ip_mroute.c revision 241370
1/*-
2 * Copyright (c) 1989 Stephen Deering
3 * Copyright (c) 1992, 1993
4 *      The Regents of the University of California.  All rights reserved.
5 *
6 * This code is derived from software contributed to Berkeley by
7 * Stephen Deering of Stanford University.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in the
16 *    documentation and/or other materials provided with the distribution.
17 * 4. Neither the name of the University nor the names of its contributors
18 *    may be used to endorse or promote products derived from this software
19 *    without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 *
33 *      @(#)ip_mroute.c 8.2 (Berkeley) 11/15/93
34 */
35
36/*
37 * IP multicast forwarding procedures
38 *
39 * Written by David Waitzman, BBN Labs, August 1988.
40 * Modified by Steve Deering, Stanford, February 1989.
41 * Modified by Mark J. Steiglitz, Stanford, May, 1991
42 * Modified by Van Jacobson, LBL, January 1993
43 * Modified by Ajit Thyagarajan, PARC, August 1993
44 * Modified by Bill Fenner, PARC, April 1995
45 * Modified by Ahmed Helmy, SGI, June 1996
46 * Modified by George Edmond Eddy (Rusty), ISI, February 1998
47 * Modified by Pavlin Radoslavov, USC/ISI, May 1998, August 1999, October 2000
48 * Modified by Hitoshi Asaeda, WIDE, August 2000
49 * Modified by Pavlin Radoslavov, ICSI, October 2002
50 *
51 * MROUTING Revision: 3.5
52 * and PIM-SMv2 and PIM-DM support, advanced API support,
53 * bandwidth metering and signaling
54 */
55
56/*
57 * TODO: Prefix functions with ipmf_.
58 * TODO: Maintain a refcount on if_allmulti() in ifnet or in the protocol
59 * domain attachment (if_afdata) so we can track consumers of that service.
60 * TODO: Deprecate routing socket path for SIOCGETSGCNT and SIOCGETVIFCNT,
61 * move it to socket options.
62 * TODO: Cleanup LSRR removal further.
63 * TODO: Push RSVP stubs into raw_ip.c.
64 * TODO: Use bitstring.h for vif set.
65 * TODO: Fix mrt6_ioctl dangling ref when dynamically loaded.
66 * TODO: Sync ip6_mroute.c with this file.
67 */
68
69#include <sys/cdefs.h>
70__FBSDID("$FreeBSD: head/sys/netinet/ip_mroute.c 241370 2012-10-09 08:27:40Z kevlo $");
71
72#include "opt_inet.h"
73#include "opt_mrouting.h"
74
75#define _PIM_VT 1
76
77#include <sys/param.h>
78#include <sys/kernel.h>
79#include <sys/stddef.h>
80#include <sys/lock.h>
81#include <sys/ktr.h>
82#include <sys/malloc.h>
83#include <sys/mbuf.h>
84#include <sys/module.h>
85#include <sys/priv.h>
86#include <sys/protosw.h>
87#include <sys/signalvar.h>
88#include <sys/socket.h>
89#include <sys/socketvar.h>
90#include <sys/sockio.h>
91#include <sys/sx.h>
92#include <sys/sysctl.h>
93#include <sys/syslog.h>
94#include <sys/systm.h>
95#include <sys/time.h>
96
97#include <net/if.h>
98#include <net/netisr.h>
99#include <net/route.h>
100#include <net/vnet.h>
101
102#include <netinet/in.h>
103#include <netinet/igmp.h>
104#include <netinet/in_systm.h>
105#include <netinet/in_var.h>
106#include <netinet/ip.h>
107#include <netinet/ip_encap.h>
108#include <netinet/ip_mroute.h>
109#include <netinet/ip_var.h>
110#include <netinet/ip_options.h>
111#include <netinet/pim.h>
112#include <netinet/pim_var.h>
113#include <netinet/udp.h>
114
115#include <machine/in_cksum.h>
116
117#ifndef KTR_IPMF
118#define KTR_IPMF KTR_INET
119#endif
120
121#define		VIFI_INVALID	((vifi_t) -1)
122#define		M_HASCL(m)	((m)->m_flags & M_EXT)
123
124static VNET_DEFINE(uint32_t, last_tv_sec); /* last time we processed this */
125#define	V_last_tv_sec	VNET(last_tv_sec)
126
127static MALLOC_DEFINE(M_MRTABLE, "mroutetbl", "multicast forwarding cache");
128
129/*
130 * Locking.  We use two locks: one for the virtual interface table and
131 * one for the forwarding table.  These locks may be nested in which case
132 * the VIF lock must always be taken first.  Note that each lock is used
133 * to cover not only the specific data structure but also related data
134 * structures.
135 */
136
137static struct mtx mrouter_mtx;
138#define	MROUTER_LOCK()		mtx_lock(&mrouter_mtx)
139#define	MROUTER_UNLOCK()	mtx_unlock(&mrouter_mtx)
140#define	MROUTER_LOCK_ASSERT()	mtx_assert(&mrouter_mtx, MA_OWNED)
141#define	MROUTER_LOCK_INIT()						\
142	mtx_init(&mrouter_mtx, "IPv4 multicast forwarding", NULL, MTX_DEF)
143#define	MROUTER_LOCK_DESTROY()	mtx_destroy(&mrouter_mtx)
144
145static int ip_mrouter_cnt;	/* # of vnets with active mrouters */
146static int ip_mrouter_unloading; /* Allow no more V_ip_mrouter sockets */
147
148static VNET_DEFINE(struct mrtstat, mrtstat);
149#define	V_mrtstat		VNET(mrtstat)
150SYSCTL_VNET_STRUCT(_net_inet_ip, OID_AUTO, mrtstat, CTLFLAG_RW,
151    &VNET_NAME(mrtstat), mrtstat,
152    "IPv4 Multicast Forwarding Statistics (struct mrtstat, "
153    "netinet/ip_mroute.h)");
154
155static VNET_DEFINE(u_long, mfchash);
156#define	V_mfchash		VNET(mfchash)
157#define	MFCHASH(a, g)							\
158	((((a).s_addr >> 20) ^ ((a).s_addr >> 10) ^ (a).s_addr ^ \
159	  ((g).s_addr >> 20) ^ ((g).s_addr >> 10) ^ (g).s_addr) & V_mfchash)
160#define	MFCHASHSIZE	256
161
162static u_long mfchashsize;			/* Hash size */
163static VNET_DEFINE(u_char *, nexpire);		/* 0..mfchashsize-1 */
164#define	V_nexpire		VNET(nexpire)
165static VNET_DEFINE(LIST_HEAD(mfchashhdr, mfc)*, mfchashtbl);
166#define	V_mfchashtbl		VNET(mfchashtbl)
167
168static struct mtx mfc_mtx;
169#define	MFC_LOCK()		mtx_lock(&mfc_mtx)
170#define	MFC_UNLOCK()		mtx_unlock(&mfc_mtx)
171#define	MFC_LOCK_ASSERT()	mtx_assert(&mfc_mtx, MA_OWNED)
172#define	MFC_LOCK_INIT()							\
173	mtx_init(&mfc_mtx, "IPv4 multicast forwarding cache", NULL, MTX_DEF)
174#define	MFC_LOCK_DESTROY()	mtx_destroy(&mfc_mtx)
175
176static VNET_DEFINE(vifi_t, numvifs);
177#define	V_numvifs		VNET(numvifs)
178static VNET_DEFINE(struct vif, viftable[MAXVIFS]);
179#define	V_viftable		VNET(viftable)
180SYSCTL_VNET_OPAQUE(_net_inet_ip, OID_AUTO, viftable, CTLFLAG_RD,
181    &VNET_NAME(viftable), sizeof(V_viftable), "S,vif[MAXVIFS]",
182    "IPv4 Multicast Interfaces (struct vif[MAXVIFS], netinet/ip_mroute.h)");
183
184static struct mtx vif_mtx;
185#define	VIF_LOCK()		mtx_lock(&vif_mtx)
186#define	VIF_UNLOCK()		mtx_unlock(&vif_mtx)
187#define	VIF_LOCK_ASSERT()	mtx_assert(&vif_mtx, MA_OWNED)
188#define	VIF_LOCK_INIT()							\
189	mtx_init(&vif_mtx, "IPv4 multicast interfaces", NULL, MTX_DEF)
190#define	VIF_LOCK_DESTROY()	mtx_destroy(&vif_mtx)
191
192static eventhandler_tag if_detach_event_tag = NULL;
193
194static VNET_DEFINE(struct callout, expire_upcalls_ch);
195#define	V_expire_upcalls_ch	VNET(expire_upcalls_ch)
196
197#define		EXPIRE_TIMEOUT	(hz / 4)	/* 4x / second		*/
198#define		UPCALL_EXPIRE	6		/* number of timeouts	*/
199
200/*
201 * Bandwidth meter variables and constants
202 */
203static MALLOC_DEFINE(M_BWMETER, "bwmeter", "multicast upcall bw meters");
204/*
205 * Pending timeouts are stored in a hash table, the key being the
206 * expiration time. Periodically, the entries are analysed and processed.
207 */
208#define	BW_METER_BUCKETS	1024
209static VNET_DEFINE(struct bw_meter*, bw_meter_timers[BW_METER_BUCKETS]);
210#define	V_bw_meter_timers	VNET(bw_meter_timers)
211static VNET_DEFINE(struct callout, bw_meter_ch);
212#define	V_bw_meter_ch		VNET(bw_meter_ch)
213#define	BW_METER_PERIOD (hz)		/* periodical handling of bw meters */
214
215/*
216 * Pending upcalls are stored in a vector which is flushed when
217 * full, or periodically
218 */
219static VNET_DEFINE(struct bw_upcall, bw_upcalls[BW_UPCALLS_MAX]);
220#define	V_bw_upcalls		VNET(bw_upcalls)
221static VNET_DEFINE(u_int, bw_upcalls_n); /* # of pending upcalls */
222#define	V_bw_upcalls_n    	VNET(bw_upcalls_n)
223static VNET_DEFINE(struct callout, bw_upcalls_ch);
224#define	V_bw_upcalls_ch		VNET(bw_upcalls_ch)
225
226#define BW_UPCALLS_PERIOD (hz)		/* periodical flush of bw upcalls */
227
228static VNET_DEFINE(struct pimstat, pimstat);
229#define	V_pimstat		VNET(pimstat)
230
231SYSCTL_NODE(_net_inet, IPPROTO_PIM, pim, CTLFLAG_RW, 0, "PIM");
232SYSCTL_VNET_STRUCT(_net_inet_pim, PIMCTL_STATS, stats, CTLFLAG_RD,
233    &VNET_NAME(pimstat), pimstat,
234    "PIM Statistics (struct pimstat, netinet/pim_var.h)");
235
236static u_long	pim_squelch_wholepkt = 0;
237SYSCTL_ULONG(_net_inet_pim, OID_AUTO, squelch_wholepkt, CTLFLAG_RW,
238    &pim_squelch_wholepkt, 0,
239    "Disable IGMP_WHOLEPKT notifications if rendezvous point is unspecified");
240
241extern  struct domain inetdomain;
242static const struct protosw in_pim_protosw = {
243	.pr_type =		SOCK_RAW,
244	.pr_domain =		&inetdomain,
245	.pr_protocol =		IPPROTO_PIM,
246	.pr_flags =		PR_ATOMIC|PR_ADDR|PR_LASTHDR,
247	.pr_input =		pim_input,
248	.pr_output =		(pr_output_t*)rip_output,
249	.pr_ctloutput =		rip_ctloutput,
250	.pr_usrreqs =		&rip_usrreqs
251};
252static const struct encaptab *pim_encap_cookie;
253
254static int pim_encapcheck(const struct mbuf *, int, int, void *);
255
256/*
257 * Note: the PIM Register encapsulation adds the following in front of a
258 * data packet:
259 *
260 * struct pim_encap_hdr {
261 *    struct ip ip;
262 *    struct pim_encap_pimhdr  pim;
263 * }
264 *
265 */
266
267struct pim_encap_pimhdr {
268	struct pim pim;
269	uint32_t   flags;
270};
271#define		PIM_ENCAP_TTL	64
272
273static struct ip pim_encap_iphdr = {
274#if BYTE_ORDER == LITTLE_ENDIAN
275	sizeof(struct ip) >> 2,
276	IPVERSION,
277#else
278	IPVERSION,
279	sizeof(struct ip) >> 2,
280#endif
281	0,			/* tos */
282	sizeof(struct ip),	/* total length */
283	0,			/* id */
284	0,			/* frag offset */
285	PIM_ENCAP_TTL,
286	IPPROTO_PIM,
287	0,			/* checksum */
288};
289
290static struct pim_encap_pimhdr pim_encap_pimhdr = {
291    {
292	PIM_MAKE_VT(PIM_VERSION, PIM_REGISTER), /* PIM vers and message type */
293	0,			/* reserved */
294	0,			/* checksum */
295    },
296    0				/* flags */
297};
298
299static VNET_DEFINE(vifi_t, reg_vif_num) = VIFI_INVALID;
300#define	V_reg_vif_num		VNET(reg_vif_num)
301static VNET_DEFINE(struct ifnet, multicast_register_if);
302#define	V_multicast_register_if	VNET(multicast_register_if)
303
304/*
305 * Private variables.
306 */
307
308static u_long	X_ip_mcast_src(int);
309static int	X_ip_mforward(struct ip *, struct ifnet *, struct mbuf *,
310		    struct ip_moptions *);
311static int	X_ip_mrouter_done(void);
312static int	X_ip_mrouter_get(struct socket *, struct sockopt *);
313static int	X_ip_mrouter_set(struct socket *, struct sockopt *);
314static int	X_legal_vif_num(int);
315static int	X_mrt_ioctl(u_long, caddr_t, int);
316
317static int	add_bw_upcall(struct bw_upcall *);
318static int	add_mfc(struct mfcctl2 *);
319static int	add_vif(struct vifctl *);
320static void	bw_meter_prepare_upcall(struct bw_meter *, struct timeval *);
321static void	bw_meter_process(void);
322static void	bw_meter_receive_packet(struct bw_meter *, int,
323		    struct timeval *);
324static void	bw_upcalls_send(void);
325static int	del_bw_upcall(struct bw_upcall *);
326static int	del_mfc(struct mfcctl2 *);
327static int	del_vif(vifi_t);
328static int	del_vif_locked(vifi_t);
329static void	expire_bw_meter_process(void *);
330static void	expire_bw_upcalls_send(void *);
331static void	expire_mfc(struct mfc *);
332static void	expire_upcalls(void *);
333static void	free_bw_list(struct bw_meter *);
334static int	get_sg_cnt(struct sioc_sg_req *);
335static int	get_vif_cnt(struct sioc_vif_req *);
336static void	if_detached_event(void *, struct ifnet *);
337static int	ip_mdq(struct mbuf *, struct ifnet *, struct mfc *, vifi_t);
338static int	ip_mrouter_init(struct socket *, int);
339static __inline struct mfc *
340		mfc_find(struct in_addr *, struct in_addr *);
341static void	phyint_send(struct ip *, struct vif *, struct mbuf *);
342static struct mbuf *
343		pim_register_prepare(struct ip *, struct mbuf *);
344static int	pim_register_send(struct ip *, struct vif *,
345		    struct mbuf *, struct mfc *);
346static int	pim_register_send_rp(struct ip *, struct vif *,
347		    struct mbuf *, struct mfc *);
348static int	pim_register_send_upcall(struct ip *, struct vif *,
349		    struct mbuf *, struct mfc *);
350static void	schedule_bw_meter(struct bw_meter *, struct timeval *);
351static void	send_packet(struct vif *, struct mbuf *);
352static int	set_api_config(uint32_t *);
353static int	set_assert(int);
354static int	socket_send(struct socket *, struct mbuf *,
355		    struct sockaddr_in *);
356static void	unschedule_bw_meter(struct bw_meter *);
357
358/*
359 * Kernel multicast forwarding API capabilities and setup.
360 * If more API capabilities are added to the kernel, they should be
361 * recorded in `mrt_api_support'.
362 */
363#define MRT_API_VERSION		0x0305
364
365static const int mrt_api_version = MRT_API_VERSION;
366static const uint32_t mrt_api_support = (MRT_MFC_FLAGS_DISABLE_WRONGVIF |
367					 MRT_MFC_FLAGS_BORDER_VIF |
368					 MRT_MFC_RP |
369					 MRT_MFC_BW_UPCALL);
370static VNET_DEFINE(uint32_t, mrt_api_config);
371#define	V_mrt_api_config	VNET(mrt_api_config)
372static VNET_DEFINE(int, pim_assert_enabled);
373#define	V_pim_assert_enabled	VNET(pim_assert_enabled)
374static struct timeval pim_assert_interval = { 3, 0 };	/* Rate limit */
375
376/*
377 * Find a route for a given origin IP address and multicast group address.
378 * Statistics must be updated by the caller.
379 */
380static __inline struct mfc *
381mfc_find(struct in_addr *o, struct in_addr *g)
382{
383	struct mfc *rt;
384
385	MFC_LOCK_ASSERT();
386
387	LIST_FOREACH(rt, &V_mfchashtbl[MFCHASH(*o, *g)], mfc_hash) {
388		if (in_hosteq(rt->mfc_origin, *o) &&
389		    in_hosteq(rt->mfc_mcastgrp, *g) &&
390		    TAILQ_EMPTY(&rt->mfc_stall))
391			break;
392	}
393
394	return (rt);
395}
396
397/*
398 * Handle MRT setsockopt commands to modify the multicast forwarding tables.
399 */
400static int
401X_ip_mrouter_set(struct socket *so, struct sockopt *sopt)
402{
403    int	error, optval;
404    vifi_t	vifi;
405    struct	vifctl vifc;
406    struct	mfcctl2 mfc;
407    struct	bw_upcall bw_upcall;
408    uint32_t	i;
409
410    if (so != V_ip_mrouter && sopt->sopt_name != MRT_INIT)
411	return EPERM;
412
413    error = 0;
414    switch (sopt->sopt_name) {
415    case MRT_INIT:
416	error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval);
417	if (error)
418	    break;
419	error = ip_mrouter_init(so, optval);
420	break;
421
422    case MRT_DONE:
423	error = ip_mrouter_done();
424	break;
425
426    case MRT_ADD_VIF:
427	error = sooptcopyin(sopt, &vifc, sizeof vifc, sizeof vifc);
428	if (error)
429	    break;
430	error = add_vif(&vifc);
431	break;
432
433    case MRT_DEL_VIF:
434	error = sooptcopyin(sopt, &vifi, sizeof vifi, sizeof vifi);
435	if (error)
436	    break;
437	error = del_vif(vifi);
438	break;
439
440    case MRT_ADD_MFC:
441    case MRT_DEL_MFC:
442	/*
443	 * select data size depending on API version.
444	 */
445	if (sopt->sopt_name == MRT_ADD_MFC &&
446		V_mrt_api_config & MRT_API_FLAGS_ALL) {
447	    error = sooptcopyin(sopt, &mfc, sizeof(struct mfcctl2),
448				sizeof(struct mfcctl2));
449	} else {
450	    error = sooptcopyin(sopt, &mfc, sizeof(struct mfcctl),
451				sizeof(struct mfcctl));
452	    bzero((caddr_t)&mfc + sizeof(struct mfcctl),
453			sizeof(mfc) - sizeof(struct mfcctl));
454	}
455	if (error)
456	    break;
457	if (sopt->sopt_name == MRT_ADD_MFC)
458	    error = add_mfc(&mfc);
459	else
460	    error = del_mfc(&mfc);
461	break;
462
463    case MRT_ASSERT:
464	error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval);
465	if (error)
466	    break;
467	set_assert(optval);
468	break;
469
470    case MRT_API_CONFIG:
471	error = sooptcopyin(sopt, &i, sizeof i, sizeof i);
472	if (!error)
473	    error = set_api_config(&i);
474	if (!error)
475	    error = sooptcopyout(sopt, &i, sizeof i);
476	break;
477
478    case MRT_ADD_BW_UPCALL:
479    case MRT_DEL_BW_UPCALL:
480	error = sooptcopyin(sopt, &bw_upcall, sizeof bw_upcall,
481				sizeof bw_upcall);
482	if (error)
483	    break;
484	if (sopt->sopt_name == MRT_ADD_BW_UPCALL)
485	    error = add_bw_upcall(&bw_upcall);
486	else
487	    error = del_bw_upcall(&bw_upcall);
488	break;
489
490    default:
491	error = EOPNOTSUPP;
492	break;
493    }
494    return error;
495}
496
497/*
498 * Handle MRT getsockopt commands
499 */
500static int
501X_ip_mrouter_get(struct socket *so, struct sockopt *sopt)
502{
503    int error;
504
505    switch (sopt->sopt_name) {
506    case MRT_VERSION:
507	error = sooptcopyout(sopt, &mrt_api_version, sizeof mrt_api_version);
508	break;
509
510    case MRT_ASSERT:
511	error = sooptcopyout(sopt, &V_pim_assert_enabled,
512	    sizeof V_pim_assert_enabled);
513	break;
514
515    case MRT_API_SUPPORT:
516	error = sooptcopyout(sopt, &mrt_api_support, sizeof mrt_api_support);
517	break;
518
519    case MRT_API_CONFIG:
520	error = sooptcopyout(sopt, &V_mrt_api_config, sizeof V_mrt_api_config);
521	break;
522
523    default:
524	error = EOPNOTSUPP;
525	break;
526    }
527    return error;
528}
529
530/*
531 * Handle ioctl commands to obtain information from the cache
532 */
533static int
534X_mrt_ioctl(u_long cmd, caddr_t data, int fibnum __unused)
535{
536    int error = 0;
537
538    /*
539     * Currently the only function calling this ioctl routine is rtioctl().
540     * Typically, only root can create the raw socket in order to execute
541     * this ioctl method, however the request might be coming from a prison
542     */
543    error = priv_check(curthread, PRIV_NETINET_MROUTE);
544    if (error)
545	return (error);
546    switch (cmd) {
547    case (SIOCGETVIFCNT):
548	error = get_vif_cnt((struct sioc_vif_req *)data);
549	break;
550
551    case (SIOCGETSGCNT):
552	error = get_sg_cnt((struct sioc_sg_req *)data);
553	break;
554
555    default:
556	error = EINVAL;
557	break;
558    }
559    return error;
560}
561
562/*
563 * returns the packet, byte, rpf-failure count for the source group provided
564 */
565static int
566get_sg_cnt(struct sioc_sg_req *req)
567{
568    struct mfc *rt;
569
570    MFC_LOCK();
571    rt = mfc_find(&req->src, &req->grp);
572    if (rt == NULL) {
573	MFC_UNLOCK();
574	req->pktcnt = req->bytecnt = req->wrong_if = 0xffffffff;
575	return EADDRNOTAVAIL;
576    }
577    req->pktcnt = rt->mfc_pkt_cnt;
578    req->bytecnt = rt->mfc_byte_cnt;
579    req->wrong_if = rt->mfc_wrong_if;
580    MFC_UNLOCK();
581    return 0;
582}
583
584/*
585 * returns the input and output packet and byte counts on the vif provided
586 */
587static int
588get_vif_cnt(struct sioc_vif_req *req)
589{
590    vifi_t vifi = req->vifi;
591
592    VIF_LOCK();
593    if (vifi >= V_numvifs) {
594	VIF_UNLOCK();
595	return EINVAL;
596    }
597
598    req->icount = V_viftable[vifi].v_pkt_in;
599    req->ocount = V_viftable[vifi].v_pkt_out;
600    req->ibytes = V_viftable[vifi].v_bytes_in;
601    req->obytes = V_viftable[vifi].v_bytes_out;
602    VIF_UNLOCK();
603
604    return 0;
605}
606
607static void
608if_detached_event(void *arg __unused, struct ifnet *ifp)
609{
610    vifi_t vifi;
611    int i;
612
613    MROUTER_LOCK();
614
615    if (V_ip_mrouter == NULL) {
616	MROUTER_UNLOCK();
617	return;
618    }
619
620    VIF_LOCK();
621    MFC_LOCK();
622
623    /*
624     * Tear down multicast forwarder state associated with this ifnet.
625     * 1. Walk the vif list, matching vifs against this ifnet.
626     * 2. Walk the multicast forwarding cache (mfc) looking for
627     *    inner matches with this vif's index.
628     * 3. Expire any matching multicast forwarding cache entries.
629     * 4. Free vif state. This should disable ALLMULTI on the interface.
630     */
631    for (vifi = 0; vifi < V_numvifs; vifi++) {
632	if (V_viftable[vifi].v_ifp != ifp)
633		continue;
634	for (i = 0; i < mfchashsize; i++) {
635		struct mfc *rt, *nrt;
636		for (rt = LIST_FIRST(&V_mfchashtbl[i]); rt; rt = nrt) {
637			nrt = LIST_NEXT(rt, mfc_hash);
638			if (rt->mfc_parent == vifi) {
639				expire_mfc(rt);
640			}
641		}
642	}
643	del_vif_locked(vifi);
644    }
645
646    MFC_UNLOCK();
647    VIF_UNLOCK();
648
649    MROUTER_UNLOCK();
650}
651
652/*
653 * Enable multicast forwarding.
654 */
655static int
656ip_mrouter_init(struct socket *so, int version)
657{
658
659    CTR3(KTR_IPMF, "%s: so_type %d, pr_protocol %d", __func__,
660        so->so_type, so->so_proto->pr_protocol);
661
662    if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_IGMP)
663	return EOPNOTSUPP;
664
665    if (version != 1)
666	return ENOPROTOOPT;
667
668    MROUTER_LOCK();
669
670    if (ip_mrouter_unloading) {
671	MROUTER_UNLOCK();
672	return ENOPROTOOPT;
673    }
674
675    if (V_ip_mrouter != NULL) {
676	MROUTER_UNLOCK();
677	return EADDRINUSE;
678    }
679
680    V_mfchashtbl = hashinit_flags(mfchashsize, M_MRTABLE, &V_mfchash,
681	HASH_NOWAIT);
682
683    callout_reset(&V_expire_upcalls_ch, EXPIRE_TIMEOUT, expire_upcalls,
684	curvnet);
685    callout_reset(&V_bw_upcalls_ch, BW_UPCALLS_PERIOD, expire_bw_upcalls_send,
686	curvnet);
687    callout_reset(&V_bw_meter_ch, BW_METER_PERIOD, expire_bw_meter_process,
688	curvnet);
689
690    V_ip_mrouter = so;
691    ip_mrouter_cnt++;
692
693    MROUTER_UNLOCK();
694
695    CTR1(KTR_IPMF, "%s: done", __func__);
696
697    return 0;
698}
699
700/*
701 * Disable multicast forwarding.
702 */
703static int
704X_ip_mrouter_done(void)
705{
706    vifi_t vifi;
707    int i;
708    struct ifnet *ifp;
709    struct ifreq ifr;
710
711    MROUTER_LOCK();
712
713    if (V_ip_mrouter == NULL) {
714	MROUTER_UNLOCK();
715	return EINVAL;
716    }
717
718    /*
719     * Detach/disable hooks to the reset of the system.
720     */
721    V_ip_mrouter = NULL;
722    ip_mrouter_cnt--;
723    V_mrt_api_config = 0;
724
725    VIF_LOCK();
726
727    /*
728     * For each phyint in use, disable promiscuous reception of all IP
729     * multicasts.
730     */
731    for (vifi = 0; vifi < V_numvifs; vifi++) {
732	if (!in_nullhost(V_viftable[vifi].v_lcl_addr) &&
733		!(V_viftable[vifi].v_flags & (VIFF_TUNNEL | VIFF_REGISTER))) {
734	    struct sockaddr_in *so = (struct sockaddr_in *)&(ifr.ifr_addr);
735
736	    so->sin_len = sizeof(struct sockaddr_in);
737	    so->sin_family = AF_INET;
738	    so->sin_addr.s_addr = INADDR_ANY;
739	    ifp = V_viftable[vifi].v_ifp;
740	    if_allmulti(ifp, 0);
741	}
742    }
743    bzero((caddr_t)V_viftable, sizeof(V_viftable));
744    V_numvifs = 0;
745    V_pim_assert_enabled = 0;
746
747    VIF_UNLOCK();
748
749    callout_stop(&V_expire_upcalls_ch);
750    callout_stop(&V_bw_upcalls_ch);
751    callout_stop(&V_bw_meter_ch);
752
753    MFC_LOCK();
754
755    /*
756     * Free all multicast forwarding cache entries.
757     * Do not use hashdestroy(), as we must perform other cleanup.
758     */
759    for (i = 0; i < mfchashsize; i++) {
760	struct mfc *rt, *nrt;
761	for (rt = LIST_FIRST(&V_mfchashtbl[i]); rt; rt = nrt) {
762		nrt = LIST_NEXT(rt, mfc_hash);
763		expire_mfc(rt);
764	}
765    }
766    free(V_mfchashtbl, M_MRTABLE);
767    V_mfchashtbl = NULL;
768
769    bzero(V_nexpire, sizeof(V_nexpire[0]) * mfchashsize);
770
771    V_bw_upcalls_n = 0;
772    bzero(V_bw_meter_timers, sizeof(V_bw_meter_timers));
773
774    MFC_UNLOCK();
775
776    V_reg_vif_num = VIFI_INVALID;
777
778    MROUTER_UNLOCK();
779
780    CTR1(KTR_IPMF, "%s: done", __func__);
781
782    return 0;
783}
784
785/*
786 * Set PIM assert processing global
787 */
788static int
789set_assert(int i)
790{
791    if ((i != 1) && (i != 0))
792	return EINVAL;
793
794    V_pim_assert_enabled = i;
795
796    return 0;
797}
798
799/*
800 * Configure API capabilities
801 */
802int
803set_api_config(uint32_t *apival)
804{
805    int i;
806
807    /*
808     * We can set the API capabilities only if it is the first operation
809     * after MRT_INIT. I.e.:
810     *  - there are no vifs installed
811     *  - pim_assert is not enabled
812     *  - the MFC table is empty
813     */
814    if (V_numvifs > 0) {
815	*apival = 0;
816	return EPERM;
817    }
818    if (V_pim_assert_enabled) {
819	*apival = 0;
820	return EPERM;
821    }
822
823    MFC_LOCK();
824
825    for (i = 0; i < mfchashsize; i++) {
826	if (LIST_FIRST(&V_mfchashtbl[i]) != NULL) {
827	    *apival = 0;
828	    return EPERM;
829	}
830    }
831
832    MFC_UNLOCK();
833
834    V_mrt_api_config = *apival & mrt_api_support;
835    *apival = V_mrt_api_config;
836
837    return 0;
838}
839
840/*
841 * Add a vif to the vif table
842 */
843static int
844add_vif(struct vifctl *vifcp)
845{
846    struct vif *vifp = V_viftable + vifcp->vifc_vifi;
847    struct sockaddr_in sin = {sizeof sin, AF_INET};
848    struct ifaddr *ifa;
849    struct ifnet *ifp;
850    int error;
851
852    VIF_LOCK();
853    if (vifcp->vifc_vifi >= MAXVIFS) {
854	VIF_UNLOCK();
855	return EINVAL;
856    }
857    /* rate limiting is no longer supported by this code */
858    if (vifcp->vifc_rate_limit != 0) {
859	log(LOG_ERR, "rate limiting is no longer supported\n");
860	VIF_UNLOCK();
861	return EINVAL;
862    }
863    if (!in_nullhost(vifp->v_lcl_addr)) {
864	VIF_UNLOCK();
865	return EADDRINUSE;
866    }
867    if (in_nullhost(vifcp->vifc_lcl_addr)) {
868	VIF_UNLOCK();
869	return EADDRNOTAVAIL;
870    }
871
872    /* Find the interface with an address in AF_INET family */
873    if (vifcp->vifc_flags & VIFF_REGISTER) {
874	/*
875	 * XXX: Because VIFF_REGISTER does not really need a valid
876	 * local interface (e.g. it could be 127.0.0.2), we don't
877	 * check its address.
878	 */
879	ifp = NULL;
880    } else {
881	sin.sin_addr = vifcp->vifc_lcl_addr;
882	ifa = ifa_ifwithaddr((struct sockaddr *)&sin);
883	if (ifa == NULL) {
884	    VIF_UNLOCK();
885	    return EADDRNOTAVAIL;
886	}
887	ifp = ifa->ifa_ifp;
888	ifa_free(ifa);
889    }
890
891    if ((vifcp->vifc_flags & VIFF_TUNNEL) != 0) {
892	CTR1(KTR_IPMF, "%s: tunnels are no longer supported", __func__);
893	VIF_UNLOCK();
894	return EOPNOTSUPP;
895    } else if (vifcp->vifc_flags & VIFF_REGISTER) {
896	ifp = &V_multicast_register_if;
897	CTR2(KTR_IPMF, "%s: add register vif for ifp %p", __func__, ifp);
898	if (V_reg_vif_num == VIFI_INVALID) {
899	    if_initname(&V_multicast_register_if, "register_vif", 0);
900	    V_multicast_register_if.if_flags = IFF_LOOPBACK;
901	    V_reg_vif_num = vifcp->vifc_vifi;
902	}
903    } else {		/* Make sure the interface supports multicast */
904	if ((ifp->if_flags & IFF_MULTICAST) == 0) {
905	    VIF_UNLOCK();
906	    return EOPNOTSUPP;
907	}
908
909	/* Enable promiscuous reception of all IP multicasts from the if */
910	error = if_allmulti(ifp, 1);
911	if (error) {
912	    VIF_UNLOCK();
913	    return error;
914	}
915    }
916
917    vifp->v_flags     = vifcp->vifc_flags;
918    vifp->v_threshold = vifcp->vifc_threshold;
919    vifp->v_lcl_addr  = vifcp->vifc_lcl_addr;
920    vifp->v_rmt_addr  = vifcp->vifc_rmt_addr;
921    vifp->v_ifp       = ifp;
922    /* initialize per vif pkt counters */
923    vifp->v_pkt_in    = 0;
924    vifp->v_pkt_out   = 0;
925    vifp->v_bytes_in  = 0;
926    vifp->v_bytes_out = 0;
927
928    /* Adjust numvifs up if the vifi is higher than numvifs */
929    if (V_numvifs <= vifcp->vifc_vifi)
930	V_numvifs = vifcp->vifc_vifi + 1;
931
932    VIF_UNLOCK();
933
934    CTR4(KTR_IPMF, "%s: add vif %d laddr %s thresh %x", __func__,
935	(int)vifcp->vifc_vifi, inet_ntoa(vifcp->vifc_lcl_addr),
936	(int)vifcp->vifc_threshold);
937
938    return 0;
939}
940
941/*
942 * Delete a vif from the vif table
943 */
944static int
945del_vif_locked(vifi_t vifi)
946{
947    struct vif *vifp;
948
949    VIF_LOCK_ASSERT();
950
951    if (vifi >= V_numvifs) {
952	return EINVAL;
953    }
954    vifp = &V_viftable[vifi];
955    if (in_nullhost(vifp->v_lcl_addr)) {
956	return EADDRNOTAVAIL;
957    }
958
959    if (!(vifp->v_flags & (VIFF_TUNNEL | VIFF_REGISTER)))
960	if_allmulti(vifp->v_ifp, 0);
961
962    if (vifp->v_flags & VIFF_REGISTER)
963	V_reg_vif_num = VIFI_INVALID;
964
965    bzero((caddr_t)vifp, sizeof (*vifp));
966
967    CTR2(KTR_IPMF, "%s: delete vif %d", __func__, (int)vifi);
968
969    /* Adjust numvifs down */
970    for (vifi = V_numvifs; vifi > 0; vifi--)
971	if (!in_nullhost(V_viftable[vifi-1].v_lcl_addr))
972	    break;
973    V_numvifs = vifi;
974
975    return 0;
976}
977
978static int
979del_vif(vifi_t vifi)
980{
981    int cc;
982
983    VIF_LOCK();
984    cc = del_vif_locked(vifi);
985    VIF_UNLOCK();
986
987    return cc;
988}
989
990/*
991 * update an mfc entry without resetting counters and S,G addresses.
992 */
993static void
994update_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp)
995{
996    int i;
997
998    rt->mfc_parent = mfccp->mfcc_parent;
999    for (i = 0; i < V_numvifs; i++) {
1000	rt->mfc_ttls[i] = mfccp->mfcc_ttls[i];
1001	rt->mfc_flags[i] = mfccp->mfcc_flags[i] & V_mrt_api_config &
1002	    MRT_MFC_FLAGS_ALL;
1003    }
1004    /* set the RP address */
1005    if (V_mrt_api_config & MRT_MFC_RP)
1006	rt->mfc_rp = mfccp->mfcc_rp;
1007    else
1008	rt->mfc_rp.s_addr = INADDR_ANY;
1009}
1010
1011/*
1012 * fully initialize an mfc entry from the parameter.
1013 */
1014static void
1015init_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp)
1016{
1017    rt->mfc_origin     = mfccp->mfcc_origin;
1018    rt->mfc_mcastgrp   = mfccp->mfcc_mcastgrp;
1019
1020    update_mfc_params(rt, mfccp);
1021
1022    /* initialize pkt counters per src-grp */
1023    rt->mfc_pkt_cnt    = 0;
1024    rt->mfc_byte_cnt   = 0;
1025    rt->mfc_wrong_if   = 0;
1026    timevalclear(&rt->mfc_last_assert);
1027}
1028
1029static void
1030expire_mfc(struct mfc *rt)
1031{
1032	struct rtdetq *rte, *nrte;
1033
1034	MFC_LOCK_ASSERT();
1035
1036	free_bw_list(rt->mfc_bw_meter);
1037
1038	TAILQ_FOREACH_SAFE(rte, &rt->mfc_stall, rte_link, nrte) {
1039		m_freem(rte->m);
1040		TAILQ_REMOVE(&rt->mfc_stall, rte, rte_link);
1041		free(rte, M_MRTABLE);
1042	}
1043
1044	LIST_REMOVE(rt, mfc_hash);
1045	free(rt, M_MRTABLE);
1046}
1047
1048/*
1049 * Add an mfc entry
1050 */
1051static int
1052add_mfc(struct mfcctl2 *mfccp)
1053{
1054    struct mfc *rt;
1055    struct rtdetq *rte, *nrte;
1056    u_long hash = 0;
1057    u_short nstl;
1058
1059    VIF_LOCK();
1060    MFC_LOCK();
1061
1062    rt = mfc_find(&mfccp->mfcc_origin, &mfccp->mfcc_mcastgrp);
1063
1064    /* If an entry already exists, just update the fields */
1065    if (rt) {
1066	CTR4(KTR_IPMF, "%s: update mfc orig %s group %lx parent %x",
1067	    __func__, inet_ntoa(mfccp->mfcc_origin),
1068	    (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr),
1069	    mfccp->mfcc_parent);
1070	update_mfc_params(rt, mfccp);
1071	MFC_UNLOCK();
1072	VIF_UNLOCK();
1073	return (0);
1074    }
1075
1076    /*
1077     * Find the entry for which the upcall was made and update
1078     */
1079    nstl = 0;
1080    hash = MFCHASH(mfccp->mfcc_origin, mfccp->mfcc_mcastgrp);
1081    LIST_FOREACH(rt, &V_mfchashtbl[hash], mfc_hash) {
1082	if (in_hosteq(rt->mfc_origin, mfccp->mfcc_origin) &&
1083	    in_hosteq(rt->mfc_mcastgrp, mfccp->mfcc_mcastgrp) &&
1084	    !TAILQ_EMPTY(&rt->mfc_stall)) {
1085		CTR5(KTR_IPMF,
1086		    "%s: add mfc orig %s group %lx parent %x qh %p",
1087		    __func__, inet_ntoa(mfccp->mfcc_origin),
1088		    (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr),
1089		    mfccp->mfcc_parent,
1090		    TAILQ_FIRST(&rt->mfc_stall));
1091		if (nstl++)
1092			CTR1(KTR_IPMF, "%s: multiple matches", __func__);
1093
1094		init_mfc_params(rt, mfccp);
1095		rt->mfc_expire = 0;	/* Don't clean this guy up */
1096		V_nexpire[hash]--;
1097
1098		/* Free queued packets, but attempt to forward them first. */
1099		TAILQ_FOREACH_SAFE(rte, &rt->mfc_stall, rte_link, nrte) {
1100			if (rte->ifp != NULL)
1101				ip_mdq(rte->m, rte->ifp, rt, -1);
1102			m_freem(rte->m);
1103			TAILQ_REMOVE(&rt->mfc_stall, rte, rte_link);
1104			rt->mfc_nstall--;
1105			free(rte, M_MRTABLE);
1106		}
1107	}
1108    }
1109
1110    /*
1111     * It is possible that an entry is being inserted without an upcall
1112     */
1113    if (nstl == 0) {
1114	CTR1(KTR_IPMF, "%s: adding mfc w/o upcall", __func__);
1115	LIST_FOREACH(rt, &V_mfchashtbl[hash], mfc_hash) {
1116		if (in_hosteq(rt->mfc_origin, mfccp->mfcc_origin) &&
1117		    in_hosteq(rt->mfc_mcastgrp, mfccp->mfcc_mcastgrp)) {
1118			init_mfc_params(rt, mfccp);
1119			if (rt->mfc_expire)
1120			    V_nexpire[hash]--;
1121			rt->mfc_expire = 0;
1122			break; /* XXX */
1123		}
1124	}
1125
1126	if (rt == NULL) {		/* no upcall, so make a new entry */
1127	    rt = (struct mfc *)malloc(sizeof(*rt), M_MRTABLE, M_NOWAIT);
1128	    if (rt == NULL) {
1129		MFC_UNLOCK();
1130		VIF_UNLOCK();
1131		return (ENOBUFS);
1132	    }
1133
1134	    init_mfc_params(rt, mfccp);
1135	    TAILQ_INIT(&rt->mfc_stall);
1136	    rt->mfc_nstall = 0;
1137
1138	    rt->mfc_expire     = 0;
1139	    rt->mfc_bw_meter = NULL;
1140
1141	    /* insert new entry at head of hash chain */
1142	    LIST_INSERT_HEAD(&V_mfchashtbl[hash], rt, mfc_hash);
1143	}
1144    }
1145
1146    MFC_UNLOCK();
1147    VIF_UNLOCK();
1148
1149    return (0);
1150}
1151
1152/*
1153 * Delete an mfc entry
1154 */
1155static int
1156del_mfc(struct mfcctl2 *mfccp)
1157{
1158    struct in_addr	origin;
1159    struct in_addr	mcastgrp;
1160    struct mfc		*rt;
1161
1162    origin = mfccp->mfcc_origin;
1163    mcastgrp = mfccp->mfcc_mcastgrp;
1164
1165    CTR3(KTR_IPMF, "%s: delete mfc orig %s group %lx", __func__,
1166	inet_ntoa(origin), (u_long)ntohl(mcastgrp.s_addr));
1167
1168    MFC_LOCK();
1169
1170    rt = mfc_find(&origin, &mcastgrp);
1171    if (rt == NULL) {
1172	MFC_UNLOCK();
1173	return EADDRNOTAVAIL;
1174    }
1175
1176    /*
1177     * free the bw_meter entries
1178     */
1179    free_bw_list(rt->mfc_bw_meter);
1180    rt->mfc_bw_meter = NULL;
1181
1182    LIST_REMOVE(rt, mfc_hash);
1183    free(rt, M_MRTABLE);
1184
1185    MFC_UNLOCK();
1186
1187    return (0);
1188}
1189
1190/*
1191 * Send a message to the routing daemon on the multicast routing socket.
1192 */
1193static int
1194socket_send(struct socket *s, struct mbuf *mm, struct sockaddr_in *src)
1195{
1196    if (s) {
1197	SOCKBUF_LOCK(&s->so_rcv);
1198	if (sbappendaddr_locked(&s->so_rcv, (struct sockaddr *)src, mm,
1199	    NULL) != 0) {
1200	    sorwakeup_locked(s);
1201	    return 0;
1202	}
1203	SOCKBUF_UNLOCK(&s->so_rcv);
1204    }
1205    m_freem(mm);
1206    return -1;
1207}
1208
1209/*
1210 * IP multicast forwarding function. This function assumes that the packet
1211 * pointed to by "ip" has arrived on (or is about to be sent to) the interface
1212 * pointed to by "ifp", and the packet is to be relayed to other networks
1213 * that have members of the packet's destination IP multicast group.
1214 *
1215 * The packet is returned unscathed to the caller, unless it is
1216 * erroneous, in which case a non-zero return value tells the caller to
1217 * discard it.
1218 */
1219
1220#define TUNNEL_LEN  12  /* # bytes of IP option for tunnel encapsulation  */
1221
1222static int
1223X_ip_mforward(struct ip *ip, struct ifnet *ifp, struct mbuf *m,
1224    struct ip_moptions *imo)
1225{
1226    struct mfc *rt;
1227    int error;
1228    vifi_t vifi;
1229
1230    CTR3(KTR_IPMF, "ip_mforward: delete mfc orig %s group %lx ifp %p",
1231	inet_ntoa(ip->ip_src), (u_long)ntohl(ip->ip_dst.s_addr), ifp);
1232
1233    if (ip->ip_hl < (sizeof(struct ip) + TUNNEL_LEN) >> 2 ||
1234		((u_char *)(ip + 1))[1] != IPOPT_LSRR ) {
1235	/*
1236	 * Packet arrived via a physical interface or
1237	 * an encapsulated tunnel or a register_vif.
1238	 */
1239    } else {
1240	/*
1241	 * Packet arrived through a source-route tunnel.
1242	 * Source-route tunnels are no longer supported.
1243	 */
1244	return (1);
1245    }
1246
1247    VIF_LOCK();
1248    MFC_LOCK();
1249    if (imo && ((vifi = imo->imo_multicast_vif) < V_numvifs)) {
1250	if (ip->ip_ttl < MAXTTL)
1251	    ip->ip_ttl++;	/* compensate for -1 in *_send routines */
1252	error = ip_mdq(m, ifp, NULL, vifi);
1253	MFC_UNLOCK();
1254	VIF_UNLOCK();
1255	return error;
1256    }
1257
1258    /*
1259     * Don't forward a packet with time-to-live of zero or one,
1260     * or a packet destined to a local-only group.
1261     */
1262    if (ip->ip_ttl <= 1 || IN_LOCAL_GROUP(ntohl(ip->ip_dst.s_addr))) {
1263	MFC_UNLOCK();
1264	VIF_UNLOCK();
1265	return 0;
1266    }
1267
1268    /*
1269     * Determine forwarding vifs from the forwarding cache table
1270     */
1271    MRTSTAT_INC(mrts_mfc_lookups);
1272    rt = mfc_find(&ip->ip_src, &ip->ip_dst);
1273
1274    /* Entry exists, so forward if necessary */
1275    if (rt != NULL) {
1276	error = ip_mdq(m, ifp, rt, -1);
1277	MFC_UNLOCK();
1278	VIF_UNLOCK();
1279	return error;
1280    } else {
1281	/*
1282	 * If we don't have a route for packet's origin,
1283	 * Make a copy of the packet & send message to routing daemon
1284	 */
1285
1286	struct mbuf *mb0;
1287	struct rtdetq *rte;
1288	u_long hash;
1289	int hlen = ip->ip_hl << 2;
1290
1291	MRTSTAT_INC(mrts_mfc_misses);
1292	MRTSTAT_INC(mrts_no_route);
1293	CTR2(KTR_IPMF, "ip_mforward: no mfc for (%s,%lx)",
1294	    inet_ntoa(ip->ip_src), (u_long)ntohl(ip->ip_dst.s_addr));
1295
1296	/*
1297	 * Allocate mbufs early so that we don't do extra work if we are
1298	 * just going to fail anyway.  Make sure to pullup the header so
1299	 * that other people can't step on it.
1300	 */
1301	rte = (struct rtdetq *)malloc((sizeof *rte), M_MRTABLE,
1302	    M_NOWAIT|M_ZERO);
1303	if (rte == NULL) {
1304	    MFC_UNLOCK();
1305	    VIF_UNLOCK();
1306	    return ENOBUFS;
1307	}
1308
1309	mb0 = m_copypacket(m, M_DONTWAIT);
1310	if (mb0 && (M_HASCL(mb0) || mb0->m_len < hlen))
1311	    mb0 = m_pullup(mb0, hlen);
1312	if (mb0 == NULL) {
1313	    free(rte, M_MRTABLE);
1314	    MFC_UNLOCK();
1315	    VIF_UNLOCK();
1316	    return ENOBUFS;
1317	}
1318
1319	/* is there an upcall waiting for this flow ? */
1320	hash = MFCHASH(ip->ip_src, ip->ip_dst);
1321	LIST_FOREACH(rt, &V_mfchashtbl[hash], mfc_hash) {
1322		if (in_hosteq(ip->ip_src, rt->mfc_origin) &&
1323		    in_hosteq(ip->ip_dst, rt->mfc_mcastgrp) &&
1324		    !TAILQ_EMPTY(&rt->mfc_stall))
1325			break;
1326	}
1327
1328	if (rt == NULL) {
1329	    int i;
1330	    struct igmpmsg *im;
1331	    struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
1332	    struct mbuf *mm;
1333
1334	    /*
1335	     * Locate the vifi for the incoming interface for this packet.
1336	     * If none found, drop packet.
1337	     */
1338	    for (vifi = 0; vifi < V_numvifs &&
1339		    V_viftable[vifi].v_ifp != ifp; vifi++)
1340		;
1341	    if (vifi >= V_numvifs)	/* vif not found, drop packet */
1342		goto non_fatal;
1343
1344	    /* no upcall, so make a new entry */
1345	    rt = (struct mfc *)malloc(sizeof(*rt), M_MRTABLE, M_NOWAIT);
1346	    if (rt == NULL)
1347		goto fail;
1348
1349	    /* Make a copy of the header to send to the user level process */
1350	    mm = m_copy(mb0, 0, hlen);
1351	    if (mm == NULL)
1352		goto fail1;
1353
1354	    /*
1355	     * Send message to routing daemon to install
1356	     * a route into the kernel table
1357	     */
1358
1359	    im = mtod(mm, struct igmpmsg *);
1360	    im->im_msgtype = IGMPMSG_NOCACHE;
1361	    im->im_mbz = 0;
1362	    im->im_vif = vifi;
1363
1364	    MRTSTAT_INC(mrts_upcalls);
1365
1366	    k_igmpsrc.sin_addr = ip->ip_src;
1367	    if (socket_send(V_ip_mrouter, mm, &k_igmpsrc) < 0) {
1368		CTR0(KTR_IPMF, "ip_mforward: socket queue full");
1369		MRTSTAT_INC(mrts_upq_sockfull);
1370fail1:
1371		free(rt, M_MRTABLE);
1372fail:
1373		free(rte, M_MRTABLE);
1374		m_freem(mb0);
1375		MFC_UNLOCK();
1376		VIF_UNLOCK();
1377		return ENOBUFS;
1378	    }
1379
1380	    /* insert new entry at head of hash chain */
1381	    rt->mfc_origin.s_addr     = ip->ip_src.s_addr;
1382	    rt->mfc_mcastgrp.s_addr   = ip->ip_dst.s_addr;
1383	    rt->mfc_expire	      = UPCALL_EXPIRE;
1384	    V_nexpire[hash]++;
1385	    for (i = 0; i < V_numvifs; i++) {
1386		rt->mfc_ttls[i] = 0;
1387		rt->mfc_flags[i] = 0;
1388	    }
1389	    rt->mfc_parent = -1;
1390
1391	    /* clear the RP address */
1392	    rt->mfc_rp.s_addr = INADDR_ANY;
1393	    rt->mfc_bw_meter = NULL;
1394
1395	    /* initialize pkt counters per src-grp */
1396	    rt->mfc_pkt_cnt = 0;
1397	    rt->mfc_byte_cnt = 0;
1398	    rt->mfc_wrong_if = 0;
1399	    timevalclear(&rt->mfc_last_assert);
1400
1401	    TAILQ_INIT(&rt->mfc_stall);
1402	    rt->mfc_nstall = 0;
1403
1404	    /* link into table */
1405	    LIST_INSERT_HEAD(&V_mfchashtbl[hash], rt, mfc_hash);
1406	    TAILQ_INSERT_HEAD(&rt->mfc_stall, rte, rte_link);
1407	    rt->mfc_nstall++;
1408
1409	} else {
1410	    /* determine if queue has overflowed */
1411	    if (rt->mfc_nstall > MAX_UPQ) {
1412		MRTSTAT_INC(mrts_upq_ovflw);
1413non_fatal:
1414		free(rte, M_MRTABLE);
1415		m_freem(mb0);
1416		MFC_UNLOCK();
1417		VIF_UNLOCK();
1418		return (0);
1419	    }
1420	    TAILQ_INSERT_TAIL(&rt->mfc_stall, rte, rte_link);
1421	    rt->mfc_nstall++;
1422	}
1423
1424	rte->m			= mb0;
1425	rte->ifp		= ifp;
1426
1427	MFC_UNLOCK();
1428	VIF_UNLOCK();
1429
1430	return 0;
1431    }
1432}
1433
1434/*
1435 * Clean up the cache entry if upcall is not serviced
1436 */
1437static void
1438expire_upcalls(void *arg)
1439{
1440    int i;
1441
1442    CURVNET_SET((struct vnet *) arg);
1443
1444    MFC_LOCK();
1445
1446    for (i = 0; i < mfchashsize; i++) {
1447	struct mfc *rt, *nrt;
1448
1449	if (V_nexpire[i] == 0)
1450	    continue;
1451
1452	for (rt = LIST_FIRST(&V_mfchashtbl[i]); rt; rt = nrt) {
1453		nrt = LIST_NEXT(rt, mfc_hash);
1454
1455		if (TAILQ_EMPTY(&rt->mfc_stall))
1456			continue;
1457
1458		if (rt->mfc_expire == 0 || --rt->mfc_expire > 0)
1459			continue;
1460
1461		/*
1462		 * free the bw_meter entries
1463		 */
1464		while (rt->mfc_bw_meter != NULL) {
1465		    struct bw_meter *x = rt->mfc_bw_meter;
1466
1467		    rt->mfc_bw_meter = x->bm_mfc_next;
1468		    free(x, M_BWMETER);
1469		}
1470
1471		MRTSTAT_INC(mrts_cache_cleanups);
1472		CTR3(KTR_IPMF, "%s: expire (%lx, %lx)", __func__,
1473		    (u_long)ntohl(rt->mfc_origin.s_addr),
1474		    (u_long)ntohl(rt->mfc_mcastgrp.s_addr));
1475
1476		expire_mfc(rt);
1477	    }
1478    }
1479
1480    MFC_UNLOCK();
1481
1482    callout_reset(&V_expire_upcalls_ch, EXPIRE_TIMEOUT, expire_upcalls,
1483	curvnet);
1484
1485    CURVNET_RESTORE();
1486}
1487
1488/*
1489 * Packet forwarding routine once entry in the cache is made
1490 */
1491static int
1492ip_mdq(struct mbuf *m, struct ifnet *ifp, struct mfc *rt, vifi_t xmt_vif)
1493{
1494    struct ip  *ip = mtod(m, struct ip *);
1495    vifi_t vifi;
1496    int plen = ip->ip_len;
1497
1498    VIF_LOCK_ASSERT();
1499
1500    /*
1501     * If xmt_vif is not -1, send on only the requested vif.
1502     *
1503     * (since vifi_t is u_short, -1 becomes MAXUSHORT, which > numvifs.)
1504     */
1505    if (xmt_vif < V_numvifs) {
1506	if (V_viftable[xmt_vif].v_flags & VIFF_REGISTER)
1507		pim_register_send(ip, V_viftable + xmt_vif, m, rt);
1508	else
1509		phyint_send(ip, V_viftable + xmt_vif, m);
1510	return 1;
1511    }
1512
1513    /*
1514     * Don't forward if it didn't arrive from the parent vif for its origin.
1515     */
1516    vifi = rt->mfc_parent;
1517    if ((vifi >= V_numvifs) || (V_viftable[vifi].v_ifp != ifp)) {
1518	CTR4(KTR_IPMF, "%s: rx on wrong ifp %p (vifi %d, v_ifp %p)",
1519	    __func__, ifp, (int)vifi, V_viftable[vifi].v_ifp);
1520	MRTSTAT_INC(mrts_wrong_if);
1521	++rt->mfc_wrong_if;
1522	/*
1523	 * If we are doing PIM assert processing, send a message
1524	 * to the routing daemon.
1525	 *
1526	 * XXX: A PIM-SM router needs the WRONGVIF detection so it
1527	 * can complete the SPT switch, regardless of the type
1528	 * of the iif (broadcast media, GRE tunnel, etc).
1529	 */
1530	if (V_pim_assert_enabled && (vifi < V_numvifs) &&
1531	    V_viftable[vifi].v_ifp) {
1532
1533	    if (ifp == &V_multicast_register_if)
1534		PIMSTAT_INC(pims_rcv_registers_wrongiif);
1535
1536	    /* Get vifi for the incoming packet */
1537	    for (vifi = 0; vifi < V_numvifs && V_viftable[vifi].v_ifp != ifp;
1538		vifi++)
1539		;
1540	    if (vifi >= V_numvifs)
1541		return 0;	/* The iif is not found: ignore the packet. */
1542
1543	    if (rt->mfc_flags[vifi] & MRT_MFC_FLAGS_DISABLE_WRONGVIF)
1544		return 0;	/* WRONGVIF disabled: ignore the packet */
1545
1546	    if (ratecheck(&rt->mfc_last_assert, &pim_assert_interval)) {
1547		struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
1548		struct igmpmsg *im;
1549		int hlen = ip->ip_hl << 2;
1550		struct mbuf *mm = m_copy(m, 0, hlen);
1551
1552		if (mm && (M_HASCL(mm) || mm->m_len < hlen))
1553		    mm = m_pullup(mm, hlen);
1554		if (mm == NULL)
1555		    return ENOBUFS;
1556
1557		im = mtod(mm, struct igmpmsg *);
1558		im->im_msgtype	= IGMPMSG_WRONGVIF;
1559		im->im_mbz		= 0;
1560		im->im_vif		= vifi;
1561
1562		MRTSTAT_INC(mrts_upcalls);
1563
1564		k_igmpsrc.sin_addr = im->im_src;
1565		if (socket_send(V_ip_mrouter, mm, &k_igmpsrc) < 0) {
1566		    CTR1(KTR_IPMF, "%s: socket queue full", __func__);
1567		    MRTSTAT_INC(mrts_upq_sockfull);
1568		    return ENOBUFS;
1569		}
1570	    }
1571	}
1572	return 0;
1573    }
1574
1575
1576    /* If I sourced this packet, it counts as output, else it was input. */
1577    if (in_hosteq(ip->ip_src, V_viftable[vifi].v_lcl_addr)) {
1578	V_viftable[vifi].v_pkt_out++;
1579	V_viftable[vifi].v_bytes_out += plen;
1580    } else {
1581	V_viftable[vifi].v_pkt_in++;
1582	V_viftable[vifi].v_bytes_in += plen;
1583    }
1584    rt->mfc_pkt_cnt++;
1585    rt->mfc_byte_cnt += plen;
1586
1587    /*
1588     * For each vif, decide if a copy of the packet should be forwarded.
1589     * Forward if:
1590     *		- the ttl exceeds the vif's threshold
1591     *		- there are group members downstream on interface
1592     */
1593    for (vifi = 0; vifi < V_numvifs; vifi++)
1594	if ((rt->mfc_ttls[vifi] > 0) && (ip->ip_ttl > rt->mfc_ttls[vifi])) {
1595	    V_viftable[vifi].v_pkt_out++;
1596	    V_viftable[vifi].v_bytes_out += plen;
1597	    if (V_viftable[vifi].v_flags & VIFF_REGISTER)
1598		pim_register_send(ip, V_viftable + vifi, m, rt);
1599	    else
1600		phyint_send(ip, V_viftable + vifi, m);
1601	}
1602
1603    /*
1604     * Perform upcall-related bw measuring.
1605     */
1606    if (rt->mfc_bw_meter != NULL) {
1607	struct bw_meter *x;
1608	struct timeval now;
1609
1610	microtime(&now);
1611	MFC_LOCK_ASSERT();
1612	for (x = rt->mfc_bw_meter; x != NULL; x = x->bm_mfc_next)
1613	    bw_meter_receive_packet(x, plen, &now);
1614    }
1615
1616    return 0;
1617}
1618
1619/*
1620 * Check if a vif number is legal/ok. This is used by in_mcast.c.
1621 */
1622static int
1623X_legal_vif_num(int vif)
1624{
1625	int ret;
1626
1627	ret = 0;
1628	if (vif < 0)
1629		return (ret);
1630
1631	VIF_LOCK();
1632	if (vif < V_numvifs)
1633		ret = 1;
1634	VIF_UNLOCK();
1635
1636	return (ret);
1637}
1638
1639/*
1640 * Return the local address used by this vif
1641 */
1642static u_long
1643X_ip_mcast_src(int vifi)
1644{
1645	in_addr_t addr;
1646
1647	addr = INADDR_ANY;
1648	if (vifi < 0)
1649		return (addr);
1650
1651	VIF_LOCK();
1652	if (vifi < V_numvifs)
1653		addr = V_viftable[vifi].v_lcl_addr.s_addr;
1654	VIF_UNLOCK();
1655
1656	return (addr);
1657}
1658
1659static void
1660phyint_send(struct ip *ip, struct vif *vifp, struct mbuf *m)
1661{
1662    struct mbuf *mb_copy;
1663    int hlen = ip->ip_hl << 2;
1664
1665    VIF_LOCK_ASSERT();
1666
1667    /*
1668     * Make a new reference to the packet; make sure that
1669     * the IP header is actually copied, not just referenced,
1670     * so that ip_output() only scribbles on the copy.
1671     */
1672    mb_copy = m_copypacket(m, M_DONTWAIT);
1673    if (mb_copy && (M_HASCL(mb_copy) || mb_copy->m_len < hlen))
1674	mb_copy = m_pullup(mb_copy, hlen);
1675    if (mb_copy == NULL)
1676	return;
1677
1678    send_packet(vifp, mb_copy);
1679}
1680
1681static void
1682send_packet(struct vif *vifp, struct mbuf *m)
1683{
1684	struct ip_moptions imo;
1685	struct in_multi *imm[2];
1686	int error;
1687
1688	VIF_LOCK_ASSERT();
1689
1690	imo.imo_multicast_ifp  = vifp->v_ifp;
1691	imo.imo_multicast_ttl  = mtod(m, struct ip *)->ip_ttl - 1;
1692	imo.imo_multicast_loop = 1;
1693	imo.imo_multicast_vif  = -1;
1694	imo.imo_num_memberships = 0;
1695	imo.imo_max_memberships = 2;
1696	imo.imo_membership  = &imm[0];
1697
1698	/*
1699	 * Re-entrancy should not be a problem here, because
1700	 * the packets that we send out and are looped back at us
1701	 * should get rejected because they appear to come from
1702	 * the loopback interface, thus preventing looping.
1703	 */
1704	error = ip_output(m, NULL, NULL, IP_FORWARDING, &imo, NULL);
1705	CTR3(KTR_IPMF, "%s: vif %td err %d", __func__,
1706	    (ptrdiff_t)(vifp - V_viftable), error);
1707}
1708
1709/*
1710 * Stubs for old RSVP socket shim implementation.
1711 */
1712
1713static int
1714X_ip_rsvp_vif(struct socket *so __unused, struct sockopt *sopt __unused)
1715{
1716
1717	return (EOPNOTSUPP);
1718}
1719
1720static void
1721X_ip_rsvp_force_done(struct socket *so __unused)
1722{
1723
1724}
1725
1726static void
1727X_rsvp_input(struct mbuf *m, int off __unused)
1728{
1729
1730	if (!V_rsvp_on)
1731		m_freem(m);
1732}
1733
1734/*
1735 * Code for bandwidth monitors
1736 */
1737
1738/*
1739 * Define common interface for timeval-related methods
1740 */
1741#define	BW_TIMEVALCMP(tvp, uvp, cmp) timevalcmp((tvp), (uvp), cmp)
1742#define	BW_TIMEVALDECR(vvp, uvp) timevalsub((vvp), (uvp))
1743#define	BW_TIMEVALADD(vvp, uvp) timevaladd((vvp), (uvp))
1744
1745static uint32_t
1746compute_bw_meter_flags(struct bw_upcall *req)
1747{
1748    uint32_t flags = 0;
1749
1750    if (req->bu_flags & BW_UPCALL_UNIT_PACKETS)
1751	flags |= BW_METER_UNIT_PACKETS;
1752    if (req->bu_flags & BW_UPCALL_UNIT_BYTES)
1753	flags |= BW_METER_UNIT_BYTES;
1754    if (req->bu_flags & BW_UPCALL_GEQ)
1755	flags |= BW_METER_GEQ;
1756    if (req->bu_flags & BW_UPCALL_LEQ)
1757	flags |= BW_METER_LEQ;
1758
1759    return flags;
1760}
1761
1762/*
1763 * Add a bw_meter entry
1764 */
1765static int
1766add_bw_upcall(struct bw_upcall *req)
1767{
1768    struct mfc *mfc;
1769    struct timeval delta = { BW_UPCALL_THRESHOLD_INTERVAL_MIN_SEC,
1770		BW_UPCALL_THRESHOLD_INTERVAL_MIN_USEC };
1771    struct timeval now;
1772    struct bw_meter *x;
1773    uint32_t flags;
1774
1775    if (!(V_mrt_api_config & MRT_MFC_BW_UPCALL))
1776	return EOPNOTSUPP;
1777
1778    /* Test if the flags are valid */
1779    if (!(req->bu_flags & (BW_UPCALL_UNIT_PACKETS | BW_UPCALL_UNIT_BYTES)))
1780	return EINVAL;
1781    if (!(req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ)))
1782	return EINVAL;
1783    if ((req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ))
1784	    == (BW_UPCALL_GEQ | BW_UPCALL_LEQ))
1785	return EINVAL;
1786
1787    /* Test if the threshold time interval is valid */
1788    if (BW_TIMEVALCMP(&req->bu_threshold.b_time, &delta, <))
1789	return EINVAL;
1790
1791    flags = compute_bw_meter_flags(req);
1792
1793    /*
1794     * Find if we have already same bw_meter entry
1795     */
1796    MFC_LOCK();
1797    mfc = mfc_find(&req->bu_src, &req->bu_dst);
1798    if (mfc == NULL) {
1799	MFC_UNLOCK();
1800	return EADDRNOTAVAIL;
1801    }
1802    for (x = mfc->mfc_bw_meter; x != NULL; x = x->bm_mfc_next) {
1803	if ((BW_TIMEVALCMP(&x->bm_threshold.b_time,
1804			   &req->bu_threshold.b_time, ==)) &&
1805	    (x->bm_threshold.b_packets == req->bu_threshold.b_packets) &&
1806	    (x->bm_threshold.b_bytes == req->bu_threshold.b_bytes) &&
1807	    (x->bm_flags & BW_METER_USER_FLAGS) == flags)  {
1808	    MFC_UNLOCK();
1809	    return 0;		/* XXX Already installed */
1810	}
1811    }
1812
1813    /* Allocate the new bw_meter entry */
1814    x = (struct bw_meter *)malloc(sizeof(*x), M_BWMETER, M_NOWAIT);
1815    if (x == NULL) {
1816	MFC_UNLOCK();
1817	return ENOBUFS;
1818    }
1819
1820    /* Set the new bw_meter entry */
1821    x->bm_threshold.b_time = req->bu_threshold.b_time;
1822    microtime(&now);
1823    x->bm_start_time = now;
1824    x->bm_threshold.b_packets = req->bu_threshold.b_packets;
1825    x->bm_threshold.b_bytes = req->bu_threshold.b_bytes;
1826    x->bm_measured.b_packets = 0;
1827    x->bm_measured.b_bytes = 0;
1828    x->bm_flags = flags;
1829    x->bm_time_next = NULL;
1830    x->bm_time_hash = BW_METER_BUCKETS;
1831
1832    /* Add the new bw_meter entry to the front of entries for this MFC */
1833    x->bm_mfc = mfc;
1834    x->bm_mfc_next = mfc->mfc_bw_meter;
1835    mfc->mfc_bw_meter = x;
1836    schedule_bw_meter(x, &now);
1837    MFC_UNLOCK();
1838
1839    return 0;
1840}
1841
1842static void
1843free_bw_list(struct bw_meter *list)
1844{
1845    while (list != NULL) {
1846	struct bw_meter *x = list;
1847
1848	list = list->bm_mfc_next;
1849	unschedule_bw_meter(x);
1850	free(x, M_BWMETER);
1851    }
1852}
1853
1854/*
1855 * Delete one or multiple bw_meter entries
1856 */
1857static int
1858del_bw_upcall(struct bw_upcall *req)
1859{
1860    struct mfc *mfc;
1861    struct bw_meter *x;
1862
1863    if (!(V_mrt_api_config & MRT_MFC_BW_UPCALL))
1864	return EOPNOTSUPP;
1865
1866    MFC_LOCK();
1867
1868    /* Find the corresponding MFC entry */
1869    mfc = mfc_find(&req->bu_src, &req->bu_dst);
1870    if (mfc == NULL) {
1871	MFC_UNLOCK();
1872	return EADDRNOTAVAIL;
1873    } else if (req->bu_flags & BW_UPCALL_DELETE_ALL) {
1874	/*
1875	 * Delete all bw_meter entries for this mfc
1876	 */
1877	struct bw_meter *list;
1878
1879	list = mfc->mfc_bw_meter;
1880	mfc->mfc_bw_meter = NULL;
1881	free_bw_list(list);
1882	MFC_UNLOCK();
1883	return 0;
1884    } else {			/* Delete a single bw_meter entry */
1885	struct bw_meter *prev;
1886	uint32_t flags = 0;
1887
1888	flags = compute_bw_meter_flags(req);
1889
1890	/* Find the bw_meter entry to delete */
1891	for (prev = NULL, x = mfc->mfc_bw_meter; x != NULL;
1892	     prev = x, x = x->bm_mfc_next) {
1893	    if ((BW_TIMEVALCMP(&x->bm_threshold.b_time,
1894			       &req->bu_threshold.b_time, ==)) &&
1895		(x->bm_threshold.b_packets == req->bu_threshold.b_packets) &&
1896		(x->bm_threshold.b_bytes == req->bu_threshold.b_bytes) &&
1897		(x->bm_flags & BW_METER_USER_FLAGS) == flags)
1898		break;
1899	}
1900	if (x != NULL) { /* Delete entry from the list for this MFC */
1901	    if (prev != NULL)
1902		prev->bm_mfc_next = x->bm_mfc_next;	/* remove from middle*/
1903	    else
1904		x->bm_mfc->mfc_bw_meter = x->bm_mfc_next;/* new head of list */
1905
1906	    unschedule_bw_meter(x);
1907	    MFC_UNLOCK();
1908	    /* Free the bw_meter entry */
1909	    free(x, M_BWMETER);
1910	    return 0;
1911	} else {
1912	    MFC_UNLOCK();
1913	    return EINVAL;
1914	}
1915    }
1916    /* NOTREACHED */
1917}
1918
1919/*
1920 * Perform bandwidth measurement processing that may result in an upcall
1921 */
1922static void
1923bw_meter_receive_packet(struct bw_meter *x, int plen, struct timeval *nowp)
1924{
1925    struct timeval delta;
1926
1927    MFC_LOCK_ASSERT();
1928
1929    delta = *nowp;
1930    BW_TIMEVALDECR(&delta, &x->bm_start_time);
1931
1932    if (x->bm_flags & BW_METER_GEQ) {
1933	/*
1934	 * Processing for ">=" type of bw_meter entry
1935	 */
1936	if (BW_TIMEVALCMP(&delta, &x->bm_threshold.b_time, >)) {
1937	    /* Reset the bw_meter entry */
1938	    x->bm_start_time = *nowp;
1939	    x->bm_measured.b_packets = 0;
1940	    x->bm_measured.b_bytes = 0;
1941	    x->bm_flags &= ~BW_METER_UPCALL_DELIVERED;
1942	}
1943
1944	/* Record that a packet is received */
1945	x->bm_measured.b_packets++;
1946	x->bm_measured.b_bytes += plen;
1947
1948	/*
1949	 * Test if we should deliver an upcall
1950	 */
1951	if (!(x->bm_flags & BW_METER_UPCALL_DELIVERED)) {
1952	    if (((x->bm_flags & BW_METER_UNIT_PACKETS) &&
1953		 (x->bm_measured.b_packets >= x->bm_threshold.b_packets)) ||
1954		((x->bm_flags & BW_METER_UNIT_BYTES) &&
1955		 (x->bm_measured.b_bytes >= x->bm_threshold.b_bytes))) {
1956		/* Prepare an upcall for delivery */
1957		bw_meter_prepare_upcall(x, nowp);
1958		x->bm_flags |= BW_METER_UPCALL_DELIVERED;
1959	    }
1960	}
1961    } else if (x->bm_flags & BW_METER_LEQ) {
1962	/*
1963	 * Processing for "<=" type of bw_meter entry
1964	 */
1965	if (BW_TIMEVALCMP(&delta, &x->bm_threshold.b_time, >)) {
1966	    /*
1967	     * We are behind time with the multicast forwarding table
1968	     * scanning for "<=" type of bw_meter entries, so test now
1969	     * if we should deliver an upcall.
1970	     */
1971	    if (((x->bm_flags & BW_METER_UNIT_PACKETS) &&
1972		 (x->bm_measured.b_packets <= x->bm_threshold.b_packets)) ||
1973		((x->bm_flags & BW_METER_UNIT_BYTES) &&
1974		 (x->bm_measured.b_bytes <= x->bm_threshold.b_bytes))) {
1975		/* Prepare an upcall for delivery */
1976		bw_meter_prepare_upcall(x, nowp);
1977	    }
1978	    /* Reschedule the bw_meter entry */
1979	    unschedule_bw_meter(x);
1980	    schedule_bw_meter(x, nowp);
1981	}
1982
1983	/* Record that a packet is received */
1984	x->bm_measured.b_packets++;
1985	x->bm_measured.b_bytes += plen;
1986
1987	/*
1988	 * Test if we should restart the measuring interval
1989	 */
1990	if ((x->bm_flags & BW_METER_UNIT_PACKETS &&
1991	     x->bm_measured.b_packets <= x->bm_threshold.b_packets) ||
1992	    (x->bm_flags & BW_METER_UNIT_BYTES &&
1993	     x->bm_measured.b_bytes <= x->bm_threshold.b_bytes)) {
1994	    /* Don't restart the measuring interval */
1995	} else {
1996	    /* Do restart the measuring interval */
1997	    /*
1998	     * XXX: note that we don't unschedule and schedule, because this
1999	     * might be too much overhead per packet. Instead, when we process
2000	     * all entries for a given timer hash bin, we check whether it is
2001	     * really a timeout. If not, we reschedule at that time.
2002	     */
2003	    x->bm_start_time = *nowp;
2004	    x->bm_measured.b_packets = 0;
2005	    x->bm_measured.b_bytes = 0;
2006	    x->bm_flags &= ~BW_METER_UPCALL_DELIVERED;
2007	}
2008    }
2009}
2010
2011/*
2012 * Prepare a bandwidth-related upcall
2013 */
2014static void
2015bw_meter_prepare_upcall(struct bw_meter *x, struct timeval *nowp)
2016{
2017    struct timeval delta;
2018    struct bw_upcall *u;
2019
2020    MFC_LOCK_ASSERT();
2021
2022    /*
2023     * Compute the measured time interval
2024     */
2025    delta = *nowp;
2026    BW_TIMEVALDECR(&delta, &x->bm_start_time);
2027
2028    /*
2029     * If there are too many pending upcalls, deliver them now
2030     */
2031    if (V_bw_upcalls_n >= BW_UPCALLS_MAX)
2032	bw_upcalls_send();
2033
2034    /*
2035     * Set the bw_upcall entry
2036     */
2037    u = &V_bw_upcalls[V_bw_upcalls_n++];
2038    u->bu_src = x->bm_mfc->mfc_origin;
2039    u->bu_dst = x->bm_mfc->mfc_mcastgrp;
2040    u->bu_threshold.b_time = x->bm_threshold.b_time;
2041    u->bu_threshold.b_packets = x->bm_threshold.b_packets;
2042    u->bu_threshold.b_bytes = x->bm_threshold.b_bytes;
2043    u->bu_measured.b_time = delta;
2044    u->bu_measured.b_packets = x->bm_measured.b_packets;
2045    u->bu_measured.b_bytes = x->bm_measured.b_bytes;
2046    u->bu_flags = 0;
2047    if (x->bm_flags & BW_METER_UNIT_PACKETS)
2048	u->bu_flags |= BW_UPCALL_UNIT_PACKETS;
2049    if (x->bm_flags & BW_METER_UNIT_BYTES)
2050	u->bu_flags |= BW_UPCALL_UNIT_BYTES;
2051    if (x->bm_flags & BW_METER_GEQ)
2052	u->bu_flags |= BW_UPCALL_GEQ;
2053    if (x->bm_flags & BW_METER_LEQ)
2054	u->bu_flags |= BW_UPCALL_LEQ;
2055}
2056
2057/*
2058 * Send the pending bandwidth-related upcalls
2059 */
2060static void
2061bw_upcalls_send(void)
2062{
2063    struct mbuf *m;
2064    int len = V_bw_upcalls_n * sizeof(V_bw_upcalls[0]);
2065    struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
2066    static struct igmpmsg igmpmsg = { 0,		/* unused1 */
2067				      0,		/* unused2 */
2068				      IGMPMSG_BW_UPCALL,/* im_msgtype */
2069				      0,		/* im_mbz  */
2070				      0,		/* im_vif  */
2071				      0,		/* unused3 */
2072				      { 0 },		/* im_src  */
2073				      { 0 } };		/* im_dst  */
2074
2075    MFC_LOCK_ASSERT();
2076
2077    if (V_bw_upcalls_n == 0)
2078	return;			/* No pending upcalls */
2079
2080    V_bw_upcalls_n = 0;
2081
2082    /*
2083     * Allocate a new mbuf, initialize it with the header and
2084     * the payload for the pending calls.
2085     */
2086    MGETHDR(m, M_DONTWAIT, MT_DATA);
2087    if (m == NULL) {
2088	log(LOG_WARNING, "bw_upcalls_send: cannot allocate mbuf\n");
2089	return;
2090    }
2091
2092    m->m_len = m->m_pkthdr.len = 0;
2093    m_copyback(m, 0, sizeof(struct igmpmsg), (caddr_t)&igmpmsg);
2094    m_copyback(m, sizeof(struct igmpmsg), len, (caddr_t)&V_bw_upcalls[0]);
2095
2096    /*
2097     * Send the upcalls
2098     * XXX do we need to set the address in k_igmpsrc ?
2099     */
2100    MRTSTAT_INC(mrts_upcalls);
2101    if (socket_send(V_ip_mrouter, m, &k_igmpsrc) < 0) {
2102	log(LOG_WARNING, "bw_upcalls_send: ip_mrouter socket queue full\n");
2103	MRTSTAT_INC(mrts_upq_sockfull);
2104    }
2105}
2106
2107/*
2108 * Compute the timeout hash value for the bw_meter entries
2109 */
2110#define	BW_METER_TIMEHASH(bw_meter, hash)				\
2111    do {								\
2112	struct timeval next_timeval = (bw_meter)->bm_start_time;	\
2113									\
2114	BW_TIMEVALADD(&next_timeval, &(bw_meter)->bm_threshold.b_time); \
2115	(hash) = next_timeval.tv_sec;					\
2116	if (next_timeval.tv_usec)					\
2117	    (hash)++; /* XXX: make sure we don't timeout early */	\
2118	(hash) %= BW_METER_BUCKETS;					\
2119    } while (0)
2120
2121/*
2122 * Schedule a timer to process periodically bw_meter entry of type "<="
2123 * by linking the entry in the proper hash bucket.
2124 */
2125static void
2126schedule_bw_meter(struct bw_meter *x, struct timeval *nowp)
2127{
2128    int time_hash;
2129
2130    MFC_LOCK_ASSERT();
2131
2132    if (!(x->bm_flags & BW_METER_LEQ))
2133	return;		/* XXX: we schedule timers only for "<=" entries */
2134
2135    /*
2136     * Reset the bw_meter entry
2137     */
2138    x->bm_start_time = *nowp;
2139    x->bm_measured.b_packets = 0;
2140    x->bm_measured.b_bytes = 0;
2141    x->bm_flags &= ~BW_METER_UPCALL_DELIVERED;
2142
2143    /*
2144     * Compute the timeout hash value and insert the entry
2145     */
2146    BW_METER_TIMEHASH(x, time_hash);
2147    x->bm_time_next = V_bw_meter_timers[time_hash];
2148    V_bw_meter_timers[time_hash] = x;
2149    x->bm_time_hash = time_hash;
2150}
2151
2152/*
2153 * Unschedule the periodic timer that processes bw_meter entry of type "<="
2154 * by removing the entry from the proper hash bucket.
2155 */
2156static void
2157unschedule_bw_meter(struct bw_meter *x)
2158{
2159    int time_hash;
2160    struct bw_meter *prev, *tmp;
2161
2162    MFC_LOCK_ASSERT();
2163
2164    if (!(x->bm_flags & BW_METER_LEQ))
2165	return;		/* XXX: we schedule timers only for "<=" entries */
2166
2167    /*
2168     * Compute the timeout hash value and delete the entry
2169     */
2170    time_hash = x->bm_time_hash;
2171    if (time_hash >= BW_METER_BUCKETS)
2172	return;		/* Entry was not scheduled */
2173
2174    for (prev = NULL, tmp = V_bw_meter_timers[time_hash];
2175	     tmp != NULL; prev = tmp, tmp = tmp->bm_time_next)
2176	if (tmp == x)
2177	    break;
2178
2179    if (tmp == NULL)
2180	panic("unschedule_bw_meter: bw_meter entry not found");
2181
2182    if (prev != NULL)
2183	prev->bm_time_next = x->bm_time_next;
2184    else
2185	V_bw_meter_timers[time_hash] = x->bm_time_next;
2186
2187    x->bm_time_next = NULL;
2188    x->bm_time_hash = BW_METER_BUCKETS;
2189}
2190
2191
2192/*
2193 * Process all "<=" type of bw_meter that should be processed now,
2194 * and for each entry prepare an upcall if necessary. Each processed
2195 * entry is rescheduled again for the (periodic) processing.
2196 *
2197 * This is run periodically (once per second normally). On each round,
2198 * all the potentially matching entries are in the hash slot that we are
2199 * looking at.
2200 */
2201static void
2202bw_meter_process()
2203{
2204    uint32_t loops;
2205    int i;
2206    struct timeval now, process_endtime;
2207
2208    microtime(&now);
2209    if (V_last_tv_sec == now.tv_sec)
2210	return;		/* nothing to do */
2211
2212    loops = now.tv_sec - V_last_tv_sec;
2213    V_last_tv_sec = now.tv_sec;
2214    if (loops > BW_METER_BUCKETS)
2215	loops = BW_METER_BUCKETS;
2216
2217    MFC_LOCK();
2218    /*
2219     * Process all bins of bw_meter entries from the one after the last
2220     * processed to the current one. On entry, i points to the last bucket
2221     * visited, so we need to increment i at the beginning of the loop.
2222     */
2223    for (i = (now.tv_sec - loops) % BW_METER_BUCKETS; loops > 0; loops--) {
2224	struct bw_meter *x, *tmp_list;
2225
2226	if (++i >= BW_METER_BUCKETS)
2227	    i = 0;
2228
2229	/* Disconnect the list of bw_meter entries from the bin */
2230	tmp_list = V_bw_meter_timers[i];
2231	V_bw_meter_timers[i] = NULL;
2232
2233	/* Process the list of bw_meter entries */
2234	while (tmp_list != NULL) {
2235	    x = tmp_list;
2236	    tmp_list = tmp_list->bm_time_next;
2237
2238	    /* Test if the time interval is over */
2239	    process_endtime = x->bm_start_time;
2240	    BW_TIMEVALADD(&process_endtime, &x->bm_threshold.b_time);
2241	    if (BW_TIMEVALCMP(&process_endtime, &now, >)) {
2242		/* Not yet: reschedule, but don't reset */
2243		int time_hash;
2244
2245		BW_METER_TIMEHASH(x, time_hash);
2246		if (time_hash == i && process_endtime.tv_sec == now.tv_sec) {
2247		    /*
2248		     * XXX: somehow the bin processing is a bit ahead of time.
2249		     * Put the entry in the next bin.
2250		     */
2251		    if (++time_hash >= BW_METER_BUCKETS)
2252			time_hash = 0;
2253		}
2254		x->bm_time_next = V_bw_meter_timers[time_hash];
2255		V_bw_meter_timers[time_hash] = x;
2256		x->bm_time_hash = time_hash;
2257
2258		continue;
2259	    }
2260
2261	    /*
2262	     * Test if we should deliver an upcall
2263	     */
2264	    if (((x->bm_flags & BW_METER_UNIT_PACKETS) &&
2265		 (x->bm_measured.b_packets <= x->bm_threshold.b_packets)) ||
2266		((x->bm_flags & BW_METER_UNIT_BYTES) &&
2267		 (x->bm_measured.b_bytes <= x->bm_threshold.b_bytes))) {
2268		/* Prepare an upcall for delivery */
2269		bw_meter_prepare_upcall(x, &now);
2270	    }
2271
2272	    /*
2273	     * Reschedule for next processing
2274	     */
2275	    schedule_bw_meter(x, &now);
2276	}
2277    }
2278
2279    /* Send all upcalls that are pending delivery */
2280    bw_upcalls_send();
2281
2282    MFC_UNLOCK();
2283}
2284
2285/*
2286 * A periodic function for sending all upcalls that are pending delivery
2287 */
2288static void
2289expire_bw_upcalls_send(void *arg)
2290{
2291    CURVNET_SET((struct vnet *) arg);
2292
2293    MFC_LOCK();
2294    bw_upcalls_send();
2295    MFC_UNLOCK();
2296
2297    callout_reset(&V_bw_upcalls_ch, BW_UPCALLS_PERIOD, expire_bw_upcalls_send,
2298	curvnet);
2299    CURVNET_RESTORE();
2300}
2301
2302/*
2303 * A periodic function for periodic scanning of the multicast forwarding
2304 * table for processing all "<=" bw_meter entries.
2305 */
2306static void
2307expire_bw_meter_process(void *arg)
2308{
2309    CURVNET_SET((struct vnet *) arg);
2310
2311    if (V_mrt_api_config & MRT_MFC_BW_UPCALL)
2312	bw_meter_process();
2313
2314    callout_reset(&V_bw_meter_ch, BW_METER_PERIOD, expire_bw_meter_process,
2315	curvnet);
2316    CURVNET_RESTORE();
2317}
2318
2319/*
2320 * End of bandwidth monitoring code
2321 */
2322
2323/*
2324 * Send the packet up to the user daemon, or eventually do kernel encapsulation
2325 *
2326 */
2327static int
2328pim_register_send(struct ip *ip, struct vif *vifp, struct mbuf *m,
2329    struct mfc *rt)
2330{
2331    struct mbuf *mb_copy, *mm;
2332
2333    /*
2334     * Do not send IGMP_WHOLEPKT notifications to userland, if the
2335     * rendezvous point was unspecified, and we were told not to.
2336     */
2337    if (pim_squelch_wholepkt != 0 && (V_mrt_api_config & MRT_MFC_RP) &&
2338	in_nullhost(rt->mfc_rp))
2339	return 0;
2340
2341    mb_copy = pim_register_prepare(ip, m);
2342    if (mb_copy == NULL)
2343	return ENOBUFS;
2344
2345    /*
2346     * Send all the fragments. Note that the mbuf for each fragment
2347     * is freed by the sending machinery.
2348     */
2349    for (mm = mb_copy; mm; mm = mb_copy) {
2350	mb_copy = mm->m_nextpkt;
2351	mm->m_nextpkt = 0;
2352	mm = m_pullup(mm, sizeof(struct ip));
2353	if (mm != NULL) {
2354	    ip = mtod(mm, struct ip *);
2355	    if ((V_mrt_api_config & MRT_MFC_RP) && !in_nullhost(rt->mfc_rp)) {
2356		pim_register_send_rp(ip, vifp, mm, rt);
2357	    } else {
2358		pim_register_send_upcall(ip, vifp, mm, rt);
2359	    }
2360	}
2361    }
2362
2363    return 0;
2364}
2365
2366/*
2367 * Return a copy of the data packet that is ready for PIM Register
2368 * encapsulation.
2369 * XXX: Note that in the returned copy the IP header is a valid one.
2370 */
2371static struct mbuf *
2372pim_register_prepare(struct ip *ip, struct mbuf *m)
2373{
2374    struct mbuf *mb_copy = NULL;
2375    int mtu;
2376
2377    /* Take care of delayed checksums */
2378    if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
2379	/* XXX: in_delayed_cksum() expects net byte order */
2380	ip->ip_len = htons(ip->ip_len);
2381	in_delayed_cksum(m);
2382	ip->ip_len = ntohs(ip->ip_len);
2383	m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
2384    }
2385
2386    /*
2387     * Copy the old packet & pullup its IP header into the
2388     * new mbuf so we can modify it.
2389     */
2390    mb_copy = m_copypacket(m, M_DONTWAIT);
2391    if (mb_copy == NULL)
2392	return NULL;
2393    mb_copy = m_pullup(mb_copy, ip->ip_hl << 2);
2394    if (mb_copy == NULL)
2395	return NULL;
2396
2397    /* take care of the TTL */
2398    ip = mtod(mb_copy, struct ip *);
2399    --ip->ip_ttl;
2400
2401    /* Compute the MTU after the PIM Register encapsulation */
2402    mtu = 0xffff - sizeof(pim_encap_iphdr) - sizeof(pim_encap_pimhdr);
2403
2404    if (ip->ip_len <= mtu) {
2405	/* Turn the IP header into a valid one */
2406	ip->ip_len = htons(ip->ip_len);
2407	ip->ip_off = htons(ip->ip_off);
2408	ip->ip_sum = 0;
2409	ip->ip_sum = in_cksum(mb_copy, ip->ip_hl << 2);
2410    } else {
2411	/* Fragment the packet */
2412	if (ip_fragment(ip, &mb_copy, mtu, 0, CSUM_DELAY_IP) != 0) {
2413	    m_freem(mb_copy);
2414	    return NULL;
2415	}
2416    }
2417    return mb_copy;
2418}
2419
2420/*
2421 * Send an upcall with the data packet to the user-level process.
2422 */
2423static int
2424pim_register_send_upcall(struct ip *ip, struct vif *vifp,
2425    struct mbuf *mb_copy, struct mfc *rt)
2426{
2427    struct mbuf *mb_first;
2428    int len = ntohs(ip->ip_len);
2429    struct igmpmsg *im;
2430    struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
2431
2432    VIF_LOCK_ASSERT();
2433
2434    /*
2435     * Add a new mbuf with an upcall header
2436     */
2437    MGETHDR(mb_first, M_DONTWAIT, MT_DATA);
2438    if (mb_first == NULL) {
2439	m_freem(mb_copy);
2440	return ENOBUFS;
2441    }
2442    mb_first->m_data += max_linkhdr;
2443    mb_first->m_pkthdr.len = len + sizeof(struct igmpmsg);
2444    mb_first->m_len = sizeof(struct igmpmsg);
2445    mb_first->m_next = mb_copy;
2446
2447    /* Send message to routing daemon */
2448    im = mtod(mb_first, struct igmpmsg *);
2449    im->im_msgtype	= IGMPMSG_WHOLEPKT;
2450    im->im_mbz		= 0;
2451    im->im_vif		= vifp - V_viftable;
2452    im->im_src		= ip->ip_src;
2453    im->im_dst		= ip->ip_dst;
2454
2455    k_igmpsrc.sin_addr	= ip->ip_src;
2456
2457    MRTSTAT_INC(mrts_upcalls);
2458
2459    if (socket_send(V_ip_mrouter, mb_first, &k_igmpsrc) < 0) {
2460	CTR1(KTR_IPMF, "%s: socket queue full", __func__);
2461	MRTSTAT_INC(mrts_upq_sockfull);
2462	return ENOBUFS;
2463    }
2464
2465    /* Keep statistics */
2466    PIMSTAT_INC(pims_snd_registers_msgs);
2467    PIMSTAT_ADD(pims_snd_registers_bytes, len);
2468
2469    return 0;
2470}
2471
2472/*
2473 * Encapsulate the data packet in PIM Register message and send it to the RP.
2474 */
2475static int
2476pim_register_send_rp(struct ip *ip, struct vif *vifp, struct mbuf *mb_copy,
2477    struct mfc *rt)
2478{
2479    struct mbuf *mb_first;
2480    struct ip *ip_outer;
2481    struct pim_encap_pimhdr *pimhdr;
2482    int len = ntohs(ip->ip_len);
2483    vifi_t vifi = rt->mfc_parent;
2484
2485    VIF_LOCK_ASSERT();
2486
2487    if ((vifi >= V_numvifs) || in_nullhost(V_viftable[vifi].v_lcl_addr)) {
2488	m_freem(mb_copy);
2489	return EADDRNOTAVAIL;		/* The iif vif is invalid */
2490    }
2491
2492    /*
2493     * Add a new mbuf with the encapsulating header
2494     */
2495    MGETHDR(mb_first, M_DONTWAIT, MT_DATA);
2496    if (mb_first == NULL) {
2497	m_freem(mb_copy);
2498	return ENOBUFS;
2499    }
2500    mb_first->m_data += max_linkhdr;
2501    mb_first->m_len = sizeof(pim_encap_iphdr) + sizeof(pim_encap_pimhdr);
2502    mb_first->m_next = mb_copy;
2503
2504    mb_first->m_pkthdr.len = len + mb_first->m_len;
2505
2506    /*
2507     * Fill in the encapsulating IP and PIM header
2508     */
2509    ip_outer = mtod(mb_first, struct ip *);
2510    *ip_outer = pim_encap_iphdr;
2511    ip_outer->ip_id = ip_newid();
2512    ip_outer->ip_len = len + sizeof(pim_encap_iphdr) + sizeof(pim_encap_pimhdr);
2513    ip_outer->ip_src = V_viftable[vifi].v_lcl_addr;
2514    ip_outer->ip_dst = rt->mfc_rp;
2515    /*
2516     * Copy the inner header TOS to the outer header, and take care of the
2517     * IP_DF bit.
2518     */
2519    ip_outer->ip_tos = ip->ip_tos;
2520    if (ntohs(ip->ip_off) & IP_DF)
2521	ip_outer->ip_off |= IP_DF;
2522    pimhdr = (struct pim_encap_pimhdr *)((caddr_t)ip_outer
2523					 + sizeof(pim_encap_iphdr));
2524    *pimhdr = pim_encap_pimhdr;
2525    /* If the iif crosses a border, set the Border-bit */
2526    if (rt->mfc_flags[vifi] & MRT_MFC_FLAGS_BORDER_VIF & V_mrt_api_config)
2527	pimhdr->flags |= htonl(PIM_BORDER_REGISTER);
2528
2529    mb_first->m_data += sizeof(pim_encap_iphdr);
2530    pimhdr->pim.pim_cksum = in_cksum(mb_first, sizeof(pim_encap_pimhdr));
2531    mb_first->m_data -= sizeof(pim_encap_iphdr);
2532
2533    send_packet(vifp, mb_first);
2534
2535    /* Keep statistics */
2536    PIMSTAT_INC(pims_snd_registers_msgs);
2537    PIMSTAT_ADD(pims_snd_registers_bytes, len);
2538
2539    return 0;
2540}
2541
2542/*
2543 * pim_encapcheck() is called by the encap4_input() path at runtime to
2544 * determine if a packet is for PIM; allowing PIM to be dynamically loaded
2545 * into the kernel.
2546 */
2547static int
2548pim_encapcheck(const struct mbuf *m, int off, int proto, void *arg)
2549{
2550
2551#ifdef DIAGNOSTIC
2552    KASSERT(proto == IPPROTO_PIM, ("not for IPPROTO_PIM"));
2553#endif
2554    if (proto != IPPROTO_PIM)
2555	return 0;	/* not for us; reject the datagram. */
2556
2557    return 64;		/* claim the datagram. */
2558}
2559
2560/*
2561 * PIM-SMv2 and PIM-DM messages processing.
2562 * Receives and verifies the PIM control messages, and passes them
2563 * up to the listening socket, using rip_input().
2564 * The only message with special processing is the PIM_REGISTER message
2565 * (used by PIM-SM): the PIM header is stripped off, and the inner packet
2566 * is passed to if_simloop().
2567 */
2568void
2569pim_input(struct mbuf *m, int off)
2570{
2571    struct ip *ip = mtod(m, struct ip *);
2572    struct pim *pim;
2573    int minlen;
2574    int datalen = ip->ip_len;
2575    int ip_tos;
2576    int iphlen = off;
2577
2578    /* Keep statistics */
2579    PIMSTAT_INC(pims_rcv_total_msgs);
2580    PIMSTAT_ADD(pims_rcv_total_bytes, datalen);
2581
2582    /*
2583     * Validate lengths
2584     */
2585    if (datalen < PIM_MINLEN) {
2586	PIMSTAT_INC(pims_rcv_tooshort);
2587	CTR3(KTR_IPMF, "%s: short packet (%d) from %s",
2588	    __func__, datalen, inet_ntoa(ip->ip_src));
2589	m_freem(m);
2590	return;
2591    }
2592
2593    /*
2594     * If the packet is at least as big as a REGISTER, go agead
2595     * and grab the PIM REGISTER header size, to avoid another
2596     * possible m_pullup() later.
2597     *
2598     * PIM_MINLEN       == pimhdr + u_int32_t == 4 + 4 = 8
2599     * PIM_REG_MINLEN   == pimhdr + reghdr + encap_iphdr == 4 + 4 + 20 = 28
2600     */
2601    minlen = iphlen + (datalen >= PIM_REG_MINLEN ? PIM_REG_MINLEN : PIM_MINLEN);
2602    /*
2603     * Get the IP and PIM headers in contiguous memory, and
2604     * possibly the PIM REGISTER header.
2605     */
2606    if ((m->m_flags & M_EXT || m->m_len < minlen) &&
2607	(m = m_pullup(m, minlen)) == 0) {
2608	CTR1(KTR_IPMF, "%s: m_pullup() failed", __func__);
2609	return;
2610    }
2611
2612    /* m_pullup() may have given us a new mbuf so reset ip. */
2613    ip = mtod(m, struct ip *);
2614    ip_tos = ip->ip_tos;
2615
2616    /* adjust mbuf to point to the PIM header */
2617    m->m_data += iphlen;
2618    m->m_len  -= iphlen;
2619    pim = mtod(m, struct pim *);
2620
2621    /*
2622     * Validate checksum. If PIM REGISTER, exclude the data packet.
2623     *
2624     * XXX: some older PIMv2 implementations don't make this distinction,
2625     * so for compatibility reason perform the checksum over part of the
2626     * message, and if error, then over the whole message.
2627     */
2628    if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER && in_cksum(m, PIM_MINLEN) == 0) {
2629	/* do nothing, checksum okay */
2630    } else if (in_cksum(m, datalen)) {
2631	PIMSTAT_INC(pims_rcv_badsum);
2632	CTR1(KTR_IPMF, "%s: invalid checksum", __func__);
2633	m_freem(m);
2634	return;
2635    }
2636
2637    /* PIM version check */
2638    if (PIM_VT_V(pim->pim_vt) < PIM_VERSION) {
2639	PIMSTAT_INC(pims_rcv_badversion);
2640	CTR3(KTR_IPMF, "%s: bad version %d expect %d", __func__,
2641	    (int)PIM_VT_V(pim->pim_vt), PIM_VERSION);
2642	m_freem(m);
2643	return;
2644    }
2645
2646    /* restore mbuf back to the outer IP */
2647    m->m_data -= iphlen;
2648    m->m_len  += iphlen;
2649
2650    if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER) {
2651	/*
2652	 * Since this is a REGISTER, we'll make a copy of the register
2653	 * headers ip + pim + u_int32 + encap_ip, to be passed up to the
2654	 * routing daemon.
2655	 */
2656	struct sockaddr_in dst = { sizeof(dst), AF_INET };
2657	struct mbuf *mcp;
2658	struct ip *encap_ip;
2659	u_int32_t *reghdr;
2660	struct ifnet *vifp;
2661
2662	VIF_LOCK();
2663	if ((V_reg_vif_num >= V_numvifs) || (V_reg_vif_num == VIFI_INVALID)) {
2664	    VIF_UNLOCK();
2665	    CTR2(KTR_IPMF, "%s: register vif not set: %d", __func__,
2666		(int)V_reg_vif_num);
2667	    m_freem(m);
2668	    return;
2669	}
2670	/* XXX need refcnt? */
2671	vifp = V_viftable[V_reg_vif_num].v_ifp;
2672	VIF_UNLOCK();
2673
2674	/*
2675	 * Validate length
2676	 */
2677	if (datalen < PIM_REG_MINLEN) {
2678	    PIMSTAT_INC(pims_rcv_tooshort);
2679	    PIMSTAT_INC(pims_rcv_badregisters);
2680	    CTR1(KTR_IPMF, "%s: register packet size too small", __func__);
2681	    m_freem(m);
2682	    return;
2683	}
2684
2685	reghdr = (u_int32_t *)(pim + 1);
2686	encap_ip = (struct ip *)(reghdr + 1);
2687
2688	CTR3(KTR_IPMF, "%s: register: encap ip src %s len %d",
2689	    __func__, inet_ntoa(encap_ip->ip_src), ntohs(encap_ip->ip_len));
2690
2691	/* verify the version number of the inner packet */
2692	if (encap_ip->ip_v != IPVERSION) {
2693	    PIMSTAT_INC(pims_rcv_badregisters);
2694	    CTR1(KTR_IPMF, "%s: bad encap ip version", __func__);
2695	    m_freem(m);
2696	    return;
2697	}
2698
2699	/* verify the inner packet is destined to a mcast group */
2700	if (!IN_MULTICAST(ntohl(encap_ip->ip_dst.s_addr))) {
2701	    PIMSTAT_INC(pims_rcv_badregisters);
2702	    CTR2(KTR_IPMF, "%s: bad encap ip dest %s", __func__,
2703		inet_ntoa(encap_ip->ip_dst));
2704	    m_freem(m);
2705	    return;
2706	}
2707
2708	/* If a NULL_REGISTER, pass it to the daemon */
2709	if ((ntohl(*reghdr) & PIM_NULL_REGISTER))
2710	    goto pim_input_to_daemon;
2711
2712	/*
2713	 * Copy the TOS from the outer IP header to the inner IP header.
2714	 */
2715	if (encap_ip->ip_tos != ip_tos) {
2716	    /* Outer TOS -> inner TOS */
2717	    encap_ip->ip_tos = ip_tos;
2718	    /* Recompute the inner header checksum. Sigh... */
2719
2720	    /* adjust mbuf to point to the inner IP header */
2721	    m->m_data += (iphlen + PIM_MINLEN);
2722	    m->m_len  -= (iphlen + PIM_MINLEN);
2723
2724	    encap_ip->ip_sum = 0;
2725	    encap_ip->ip_sum = in_cksum(m, encap_ip->ip_hl << 2);
2726
2727	    /* restore mbuf to point back to the outer IP header */
2728	    m->m_data -= (iphlen + PIM_MINLEN);
2729	    m->m_len  += (iphlen + PIM_MINLEN);
2730	}
2731
2732	/*
2733	 * Decapsulate the inner IP packet and loopback to forward it
2734	 * as a normal multicast packet. Also, make a copy of the
2735	 *     outer_iphdr + pimhdr + reghdr + encap_iphdr
2736	 * to pass to the daemon later, so it can take the appropriate
2737	 * actions (e.g., send back PIM_REGISTER_STOP).
2738	 * XXX: here m->m_data points to the outer IP header.
2739	 */
2740	mcp = m_copy(m, 0, iphlen + PIM_REG_MINLEN);
2741	if (mcp == NULL) {
2742	    CTR1(KTR_IPMF, "%s: m_copy() failed", __func__);
2743	    m_freem(m);
2744	    return;
2745	}
2746
2747	/* Keep statistics */
2748	/* XXX: registers_bytes include only the encap. mcast pkt */
2749	PIMSTAT_INC(pims_rcv_registers_msgs);
2750	PIMSTAT_ADD(pims_rcv_registers_bytes, ntohs(encap_ip->ip_len));
2751
2752	/*
2753	 * forward the inner ip packet; point m_data at the inner ip.
2754	 */
2755	m_adj(m, iphlen + PIM_MINLEN);
2756
2757	CTR4(KTR_IPMF,
2758	    "%s: forward decap'd REGISTER: src %lx dst %lx vif %d",
2759	    __func__,
2760	    (u_long)ntohl(encap_ip->ip_src.s_addr),
2761	    (u_long)ntohl(encap_ip->ip_dst.s_addr),
2762	    (int)V_reg_vif_num);
2763
2764	/* NB: vifp was collected above; can it change on us? */
2765	if_simloop(vifp, m, dst.sin_family, 0);
2766
2767	/* prepare the register head to send to the mrouting daemon */
2768	m = mcp;
2769    }
2770
2771pim_input_to_daemon:
2772    /*
2773     * Pass the PIM message up to the daemon; if it is a Register message,
2774     * pass the 'head' only up to the daemon. This includes the
2775     * outer IP header, PIM header, PIM-Register header and the
2776     * inner IP header.
2777     * XXX: the outer IP header pkt size of a Register is not adjust to
2778     * reflect the fact that the inner multicast data is truncated.
2779     */
2780    rip_input(m, iphlen);
2781
2782    return;
2783}
2784
2785static int
2786sysctl_mfctable(SYSCTL_HANDLER_ARGS)
2787{
2788	struct mfc	*rt;
2789	int		 error, i;
2790
2791	if (req->newptr)
2792		return (EPERM);
2793	if (V_mfchashtbl == NULL)	/* XXX unlocked */
2794		return (0);
2795	error = sysctl_wire_old_buffer(req, 0);
2796	if (error)
2797		return (error);
2798
2799	MFC_LOCK();
2800	for (i = 0; i < mfchashsize; i++) {
2801		LIST_FOREACH(rt, &V_mfchashtbl[i], mfc_hash) {
2802			error = SYSCTL_OUT(req, rt, sizeof(struct mfc));
2803			if (error)
2804				goto out_locked;
2805		}
2806	}
2807out_locked:
2808	MFC_UNLOCK();
2809	return (error);
2810}
2811
2812static SYSCTL_NODE(_net_inet_ip, OID_AUTO, mfctable, CTLFLAG_RD,
2813    sysctl_mfctable, "IPv4 Multicast Forwarding Table "
2814    "(struct *mfc[mfchashsize], netinet/ip_mroute.h)");
2815
2816static void
2817vnet_mroute_init(const void *unused __unused)
2818{
2819
2820	MALLOC(V_nexpire, u_char *, mfchashsize, M_MRTABLE, M_WAITOK|M_ZERO);
2821	bzero(V_bw_meter_timers, sizeof(V_bw_meter_timers));
2822	callout_init(&V_expire_upcalls_ch, CALLOUT_MPSAFE);
2823	callout_init(&V_bw_upcalls_ch, CALLOUT_MPSAFE);
2824	callout_init(&V_bw_meter_ch, CALLOUT_MPSAFE);
2825}
2826
2827VNET_SYSINIT(vnet_mroute_init, SI_SUB_PSEUDO, SI_ORDER_ANY, vnet_mroute_init,
2828	NULL);
2829
2830static void
2831vnet_mroute_uninit(const void *unused __unused)
2832{
2833
2834	FREE(V_nexpire, M_MRTABLE);
2835	V_nexpire = NULL;
2836}
2837
2838VNET_SYSUNINIT(vnet_mroute_uninit, SI_SUB_PSEUDO, SI_ORDER_MIDDLE,
2839	vnet_mroute_uninit, NULL);
2840
2841static int
2842ip_mroute_modevent(module_t mod, int type, void *unused)
2843{
2844
2845    switch (type) {
2846    case MOD_LOAD:
2847	MROUTER_LOCK_INIT();
2848
2849	if_detach_event_tag = EVENTHANDLER_REGISTER(ifnet_departure_event,
2850	    if_detached_event, NULL, EVENTHANDLER_PRI_ANY);
2851	if (if_detach_event_tag == NULL) {
2852		printf("ip_mroute: unable to ifnet_deperture_even handler\n");
2853		MROUTER_LOCK_DESTROY();
2854		return (EINVAL);
2855	}
2856
2857	MFC_LOCK_INIT();
2858	VIF_LOCK_INIT();
2859
2860	mfchashsize = MFCHASHSIZE;
2861	if (TUNABLE_ULONG_FETCH("net.inet.ip.mfchashsize", &mfchashsize) &&
2862	    !powerof2(mfchashsize)) {
2863		printf("WARNING: %s not a power of 2; using default\n",
2864		    "net.inet.ip.mfchashsize");
2865		mfchashsize = MFCHASHSIZE;
2866	}
2867
2868	pim_squelch_wholepkt = 0;
2869	TUNABLE_ULONG_FETCH("net.inet.pim.squelch_wholepkt",
2870	    &pim_squelch_wholepkt);
2871
2872	pim_encap_cookie = encap_attach_func(AF_INET, IPPROTO_PIM,
2873	    pim_encapcheck, &in_pim_protosw, NULL);
2874	if (pim_encap_cookie == NULL) {
2875		printf("ip_mroute: unable to attach pim encap\n");
2876		VIF_LOCK_DESTROY();
2877		MFC_LOCK_DESTROY();
2878		MROUTER_LOCK_DESTROY();
2879		return (EINVAL);
2880	}
2881
2882	ip_mcast_src = X_ip_mcast_src;
2883	ip_mforward = X_ip_mforward;
2884	ip_mrouter_done = X_ip_mrouter_done;
2885	ip_mrouter_get = X_ip_mrouter_get;
2886	ip_mrouter_set = X_ip_mrouter_set;
2887
2888	ip_rsvp_force_done = X_ip_rsvp_force_done;
2889	ip_rsvp_vif = X_ip_rsvp_vif;
2890
2891	legal_vif_num = X_legal_vif_num;
2892	mrt_ioctl = X_mrt_ioctl;
2893	rsvp_input_p = X_rsvp_input;
2894	break;
2895
2896    case MOD_UNLOAD:
2897	/*
2898	 * Typically module unload happens after the user-level
2899	 * process has shutdown the kernel services (the check
2900	 * below insures someone can't just yank the module out
2901	 * from under a running process).  But if the module is
2902	 * just loaded and then unloaded w/o starting up a user
2903	 * process we still need to cleanup.
2904	 */
2905	MROUTER_LOCK();
2906	if (ip_mrouter_cnt != 0) {
2907	    MROUTER_UNLOCK();
2908	    return (EINVAL);
2909	}
2910	ip_mrouter_unloading = 1;
2911	MROUTER_UNLOCK();
2912
2913	EVENTHANDLER_DEREGISTER(ifnet_departure_event, if_detach_event_tag);
2914
2915	if (pim_encap_cookie) {
2916	    encap_detach(pim_encap_cookie);
2917	    pim_encap_cookie = NULL;
2918	}
2919
2920	ip_mcast_src = NULL;
2921	ip_mforward = NULL;
2922	ip_mrouter_done = NULL;
2923	ip_mrouter_get = NULL;
2924	ip_mrouter_set = NULL;
2925
2926	ip_rsvp_force_done = NULL;
2927	ip_rsvp_vif = NULL;
2928
2929	legal_vif_num = NULL;
2930	mrt_ioctl = NULL;
2931	rsvp_input_p = NULL;
2932
2933	VIF_LOCK_DESTROY();
2934	MFC_LOCK_DESTROY();
2935	MROUTER_LOCK_DESTROY();
2936	break;
2937
2938    default:
2939	return EOPNOTSUPP;
2940    }
2941    return 0;
2942}
2943
2944static moduledata_t ip_mroutemod = {
2945    "ip_mroute",
2946    ip_mroute_modevent,
2947    NULL
2948};
2949
2950DECLARE_MODULE(ip_mroute, ip_mroutemod, SI_SUB_PSEUDO, SI_ORDER_MIDDLE);
2951