless it is
1083 * erroneous, in which case a non-zero return value tells the caller to
1084 * discard it.
1085 */
1086
1087#define IP_HDR_LEN  20	/* # bytes of fixed IP header (excluding options) */
1088#define TUNNEL_LEN  12  /* # bytes of IP option for tunnel encapsulation  */
1089
1090static int
1091X_ip_mforward(ip, ifp, m, imo)
1092    register struct ip *ip;
1093    struct ifnet *ifp;
1094    struct mbuf *m;
1095    struct ip_moptions *imo;
1096{
1097    register struct mfc *rt;
1098    register u_char *ipoptions;
1099    static struct sockaddr_in 	k_igmpsrc	= { sizeof k_igmpsrc, AF_INET };
1100    static int srctun = 0;
1101    register struct mbuf *mm;
1102    int s;
1103    vifi_t vifi;
1104    struct vif *vifp;
1105
1106    if (mrtdebug & DEBUG_FORWARD)
1107	log(LOG_DEBUG, "ip_mforward: src %lx, dst %lx, ifp %p\n",
1108	    (u_long)ntohl(ip->ip_src.s_addr), (u_long)ntohl(ip->ip_dst.s_addr),
1109	    (void *)ifp);
1110
1111    if (ip->ip_hl < (IP_HDR_LEN + TUNNEL_LEN) >> 2 ||
1112	(ipoptions = (u_char *)(ip + 1))[1] != IPOPT_LSRR ) {
1113	/*
1114	 * Packet arrived via a physical interface or
1115	 * an encapsulated tunnel.
1116	 */
1117    } else {
1118	/*
1119	 * Packet arrived through a source-route tunnel.
1120	 * Source-route tunnels are no longer supported.
1121	 */
1122	if ((srctun++ % 1000) == 0)
1123	    log(LOG_ERR,
1124		"ip_mforward: received source-routed packet from %lx\n",
1125		(u_long)ntohl(ip->ip_src.s_addr));
1126
1127	return 1;
1128    }
1129
1130    if ((imo) && ((vifi = imo->imo_multicast_vif) < numvifs)) {
1131	if (ip->ip_ttl < 255)
1132		ip->ip_ttl++;	/* compensate for -1 in *_send routines */
1133	if (rsvpdebug && ip->ip_p == IPPROTO_RSVP) {
1134	    vifp = viftable + vifi;
1135	    printf("Sending IPPROTO_RSVP from %lx to %lx on vif %d (%s%s%d)\n",
1136		ntohl(ip->ip_src.s_addr), ntohl(ip->ip_dst.s_addr), vifi,
1137		(vifp->v_flags & VIFF_TUNNEL) ? "tunnel on " : "",
1138		vifp->v_ifp->if_name, vifp->v_ifp->if_unit);
1139	}
1140	return (ip_mdq(m, ifp, NULL, vifi));
1141    }
1142    if (rsvpdebug && ip->ip_p == IPPROTO_RSVP) {
1143	printf("Warning: IPPROTO_RSVP from %lx to %lx without vif option\n",
1144	    ntohl(ip->ip_src.s_addr), ntohl(ip->ip_dst.s_addr));
1145	if(!imo)
1146		printf("In fact, no options were specified at all\n");
1147    }
1148
1149    /*
1150     * Don't forward a packet with time-to-live of zero or one,
1151     * or a packet destined to a local-only group.
1152     */
1153    if (ip->ip_ttl <= 1 ||
1154	ntohl(ip->ip_dst.s_addr) <= INADDR_MAX_LOCAL_GROUP)
1155	return 0;
1156
1157    /*
1158     * Determine forwarding vifs from the forwarding cache table
1159     */
1160    s = splnet();
1161    MFCFIND(ip->ip_src.s_addr, ip->ip_dst.s_addr, rt);
1162
1163    /* Entry exists, so forward if necessary */
1164    if (rt != NULL) {
1165	splx(s);
1166	return (ip_mdq(m, ifp, rt, -1));
1167    } else {
1168	/*
1169	 * If we don't have a route for packet's origin,
1170	 * Make a copy of the packet &
1171	 * send message to routing daemon
1172	 */
1173
1174	register struct mbuf *mb0;
1175	register struct rtdetq *rte;
1176	register u_long hash;
1177	int hlen = ip->ip_hl << 2;
1178#ifdef UPCALL_TIMING
1179	struct timeval tp;
1180
1181	GET_TIME(tp);
1182#endif
1183
1184	mrtstat.mrts_no_route++;
1185	if (mrtdebug & (DEBUG_FORWARD | DEBUG_MFC))
1186	    log(LOG_DEBUG, "ip_mforward: no rte s %lx g %lx\n",
1187		(u_long)ntohl(ip->ip_src.s_addr),
1188		(u_long)ntohl(ip->ip_dst.s_addr));
1189
1190	/*
1191	 * Allocate mbufs early so that we don't do extra work if we are
1192	 * just going to fail anyway.  Make sure to pullup the header so
1193	 * that other people can't step on it.
1194	 */
1195	rte = (struct rtdetq *)malloc((sizeof *rte), M_MRTABLE, M_NOWAIT);
1196	if (rte == NULL) {
1197	    splx(s);
1198	    return ENOBUFS;
1199	}
1200	mb0 = m_copy(m, 0, M_COPYALL);
1201	if (mb0 && (M_HASCL(mb0) || mb0->m_len < hlen))
1202	    mb0 = m_pullup(mb0, hlen);
1203	if (mb0 == NULL) {
1204	    free(rte, M_MRTABLE);
1205	    splx(s);
1206	    return ENOBUFS;
1207	}
1208
1209	/* is there an upcall waiting for this packet? */
1210	hash = MFCHASH(ip->ip_src.s_addr, ip->ip_dst.s_addr);
1211	for (rt = mfctable[hash]; rt; rt = rt->mfc_next) {
1212	    if ((ip->ip_src.s_addr == rt->mfc_origin.s_addr) &&
1213		(ip->ip_dst.s_addr == rt->mfc_mcastgrp.s_addr) &&
1214		(rt->mfc_stall != NULL))
1215		break;
1216	}
1217
1218	if (rt == NULL) {
1219	    int i;
1220	    struct igmpmsg *im;
1221
1222	    /* no upcall, so make a new entry */
1223	    rt = (struct mfc *)malloc(sizeof(*rt), M_MRTABLE, M_NOWAIT);
1224	    if (rt == NULL) {
1225		free(rte, M_MRTABLE);
1226		m_freem(mb0);
1227		splx(s);
1228		return ENOBUFS;
1229	    }
1230	    /* Make a copy of the header to send to the user level process */
1231	    mm = m_copy(mb0, 0, hlen);
1232	    if (mm == NULL) {
1233		free(rte, M_MRTABLE);
1234		m_freem(mb0);
1235		free(rt, M_MRTABLE);
1236		splx(s);
1237		return ENOBUFS;
1238	    }
1239
1240	    /*
1241	     * Send message to routing daemon to install
1242	     * a route into the kernel table
1243	     */
1244	    k_igmpsrc.sin_addr = ip->ip_src;
1245
1246	    im = mtod(mm, struct igmpmsg *);
1247	    im->im_msgtype	= IGMPMSG_NOCACHE;
1248	    im->im_mbz		= 0;
1249
1250	    mrtstat.mrts_upcalls++;
1251
1252	    if (socket_send(ip_mrouter, mm, &k_igmpsrc) < 0) {
1253		log(LOG_WARNING, "ip_mforward: ip_mrouter socket queue full\n");
1254		++mrtstat.mrts_upq_sockfull;
1255		free(rte, M_MRTABLE);
1256		m_freem(mb0);
1257		free(rt, M_MRTABLE);
1258		splx(s);
1259		return ENOBUFS;
1260	    }
1261
1262	    /* insert new entry at head of hash chain */
1263	    rt->mfc_origin.s_addr     = ip->ip_src.s_addr;
1264	    rt->mfc_mcastgrp.s_addr   = ip->ip_dst.s_addr;
1265	    rt->mfc_expire	      = UPCALL_EXPIRE;
1266	    nexpire[hash]++;
1267	    for (i = 0; i < numvifs; i++)
1268		rt->mfc_ttls[i] = 0;
1269	    rt->mfc_parent = -1;
1270
1271	    /* link into table */
1272	    rt->mfc_next   = mfctable[hash];
1273	    mfctable[hash] = rt;
1274	    rt->mfc_stall = rte;
1275
1276	} else {
1277	    /* determine if q has overflowed */
1278	    int npkts = 0;
1279	    struct rtdetq **p;
1280
1281	    for (p = &rt->mfc_stall; *p != NULL; p = &(*p)->next)
1282		npkts++;
1283
1284	    if (npkts > MAX_UPQ) {
1285		mrtstat.mrts_upq_ovflw++;
1286		free(rte, M_MRTABLE);
1287		m_freem(mb0);
1288		splx(s);
1289		return 0;
1290	    }
1291
1292	    /* Add this entry to the end of the queue */
1293	    *p = rte;
1294	}
1295
1296	rte->m 			= mb0;
1297	rte->ifp 		= ifp;
1298#ifdef UPCALL_TIMING
1299	rte->t			= tp;
1300#endif
1301	rte->next		= NULL;
1302
1303	splx(s);
1304
1305	return 0;
1306    }
1307}
1308
1309#ifndef MROUTE_LKM
1310int (*ip_mforward)(struct ip *, struct ifnet *, struct mbuf *,
1311		   struct ip_moptions *) = X_ip_mforward;
1312#endif
1313
1314/*
1315 * Clean up the cache entry if upcall is not serviced
1316 */
1317static void
1318expire_upcalls(void *unused)
1319{
1320    struct rtdetq *rte;
1321    struct mfc *mfc, **nptr;
1322    int i;
1323    int s;
1324
1325    s = splnet();
1326    for (i = 0; i < MFCTBLSIZ; i++) {
1327	if (nexpire[i] == 0)
1328	    continue;
1329	nptr = &mfctable[i];
1330	for (mfc = *nptr; mfc != NULL; mfc = *nptr) {
1331	    /*
1332	     * Skip real cache entries
1333	     * Make sure it wasn't marked to not expire (shouldn't happen)
1334	     * If it expires now
1335	     */
1336	    if (mfc->mfc_stall != NULL &&
1337	        mfc->mfc_expire != 0 &&
1338		--mfc->mfc_expire == 0) {
1339		if (mrtdebug & DEBUG_EXPIRE)
1340		    log(LOG_DEBUG, "expire_upcalls: expiring (%lx %lx)\n",
1341			(u_long)ntohl(mfc->mfc_origin.s_addr),
1342			(u_long)ntohl(mfc->mfc_mcastgrp.s_addr));
1343		/*
1344		 * drop all the packets
1345		 * free the mbuf with the pkt, if, timing info
1346		 */
1347		for (rte = mfc->mfc_stall; rte; ) {
1348		    struct rtdetq *n = rte->next;
1349
1350		    m_freem(rte->m);
1351		    free(rte, M_MRTABLE);
1352		    rte = n;
1353		}
1354		++mrtstat.mrts_cache_cleanups;
1355		nexpire[i]--;
1356
1357		*nptr = mfc->mfc_next;
1358		free(mfc, M_MRTABLE);
1359	    } else {
1360		nptr = &mfc->mfc_next;
1361	    }
1362	}
1363    }
1364    splx(s);
1365    expire_upcalls_ch = timeout(expire_upcalls, (caddr_t)NULL, EXPIRE_TIMEOUT);
1366}
1367
1368/*
1369 * Packet forwarding routine once entry in the cache is made
1370 */
1371static int
1372ip_mdq(m, ifp, rt, xmt_vif)
1373    register struct mbuf *m;
1374    register struct ifnet *ifp;
1375    register struct mfc *rt;
1376    register vifi_t xmt_vif;
1377{
1378    register struct ip  *ip = mtod(m, struct ip *);
1379    register vifi_t vifi;
1380    register struct vif *vifp;
1381    register int plen = ip->ip_len;
1382
1383/*
1384 * Macro to send packet on vif.  Since RSVP packets don't get counted on
1385 * input, they shouldn't get counted on output, so statistics keeping is
1386 * separate.
1387 */
1388#define MC_SEND(ip,vifp,m) {                             \
1389                if ((vifp)->v_flags & VIFF_TUNNEL)  	 \
1390                    encap_send((ip), (vifp), (m));       \
1391                else                                     \
1392                    phyint_send((ip), (vifp), (m));      \
1393}
1394
1395    /*
1396     * If xmt_vif is not -1, send on only the requested vif.
1397     *
1398     * (since vifi_t is u_short, -1 becomes MAXUSHORT, which > numvifs.)
1399     */
1400    if (xmt_vif < numvifs) {
1401	MC_SEND(ip, viftable + xmt_vif, m);
1402	return 1;
1403    }
1404
1405    /*
1406     * Don't forward if it didn't arrive from the parent vif for its origin.
1407     */
1408    vifi = rt->mfc_parent;
1409    if ((vifi >= numvifs) || (viftable[vifi].v_ifp != ifp)) {
1410	/* came in the wrong interface */
1411	if (mrtdebug & DEBUG_FORWARD)
1412	    log(LOG_DEBUG, "wrong if: ifp %p vifi %d vififp %p\n",
1413		(void *)ifp, vifi, (void *)viftable[vifi].v_ifp);
1414	++mrtstat.mrts_wrong_if;
1415	++rt->mfc_wrong_if;
1416	/*
1417	 * If we are doing PIM assert processing, and we are forwarding
1418	 * packets on this interface, and it is a broadcast medium
1419	 * interface (and not a tunnel), send a message to the routing daemon.
1420	 */
1421	if (pim_assert && rt->mfc_ttls[vifi] &&
1422		(ifp->if_flags & IFF_BROADCAST) &&
1423		!(viftable[vifi].v_flags & VIFF_TUNNEL)) {
1424	    struct sockaddr_in k_igmpsrc;
1425	    struct mbuf *mm;
1426	    struct igmpmsg *im;
1427	    int hlen = ip->ip_hl << 2;
1428	    struct timeval now;
1429	    register u_long delta;
1430
1431	    GET_TIME(now);
1432
1433	    TV_DELTA(rt->mfc_last_assert, now, delta);
1434
1435	    if (delta > ASSERT_MSG_TIME) {
1436		mm = m_copy(m, 0, hlen);
1437		if (mm && (M_HASCL(mm) || mm->m_len < hlen))
1438		    mm = m_pullup(mm, hlen);
1439		if (mm == NULL) {
1440		    return ENOBUFS;
1441		}
1442
1443		rt->mfc_last_assert = now;
1444
1445		im = mtod(mm, struct igmpmsg *);
1446		im->im_msgtype	= IGMPMSG_WRONGVIF;
1447		im->im_mbz		= 0;
1448		im->im_vif		= vifi;
1449
1450		k_igmpsrc.sin_addr = im->im_src;
1451
1452		socket_send(ip_mrouter, mm, &k_igmpsrc);
1453	    }
1454	}
1455	return 0;
1456    }
1457
1458    /* If I sourced this packet, it counts as output, else it was input. */
1459    if (ip->ip_src.s_addr == viftable[vifi].v_lcl_addr.s_addr) {
1460	viftable[vifi].v_pkt_out++;
1461	viftable[vifi].v_bytes_out += plen;
1462    } else {
1463	viftable[vifi].v_pkt_in++;
1464	viftable[vifi].v_bytes_in += plen;
1465    }
1466    rt->mfc_pkt_cnt++;
1467    rt->mfc_byte_cnt += plen;
1468
1469    /*
1470     * For each vif, decide if a copy of the packet should be forwarded.
1471     * Forward if:
1472     *		- the ttl exceeds the vif's threshold
1473     *		- there are group members downstream on interface
1474     */
1475    for (vifp = viftable, vifi = 0; vifi < numvifs; vifp++, vifi++)
1476	if ((rt->mfc_ttls[vifi] > 0) &&
1477	    (ip->ip_ttl > rt->mfc_ttls[vifi])) {
1478	    vifp->v_pkt_out++;
1479	    vifp->v_bytes_out += plen;
1480	    MC_SEND(ip, vifp, m);
1481	}
1482
1483    return 0;
1484}
1485
1486/*
1487 * check if a vif number is legal/ok. This is used by ip_output, to export
1488 * numvifs there,
1489 */
1490static int
1491X_legal_vif_num(vif)
1492    int vif;
1493{
1494    if (vif >= 0 && vif < numvifs)
1495       return(1);
1496    else
1497       return(0);
1498}
1499
1500#ifndef MROUTE_LKM
1501int (*legal_vif_num)(int) = X_legal_vif_num;
1502#endif
1503
1504/*
1505 * Return the local address used by this vif
1506 */
1507static u_long
1508X_ip_mcast_src(vifi)
1509    int vifi;
1510{
1511    if (vifi >= 0 && vifi < numvifs)
1512	return viftable[vifi].v_lcl_addr.s_addr;
1513    else
1514	return INADDR_ANY;
1515}
1516
1517#ifndef MROUTE_LKM
1518u_long (*ip_mcast_src)(int) = X_ip_mcast_src;
1519#endif
1520
1521static void
1522phyint_send(ip, vifp, m)
1523    struct ip *ip;
1524    struct vif *vifp;
1525    struct mbuf *m;
1526{
1527    register struct mbuf *mb_copy;
1528    register int hlen = ip->ip_hl << 2;
1529
1530    /*
1531     * Make a new reference to the packet; make sure that
1532     * the IP header is actually copied, not just referenced,
1533     * so that ip_output() only scribbles on the copy.
1534     */
1535    mb_copy = m_copy(m, 0, M_COPYALL);
1536    if (mb_copy && (M_HASCL(mb_copy) || mb_copy->m_len < hlen))
1537	mb_copy = m_pullup(mb_copy, hlen);
1538    if (mb_copy == NULL)
1539	return;
1540
1541    if (vifp->v_rate_limit == 0)
1542	tbf_send_packet(vifp, mb_copy);
1543    else
1544	tbf_control(vifp, mb_copy, mtod(mb_copy, struct ip *), ip->ip_len);
1545}
1546
1547static void
1548encap_send(ip, vifp, m)
1549    register struct ip *ip;
1550    register struct vif *vifp;
1551    register struct mbuf *m;
1552{
1553    register struct mbuf *mb_copy;
1554    register struct ip *ip_copy;
1555    register int i, len = ip->ip_len;
1556
1557    /*
1558     * copy the old packet & pullup its IP header into the
1559     * new mbuf so we can modify it.  Try to fill the new
1560     * mbuf since if we don't the ethernet driver will.
1561     */
1562    MGETHDR(mb_copy, M_DONTWAIT, MT_HEADER);
1563    if (mb_copy == NULL)
1564	return;
1565    mb_copy->m_data += max_linkhdr;
1566    mb_copy->m_len = sizeof(multicast_encap_iphdr);
1567
1568    if ((mb_copy->m_next = m_copy(m, 0, M_COPYALL)) == NULL) {
1569	m_freem(mb_copy);
1570	return;
1571    }
1572    i = MHLEN - M_LEADINGSPACE(mb_copy);
1573    if (i > len)
1574	i = len;
1575    mb_copy = m_pullup(mb_copy, i);
1576    if (mb_copy == NULL)
1577	return;
1578    mb_copy->m_pkthdr.len = len + sizeof(multicast_encap_iphdr);
1579
1580    /*
1581     * fill in the encapsulating IP header.
1582     */
1583    ip_copy = mtod(mb_copy, struct ip *);
1584    *ip_copy = multicast_encap_iphdr;
1585#ifdef RANDOM_IP_ID
1586    ip_copy->ip_id = ip_randomid();
1587#else
1588    ip_copy->ip_id = htons(ip_id++);
1589#endif
1590    ip_copy->ip_len += len;
1591    ip_copy->ip_src = vifp->v_lcl_addr;
1592    ip_copy->ip_dst = vifp->v_rmt_addr;
1593
1594    /*
1595     * turn the encapsulated IP header back into a valid one.
1596     */
1597    ip = (struct ip *)((caddr_t)ip_copy + sizeof(multicast_encap_iphdr));
1598    --ip->ip_ttl;
1599    HTONS(ip->ip_len);
1600    HTONS(ip->ip_off);
1601    ip->ip_sum = 0;
1602    mb_copy->m_data += sizeof(multicast_encap_iphdr);
1603    ip->ip_sum = in_cksum(mb_copy, ip->ip_hl << 2);
1604    mb_copy->m_data -= sizeof(multicast_encap_iphdr);
1605
1606    if (vifp->v_rate_limit == 0)
1607	tbf_send_packet(vifp, mb_copy);
1608    else
1609	tbf_control(vifp, mb_copy, ip, ip_copy->ip_len);
1610}
1611
1612/*
1613 * De-encapsulate a packet and feed it back through ip input (this
1614 * routine is called whenever IP gets a packet with proto type
1615 * ENCAP_PROTO and a local destination address).
1616 */
1617void
1618#ifdef MROUTE_LKM
1619X_ipip_input(m, off, proto)
1620#else
1621ipip_input(m, off, proto)
1622#endif
1623	register struct mbuf *m;
1624	int off;
1625	int proto;
1626{
1627    struct ifnet *ifp = m->m_pkthdr.rcvif;
1628    register struct ip *ip = mtod(m, struct ip *);
1629    register int hlen = ip->ip_hl << 2;
1630    register struct vif *vifp;
1631
1632    if (!have_encap_tunnel) {
1633	    rip_input(m, off, proto);
1634	    return;
1635    }
1636    /*
1637     * dump the packet if it's not to a multicast destination or if
1638     * we don't have an encapsulating tunnel with the source.
1639     * Note:  This code assumes that the remote site IP address
1640     * uniquely identifies the tunnel (i.e., that this site has
1641     * at most one tunnel with the remote site).
1642     */
1643    if (! IN_MULTICAST(ntohl(((struct ip *)((char *)ip + hlen))->ip_dst.s_addr))) {
1644	++mrtstat.mrts_bad_tunnel;
1645	m_freem(m);
1646	return;
1647    }
1648    if (ip->ip_src.s_addr != last_encap_src) {
1649	register struct vif *vife;
1650
1651	vifp = viftable;
1652	vife = vifp + numvifs;
1653	last_encap_src = ip->ip_src.s_addr;
1654	last_encap_vif = 0;
1655	for ( ; vifp < vife; ++vifp)
1656	    if (vifp->v_rmt_addr.s_addr == ip->ip_src.s_addr) {
1657		if ((vifp->v_flags & (VIFF_TUNNEL|VIFF_SRCRT))
1658		    == VIFF_TUNNEL)
1659		    last_encap_vif = vifp;
1660		break;
1661	    }
1662    }
1663    if ((vifp = last_encap_vif) == 0) {
1664	last_encap_src = 0;
1665	mrtstat.mrts_cant_tunnel++; /*XXX*/
1666	m_freem(m);
1667	if (mrtdebug)
1668	  log(LOG_DEBUG, "ip_mforward: no tunnel with %lx\n",
1669		(u_long)ntohl(ip->ip_src.s_addr));
1670	return;
1671    }
1672    ifp = vifp->v_ifp;
1673
1674    if (hlen > IP_HDR_LEN)
1675      ip_stripoptions(m, (struct mbuf *) 0);
1676    m->m_data += IP_HDR_LEN;
1677    m->m_len -= IP_HDR_LEN;
1678    m->m_pkthdr.len -= IP_HDR_LEN;
1679    m->m_pkthdr.rcvif = ifp;
1680
1681    (void) IF_HANDOFF(&ipintrq, m, NULL);
1682	/*
1683	 * normally we would need a "schednetisr(NETISR_IP)"
1684	 * here but we were called by ip_input and it is going
1685	 * to loop back & try to dequeue the packet we just
1686	 * queued as soon as we return so we avoid the
1687	 * unnecessary software interrrupt.
1688	 */
1689}
1690
1691/*
1692 * Token bucket filter module
1693 */
1694
1695static void
1696tbf_control(vifp, m, ip, p_len)
1697	register struct vif *vifp;
1698	register struct mbuf *m;
1699	register struct ip *ip;
1700	register u_long p_len;
1701{
1702    register struct tbf *t = vifp->v_tbf;
1703
1704    if (p_len > MAX_BKT_SIZE) {
1705	/* drop if packet is too large */
1706	mrtstat.mrts_pkt2large++;
1707	m_freem(m);
1708	return;
1709    }
1710
1711    tbf_update_tokens(vifp);
1712
1713    /* if there are enough tokens,
1714     * and the queue is empty,
1715     * send this packet out
1716     */
1717
1718    if (t->tbf_q_len == 0) {
1719	/* queue empty, send packet if enough tokens */
1720	if (p_len <= t->tbf_n_tok) {
1721	    t->tbf_n_tok -= p_len;
1722	    tbf_send_packet(vifp, m);
1723	} else {
1724	    /* queue packet and timeout till later */
1725	    tbf_queue(vifp, m);
1726	    timeout(tbf_reprocess_q, (caddr_t)vifp, TBF_REPROCESS);
1727	}
1728    } else if (t->tbf_q_len < t->tbf_max_q_len) {
1729	/* finite queue length, so queue pkts and process queue */
1730	tbf_queue(vifp, m);
1731	tbf_process_q(vifp);
1732    } else {
1733	/* queue length too much, try to dq and queue and process */
1734	if (!tbf_dq_sel(vifp, ip)) {
1735	    mrtstat.mrts_q_overflow++;
1736	    m_freem(m);
1737	    return;
1738	} else {
1739	    tbf_queue(vifp, m);
1740	    tbf_process_q(vifp);
1741	}
1742    }
1743    return;
1744}
1745
1746/*
1747 * adds a packet to the queue at the interface
1748 */
1749static void
1750tbf_queue(vifp, m)
1751	register struct vif *vifp;
1752	register struct mbuf *m;
1753{
1754    register int s = splnet();
1755    register struct tbf *t = vifp->v_tbf;
1756
1757    if (t->tbf_t == NULL) {
1758	/* Queue was empty */
1759	t->tbf_q = m;
1760    } else {
1761	/* Insert at tail */
1762	t->tbf_t->m_act = m;
1763    }
1764
1765    /* Set new tail pointer */
1766    t->tbf_t = m;
1767
1768#ifdef DIAGNOSTIC
1769    /* Make sure we didn't get fed a bogus mbuf */
1770    if (m->m_act)
1771	panic("tbf_queue: m_act");
1772#endif
1773    m->m_act = NULL;
1774
1775    t->tbf_q_len++;
1776
1777    splx(s);
1778}
1779
1780
1781/*
1782 * processes the queue at the interface
1783 */
1784static void
1785tbf_process_q(vifp)
1786    register struct vif *vifp;
1787{
1788    register struct mbuf *m;
1789    register int len;
1790    register int s = splnet();
1791    register struct tbf *t = vifp->v_tbf;
1792
1793    /* loop through the queue at the interface and send as many packets
1794     * as possible
1795     */
1796    while (t->tbf_q_len > 0) {
1797	m = t->tbf_q;
1798
1799	len = mtod(m, struct ip *)->ip_len;
1800
1801	/* determine if the packet can be sent */
1802	if (len <= t->tbf_n_tok) {
1803	    /* if so,
1804	     * reduce no of tokens, dequeue the packet,
1805	     * send the packet.
1806	     */
1807	    t->tbf_n_tok -= len;
1808
1809	    t->tbf_q = m->m_act;
1810	    if (--t->tbf_q_len == 0)
1811		t->tbf_t = NULL;
1812
1813	    m->m_act = NULL;
1814	    tbf_send_packet(vifp, m);
1815
1816	} else break;
1817    }
1818    splx(s);
1819}
1820
1821static void
1822tbf_reprocess_q(xvifp)
1823	void *xvifp;
1824{
1825    register struct vif *vifp = xvifp;
1826    if (ip_mrouter == NULL)
1827	return;
1828
1829    tbf_update_tokens(vifp);
1830
1831    tbf_process_q(vifp);
1832
1833    if (vifp->v_tbf->tbf_q_len)
1834	timeout(tbf_reprocess_q, (caddr_t)vifp, TBF_REPROCESS);
1835}
1836
1837/* function that will selectively discard a member of the queue
1838 * based on the precedence value and the priority
1839 */
1840static int
1841tbf_dq_sel(vifp, ip)
1842    register struct vif *vifp;
1843    register struct ip *ip;
1844{
1845    register int s = splnet();
1846    register u_int p;
1847    register struct mbuf *m, *last;
1848    register struct mbuf **np;
1849    register struct tbf *t = vifp->v_tbf;
1850
1851    p = priority(vifp, ip);
1852
1853    np = &t->tbf_q;
1854    last = NULL;
1855    while ((m = *np) != NULL) {
1856	if (p > priority(vifp, mtod(m, struct ip *))) {
1857	    *np = m->m_act;
1858	    /* If we're removing the last packet, fix the tail pointer */
1859	    if (m == t->tbf_t)
1860		t->tbf_t = last;
1861	    m_freem(m);
1862	    /* it's impossible for the queue to be empty, but
1863	     * we check anyway. */
1864	    if (--t->tbf_q_len == 0)
1865		t->tbf_t = NULL;
1866	    splx(s);
1867	    mrtstat.mrts_drop_sel++;
1868	    return(1);
1869	}
1870	np = &m->m_act;
1871	last = m;
1872    }
1873    splx(s);
1874    return(0);
1875}
1876
1877static void
1878tbf_send_packet(vifp, m)
1879    register struct vif *vifp;
1880    register struct mbuf *m;
1881{
1882    struct ip_moptions imo;
1883    int error;
1884    static struct route ro;
1885    int s = splnet();
1886
1887    if (vifp->v_flags & VIFF_TUNNEL) {
1888	/* If tunnel options */
1889	ip_output(m, (struct mbuf *)0, &vifp->v_route,
1890		  IP_FORWARDING, (struct ip_moptions *)0);
1891    } else {
1892	imo.imo_multicast_ifp  = vifp->v_ifp;
1893	imo.imo_multicast_ttl  = mtod(m, struct ip *)->ip_ttl - 1;
1894	imo.imo_multicast_loop = 1;
1895	imo.imo_multicast_vif  = -1;
1896
1897	/*
1898	 * Re-entrancy should not be a problem here, because
1899	 * the packets that we send out and are looped back at us
1900	 * should get rejected because they appear to come from
1901	 * the loopback interface, thus preventing looping.
1902	 */
1903	error = ip_output(m, (struct mbuf *)0, &ro,
1904			  IP_FORWARDING, &imo);
1905
1906	if (mrtdebug & DEBUG_XMIT)
1907	    log(LOG_DEBUG, "phyint_send on vif %d err %d\n",
1908		vifp - viftable, error);
1909    }
1910    splx(s);
1911}
1912
1913/* determine the current time and then
1914 * the elapsed time (between the last time and time now)
1915 * in milliseconds & update the no. of tokens in the bucket
1916 */
1917static void
1918tbf_update_tokens(vifp)
1919    register struct vif *vifp;
1920{
1921    struct timeval tp;
1922    register u_long tm;
1923    register int s = splnet();
1924    register struct tbf *t = vifp->v_tbf;
1925
1926    GET_TIME(tp);
1927
1928    TV_DELTA(tp, t->tbf_last_pkt_t, tm);
1929
1930    /*
1931     * This formula is actually
1932     * "time in seconds" * "bytes/second".
1933     *
1934     * (tm / 1000000) * (v_rate_limit * 1000 * (1000/1024) / 8)
1935     *
1936     * The (1000/1024) was introduced in add_vif to optimize
1937     * this divide into a shift.
1938     */
1939    t->tbf_n_tok += tm * vifp->v_rate_limit / 1024 / 8;
1940    t->tbf_last_pkt_t = tp;
1941
1942    if (t->tbf_n_tok > MAX_BKT_SIZE)
1943	t->tbf_n_tok = MAX_BKT_SIZE;
1944
1945    splx(s);
1946}
1947
1948static int
1949priority(vifp, ip)
1950    register struct vif *vifp;
1951    register struct ip *ip;
1952{
1953    register int prio;
1954
1955    /* temporary hack; may add general packet classifier some day */
1956
1957    /*
1958     * The UDP port space is divided up into four priority ranges:
1959     * [0, 16384)     : unclassified - lowest priority
1960     * [16384, 32768) : audio - highest priority
1961     * [32768, 49152) : whiteboard - medium priority
1962     * [49152, 65536) : video - low priority
1963     */
1964    if (ip->ip_p == IPPROTO_UDP) {
1965	struct udphdr *udp = (struct udphdr *)(((char *)ip) + (ip->ip_hl << 2));
1966	switch (ntohs(udp->uh_dport) & 0xc000) {
1967	    case 0x4000:
1968		prio = 70;
1969		break;
1970	    case 0x8000:
1971		prio = 60;
1972		break;
1973	    case 0xc000:
1974		prio = 55;
1975		break;
1976	    default:
1977		prio = 50;
1978		break;
1979	}
1980	if (tbfdebug > 1)
1981		log(LOG_DEBUG, "port %x prio%d\n", ntohs(udp->uh_dport), prio);
1982    } else {
1983	    prio = 50;
1984    }
1985    return prio;
1986}
1987
1988/*
1989 * End of token bucket filter modifications
1990 */
1991
1992int
1993ip_rsvp_vif_init(so, sopt)
1994	struct socket *so;
1995	struct sockopt *sopt;
1996{
1997    int error, i, s;
1998
1999    if (rsvpdebug)
2000	printf("ip_rsvp_vif_init: so_type = %d, pr_protocol = %d\n",
2001	       so->so_type, so->so_proto->pr_protocol);
2002
2003    if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_RSVP)
2004	return EOPNOTSUPP;
2005
2006    /* Check mbuf. */
2007    error = sooptcopyin(sopt, &i, sizeof i, sizeof i);
2008    if (error)
2009	    return (error);
2010
2011    if (rsvpdebug)
2012	printf("ip_rsvp_vif_init: vif = %d rsvp_on = %d\n", i, rsvp_on);
2013
2014    s = splnet();
2015
2016    /* Check vif. */
2017    if (!legal_vif_num(i)) {
2018	splx(s);
2019	return EADDRNOTAVAIL;
2020    }
2021
2022    /* Check if socket is available. */
2023    if (viftable[i].v_rsvpd != NULL) {
2024	splx(s);
2025	return EADDRINUSE;
2026    }
2027
2028    viftable[i].v_rsvpd = so;
2029    /* This may seem silly, but we need to be sure we don't over-increment
2030     * the RSVP counter, in case something slips up.
2031     */
2032    if (!viftable[i].v_rsvp_on) {
2033	viftable[i].v_rsvp_on = 1;
2034	rsvp_on++;
2035    }
2036
2037    splx(s);
2038    return 0;
2039}
2040
2041int
2042ip_rsvp_vif_done(so, sopt)
2043	struct socket *so;
2044	struct sockopt *sopt;
2045{
2046	int error, i, s;
2047
2048	if (rsvpdebug)
2049		printf("ip_rsvp_vif_done: so_type = %d, pr_protocol = %d\n",
2050		       so->so_type, so->so_proto->pr_protocol);
2051
2052	if (so->so_type != SOCK_RAW ||
2053	    so->so_proto->pr_protocol != IPPROTO_RSVP)
2054		return EOPNOTSUPP;
2055
2056	error = sooptcopyin(sopt, &i, sizeof i, sizeof i);
2057	if (error)
2058		return (error);
2059
2060	s = splnet();
2061
2062	/* Check vif. */
2063	if (!legal_vif_num(i)) {
2064		splx(s);
2065		return EADDRNOTAVAIL;
2066	}
2067
2068	if (rsvpdebug)
2069		printf("ip_rsvp_vif_done: v_rsvpd = %p so = %p\n",
2070		       viftable[i].v_rsvpd, so);
2071
2072	viftable[i].v_rsvpd = NULL;
2073	/*
2074	 * This may seem silly, but we need to be sure we don't over-decrement
2075	 * the RSVP counter, in case something slips up.
2076	 */
2077	if (viftable[i].v_rsvp_on) {
2078		viftable[i].v_rsvp_on = 0;
2079		rsvp_on--;
2080	}
2081
2082	splx(s);
2083	return 0;
2084}
2085
2086void
2087ip_rsvp_force_done(so)
2088    struct socket *so;
2089{
2090    int vifi;
2091    register int s;
2092
2093    /* Don't bother if it is not the right type of socket. */
2094    if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_RSVP)
2095	return;
2096
2097    s = splnet();
2098
2099    /* The socket may be attached to more than one vif...this
2100     * is perfectly legal.
2101     */
2102    for (vifi = 0; vifi < numvifs; vifi++) {
2103	if (viftable[vifi].v_rsvpd == so) {
2104	    viftable[vifi].v_rsvpd = NULL;
2105	    /* This may seem silly, but we need to be sure we don't
2106	     * over-decrement the RSVP counter, in case something slips up.
2107	     */
2108	    if (viftable[vifi].v_rsvp_on) {
2109		viftable[vifi].v_rsvp_on = 0;
2110		rsvp_on--;
2111	    }
2112	}
2113    }
2114
2115    splx(s);
2116    return;
2117}
2118
2119void
2120rsvp_input(m, off, proto)
2121	struct mbuf *m;
2122	int off;
2123	int proto;
2124{
2125    int vifi;
2126    register struct ip *ip = mtod(m, struct ip *);
2127    static struct sockaddr_in rsvp_src = { sizeof rsvp_src, AF_INET };
2128    register int s;
2129    struct ifnet *ifp;
2130
2131    if (rsvpdebug)
2132	printf("rsvp_input: rsvp_on %d\n",rsvp_on);
2133
2134    /* Can still get packets with rsvp_on = 0 if there is a local member
2135     * of the group to which the RSVP packet is addressed.  But in this
2136     * case we want to throw the packet away.
2137     */
2138    if (!rsvp_on) {
2139	m_freem(m);
2140	return;
2141    }
2142
2143    s = splnet();
2144
2145    if (rsvpdebug)
2146	printf("rsvp_input: check vifs\n");
2147
2148#ifdef DIAGNOSTIC
2149    if (!(m->m_flags & M_PKTHDR))
2150	    panic("rsvp_input no hdr");
2151#endif
2152
2153    ifp = m->m_pkthdr.rcvif;
2154    /* Find which vif the packet arrived on. */
2155    for (vifi = 0; vifi < numvifs; vifi++)
2156	if (viftable[vifi].v_ifp == ifp)
2157	    break;
2158
2159    if (vifi == numvifs || viftable[vifi].v_rsvpd == NULL) {
2160	/*
2161	 * If the old-style non-vif-associated socket is set,
2162	 * then use it.  Otherwise, drop packet since there
2163	 * is no specific socket for this vif.
2164	 */
2165	if (ip_rsvpd != NULL) {
2166	    if (rsvpdebug)
2167		printf("rsvp_input: Sending packet up old-style socket\n");
2168	    rip_input(m, off, proto);  /* xxx */
2169	} else {
2170	    if (rsvpdebug && vifi == numvifs)
2171		printf("rsvp_input: Can't find vif for packet.\n");
2172	    else if (rsvpdebug && viftable[vifi].v_rsvpd == NULL)
2173		printf("rsvp_input: No socket defined for vif %d\n",vifi);
2174	    m_freem(m);
2175	}
2176	splx(s);
2177	return;
2178    }
2179    rsvp_src.sin_addr = ip->ip_src;
2180
2181    if (rsvpdebug && m)
2182	printf("rsvp_input: m->m_len = %d, sbspace() = %ld\n",
2183	       m->m_len,sbspace(&(viftable[vifi].v_rsvpd->so_rcv)));
2184
2185    if (socket_send(viftable[vifi].v_rsvpd, m, &rsvp_src) < 0) {
2186	if (rsvpdebug)
2187	    printf("rsvp_input: Failed to append to socket\n");
2188    } else {
2189	if (rsvpdebug)
2190	    printf("rsvp_input: send packet up\n");
2191    }
2192
2193    splx(s);
2194}
2195
2196#ifdef MROUTE_LKM
2197#include <sys/conf.h>
2198#include <sys/exec.h>
2199#include <sys/sysent.h>
2200#include <sys/lkm.h>
2201
2202MOD_MISC("ip_mroute_mod")
2203
2204static int
2205ip_mroute_mod_handle(struct lkm_table *lkmtp, int cmd)
2206{
2207	int i;
2208	struct lkm_misc	*args = lkmtp->private.lkm_misc;
2209	int err = 0;
2210
2211	switch(cmd) {
2212		static int (*old_ip_mrouter_cmd)();
2213		static int (*old_ip_mrouter_done)();
2214		static int (*old_ip_mforward)();
2215		static int (*old_mrt_ioctl)();
2216		static void (*old_proto4_input)();
2217		static int (*old_legal_vif_num)();
2218		extern struct protosw inetsw[];
2219
2220	case LKM_E_LOAD:
2221		if(lkmexists(lkmtp) || ip_mrtproto)
2222		  return(EEXIST);
2223		old_ip_mrouter_cmd = ip_mrouter_cmd;
2224		ip_mrouter_cmd = X_ip_mrouter_cmd;
2225		old_ip_mrouter_done = ip_mrouter_done;
2226		ip_mrouter_done = X_ip_mrouter_done;
2227		old_ip_mforward = ip_mforward;
2228		ip_mforward = X_ip_mforward;
2229		old_mrt_ioctl = mrt_ioctl;
2230		mrt_ioctl = X_mrt_ioctl;
2231              old_proto4_input = inetsw[ip_protox[ENCAP_PROTO]].pr_input;
2232              inetsw[ip_protox[ENCAP_PROTO]].pr_input = X_ipip_input;
2233		old_legal_vif_num = legal_vif_num;
2234		legal_vif_num = X_legal_vif_num;
2235		ip_mrtproto = IGMP_DVMRP;
2236
2237		printf("\nIP multicast routing loaded\n");
2238		break;
2239
2240	case LKM_E_UNLOAD:
2241		if (ip_mrouter)
2242		  return EINVAL;
2243
2244		ip_mrouter_cmd = old_ip_mrouter_cmd;
2245		ip_mrouter_done = old_ip_mrouter_done;
2246		ip_mforward = old_ip_mforward;
2247		mrt_ioctl = old_mrt_ioctl;
2248              inetsw[ip_protox[ENCAP_PROTO]].pr_input = old_proto4_input;
2249		legal_vif_num = old_legal_vif_num;
2250		ip_mrtproto = 0;
2251		break;
2252
2253	default:
2254		err = EINVAL;
2255		break;
2256	}
2257
2258	return(err);
2259}
2260
2261int
2262ip_mroute_mod(struct lkm_table *lkmtp, int cmd, int ver) {
2263	DISPATCH(lkmtp, cmd, ver, ip_mroute_mod_handle, ip_mroute_mod_handle,
2264		 nosys);
2265}
2266
2267#endif /* MROUTE_LKM */
2268#endif /* MROUTING */
2269