ip_mroute.c revision 208744
1/*-
2 * Copyright (c) 1989 Stephen Deering
3 * Copyright (c) 1992, 1993
4 *      The Regents of the University of California.  All rights reserved.
5 *
6 * This code is derived from software contributed to Berkeley by
7 * Stephen Deering of Stanford University.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in the
16 *    documentation and/or other materials provided with the distribution.
17 * 4. Neither the name of the University nor the names of its contributors
18 *    may be used to endorse or promote products derived from this software
19 *    without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 *
33 *      @(#)ip_mroute.c 8.2 (Berkeley) 11/15/93
34 */
35
36/*
37 * IP multicast forwarding procedures
38 *
39 * Written by David Waitzman, BBN Labs, August 1988.
40 * Modified by Steve Deering, Stanford, February 1989.
41 * Modified by Mark J. Steiglitz, Stanford, May, 1991
42 * Modified by Van Jacobson, LBL, January 1993
43 * Modified by Ajit Thyagarajan, PARC, August 1993
44 * Modified by Bill Fenner, PARC, April 1995
45 * Modified by Ahmed Helmy, SGI, June 1996
46 * Modified by George Edmond Eddy (Rusty), ISI, February 1998
47 * Modified by Pavlin Radoslavov, USC/ISI, May 1998, August 1999, October 2000
48 * Modified by Hitoshi Asaeda, WIDE, August 2000
49 * Modified by Pavlin Radoslavov, ICSI, October 2002
50 *
51 * MROUTING Revision: 3.5
52 * and PIM-SMv2 and PIM-DM support, advanced API support,
53 * bandwidth metering and signaling
54 */
55
56/*
57 * TODO: Prefix functions with ipmf_.
58 * TODO: Maintain a refcount on if_allmulti() in ifnet or in the protocol
59 * domain attachment (if_afdata) so we can track consumers of that service.
60 * TODO: Deprecate routing socket path for SIOCGETSGCNT and SIOCGETVIFCNT,
61 * move it to socket options.
62 * TODO: Cleanup LSRR removal further.
63 * TODO: Push RSVP stubs into raw_ip.c.
64 * TODO: Use bitstring.h for vif set.
65 * TODO: Fix mrt6_ioctl dangling ref when dynamically loaded.
66 * TODO: Sync ip6_mroute.c with this file.
67 */
68
69#include <sys/cdefs.h>
70__FBSDID("$FreeBSD: head/sys/netinet/ip_mroute.c 208744 2010-06-02 15:44:43Z zec $");
71
72#include "opt_inet.h"
73#include "opt_mrouting.h"
74
75#define _PIM_VT 1
76
77#include <sys/param.h>
78#include <sys/kernel.h>
79#include <sys/stddef.h>
80#include <sys/lock.h>
81#include <sys/ktr.h>
82#include <sys/malloc.h>
83#include <sys/mbuf.h>
84#include <sys/module.h>
85#include <sys/priv.h>
86#include <sys/protosw.h>
87#include <sys/signalvar.h>
88#include <sys/socket.h>
89#include <sys/socketvar.h>
90#include <sys/sockio.h>
91#include <sys/sx.h>
92#include <sys/sysctl.h>
93#include <sys/syslog.h>
94#include <sys/systm.h>
95#include <sys/time.h>
96
97#include <net/if.h>
98#include <net/netisr.h>
99#include <net/route.h>
100#include <net/vnet.h>
101
102#include <netinet/in.h>
103#include <netinet/igmp.h>
104#include <netinet/in_systm.h>
105#include <netinet/in_var.h>
106#include <netinet/ip.h>
107#include <netinet/ip_encap.h>
108#include <netinet/ip_mroute.h>
109#include <netinet/ip_var.h>
110#include <netinet/ip_options.h>
111#include <netinet/pim.h>
112#include <netinet/pim_var.h>
113#include <netinet/udp.h>
114
115#include <machine/in_cksum.h>
116
117#ifndef KTR_IPMF
118#define KTR_IPMF KTR_INET
119#endif
120
121#define		VIFI_INVALID	((vifi_t) -1)
122#define		M_HASCL(m)	((m)->m_flags & M_EXT)
123
124static VNET_DEFINE(uint32_t, last_tv_sec); /* last time we processed this */
125#define	V_last_tv_sec	VNET(last_tv_sec)
126
127static MALLOC_DEFINE(M_MRTABLE, "mroutetbl", "multicast forwarding cache");
128
129/*
130 * Locking.  We use two locks: one for the virtual interface table and
131 * one for the forwarding table.  These locks may be nested in which case
132 * the VIF lock must always be taken first.  Note that each lock is used
133 * to cover not only the specific data structure but also related data
134 * structures.
135 */
136
137static struct mtx mrouter_mtx;
138#define	MROUTER_LOCK()		mtx_lock(&mrouter_mtx)
139#define	MROUTER_UNLOCK()	mtx_unlock(&mrouter_mtx)
140#define	MROUTER_LOCK_ASSERT()	mtx_assert(&mrouter_mtx, MA_OWNED)
141#define	MROUTER_LOCK_INIT()						\
142	mtx_init(&mrouter_mtx, "IPv4 multicast forwarding", NULL, MTX_DEF)
143#define	MROUTER_LOCK_DESTROY()	mtx_destroy(&mrouter_mtx)
144
145static int ip_mrouter_cnt;	/* # of vnets with active mrouters */
146static int ip_mrouter_unloading; /* Allow no more V_ip_mrouter sockets */
147
148static VNET_DEFINE(struct mrtstat, mrtstat);
149#define	V_mrtstat		VNET(mrtstat)
150SYSCTL_VNET_STRUCT(_net_inet_ip, OID_AUTO, mrtstat, CTLFLAG_RW,
151    &VNET_NAME(mrtstat), mrtstat,
152    "IPv4 Multicast Forwarding Statistics (struct mrtstat, "
153    "netinet/ip_mroute.h)");
154
155static VNET_DEFINE(u_long, mfchash);
156#define	V_mfchash		VNET(mfchash)
157#define	MFCHASH(a, g)							\
158	((((a).s_addr >> 20) ^ ((a).s_addr >> 10) ^ (a).s_addr ^ \
159	  ((g).s_addr >> 20) ^ ((g).s_addr >> 10) ^ (g).s_addr) & V_mfchash)
160#define	MFCHASHSIZE	256
161
162static u_long mfchashsize;			/* Hash size */
163static VNET_DEFINE(u_char *, nexpire);		/* 0..mfchashsize-1 */
164#define	V_nexpire		VNET(nexpire)
165static VNET_DEFINE(LIST_HEAD(mfchashhdr, mfc)*, mfchashtbl);
166#define	V_mfchashtbl		VNET(mfchashtbl)
167
168static struct mtx mfc_mtx;
169#define	MFC_LOCK()		mtx_lock(&mfc_mtx)
170#define	MFC_UNLOCK()		mtx_unlock(&mfc_mtx)
171#define	MFC_LOCK_ASSERT()	mtx_assert(&mfc_mtx, MA_OWNED)
172#define	MFC_LOCK_INIT()							\
173	mtx_init(&mfc_mtx, "IPv4 multicast forwarding cache", NULL, MTX_DEF)
174#define	MFC_LOCK_DESTROY()	mtx_destroy(&mfc_mtx)
175
176static VNET_DEFINE(vifi_t, numvifs);
177#define	V_numvifs		VNET(numvifs)
178static VNET_DEFINE(struct vif, viftable[MAXVIFS]);
179#define	V_viftable		VNET(viftable)
180SYSCTL_VNET_OPAQUE(_net_inet_ip, OID_AUTO, viftable, CTLFLAG_RD,
181    &VNET_NAME(viftable), sizeof(V_viftable), "S,vif[MAXVIFS]",
182    "IPv4 Multicast Interfaces (struct vif[MAXVIFS], netinet/ip_mroute.h)");
183
184static struct mtx vif_mtx;
185#define	VIF_LOCK()		mtx_lock(&vif_mtx)
186#define	VIF_UNLOCK()		mtx_unlock(&vif_mtx)
187#define	VIF_LOCK_ASSERT()	mtx_assert(&vif_mtx, MA_OWNED)
188#define	VIF_LOCK_INIT()							\
189	mtx_init(&vif_mtx, "IPv4 multicast interfaces", NULL, MTX_DEF)
190#define	VIF_LOCK_DESTROY()	mtx_destroy(&vif_mtx)
191
192static eventhandler_tag if_detach_event_tag = NULL;
193
194static VNET_DEFINE(struct callout, expire_upcalls_ch);
195#define	V_expire_upcalls_ch	VNET(expire_upcalls_ch)
196
197#define		EXPIRE_TIMEOUT	(hz / 4)	/* 4x / second		*/
198#define		UPCALL_EXPIRE	6		/* number of timeouts	*/
199
200/*
201 * Bandwidth meter variables and constants
202 */
203static MALLOC_DEFINE(M_BWMETER, "bwmeter", "multicast upcall bw meters");
204/*
205 * Pending timeouts are stored in a hash table, the key being the
206 * expiration time. Periodically, the entries are analysed and processed.
207 */
208#define	BW_METER_BUCKETS	1024
209static VNET_DEFINE(struct bw_meter*, bw_meter_timers[BW_METER_BUCKETS]);
210#define	V_bw_meter_timers	VNET(bw_meter_timers)
211static VNET_DEFINE(struct callout, bw_meter_ch);
212#define	V_bw_meter_ch		VNET(bw_meter_ch)
213#define	BW_METER_PERIOD (hz)		/* periodical handling of bw meters */
214
215/*
216 * Pending upcalls are stored in a vector which is flushed when
217 * full, or periodically
218 */
219static VNET_DEFINE(struct bw_upcall, bw_upcalls[BW_UPCALLS_MAX]);
220#define	V_bw_upcalls		VNET(bw_upcalls)
221static VNET_DEFINE(u_int, bw_upcalls_n); /* # of pending upcalls */
222#define	V_bw_upcalls_n    	VNET(bw_upcalls_n)
223static VNET_DEFINE(struct callout, bw_upcalls_ch);
224#define	V_bw_upcalls_ch		VNET(bw_upcalls_ch)
225
226#define BW_UPCALLS_PERIOD (hz)		/* periodical flush of bw upcalls */
227
228static VNET_DEFINE(struct pimstat, pimstat);
229#define	V_pimstat		VNET(pimstat)
230
231SYSCTL_NODE(_net_inet, IPPROTO_PIM, pim, CTLFLAG_RW, 0, "PIM");
232SYSCTL_VNET_STRUCT(_net_inet_pim, PIMCTL_STATS, stats, CTLFLAG_RD,
233    &VNET_NAME(pimstat), pimstat,
234    "PIM Statistics (struct pimstat, netinet/pim_var.h)");
235
236static u_long	pim_squelch_wholepkt = 0;
237SYSCTL_ULONG(_net_inet_pim, OID_AUTO, squelch_wholepkt, CTLFLAG_RW,
238    &pim_squelch_wholepkt, 0,
239    "Disable IGMP_WHOLEPKT notifications if rendezvous point is unspecified");
240
241extern  struct domain inetdomain;
242static const struct protosw in_pim_protosw = {
243	.pr_type =		SOCK_RAW,
244	.pr_domain =		&inetdomain,
245	.pr_protocol =		IPPROTO_PIM,
246	.pr_flags =		PR_ATOMIC|PR_ADDR|PR_LASTHDR,
247	.pr_input =		pim_input,
248	.pr_output =		(pr_output_t*)rip_output,
249	.pr_ctloutput =		rip_ctloutput,
250	.pr_usrreqs =		&rip_usrreqs
251};
252static const struct encaptab *pim_encap_cookie;
253
254static int pim_encapcheck(const struct mbuf *, int, int, void *);
255
256/*
257 * Note: the PIM Register encapsulation adds the following in front of a
258 * data packet:
259 *
260 * struct pim_encap_hdr {
261 *    struct ip ip;
262 *    struct pim_encap_pimhdr  pim;
263 * }
264 *
265 */
266
267struct pim_encap_pimhdr {
268	struct pim pim;
269	uint32_t   flags;
270};
271#define		PIM_ENCAP_TTL	64
272
273static struct ip pim_encap_iphdr = {
274#if BYTE_ORDER == LITTLE_ENDIAN
275	sizeof(struct ip) >> 2,
276	IPVERSION,
277#else
278	IPVERSION,
279	sizeof(struct ip) >> 2,
280#endif
281	0,			/* tos */
282	sizeof(struct ip),	/* total length */
283	0,			/* id */
284	0,			/* frag offset */
285	PIM_ENCAP_TTL,
286	IPPROTO_PIM,
287	0,			/* checksum */
288};
289
290static struct pim_encap_pimhdr pim_encap_pimhdr = {
291    {
292	PIM_MAKE_VT(PIM_VERSION, PIM_REGISTER), /* PIM vers and message type */
293	0,			/* reserved */
294	0,			/* checksum */
295    },
296    0				/* flags */
297};
298
299static VNET_DEFINE(vifi_t, reg_vif_num) = VIFI_INVALID;
300#define	V_reg_vif_num		VNET(reg_vif_num)
301static VNET_DEFINE(struct ifnet, multicast_register_if);
302#define	V_multicast_register_if	VNET(multicast_register_if)
303
304/*
305 * Private variables.
306 */
307
308static u_long	X_ip_mcast_src(int);
309static int	X_ip_mforward(struct ip *, struct ifnet *, struct mbuf *,
310		    struct ip_moptions *);
311static int	X_ip_mrouter_done(void);
312static int	X_ip_mrouter_get(struct socket *, struct sockopt *);
313static int	X_ip_mrouter_set(struct socket *, struct sockopt *);
314static int	X_legal_vif_num(int);
315static int	X_mrt_ioctl(u_long, caddr_t, int);
316
317static int	add_bw_upcall(struct bw_upcall *);
318static int	add_mfc(struct mfcctl2 *);
319static int	add_vif(struct vifctl *);
320static void	bw_meter_prepare_upcall(struct bw_meter *, struct timeval *);
321static void	bw_meter_process(void);
322static void	bw_meter_receive_packet(struct bw_meter *, int,
323		    struct timeval *);
324static void	bw_upcalls_send(void);
325static int	del_bw_upcall(struct bw_upcall *);
326static int	del_mfc(struct mfcctl2 *);
327static int	del_vif(vifi_t);
328static int	del_vif_locked(vifi_t);
329static void	expire_bw_meter_process(void *);
330static void	expire_bw_upcalls_send(void *);
331static void	expire_mfc(struct mfc *);
332static void	expire_upcalls(void *);
333static void	free_bw_list(struct bw_meter *);
334static int	get_sg_cnt(struct sioc_sg_req *);
335static int	get_vif_cnt(struct sioc_vif_req *);
336static void	if_detached_event(void *, struct ifnet *);
337static int	ip_mdq(struct mbuf *, struct ifnet *, struct mfc *, vifi_t);
338static int	ip_mrouter_init(struct socket *, int);
339static __inline struct mfc *
340		mfc_find(struct in_addr *, struct in_addr *);
341static void	phyint_send(struct ip *, struct vif *, struct mbuf *);
342static struct mbuf *
343		pim_register_prepare(struct ip *, struct mbuf *);
344static int	pim_register_send(struct ip *, struct vif *,
345		    struct mbuf *, struct mfc *);
346static int	pim_register_send_rp(struct ip *, struct vif *,
347		    struct mbuf *, struct mfc *);
348static int	pim_register_send_upcall(struct ip *, struct vif *,
349		    struct mbuf *, struct mfc *);
350static void	schedule_bw_meter(struct bw_meter *, struct timeval *);
351static void	send_packet(struct vif *, struct mbuf *);
352static int	set_api_config(uint32_t *);
353static int	set_assert(int);
354static int	socket_send(struct socket *, struct mbuf *,
355		    struct sockaddr_in *);
356static void	unschedule_bw_meter(struct bw_meter *);
357
358/*
359 * Kernel multicast forwarding API capabilities and setup.
360 * If more API capabilities are added to the kernel, they should be
361 * recorded in `mrt_api_support'.
362 */
363#define MRT_API_VERSION		0x0305
364
365static const int mrt_api_version = MRT_API_VERSION;
366static const uint32_t mrt_api_support = (MRT_MFC_FLAGS_DISABLE_WRONGVIF |
367					 MRT_MFC_FLAGS_BORDER_VIF |
368					 MRT_MFC_RP |
369					 MRT_MFC_BW_UPCALL);
370static VNET_DEFINE(uint32_t, mrt_api_config);
371#define	V_mrt_api_config	VNET(mrt_api_config)
372static VNET_DEFINE(int, pim_assert_enabled);
373#define	V_pim_assert_enabled	VNET(pim_assert_enabled)
374static struct timeval pim_assert_interval = { 3, 0 };	/* Rate limit */
375
376/*
377 * Find a route for a given origin IP address and multicast group address.
378 * Statistics must be updated by the caller.
379 */
380static __inline struct mfc *
381mfc_find(struct in_addr *o, struct in_addr *g)
382{
383	struct mfc *rt;
384
385	MFC_LOCK_ASSERT();
386
387	LIST_FOREACH(rt, &V_mfchashtbl[MFCHASH(*o, *g)], mfc_hash) {
388		if (in_hosteq(rt->mfc_origin, *o) &&
389		    in_hosteq(rt->mfc_mcastgrp, *g) &&
390		    TAILQ_EMPTY(&rt->mfc_stall))
391			break;
392	}
393
394	return (rt);
395}
396
397/*
398 * Handle MRT setsockopt commands to modify the multicast forwarding tables.
399 */
400static int
401X_ip_mrouter_set(struct socket *so, struct sockopt *sopt)
402{
403    int	error, optval;
404    vifi_t	vifi;
405    struct	vifctl vifc;
406    struct	mfcctl2 mfc;
407    struct	bw_upcall bw_upcall;
408    uint32_t	i;
409
410    if (so != V_ip_mrouter && sopt->sopt_name != MRT_INIT)
411	return EPERM;
412
413    error = 0;
414    switch (sopt->sopt_name) {
415    case MRT_INIT:
416	error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval);
417	if (error)
418	    break;
419	error = ip_mrouter_init(so, optval);
420	break;
421
422    case MRT_DONE:
423	error = ip_mrouter_done();
424	break;
425
426    case MRT_ADD_VIF:
427	error = sooptcopyin(sopt, &vifc, sizeof vifc, sizeof vifc);
428	if (error)
429	    break;
430	error = add_vif(&vifc);
431	break;
432
433    case MRT_DEL_VIF:
434	error = sooptcopyin(sopt, &vifi, sizeof vifi, sizeof vifi);
435	if (error)
436	    break;
437	error = del_vif(vifi);
438	break;
439
440    case MRT_ADD_MFC:
441    case MRT_DEL_MFC:
442	/*
443	 * select data size depending on API version.
444	 */
445	if (sopt->sopt_name == MRT_ADD_MFC &&
446		V_mrt_api_config & MRT_API_FLAGS_ALL) {
447	    error = sooptcopyin(sopt, &mfc, sizeof(struct mfcctl2),
448				sizeof(struct mfcctl2));
449	} else {
450	    error = sooptcopyin(sopt, &mfc, sizeof(struct mfcctl),
451				sizeof(struct mfcctl));
452	    bzero((caddr_t)&mfc + sizeof(struct mfcctl),
453			sizeof(mfc) - sizeof(struct mfcctl));
454	}
455	if (error)
456	    break;
457	if (sopt->sopt_name == MRT_ADD_MFC)
458	    error = add_mfc(&mfc);
459	else
460	    error = del_mfc(&mfc);
461	break;
462
463    case MRT_ASSERT:
464	error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval);
465	if (error)
466	    break;
467	set_assert(optval);
468	break;
469
470    case MRT_API_CONFIG:
471	error = sooptcopyin(sopt, &i, sizeof i, sizeof i);
472	if (!error)
473	    error = set_api_config(&i);
474	if (!error)
475	    error = sooptcopyout(sopt, &i, sizeof i);
476	break;
477
478    case MRT_ADD_BW_UPCALL:
479    case MRT_DEL_BW_UPCALL:
480	error = sooptcopyin(sopt, &bw_upcall, sizeof bw_upcall,
481				sizeof bw_upcall);
482	if (error)
483	    break;
484	if (sopt->sopt_name == MRT_ADD_BW_UPCALL)
485	    error = add_bw_upcall(&bw_upcall);
486	else
487	    error = del_bw_upcall(&bw_upcall);
488	break;
489
490    default:
491	error = EOPNOTSUPP;
492	break;
493    }
494    return error;
495}
496
497/*
498 * Handle MRT getsockopt commands
499 */
500static int
501X_ip_mrouter_get(struct socket *so, struct sockopt *sopt)
502{
503    int error;
504
505    switch (sopt->sopt_name) {
506    case MRT_VERSION:
507	error = sooptcopyout(sopt, &mrt_api_version, sizeof mrt_api_version);
508	break;
509
510    case MRT_ASSERT:
511	error = sooptcopyout(sopt, &V_pim_assert_enabled,
512	    sizeof V_pim_assert_enabled);
513	break;
514
515    case MRT_API_SUPPORT:
516	error = sooptcopyout(sopt, &mrt_api_support, sizeof mrt_api_support);
517	break;
518
519    case MRT_API_CONFIG:
520	error = sooptcopyout(sopt, &V_mrt_api_config, sizeof V_mrt_api_config);
521	break;
522
523    default:
524	error = EOPNOTSUPP;
525	break;
526    }
527    return error;
528}
529
530/*
531 * Handle ioctl commands to obtain information from the cache
532 */
533static int
534X_mrt_ioctl(u_long cmd, caddr_t data, int fibnum __unused)
535{
536    int error = 0;
537
538    /*
539     * Currently the only function calling this ioctl routine is rtioctl().
540     * Typically, only root can create the raw socket in order to execute
541     * this ioctl method, however the request might be coming from a prison
542     */
543    error = priv_check(curthread, PRIV_NETINET_MROUTE);
544    if (error)
545	return (error);
546    switch (cmd) {
547    case (SIOCGETVIFCNT):
548	error = get_vif_cnt((struct sioc_vif_req *)data);
549	break;
550
551    case (SIOCGETSGCNT):
552	error = get_sg_cnt((struct sioc_sg_req *)data);
553	break;
554
555    default:
556	error = EINVAL;
557	break;
558    }
559    return error;
560}
561
562/*
563 * returns the packet, byte, rpf-failure count for the source group provided
564 */
565static int
566get_sg_cnt(struct sioc_sg_req *req)
567{
568    struct mfc *rt;
569
570    MFC_LOCK();
571    rt = mfc_find(&req->src, &req->grp);
572    if (rt == NULL) {
573	MFC_UNLOCK();
574	req->pktcnt = req->bytecnt = req->wrong_if = 0xffffffff;
575	return EADDRNOTAVAIL;
576    }
577    req->pktcnt = rt->mfc_pkt_cnt;
578    req->bytecnt = rt->mfc_byte_cnt;
579    req->wrong_if = rt->mfc_wrong_if;
580    MFC_UNLOCK();
581    return 0;
582}
583
584/*
585 * returns the input and output packet and byte counts on the vif provided
586 */
587static int
588get_vif_cnt(struct sioc_vif_req *req)
589{
590    vifi_t vifi = req->vifi;
591
592    VIF_LOCK();
593    if (vifi >= V_numvifs) {
594	VIF_UNLOCK();
595	return EINVAL;
596    }
597
598    req->icount = V_viftable[vifi].v_pkt_in;
599    req->ocount = V_viftable[vifi].v_pkt_out;
600    req->ibytes = V_viftable[vifi].v_bytes_in;
601    req->obytes = V_viftable[vifi].v_bytes_out;
602    VIF_UNLOCK();
603
604    return 0;
605}
606
607static void
608if_detached_event(void *arg __unused, struct ifnet *ifp)
609{
610    vifi_t vifi;
611    int i;
612
613    MROUTER_LOCK();
614
615    if (V_ip_mrouter == NULL) {
616	MROUTER_UNLOCK();
617	return;
618    }
619
620    VIF_LOCK();
621    MFC_LOCK();
622
623    /*
624     * Tear down multicast forwarder state associated with this ifnet.
625     * 1. Walk the vif list, matching vifs against this ifnet.
626     * 2. Walk the multicast forwarding cache (mfc) looking for
627     *    inner matches with this vif's index.
628     * 3. Expire any matching multicast forwarding cache entries.
629     * 4. Free vif state. This should disable ALLMULTI on the interface.
630     */
631    for (vifi = 0; vifi < V_numvifs; vifi++) {
632	if (V_viftable[vifi].v_ifp != ifp)
633		continue;
634	for (i = 0; i < mfchashsize; i++) {
635		struct mfc *rt, *nrt;
636		for (rt = LIST_FIRST(&V_mfchashtbl[i]); rt; rt = nrt) {
637			nrt = LIST_NEXT(rt, mfc_hash);
638			if (rt->mfc_parent == vifi) {
639				expire_mfc(rt);
640			}
641		}
642	}
643	del_vif_locked(vifi);
644    }
645
646    MFC_UNLOCK();
647    VIF_UNLOCK();
648
649    MROUTER_UNLOCK();
650}
651
652/*
653 * Enable multicast forwarding.
654 */
655static int
656ip_mrouter_init(struct socket *so, int version)
657{
658
659    CTR3(KTR_IPMF, "%s: so_type %d, pr_protocol %d", __func__,
660        so->so_type, so->so_proto->pr_protocol);
661
662    if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_IGMP)
663	return EOPNOTSUPP;
664
665    if (version != 1)
666	return ENOPROTOOPT;
667
668    MROUTER_LOCK();
669
670    if (ip_mrouter_unloading) {
671	MROUTER_UNLOCK();
672	return ENOPROTOOPT;
673    }
674
675    if (V_ip_mrouter != NULL) {
676	MROUTER_UNLOCK();
677	return EADDRINUSE;
678    }
679
680    V_mfchashtbl = hashinit_flags(mfchashsize, M_MRTABLE, &V_mfchash,
681	HASH_NOWAIT);
682
683    callout_reset(&V_expire_upcalls_ch, EXPIRE_TIMEOUT, expire_upcalls,
684	curvnet);
685    callout_reset(&V_bw_upcalls_ch, BW_UPCALLS_PERIOD, expire_bw_upcalls_send,
686	curvnet);
687    callout_reset(&V_bw_meter_ch, BW_METER_PERIOD, expire_bw_meter_process,
688	curvnet);
689
690    V_ip_mrouter = so;
691    ip_mrouter_cnt++;
692
693    MROUTER_UNLOCK();
694
695    CTR1(KTR_IPMF, "%s: done", __func__);
696
697    return 0;
698}
699
700/*
701 * Disable multicast forwarding.
702 */
703static int
704X_ip_mrouter_done(void)
705{
706    vifi_t vifi;
707    int i;
708    struct ifnet *ifp;
709    struct ifreq ifr;
710
711    MROUTER_LOCK();
712
713    if (V_ip_mrouter == NULL) {
714	MROUTER_UNLOCK();
715	return EINVAL;
716    }
717
718    /*
719     * Detach/disable hooks to the reset of the system.
720     */
721    V_ip_mrouter = NULL;
722    ip_mrouter_cnt--;
723    V_mrt_api_config = 0;
724
725    VIF_LOCK();
726
727    /*
728     * For each phyint in use, disable promiscuous reception of all IP
729     * multicasts.
730     */
731    for (vifi = 0; vifi < V_numvifs; vifi++) {
732	if (!in_nullhost(V_viftable[vifi].v_lcl_addr) &&
733		!(V_viftable[vifi].v_flags & (VIFF_TUNNEL | VIFF_REGISTER))) {
734	    struct sockaddr_in *so = (struct sockaddr_in *)&(ifr.ifr_addr);
735
736	    so->sin_len = sizeof(struct sockaddr_in);
737	    so->sin_family = AF_INET;
738	    so->sin_addr.s_addr = INADDR_ANY;
739	    ifp = V_viftable[vifi].v_ifp;
740	    if_allmulti(ifp, 0);
741	}
742    }
743    bzero((caddr_t)V_viftable, sizeof(V_viftable));
744    V_numvifs = 0;
745    V_pim_assert_enabled = 0;
746
747    VIF_UNLOCK();
748
749    callout_stop(&V_expire_upcalls_ch);
750    callout_stop(&V_bw_upcalls_ch);
751    callout_stop(&V_bw_meter_ch);
752
753    MFC_LOCK();
754
755    /*
756     * Free all multicast forwarding cache entries.
757     * Do not use hashdestroy(), as we must perform other cleanup.
758     */
759    for (i = 0; i < mfchashsize; i++) {
760	struct mfc *rt, *nrt;
761	for (rt = LIST_FIRST(&V_mfchashtbl[i]); rt; rt = nrt) {
762		nrt = LIST_NEXT(rt, mfc_hash);
763		expire_mfc(rt);
764	}
765    }
766    free(V_mfchashtbl, M_MRTABLE);
767    V_mfchashtbl = NULL;
768
769    bzero(V_nexpire, sizeof(V_nexpire[0]) * mfchashsize);
770
771    V_bw_upcalls_n = 0;
772    bzero(V_bw_meter_timers, sizeof(V_bw_meter_timers));
773
774    MFC_UNLOCK();
775
776    V_reg_vif_num = VIFI_INVALID;
777
778    MROUTER_UNLOCK();
779
780    CTR1(KTR_IPMF, "%s: done", __func__);
781
782    return 0;
783}
784
785/*
786 * Set PIM assert processing global
787 */
788static int
789set_assert(int i)
790{
791    if ((i != 1) && (i != 0))
792	return EINVAL;
793
794    V_pim_assert_enabled = i;
795
796    return 0;
797}
798
799/*
800 * Configure API capabilities
801 */
802int
803set_api_config(uint32_t *apival)
804{
805    int i;
806
807    /*
808     * We can set the API capabilities only if it is the first operation
809     * after MRT_INIT. I.e.:
810     *  - there are no vifs installed
811     *  - pim_assert is not enabled
812     *  - the MFC table is empty
813     */
814    if (V_numvifs > 0) {
815	*apival = 0;
816	return EPERM;
817    }
818    if (V_pim_assert_enabled) {
819	*apival = 0;
820	return EPERM;
821    }
822
823    MFC_LOCK();
824
825    for (i = 0; i < mfchashsize; i++) {
826	if (LIST_FIRST(&V_mfchashtbl[i]) != NULL) {
827	    *apival = 0;
828	    return EPERM;
829	}
830    }
831
832    MFC_UNLOCK();
833
834    V_mrt_api_config = *apival & mrt_api_support;
835    *apival = V_mrt_api_config;
836
837    return 0;
838}
839
840/*
841 * Add a vif to the vif table
842 */
843static int
844add_vif(struct vifctl *vifcp)
845{
846    struct vif *vifp = V_viftable + vifcp->vifc_vifi;
847    struct sockaddr_in sin = {sizeof sin, AF_INET};
848    struct ifaddr *ifa;
849    struct ifnet *ifp;
850    int error;
851
852    VIF_LOCK();
853    if (vifcp->vifc_vifi >= MAXVIFS) {
854	VIF_UNLOCK();
855	return EINVAL;
856    }
857    /* rate limiting is no longer supported by this code */
858    if (vifcp->vifc_rate_limit != 0) {
859	log(LOG_ERR, "rate limiting is no longer supported\n");
860	VIF_UNLOCK();
861	return EINVAL;
862    }
863    if (!in_nullhost(vifp->v_lcl_addr)) {
864	VIF_UNLOCK();
865	return EADDRINUSE;
866    }
867    if (in_nullhost(vifcp->vifc_lcl_addr)) {
868	VIF_UNLOCK();
869	return EADDRNOTAVAIL;
870    }
871
872    /* Find the interface with an address in AF_INET family */
873    if (vifcp->vifc_flags & VIFF_REGISTER) {
874	/*
875	 * XXX: Because VIFF_REGISTER does not really need a valid
876	 * local interface (e.g. it could be 127.0.0.2), we don't
877	 * check its address.
878	 */
879	ifp = NULL;
880    } else {
881	sin.sin_addr = vifcp->vifc_lcl_addr;
882	ifa = ifa_ifwithaddr((struct sockaddr *)&sin);
883	if (ifa == NULL) {
884	    VIF_UNLOCK();
885	    return EADDRNOTAVAIL;
886	}
887	ifp = ifa->ifa_ifp;
888	ifa_free(ifa);
889    }
890
891    if ((vifcp->vifc_flags & VIFF_TUNNEL) != 0) {
892	CTR1(KTR_IPMF, "%s: tunnels are no longer supported", __func__);
893	VIF_UNLOCK();
894	return EOPNOTSUPP;
895    } else if (vifcp->vifc_flags & VIFF_REGISTER) {
896	ifp = &V_multicast_register_if;
897	CTR2(KTR_IPMF, "%s: add register vif for ifp %p", __func__, ifp);
898	if (V_reg_vif_num == VIFI_INVALID) {
899	    if_initname(&V_multicast_register_if, "register_vif", 0);
900	    V_multicast_register_if.if_flags = IFF_LOOPBACK;
901	    V_reg_vif_num = vifcp->vifc_vifi;
902	}
903    } else {		/* Make sure the interface supports multicast */
904	if ((ifp->if_flags & IFF_MULTICAST) == 0) {
905	    VIF_UNLOCK();
906	    return EOPNOTSUPP;
907	}
908
909	/* Enable promiscuous reception of all IP multicasts from the if */
910	error = if_allmulti(ifp, 1);
911	if (error) {
912	    VIF_UNLOCK();
913	    return error;
914	}
915    }
916
917    vifp->v_flags     = vifcp->vifc_flags;
918    vifp->v_threshold = vifcp->vifc_threshold;
919    vifp->v_lcl_addr  = vifcp->vifc_lcl_addr;
920    vifp->v_rmt_addr  = vifcp->vifc_rmt_addr;
921    vifp->v_ifp       = ifp;
922    /* initialize per vif pkt counters */
923    vifp->v_pkt_in    = 0;
924    vifp->v_pkt_out   = 0;
925    vifp->v_bytes_in  = 0;
926    vifp->v_bytes_out = 0;
927    bzero(&vifp->v_route, sizeof(vifp->v_route));
928
929    /* Adjust numvifs up if the vifi is higher than numvifs */
930    if (V_numvifs <= vifcp->vifc_vifi)
931	V_numvifs = vifcp->vifc_vifi + 1;
932
933    VIF_UNLOCK();
934
935    CTR4(KTR_IPMF, "%s: add vif %d laddr %s thresh %x", __func__,
936	(int)vifcp->vifc_vifi, inet_ntoa(vifcp->vifc_lcl_addr),
937	(int)vifcp->vifc_threshold);
938
939    return 0;
940}
941
942/*
943 * Delete a vif from the vif table
944 */
945static int
946del_vif_locked(vifi_t vifi)
947{
948    struct vif *vifp;
949
950    VIF_LOCK_ASSERT();
951
952    if (vifi >= V_numvifs) {
953	return EINVAL;
954    }
955    vifp = &V_viftable[vifi];
956    if (in_nullhost(vifp->v_lcl_addr)) {
957	return EADDRNOTAVAIL;
958    }
959
960    if (!(vifp->v_flags & (VIFF_TUNNEL | VIFF_REGISTER)))
961	if_allmulti(vifp->v_ifp, 0);
962
963    if (vifp->v_flags & VIFF_REGISTER)
964	V_reg_vif_num = VIFI_INVALID;
965
966    bzero((caddr_t)vifp, sizeof (*vifp));
967
968    CTR2(KTR_IPMF, "%s: delete vif %d", __func__, (int)vifi);
969
970    /* Adjust numvifs down */
971    for (vifi = V_numvifs; vifi > 0; vifi--)
972	if (!in_nullhost(V_viftable[vifi-1].v_lcl_addr))
973	    break;
974    V_numvifs = vifi;
975
976    return 0;
977}
978
979static int
980del_vif(vifi_t vifi)
981{
982    int cc;
983
984    VIF_LOCK();
985    cc = del_vif_locked(vifi);
986    VIF_UNLOCK();
987
988    return cc;
989}
990
991/*
992 * update an mfc entry without resetting counters and S,G addresses.
993 */
994static void
995update_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp)
996{
997    int i;
998
999    rt->mfc_parent = mfccp->mfcc_parent;
1000    for (i = 0; i < V_numvifs; i++) {
1001	rt->mfc_ttls[i] = mfccp->mfcc_ttls[i];
1002	rt->mfc_flags[i] = mfccp->mfcc_flags[i] & V_mrt_api_config &
1003	    MRT_MFC_FLAGS_ALL;
1004    }
1005    /* set the RP address */
1006    if (V_mrt_api_config & MRT_MFC_RP)
1007	rt->mfc_rp = mfccp->mfcc_rp;
1008    else
1009	rt->mfc_rp.s_addr = INADDR_ANY;
1010}
1011
1012/*
1013 * fully initialize an mfc entry from the parameter.
1014 */
1015static void
1016init_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp)
1017{
1018    rt->mfc_origin     = mfccp->mfcc_origin;
1019    rt->mfc_mcastgrp   = mfccp->mfcc_mcastgrp;
1020
1021    update_mfc_params(rt, mfccp);
1022
1023    /* initialize pkt counters per src-grp */
1024    rt->mfc_pkt_cnt    = 0;
1025    rt->mfc_byte_cnt   = 0;
1026    rt->mfc_wrong_if   = 0;
1027    timevalclear(&rt->mfc_last_assert);
1028}
1029
1030static void
1031expire_mfc(struct mfc *rt)
1032{
1033	struct rtdetq *rte, *nrte;
1034
1035	MFC_LOCK_ASSERT();
1036
1037	free_bw_list(rt->mfc_bw_meter);
1038
1039	TAILQ_FOREACH_SAFE(rte, &rt->mfc_stall, rte_link, nrte) {
1040		m_freem(rte->m);
1041		TAILQ_REMOVE(&rt->mfc_stall, rte, rte_link);
1042		free(rte, M_MRTABLE);
1043	}
1044
1045	LIST_REMOVE(rt, mfc_hash);
1046	free(rt, M_MRTABLE);
1047}
1048
1049/*
1050 * Add an mfc entry
1051 */
1052static int
1053add_mfc(struct mfcctl2 *mfccp)
1054{
1055    struct mfc *rt;
1056    struct rtdetq *rte, *nrte;
1057    u_long hash = 0;
1058    u_short nstl;
1059
1060    VIF_LOCK();
1061    MFC_LOCK();
1062
1063    rt = mfc_find(&mfccp->mfcc_origin, &mfccp->mfcc_mcastgrp);
1064
1065    /* If an entry already exists, just update the fields */
1066    if (rt) {
1067	CTR4(KTR_IPMF, "%s: update mfc orig %s group %lx parent %x",
1068	    __func__, inet_ntoa(mfccp->mfcc_origin),
1069	    (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr),
1070	    mfccp->mfcc_parent);
1071	update_mfc_params(rt, mfccp);
1072	MFC_UNLOCK();
1073	VIF_UNLOCK();
1074	return (0);
1075    }
1076
1077    /*
1078     * Find the entry for which the upcall was made and update
1079     */
1080    nstl = 0;
1081    hash = MFCHASH(mfccp->mfcc_origin, mfccp->mfcc_mcastgrp);
1082    LIST_FOREACH(rt, &V_mfchashtbl[hash], mfc_hash) {
1083	if (in_hosteq(rt->mfc_origin, mfccp->mfcc_origin) &&
1084	    in_hosteq(rt->mfc_mcastgrp, mfccp->mfcc_mcastgrp) &&
1085	    !TAILQ_EMPTY(&rt->mfc_stall)) {
1086		CTR5(KTR_IPMF,
1087		    "%s: add mfc orig %s group %lx parent %x qh %p",
1088		    __func__, inet_ntoa(mfccp->mfcc_origin),
1089		    (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr),
1090		    mfccp->mfcc_parent,
1091		    TAILQ_FIRST(&rt->mfc_stall));
1092		if (nstl++)
1093			CTR1(KTR_IPMF, "%s: multiple matches", __func__);
1094
1095		init_mfc_params(rt, mfccp);
1096		rt->mfc_expire = 0;	/* Don't clean this guy up */
1097		V_nexpire[hash]--;
1098
1099		/* Free queued packets, but attempt to forward them first. */
1100		TAILQ_FOREACH_SAFE(rte, &rt->mfc_stall, rte_link, nrte) {
1101			if (rte->ifp != NULL)
1102				ip_mdq(rte->m, rte->ifp, rt, -1);
1103			m_freem(rte->m);
1104			TAILQ_REMOVE(&rt->mfc_stall, rte, rte_link);
1105			rt->mfc_nstall--;
1106			free(rte, M_MRTABLE);
1107		}
1108	}
1109    }
1110
1111    /*
1112     * It is possible that an entry is being inserted without an upcall
1113     */
1114    if (nstl == 0) {
1115	CTR1(KTR_IPMF, "%s: adding mfc w/o upcall", __func__);
1116	LIST_FOREACH(rt, &V_mfchashtbl[hash], mfc_hash) {
1117		if (in_hosteq(rt->mfc_origin, mfccp->mfcc_origin) &&
1118		    in_hosteq(rt->mfc_mcastgrp, mfccp->mfcc_mcastgrp)) {
1119			init_mfc_params(rt, mfccp);
1120			if (rt->mfc_expire)
1121			    V_nexpire[hash]--;
1122			rt->mfc_expire = 0;
1123			break; /* XXX */
1124		}
1125	}
1126
1127	if (rt == NULL) {		/* no upcall, so make a new entry */
1128	    rt = (struct mfc *)malloc(sizeof(*rt), M_MRTABLE, M_NOWAIT);
1129	    if (rt == NULL) {
1130		MFC_UNLOCK();
1131		VIF_UNLOCK();
1132		return (ENOBUFS);
1133	    }
1134
1135	    init_mfc_params(rt, mfccp);
1136	    TAILQ_INIT(&rt->mfc_stall);
1137	    rt->mfc_nstall = 0;
1138
1139	    rt->mfc_expire     = 0;
1140	    rt->mfc_bw_meter = NULL;
1141
1142	    /* insert new entry at head of hash chain */
1143	    LIST_INSERT_HEAD(&V_mfchashtbl[hash], rt, mfc_hash);
1144	}
1145    }
1146
1147    MFC_UNLOCK();
1148    VIF_UNLOCK();
1149
1150    return (0);
1151}
1152
1153/*
1154 * Delete an mfc entry
1155 */
1156static int
1157del_mfc(struct mfcctl2 *mfccp)
1158{
1159    struct in_addr	origin;
1160    struct in_addr	mcastgrp;
1161    struct mfc		*rt;
1162
1163    origin = mfccp->mfcc_origin;
1164    mcastgrp = mfccp->mfcc_mcastgrp;
1165
1166    CTR3(KTR_IPMF, "%s: delete mfc orig %s group %lx", __func__,
1167	inet_ntoa(origin), (u_long)ntohl(mcastgrp.s_addr));
1168
1169    MFC_LOCK();
1170
1171    rt = mfc_find(&origin, &mcastgrp);
1172    if (rt == NULL) {
1173	MFC_UNLOCK();
1174	return EADDRNOTAVAIL;
1175    }
1176
1177    /*
1178     * free the bw_meter entries
1179     */
1180    free_bw_list(rt->mfc_bw_meter);
1181    rt->mfc_bw_meter = NULL;
1182
1183    LIST_REMOVE(rt, mfc_hash);
1184    free(rt, M_MRTABLE);
1185
1186    MFC_UNLOCK();
1187
1188    return (0);
1189}
1190
1191/*
1192 * Send a message to the routing daemon on the multicast routing socket.
1193 */
1194static int
1195socket_send(struct socket *s, struct mbuf *mm, struct sockaddr_in *src)
1196{
1197    if (s) {
1198	SOCKBUF_LOCK(&s->so_rcv);
1199	if (sbappendaddr_locked(&s->so_rcv, (struct sockaddr *)src, mm,
1200	    NULL) != 0) {
1201	    sorwakeup_locked(s);
1202	    return 0;
1203	}
1204	SOCKBUF_UNLOCK(&s->so_rcv);
1205    }
1206    m_freem(mm);
1207    return -1;
1208}
1209
1210/*
1211 * IP multicast forwarding function. This function assumes that the packet
1212 * pointed to by "ip" has arrived on (or is about to be sent to) the interface
1213 * pointed to by "ifp", and the packet is to be relayed to other networks
1214 * that have members of the packet's destination IP multicast group.
1215 *
1216 * The packet is returned unscathed to the caller, unless it is
1217 * erroneous, in which case a non-zero return value tells the caller to
1218 * discard it.
1219 */
1220
1221#define TUNNEL_LEN  12  /* # bytes of IP option for tunnel encapsulation  */
1222
1223static int
1224X_ip_mforward(struct ip *ip, struct ifnet *ifp, struct mbuf *m,
1225    struct ip_moptions *imo)
1226{
1227    struct mfc *rt;
1228    int error;
1229    vifi_t vifi;
1230
1231    CTR3(KTR_IPMF, "ip_mforward: delete mfc orig %s group %lx ifp %p",
1232	inet_ntoa(ip->ip_src), (u_long)ntohl(ip->ip_dst.s_addr), ifp);
1233
1234    if (ip->ip_hl < (sizeof(struct ip) + TUNNEL_LEN) >> 2 ||
1235		((u_char *)(ip + 1))[1] != IPOPT_LSRR ) {
1236	/*
1237	 * Packet arrived via a physical interface or
1238	 * an encapsulated tunnel or a register_vif.
1239	 */
1240    } else {
1241	/*
1242	 * Packet arrived through a source-route tunnel.
1243	 * Source-route tunnels are no longer supported.
1244	 */
1245	return (1);
1246    }
1247
1248    VIF_LOCK();
1249    MFC_LOCK();
1250    if (imo && ((vifi = imo->imo_multicast_vif) < V_numvifs)) {
1251	if (ip->ip_ttl < MAXTTL)
1252	    ip->ip_ttl++;	/* compensate for -1 in *_send routines */
1253	error = ip_mdq(m, ifp, NULL, vifi);
1254	MFC_UNLOCK();
1255	VIF_UNLOCK();
1256	return error;
1257    }
1258
1259    /*
1260     * Don't forward a packet with time-to-live of zero or one,
1261     * or a packet destined to a local-only group.
1262     */
1263    if (ip->ip_ttl <= 1 || IN_LOCAL_GROUP(ntohl(ip->ip_dst.s_addr))) {
1264	MFC_UNLOCK();
1265	VIF_UNLOCK();
1266	return 0;
1267    }
1268
1269    /*
1270     * Determine forwarding vifs from the forwarding cache table
1271     */
1272    MRTSTAT_INC(mrts_mfc_lookups);
1273    rt = mfc_find(&ip->ip_src, &ip->ip_dst);
1274
1275    /* Entry exists, so forward if necessary */
1276    if (rt != NULL) {
1277	error = ip_mdq(m, ifp, rt, -1);
1278	MFC_UNLOCK();
1279	VIF_UNLOCK();
1280	return error;
1281    } else {
1282	/*
1283	 * If we don't have a route for packet's origin,
1284	 * Make a copy of the packet & send message to routing daemon
1285	 */
1286
1287	struct mbuf *mb0;
1288	struct rtdetq *rte;
1289	u_long hash;
1290	int hlen = ip->ip_hl << 2;
1291
1292	MRTSTAT_INC(mrts_mfc_misses);
1293	MRTSTAT_INC(mrts_no_route);
1294	CTR2(KTR_IPMF, "ip_mforward: no mfc for (%s,%lx)",
1295	    inet_ntoa(ip->ip_src), (u_long)ntohl(ip->ip_dst.s_addr));
1296
1297	/*
1298	 * Allocate mbufs early so that we don't do extra work if we are
1299	 * just going to fail anyway.  Make sure to pullup the header so
1300	 * that other people can't step on it.
1301	 */
1302	rte = (struct rtdetq *)malloc((sizeof *rte), M_MRTABLE,
1303	    M_NOWAIT|M_ZERO);
1304	if (rte == NULL) {
1305	    MFC_UNLOCK();
1306	    VIF_UNLOCK();
1307	    return ENOBUFS;
1308	}
1309
1310	mb0 = m_copypacket(m, M_DONTWAIT);
1311	if (mb0 && (M_HASCL(mb0) || mb0->m_len < hlen))
1312	    mb0 = m_pullup(mb0, hlen);
1313	if (mb0 == NULL) {
1314	    free(rte, M_MRTABLE);
1315	    MFC_UNLOCK();
1316	    VIF_UNLOCK();
1317	    return ENOBUFS;
1318	}
1319
1320	/* is there an upcall waiting for this flow ? */
1321	hash = MFCHASH(ip->ip_src, ip->ip_dst);
1322	LIST_FOREACH(rt, &V_mfchashtbl[hash], mfc_hash) {
1323		if (in_hosteq(ip->ip_src, rt->mfc_origin) &&
1324		    in_hosteq(ip->ip_dst, rt->mfc_mcastgrp) &&
1325		    !TAILQ_EMPTY(&rt->mfc_stall))
1326			break;
1327	}
1328
1329	if (rt == NULL) {
1330	    int i;
1331	    struct igmpmsg *im;
1332	    struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
1333	    struct mbuf *mm;
1334
1335	    /*
1336	     * Locate the vifi for the incoming interface for this packet.
1337	     * If none found, drop packet.
1338	     */
1339	    for (vifi = 0; vifi < V_numvifs &&
1340		    V_viftable[vifi].v_ifp != ifp; vifi++)
1341		;
1342	    if (vifi >= V_numvifs)	/* vif not found, drop packet */
1343		goto non_fatal;
1344
1345	    /* no upcall, so make a new entry */
1346	    rt = (struct mfc *)malloc(sizeof(*rt), M_MRTABLE, M_NOWAIT);
1347	    if (rt == NULL)
1348		goto fail;
1349
1350	    /* Make a copy of the header to send to the user level process */
1351	    mm = m_copy(mb0, 0, hlen);
1352	    if (mm == NULL)
1353		goto fail1;
1354
1355	    /*
1356	     * Send message to routing daemon to install
1357	     * a route into the kernel table
1358	     */
1359
1360	    im = mtod(mm, struct igmpmsg *);
1361	    im->im_msgtype = IGMPMSG_NOCACHE;
1362	    im->im_mbz = 0;
1363	    im->im_vif = vifi;
1364
1365	    MRTSTAT_INC(mrts_upcalls);
1366
1367	    k_igmpsrc.sin_addr = ip->ip_src;
1368	    if (socket_send(V_ip_mrouter, mm, &k_igmpsrc) < 0) {
1369		CTR0(KTR_IPMF, "ip_mforward: socket queue full");
1370		MRTSTAT_INC(mrts_upq_sockfull);
1371fail1:
1372		free(rt, M_MRTABLE);
1373fail:
1374		free(rte, M_MRTABLE);
1375		m_freem(mb0);
1376		MFC_UNLOCK();
1377		VIF_UNLOCK();
1378		return ENOBUFS;
1379	    }
1380
1381	    /* insert new entry at head of hash chain */
1382	    rt->mfc_origin.s_addr     = ip->ip_src.s_addr;
1383	    rt->mfc_mcastgrp.s_addr   = ip->ip_dst.s_addr;
1384	    rt->mfc_expire	      = UPCALL_EXPIRE;
1385	    V_nexpire[hash]++;
1386	    for (i = 0; i < V_numvifs; i++) {
1387		rt->mfc_ttls[i] = 0;
1388		rt->mfc_flags[i] = 0;
1389	    }
1390	    rt->mfc_parent = -1;
1391
1392	    /* clear the RP address */
1393	    rt->mfc_rp.s_addr = INADDR_ANY;
1394	    rt->mfc_bw_meter = NULL;
1395
1396	    /* initialize pkt counters per src-grp */
1397	    rt->mfc_pkt_cnt = 0;
1398	    rt->mfc_byte_cnt = 0;
1399	    rt->mfc_wrong_if = 0;
1400	    timevalclear(&rt->mfc_last_assert);
1401
1402	    TAILQ_INIT(&rt->mfc_stall);
1403	    rt->mfc_nstall = 0;
1404
1405	    /* link into table */
1406	    LIST_INSERT_HEAD(&V_mfchashtbl[hash], rt, mfc_hash);
1407	    TAILQ_INSERT_HEAD(&rt->mfc_stall, rte, rte_link);
1408	    rt->mfc_nstall++;
1409
1410	} else {
1411	    /* determine if queue has overflowed */
1412	    if (rt->mfc_nstall > MAX_UPQ) {
1413		MRTSTAT_INC(mrts_upq_ovflw);
1414non_fatal:
1415		free(rte, M_MRTABLE);
1416		m_freem(mb0);
1417		MFC_UNLOCK();
1418		VIF_UNLOCK();
1419		return (0);
1420	    }
1421	    TAILQ_INSERT_TAIL(&rt->mfc_stall, rte, rte_link);
1422	    rt->mfc_nstall++;
1423	}
1424
1425	rte->m			= mb0;
1426	rte->ifp		= ifp;
1427
1428	MFC_UNLOCK();
1429	VIF_UNLOCK();
1430
1431	return 0;
1432    }
1433}
1434
1435/*
1436 * Clean up the cache entry if upcall is not serviced
1437 */
1438static void
1439expire_upcalls(void *arg)
1440{
1441    int i;
1442
1443    CURVNET_SET((struct vnet *) arg);
1444
1445    MFC_LOCK();
1446
1447    for (i = 0; i < mfchashsize; i++) {
1448	struct mfc *rt, *nrt;
1449
1450	if (V_nexpire[i] == 0)
1451	    continue;
1452
1453	for (rt = LIST_FIRST(&V_mfchashtbl[i]); rt; rt = nrt) {
1454		nrt = LIST_NEXT(rt, mfc_hash);
1455
1456		if (TAILQ_EMPTY(&rt->mfc_stall))
1457			continue;
1458
1459		if (rt->mfc_expire == 0 || --rt->mfc_expire > 0)
1460			continue;
1461
1462		/*
1463		 * free the bw_meter entries
1464		 */
1465		while (rt->mfc_bw_meter != NULL) {
1466		    struct bw_meter *x = rt->mfc_bw_meter;
1467
1468		    rt->mfc_bw_meter = x->bm_mfc_next;
1469		    free(x, M_BWMETER);
1470		}
1471
1472		MRTSTAT_INC(mrts_cache_cleanups);
1473		CTR3(KTR_IPMF, "%s: expire (%lx, %lx)", __func__,
1474		    (u_long)ntohl(rt->mfc_origin.s_addr),
1475		    (u_long)ntohl(rt->mfc_mcastgrp.s_addr));
1476
1477		expire_mfc(rt);
1478	    }
1479    }
1480
1481    MFC_UNLOCK();
1482
1483    callout_reset(&V_expire_upcalls_ch, EXPIRE_TIMEOUT, expire_upcalls,
1484	curvnet);
1485
1486    CURVNET_RESTORE();
1487}
1488
1489/*
1490 * Packet forwarding routine once entry in the cache is made
1491 */
1492static int
1493ip_mdq(struct mbuf *m, struct ifnet *ifp, struct mfc *rt, vifi_t xmt_vif)
1494{
1495    struct ip  *ip = mtod(m, struct ip *);
1496    vifi_t vifi;
1497    int plen = ip->ip_len;
1498
1499    VIF_LOCK_ASSERT();
1500
1501    /*
1502     * If xmt_vif is not -1, send on only the requested vif.
1503     *
1504     * (since vifi_t is u_short, -1 becomes MAXUSHORT, which > numvifs.)
1505     */
1506    if (xmt_vif < V_numvifs) {
1507	if (V_viftable[xmt_vif].v_flags & VIFF_REGISTER)
1508		pim_register_send(ip, V_viftable + xmt_vif, m, rt);
1509	else
1510		phyint_send(ip, V_viftable + xmt_vif, m);
1511	return 1;
1512    }
1513
1514    /*
1515     * Don't forward if it didn't arrive from the parent vif for its origin.
1516     */
1517    vifi = rt->mfc_parent;
1518    if ((vifi >= V_numvifs) || (V_viftable[vifi].v_ifp != ifp)) {
1519	CTR4(KTR_IPMF, "%s: rx on wrong ifp %p (vifi %d, v_ifp %p)",
1520	    __func__, ifp, (int)vifi, V_viftable[vifi].v_ifp);
1521	MRTSTAT_INC(mrts_wrong_if);
1522	++rt->mfc_wrong_if;
1523	/*
1524	 * If we are doing PIM assert processing, send a message
1525	 * to the routing daemon.
1526	 *
1527	 * XXX: A PIM-SM router needs the WRONGVIF detection so it
1528	 * can complete the SPT switch, regardless of the type
1529	 * of the iif (broadcast media, GRE tunnel, etc).
1530	 */
1531	if (V_pim_assert_enabled && (vifi < V_numvifs) &&
1532	    V_viftable[vifi].v_ifp) {
1533
1534	    if (ifp == &V_multicast_register_if)
1535		PIMSTAT_INC(pims_rcv_registers_wrongiif);
1536
1537	    /* Get vifi for the incoming packet */
1538	    for (vifi = 0; vifi < V_numvifs && V_viftable[vifi].v_ifp != ifp;
1539		vifi++)
1540		;
1541	    if (vifi >= V_numvifs)
1542		return 0;	/* The iif is not found: ignore the packet. */
1543
1544	    if (rt->mfc_flags[vifi] & MRT_MFC_FLAGS_DISABLE_WRONGVIF)
1545		return 0;	/* WRONGVIF disabled: ignore the packet */
1546
1547	    if (ratecheck(&rt->mfc_last_assert, &pim_assert_interval)) {
1548		struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
1549		struct igmpmsg *im;
1550		int hlen = ip->ip_hl << 2;
1551		struct mbuf *mm = m_copy(m, 0, hlen);
1552
1553		if (mm && (M_HASCL(mm) || mm->m_len < hlen))
1554		    mm = m_pullup(mm, hlen);
1555		if (mm == NULL)
1556		    return ENOBUFS;
1557
1558		im = mtod(mm, struct igmpmsg *);
1559		im->im_msgtype	= IGMPMSG_WRONGVIF;
1560		im->im_mbz		= 0;
1561		im->im_vif		= vifi;
1562
1563		MRTSTAT_INC(mrts_upcalls);
1564
1565		k_igmpsrc.sin_addr = im->im_src;
1566		if (socket_send(V_ip_mrouter, mm, &k_igmpsrc) < 0) {
1567		    CTR1(KTR_IPMF, "%s: socket queue full", __func__);
1568		    MRTSTAT_INC(mrts_upq_sockfull);
1569		    return ENOBUFS;
1570		}
1571	    }
1572	}
1573	return 0;
1574    }
1575
1576
1577    /* If I sourced this packet, it counts as output, else it was input. */
1578    if (in_hosteq(ip->ip_src, V_viftable[vifi].v_lcl_addr)) {
1579	V_viftable[vifi].v_pkt_out++;
1580	V_viftable[vifi].v_bytes_out += plen;
1581    } else {
1582	V_viftable[vifi].v_pkt_in++;
1583	V_viftable[vifi].v_bytes_in += plen;
1584    }
1585    rt->mfc_pkt_cnt++;
1586    rt->mfc_byte_cnt += plen;
1587
1588    /*
1589     * For each vif, decide if a copy of the packet should be forwarded.
1590     * Forward if:
1591     *		- the ttl exceeds the vif's threshold
1592     *		- there are group members downstream on interface
1593     */
1594    for (vifi = 0; vifi < V_numvifs; vifi++)
1595	if ((rt->mfc_ttls[vifi] > 0) && (ip->ip_ttl > rt->mfc_ttls[vifi])) {
1596	    V_viftable[vifi].v_pkt_out++;
1597	    V_viftable[vifi].v_bytes_out += plen;
1598	    if (V_viftable[vifi].v_flags & VIFF_REGISTER)
1599		pim_register_send(ip, V_viftable + vifi, m, rt);
1600	    else
1601		phyint_send(ip, V_viftable + vifi, m);
1602	}
1603
1604    /*
1605     * Perform upcall-related bw measuring.
1606     */
1607    if (rt->mfc_bw_meter != NULL) {
1608	struct bw_meter *x;
1609	struct timeval now;
1610
1611	microtime(&now);
1612	MFC_LOCK_ASSERT();
1613	for (x = rt->mfc_bw_meter; x != NULL; x = x->bm_mfc_next)
1614	    bw_meter_receive_packet(x, plen, &now);
1615    }
1616
1617    return 0;
1618}
1619
1620/*
1621 * Check if a vif number is legal/ok. This is used by in_mcast.c.
1622 */
1623static int
1624X_legal_vif_num(int vif)
1625{
1626	int ret;
1627
1628	ret = 0;
1629	if (vif < 0)
1630		return (ret);
1631
1632	VIF_LOCK();
1633	if (vif < V_numvifs)
1634		ret = 1;
1635	VIF_UNLOCK();
1636
1637	return (ret);
1638}
1639
1640/*
1641 * Return the local address used by this vif
1642 */
1643static u_long
1644X_ip_mcast_src(int vifi)
1645{
1646	in_addr_t addr;
1647
1648	addr = INADDR_ANY;
1649	if (vifi < 0)
1650		return (addr);
1651
1652	VIF_LOCK();
1653	if (vifi < V_numvifs)
1654		addr = V_viftable[vifi].v_lcl_addr.s_addr;
1655	VIF_UNLOCK();
1656
1657	return (addr);
1658}
1659
1660static void
1661phyint_send(struct ip *ip, struct vif *vifp, struct mbuf *m)
1662{
1663    struct mbuf *mb_copy;
1664    int hlen = ip->ip_hl << 2;
1665
1666    VIF_LOCK_ASSERT();
1667
1668    /*
1669     * Make a new reference to the packet; make sure that
1670     * the IP header is actually copied, not just referenced,
1671     * so that ip_output() only scribbles on the copy.
1672     */
1673    mb_copy = m_copypacket(m, M_DONTWAIT);
1674    if (mb_copy && (M_HASCL(mb_copy) || mb_copy->m_len < hlen))
1675	mb_copy = m_pullup(mb_copy, hlen);
1676    if (mb_copy == NULL)
1677	return;
1678
1679    send_packet(vifp, mb_copy);
1680}
1681
1682static void
1683send_packet(struct vif *vifp, struct mbuf *m)
1684{
1685	struct ip_moptions imo;
1686	struct in_multi *imm[2];
1687	int error;
1688
1689	VIF_LOCK_ASSERT();
1690
1691	imo.imo_multicast_ifp  = vifp->v_ifp;
1692	imo.imo_multicast_ttl  = mtod(m, struct ip *)->ip_ttl - 1;
1693	imo.imo_multicast_loop = 1;
1694	imo.imo_multicast_vif  = -1;
1695	imo.imo_num_memberships = 0;
1696	imo.imo_max_memberships = 2;
1697	imo.imo_membership  = &imm[0];
1698
1699	/*
1700	 * Re-entrancy should not be a problem here, because
1701	 * the packets that we send out and are looped back at us
1702	 * should get rejected because they appear to come from
1703	 * the loopback interface, thus preventing looping.
1704	 */
1705	error = ip_output(m, NULL, &vifp->v_route, IP_FORWARDING, &imo, NULL);
1706	CTR3(KTR_IPMF, "%s: vif %td err %d", __func__,
1707	    (ptrdiff_t)(vifp - V_viftable), error);
1708}
1709
1710/*
1711 * Stubs for old RSVP socket shim implementation.
1712 */
1713
1714static int
1715X_ip_rsvp_vif(struct socket *so __unused, struct sockopt *sopt __unused)
1716{
1717
1718	return (EOPNOTSUPP);
1719}
1720
1721static void
1722X_ip_rsvp_force_done(struct socket *so __unused)
1723{
1724
1725}
1726
1727static void
1728X_rsvp_input(struct mbuf *m, int off __unused)
1729{
1730
1731	if (!V_rsvp_on)
1732		m_freem(m);
1733}
1734
1735/*
1736 * Code for bandwidth monitors
1737 */
1738
1739/*
1740 * Define common interface for timeval-related methods
1741 */
1742#define	BW_TIMEVALCMP(tvp, uvp, cmp) timevalcmp((tvp), (uvp), cmp)
1743#define	BW_TIMEVALDECR(vvp, uvp) timevalsub((vvp), (uvp))
1744#define	BW_TIMEVALADD(vvp, uvp) timevaladd((vvp), (uvp))
1745
1746static uint32_t
1747compute_bw_meter_flags(struct bw_upcall *req)
1748{
1749    uint32_t flags = 0;
1750
1751    if (req->bu_flags & BW_UPCALL_UNIT_PACKETS)
1752	flags |= BW_METER_UNIT_PACKETS;
1753    if (req->bu_flags & BW_UPCALL_UNIT_BYTES)
1754	flags |= BW_METER_UNIT_BYTES;
1755    if (req->bu_flags & BW_UPCALL_GEQ)
1756	flags |= BW_METER_GEQ;
1757    if (req->bu_flags & BW_UPCALL_LEQ)
1758	flags |= BW_METER_LEQ;
1759
1760    return flags;
1761}
1762
1763/*
1764 * Add a bw_meter entry
1765 */
1766static int
1767add_bw_upcall(struct bw_upcall *req)
1768{
1769    struct mfc *mfc;
1770    struct timeval delta = { BW_UPCALL_THRESHOLD_INTERVAL_MIN_SEC,
1771		BW_UPCALL_THRESHOLD_INTERVAL_MIN_USEC };
1772    struct timeval now;
1773    struct bw_meter *x;
1774    uint32_t flags;
1775
1776    if (!(V_mrt_api_config & MRT_MFC_BW_UPCALL))
1777	return EOPNOTSUPP;
1778
1779    /* Test if the flags are valid */
1780    if (!(req->bu_flags & (BW_UPCALL_UNIT_PACKETS | BW_UPCALL_UNIT_BYTES)))
1781	return EINVAL;
1782    if (!(req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ)))
1783	return EINVAL;
1784    if ((req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ))
1785	    == (BW_UPCALL_GEQ | BW_UPCALL_LEQ))
1786	return EINVAL;
1787
1788    /* Test if the threshold time interval is valid */
1789    if (BW_TIMEVALCMP(&req->bu_threshold.b_time, &delta, <))
1790	return EINVAL;
1791
1792    flags = compute_bw_meter_flags(req);
1793
1794    /*
1795     * Find if we have already same bw_meter entry
1796     */
1797    MFC_LOCK();
1798    mfc = mfc_find(&req->bu_src, &req->bu_dst);
1799    if (mfc == NULL) {
1800	MFC_UNLOCK();
1801	return EADDRNOTAVAIL;
1802    }
1803    for (x = mfc->mfc_bw_meter; x != NULL; x = x->bm_mfc_next) {
1804	if ((BW_TIMEVALCMP(&x->bm_threshold.b_time,
1805			   &req->bu_threshold.b_time, ==)) &&
1806	    (x->bm_threshold.b_packets == req->bu_threshold.b_packets) &&
1807	    (x->bm_threshold.b_bytes == req->bu_threshold.b_bytes) &&
1808	    (x->bm_flags & BW_METER_USER_FLAGS) == flags)  {
1809	    MFC_UNLOCK();
1810	    return 0;		/* XXX Already installed */
1811	}
1812    }
1813
1814    /* Allocate the new bw_meter entry */
1815    x = (struct bw_meter *)malloc(sizeof(*x), M_BWMETER, M_NOWAIT);
1816    if (x == NULL) {
1817	MFC_UNLOCK();
1818	return ENOBUFS;
1819    }
1820
1821    /* Set the new bw_meter entry */
1822    x->bm_threshold.b_time = req->bu_threshold.b_time;
1823    microtime(&now);
1824    x->bm_start_time = now;
1825    x->bm_threshold.b_packets = req->bu_threshold.b_packets;
1826    x->bm_threshold.b_bytes = req->bu_threshold.b_bytes;
1827    x->bm_measured.b_packets = 0;
1828    x->bm_measured.b_bytes = 0;
1829    x->bm_flags = flags;
1830    x->bm_time_next = NULL;
1831    x->bm_time_hash = BW_METER_BUCKETS;
1832
1833    /* Add the new bw_meter entry to the front of entries for this MFC */
1834    x->bm_mfc = mfc;
1835    x->bm_mfc_next = mfc->mfc_bw_meter;
1836    mfc->mfc_bw_meter = x;
1837    schedule_bw_meter(x, &now);
1838    MFC_UNLOCK();
1839
1840    return 0;
1841}
1842
1843static void
1844free_bw_list(struct bw_meter *list)
1845{
1846    while (list != NULL) {
1847	struct bw_meter *x = list;
1848
1849	list = list->bm_mfc_next;
1850	unschedule_bw_meter(x);
1851	free(x, M_BWMETER);
1852    }
1853}
1854
1855/*
1856 * Delete one or multiple bw_meter entries
1857 */
1858static int
1859del_bw_upcall(struct bw_upcall *req)
1860{
1861    struct mfc *mfc;
1862    struct bw_meter *x;
1863
1864    if (!(V_mrt_api_config & MRT_MFC_BW_UPCALL))
1865	return EOPNOTSUPP;
1866
1867    MFC_LOCK();
1868
1869    /* Find the corresponding MFC entry */
1870    mfc = mfc_find(&req->bu_src, &req->bu_dst);
1871    if (mfc == NULL) {
1872	MFC_UNLOCK();
1873	return EADDRNOTAVAIL;
1874    } else if (req->bu_flags & BW_UPCALL_DELETE_ALL) {
1875	/*
1876	 * Delete all bw_meter entries for this mfc
1877	 */
1878	struct bw_meter *list;
1879
1880	list = mfc->mfc_bw_meter;
1881	mfc->mfc_bw_meter = NULL;
1882	free_bw_list(list);
1883	MFC_UNLOCK();
1884	return 0;
1885    } else {			/* Delete a single bw_meter entry */
1886	struct bw_meter *prev;
1887	uint32_t flags = 0;
1888
1889	flags = compute_bw_meter_flags(req);
1890
1891	/* Find the bw_meter entry to delete */
1892	for (prev = NULL, x = mfc->mfc_bw_meter; x != NULL;
1893	     prev = x, x = x->bm_mfc_next) {
1894	    if ((BW_TIMEVALCMP(&x->bm_threshold.b_time,
1895			       &req->bu_threshold.b_time, ==)) &&
1896		(x->bm_threshold.b_packets == req->bu_threshold.b_packets) &&
1897		(x->bm_threshold.b_bytes == req->bu_threshold.b_bytes) &&
1898		(x->bm_flags & BW_METER_USER_FLAGS) == flags)
1899		break;
1900	}
1901	if (x != NULL) { /* Delete entry from the list for this MFC */
1902	    if (prev != NULL)
1903		prev->bm_mfc_next = x->bm_mfc_next;	/* remove from middle*/
1904	    else
1905		x->bm_mfc->mfc_bw_meter = x->bm_mfc_next;/* new head of list */
1906
1907	    unschedule_bw_meter(x);
1908	    MFC_UNLOCK();
1909	    /* Free the bw_meter entry */
1910	    free(x, M_BWMETER);
1911	    return 0;
1912	} else {
1913	    MFC_UNLOCK();
1914	    return EINVAL;
1915	}
1916    }
1917    /* NOTREACHED */
1918}
1919
1920/*
1921 * Perform bandwidth measurement processing that may result in an upcall
1922 */
1923static void
1924bw_meter_receive_packet(struct bw_meter *x, int plen, struct timeval *nowp)
1925{
1926    struct timeval delta;
1927
1928    MFC_LOCK_ASSERT();
1929
1930    delta = *nowp;
1931    BW_TIMEVALDECR(&delta, &x->bm_start_time);
1932
1933    if (x->bm_flags & BW_METER_GEQ) {
1934	/*
1935	 * Processing for ">=" type of bw_meter entry
1936	 */
1937	if (BW_TIMEVALCMP(&delta, &x->bm_threshold.b_time, >)) {
1938	    /* Reset the bw_meter entry */
1939	    x->bm_start_time = *nowp;
1940	    x->bm_measured.b_packets = 0;
1941	    x->bm_measured.b_bytes = 0;
1942	    x->bm_flags &= ~BW_METER_UPCALL_DELIVERED;
1943	}
1944
1945	/* Record that a packet is received */
1946	x->bm_measured.b_packets++;
1947	x->bm_measured.b_bytes += plen;
1948
1949	/*
1950	 * Test if we should deliver an upcall
1951	 */
1952	if (!(x->bm_flags & BW_METER_UPCALL_DELIVERED)) {
1953	    if (((x->bm_flags & BW_METER_UNIT_PACKETS) &&
1954		 (x->bm_measured.b_packets >= x->bm_threshold.b_packets)) ||
1955		((x->bm_flags & BW_METER_UNIT_BYTES) &&
1956		 (x->bm_measured.b_bytes >= x->bm_threshold.b_bytes))) {
1957		/* Prepare an upcall for delivery */
1958		bw_meter_prepare_upcall(x, nowp);
1959		x->bm_flags |= BW_METER_UPCALL_DELIVERED;
1960	    }
1961	}
1962    } else if (x->bm_flags & BW_METER_LEQ) {
1963	/*
1964	 * Processing for "<=" type of bw_meter entry
1965	 */
1966	if (BW_TIMEVALCMP(&delta, &x->bm_threshold.b_time, >)) {
1967	    /*
1968	     * We are behind time with the multicast forwarding table
1969	     * scanning for "<=" type of bw_meter entries, so test now
1970	     * if we should deliver an upcall.
1971	     */
1972	    if (((x->bm_flags & BW_METER_UNIT_PACKETS) &&
1973		 (x->bm_measured.b_packets <= x->bm_threshold.b_packets)) ||
1974		((x->bm_flags & BW_METER_UNIT_BYTES) &&
1975		 (x->bm_measured.b_bytes <= x->bm_threshold.b_bytes))) {
1976		/* Prepare an upcall for delivery */
1977		bw_meter_prepare_upcall(x, nowp);
1978	    }
1979	    /* Reschedule the bw_meter entry */
1980	    unschedule_bw_meter(x);
1981	    schedule_bw_meter(x, nowp);
1982	}
1983
1984	/* Record that a packet is received */
1985	x->bm_measured.b_packets++;
1986	x->bm_measured.b_bytes += plen;
1987
1988	/*
1989	 * Test if we should restart the measuring interval
1990	 */
1991	if ((x->bm_flags & BW_METER_UNIT_PACKETS &&
1992	     x->bm_measured.b_packets <= x->bm_threshold.b_packets) ||
1993	    (x->bm_flags & BW_METER_UNIT_BYTES &&
1994	     x->bm_measured.b_bytes <= x->bm_threshold.b_bytes)) {
1995	    /* Don't restart the measuring interval */
1996	} else {
1997	    /* Do restart the measuring interval */
1998	    /*
1999	     * XXX: note that we don't unschedule and schedule, because this
2000	     * might be too much overhead per packet. Instead, when we process
2001	     * all entries for a given timer hash bin, we check whether it is
2002	     * really a timeout. If not, we reschedule at that time.
2003	     */
2004	    x->bm_start_time = *nowp;
2005	    x->bm_measured.b_packets = 0;
2006	    x->bm_measured.b_bytes = 0;
2007	    x->bm_flags &= ~BW_METER_UPCALL_DELIVERED;
2008	}
2009    }
2010}
2011
2012/*
2013 * Prepare a bandwidth-related upcall
2014 */
2015static void
2016bw_meter_prepare_upcall(struct bw_meter *x, struct timeval *nowp)
2017{
2018    struct timeval delta;
2019    struct bw_upcall *u;
2020
2021    MFC_LOCK_ASSERT();
2022
2023    /*
2024     * Compute the measured time interval
2025     */
2026    delta = *nowp;
2027    BW_TIMEVALDECR(&delta, &x->bm_start_time);
2028
2029    /*
2030     * If there are too many pending upcalls, deliver them now
2031     */
2032    if (V_bw_upcalls_n >= BW_UPCALLS_MAX)
2033	bw_upcalls_send();
2034
2035    /*
2036     * Set the bw_upcall entry
2037     */
2038    u = &V_bw_upcalls[V_bw_upcalls_n++];
2039    u->bu_src = x->bm_mfc->mfc_origin;
2040    u->bu_dst = x->bm_mfc->mfc_mcastgrp;
2041    u->bu_threshold.b_time = x->bm_threshold.b_time;
2042    u->bu_threshold.b_packets = x->bm_threshold.b_packets;
2043    u->bu_threshold.b_bytes = x->bm_threshold.b_bytes;
2044    u->bu_measured.b_time = delta;
2045    u->bu_measured.b_packets = x->bm_measured.b_packets;
2046    u->bu_measured.b_bytes = x->bm_measured.b_bytes;
2047    u->bu_flags = 0;
2048    if (x->bm_flags & BW_METER_UNIT_PACKETS)
2049	u->bu_flags |= BW_UPCALL_UNIT_PACKETS;
2050    if (x->bm_flags & BW_METER_UNIT_BYTES)
2051	u->bu_flags |= BW_UPCALL_UNIT_BYTES;
2052    if (x->bm_flags & BW_METER_GEQ)
2053	u->bu_flags |= BW_UPCALL_GEQ;
2054    if (x->bm_flags & BW_METER_LEQ)
2055	u->bu_flags |= BW_UPCALL_LEQ;
2056}
2057
2058/*
2059 * Send the pending bandwidth-related upcalls
2060 */
2061static void
2062bw_upcalls_send(void)
2063{
2064    struct mbuf *m;
2065    int len = V_bw_upcalls_n * sizeof(V_bw_upcalls[0]);
2066    struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
2067    static struct igmpmsg igmpmsg = { 0,		/* unused1 */
2068				      0,		/* unused2 */
2069				      IGMPMSG_BW_UPCALL,/* im_msgtype */
2070				      0,		/* im_mbz  */
2071				      0,		/* im_vif  */
2072				      0,		/* unused3 */
2073				      { 0 },		/* im_src  */
2074				      { 0 } };		/* im_dst  */
2075
2076    MFC_LOCK_ASSERT();
2077
2078    if (V_bw_upcalls_n == 0)
2079	return;			/* No pending upcalls */
2080
2081    V_bw_upcalls_n = 0;
2082
2083    /*
2084     * Allocate a new mbuf, initialize it with the header and
2085     * the payload for the pending calls.
2086     */
2087    MGETHDR(m, M_DONTWAIT, MT_DATA);
2088    if (m == NULL) {
2089	log(LOG_WARNING, "bw_upcalls_send: cannot allocate mbuf\n");
2090	return;
2091    }
2092
2093    m->m_len = m->m_pkthdr.len = 0;
2094    m_copyback(m, 0, sizeof(struct igmpmsg), (caddr_t)&igmpmsg);
2095    m_copyback(m, sizeof(struct igmpmsg), len, (caddr_t)&V_bw_upcalls[0]);
2096
2097    /*
2098     * Send the upcalls
2099     * XXX do we need to set the address in k_igmpsrc ?
2100     */
2101    MRTSTAT_INC(mrts_upcalls);
2102    if (socket_send(V_ip_mrouter, m, &k_igmpsrc) < 0) {
2103	log(LOG_WARNING, "bw_upcalls_send: ip_mrouter socket queue full\n");
2104	MRTSTAT_INC(mrts_upq_sockfull);
2105    }
2106}
2107
2108/*
2109 * Compute the timeout hash value for the bw_meter entries
2110 */
2111#define	BW_METER_TIMEHASH(bw_meter, hash)				\
2112    do {								\
2113	struct timeval next_timeval = (bw_meter)->bm_start_time;	\
2114									\
2115	BW_TIMEVALADD(&next_timeval, &(bw_meter)->bm_threshold.b_time); \
2116	(hash) = next_timeval.tv_sec;					\
2117	if (next_timeval.tv_usec)					\
2118	    (hash)++; /* XXX: make sure we don't timeout early */	\
2119	(hash) %= BW_METER_BUCKETS;					\
2120    } while (0)
2121
2122/*
2123 * Schedule a timer to process periodically bw_meter entry of type "<="
2124 * by linking the entry in the proper hash bucket.
2125 */
2126static void
2127schedule_bw_meter(struct bw_meter *x, struct timeval *nowp)
2128{
2129    int time_hash;
2130
2131    MFC_LOCK_ASSERT();
2132
2133    if (!(x->bm_flags & BW_METER_LEQ))
2134	return;		/* XXX: we schedule timers only for "<=" entries */
2135
2136    /*
2137     * Reset the bw_meter entry
2138     */
2139    x->bm_start_time = *nowp;
2140    x->bm_measured.b_packets = 0;
2141    x->bm_measured.b_bytes = 0;
2142    x->bm_flags &= ~BW_METER_UPCALL_DELIVERED;
2143
2144    /*
2145     * Compute the timeout hash value and insert the entry
2146     */
2147    BW_METER_TIMEHASH(x, time_hash);
2148    x->bm_time_next = V_bw_meter_timers[time_hash];
2149    V_bw_meter_timers[time_hash] = x;
2150    x->bm_time_hash = time_hash;
2151}
2152
2153/*
2154 * Unschedule the periodic timer that processes bw_meter entry of type "<="
2155 * by removing the entry from the proper hash bucket.
2156 */
2157static void
2158unschedule_bw_meter(struct bw_meter *x)
2159{
2160    int time_hash;
2161    struct bw_meter *prev, *tmp;
2162
2163    MFC_LOCK_ASSERT();
2164
2165    if (!(x->bm_flags & BW_METER_LEQ))
2166	return;		/* XXX: we schedule timers only for "<=" entries */
2167
2168    /*
2169     * Compute the timeout hash value and delete the entry
2170     */
2171    time_hash = x->bm_time_hash;
2172    if (time_hash >= BW_METER_BUCKETS)
2173	return;		/* Entry was not scheduled */
2174
2175    for (prev = NULL, tmp = V_bw_meter_timers[time_hash];
2176	     tmp != NULL; prev = tmp, tmp = tmp->bm_time_next)
2177	if (tmp == x)
2178	    break;
2179
2180    if (tmp == NULL)
2181	panic("unschedule_bw_meter: bw_meter entry not found");
2182
2183    if (prev != NULL)
2184	prev->bm_time_next = x->bm_time_next;
2185    else
2186	V_bw_meter_timers[time_hash] = x->bm_time_next;
2187
2188    x->bm_time_next = NULL;
2189    x->bm_time_hash = BW_METER_BUCKETS;
2190}
2191
2192
2193/*
2194 * Process all "<=" type of bw_meter that should be processed now,
2195 * and for each entry prepare an upcall if necessary. Each processed
2196 * entry is rescheduled again for the (periodic) processing.
2197 *
2198 * This is run periodically (once per second normally). On each round,
2199 * all the potentially matching entries are in the hash slot that we are
2200 * looking at.
2201 */
2202static void
2203bw_meter_process()
2204{
2205    uint32_t loops;
2206    int i;
2207    struct timeval now, process_endtime;
2208
2209    microtime(&now);
2210    if (V_last_tv_sec == now.tv_sec)
2211	return;		/* nothing to do */
2212
2213    loops = now.tv_sec - V_last_tv_sec;
2214    V_last_tv_sec = now.tv_sec;
2215    if (loops > BW_METER_BUCKETS)
2216	loops = BW_METER_BUCKETS;
2217
2218    MFC_LOCK();
2219    /*
2220     * Process all bins of bw_meter entries from the one after the last
2221     * processed to the current one. On entry, i points to the last bucket
2222     * visited, so we need to increment i at the beginning of the loop.
2223     */
2224    for (i = (now.tv_sec - loops) % BW_METER_BUCKETS; loops > 0; loops--) {
2225	struct bw_meter *x, *tmp_list;
2226
2227	if (++i >= BW_METER_BUCKETS)
2228	    i = 0;
2229
2230	/* Disconnect the list of bw_meter entries from the bin */
2231	tmp_list = V_bw_meter_timers[i];
2232	V_bw_meter_timers[i] = NULL;
2233
2234	/* Process the list of bw_meter entries */
2235	while (tmp_list != NULL) {
2236	    x = tmp_list;
2237	    tmp_list = tmp_list->bm_time_next;
2238
2239	    /* Test if the time interval is over */
2240	    process_endtime = x->bm_start_time;
2241	    BW_TIMEVALADD(&process_endtime, &x->bm_threshold.b_time);
2242	    if (BW_TIMEVALCMP(&process_endtime, &now, >)) {
2243		/* Not yet: reschedule, but don't reset */
2244		int time_hash;
2245
2246		BW_METER_TIMEHASH(x, time_hash);
2247		if (time_hash == i && process_endtime.tv_sec == now.tv_sec) {
2248		    /*
2249		     * XXX: somehow the bin processing is a bit ahead of time.
2250		     * Put the entry in the next bin.
2251		     */
2252		    if (++time_hash >= BW_METER_BUCKETS)
2253			time_hash = 0;
2254		}
2255		x->bm_time_next = V_bw_meter_timers[time_hash];
2256		V_bw_meter_timers[time_hash] = x;
2257		x->bm_time_hash = time_hash;
2258
2259		continue;
2260	    }
2261
2262	    /*
2263	     * Test if we should deliver an upcall
2264	     */
2265	    if (((x->bm_flags & BW_METER_UNIT_PACKETS) &&
2266		 (x->bm_measured.b_packets <= x->bm_threshold.b_packets)) ||
2267		((x->bm_flags & BW_METER_UNIT_BYTES) &&
2268		 (x->bm_measured.b_bytes <= x->bm_threshold.b_bytes))) {
2269		/* Prepare an upcall for delivery */
2270		bw_meter_prepare_upcall(x, &now);
2271	    }
2272
2273	    /*
2274	     * Reschedule for next processing
2275	     */
2276	    schedule_bw_meter(x, &now);
2277	}
2278    }
2279
2280    /* Send all upcalls that are pending delivery */
2281    bw_upcalls_send();
2282
2283    MFC_UNLOCK();
2284}
2285
2286/*
2287 * A periodic function for sending all upcalls that are pending delivery
2288 */
2289static void
2290expire_bw_upcalls_send(void *arg)
2291{
2292    CURVNET_SET((struct vnet *) arg);
2293
2294    MFC_LOCK();
2295    bw_upcalls_send();
2296    MFC_UNLOCK();
2297
2298    callout_reset(&V_bw_upcalls_ch, BW_UPCALLS_PERIOD, expire_bw_upcalls_send,
2299	curvnet);
2300    CURVNET_RESTORE();
2301}
2302
2303/*
2304 * A periodic function for periodic scanning of the multicast forwarding
2305 * table for processing all "<=" bw_meter entries.
2306 */
2307static void
2308expire_bw_meter_process(void *arg)
2309{
2310    CURVNET_SET((struct vnet *) arg);
2311
2312    if (V_mrt_api_config & MRT_MFC_BW_UPCALL)
2313	bw_meter_process();
2314
2315    callout_reset(&V_bw_meter_ch, BW_METER_PERIOD, expire_bw_meter_process,
2316	curvnet);
2317    CURVNET_RESTORE();
2318}
2319
2320/*
2321 * End of bandwidth monitoring code
2322 */
2323
2324/*
2325 * Send the packet up to the user daemon, or eventually do kernel encapsulation
2326 *
2327 */
2328static int
2329pim_register_send(struct ip *ip, struct vif *vifp, struct mbuf *m,
2330    struct mfc *rt)
2331{
2332    struct mbuf *mb_copy, *mm;
2333
2334    /*
2335     * Do not send IGMP_WHOLEPKT notifications to userland, if the
2336     * rendezvous point was unspecified, and we were told not to.
2337     */
2338    if (pim_squelch_wholepkt != 0 && (V_mrt_api_config & MRT_MFC_RP) &&
2339	in_nullhost(rt->mfc_rp))
2340	return 0;
2341
2342    mb_copy = pim_register_prepare(ip, m);
2343    if (mb_copy == NULL)
2344	return ENOBUFS;
2345
2346    /*
2347     * Send all the fragments. Note that the mbuf for each fragment
2348     * is freed by the sending machinery.
2349     */
2350    for (mm = mb_copy; mm; mm = mb_copy) {
2351	mb_copy = mm->m_nextpkt;
2352	mm->m_nextpkt = 0;
2353	mm = m_pullup(mm, sizeof(struct ip));
2354	if (mm != NULL) {
2355	    ip = mtod(mm, struct ip *);
2356	    if ((V_mrt_api_config & MRT_MFC_RP) && !in_nullhost(rt->mfc_rp)) {
2357		pim_register_send_rp(ip, vifp, mm, rt);
2358	    } else {
2359		pim_register_send_upcall(ip, vifp, mm, rt);
2360	    }
2361	}
2362    }
2363
2364    return 0;
2365}
2366
2367/*
2368 * Return a copy of the data packet that is ready for PIM Register
2369 * encapsulation.
2370 * XXX: Note that in the returned copy the IP header is a valid one.
2371 */
2372static struct mbuf *
2373pim_register_prepare(struct ip *ip, struct mbuf *m)
2374{
2375    struct mbuf *mb_copy = NULL;
2376    int mtu;
2377
2378    /* Take care of delayed checksums */
2379    if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
2380	in_delayed_cksum(m);
2381	m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
2382    }
2383
2384    /*
2385     * Copy the old packet & pullup its IP header into the
2386     * new mbuf so we can modify it.
2387     */
2388    mb_copy = m_copypacket(m, M_DONTWAIT);
2389    if (mb_copy == NULL)
2390	return NULL;
2391    mb_copy = m_pullup(mb_copy, ip->ip_hl << 2);
2392    if (mb_copy == NULL)
2393	return NULL;
2394
2395    /* take care of the TTL */
2396    ip = mtod(mb_copy, struct ip *);
2397    --ip->ip_ttl;
2398
2399    /* Compute the MTU after the PIM Register encapsulation */
2400    mtu = 0xffff - sizeof(pim_encap_iphdr) - sizeof(pim_encap_pimhdr);
2401
2402    if (ip->ip_len <= mtu) {
2403	/* Turn the IP header into a valid one */
2404	ip->ip_len = htons(ip->ip_len);
2405	ip->ip_off = htons(ip->ip_off);
2406	ip->ip_sum = 0;
2407	ip->ip_sum = in_cksum(mb_copy, ip->ip_hl << 2);
2408    } else {
2409	/* Fragment the packet */
2410	if (ip_fragment(ip, &mb_copy, mtu, 0, CSUM_DELAY_IP) != 0) {
2411	    m_freem(mb_copy);
2412	    return NULL;
2413	}
2414    }
2415    return mb_copy;
2416}
2417
2418/*
2419 * Send an upcall with the data packet to the user-level process.
2420 */
2421static int
2422pim_register_send_upcall(struct ip *ip, struct vif *vifp,
2423    struct mbuf *mb_copy, struct mfc *rt)
2424{
2425    struct mbuf *mb_first;
2426    int len = ntohs(ip->ip_len);
2427    struct igmpmsg *im;
2428    struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
2429
2430    VIF_LOCK_ASSERT();
2431
2432    /*
2433     * Add a new mbuf with an upcall header
2434     */
2435    MGETHDR(mb_first, M_DONTWAIT, MT_DATA);
2436    if (mb_first == NULL) {
2437	m_freem(mb_copy);
2438	return ENOBUFS;
2439    }
2440    mb_first->m_data += max_linkhdr;
2441    mb_first->m_pkthdr.len = len + sizeof(struct igmpmsg);
2442    mb_first->m_len = sizeof(struct igmpmsg);
2443    mb_first->m_next = mb_copy;
2444
2445    /* Send message to routing daemon */
2446    im = mtod(mb_first, struct igmpmsg *);
2447    im->im_msgtype	= IGMPMSG_WHOLEPKT;
2448    im->im_mbz		= 0;
2449    im->im_vif		= vifp - V_viftable;
2450    im->im_src		= ip->ip_src;
2451    im->im_dst		= ip->ip_dst;
2452
2453    k_igmpsrc.sin_addr	= ip->ip_src;
2454
2455    MRTSTAT_INC(mrts_upcalls);
2456
2457    if (socket_send(V_ip_mrouter, mb_first, &k_igmpsrc) < 0) {
2458	CTR1(KTR_IPMF, "%s: socket queue full", __func__);
2459	MRTSTAT_INC(mrts_upq_sockfull);
2460	return ENOBUFS;
2461    }
2462
2463    /* Keep statistics */
2464    PIMSTAT_INC(pims_snd_registers_msgs);
2465    PIMSTAT_ADD(pims_snd_registers_bytes, len);
2466
2467    return 0;
2468}
2469
2470/*
2471 * Encapsulate the data packet in PIM Register message and send it to the RP.
2472 */
2473static int
2474pim_register_send_rp(struct ip *ip, struct vif *vifp, struct mbuf *mb_copy,
2475    struct mfc *rt)
2476{
2477    struct mbuf *mb_first;
2478    struct ip *ip_outer;
2479    struct pim_encap_pimhdr *pimhdr;
2480    int len = ntohs(ip->ip_len);
2481    vifi_t vifi = rt->mfc_parent;
2482
2483    VIF_LOCK_ASSERT();
2484
2485    if ((vifi >= V_numvifs) || in_nullhost(V_viftable[vifi].v_lcl_addr)) {
2486	m_freem(mb_copy);
2487	return EADDRNOTAVAIL;		/* The iif vif is invalid */
2488    }
2489
2490    /*
2491     * Add a new mbuf with the encapsulating header
2492     */
2493    MGETHDR(mb_first, M_DONTWAIT, MT_DATA);
2494    if (mb_first == NULL) {
2495	m_freem(mb_copy);
2496	return ENOBUFS;
2497    }
2498    mb_first->m_data += max_linkhdr;
2499    mb_first->m_len = sizeof(pim_encap_iphdr) + sizeof(pim_encap_pimhdr);
2500    mb_first->m_next = mb_copy;
2501
2502    mb_first->m_pkthdr.len = len + mb_first->m_len;
2503
2504    /*
2505     * Fill in the encapsulating IP and PIM header
2506     */
2507    ip_outer = mtod(mb_first, struct ip *);
2508    *ip_outer = pim_encap_iphdr;
2509    ip_outer->ip_id = ip_newid();
2510    ip_outer->ip_len = len + sizeof(pim_encap_iphdr) + sizeof(pim_encap_pimhdr);
2511    ip_outer->ip_src = V_viftable[vifi].v_lcl_addr;
2512    ip_outer->ip_dst = rt->mfc_rp;
2513    /*
2514     * Copy the inner header TOS to the outer header, and take care of the
2515     * IP_DF bit.
2516     */
2517    ip_outer->ip_tos = ip->ip_tos;
2518    if (ntohs(ip->ip_off) & IP_DF)
2519	ip_outer->ip_off |= IP_DF;
2520    pimhdr = (struct pim_encap_pimhdr *)((caddr_t)ip_outer
2521					 + sizeof(pim_encap_iphdr));
2522    *pimhdr = pim_encap_pimhdr;
2523    /* If the iif crosses a border, set the Border-bit */
2524    if (rt->mfc_flags[vifi] & MRT_MFC_FLAGS_BORDER_VIF & V_mrt_api_config)
2525	pimhdr->flags |= htonl(PIM_BORDER_REGISTER);
2526
2527    mb_first->m_data += sizeof(pim_encap_iphdr);
2528    pimhdr->pim.pim_cksum = in_cksum(mb_first, sizeof(pim_encap_pimhdr));
2529    mb_first->m_data -= sizeof(pim_encap_iphdr);
2530
2531    send_packet(vifp, mb_first);
2532
2533    /* Keep statistics */
2534    PIMSTAT_INC(pims_snd_registers_msgs);
2535    PIMSTAT_ADD(pims_snd_registers_bytes, len);
2536
2537    return 0;
2538}
2539
2540/*
2541 * pim_encapcheck() is called by the encap4_input() path at runtime to
2542 * determine if a packet is for PIM; allowing PIM to be dynamically loaded
2543 * into the kernel.
2544 */
2545static int
2546pim_encapcheck(const struct mbuf *m, int off, int proto, void *arg)
2547{
2548
2549#ifdef DIAGNOSTIC
2550    KASSERT(proto == IPPROTO_PIM, ("not for IPPROTO_PIM"));
2551#endif
2552    if (proto != IPPROTO_PIM)
2553	return 0;	/* not for us; reject the datagram. */
2554
2555    return 64;		/* claim the datagram. */
2556}
2557
2558/*
2559 * PIM-SMv2 and PIM-DM messages processing.
2560 * Receives and verifies the PIM control messages, and passes them
2561 * up to the listening socket, using rip_input().
2562 * The only message with special processing is the PIM_REGISTER message
2563 * (used by PIM-SM): the PIM header is stripped off, and the inner packet
2564 * is passed to if_simloop().
2565 */
2566void
2567pim_input(struct mbuf *m, int off)
2568{
2569    struct ip *ip = mtod(m, struct ip *);
2570    struct pim *pim;
2571    int minlen;
2572    int datalen = ip->ip_len;
2573    int ip_tos;
2574    int iphlen = off;
2575
2576    /* Keep statistics */
2577    PIMSTAT_INC(pims_rcv_total_msgs);
2578    PIMSTAT_ADD(pims_rcv_total_bytes, datalen);
2579
2580    /*
2581     * Validate lengths
2582     */
2583    if (datalen < PIM_MINLEN) {
2584	PIMSTAT_INC(pims_rcv_tooshort);
2585	CTR3(KTR_IPMF, "%s: short packet (%d) from %s",
2586	    __func__, datalen, inet_ntoa(ip->ip_src));
2587	m_freem(m);
2588	return;
2589    }
2590
2591    /*
2592     * If the packet is at least as big as a REGISTER, go agead
2593     * and grab the PIM REGISTER header size, to avoid another
2594     * possible m_pullup() later.
2595     *
2596     * PIM_MINLEN       == pimhdr + u_int32_t == 4 + 4 = 8
2597     * PIM_REG_MINLEN   == pimhdr + reghdr + encap_iphdr == 4 + 4 + 20 = 28
2598     */
2599    minlen = iphlen + (datalen >= PIM_REG_MINLEN ? PIM_REG_MINLEN : PIM_MINLEN);
2600    /*
2601     * Get the IP and PIM headers in contiguous memory, and
2602     * possibly the PIM REGISTER header.
2603     */
2604    if ((m->m_flags & M_EXT || m->m_len < minlen) &&
2605	(m = m_pullup(m, minlen)) == 0) {
2606	CTR1(KTR_IPMF, "%s: m_pullup() failed", __func__);
2607	return;
2608    }
2609
2610    /* m_pullup() may have given us a new mbuf so reset ip. */
2611    ip = mtod(m, struct ip *);
2612    ip_tos = ip->ip_tos;
2613
2614    /* adjust mbuf to point to the PIM header */
2615    m->m_data += iphlen;
2616    m->m_len  -= iphlen;
2617    pim = mtod(m, struct pim *);
2618
2619    /*
2620     * Validate checksum. If PIM REGISTER, exclude the data packet.
2621     *
2622     * XXX: some older PIMv2 implementations don't make this distinction,
2623     * so for compatibility reason perform the checksum over part of the
2624     * message, and if error, then over the whole message.
2625     */
2626    if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER && in_cksum(m, PIM_MINLEN) == 0) {
2627	/* do nothing, checksum okay */
2628    } else if (in_cksum(m, datalen)) {
2629	PIMSTAT_INC(pims_rcv_badsum);
2630	CTR1(KTR_IPMF, "%s: invalid checksum", __func__);
2631	m_freem(m);
2632	return;
2633    }
2634
2635    /* PIM version check */
2636    if (PIM_VT_V(pim->pim_vt) < PIM_VERSION) {
2637	PIMSTAT_INC(pims_rcv_badversion);
2638	CTR3(KTR_IPMF, "%s: bad version %d expect %d", __func__,
2639	    (int)PIM_VT_V(pim->pim_vt), PIM_VERSION);
2640	m_freem(m);
2641	return;
2642    }
2643
2644    /* restore mbuf back to the outer IP */
2645    m->m_data -= iphlen;
2646    m->m_len  += iphlen;
2647
2648    if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER) {
2649	/*
2650	 * Since this is a REGISTER, we'll make a copy of the register
2651	 * headers ip + pim + u_int32 + encap_ip, to be passed up to the
2652	 * routing daemon.
2653	 */
2654	struct sockaddr_in dst = { sizeof(dst), AF_INET };
2655	struct mbuf *mcp;
2656	struct ip *encap_ip;
2657	u_int32_t *reghdr;
2658	struct ifnet *vifp;
2659
2660	VIF_LOCK();
2661	if ((V_reg_vif_num >= V_numvifs) || (V_reg_vif_num == VIFI_INVALID)) {
2662	    VIF_UNLOCK();
2663	    CTR2(KTR_IPMF, "%s: register vif not set: %d", __func__,
2664		(int)V_reg_vif_num);
2665	    m_freem(m);
2666	    return;
2667	}
2668	/* XXX need refcnt? */
2669	vifp = V_viftable[V_reg_vif_num].v_ifp;
2670	VIF_UNLOCK();
2671
2672	/*
2673	 * Validate length
2674	 */
2675	if (datalen < PIM_REG_MINLEN) {
2676	    PIMSTAT_INC(pims_rcv_tooshort);
2677	    PIMSTAT_INC(pims_rcv_badregisters);
2678	    CTR1(KTR_IPMF, "%s: register packet size too small", __func__);
2679	    m_freem(m);
2680	    return;
2681	}
2682
2683	reghdr = (u_int32_t *)(pim + 1);
2684	encap_ip = (struct ip *)(reghdr + 1);
2685
2686	CTR3(KTR_IPMF, "%s: register: encap ip src %s len %d",
2687	    __func__, inet_ntoa(encap_ip->ip_src), ntohs(encap_ip->ip_len));
2688
2689	/* verify the version number of the inner packet */
2690	if (encap_ip->ip_v != IPVERSION) {
2691	    PIMSTAT_INC(pims_rcv_badregisters);
2692	    CTR1(KTR_IPMF, "%s: bad encap ip version", __func__);
2693	    m_freem(m);
2694	    return;
2695	}
2696
2697	/* verify the inner packet is destined to a mcast group */
2698	if (!IN_MULTICAST(ntohl(encap_ip->ip_dst.s_addr))) {
2699	    PIMSTAT_INC(pims_rcv_badregisters);
2700	    CTR2(KTR_IPMF, "%s: bad encap ip dest %s", __func__,
2701		inet_ntoa(encap_ip->ip_dst));
2702	    m_freem(m);
2703	    return;
2704	}
2705
2706	/* If a NULL_REGISTER, pass it to the daemon */
2707	if ((ntohl(*reghdr) & PIM_NULL_REGISTER))
2708	    goto pim_input_to_daemon;
2709
2710	/*
2711	 * Copy the TOS from the outer IP header to the inner IP header.
2712	 */
2713	if (encap_ip->ip_tos != ip_tos) {
2714	    /* Outer TOS -> inner TOS */
2715	    encap_ip->ip_tos = ip_tos;
2716	    /* Recompute the inner header checksum. Sigh... */
2717
2718	    /* adjust mbuf to point to the inner IP header */
2719	    m->m_data += (iphlen + PIM_MINLEN);
2720	    m->m_len  -= (iphlen + PIM_MINLEN);
2721
2722	    encap_ip->ip_sum = 0;
2723	    encap_ip->ip_sum = in_cksum(m, encap_ip->ip_hl << 2);
2724
2725	    /* restore mbuf to point back to the outer IP header */
2726	    m->m_data -= (iphlen + PIM_MINLEN);
2727	    m->m_len  += (iphlen + PIM_MINLEN);
2728	}
2729
2730	/*
2731	 * Decapsulate the inner IP packet and loopback to forward it
2732	 * as a normal multicast packet. Also, make a copy of the
2733	 *     outer_iphdr + pimhdr + reghdr + encap_iphdr
2734	 * to pass to the daemon later, so it can take the appropriate
2735	 * actions (e.g., send back PIM_REGISTER_STOP).
2736	 * XXX: here m->m_data points to the outer IP header.
2737	 */
2738	mcp = m_copy(m, 0, iphlen + PIM_REG_MINLEN);
2739	if (mcp == NULL) {
2740	    CTR1(KTR_IPMF, "%s: m_copy() failed", __func__);
2741	    m_freem(m);
2742	    return;
2743	}
2744
2745	/* Keep statistics */
2746	/* XXX: registers_bytes include only the encap. mcast pkt */
2747	PIMSTAT_INC(pims_rcv_registers_msgs);
2748	PIMSTAT_ADD(pims_rcv_registers_bytes, ntohs(encap_ip->ip_len));
2749
2750	/*
2751	 * forward the inner ip packet; point m_data at the inner ip.
2752	 */
2753	m_adj(m, iphlen + PIM_MINLEN);
2754
2755	CTR4(KTR_IPMF,
2756	    "%s: forward decap'd REGISTER: src %lx dst %lx vif %d",
2757	    __func__,
2758	    (u_long)ntohl(encap_ip->ip_src.s_addr),
2759	    (u_long)ntohl(encap_ip->ip_dst.s_addr),
2760	    (int)V_reg_vif_num);
2761
2762	/* NB: vifp was collected above; can it change on us? */
2763	if_simloop(vifp, m, dst.sin_family, 0);
2764
2765	/* prepare the register head to send to the mrouting daemon */
2766	m = mcp;
2767    }
2768
2769pim_input_to_daemon:
2770    /*
2771     * Pass the PIM message up to the daemon; if it is a Register message,
2772     * pass the 'head' only up to the daemon. This includes the
2773     * outer IP header, PIM header, PIM-Register header and the
2774     * inner IP header.
2775     * XXX: the outer IP header pkt size of a Register is not adjust to
2776     * reflect the fact that the inner multicast data is truncated.
2777     */
2778    rip_input(m, iphlen);
2779
2780    return;
2781}
2782
2783static int
2784sysctl_mfctable(SYSCTL_HANDLER_ARGS)
2785{
2786	struct mfc	*rt;
2787	int		 error, i;
2788
2789	if (req->newptr)
2790		return (EPERM);
2791	if (V_mfchashtbl == NULL)	/* XXX unlocked */
2792		return (0);
2793	error = sysctl_wire_old_buffer(req, 0);
2794	if (error)
2795		return (error);
2796
2797	MFC_LOCK();
2798	for (i = 0; i < mfchashsize; i++) {
2799		LIST_FOREACH(rt, &V_mfchashtbl[i], mfc_hash) {
2800			error = SYSCTL_OUT(req, rt, sizeof(struct mfc));
2801			if (error)
2802				goto out_locked;
2803		}
2804	}
2805out_locked:
2806	MFC_UNLOCK();
2807	return (error);
2808}
2809
2810SYSCTL_NODE(_net_inet_ip, OID_AUTO, mfctable, CTLFLAG_RD, sysctl_mfctable,
2811    "IPv4 Multicast Forwarding Table (struct *mfc[mfchashsize], "
2812    "netinet/ip_mroute.h)");
2813
2814static void
2815vnet_mroute_init(const void *unused __unused)
2816{
2817
2818	MALLOC(V_nexpire, u_char *, mfchashsize, M_MRTABLE, M_WAITOK|M_ZERO);
2819	bzero(V_bw_meter_timers, sizeof(V_bw_meter_timers));
2820	callout_init(&V_expire_upcalls_ch, CALLOUT_MPSAFE);
2821	callout_init(&V_bw_upcalls_ch, CALLOUT_MPSAFE);
2822	callout_init(&V_bw_meter_ch, CALLOUT_MPSAFE);
2823}
2824
2825VNET_SYSINIT(vnet_mroute_init, SI_SUB_PSEUDO, SI_ORDER_MIDDLE, vnet_mroute_init,
2826	NULL);
2827
2828static void
2829vnet_mroute_uninit(const void *unused __unused)
2830{
2831
2832	FREE(V_nexpire, M_MRTABLE);
2833	V_nexpire = NULL;
2834}
2835
2836VNET_SYSUNINIT(vnet_mroute_uninit, SI_SUB_PSEUDO, SI_ORDER_MIDDLE,
2837	vnet_mroute_uninit, NULL);
2838
2839static int
2840ip_mroute_modevent(module_t mod, int type, void *unused)
2841{
2842
2843    switch (type) {
2844    case MOD_LOAD:
2845	MROUTER_LOCK_INIT();
2846
2847	if_detach_event_tag = EVENTHANDLER_REGISTER(ifnet_departure_event,
2848	    if_detached_event, NULL, EVENTHANDLER_PRI_ANY);
2849	if (if_detach_event_tag == NULL) {
2850		printf("ip_mroute: unable to ifnet_deperture_even handler\n");
2851		MROUTER_LOCK_DESTROY();
2852		return (EINVAL);
2853	}
2854
2855	MFC_LOCK_INIT();
2856	VIF_LOCK_INIT();
2857
2858	mfchashsize = MFCHASHSIZE;
2859	if (TUNABLE_ULONG_FETCH("net.inet.ip.mfchashsize", &mfchashsize) &&
2860	    !powerof2(mfchashsize)) {
2861		printf("WARNING: %s not a power of 2; using default\n",
2862		    "net.inet.ip.mfchashsize");
2863		mfchashsize = MFCHASHSIZE;
2864	}
2865
2866	pim_squelch_wholepkt = 0;
2867	TUNABLE_ULONG_FETCH("net.inet.pim.squelch_wholepkt",
2868	    &pim_squelch_wholepkt);
2869
2870	pim_encap_cookie = encap_attach_func(AF_INET, IPPROTO_PIM,
2871	    pim_encapcheck, &in_pim_protosw, NULL);
2872	if (pim_encap_cookie == NULL) {
2873		printf("ip_mroute: unable to attach pim encap\n");
2874		VIF_LOCK_DESTROY();
2875		MFC_LOCK_DESTROY();
2876		MROUTER_LOCK_DESTROY();
2877		return (EINVAL);
2878	}
2879
2880	ip_mcast_src = X_ip_mcast_src;
2881	ip_mforward = X_ip_mforward;
2882	ip_mrouter_done = X_ip_mrouter_done;
2883	ip_mrouter_get = X_ip_mrouter_get;
2884	ip_mrouter_set = X_ip_mrouter_set;
2885
2886	ip_rsvp_force_done = X_ip_rsvp_force_done;
2887	ip_rsvp_vif = X_ip_rsvp_vif;
2888
2889	legal_vif_num = X_legal_vif_num;
2890	mrt_ioctl = X_mrt_ioctl;
2891	rsvp_input_p = X_rsvp_input;
2892	break;
2893
2894    case MOD_UNLOAD:
2895	/*
2896	 * Typically module unload happens after the user-level
2897	 * process has shutdown the kernel services (the check
2898	 * below insures someone can't just yank the module out
2899	 * from under a running process).  But if the module is
2900	 * just loaded and then unloaded w/o starting up a user
2901	 * process we still need to cleanup.
2902	 */
2903	MROUTER_LOCK();
2904	if (ip_mrouter_cnt != 0) {
2905	    MROUTER_UNLOCK();
2906	    return (EINVAL);
2907	}
2908	ip_mrouter_unloading = 1;
2909	MROUTER_UNLOCK();
2910
2911	EVENTHANDLER_DEREGISTER(ifnet_departure_event, if_detach_event_tag);
2912
2913	if (pim_encap_cookie) {
2914	    encap_detach(pim_encap_cookie);
2915	    pim_encap_cookie = NULL;
2916	}
2917
2918	ip_mcast_src = NULL;
2919	ip_mforward = NULL;
2920	ip_mrouter_done = NULL;
2921	ip_mrouter_get = NULL;
2922	ip_mrouter_set = NULL;
2923
2924	ip_rsvp_force_done = NULL;
2925	ip_rsvp_vif = NULL;
2926
2927	legal_vif_num = NULL;
2928	mrt_ioctl = NULL;
2929	rsvp_input_p = NULL;
2930
2931	VIF_LOCK_DESTROY();
2932	MFC_LOCK_DESTROY();
2933	MROUTER_LOCK_DESTROY();
2934	break;
2935
2936    default:
2937	return EOPNOTSUPP;
2938    }
2939    return 0;
2940}
2941
2942static moduledata_t ip_mroutemod = {
2943    "ip_mroute",
2944    ip_mroute_modevent,
2945    0
2946};
2947
2948DECLARE_MODULE(ip_mroute, ip_mroutemod, SI_SUB_PSEUDO, SI_ORDER_ANY);
2949