ip_mroute.c revision 33134
1/*
2 * IP multicast forwarding procedures
3 *
4 * Written by David Waitzman, BBN Labs, August 1988.
5 * Modified by Steve Deering, Stanford, February 1989.
6 * Modified by Mark J. Steiglitz, Stanford, May, 1991
7 * Modified by Van Jacobson, LBL, January 1993
8 * Modified by Ajit Thyagarajan, PARC, August 1993
9 * Modified by Bill Fenner, PARC, April 1995
10 *
11 * MROUTING Revision: 3.5
12 * $Id: ip_mroute.c,v 1.43 1998/02/04 22:33:08 eivind Exp $
13 */
14
15#include "opt_mrouting.h"
16
17#include <sys/param.h>
18#include <sys/systm.h>
19#include <sys/mbuf.h>
20#include <sys/socket.h>
21#include <sys/socketvar.h>
22#include <sys/protosw.h>
23#include <sys/time.h>
24#include <sys/kernel.h>
25#include <sys/sockio.h>
26#include <sys/syslog.h>
27#include <net/if.h>
28#include <net/route.h>
29#include <netinet/in.h>
30#include <netinet/in_systm.h>
31#include <netinet/ip.h>
32#include <netinet/ip_var.h>
33#include <netinet/in_var.h>
34#include <netinet/igmp.h>
35#include <netinet/ip_mroute.h>
36#include <netinet/udp.h>
37
38#ifndef NTOHL
39#if BYTE_ORDER != BIG_ENDIAN
40#define NTOHL(d) ((d) = ntohl((d)))
41#define NTOHS(d) ((d) = ntohs((u_short)(d)))
42#define HTONL(d) ((d) = htonl((d)))
43#define HTONS(d) ((d) = htons((u_short)(d)))
44#else
45#define NTOHL(d)
46#define NTOHS(d)
47#define HTONL(d)
48#define HTONS(d)
49#endif
50#endif
51
52#ifndef MROUTING
53extern u_long	_ip_mcast_src __P((int vifi));
54extern int	_ip_mforward __P((struct ip *ip, struct ifnet *ifp,
55				  struct mbuf *m, struct ip_moptions *imo));
56extern int	_ip_mrouter_done __P((void));
57extern int	_ip_mrouter_get __P((int cmd, struct socket *so,
58				     struct mbuf **m));
59extern int	_ip_mrouter_set __P((int cmd, struct socket *so,
60				     struct mbuf *m));
61extern int	_mrt_ioctl __P((int req, caddr_t data, struct proc *p));
62
63/*
64 * Dummy routines and globals used when multicast routing is not compiled in.
65 */
66
67struct socket  *ip_mrouter  = NULL;
68static u_int		ip_mrtproto = 0;
69static struct mrtstat	mrtstat;
70u_int		rsvpdebug = 0;
71
72int
73_ip_mrouter_set(cmd, so, m)
74	int cmd;
75	struct socket *so;
76	struct mbuf *m;
77{
78	return(EOPNOTSUPP);
79}
80
81int (*ip_mrouter_set)(int, struct socket *, struct mbuf *) = _ip_mrouter_set;
82
83
84int
85_ip_mrouter_get(cmd, so, m)
86	int cmd;
87	struct socket *so;
88	struct mbuf **m;
89{
90	return(EOPNOTSUPP);
91}
92
93int (*ip_mrouter_get)(int, struct socket *, struct mbuf **) = _ip_mrouter_get;
94
95int
96_ip_mrouter_done()
97{
98	return(0);
99}
100
101int (*ip_mrouter_done)(void) = _ip_mrouter_done;
102
103int
104_ip_mforward(ip, ifp, m, imo)
105	struct ip *ip;
106	struct ifnet *ifp;
107	struct mbuf *m;
108	struct ip_moptions *imo;
109{
110	return(0);
111}
112
113int (*ip_mforward)(struct ip *, struct ifnet *, struct mbuf *,
114		   struct ip_moptions *) = _ip_mforward;
115
116int
117_mrt_ioctl(int req, caddr_t data, struct proc *p)
118{
119	return EOPNOTSUPP;
120}
121
122int (*mrt_ioctl)(int, caddr_t, struct proc *) = _mrt_ioctl;
123
124void
125rsvp_input(m, iphlen)		/* XXX must fixup manually */
126	struct mbuf *m;
127	int iphlen;
128{
129    /* Can still get packets with rsvp_on = 0 if there is a local member
130     * of the group to which the RSVP packet is addressed.  But in this
131     * case we want to throw the packet away.
132     */
133    if (!rsvp_on) {
134	m_freem(m);
135	return;
136    }
137
138    if (ip_rsvpd != NULL) {
139	if (rsvpdebug)
140	    printf("rsvp_input: Sending packet up old-style socket\n");
141	rip_input(m, iphlen);
142	return;
143    }
144    /* Drop the packet */
145    m_freem(m);
146}
147
148void ipip_input(struct mbuf *m, int iphlen) { /* XXX must fixup manually */
149	rip_input(m, iphlen);
150}
151
152int (*legal_vif_num)(int) = 0;
153
154/*
155 * This should never be called, since IP_MULTICAST_VIF should fail, but
156 * just in case it does get called, the code a little lower in ip_output
157 * will assign the packet a local address.
158 */
159u_long
160_ip_mcast_src(int vifi) { return INADDR_ANY; }
161u_long (*ip_mcast_src)(int) = _ip_mcast_src;
162
163int
164ip_rsvp_vif_init(so, m)
165    struct socket *so;
166    struct mbuf *m;
167{
168    return(EINVAL);
169}
170
171int
172ip_rsvp_vif_done(so, m)
173    struct socket *so;
174    struct mbuf *m;
175{
176    return(EINVAL);
177}
178
179void
180ip_rsvp_force_done(so)
181    struct socket *so;
182{
183    return;
184}
185
186#else /* MROUTING */
187
188#define M_HASCL(m)	((m)->m_flags & M_EXT)
189
190#define INSIZ		sizeof(struct in_addr)
191#define	same(a1, a2) \
192	(bcmp((caddr_t)(a1), (caddr_t)(a2), INSIZ) == 0)
193
194#define MT_MRTABLE MT_RTABLE	/* since nothing else uses it */
195
196/*
197 * Globals.  All but ip_mrouter and ip_mrtproto could be static,
198 * except for netstat or debugging purposes.
199 */
200#ifndef MROUTE_LKM
201struct socket  *ip_mrouter  = NULL;
202struct mrtstat	mrtstat;
203
204int		ip_mrtproto = IGMP_DVMRP;    /* for netstat only */
205#else /* MROUTE_LKM */
206extern void	X_ipip_input __P((struct mbuf *m, int iphlen));
207extern struct mrtstat mrtstat;
208static int ip_mrtproto;
209#endif
210
211#define NO_RTE_FOUND 	0x1
212#define RTE_FOUND	0x2
213
214static struct mbuf    *mfctable[MFCTBLSIZ];
215static u_char		nexpire[MFCTBLSIZ];
216static struct vif	viftable[MAXVIFS];
217static u_int	mrtdebug = 0;	  /* debug level 	*/
218#define		DEBUG_MFC	0x02
219#define		DEBUG_FORWARD	0x04
220#define		DEBUG_EXPIRE	0x08
221#define		DEBUG_XMIT	0x10
222static u_int  	tbfdebug = 0;     /* tbf debug level 	*/
223static u_int	rsvpdebug = 0;	  /* rsvp debug level   */
224
225static struct callout_handle expire_upcalls_ch;
226
227#define		EXPIRE_TIMEOUT	(hz / 4)	/* 4x / second		*/
228#define		UPCALL_EXPIRE	6		/* number of timeouts	*/
229
230/*
231 * Define the token bucket filter structures
232 * tbftable -> each vif has one of these for storing info
233 */
234
235static struct tbf tbftable[MAXVIFS];
236#define		TBF_REPROCESS	(hz / 100)	/* 100x / second */
237
238/*
239 * 'Interfaces' associated with decapsulator (so we can tell
240 * packets that went through it from ones that get reflected
241 * by a broken gateway).  These interfaces are never linked into
242 * the system ifnet list & no routes point to them.  I.e., packets
243 * can't be sent this way.  They only exist as a placeholder for
244 * multicast source verification.
245 */
246static struct ifnet multicast_decap_if[MAXVIFS];
247
248#define ENCAP_TTL 64
249#define ENCAP_PROTO IPPROTO_IPIP	/* 4 */
250
251/* prototype IP hdr for encapsulated packets */
252static struct ip multicast_encap_iphdr = {
253#if BYTE_ORDER == LITTLE_ENDIAN
254	sizeof(struct ip) >> 2, IPVERSION,
255#else
256	IPVERSION, sizeof(struct ip) >> 2,
257#endif
258	0,				/* tos */
259	sizeof(struct ip),		/* total length */
260	0,				/* id */
261	0,				/* frag offset */
262	ENCAP_TTL, ENCAP_PROTO,
263	0,				/* checksum */
264};
265
266/*
267 * Private variables.
268 */
269static vifi_t	   numvifs = 0;
270static int have_encap_tunnel = 0;
271
272/*
273 * one-back cache used by ipip_input to locate a tunnel's vif
274 * given a datagram's src ip address.
275 */
276static u_long last_encap_src;
277static struct vif *last_encap_vif;
278
279static u_long	X_ip_mcast_src __P((int vifi));
280static int	X_ip_mforward __P((struct ip *ip, struct ifnet *ifp, struct mbuf *m, struct ip_moptions *imo));
281static int	X_ip_mrouter_done __P((void));
282static int	X_ip_mrouter_get __P((int cmd, struct socket *so, struct mbuf **m));
283static int	X_ip_mrouter_set __P((int cmd, struct socket *so, struct mbuf *m));
284static int	X_legal_vif_num __P((int vif));
285static int	X_mrt_ioctl __P((int cmd, caddr_t data));
286
287static int get_sg_cnt(struct sioc_sg_req *);
288static int get_vif_cnt(struct sioc_vif_req *);
289static int ip_mrouter_init(struct socket *, struct mbuf *);
290static int add_vif(struct vifctl *);
291static int del_vif(vifi_t *);
292static int add_mfc(struct mfcctl *);
293static int del_mfc(struct mfcctl *);
294static int socket_send(struct socket *, struct mbuf *, struct sockaddr_in *);
295static int get_version(struct mbuf *);
296static int get_assert(struct mbuf *);
297static int set_assert(int *);
298static void expire_upcalls(void *);
299static int ip_mdq(struct mbuf *, struct ifnet *, struct mfc *,
300		  vifi_t);
301static void phyint_send(struct ip *, struct vif *, struct mbuf *);
302static void encap_send(struct ip *, struct vif *, struct mbuf *);
303static void tbf_control(struct vif *, struct mbuf *, struct ip *, u_long);
304static void tbf_queue(struct vif *, struct mbuf *);
305static void tbf_process_q(struct vif *);
306static void tbf_reprocess_q(void *);
307static int tbf_dq_sel(struct vif *, struct ip *);
308static void tbf_send_packet(struct vif *, struct mbuf *);
309static void tbf_update_tokens(struct vif *);
310static int priority(struct vif *, struct ip *);
311void multiencap_decap(struct mbuf *);
312
313/*
314 * whether or not special PIM assert processing is enabled.
315 */
316static int pim_assert;
317/*
318 * Rate limit for assert notification messages, in usec
319 */
320#define ASSERT_MSG_TIME		3000000
321
322/*
323 * Hash function for a source, group entry
324 */
325#define MFCHASH(a, g) MFCHASHMOD(((a) >> 20) ^ ((a) >> 10) ^ (a) ^ \
326			((g) >> 20) ^ ((g) >> 10) ^ (g))
327
328/*
329 * Find a route for a given origin IP address and Multicast group address
330 * Type of service parameter to be added in the future!!!
331 */
332
333#define MFCFIND(o, g, rt) { \
334	register struct mbuf *_mb_rt = mfctable[MFCHASH(o,g)]; \
335	register struct mfc *_rt = NULL; \
336	rt = NULL; \
337	++mrtstat.mrts_mfc_lookups; \
338	while (_mb_rt) { \
339		_rt = mtod(_mb_rt, struct mfc *); \
340		if ((_rt->mfc_origin.s_addr == o) && \
341		    (_rt->mfc_mcastgrp.s_addr == g) && \
342		    (_mb_rt->m_act == NULL)) { \
343			rt = _rt; \
344			break; \
345		} \
346		_mb_rt = _mb_rt->m_next; \
347	} \
348	if (rt == NULL) { \
349		++mrtstat.mrts_mfc_misses; \
350	} \
351}
352
353
354/*
355 * Macros to compute elapsed time efficiently
356 * Borrowed from Van Jacobson's scheduling code
357 */
358#define TV_DELTA(a, b, delta) { \
359	    register int xxs; \
360		\
361	    delta = (a).tv_usec - (b).tv_usec; \
362	    if ((xxs = (a).tv_sec - (b).tv_sec)) { \
363	       switch (xxs) { \
364		      case 2: \
365			  delta += 1000000; \
366			      /* fall through */ \
367		      case 1: \
368			  delta += 1000000; \
369			  break; \
370		      default: \
371			  delta += (1000000 * xxs); \
372	       } \
373	    } \
374}
375
376#define TV_LT(a, b) (((a).tv_usec < (b).tv_usec && \
377	      (a).tv_sec <= (b).tv_sec) || (a).tv_sec < (b).tv_sec)
378
379#ifdef UPCALL_TIMING
380u_long upcall_data[51];
381static void collate(struct timeval *);
382#endif /* UPCALL_TIMING */
383
384
385/*
386 * Handle MRT setsockopt commands to modify the multicast routing tables.
387 */
388static int
389X_ip_mrouter_set(cmd, so, m)
390    int cmd;
391    struct socket *so;
392    struct mbuf *m;
393{
394   if (cmd != MRT_INIT && so != ip_mrouter) return EACCES;
395
396    switch (cmd) {
397	case MRT_INIT:     return ip_mrouter_init(so, m);
398	case MRT_DONE:     return ip_mrouter_done();
399	case MRT_ADD_VIF:  return add_vif (mtod(m, struct vifctl *));
400	case MRT_DEL_VIF:  return del_vif (mtod(m, vifi_t *));
401	case MRT_ADD_MFC:  return add_mfc (mtod(m, struct mfcctl *));
402	case MRT_DEL_MFC:  return del_mfc (mtod(m, struct mfcctl *));
403	case MRT_ASSERT:   return set_assert(mtod(m, int *));
404	default:             return EOPNOTSUPP;
405    }
406}
407
408#ifndef MROUTE_LKM
409int (*ip_mrouter_set)(int, struct socket *, struct mbuf *) = X_ip_mrouter_set;
410#endif
411
412/*
413 * Handle MRT getsockopt commands
414 */
415static int
416X_ip_mrouter_get(cmd, so, m)
417    int cmd;
418    struct socket *so;
419    struct mbuf **m;
420{
421    struct mbuf *mb;
422
423    if (so != ip_mrouter) return EACCES;
424
425    *m = mb = m_get(M_WAIT, MT_SOOPTS);
426
427    switch (cmd) {
428	case MRT_VERSION:   return get_version(mb);
429	case MRT_ASSERT:    return get_assert(mb);
430	default:            return EOPNOTSUPP;
431    }
432}
433
434#ifndef MROUTE_LKM
435int (*ip_mrouter_get)(int, struct socket *, struct mbuf **) = X_ip_mrouter_get;
436#endif
437
438/*
439 * Handle ioctl commands to obtain information from the cache
440 */
441static int
442X_mrt_ioctl(cmd, data)
443    int cmd;
444    caddr_t data;
445{
446    int error = 0;
447
448    switch (cmd) {
449	case (SIOCGETVIFCNT):
450	    return (get_vif_cnt((struct sioc_vif_req *)data));
451	    break;
452	case (SIOCGETSGCNT):
453	    return (get_sg_cnt((struct sioc_sg_req *)data));
454	    break;
455	default:
456	    return (EINVAL);
457	    break;
458    }
459    return error;
460}
461
462#ifndef MROUTE_LKM
463int (*mrt_ioctl)(int, caddr_t) = X_mrt_ioctl;
464#endif
465
466/*
467 * returns the packet, byte, rpf-failure count for the source group provided
468 */
469static int
470get_sg_cnt(req)
471    register struct sioc_sg_req *req;
472{
473    register struct mfc *rt;
474    int s;
475
476    s = splnet();
477    MFCFIND(req->src.s_addr, req->grp.s_addr, rt);
478    splx(s);
479    if (rt != NULL) {
480	req->pktcnt = rt->mfc_pkt_cnt;
481	req->bytecnt = rt->mfc_byte_cnt;
482	req->wrong_if = rt->mfc_wrong_if;
483    } else
484	req->pktcnt = req->bytecnt = req->wrong_if = 0xffffffff;
485
486    return 0;
487}
488
489/*
490 * returns the input and output packet and byte counts on the vif provided
491 */
492static int
493get_vif_cnt(req)
494    register struct sioc_vif_req *req;
495{
496    register vifi_t vifi = req->vifi;
497
498    if (vifi >= numvifs) return EINVAL;
499
500    req->icount = viftable[vifi].v_pkt_in;
501    req->ocount = viftable[vifi].v_pkt_out;
502    req->ibytes = viftable[vifi].v_bytes_in;
503    req->obytes = viftable[vifi].v_bytes_out;
504
505    return 0;
506}
507
508/*
509 * Enable multicast routing
510 */
511static int
512ip_mrouter_init(so, m)
513	struct socket *so;
514	struct mbuf *m;
515{
516    int *v;
517
518    if (mrtdebug)
519	log(LOG_DEBUG,"ip_mrouter_init: so_type = %d, pr_protocol = %d\n",
520		so->so_type, so->so_proto->pr_protocol);
521
522    if (so->so_type != SOCK_RAW ||
523	so->so_proto->pr_protocol != IPPROTO_IGMP) return EOPNOTSUPP;
524
525    if (!m || (m->m_len != sizeof(int *)))
526	return ENOPROTOOPT;
527
528    v = mtod(m, int *);
529    if (*v != 1)
530	return ENOPROTOOPT;
531
532    if (ip_mrouter != NULL) return EADDRINUSE;
533
534    ip_mrouter = so;
535
536    bzero((caddr_t)mfctable, sizeof(mfctable));
537    bzero((caddr_t)nexpire, sizeof(nexpire));
538
539    pim_assert = 0;
540
541    expire_upcalls_ch = timeout(expire_upcalls, (caddr_t)NULL, EXPIRE_TIMEOUT);
542
543    if (mrtdebug)
544	log(LOG_DEBUG, "ip_mrouter_init\n");
545
546    return 0;
547}
548
549/*
550 * Disable multicast routing
551 */
552static int
553X_ip_mrouter_done()
554{
555    vifi_t vifi;
556    int i;
557    struct ifnet *ifp;
558    struct ifreq ifr;
559    struct mbuf *mb_rt;
560    struct mbuf *m;
561    struct rtdetq *rte;
562    int s;
563
564    s = splnet();
565
566    /*
567     * For each phyint in use, disable promiscuous reception of all IP
568     * multicasts.
569     */
570    for (vifi = 0; vifi < numvifs; vifi++) {
571	if (viftable[vifi].v_lcl_addr.s_addr != 0 &&
572	    !(viftable[vifi].v_flags & VIFF_TUNNEL)) {
573	    ((struct sockaddr_in *)&(ifr.ifr_addr))->sin_family = AF_INET;
574	    ((struct sockaddr_in *)&(ifr.ifr_addr))->sin_addr.s_addr
575								= INADDR_ANY;
576	    ifp = viftable[vifi].v_ifp;
577	    if_allmulti(ifp, 0);
578	}
579    }
580    bzero((caddr_t)tbftable, sizeof(tbftable));
581    bzero((caddr_t)viftable, sizeof(viftable));
582    numvifs = 0;
583    pim_assert = 0;
584
585    untimeout(expire_upcalls, (caddr_t)NULL, expire_upcalls_ch);
586
587    /*
588     * Free all multicast forwarding cache entries.
589     */
590    for (i = 0; i < MFCTBLSIZ; i++) {
591	mb_rt = mfctable[i];
592	while (mb_rt) {
593	    if (mb_rt->m_act != NULL) {
594		while (mb_rt->m_act) {
595		    m = mb_rt->m_act;
596		    mb_rt->m_act = m->m_act;
597		    rte = mtod(m, struct rtdetq *);
598		    m_freem(rte->m);
599		    m_free(m);
600		}
601	    }
602	    mb_rt = m_free(mb_rt);
603	}
604    }
605
606    bzero((caddr_t)mfctable, sizeof(mfctable));
607
608    /*
609     * Reset de-encapsulation cache
610     */
611    last_encap_src = 0;
612    last_encap_vif = NULL;
613    have_encap_tunnel = 0;
614
615    ip_mrouter = NULL;
616
617    splx(s);
618
619    if (mrtdebug)
620	log(LOG_DEBUG, "ip_mrouter_done\n");
621
622    return 0;
623}
624
625#ifndef MROUTE_LKM
626int (*ip_mrouter_done)(void) = X_ip_mrouter_done;
627#endif
628
629static int
630get_version(mb)
631    struct mbuf *mb;
632{
633    int *v;
634
635    v = mtod(mb, int *);
636
637    *v = 0x0305;	/* XXX !!!! */
638    mb->m_len = sizeof(int);
639
640    return 0;
641}
642
643/*
644 * Set PIM assert processing global
645 */
646static int
647set_assert(i)
648    int *i;
649{
650    if ((*i != 1) && (*i != 0))
651	return EINVAL;
652
653    pim_assert = *i;
654
655    return 0;
656}
657
658/*
659 * Get PIM assert processing global
660 */
661static int
662get_assert(m)
663    struct mbuf *m;
664{
665    int *i;
666
667    i = mtod(m, int *);
668
669    *i = pim_assert;
670
671    return 0;
672}
673
674/*
675 * Add a vif to the vif table
676 */
677static int
678add_vif(vifcp)
679    register struct vifctl *vifcp;
680{
681    register struct vif *vifp = viftable + vifcp->vifc_vifi;
682    static struct sockaddr_in sin = {sizeof sin, AF_INET};
683    struct ifaddr *ifa;
684    struct ifnet *ifp;
685    struct ifreq ifr;
686    int error, s;
687    struct tbf *v_tbf = tbftable + vifcp->vifc_vifi;
688
689    if (vifcp->vifc_vifi >= MAXVIFS)  return EINVAL;
690    if (vifp->v_lcl_addr.s_addr != 0) return EADDRINUSE;
691
692    /* Find the interface with an address in AF_INET family */
693    sin.sin_addr = vifcp->vifc_lcl_addr;
694    ifa = ifa_ifwithaddr((struct sockaddr *)&sin);
695    if (ifa == 0) return EADDRNOTAVAIL;
696    ifp = ifa->ifa_ifp;
697
698    if (vifcp->vifc_flags & VIFF_TUNNEL) {
699	if ((vifcp->vifc_flags & VIFF_SRCRT) == 0) {
700		/*
701		 * An encapsulating tunnel is wanted.  Tell ipip_input() to
702		 * start paying attention to encapsulated packets.
703		 */
704		if (have_encap_tunnel == 0) {
705			have_encap_tunnel = 1;
706			for (s = 0; s < MAXVIFS; ++s) {
707				multicast_decap_if[s].if_name = "mdecap";
708				multicast_decap_if[s].if_unit = s;
709			}
710		}
711		/*
712		 * Set interface to fake encapsulator interface
713		 */
714		ifp = &multicast_decap_if[vifcp->vifc_vifi];
715		/*
716		 * Prepare cached route entry
717		 */
718		bzero(&vifp->v_route, sizeof(vifp->v_route));
719	} else {
720	    log(LOG_ERR, "source routed tunnels not supported\n");
721	    return EOPNOTSUPP;
722	}
723    } else {
724	/* Make sure the interface supports multicast */
725	if ((ifp->if_flags & IFF_MULTICAST) == 0)
726	    return EOPNOTSUPP;
727
728	/* Enable promiscuous reception of all IP multicasts from the if */
729	s = splnet();
730	error = if_allmulti(ifp, 1);
731	splx(s);
732	if (error)
733	    return error;
734    }
735
736    s = splnet();
737    /* define parameters for the tbf structure */
738    vifp->v_tbf = v_tbf;
739    GET_TIME(vifp->v_tbf->tbf_last_pkt_t);
740    vifp->v_tbf->tbf_n_tok = 0;
741    vifp->v_tbf->tbf_q_len = 0;
742    vifp->v_tbf->tbf_max_q_len = MAXQSIZE;
743    vifp->v_tbf->tbf_q = vifp->v_tbf->tbf_t = NULL;
744
745    vifp->v_flags     = vifcp->vifc_flags;
746    vifp->v_threshold = vifcp->vifc_threshold;
747    vifp->v_lcl_addr  = vifcp->vifc_lcl_addr;
748    vifp->v_rmt_addr  = vifcp->vifc_rmt_addr;
749    vifp->v_ifp       = ifp;
750    /* scaling up here allows division by 1024 in critical code */
751    vifp->v_rate_limit= vifcp->vifc_rate_limit * 1024 / 1000;
752    vifp->v_rsvp_on   = 0;
753    vifp->v_rsvpd     = NULL;
754    /* initialize per vif pkt counters */
755    vifp->v_pkt_in    = 0;
756    vifp->v_pkt_out   = 0;
757    vifp->v_bytes_in  = 0;
758    vifp->v_bytes_out = 0;
759    splx(s);
760
761    /* Adjust numvifs up if the vifi is higher than numvifs */
762    if (numvifs <= vifcp->vifc_vifi) numvifs = vifcp->vifc_vifi + 1;
763
764    if (mrtdebug)
765	log(LOG_DEBUG, "add_vif #%d, lcladdr %x, %s %x, thresh %x, rate %d\n",
766	    vifcp->vifc_vifi,
767	    ntohl(vifcp->vifc_lcl_addr.s_addr),
768	    (vifcp->vifc_flags & VIFF_TUNNEL) ? "rmtaddr" : "mask",
769	    ntohl(vifcp->vifc_rmt_addr.s_addr),
770	    vifcp->vifc_threshold,
771	    vifcp->vifc_rate_limit);
772
773    return 0;
774}
775
776/*
777 * Delete a vif from the vif table
778 */
779static int
780del_vif(vifip)
781    vifi_t *vifip;
782{
783    register struct vif *vifp = viftable + *vifip;
784    register vifi_t vifi;
785    register struct mbuf *m;
786    struct ifnet *ifp;
787    struct ifreq ifr;
788    int s;
789
790    if (*vifip >= numvifs) return EINVAL;
791    if (vifp->v_lcl_addr.s_addr == 0) return EADDRNOTAVAIL;
792
793    s = splnet();
794
795    if (!(vifp->v_flags & VIFF_TUNNEL)) {
796	((struct sockaddr_in *)&(ifr.ifr_addr))->sin_family = AF_INET;
797	((struct sockaddr_in *)&(ifr.ifr_addr))->sin_addr.s_addr = INADDR_ANY;
798	ifp = vifp->v_ifp;
799	if_allmulti(ifp, 0);
800    }
801
802    if (vifp == last_encap_vif) {
803	last_encap_vif = 0;
804	last_encap_src = 0;
805    }
806
807    /*
808     * Free packets queued at the interface
809     */
810    while (vifp->v_tbf->tbf_q) {
811	m = vifp->v_tbf->tbf_q;
812	vifp->v_tbf->tbf_q = m->m_act;
813	m_freem(m);
814    }
815
816    bzero((caddr_t)vifp->v_tbf, sizeof(*(vifp->v_tbf)));
817    bzero((caddr_t)vifp, sizeof (*vifp));
818
819    /* Adjust numvifs down */
820    for (vifi = numvifs; vifi > 0; vifi--)
821	if (viftable[vifi-1].v_lcl_addr.s_addr != 0) break;
822    numvifs = vifi;
823
824    splx(s);
825
826    if (mrtdebug)
827      log(LOG_DEBUG, "del_vif %d, numvifs %d\n", *vifip, numvifs);
828
829    return 0;
830}
831
832/*
833 * Add an mfc entry
834 */
835static int
836add_mfc(mfccp)
837    struct mfcctl *mfccp;
838{
839    struct mfc *rt;
840    register struct mbuf *mb_rt;
841    u_long hash;
842    struct mbuf *mb_ntry;
843    struct rtdetq *rte;
844    register u_short nstl;
845    int s;
846    int i;
847
848    MFCFIND(mfccp->mfcc_origin.s_addr, mfccp->mfcc_mcastgrp.s_addr, rt);
849
850    /* If an entry already exists, just update the fields */
851    if (rt) {
852	if (mrtdebug & DEBUG_MFC)
853	    log(LOG_DEBUG,"add_mfc update o %x g %x p %x\n",
854		ntohl(mfccp->mfcc_origin.s_addr),
855		ntohl(mfccp->mfcc_mcastgrp.s_addr),
856		mfccp->mfcc_parent);
857
858	s = splnet();
859	rt->mfc_parent = mfccp->mfcc_parent;
860	for (i = 0; i < numvifs; i++)
861	    rt->mfc_ttls[i] = mfccp->mfcc_ttls[i];
862	splx(s);
863	return 0;
864    }
865
866    /*
867     * Find the entry for which the upcall was made and update
868     */
869    s = splnet();
870    hash = MFCHASH(mfccp->mfcc_origin.s_addr, mfccp->mfcc_mcastgrp.s_addr);
871    for (mb_rt = mfctable[hash], nstl = 0; mb_rt; mb_rt = mb_rt->m_next) {
872
873	rt = mtod(mb_rt, struct mfc *);
874	if ((rt->mfc_origin.s_addr == mfccp->mfcc_origin.s_addr) &&
875	    (rt->mfc_mcastgrp.s_addr == mfccp->mfcc_mcastgrp.s_addr) &&
876	    (mb_rt->m_act != NULL)) {
877
878	    if (nstl++)
879		log(LOG_ERR, "add_mfc %s o %x g %x p %x dbx %x\n",
880		    "multiple kernel entries",
881		    ntohl(mfccp->mfcc_origin.s_addr),
882		    ntohl(mfccp->mfcc_mcastgrp.s_addr),
883		    mfccp->mfcc_parent, mb_rt->m_act);
884
885	    if (mrtdebug & DEBUG_MFC)
886		log(LOG_DEBUG,"add_mfc o %x g %x p %x dbg %x\n",
887		    ntohl(mfccp->mfcc_origin.s_addr),
888		    ntohl(mfccp->mfcc_mcastgrp.s_addr),
889		    mfccp->mfcc_parent, mb_rt->m_act);
890
891	    rt->mfc_origin     = mfccp->mfcc_origin;
892	    rt->mfc_mcastgrp   = mfccp->mfcc_mcastgrp;
893	    rt->mfc_parent     = mfccp->mfcc_parent;
894	    for (i = 0; i < numvifs; i++)
895		rt->mfc_ttls[i] = mfccp->mfcc_ttls[i];
896	    /* initialize pkt counters per src-grp */
897	    rt->mfc_pkt_cnt    = 0;
898	    rt->mfc_byte_cnt   = 0;
899	    rt->mfc_wrong_if   = 0;
900	    rt->mfc_last_assert.tv_sec = rt->mfc_last_assert.tv_usec = 0;
901
902	    rt->mfc_expire = 0;	/* Don't clean this guy up */
903	    nexpire[hash]--;
904
905	    /* free packets Qed at the end of this entry */
906	    while (mb_rt->m_act) {
907		mb_ntry = mb_rt->m_act;
908		rte = mtod(mb_ntry, struct rtdetq *);
909/* #ifdef RSVP_ISI */
910		ip_mdq(rte->m, rte->ifp, rt, -1);
911/* #endif */
912		mb_rt->m_act = mb_ntry->m_act;
913		m_freem(rte->m);
914#ifdef UPCALL_TIMING
915		collate(&(rte->t));
916#endif /* UPCALL_TIMING */
917		m_free(mb_ntry);
918	    }
919	}
920    }
921
922    /*
923     * It is possible that an entry is being inserted without an upcall
924     */
925    if (nstl == 0) {
926	if (mrtdebug & DEBUG_MFC)
927	    log(LOG_DEBUG,"add_mfc no upcall h %d o %x g %x p %x\n",
928		hash, ntohl(mfccp->mfcc_origin.s_addr),
929		ntohl(mfccp->mfcc_mcastgrp.s_addr),
930		mfccp->mfcc_parent);
931
932	for (mb_rt = mfctable[hash]; mb_rt; mb_rt = mb_rt->m_next) {
933
934	    rt = mtod(mb_rt, struct mfc *);
935	    if ((rt->mfc_origin.s_addr == mfccp->mfcc_origin.s_addr) &&
936		(rt->mfc_mcastgrp.s_addr == mfccp->mfcc_mcastgrp.s_addr)) {
937
938		rt->mfc_origin     = mfccp->mfcc_origin;
939		rt->mfc_mcastgrp   = mfccp->mfcc_mcastgrp;
940		rt->mfc_parent     = mfccp->mfcc_parent;
941		for (i = 0; i < numvifs; i++)
942		    rt->mfc_ttls[i] = mfccp->mfcc_ttls[i];
943		/* initialize pkt counters per src-grp */
944		rt->mfc_pkt_cnt    = 0;
945		rt->mfc_byte_cnt   = 0;
946		rt->mfc_wrong_if   = 0;
947		rt->mfc_last_assert.tv_sec = rt->mfc_last_assert.tv_usec = 0;
948		if (rt->mfc_expire)
949		    nexpire[hash]--;
950		rt->mfc_expire	   = 0;
951	    }
952	}
953	if (mb_rt == NULL) {
954	    /* no upcall, so make a new entry */
955	    MGET(mb_rt, M_DONTWAIT, MT_MRTABLE);
956	    if (mb_rt == NULL) {
957		splx(s);
958		return ENOBUFS;
959	    }
960
961	    rt = mtod(mb_rt, struct mfc *);
962
963	    /* insert new entry at head of hash chain */
964	    rt->mfc_origin     = mfccp->mfcc_origin;
965	    rt->mfc_mcastgrp   = mfccp->mfcc_mcastgrp;
966	    rt->mfc_parent     = mfccp->mfcc_parent;
967	    for (i = 0; i < numvifs; i++)
968		    rt->mfc_ttls[i] = mfccp->mfcc_ttls[i];
969	    /* initialize pkt counters per src-grp */
970	    rt->mfc_pkt_cnt    = 0;
971	    rt->mfc_byte_cnt   = 0;
972	    rt->mfc_wrong_if   = 0;
973	    rt->mfc_last_assert.tv_sec = rt->mfc_last_assert.tv_usec = 0;
974	    rt->mfc_expire     = 0;
975
976	    /* link into table */
977	    mb_rt->m_next  = mfctable[hash];
978	    mfctable[hash] = mb_rt;
979	    mb_rt->m_act = NULL;
980	}
981    }
982    splx(s);
983    return 0;
984}
985
986#ifdef UPCALL_TIMING
987/*
988 * collect delay statistics on the upcalls
989 */
990static void collate(t)
991register struct timeval *t;
992{
993    register u_long d;
994    register struct timeval tp;
995    register u_long delta;
996
997    GET_TIME(tp);
998
999    if (TV_LT(*t, tp))
1000    {
1001	TV_DELTA(tp, *t, delta);
1002
1003	d = delta >> 10;
1004	if (d > 50)
1005	    d = 50;
1006
1007	++upcall_data[d];
1008    }
1009}
1010#endif /* UPCALL_TIMING */
1011
1012/*
1013 * Delete an mfc entry
1014 */
1015static int
1016del_mfc(mfccp)
1017    struct mfcctl *mfccp;
1018{
1019    struct in_addr 	origin;
1020    struct in_addr 	mcastgrp;
1021    struct mfc 		*rt;
1022    struct mbuf 	*mb_rt;
1023    struct mbuf 	**nptr;
1024    u_long 		hash;
1025    int s;
1026
1027    origin = mfccp->mfcc_origin;
1028    mcastgrp = mfccp->mfcc_mcastgrp;
1029    hash = MFCHASH(origin.s_addr, mcastgrp.s_addr);
1030
1031    if (mrtdebug & DEBUG_MFC)
1032	log(LOG_DEBUG,"del_mfc orig %x mcastgrp %x\n",
1033	    ntohl(origin.s_addr), ntohl(mcastgrp.s_addr));
1034
1035    s = splnet();
1036
1037    nptr = &mfctable[hash];
1038    while ((mb_rt = *nptr) != NULL) {
1039        rt = mtod(mb_rt, struct mfc *);
1040	if (origin.s_addr == rt->mfc_origin.s_addr &&
1041	    mcastgrp.s_addr == rt->mfc_mcastgrp.s_addr &&
1042	    mb_rt->m_act == NULL)
1043	    break;
1044
1045	nptr = &mb_rt->m_next;
1046    }
1047    if (mb_rt == NULL) {
1048	splx(s);
1049	return EADDRNOTAVAIL;
1050    }
1051
1052    MFREE(mb_rt, *nptr);
1053
1054    splx(s);
1055
1056    return 0;
1057}
1058
1059/*
1060 * Send a message to mrouted on the multicast routing socket
1061 */
1062static int
1063socket_send(s, mm, src)
1064	struct socket *s;
1065	struct mbuf *mm;
1066	struct sockaddr_in *src;
1067{
1068	if (s) {
1069		if (sbappendaddr(&s->so_rcv,
1070				 (struct sockaddr *)src,
1071				 mm, (struct mbuf *)0) != 0) {
1072			sorwakeup(s);
1073			return 0;
1074		}
1075	}
1076	m_freem(mm);
1077	return -1;
1078}
1079
1080/*
1081 * IP multicast forwarding function. This function assumes that the packet
1082 * pointed to by "ip" has arrived on (or is about to be sent to) the interface
1083 * pointed to by "ifp", and the packet is to be relayed to other networks
1084 * that have members of the packet's destination IP multicast group.
1085 *
1086 * The packet is returned unscathed to the caller, unless it is
1087 * erroneous, in which case a non-zero return value tells the caller to
1088 * discard it.
1089 */
1090
1091#define IP_HDR_LEN  20	/* # bytes of fixed IP header (excluding options) */
1092#define TUNNEL_LEN  12  /* # bytes of IP option for tunnel encapsulation  */
1093
1094static int
1095X_ip_mforward(ip, ifp, m, imo)
1096    register struct ip *ip;
1097    struct ifnet *ifp;
1098    struct mbuf *m;
1099    struct ip_moptions *imo;
1100{
1101    register struct mfc *rt;
1102    register u_char *ipoptions;
1103    static struct sockaddr_in 	k_igmpsrc	= { sizeof k_igmpsrc, AF_INET };
1104    static int srctun = 0;
1105    register struct mbuf *mm;
1106    int s;
1107    vifi_t vifi;
1108    struct vif *vifp;
1109
1110    if (mrtdebug & DEBUG_FORWARD)
1111	log(LOG_DEBUG, "ip_mforward: src %x, dst %x, ifp %x\n",
1112	    ntohl(ip->ip_src.s_addr), ntohl(ip->ip_dst.s_addr), ifp);
1113
1114    if (ip->ip_hl < (IP_HDR_LEN + TUNNEL_LEN) >> 2 ||
1115	(ipoptions = (u_char *)(ip + 1))[1] != IPOPT_LSRR ) {
1116	/*
1117	 * Packet arrived via a physical interface or
1118	 * an encapsulated tunnel.
1119	 */
1120    } else {
1121	/*
1122	 * Packet arrived through a source-route tunnel.
1123	 * Source-route tunnels are no longer supported.
1124	 */
1125	if ((srctun++ % 1000) == 0)
1126	    log(LOG_ERR, "ip_mforward: received source-routed packet from %x\n",
1127		ntohl(ip->ip_src.s_addr));
1128
1129	return 1;
1130    }
1131
1132    if ((imo) && ((vifi = imo->imo_multicast_vif) < numvifs)) {
1133	if (ip->ip_ttl < 255)
1134		ip->ip_ttl++;	/* compensate for -1 in *_send routines */
1135	if (rsvpdebug && ip->ip_p == IPPROTO_RSVP) {
1136	    vifp = viftable + vifi;
1137	    printf("Sending IPPROTO_RSVP from %lx to %lx on vif %d (%s%s%d)\n",
1138		ntohl(ip->ip_src.s_addr), ntohl(ip->ip_dst.s_addr), vifi,
1139		(vifp->v_flags & VIFF_TUNNEL) ? "tunnel on " : "",
1140		vifp->v_ifp->if_name, vifp->v_ifp->if_unit);
1141	}
1142	return (ip_mdq(m, ifp, NULL, vifi));
1143    }
1144    if (rsvpdebug && ip->ip_p == IPPROTO_RSVP) {
1145	printf("Warning: IPPROTO_RSVP from %lx to %lx without vif option\n",
1146	    ntohl(ip->ip_src.s_addr), ntohl(ip->ip_dst.s_addr));
1147	if(!imo)
1148		printf("In fact, no options were specified at all\n");
1149    }
1150
1151    /*
1152     * Don't forward a packet with time-to-live of zero or one,
1153     * or a packet destined to a local-only group.
1154     */
1155    if (ip->ip_ttl <= 1 ||
1156	ntohl(ip->ip_dst.s_addr) <= INADDR_MAX_LOCAL_GROUP)
1157	return 0;
1158
1159    /*
1160     * Determine forwarding vifs from the forwarding cache table
1161     */
1162    s = splnet();
1163    MFCFIND(ip->ip_src.s_addr, ip->ip_dst.s_addr, rt);
1164
1165    /* Entry exists, so forward if necessary */
1166    if (rt != NULL) {
1167	splx(s);
1168	return (ip_mdq(m, ifp, rt, -1));
1169    } else {
1170	/*
1171	 * If we don't have a route for packet's origin,
1172	 * Make a copy of the packet &
1173	 * send message to routing daemon
1174	 */
1175
1176	register struct mbuf *mb_rt;
1177	register struct mbuf *mb_ntry;
1178	register struct mbuf *mb0;
1179	register struct rtdetq *rte;
1180	register struct mbuf *rte_m;
1181	register u_long hash;
1182	register int npkts;
1183	int hlen = ip->ip_hl << 2;
1184#ifdef UPCALL_TIMING
1185	struct timeval tp;
1186
1187	GET_TIME(tp);
1188#endif
1189
1190	mrtstat.mrts_no_route++;
1191	if (mrtdebug & (DEBUG_FORWARD | DEBUG_MFC))
1192	    log(LOG_DEBUG, "ip_mforward: no rte s %x g %x\n",
1193		ntohl(ip->ip_src.s_addr),
1194		ntohl(ip->ip_dst.s_addr));
1195
1196	/*
1197	 * Allocate mbufs early so that we don't do extra work if we are
1198	 * just going to fail anyway.  Make sure to pullup the header so
1199	 * that other people can't step on it.
1200	 */
1201	MGET(mb_ntry, M_DONTWAIT, MT_DATA);
1202	if (mb_ntry == NULL) {
1203	    splx(s);
1204	    return ENOBUFS;
1205	}
1206	mb0 = m_copy(m, 0, M_COPYALL);
1207	if (mb0 && (M_HASCL(mb0) || mb0->m_len < hlen))
1208	    mb0 = m_pullup(mb0, hlen);
1209	if (mb0 == NULL) {
1210	    m_free(mb_ntry);
1211	    splx(s);
1212	    return ENOBUFS;
1213	}
1214
1215	/* is there an upcall waiting for this packet? */
1216	hash = MFCHASH(ip->ip_src.s_addr, ip->ip_dst.s_addr);
1217	for (mb_rt = mfctable[hash]; mb_rt; mb_rt = mb_rt->m_next) {
1218	    rt = mtod(mb_rt, struct mfc *);
1219	    if ((ip->ip_src.s_addr == rt->mfc_origin.s_addr) &&
1220		(ip->ip_dst.s_addr == rt->mfc_mcastgrp.s_addr) &&
1221		(mb_rt->m_act != NULL))
1222		break;
1223	}
1224
1225	if (mb_rt == NULL) {
1226	    int i;
1227	    struct igmpmsg *im;
1228
1229	    /* no upcall, so make a new entry */
1230	    MGET(mb_rt, M_DONTWAIT, MT_MRTABLE);
1231	    if (mb_rt == NULL) {
1232		m_free(mb_ntry);
1233		m_freem(mb0);
1234		splx(s);
1235		return ENOBUFS;
1236	    }
1237	    /* Make a copy of the header to send to the user level process */
1238	    mm = m_copy(mb0, 0, hlen);
1239	    if (mm == NULL) {
1240		m_free(mb_ntry);
1241		m_freem(mb0);
1242		m_free(mb_rt);
1243		splx(s);
1244		return ENOBUFS;
1245	    }
1246
1247	    /*
1248	     * Send message to routing daemon to install
1249	     * a route into the kernel table
1250	     */
1251	    k_igmpsrc.sin_addr = ip->ip_src;
1252
1253	    im = mtod(mm, struct igmpmsg *);
1254	    im->im_msgtype	= IGMPMSG_NOCACHE;
1255	    im->im_mbz		= 0;
1256
1257	    mrtstat.mrts_upcalls++;
1258
1259	    if (socket_send(ip_mrouter, mm, &k_igmpsrc) < 0) {
1260		log(LOG_WARNING, "ip_mforward: ip_mrouter socket queue full\n");
1261		++mrtstat.mrts_upq_sockfull;
1262		m_free(mb_ntry);
1263		m_freem(mb0);
1264		m_free(mb_rt);
1265		splx(s);
1266		return ENOBUFS;
1267	    }
1268
1269	    rt = mtod(mb_rt, struct mfc *);
1270
1271	    /* insert new entry at head of hash chain */
1272	    rt->mfc_origin.s_addr     = ip->ip_src.s_addr;
1273	    rt->mfc_mcastgrp.s_addr   = ip->ip_dst.s_addr;
1274	    rt->mfc_expire	      = UPCALL_EXPIRE;
1275	    nexpire[hash]++;
1276	    for (i = 0; i < numvifs; i++)
1277		rt->mfc_ttls[i] = 0;
1278	    rt->mfc_parent = -1;
1279
1280	    /* link into table */
1281	    mb_rt->m_next  = mfctable[hash];
1282	    mfctable[hash] = mb_rt;
1283	    mb_rt->m_act = NULL;
1284
1285	    rte_m = mb_rt;
1286	} else {
1287	    /* determine if q has overflowed */
1288	    for (rte_m = mb_rt, npkts = 0; rte_m->m_act; rte_m = rte_m->m_act)
1289		npkts++;
1290
1291	    if (npkts > MAX_UPQ) {
1292		mrtstat.mrts_upq_ovflw++;
1293		m_free(mb_ntry);
1294		m_freem(mb0);
1295		splx(s);
1296		return 0;
1297	    }
1298	}
1299
1300	mb_ntry->m_act = NULL;
1301	rte = mtod(mb_ntry, struct rtdetq *);
1302
1303	rte->m 			= mb0;
1304	rte->ifp 		= ifp;
1305#ifdef UPCALL_TIMING
1306	rte->t			= tp;
1307#endif
1308
1309	/* Add this entry to the end of the queue */
1310	rte_m->m_act		= mb_ntry;
1311
1312	splx(s);
1313
1314	return 0;
1315    }
1316}
1317
1318#ifndef MROUTE_LKM
1319int (*ip_mforward)(struct ip *, struct ifnet *, struct mbuf *,
1320		   struct ip_moptions *) = X_ip_mforward;
1321#endif
1322
1323/*
1324 * Clean up the cache entry if upcall is not serviced
1325 */
1326static void
1327expire_upcalls(void *unused)
1328{
1329    struct mbuf *mb_rt, *m, **nptr;
1330    struct rtdetq *rte;
1331    struct mfc *mfc;
1332    int i;
1333    int s;
1334
1335    s = splnet();
1336    for (i = 0; i < MFCTBLSIZ; i++) {
1337	if (nexpire[i] == 0)
1338	    continue;
1339	nptr = &mfctable[i];
1340	for (mb_rt = *nptr; mb_rt != NULL; mb_rt = *nptr) {
1341	    mfc = mtod(mb_rt, struct mfc *);
1342
1343	    /*
1344	     * Skip real cache entries
1345	     * Make sure it wasn't marked to not expire (shouldn't happen)
1346	     * If it expires now
1347	     */
1348	    if (mb_rt->m_act != NULL &&
1349	        mfc->mfc_expire != 0 &&
1350		--mfc->mfc_expire == 0) {
1351		if (mrtdebug & DEBUG_EXPIRE)
1352		    log(LOG_DEBUG, "expire_upcalls: expiring (%x %x)\n",
1353			ntohl(mfc->mfc_origin.s_addr),
1354			ntohl(mfc->mfc_mcastgrp.s_addr));
1355		/*
1356		 * drop all the packets
1357		 * free the mbuf with the pkt, if, timing info
1358		 */
1359		while (mb_rt->m_act) {
1360		    m = mb_rt->m_act;
1361		    mb_rt->m_act = m->m_act;
1362
1363		    rte = mtod(m, struct rtdetq *);
1364		    m_freem(rte->m);
1365		    m_free(m);
1366		}
1367		++mrtstat.mrts_cache_cleanups;
1368		nexpire[i]--;
1369
1370		MFREE(mb_rt, *nptr);
1371	    } else {
1372		nptr = &mb_rt->m_next;
1373	    }
1374	}
1375    }
1376    splx(s);
1377    expire_upcalls_ch = timeout(expire_upcalls, (caddr_t)NULL, EXPIRE_TIMEOUT);
1378}
1379
1380/*
1381 * Packet forwarding routine once entry in the cache is made
1382 */
1383static int
1384ip_mdq(m, ifp, rt, xmt_vif)
1385    register struct mbuf *m;
1386    register struct ifnet *ifp;
1387    register struct mfc *rt;
1388    register vifi_t xmt_vif;
1389{
1390    register struct ip  *ip = mtod(m, struct ip *);
1391    register vifi_t vifi;
1392    register struct vif *vifp;
1393    register int plen = ntohs(ip->ip_len);
1394
1395/*
1396 * Macro to send packet on vif.  Since RSVP packets don't get counted on
1397 * input, they shouldn't get counted on output, so statistics keeping is
1398 * seperate.
1399 */
1400#define MC_SEND(ip,vifp,m) {                             \
1401                if ((vifp)->v_flags & VIFF_TUNNEL)  	 \
1402                    encap_send((ip), (vifp), (m));       \
1403                else                                     \
1404                    phyint_send((ip), (vifp), (m));      \
1405}
1406
1407    /*
1408     * If xmt_vif is not -1, send on only the requested vif.
1409     *
1410     * (since vifi_t is u_short, -1 becomes MAXUSHORT, which > numvifs.)
1411     */
1412    if (xmt_vif < numvifs) {
1413	MC_SEND(ip, viftable + xmt_vif, m);
1414	return 1;
1415    }
1416
1417    /*
1418     * Don't forward if it didn't arrive from the parent vif for its origin.
1419     */
1420    vifi = rt->mfc_parent;
1421    if ((vifi >= numvifs) || (viftable[vifi].v_ifp != ifp)) {
1422	/* came in the wrong interface */
1423	if (mrtdebug & DEBUG_FORWARD)
1424	    log(LOG_DEBUG, "wrong if: ifp %x vifi %d vififp %x\n",
1425		ifp, vifi, viftable[vifi].v_ifp);
1426	++mrtstat.mrts_wrong_if;
1427	++rt->mfc_wrong_if;
1428	/*
1429	 * If we are doing PIM assert processing, and we are forwarding
1430	 * packets on this interface, and it is a broadcast medium
1431	 * interface (and not a tunnel), send a message to the routing daemon.
1432	 */
1433	if (pim_assert && rt->mfc_ttls[vifi] &&
1434		(ifp->if_flags & IFF_BROADCAST) &&
1435		!(viftable[vifi].v_flags & VIFF_TUNNEL)) {
1436	    struct sockaddr_in k_igmpsrc;
1437	    struct mbuf *mm;
1438	    struct igmpmsg *im;
1439	    int hlen = ip->ip_hl << 2;
1440	    struct timeval now;
1441	    register u_long delta;
1442
1443	    GET_TIME(now);
1444
1445	    TV_DELTA(rt->mfc_last_assert, now, delta);
1446
1447	    if (delta > ASSERT_MSG_TIME) {
1448		mm = m_copy(m, 0, hlen);
1449		if (mm && (M_HASCL(mm) || mm->m_len < hlen))
1450		    mm = m_pullup(mm, hlen);
1451		if (mm == NULL) {
1452		    return ENOBUFS;
1453		}
1454
1455		rt->mfc_last_assert = now;
1456
1457		im = mtod(mm, struct igmpmsg *);
1458		im->im_msgtype	= IGMPMSG_WRONGVIF;
1459		im->im_mbz		= 0;
1460		im->im_vif		= vifi;
1461
1462		k_igmpsrc.sin_addr = im->im_src;
1463
1464		socket_send(ip_mrouter, mm, &k_igmpsrc);
1465	    }
1466	}
1467	return 0;
1468    }
1469
1470    /* If I sourced this packet, it counts as output, else it was input. */
1471    if (ip->ip_src.s_addr == viftable[vifi].v_lcl_addr.s_addr) {
1472	viftable[vifi].v_pkt_out++;
1473	viftable[vifi].v_bytes_out += plen;
1474    } else {
1475	viftable[vifi].v_pkt_in++;
1476	viftable[vifi].v_bytes_in += plen;
1477    }
1478    rt->mfc_pkt_cnt++;
1479    rt->mfc_byte_cnt += plen;
1480
1481    /*
1482     * For each vif, decide if a copy of the packet should be forwarded.
1483     * Forward if:
1484     *		- the ttl exceeds the vif's threshold
1485     *		- there are group members downstream on interface
1486     */
1487    for (vifp = viftable, vifi = 0; vifi < numvifs; vifp++, vifi++)
1488	if ((rt->mfc_ttls[vifi] > 0) &&
1489	    (ip->ip_ttl > rt->mfc_ttls[vifi])) {
1490	    vifp->v_pkt_out++;
1491	    vifp->v_bytes_out += plen;
1492	    MC_SEND(ip, vifp, m);
1493	}
1494
1495    return 0;
1496}
1497
1498/*
1499 * check if a vif number is legal/ok. This is used by ip_output, to export
1500 * numvifs there,
1501 */
1502static int
1503X_legal_vif_num(vif)
1504    int vif;
1505{
1506    if (vif >= 0 && vif < numvifs)
1507       return(1);
1508    else
1509       return(0);
1510}
1511
1512#ifndef MROUTE_LKM
1513int (*legal_vif_num)(int) = X_legal_vif_num;
1514#endif
1515
1516/*
1517 * Return the local address used by this vif
1518 */
1519static u_long
1520X_ip_mcast_src(vifi)
1521    int vifi;
1522{
1523    if (vifi >= 0 && vifi < numvifs)
1524	return viftable[vifi].v_lcl_addr.s_addr;
1525    else
1526	return INADDR_ANY;
1527}
1528
1529#ifndef MROUTE_LKM
1530u_long (*ip_mcast_src)(int) = X_ip_mcast_src;
1531#endif
1532
1533static void
1534phyint_send(ip, vifp, m)
1535    struct ip *ip;
1536    struct vif *vifp;
1537    struct mbuf *m;
1538{
1539    register struct mbuf *mb_copy;
1540    register int hlen = ip->ip_hl << 2;
1541
1542    /*
1543     * Make a new reference to the packet; make sure that
1544     * the IP header is actually copied, not just referenced,
1545     * so that ip_output() only scribbles on the copy.
1546     */
1547    mb_copy = m_copy(m, 0, M_COPYALL);
1548    if (mb_copy && (M_HASCL(mb_copy) || mb_copy->m_len < hlen))
1549	mb_copy = m_pullup(mb_copy, hlen);
1550    if (mb_copy == NULL)
1551	return;
1552
1553    if (vifp->v_rate_limit <= 0)
1554	tbf_send_packet(vifp, mb_copy);
1555    else
1556	tbf_control(vifp, mb_copy, mtod(mb_copy, struct ip *), ip->ip_len);
1557}
1558
1559static void
1560encap_send(ip, vifp, m)
1561    register struct ip *ip;
1562    register struct vif *vifp;
1563    register struct mbuf *m;
1564{
1565    register struct mbuf *mb_copy;
1566    register struct ip *ip_copy;
1567    register int i, len = ip->ip_len;
1568
1569    /*
1570     * copy the old packet & pullup it's IP header into the
1571     * new mbuf so we can modify it.  Try to fill the new
1572     * mbuf since if we don't the ethernet driver will.
1573     */
1574    MGETHDR(mb_copy, M_DONTWAIT, MT_HEADER);
1575    if (mb_copy == NULL)
1576	return;
1577    mb_copy->m_data += max_linkhdr;
1578    mb_copy->m_len = sizeof(multicast_encap_iphdr);
1579
1580    if ((mb_copy->m_next = m_copy(m, 0, M_COPYALL)) == NULL) {
1581	m_freem(mb_copy);
1582	return;
1583    }
1584    i = MHLEN - M_LEADINGSPACE(mb_copy);
1585    if (i > len)
1586	i = len;
1587    mb_copy = m_pullup(mb_copy, i);
1588    if (mb_copy == NULL)
1589	return;
1590    mb_copy->m_pkthdr.len = len + sizeof(multicast_encap_iphdr);
1591
1592    /*
1593     * fill in the encapsulating IP header.
1594     */
1595    ip_copy = mtod(mb_copy, struct ip *);
1596    *ip_copy = multicast_encap_iphdr;
1597    ip_copy->ip_id = htons(ip_id++);
1598    ip_copy->ip_len += len;
1599    ip_copy->ip_src = vifp->v_lcl_addr;
1600    ip_copy->ip_dst = vifp->v_rmt_addr;
1601
1602    /*
1603     * turn the encapsulated IP header back into a valid one.
1604     */
1605    ip = (struct ip *)((caddr_t)ip_copy + sizeof(multicast_encap_iphdr));
1606    --ip->ip_ttl;
1607    HTONS(ip->ip_len);
1608    HTONS(ip->ip_off);
1609    ip->ip_sum = 0;
1610    mb_copy->m_data += sizeof(multicast_encap_iphdr);
1611    ip->ip_sum = in_cksum(mb_copy, ip->ip_hl << 2);
1612    mb_copy->m_data -= sizeof(multicast_encap_iphdr);
1613
1614    if (vifp->v_rate_limit <= 0)
1615	tbf_send_packet(vifp, mb_copy);
1616    else
1617	tbf_control(vifp, mb_copy, ip, ip_copy->ip_len);
1618}
1619
1620/*
1621 * De-encapsulate a packet and feed it back through ip input (this
1622 * routine is called whenever IP gets a packet with proto type
1623 * ENCAP_PROTO and a local destination address).
1624 */
1625void
1626#ifdef MROUTE_LKM
1627X_ipip_input(m, iphlen)
1628#else
1629ipip_input(m, iphlen)
1630#endif
1631	register struct mbuf *m;
1632	int iphlen;
1633{
1634    struct ifnet *ifp = m->m_pkthdr.rcvif;
1635    register struct ip *ip = mtod(m, struct ip *);
1636    register int hlen = ip->ip_hl << 2;
1637    register int s;
1638    register struct ifqueue *ifq;
1639    register struct vif *vifp;
1640
1641    if (!have_encap_tunnel) {
1642	    rip_input(m, iphlen);
1643	    return;
1644    }
1645    /*
1646     * dump the packet if it's not to a multicast destination or if
1647     * we don't have an encapsulating tunnel with the source.
1648     * Note:  This code assumes that the remote site IP address
1649     * uniquely identifies the tunnel (i.e., that this site has
1650     * at most one tunnel with the remote site).
1651     */
1652    if (! IN_MULTICAST(ntohl(((struct ip *)((char *)ip + hlen))->ip_dst.s_addr))) {
1653	++mrtstat.mrts_bad_tunnel;
1654	m_freem(m);
1655	return;
1656    }
1657    if (ip->ip_src.s_addr != last_encap_src) {
1658	register struct vif *vife;
1659
1660	vifp = viftable;
1661	vife = vifp + numvifs;
1662	last_encap_src = ip->ip_src.s_addr;
1663	last_encap_vif = 0;
1664	for ( ; vifp < vife; ++vifp)
1665	    if (vifp->v_rmt_addr.s_addr == ip->ip_src.s_addr) {
1666		if ((vifp->v_flags & (VIFF_TUNNEL|VIFF_SRCRT))
1667		    == VIFF_TUNNEL)
1668		    last_encap_vif = vifp;
1669		break;
1670	    }
1671    }
1672    if ((vifp = last_encap_vif) == 0) {
1673	last_encap_src = 0;
1674	mrtstat.mrts_cant_tunnel++; /*XXX*/
1675	m_freem(m);
1676	if (mrtdebug)
1677          log(LOG_DEBUG, "ip_mforward: no tunnel with %x\n",
1678		ntohl(ip->ip_src.s_addr));
1679	return;
1680    }
1681    ifp = vifp->v_ifp;
1682
1683    if (hlen > IP_HDR_LEN)
1684      ip_stripoptions(m, (struct mbuf *) 0);
1685    m->m_data += IP_HDR_LEN;
1686    m->m_len -= IP_HDR_LEN;
1687    m->m_pkthdr.len -= IP_HDR_LEN;
1688    m->m_pkthdr.rcvif = ifp;
1689
1690    ifq = &ipintrq;
1691    s = splimp();
1692    if (IF_QFULL(ifq)) {
1693	IF_DROP(ifq);
1694	m_freem(m);
1695    } else {
1696	IF_ENQUEUE(ifq, m);
1697	/*
1698	 * normally we would need a "schednetisr(NETISR_IP)"
1699	 * here but we were called by ip_input and it is going
1700	 * to loop back & try to dequeue the packet we just
1701	 * queued as soon as we return so we avoid the
1702	 * unnecessary software interrrupt.
1703	 */
1704    }
1705    splx(s);
1706}
1707
1708/*
1709 * Token bucket filter module
1710 */
1711
1712static void
1713tbf_control(vifp, m, ip, p_len)
1714	register struct vif *vifp;
1715	register struct mbuf *m;
1716	register struct ip *ip;
1717	register u_long p_len;
1718{
1719    register struct tbf *t = vifp->v_tbf;
1720
1721    if (p_len > MAX_BKT_SIZE) {
1722	/* drop if packet is too large */
1723	mrtstat.mrts_pkt2large++;
1724	m_freem(m);
1725	return;
1726    }
1727
1728    tbf_update_tokens(vifp);
1729
1730    /* if there are enough tokens,
1731     * and the queue is empty,
1732     * send this packet out
1733     */
1734
1735    if (t->tbf_q_len == 0) {
1736	/* queue empty, send packet if enough tokens */
1737	if (p_len <= t->tbf_n_tok) {
1738	    t->tbf_n_tok -= p_len;
1739	    tbf_send_packet(vifp, m);
1740	} else {
1741	    /* queue packet and timeout till later */
1742	    tbf_queue(vifp, m);
1743	    timeout(tbf_reprocess_q, (caddr_t)vifp, TBF_REPROCESS);
1744	}
1745    } else if (t->tbf_q_len < t->tbf_max_q_len) {
1746	/* finite queue length, so queue pkts and process queue */
1747	tbf_queue(vifp, m);
1748	tbf_process_q(vifp);
1749    } else {
1750	/* queue length too much, try to dq and queue and process */
1751	if (!tbf_dq_sel(vifp, ip)) {
1752	    mrtstat.mrts_q_overflow++;
1753	    m_freem(m);
1754	    return;
1755	} else {
1756	    tbf_queue(vifp, m);
1757	    tbf_process_q(vifp);
1758	}
1759    }
1760    return;
1761}
1762
1763/*
1764 * adds a packet to the queue at the interface
1765 */
1766static void
1767tbf_queue(vifp, m)
1768	register struct vif *vifp;
1769	register struct mbuf *m;
1770{
1771    register int s = splnet();
1772    register struct tbf *t = vifp->v_tbf;
1773
1774    if (t->tbf_t == NULL) {
1775	/* Queue was empty */
1776	t->tbf_q = m;
1777    } else {
1778	/* Insert at tail */
1779	t->tbf_t->m_act = m;
1780    }
1781
1782    /* Set new tail pointer */
1783    t->tbf_t = m;
1784
1785#ifdef DIAGNOSTIC
1786    /* Make sure we didn't get fed a bogus mbuf */
1787    if (m->m_act)
1788	panic("tbf_queue: m_act");
1789#endif
1790    m->m_act = NULL;
1791
1792    t->tbf_q_len++;
1793
1794    splx(s);
1795}
1796
1797
1798/*
1799 * processes the queue at the interface
1800 */
1801static void
1802tbf_process_q(vifp)
1803    register struct vif *vifp;
1804{
1805    register struct mbuf *m;
1806    register int len;
1807    register int s = splnet();
1808    register struct tbf *t = vifp->v_tbf;
1809
1810    /* loop through the queue at the interface and send as many packets
1811     * as possible
1812     */
1813    while (t->tbf_q_len > 0) {
1814	m = t->tbf_q;
1815
1816	len = mtod(m, struct ip *)->ip_len;
1817
1818	/* determine if the packet can be sent */
1819	if (len <= t->tbf_n_tok) {
1820	    /* if so,
1821	     * reduce no of tokens, dequeue the packet,
1822	     * send the packet.
1823	     */
1824	    t->tbf_n_tok -= len;
1825
1826	    t->tbf_q = m->m_act;
1827	    if (--t->tbf_q_len == 0)
1828		t->tbf_t = NULL;
1829
1830	    m->m_act = NULL;
1831	    tbf_send_packet(vifp, m);
1832
1833	} else break;
1834    }
1835    splx(s);
1836}
1837
1838static void
1839tbf_reprocess_q(xvifp)
1840	void *xvifp;
1841{
1842    register struct vif *vifp = xvifp;
1843    if (ip_mrouter == NULL)
1844	return;
1845
1846    tbf_update_tokens(vifp);
1847
1848    tbf_process_q(vifp);
1849
1850    if (vifp->v_tbf->tbf_q_len)
1851	timeout(tbf_reprocess_q, (caddr_t)vifp, TBF_REPROCESS);
1852}
1853
1854/* function that will selectively discard a member of the queue
1855 * based on the precedence value and the priority
1856 */
1857static int
1858tbf_dq_sel(vifp, ip)
1859    register struct vif *vifp;
1860    register struct ip *ip;
1861{
1862    register int s = splnet();
1863    register u_int p;
1864    register struct mbuf *m, *last;
1865    register struct mbuf **np;
1866    register struct tbf *t = vifp->v_tbf;
1867
1868    p = priority(vifp, ip);
1869
1870    np = &t->tbf_q;
1871    last = NULL;
1872    while ((m = *np) != NULL) {
1873	if (p > priority(vifp, mtod(m, struct ip *))) {
1874	    *np = m->m_act;
1875	    /* If we're removing the last packet, fix the tail pointer */
1876	    if (m == t->tbf_t)
1877		t->tbf_t = last;
1878	    m_freem(m);
1879	    /* it's impossible for the queue to be empty, but
1880	     * we check anyway. */
1881	    if (--t->tbf_q_len == 0)
1882		t->tbf_t = NULL;
1883	    splx(s);
1884	    mrtstat.mrts_drop_sel++;
1885	    return(1);
1886	}
1887	np = &m->m_act;
1888	last = m;
1889    }
1890    splx(s);
1891    return(0);
1892}
1893
1894static void
1895tbf_send_packet(vifp, m)
1896    register struct vif *vifp;
1897    register struct mbuf *m;
1898{
1899    struct ip_moptions imo;
1900    int error;
1901    static struct route ro;
1902    int s = splnet();
1903
1904    if (vifp->v_flags & VIFF_TUNNEL) {
1905	/* If tunnel options */
1906	ip_output(m, (struct mbuf *)0, &vifp->v_route,
1907		  IP_FORWARDING, (struct ip_moptions *)0);
1908    } else {
1909	imo.imo_multicast_ifp  = vifp->v_ifp;
1910	imo.imo_multicast_ttl  = mtod(m, struct ip *)->ip_ttl - 1;
1911	imo.imo_multicast_loop = 1;
1912	imo.imo_multicast_vif  = -1;
1913
1914	/*
1915	 * Re-entrancy should not be a problem here, because
1916	 * the packets that we send out and are looped back at us
1917	 * should get rejected because they appear to come from
1918	 * the loopback interface, thus preventing looping.
1919	 */
1920	error = ip_output(m, (struct mbuf *)0, &ro,
1921			  IP_FORWARDING, &imo);
1922
1923	if (mrtdebug & DEBUG_XMIT)
1924	    log(LOG_DEBUG, "phyint_send on vif %d err %d\n",
1925		vifp - viftable, error);
1926    }
1927    splx(s);
1928}
1929
1930/* determine the current time and then
1931 * the elapsed time (between the last time and time now)
1932 * in milliseconds & update the no. of tokens in the bucket
1933 */
1934static void
1935tbf_update_tokens(vifp)
1936    register struct vif *vifp;
1937{
1938    struct timeval tp;
1939    register u_long tm;
1940    register int s = splnet();
1941    register struct tbf *t = vifp->v_tbf;
1942
1943    GET_TIME(tp);
1944
1945    TV_DELTA(tp, t->tbf_last_pkt_t, tm);
1946
1947    /*
1948     * This formula is actually
1949     * "time in seconds" * "bytes/second".
1950     *
1951     * (tm / 1000000) * (v_rate_limit * 1000 * (1000/1024) / 8)
1952     *
1953     * The (1000/1024) was introduced in add_vif to optimize
1954     * this divide into a shift.
1955     */
1956    t->tbf_n_tok += tm * vifp->v_rate_limit / 1024 / 8;
1957    t->tbf_last_pkt_t = tp;
1958
1959    if (t->tbf_n_tok > MAX_BKT_SIZE)
1960	t->tbf_n_tok = MAX_BKT_SIZE;
1961
1962    splx(s);
1963}
1964
1965static int
1966priority(vifp, ip)
1967    register struct vif *vifp;
1968    register struct ip *ip;
1969{
1970    register int prio;
1971
1972    /* temporary hack; may add general packet classifier some day */
1973
1974    /*
1975     * The UDP port space is divided up into four priority ranges:
1976     * [0, 16384)     : unclassified - lowest priority
1977     * [16384, 32768) : audio - highest priority
1978     * [32768, 49152) : whiteboard - medium priority
1979     * [49152, 65536) : video - low priority
1980     */
1981    if (ip->ip_p == IPPROTO_UDP) {
1982	struct udphdr *udp = (struct udphdr *)(((char *)ip) + (ip->ip_hl << 2));
1983	switch (ntohs(udp->uh_dport) & 0xc000) {
1984	    case 0x4000:
1985		prio = 70;
1986		break;
1987	    case 0x8000:
1988		prio = 60;
1989		break;
1990	    case 0xc000:
1991		prio = 55;
1992		break;
1993	    default:
1994		prio = 50;
1995		break;
1996	}
1997	if (tbfdebug > 1)
1998		log(LOG_DEBUG, "port %x prio%d\n", ntohs(udp->uh_dport), prio);
1999    } else {
2000	    prio = 50;
2001    }
2002    return prio;
2003}
2004
2005/*
2006 * End of token bucket filter modifications
2007 */
2008
2009int
2010ip_rsvp_vif_init(so, m)
2011    struct socket *so;
2012    struct mbuf *m;
2013{
2014    int i;
2015    register int s;
2016
2017    if (rsvpdebug)
2018	printf("ip_rsvp_vif_init: so_type = %d, pr_protocol = %d\n",
2019	       so->so_type, so->so_proto->pr_protocol);
2020
2021    if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_RSVP)
2022	return EOPNOTSUPP;
2023
2024    /* Check mbuf. */
2025    if (m == NULL || m->m_len != sizeof(int)) {
2026	return EINVAL;
2027    }
2028    i = *(mtod(m, int *));
2029
2030    if (rsvpdebug)
2031	printf("ip_rsvp_vif_init: vif = %d rsvp_on = %d\n",i,rsvp_on);
2032
2033    s = splnet();
2034
2035    /* Check vif. */
2036    if (!legal_vif_num(i)) {
2037	splx(s);
2038	return EADDRNOTAVAIL;
2039    }
2040
2041    /* Check if socket is available. */
2042    if (viftable[i].v_rsvpd != NULL) {
2043	splx(s);
2044	return EADDRINUSE;
2045    }
2046
2047    viftable[i].v_rsvpd = so;
2048    /* This may seem silly, but we need to be sure we don't over-increment
2049     * the RSVP counter, in case something slips up.
2050     */
2051    if (!viftable[i].v_rsvp_on) {
2052	viftable[i].v_rsvp_on = 1;
2053	rsvp_on++;
2054    }
2055
2056    splx(s);
2057    return 0;
2058}
2059
2060int
2061ip_rsvp_vif_done(so, m)
2062    struct socket *so;
2063    struct mbuf *m;
2064{
2065	int i;
2066	register int s;
2067
2068    if (rsvpdebug)
2069	printf("ip_rsvp_vif_done: so_type = %d, pr_protocol = %d\n",
2070	       so->so_type, so->so_proto->pr_protocol);
2071
2072    if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_RSVP)
2073	return EOPNOTSUPP;
2074
2075    /* Check mbuf. */
2076    if (m == NULL || m->m_len != sizeof(int)) {
2077	    return EINVAL;
2078    }
2079    i = *(mtod(m, int *));
2080
2081    s = splnet();
2082
2083    /* Check vif. */
2084    if (!legal_vif_num(i)) {
2085	splx(s);
2086        return EADDRNOTAVAIL;
2087    }
2088
2089    if (rsvpdebug)
2090	printf("ip_rsvp_vif_done: v_rsvpd = %p so = %p\n",
2091	       viftable[i].v_rsvpd, so);
2092
2093    viftable[i].v_rsvpd = NULL;
2094    /* This may seem silly, but we need to be sure we don't over-decrement
2095     * the RSVP counter, in case something slips up.
2096     */
2097    if (viftable[i].v_rsvp_on) {
2098	viftable[i].v_rsvp_on = 0;
2099	rsvp_on--;
2100    }
2101
2102    splx(s);
2103    return 0;
2104}
2105
2106void
2107ip_rsvp_force_done(so)
2108    struct socket *so;
2109{
2110    int vifi;
2111    register int s;
2112
2113    /* Don't bother if it is not the right type of socket. */
2114    if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_RSVP)
2115	return;
2116
2117    s = splnet();
2118
2119    /* The socket may be attached to more than one vif...this
2120     * is perfectly legal.
2121     */
2122    for (vifi = 0; vifi < numvifs; vifi++) {
2123	if (viftable[vifi].v_rsvpd == so) {
2124	    viftable[vifi].v_rsvpd = NULL;
2125	    /* This may seem silly, but we need to be sure we don't
2126	     * over-decrement the RSVP counter, in case something slips up.
2127	     */
2128	    if (viftable[vifi].v_rsvp_on) {
2129		viftable[vifi].v_rsvp_on = 0;
2130		rsvp_on--;
2131	    }
2132	}
2133    }
2134
2135    splx(s);
2136    return;
2137}
2138
2139void
2140rsvp_input(m, iphlen)
2141	struct mbuf *m;
2142	int iphlen;
2143{
2144    int vifi;
2145    register struct ip *ip = mtod(m, struct ip *);
2146    static struct sockaddr_in rsvp_src = { sizeof rsvp_src, AF_INET };
2147    register int s;
2148    struct ifnet *ifp;
2149
2150    if (rsvpdebug)
2151	printf("rsvp_input: rsvp_on %d\n",rsvp_on);
2152
2153    /* Can still get packets with rsvp_on = 0 if there is a local member
2154     * of the group to which the RSVP packet is addressed.  But in this
2155     * case we want to throw the packet away.
2156     */
2157    if (!rsvp_on) {
2158	m_freem(m);
2159	return;
2160    }
2161
2162    /* If the old-style non-vif-associated socket is set, then use
2163     * it and ignore the new ones.
2164     */
2165    if (ip_rsvpd != NULL) {
2166	if (rsvpdebug)
2167	    printf("rsvp_input: Sending packet up old-style socket\n");
2168	rip_input(m, iphlen);
2169	return;
2170    }
2171
2172    s = splnet();
2173
2174    if (rsvpdebug)
2175	printf("rsvp_input: check vifs\n");
2176
2177#ifdef DIAGNOSTIC
2178    if (!(m->m_flags & M_PKTHDR))
2179	    panic("rsvp_input no hdr");
2180#endif
2181
2182    ifp = m->m_pkthdr.rcvif;
2183    /* Find which vif the packet arrived on. */
2184    for (vifi = 0; vifi < numvifs; vifi++) {
2185	if (viftable[vifi].v_ifp == ifp)
2186 		break;
2187 	}
2188
2189    if (vifi == numvifs) {
2190	/* Can't find vif packet arrived on. Drop packet. */
2191	if (rsvpdebug)
2192	    printf("rsvp_input: Can't find vif for packet...dropping it.\n");
2193	m_freem(m);
2194	splx(s);
2195	return;
2196    }
2197
2198    if (rsvpdebug)
2199	printf("rsvp_input: check socket\n");
2200
2201    if (viftable[vifi].v_rsvpd == NULL) {
2202	/* drop packet, since there is no specific socket for this
2203	 * interface */
2204	    if (rsvpdebug)
2205		    printf("rsvp_input: No socket defined for vif %d\n",vifi);
2206	    m_freem(m);
2207	    splx(s);
2208	    return;
2209    }
2210    rsvp_src.sin_addr = ip->ip_src;
2211
2212    if (rsvpdebug && m)
2213	printf("rsvp_input: m->m_len = %d, sbspace() = %ld\n",
2214	       m->m_len,sbspace(&(viftable[vifi].v_rsvpd->so_rcv)));
2215
2216    if (socket_send(viftable[vifi].v_rsvpd, m, &rsvp_src) < 0)
2217	if (rsvpdebug)
2218	    printf("rsvp_input: Failed to append to socket\n");
2219    else
2220	if (rsvpdebug)
2221	    printf("rsvp_input: send packet up\n");
2222
2223    splx(s);
2224}
2225
2226#ifdef MROUTE_LKM
2227#include <sys/conf.h>
2228#include <sys/exec.h>
2229#include <sys/sysent.h>
2230#include <sys/lkm.h>
2231
2232MOD_MISC("ip_mroute_mod")
2233
2234static int
2235ip_mroute_mod_handle(struct lkm_table *lkmtp, int cmd)
2236{
2237	int i;
2238	struct lkm_misc	*args = lkmtp->private.lkm_misc;
2239	int err = 0;
2240
2241	switch(cmd) {
2242		static int (*old_ip_mrouter_cmd)();
2243		static int (*old_ip_mrouter_done)();
2244		static int (*old_ip_mforward)();
2245		static int (*old_mrt_ioctl)();
2246		static void (*old_proto4_input)();
2247		static int (*old_legal_vif_num)();
2248		extern struct protosw inetsw[];
2249
2250	case LKM_E_LOAD:
2251		if(lkmexists(lkmtp) || ip_mrtproto)
2252		  return(EEXIST);
2253		old_ip_mrouter_cmd = ip_mrouter_cmd;
2254		ip_mrouter_cmd = X_ip_mrouter_cmd;
2255		old_ip_mrouter_done = ip_mrouter_done;
2256		ip_mrouter_done = X_ip_mrouter_done;
2257		old_ip_mforward = ip_mforward;
2258		ip_mforward = X_ip_mforward;
2259		old_mrt_ioctl = mrt_ioctl;
2260		mrt_ioctl = X_mrt_ioctl;
2261              old_proto4_input = inetsw[ip_protox[ENCAP_PROTO]].pr_input;
2262              inetsw[ip_protox[ENCAP_PROTO]].pr_input = X_ipip_input;
2263		old_legal_vif_num = legal_vif_num;
2264		legal_vif_num = X_legal_vif_num;
2265		ip_mrtproto = IGMP_DVMRP;
2266
2267		printf("\nIP multicast routing loaded\n");
2268		break;
2269
2270	case LKM_E_UNLOAD:
2271		if (ip_mrouter)
2272		  return EINVAL;
2273
2274		ip_mrouter_cmd = old_ip_mrouter_cmd;
2275		ip_mrouter_done = old_ip_mrouter_done;
2276		ip_mforward = old_ip_mforward;
2277		mrt_ioctl = old_mrt_ioctl;
2278              inetsw[ip_protox[ENCAP_PROTO]].pr_input = old_proto4_input;
2279		legal_vif_num = old_legal_vif_num;
2280		ip_mrtproto = 0;
2281		break;
2282
2283	default:
2284		err = EINVAL;
2285		break;
2286	}
2287
2288	return(err);
2289}
2290
2291int
2292ip_mroute_mod(struct lkm_table *lkmtp, int cmd, int ver) {
2293	DISPATCH(lkmtp, cmd, ver, ip_mroute_mod_handle, ip_mroute_mod_handle,
2294		 nosys);
2295}
2296
2297#endif /* MROUTE_LKM */
2298#endif /* MROUTING */
2299