ip_mroute.c revision 204068
1/*-
2 * Copyright (c) 1989 Stephen Deering
3 * Copyright (c) 1992, 1993
4 *      The Regents of the University of California.  All rights reserved.
5 *
6 * This code is derived from software contributed to Berkeley by
7 * Stephen Deering of Stanford University.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in the
16 *    documentation and/or other materials provided with the distribution.
17 * 4. Neither the name of the University nor the names of its contributors
18 *    may be used to endorse or promote products derived from this software
19 *    without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 *
33 *      @(#)ip_mroute.c 8.2 (Berkeley) 11/15/93
34 */
35
36/*
37 * IP multicast forwarding procedures
38 *
39 * Written by David Waitzman, BBN Labs, August 1988.
40 * Modified by Steve Deering, Stanford, February 1989.
41 * Modified by Mark J. Steiglitz, Stanford, May, 1991
42 * Modified by Van Jacobson, LBL, January 1993
43 * Modified by Ajit Thyagarajan, PARC, August 1993
44 * Modified by Bill Fenner, PARC, April 1995
45 * Modified by Ahmed Helmy, SGI, June 1996
46 * Modified by George Edmond Eddy (Rusty), ISI, February 1998
47 * Modified by Pavlin Radoslavov, USC/ISI, May 1998, August 1999, October 2000
48 * Modified by Hitoshi Asaeda, WIDE, August 2000
49 * Modified by Pavlin Radoslavov, ICSI, October 2002
50 *
51 * MROUTING Revision: 3.5
52 * and PIM-SMv2 and PIM-DM support, advanced API support,
53 * bandwidth metering and signaling
54 */
55
56/*
57 * TODO: Prefix functions with ipmf_.
58 * TODO: Maintain a refcount on if_allmulti() in ifnet or in the protocol
59 * domain attachment (if_afdata) so we can track consumers of that service.
60 * TODO: Deprecate routing socket path for SIOCGETSGCNT and SIOCGETVIFCNT,
61 * move it to socket options.
62 * TODO: Cleanup LSRR removal further.
63 * TODO: Push RSVP stubs into raw_ip.c.
64 * TODO: Use bitstring.h for vif set.
65 * TODO: Fix mrt6_ioctl dangling ref when dynamically loaded.
66 * TODO: Sync ip6_mroute.c with this file.
67 */
68
69#include <sys/cdefs.h>
70__FBSDID("$FreeBSD: head/sys/netinet/ip_mroute.c 204068 2010-02-18 22:26:01Z pjd $");
71
72#include "opt_inet.h"
73#include "opt_mrouting.h"
74
75#define _PIM_VT 1
76
77#include <sys/param.h>
78#include <sys/kernel.h>
79#include <sys/stddef.h>
80#include <sys/lock.h>
81#include <sys/ktr.h>
82#include <sys/malloc.h>
83#include <sys/mbuf.h>
84#include <sys/module.h>
85#include <sys/priv.h>
86#include <sys/protosw.h>
87#include <sys/signalvar.h>
88#include <sys/socket.h>
89#include <sys/socketvar.h>
90#include <sys/sockio.h>
91#include <sys/sx.h>
92#include <sys/sysctl.h>
93#include <sys/syslog.h>
94#include <sys/systm.h>
95#include <sys/time.h>
96
97#include <net/if.h>
98#include <net/netisr.h>
99#include <net/route.h>
100#include <net/vnet.h>
101
102#include <netinet/in.h>
103#include <netinet/igmp.h>
104#include <netinet/in_systm.h>
105#include <netinet/in_var.h>
106#include <netinet/ip.h>
107#include <netinet/ip_encap.h>
108#include <netinet/ip_mroute.h>
109#include <netinet/ip_var.h>
110#include <netinet/ip_options.h>
111#include <netinet/pim.h>
112#include <netinet/pim_var.h>
113#include <netinet/udp.h>
114
115#include <machine/in_cksum.h>
116
117#ifndef KTR_IPMF
118#define KTR_IPMF KTR_INET
119#endif
120
121#define		VIFI_INVALID	((vifi_t) -1)
122#define		M_HASCL(m)	((m)->m_flags & M_EXT)
123
124static MALLOC_DEFINE(M_MRTABLE, "mroutetbl", "multicast forwarding cache");
125
126/*
127 * Locking.  We use two locks: one for the virtual interface table and
128 * one for the forwarding table.  These locks may be nested in which case
129 * the VIF lock must always be taken first.  Note that each lock is used
130 * to cover not only the specific data structure but also related data
131 * structures.
132 */
133
134static struct mtx mrouter_mtx;
135#define	MROUTER_LOCK()		mtx_lock(&mrouter_mtx)
136#define	MROUTER_UNLOCK()	mtx_unlock(&mrouter_mtx)
137#define	MROUTER_LOCK_ASSERT()	mtx_assert(&mrouter_mtx, MA_OWNED)
138#define	MROUTER_LOCK_INIT()						\
139	mtx_init(&mrouter_mtx, "IPv4 multicast forwarding", NULL, MTX_DEF)
140#define	MROUTER_LOCK_DESTROY()	mtx_destroy(&mrouter_mtx)
141
142static struct mrtstat	mrtstat;
143SYSCTL_STRUCT(_net_inet_ip, OID_AUTO, mrtstat, CTLFLAG_RW,
144    &mrtstat, mrtstat,
145    "IPv4 Multicast Forwarding Statistics (struct mrtstat, "
146    "netinet/ip_mroute.h)");
147
148static u_long			 mfchash;
149#define MFCHASH(a, g)							\
150	((((a).s_addr >> 20) ^ ((a).s_addr >> 10) ^ (a).s_addr ^ \
151	  ((g).s_addr >> 20) ^ ((g).s_addr >> 10) ^ (g).s_addr) & mfchash)
152#define MFCHASHSIZE	256
153
154static u_char			*nexpire;	/* 0..mfchashsize-1 */
155static u_long			 mfchashsize;	/* Hash size */
156LIST_HEAD(mfchashhdr, mfc)	*mfchashtbl;
157
158static struct mtx mfc_mtx;
159#define	MFC_LOCK()		mtx_lock(&mfc_mtx)
160#define	MFC_UNLOCK()		mtx_unlock(&mfc_mtx)
161#define	MFC_LOCK_ASSERT()	mtx_assert(&mfc_mtx, MA_OWNED)
162#define	MFC_LOCK_INIT()							\
163	mtx_init(&mfc_mtx, "IPv4 multicast forwarding cache", NULL, MTX_DEF)
164#define	MFC_LOCK_DESTROY()	mtx_destroy(&mfc_mtx)
165
166static vifi_t		numvifs;
167static struct vif	viftable[MAXVIFS];
168SYSCTL_OPAQUE(_net_inet_ip, OID_AUTO, viftable, CTLFLAG_RD,
169    &viftable, sizeof(viftable), "S,vif[MAXVIFS]",
170    "IPv4 Multicast Interfaces (struct vif[MAXVIFS], netinet/ip_mroute.h)");
171
172static struct mtx vif_mtx;
173#define	VIF_LOCK()		mtx_lock(&vif_mtx)
174#define	VIF_UNLOCK()		mtx_unlock(&vif_mtx)
175#define	VIF_LOCK_ASSERT()	mtx_assert(&vif_mtx, MA_OWNED)
176#define	VIF_LOCK_INIT()							\
177	mtx_init(&vif_mtx, "IPv4 multicast interfaces", NULL, MTX_DEF)
178#define	VIF_LOCK_DESTROY()	mtx_destroy(&vif_mtx)
179
180static eventhandler_tag if_detach_event_tag = NULL;
181
182static struct callout expire_upcalls_ch;
183#define		EXPIRE_TIMEOUT	(hz / 4)	/* 4x / second		*/
184#define		UPCALL_EXPIRE	6		/* number of timeouts	*/
185
186/*
187 * Bandwidth meter variables and constants
188 */
189static MALLOC_DEFINE(M_BWMETER, "bwmeter", "multicast upcall bw meters");
190/*
191 * Pending timeouts are stored in a hash table, the key being the
192 * expiration time. Periodically, the entries are analysed and processed.
193 */
194#define BW_METER_BUCKETS	1024
195static struct bw_meter *bw_meter_timers[BW_METER_BUCKETS];
196static struct callout bw_meter_ch;
197#define BW_METER_PERIOD (hz)		/* periodical handling of bw meters */
198
199/*
200 * Pending upcalls are stored in a vector which is flushed when
201 * full, or periodically
202 */
203static struct bw_upcall	bw_upcalls[BW_UPCALLS_MAX];
204static u_int	bw_upcalls_n; /* # of pending upcalls */
205static struct callout bw_upcalls_ch;
206#define BW_UPCALLS_PERIOD (hz)		/* periodical flush of bw upcalls */
207
208static struct pimstat pimstat;
209
210SYSCTL_NODE(_net_inet, IPPROTO_PIM, pim, CTLFLAG_RW, 0, "PIM");
211SYSCTL_STRUCT(_net_inet_pim, PIMCTL_STATS, stats, CTLFLAG_RD,
212    &pimstat, pimstat,
213    "PIM Statistics (struct pimstat, netinet/pim_var.h)");
214
215static u_long	pim_squelch_wholepkt = 0;
216SYSCTL_ULONG(_net_inet_pim, OID_AUTO, squelch_wholepkt, CTLFLAG_RW,
217    &pim_squelch_wholepkt, 0,
218    "Disable IGMP_WHOLEPKT notifications if rendezvous point is unspecified");
219
220extern  struct domain inetdomain;
221static const struct protosw in_pim_protosw = {
222	.pr_type =		SOCK_RAW,
223	.pr_domain =		&inetdomain,
224	.pr_protocol =		IPPROTO_PIM,
225	.pr_flags =		PR_ATOMIC|PR_ADDR|PR_LASTHDR,
226	.pr_input =		pim_input,
227	.pr_output =		(pr_output_t*)rip_output,
228	.pr_ctloutput =		rip_ctloutput,
229	.pr_usrreqs =		&rip_usrreqs
230};
231static const struct encaptab *pim_encap_cookie;
232
233static int pim_encapcheck(const struct mbuf *, int, int, void *);
234
235/*
236 * Note: the PIM Register encapsulation adds the following in front of a
237 * data packet:
238 *
239 * struct pim_encap_hdr {
240 *    struct ip ip;
241 *    struct pim_encap_pimhdr  pim;
242 * }
243 *
244 */
245
246struct pim_encap_pimhdr {
247	struct pim pim;
248	uint32_t   flags;
249};
250#define		PIM_ENCAP_TTL	64
251
252static struct ip pim_encap_iphdr = {
253#if BYTE_ORDER == LITTLE_ENDIAN
254	sizeof(struct ip) >> 2,
255	IPVERSION,
256#else
257	IPVERSION,
258	sizeof(struct ip) >> 2,
259#endif
260	0,			/* tos */
261	sizeof(struct ip),	/* total length */
262	0,			/* id */
263	0,			/* frag offset */
264	PIM_ENCAP_TTL,
265	IPPROTO_PIM,
266	0,			/* checksum */
267};
268
269static struct pim_encap_pimhdr pim_encap_pimhdr = {
270    {
271	PIM_MAKE_VT(PIM_VERSION, PIM_REGISTER), /* PIM vers and message type */
272	0,			/* reserved */
273	0,			/* checksum */
274    },
275    0				/* flags */
276};
277
278static struct ifnet multicast_register_if;
279static vifi_t reg_vif_num = VIFI_INVALID;
280
281/*
282 * Private variables.
283 */
284
285static u_long	X_ip_mcast_src(int);
286static int	X_ip_mforward(struct ip *, struct ifnet *, struct mbuf *,
287		    struct ip_moptions *);
288static int	X_ip_mrouter_done(void);
289static int	X_ip_mrouter_get(struct socket *, struct sockopt *);
290static int	X_ip_mrouter_set(struct socket *, struct sockopt *);
291static int	X_legal_vif_num(int);
292static int	X_mrt_ioctl(u_long, caddr_t, int);
293
294static int	add_bw_upcall(struct bw_upcall *);
295static int	add_mfc(struct mfcctl2 *);
296static int	add_vif(struct vifctl *);
297static void	bw_meter_prepare_upcall(struct bw_meter *, struct timeval *);
298static void	bw_meter_process(void);
299static void	bw_meter_receive_packet(struct bw_meter *, int,
300		    struct timeval *);
301static void	bw_upcalls_send(void);
302static int	del_bw_upcall(struct bw_upcall *);
303static int	del_mfc(struct mfcctl2 *);
304static int	del_vif(vifi_t);
305static int	del_vif_locked(vifi_t);
306static void	expire_bw_meter_process(void *);
307static void	expire_bw_upcalls_send(void *);
308static void	expire_mfc(struct mfc *);
309static void	expire_upcalls(void *);
310static void	free_bw_list(struct bw_meter *);
311static int	get_sg_cnt(struct sioc_sg_req *);
312static int	get_vif_cnt(struct sioc_vif_req *);
313static void	if_detached_event(void *, struct ifnet *);
314static int	ip_mdq(struct mbuf *, struct ifnet *, struct mfc *, vifi_t);
315static int	ip_mrouter_init(struct socket *, int);
316static __inline struct mfc *
317		mfc_find(struct in_addr *, struct in_addr *);
318static void	phyint_send(struct ip *, struct vif *, struct mbuf *);
319static struct mbuf *
320		pim_register_prepare(struct ip *, struct mbuf *);
321static int	pim_register_send(struct ip *, struct vif *,
322		    struct mbuf *, struct mfc *);
323static int	pim_register_send_rp(struct ip *, struct vif *,
324		    struct mbuf *, struct mfc *);
325static int	pim_register_send_upcall(struct ip *, struct vif *,
326		    struct mbuf *, struct mfc *);
327static void	schedule_bw_meter(struct bw_meter *, struct timeval *);
328static void	send_packet(struct vif *, struct mbuf *);
329static int	set_api_config(uint32_t *);
330static int	set_assert(int);
331static int	socket_send(struct socket *, struct mbuf *,
332		    struct sockaddr_in *);
333static void	unschedule_bw_meter(struct bw_meter *);
334
335/*
336 * Kernel multicast forwarding API capabilities and setup.
337 * If more API capabilities are added to the kernel, they should be
338 * recorded in `mrt_api_support'.
339 */
340#define MRT_API_VERSION		0x0305
341
342static const int mrt_api_version = MRT_API_VERSION;
343static const uint32_t mrt_api_support = (MRT_MFC_FLAGS_DISABLE_WRONGVIF |
344					 MRT_MFC_FLAGS_BORDER_VIF |
345					 MRT_MFC_RP |
346					 MRT_MFC_BW_UPCALL);
347static uint32_t mrt_api_config = 0;
348
349static int pim_assert_enabled;
350static struct timeval pim_assert_interval = { 3, 0 };	/* Rate limit */
351
352/*
353 * Find a route for a given origin IP address and multicast group address.
354 * Statistics must be updated by the caller.
355 */
356static __inline struct mfc *
357mfc_find(struct in_addr *o, struct in_addr *g)
358{
359	struct mfc *rt;
360
361	MFC_LOCK_ASSERT();
362
363	LIST_FOREACH(rt, &mfchashtbl[MFCHASH(*o, *g)], mfc_hash) {
364		if (in_hosteq(rt->mfc_origin, *o) &&
365		    in_hosteq(rt->mfc_mcastgrp, *g) &&
366		    TAILQ_EMPTY(&rt->mfc_stall))
367			break;
368	}
369
370	return (rt);
371}
372
373/*
374 * Handle MRT setsockopt commands to modify the multicast forwarding tables.
375 */
376static int
377X_ip_mrouter_set(struct socket *so, struct sockopt *sopt)
378{
379    int	error, optval;
380    vifi_t	vifi;
381    struct	vifctl vifc;
382    struct	mfcctl2 mfc;
383    struct	bw_upcall bw_upcall;
384    uint32_t	i;
385
386    if (so != V_ip_mrouter && sopt->sopt_name != MRT_INIT)
387	return EPERM;
388
389    error = 0;
390    switch (sopt->sopt_name) {
391    case MRT_INIT:
392	error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval);
393	if (error)
394	    break;
395	error = ip_mrouter_init(so, optval);
396	break;
397
398    case MRT_DONE:
399	error = ip_mrouter_done();
400	break;
401
402    case MRT_ADD_VIF:
403	error = sooptcopyin(sopt, &vifc, sizeof vifc, sizeof vifc);
404	if (error)
405	    break;
406	error = add_vif(&vifc);
407	break;
408
409    case MRT_DEL_VIF:
410	error = sooptcopyin(sopt, &vifi, sizeof vifi, sizeof vifi);
411	if (error)
412	    break;
413	error = del_vif(vifi);
414	break;
415
416    case MRT_ADD_MFC:
417    case MRT_DEL_MFC:
418	/*
419	 * select data size depending on API version.
420	 */
421	if (sopt->sopt_name == MRT_ADD_MFC &&
422		mrt_api_config & MRT_API_FLAGS_ALL) {
423	    error = sooptcopyin(sopt, &mfc, sizeof(struct mfcctl2),
424				sizeof(struct mfcctl2));
425	} else {
426	    error = sooptcopyin(sopt, &mfc, sizeof(struct mfcctl),
427				sizeof(struct mfcctl));
428	    bzero((caddr_t)&mfc + sizeof(struct mfcctl),
429			sizeof(mfc) - sizeof(struct mfcctl));
430	}
431	if (error)
432	    break;
433	if (sopt->sopt_name == MRT_ADD_MFC)
434	    error = add_mfc(&mfc);
435	else
436	    error = del_mfc(&mfc);
437	break;
438
439    case MRT_ASSERT:
440	error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval);
441	if (error)
442	    break;
443	set_assert(optval);
444	break;
445
446    case MRT_API_CONFIG:
447	error = sooptcopyin(sopt, &i, sizeof i, sizeof i);
448	if (!error)
449	    error = set_api_config(&i);
450	if (!error)
451	    error = sooptcopyout(sopt, &i, sizeof i);
452	break;
453
454    case MRT_ADD_BW_UPCALL:
455    case MRT_DEL_BW_UPCALL:
456	error = sooptcopyin(sopt, &bw_upcall, sizeof bw_upcall,
457				sizeof bw_upcall);
458	if (error)
459	    break;
460	if (sopt->sopt_name == MRT_ADD_BW_UPCALL)
461	    error = add_bw_upcall(&bw_upcall);
462	else
463	    error = del_bw_upcall(&bw_upcall);
464	break;
465
466    default:
467	error = EOPNOTSUPP;
468	break;
469    }
470    return error;
471}
472
473/*
474 * Handle MRT getsockopt commands
475 */
476static int
477X_ip_mrouter_get(struct socket *so, struct sockopt *sopt)
478{
479    int error;
480
481    switch (sopt->sopt_name) {
482    case MRT_VERSION:
483	error = sooptcopyout(sopt, &mrt_api_version, sizeof mrt_api_version);
484	break;
485
486    case MRT_ASSERT:
487	error = sooptcopyout(sopt, &pim_assert_enabled,
488	    sizeof pim_assert_enabled);
489	break;
490
491    case MRT_API_SUPPORT:
492	error = sooptcopyout(sopt, &mrt_api_support, sizeof mrt_api_support);
493	break;
494
495    case MRT_API_CONFIG:
496	error = sooptcopyout(sopt, &mrt_api_config, sizeof mrt_api_config);
497	break;
498
499    default:
500	error = EOPNOTSUPP;
501	break;
502    }
503    return error;
504}
505
506/*
507 * Handle ioctl commands to obtain information from the cache
508 */
509static int
510X_mrt_ioctl(u_long cmd, caddr_t data, int fibnum __unused)
511{
512    int error = 0;
513
514    /*
515     * Currently the only function calling this ioctl routine is rtioctl().
516     * Typically, only root can create the raw socket in order to execute
517     * this ioctl method, however the request might be coming from a prison
518     */
519    error = priv_check(curthread, PRIV_NETINET_MROUTE);
520    if (error)
521	return (error);
522    switch (cmd) {
523    case (SIOCGETVIFCNT):
524	error = get_vif_cnt((struct sioc_vif_req *)data);
525	break;
526
527    case (SIOCGETSGCNT):
528	error = get_sg_cnt((struct sioc_sg_req *)data);
529	break;
530
531    default:
532	error = EINVAL;
533	break;
534    }
535    return error;
536}
537
538/*
539 * returns the packet, byte, rpf-failure count for the source group provided
540 */
541static int
542get_sg_cnt(struct sioc_sg_req *req)
543{
544    struct mfc *rt;
545
546    MFC_LOCK();
547    rt = mfc_find(&req->src, &req->grp);
548    if (rt == NULL) {
549	MFC_UNLOCK();
550	req->pktcnt = req->bytecnt = req->wrong_if = 0xffffffff;
551	return EADDRNOTAVAIL;
552    }
553    req->pktcnt = rt->mfc_pkt_cnt;
554    req->bytecnt = rt->mfc_byte_cnt;
555    req->wrong_if = rt->mfc_wrong_if;
556    MFC_UNLOCK();
557    return 0;
558}
559
560/*
561 * returns the input and output packet and byte counts on the vif provided
562 */
563static int
564get_vif_cnt(struct sioc_vif_req *req)
565{
566    vifi_t vifi = req->vifi;
567
568    VIF_LOCK();
569    if (vifi >= numvifs) {
570	VIF_UNLOCK();
571	return EINVAL;
572    }
573
574    req->icount = viftable[vifi].v_pkt_in;
575    req->ocount = viftable[vifi].v_pkt_out;
576    req->ibytes = viftable[vifi].v_bytes_in;
577    req->obytes = viftable[vifi].v_bytes_out;
578    VIF_UNLOCK();
579
580    return 0;
581}
582
583static void
584ip_mrouter_reset(void)
585{
586
587    pim_assert_enabled = 0;
588    mrt_api_config = 0;
589
590    callout_init(&expire_upcalls_ch, CALLOUT_MPSAFE);
591
592    bw_upcalls_n = 0;
593    bzero((caddr_t)bw_meter_timers, sizeof(bw_meter_timers));
594    callout_init(&bw_upcalls_ch, CALLOUT_MPSAFE);
595    callout_init(&bw_meter_ch, CALLOUT_MPSAFE);
596}
597
598static void
599if_detached_event(void *arg __unused, struct ifnet *ifp)
600{
601    vifi_t vifi;
602    int i;
603
604    MROUTER_LOCK();
605
606    if (V_ip_mrouter == NULL) {
607	MROUTER_UNLOCK();
608	return;
609    }
610
611    VIF_LOCK();
612    MFC_LOCK();
613
614    /*
615     * Tear down multicast forwarder state associated with this ifnet.
616     * 1. Walk the vif list, matching vifs against this ifnet.
617     * 2. Walk the multicast forwarding cache (mfc) looking for
618     *    inner matches with this vif's index.
619     * 3. Expire any matching multicast forwarding cache entries.
620     * 4. Free vif state. This should disable ALLMULTI on the interface.
621     */
622    for (vifi = 0; vifi < numvifs; vifi++) {
623	if (viftable[vifi].v_ifp != ifp)
624		continue;
625	for (i = 0; i < mfchashsize; i++) {
626		struct mfc *rt, *nrt;
627		for (rt = LIST_FIRST(&mfchashtbl[i]); rt; rt = nrt) {
628			nrt = LIST_NEXT(rt, mfc_hash);
629			if (rt->mfc_parent == vifi) {
630				expire_mfc(rt);
631			}
632		}
633	}
634	del_vif_locked(vifi);
635    }
636
637    MFC_UNLOCK();
638    VIF_UNLOCK();
639
640    MROUTER_UNLOCK();
641}
642
643/*
644 * Enable multicast forwarding.
645 */
646static int
647ip_mrouter_init(struct socket *so, int version)
648{
649
650    CTR3(KTR_IPMF, "%s: so_type %d, pr_protocol %d", __func__,
651        so->so_type, so->so_proto->pr_protocol);
652
653    if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_IGMP)
654	return EOPNOTSUPP;
655
656    if (version != 1)
657	return ENOPROTOOPT;
658
659    MROUTER_LOCK();
660
661    if (V_ip_mrouter != NULL) {
662	MROUTER_UNLOCK();
663	return EADDRINUSE;
664    }
665
666    if_detach_event_tag = EVENTHANDLER_REGISTER(ifnet_departure_event,
667        if_detached_event, NULL, EVENTHANDLER_PRI_ANY);
668    if (if_detach_event_tag == NULL) {
669	MROUTER_UNLOCK();
670	return (ENOMEM);
671    }
672
673    mfchashtbl = hashinit_flags(mfchashsize, M_MRTABLE, &mfchash, HASH_NOWAIT);
674
675    callout_reset(&expire_upcalls_ch, EXPIRE_TIMEOUT, expire_upcalls, NULL);
676
677    callout_reset(&bw_upcalls_ch, BW_UPCALLS_PERIOD,
678	expire_bw_upcalls_send, NULL);
679    callout_reset(&bw_meter_ch, BW_METER_PERIOD, expire_bw_meter_process, NULL);
680
681    V_ip_mrouter = so;
682
683    MROUTER_UNLOCK();
684
685    CTR1(KTR_IPMF, "%s: done", __func__);
686
687    return 0;
688}
689
690/*
691 * Disable multicast forwarding.
692 */
693static int
694X_ip_mrouter_done(void)
695{
696    vifi_t vifi;
697    int i;
698    struct ifnet *ifp;
699    struct ifreq ifr;
700
701    MROUTER_LOCK();
702
703    if (V_ip_mrouter == NULL) {
704	MROUTER_UNLOCK();
705	return EINVAL;
706    }
707
708    /*
709     * Detach/disable hooks to the reset of the system.
710     */
711    V_ip_mrouter = NULL;
712    mrt_api_config = 0;
713
714    VIF_LOCK();
715
716    /*
717     * For each phyint in use, disable promiscuous reception of all IP
718     * multicasts.
719     */
720    for (vifi = 0; vifi < numvifs; vifi++) {
721	if (!in_nullhost(viftable[vifi].v_lcl_addr) &&
722		!(viftable[vifi].v_flags & (VIFF_TUNNEL | VIFF_REGISTER))) {
723	    struct sockaddr_in *so = (struct sockaddr_in *)&(ifr.ifr_addr);
724
725	    so->sin_len = sizeof(struct sockaddr_in);
726	    so->sin_family = AF_INET;
727	    so->sin_addr.s_addr = INADDR_ANY;
728	    ifp = viftable[vifi].v_ifp;
729	    if_allmulti(ifp, 0);
730	}
731    }
732    bzero((caddr_t)viftable, sizeof(viftable));
733    numvifs = 0;
734    pim_assert_enabled = 0;
735
736    VIF_UNLOCK();
737
738    EVENTHANDLER_DEREGISTER(ifnet_departure_event, if_detach_event_tag);
739
740    callout_stop(&expire_upcalls_ch);
741    callout_stop(&bw_upcalls_ch);
742    callout_stop(&bw_meter_ch);
743
744    MFC_LOCK();
745
746    /*
747     * Free all multicast forwarding cache entries.
748     * Do not use hashdestroy(), as we must perform other cleanup.
749     */
750    for (i = 0; i < mfchashsize; i++) {
751	struct mfc *rt, *nrt;
752	for (rt = LIST_FIRST(&mfchashtbl[i]); rt; rt = nrt) {
753		nrt = LIST_NEXT(rt, mfc_hash);
754		expire_mfc(rt);
755	}
756    }
757    free(mfchashtbl, M_MRTABLE);
758    mfchashtbl = NULL;
759
760    bzero(nexpire, sizeof(nexpire[0]) * mfchashsize);
761
762    bw_upcalls_n = 0;
763    bzero(bw_meter_timers, sizeof(bw_meter_timers));
764
765    MFC_UNLOCK();
766
767    reg_vif_num = VIFI_INVALID;
768
769    MROUTER_UNLOCK();
770
771    CTR1(KTR_IPMF, "%s: done", __func__);
772
773    return 0;
774}
775
776/*
777 * Set PIM assert processing global
778 */
779static int
780set_assert(int i)
781{
782    if ((i != 1) && (i != 0))
783	return EINVAL;
784
785    pim_assert_enabled = i;
786
787    return 0;
788}
789
790/*
791 * Configure API capabilities
792 */
793int
794set_api_config(uint32_t *apival)
795{
796    int i;
797
798    /*
799     * We can set the API capabilities only if it is the first operation
800     * after MRT_INIT. I.e.:
801     *  - there are no vifs installed
802     *  - pim_assert is not enabled
803     *  - the MFC table is empty
804     */
805    if (numvifs > 0) {
806	*apival = 0;
807	return EPERM;
808    }
809    if (pim_assert_enabled) {
810	*apival = 0;
811	return EPERM;
812    }
813
814    MFC_LOCK();
815
816    for (i = 0; i < mfchashsize; i++) {
817	if (LIST_FIRST(&mfchashtbl[i]) != NULL) {
818	    *apival = 0;
819	    return EPERM;
820	}
821    }
822
823    MFC_UNLOCK();
824
825    mrt_api_config = *apival & mrt_api_support;
826    *apival = mrt_api_config;
827
828    return 0;
829}
830
831/*
832 * Add a vif to the vif table
833 */
834static int
835add_vif(struct vifctl *vifcp)
836{
837    struct vif *vifp = viftable + vifcp->vifc_vifi;
838    struct sockaddr_in sin = {sizeof sin, AF_INET};
839    struct ifaddr *ifa;
840    struct ifnet *ifp;
841    int error;
842
843    VIF_LOCK();
844    if (vifcp->vifc_vifi >= MAXVIFS) {
845	VIF_UNLOCK();
846	return EINVAL;
847    }
848    /* rate limiting is no longer supported by this code */
849    if (vifcp->vifc_rate_limit != 0) {
850	log(LOG_ERR, "rate limiting is no longer supported\n");
851	VIF_UNLOCK();
852	return EINVAL;
853    }
854    if (!in_nullhost(vifp->v_lcl_addr)) {
855	VIF_UNLOCK();
856	return EADDRINUSE;
857    }
858    if (in_nullhost(vifcp->vifc_lcl_addr)) {
859	VIF_UNLOCK();
860	return EADDRNOTAVAIL;
861    }
862
863    /* Find the interface with an address in AF_INET family */
864    if (vifcp->vifc_flags & VIFF_REGISTER) {
865	/*
866	 * XXX: Because VIFF_REGISTER does not really need a valid
867	 * local interface (e.g. it could be 127.0.0.2), we don't
868	 * check its address.
869	 */
870	ifp = NULL;
871    } else {
872	sin.sin_addr = vifcp->vifc_lcl_addr;
873	ifa = ifa_ifwithaddr((struct sockaddr *)&sin);
874	if (ifa == NULL) {
875	    VIF_UNLOCK();
876	    return EADDRNOTAVAIL;
877	}
878	ifp = ifa->ifa_ifp;
879	ifa_free(ifa);
880    }
881
882    if ((vifcp->vifc_flags & VIFF_TUNNEL) != 0) {
883	CTR1(KTR_IPMF, "%s: tunnels are no longer supported", __func__);
884	VIF_UNLOCK();
885	return EOPNOTSUPP;
886    } else if (vifcp->vifc_flags & VIFF_REGISTER) {
887	ifp = &multicast_register_if;
888	CTR2(KTR_IPMF, "%s: add register vif for ifp %p", __func__, ifp);
889	if (reg_vif_num == VIFI_INVALID) {
890	    if_initname(&multicast_register_if, "register_vif", 0);
891	    multicast_register_if.if_flags = IFF_LOOPBACK;
892	    reg_vif_num = vifcp->vifc_vifi;
893	}
894    } else {		/* Make sure the interface supports multicast */
895	if ((ifp->if_flags & IFF_MULTICAST) == 0) {
896	    VIF_UNLOCK();
897	    return EOPNOTSUPP;
898	}
899
900	/* Enable promiscuous reception of all IP multicasts from the if */
901	error = if_allmulti(ifp, 1);
902	if (error) {
903	    VIF_UNLOCK();
904	    return error;
905	}
906    }
907
908    vifp->v_flags     = vifcp->vifc_flags;
909    vifp->v_threshold = vifcp->vifc_threshold;
910    vifp->v_lcl_addr  = vifcp->vifc_lcl_addr;
911    vifp->v_rmt_addr  = vifcp->vifc_rmt_addr;
912    vifp->v_ifp       = ifp;
913    /* initialize per vif pkt counters */
914    vifp->v_pkt_in    = 0;
915    vifp->v_pkt_out   = 0;
916    vifp->v_bytes_in  = 0;
917    vifp->v_bytes_out = 0;
918    bzero(&vifp->v_route, sizeof(vifp->v_route));
919
920    /* Adjust numvifs up if the vifi is higher than numvifs */
921    if (numvifs <= vifcp->vifc_vifi)
922	numvifs = vifcp->vifc_vifi + 1;
923
924    VIF_UNLOCK();
925
926    CTR4(KTR_IPMF, "%s: add vif %d laddr %s thresh %x", __func__,
927	(int)vifcp->vifc_vifi, inet_ntoa(vifcp->vifc_lcl_addr),
928	(int)vifcp->vifc_threshold);
929
930    return 0;
931}
932
933/*
934 * Delete a vif from the vif table
935 */
936static int
937del_vif_locked(vifi_t vifi)
938{
939    struct vif *vifp;
940
941    VIF_LOCK_ASSERT();
942
943    if (vifi >= numvifs) {
944	return EINVAL;
945    }
946    vifp = &viftable[vifi];
947    if (in_nullhost(vifp->v_lcl_addr)) {
948	return EADDRNOTAVAIL;
949    }
950
951    if (!(vifp->v_flags & (VIFF_TUNNEL | VIFF_REGISTER)))
952	if_allmulti(vifp->v_ifp, 0);
953
954    if (vifp->v_flags & VIFF_REGISTER)
955	reg_vif_num = VIFI_INVALID;
956
957    bzero((caddr_t)vifp, sizeof (*vifp));
958
959    CTR2(KTR_IPMF, "%s: delete vif %d", __func__, (int)vifi);
960
961    /* Adjust numvifs down */
962    for (vifi = numvifs; vifi > 0; vifi--)
963	if (!in_nullhost(viftable[vifi-1].v_lcl_addr))
964	    break;
965    numvifs = vifi;
966
967    return 0;
968}
969
970static int
971del_vif(vifi_t vifi)
972{
973    int cc;
974
975    VIF_LOCK();
976    cc = del_vif_locked(vifi);
977    VIF_UNLOCK();
978
979    return cc;
980}
981
982/*
983 * update an mfc entry without resetting counters and S,G addresses.
984 */
985static void
986update_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp)
987{
988    int i;
989
990    rt->mfc_parent = mfccp->mfcc_parent;
991    for (i = 0; i < numvifs; i++) {
992	rt->mfc_ttls[i] = mfccp->mfcc_ttls[i];
993	rt->mfc_flags[i] = mfccp->mfcc_flags[i] & mrt_api_config &
994	    MRT_MFC_FLAGS_ALL;
995    }
996    /* set the RP address */
997    if (mrt_api_config & MRT_MFC_RP)
998	rt->mfc_rp = mfccp->mfcc_rp;
999    else
1000	rt->mfc_rp.s_addr = INADDR_ANY;
1001}
1002
1003/*
1004 * fully initialize an mfc entry from the parameter.
1005 */
1006static void
1007init_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp)
1008{
1009    rt->mfc_origin     = mfccp->mfcc_origin;
1010    rt->mfc_mcastgrp   = mfccp->mfcc_mcastgrp;
1011
1012    update_mfc_params(rt, mfccp);
1013
1014    /* initialize pkt counters per src-grp */
1015    rt->mfc_pkt_cnt    = 0;
1016    rt->mfc_byte_cnt   = 0;
1017    rt->mfc_wrong_if   = 0;
1018    timevalclear(&rt->mfc_last_assert);
1019}
1020
1021static void
1022expire_mfc(struct mfc *rt)
1023{
1024	struct rtdetq *rte, *nrte;
1025
1026	MFC_LOCK_ASSERT();
1027
1028	free_bw_list(rt->mfc_bw_meter);
1029
1030	TAILQ_FOREACH_SAFE(rte, &rt->mfc_stall, rte_link, nrte) {
1031		m_freem(rte->m);
1032		TAILQ_REMOVE(&rt->mfc_stall, rte, rte_link);
1033		free(rte, M_MRTABLE);
1034	}
1035
1036	LIST_REMOVE(rt, mfc_hash);
1037	free(rt, M_MRTABLE);
1038}
1039
1040/*
1041 * Add an mfc entry
1042 */
1043static int
1044add_mfc(struct mfcctl2 *mfccp)
1045{
1046    struct mfc *rt;
1047    struct rtdetq *rte, *nrte;
1048    u_long hash = 0;
1049    u_short nstl;
1050
1051    VIF_LOCK();
1052    MFC_LOCK();
1053
1054    rt = mfc_find(&mfccp->mfcc_origin, &mfccp->mfcc_mcastgrp);
1055
1056    /* If an entry already exists, just update the fields */
1057    if (rt) {
1058	CTR4(KTR_IPMF, "%s: update mfc orig %s group %lx parent %x",
1059	    __func__, inet_ntoa(mfccp->mfcc_origin),
1060	    (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr),
1061	    mfccp->mfcc_parent);
1062	update_mfc_params(rt, mfccp);
1063	MFC_UNLOCK();
1064	VIF_UNLOCK();
1065	return (0);
1066    }
1067
1068    /*
1069     * Find the entry for which the upcall was made and update
1070     */
1071    nstl = 0;
1072    hash = MFCHASH(mfccp->mfcc_origin, mfccp->mfcc_mcastgrp);
1073    LIST_FOREACH(rt, &mfchashtbl[hash], mfc_hash) {
1074	if (in_hosteq(rt->mfc_origin, mfccp->mfcc_origin) &&
1075	    in_hosteq(rt->mfc_mcastgrp, mfccp->mfcc_mcastgrp) &&
1076	    !TAILQ_EMPTY(&rt->mfc_stall)) {
1077		CTR5(KTR_IPMF,
1078		    "%s: add mfc orig %s group %lx parent %x qh %p",
1079		    __func__, inet_ntoa(mfccp->mfcc_origin),
1080		    (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr),
1081		    mfccp->mfcc_parent,
1082		    TAILQ_FIRST(&rt->mfc_stall));
1083		if (nstl++)
1084			CTR1(KTR_IPMF, "%s: multiple matches", __func__);
1085
1086		init_mfc_params(rt, mfccp);
1087		rt->mfc_expire = 0;	/* Don't clean this guy up */
1088		nexpire[hash]--;
1089
1090		/* Free queued packets, but attempt to forward them first. */
1091		TAILQ_FOREACH_SAFE(rte, &rt->mfc_stall, rte_link, nrte) {
1092			if (rte->ifp != NULL)
1093				ip_mdq(rte->m, rte->ifp, rt, -1);
1094			m_freem(rte->m);
1095			TAILQ_REMOVE(&rt->mfc_stall, rte, rte_link);
1096			rt->mfc_nstall--;
1097			free(rte, M_MRTABLE);
1098		}
1099	}
1100    }
1101
1102    /*
1103     * It is possible that an entry is being inserted without an upcall
1104     */
1105    if (nstl == 0) {
1106	CTR1(KTR_IPMF, "%s: adding mfc w/o upcall", __func__);
1107	LIST_FOREACH(rt, &mfchashtbl[hash], mfc_hash) {
1108		if (in_hosteq(rt->mfc_origin, mfccp->mfcc_origin) &&
1109		    in_hosteq(rt->mfc_mcastgrp, mfccp->mfcc_mcastgrp)) {
1110			init_mfc_params(rt, mfccp);
1111			if (rt->mfc_expire)
1112			    nexpire[hash]--;
1113			rt->mfc_expire = 0;
1114			break; /* XXX */
1115		}
1116	}
1117
1118	if (rt == NULL) {		/* no upcall, so make a new entry */
1119	    rt = (struct mfc *)malloc(sizeof(*rt), M_MRTABLE, M_NOWAIT);
1120	    if (rt == NULL) {
1121		MFC_UNLOCK();
1122		VIF_UNLOCK();
1123		return (ENOBUFS);
1124	    }
1125
1126	    init_mfc_params(rt, mfccp);
1127	    TAILQ_INIT(&rt->mfc_stall);
1128	    rt->mfc_nstall = 0;
1129
1130	    rt->mfc_expire     = 0;
1131	    rt->mfc_bw_meter = NULL;
1132
1133	    /* insert new entry at head of hash chain */
1134	    LIST_INSERT_HEAD(&mfchashtbl[hash], rt, mfc_hash);
1135	}
1136    }
1137
1138    MFC_UNLOCK();
1139    VIF_UNLOCK();
1140
1141    return (0);
1142}
1143
1144/*
1145 * Delete an mfc entry
1146 */
1147static int
1148del_mfc(struct mfcctl2 *mfccp)
1149{
1150    struct in_addr	origin;
1151    struct in_addr	mcastgrp;
1152    struct mfc		*rt;
1153
1154    origin = mfccp->mfcc_origin;
1155    mcastgrp = mfccp->mfcc_mcastgrp;
1156
1157    CTR3(KTR_IPMF, "%s: delete mfc orig %s group %lx", __func__,
1158	inet_ntoa(origin), (u_long)ntohl(mcastgrp.s_addr));
1159
1160    MFC_LOCK();
1161
1162    rt = mfc_find(&origin, &mcastgrp);
1163    if (rt == NULL) {
1164	MFC_UNLOCK();
1165	return EADDRNOTAVAIL;
1166    }
1167
1168    /*
1169     * free the bw_meter entries
1170     */
1171    free_bw_list(rt->mfc_bw_meter);
1172    rt->mfc_bw_meter = NULL;
1173
1174    LIST_REMOVE(rt, mfc_hash);
1175    free(rt, M_MRTABLE);
1176
1177    MFC_UNLOCK();
1178
1179    return (0);
1180}
1181
1182/*
1183 * Send a message to the routing daemon on the multicast routing socket.
1184 */
1185static int
1186socket_send(struct socket *s, struct mbuf *mm, struct sockaddr_in *src)
1187{
1188    if (s) {
1189	SOCKBUF_LOCK(&s->so_rcv);
1190	if (sbappendaddr_locked(&s->so_rcv, (struct sockaddr *)src, mm,
1191	    NULL) != 0) {
1192	    sorwakeup_locked(s);
1193	    return 0;
1194	}
1195	SOCKBUF_UNLOCK(&s->so_rcv);
1196    }
1197    m_freem(mm);
1198    return -1;
1199}
1200
1201/*
1202 * IP multicast forwarding function. This function assumes that the packet
1203 * pointed to by "ip" has arrived on (or is about to be sent to) the interface
1204 * pointed to by "ifp", and the packet is to be relayed to other networks
1205 * that have members of the packet's destination IP multicast group.
1206 *
1207 * The packet is returned unscathed to the caller, unless it is
1208 * erroneous, in which case a non-zero return value tells the caller to
1209 * discard it.
1210 */
1211
1212#define TUNNEL_LEN  12  /* # bytes of IP option for tunnel encapsulation  */
1213
1214static int
1215X_ip_mforward(struct ip *ip, struct ifnet *ifp, struct mbuf *m,
1216    struct ip_moptions *imo)
1217{
1218    struct mfc *rt;
1219    int error;
1220    vifi_t vifi;
1221
1222    CTR3(KTR_IPMF, "ip_mforward: delete mfc orig %s group %lx ifp %p",
1223	inet_ntoa(ip->ip_src), (u_long)ntohl(ip->ip_dst.s_addr), ifp);
1224
1225    if (ip->ip_hl < (sizeof(struct ip) + TUNNEL_LEN) >> 2 ||
1226		((u_char *)(ip + 1))[1] != IPOPT_LSRR ) {
1227	/*
1228	 * Packet arrived via a physical interface or
1229	 * an encapsulated tunnel or a register_vif.
1230	 */
1231    } else {
1232	/*
1233	 * Packet arrived through a source-route tunnel.
1234	 * Source-route tunnels are no longer supported.
1235	 */
1236	return (1);
1237    }
1238
1239    VIF_LOCK();
1240    MFC_LOCK();
1241    if (imo && ((vifi = imo->imo_multicast_vif) < numvifs)) {
1242	if (ip->ip_ttl < MAXTTL)
1243	    ip->ip_ttl++;	/* compensate for -1 in *_send routines */
1244	error = ip_mdq(m, ifp, NULL, vifi);
1245	MFC_UNLOCK();
1246	VIF_UNLOCK();
1247	return error;
1248    }
1249
1250    /*
1251     * Don't forward a packet with time-to-live of zero or one,
1252     * or a packet destined to a local-only group.
1253     */
1254    if (ip->ip_ttl <= 1 || IN_LOCAL_GROUP(ntohl(ip->ip_dst.s_addr))) {
1255	MFC_UNLOCK();
1256	VIF_UNLOCK();
1257	return 0;
1258    }
1259
1260    /*
1261     * Determine forwarding vifs from the forwarding cache table
1262     */
1263    MRTSTAT_INC(mrts_mfc_lookups);
1264    rt = mfc_find(&ip->ip_src, &ip->ip_dst);
1265
1266    /* Entry exists, so forward if necessary */
1267    if (rt != NULL) {
1268	error = ip_mdq(m, ifp, rt, -1);
1269	MFC_UNLOCK();
1270	VIF_UNLOCK();
1271	return error;
1272    } else {
1273	/*
1274	 * If we don't have a route for packet's origin,
1275	 * Make a copy of the packet & send message to routing daemon
1276	 */
1277
1278	struct mbuf *mb0;
1279	struct rtdetq *rte;
1280	u_long hash;
1281	int hlen = ip->ip_hl << 2;
1282
1283	MRTSTAT_INC(mrts_mfc_misses);
1284	MRTSTAT_INC(mrts_no_route);
1285	CTR2(KTR_IPMF, "ip_mforward: no mfc for (%s,%lx)",
1286	    inet_ntoa(ip->ip_src), (u_long)ntohl(ip->ip_dst.s_addr));
1287
1288	/*
1289	 * Allocate mbufs early so that we don't do extra work if we are
1290	 * just going to fail anyway.  Make sure to pullup the header so
1291	 * that other people can't step on it.
1292	 */
1293	rte = (struct rtdetq *)malloc((sizeof *rte), M_MRTABLE,
1294	    M_NOWAIT|M_ZERO);
1295	if (rte == NULL) {
1296	    MFC_UNLOCK();
1297	    VIF_UNLOCK();
1298	    return ENOBUFS;
1299	}
1300
1301	mb0 = m_copypacket(m, M_DONTWAIT);
1302	if (mb0 && (M_HASCL(mb0) || mb0->m_len < hlen))
1303	    mb0 = m_pullup(mb0, hlen);
1304	if (mb0 == NULL) {
1305	    free(rte, M_MRTABLE);
1306	    MFC_UNLOCK();
1307	    VIF_UNLOCK();
1308	    return ENOBUFS;
1309	}
1310
1311	/* is there an upcall waiting for this flow ? */
1312	hash = MFCHASH(ip->ip_src, ip->ip_dst);
1313	LIST_FOREACH(rt, &mfchashtbl[hash], mfc_hash) {
1314		if (in_hosteq(ip->ip_src, rt->mfc_origin) &&
1315		    in_hosteq(ip->ip_dst, rt->mfc_mcastgrp) &&
1316		    !TAILQ_EMPTY(&rt->mfc_stall))
1317			break;
1318	}
1319
1320	if (rt == NULL) {
1321	    int i;
1322	    struct igmpmsg *im;
1323	    struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
1324	    struct mbuf *mm;
1325
1326	    /*
1327	     * Locate the vifi for the incoming interface for this packet.
1328	     * If none found, drop packet.
1329	     */
1330	    for (vifi = 0; vifi < numvifs &&
1331		    viftable[vifi].v_ifp != ifp; vifi++)
1332		;
1333	    if (vifi >= numvifs)	/* vif not found, drop packet */
1334		goto non_fatal;
1335
1336	    /* no upcall, so make a new entry */
1337	    rt = (struct mfc *)malloc(sizeof(*rt), M_MRTABLE, M_NOWAIT);
1338	    if (rt == NULL)
1339		goto fail;
1340
1341	    /* Make a copy of the header to send to the user level process */
1342	    mm = m_copy(mb0, 0, hlen);
1343	    if (mm == NULL)
1344		goto fail1;
1345
1346	    /*
1347	     * Send message to routing daemon to install
1348	     * a route into the kernel table
1349	     */
1350
1351	    im = mtod(mm, struct igmpmsg *);
1352	    im->im_msgtype = IGMPMSG_NOCACHE;
1353	    im->im_mbz = 0;
1354	    im->im_vif = vifi;
1355
1356	    MRTSTAT_INC(mrts_upcalls);
1357
1358	    k_igmpsrc.sin_addr = ip->ip_src;
1359	    if (socket_send(V_ip_mrouter, mm, &k_igmpsrc) < 0) {
1360		CTR0(KTR_IPMF, "ip_mforward: socket queue full");
1361		MRTSTAT_INC(mrts_upq_sockfull);
1362fail1:
1363		free(rt, M_MRTABLE);
1364fail:
1365		free(rte, M_MRTABLE);
1366		m_freem(mb0);
1367		MFC_UNLOCK();
1368		VIF_UNLOCK();
1369		return ENOBUFS;
1370	    }
1371
1372	    /* insert new entry at head of hash chain */
1373	    rt->mfc_origin.s_addr     = ip->ip_src.s_addr;
1374	    rt->mfc_mcastgrp.s_addr   = ip->ip_dst.s_addr;
1375	    rt->mfc_expire	      = UPCALL_EXPIRE;
1376	    nexpire[hash]++;
1377	    for (i = 0; i < numvifs; i++) {
1378		rt->mfc_ttls[i] = 0;
1379		rt->mfc_flags[i] = 0;
1380	    }
1381	    rt->mfc_parent = -1;
1382
1383	    /* clear the RP address */
1384	    rt->mfc_rp.s_addr = INADDR_ANY;
1385	    rt->mfc_bw_meter = NULL;
1386
1387	    /* initialize pkt counters per src-grp */
1388	    rt->mfc_pkt_cnt = 0;
1389	    rt->mfc_byte_cnt = 0;
1390	    rt->mfc_wrong_if = 0;
1391	    timevalclear(&rt->mfc_last_assert);
1392
1393	    TAILQ_INIT(&rt->mfc_stall);
1394	    rt->mfc_nstall = 0;
1395
1396	    /* link into table */
1397	    LIST_INSERT_HEAD(&mfchashtbl[hash], rt, mfc_hash);
1398	    TAILQ_INSERT_HEAD(&rt->mfc_stall, rte, rte_link);
1399	    rt->mfc_nstall++;
1400
1401	} else {
1402	    /* determine if queue has overflowed */
1403	    if (rt->mfc_nstall > MAX_UPQ) {
1404		MRTSTAT_INC(mrts_upq_ovflw);
1405non_fatal:
1406		free(rte, M_MRTABLE);
1407		m_freem(mb0);
1408		MFC_UNLOCK();
1409		VIF_UNLOCK();
1410		return (0);
1411	    }
1412	    TAILQ_INSERT_TAIL(&rt->mfc_stall, rte, rte_link);
1413	    rt->mfc_nstall++;
1414	}
1415
1416	rte->m			= mb0;
1417	rte->ifp		= ifp;
1418
1419	MFC_UNLOCK();
1420	VIF_UNLOCK();
1421
1422	return 0;
1423    }
1424}
1425
1426/*
1427 * Clean up the cache entry if upcall is not serviced
1428 */
1429static void
1430expire_upcalls(void *unused)
1431{
1432    int i;
1433
1434    MFC_LOCK();
1435
1436    for (i = 0; i < mfchashsize; i++) {
1437	struct mfc *rt, *nrt;
1438
1439	if (nexpire[i] == 0)
1440	    continue;
1441
1442	for (rt = LIST_FIRST(&mfchashtbl[i]); rt; rt = nrt) {
1443		nrt = LIST_NEXT(rt, mfc_hash);
1444
1445		if (TAILQ_EMPTY(&rt->mfc_stall))
1446			continue;
1447
1448		if (rt->mfc_expire == 0 || --rt->mfc_expire > 0)
1449			continue;
1450
1451		/*
1452		 * free the bw_meter entries
1453		 */
1454		while (rt->mfc_bw_meter != NULL) {
1455		    struct bw_meter *x = rt->mfc_bw_meter;
1456
1457		    rt->mfc_bw_meter = x->bm_mfc_next;
1458		    free(x, M_BWMETER);
1459		}
1460
1461		MRTSTAT_INC(mrts_cache_cleanups);
1462		CTR3(KTR_IPMF, "%s: expire (%lx, %lx)", __func__,
1463		    (u_long)ntohl(rt->mfc_origin.s_addr),
1464		    (u_long)ntohl(rt->mfc_mcastgrp.s_addr));
1465
1466		expire_mfc(rt);
1467	    }
1468    }
1469
1470    MFC_UNLOCK();
1471
1472    callout_reset(&expire_upcalls_ch, EXPIRE_TIMEOUT, expire_upcalls, NULL);
1473}
1474
1475/*
1476 * Packet forwarding routine once entry in the cache is made
1477 */
1478static int
1479ip_mdq(struct mbuf *m, struct ifnet *ifp, struct mfc *rt, vifi_t xmt_vif)
1480{
1481    struct ip  *ip = mtod(m, struct ip *);
1482    vifi_t vifi;
1483    int plen = ip->ip_len;
1484
1485    VIF_LOCK_ASSERT();
1486
1487    /*
1488     * If xmt_vif is not -1, send on only the requested vif.
1489     *
1490     * (since vifi_t is u_short, -1 becomes MAXUSHORT, which > numvifs.)
1491     */
1492    if (xmt_vif < numvifs) {
1493	if (viftable[xmt_vif].v_flags & VIFF_REGISTER)
1494		pim_register_send(ip, viftable + xmt_vif, m, rt);
1495	else
1496		phyint_send(ip, viftable + xmt_vif, m);
1497	return 1;
1498    }
1499
1500    /*
1501     * Don't forward if it didn't arrive from the parent vif for its origin.
1502     */
1503    vifi = rt->mfc_parent;
1504    if ((vifi >= numvifs) || (viftable[vifi].v_ifp != ifp)) {
1505	CTR4(KTR_IPMF, "%s: rx on wrong ifp %p (vifi %d, v_ifp %p)",
1506	    __func__, ifp, (int)vifi, viftable[vifi].v_ifp);
1507	MRTSTAT_INC(mrts_wrong_if);
1508	++rt->mfc_wrong_if;
1509	/*
1510	 * If we are doing PIM assert processing, send a message
1511	 * to the routing daemon.
1512	 *
1513	 * XXX: A PIM-SM router needs the WRONGVIF detection so it
1514	 * can complete the SPT switch, regardless of the type
1515	 * of the iif (broadcast media, GRE tunnel, etc).
1516	 */
1517	if (pim_assert_enabled && (vifi < numvifs) && viftable[vifi].v_ifp) {
1518
1519	    if (ifp == &multicast_register_if)
1520		PIMSTAT_INC(pims_rcv_registers_wrongiif);
1521
1522	    /* Get vifi for the incoming packet */
1523	    for (vifi=0; vifi < numvifs && viftable[vifi].v_ifp != ifp; vifi++)
1524		;
1525	    if (vifi >= numvifs)
1526		return 0;	/* The iif is not found: ignore the packet. */
1527
1528	    if (rt->mfc_flags[vifi] & MRT_MFC_FLAGS_DISABLE_WRONGVIF)
1529		return 0;	/* WRONGVIF disabled: ignore the packet */
1530
1531	    if (ratecheck(&rt->mfc_last_assert, &pim_assert_interval)) {
1532		struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
1533		struct igmpmsg *im;
1534		int hlen = ip->ip_hl << 2;
1535		struct mbuf *mm = m_copy(m, 0, hlen);
1536
1537		if (mm && (M_HASCL(mm) || mm->m_len < hlen))
1538		    mm = m_pullup(mm, hlen);
1539		if (mm == NULL)
1540		    return ENOBUFS;
1541
1542		im = mtod(mm, struct igmpmsg *);
1543		im->im_msgtype	= IGMPMSG_WRONGVIF;
1544		im->im_mbz		= 0;
1545		im->im_vif		= vifi;
1546
1547		MRTSTAT_INC(mrts_upcalls);
1548
1549		k_igmpsrc.sin_addr = im->im_src;
1550		if (socket_send(V_ip_mrouter, mm, &k_igmpsrc) < 0) {
1551		    CTR1(KTR_IPMF, "%s: socket queue full", __func__);
1552		    MRTSTAT_INC(mrts_upq_sockfull);
1553		    return ENOBUFS;
1554		}
1555	    }
1556	}
1557	return 0;
1558    }
1559
1560
1561    /* If I sourced this packet, it counts as output, else it was input. */
1562    if (in_hosteq(ip->ip_src, viftable[vifi].v_lcl_addr)) {
1563	viftable[vifi].v_pkt_out++;
1564	viftable[vifi].v_bytes_out += plen;
1565    } else {
1566	viftable[vifi].v_pkt_in++;
1567	viftable[vifi].v_bytes_in += plen;
1568    }
1569    rt->mfc_pkt_cnt++;
1570    rt->mfc_byte_cnt += plen;
1571
1572    /*
1573     * For each vif, decide if a copy of the packet should be forwarded.
1574     * Forward if:
1575     *		- the ttl exceeds the vif's threshold
1576     *		- there are group members downstream on interface
1577     */
1578    for (vifi = 0; vifi < numvifs; vifi++)
1579	if ((rt->mfc_ttls[vifi] > 0) && (ip->ip_ttl > rt->mfc_ttls[vifi])) {
1580	    viftable[vifi].v_pkt_out++;
1581	    viftable[vifi].v_bytes_out += plen;
1582	    if (viftable[vifi].v_flags & VIFF_REGISTER)
1583		pim_register_send(ip, viftable + vifi, m, rt);
1584	    else
1585		phyint_send(ip, viftable + vifi, m);
1586	}
1587
1588    /*
1589     * Perform upcall-related bw measuring.
1590     */
1591    if (rt->mfc_bw_meter != NULL) {
1592	struct bw_meter *x;
1593	struct timeval now;
1594
1595	microtime(&now);
1596	MFC_LOCK_ASSERT();
1597	for (x = rt->mfc_bw_meter; x != NULL; x = x->bm_mfc_next)
1598	    bw_meter_receive_packet(x, plen, &now);
1599    }
1600
1601    return 0;
1602}
1603
1604/*
1605 * Check if a vif number is legal/ok. This is used by in_mcast.c.
1606 */
1607static int
1608X_legal_vif_num(int vif)
1609{
1610	int ret;
1611
1612	ret = 0;
1613	if (vif < 0)
1614		return (ret);
1615
1616	VIF_LOCK();
1617	if (vif < numvifs)
1618		ret = 1;
1619	VIF_UNLOCK();
1620
1621	return (ret);
1622}
1623
1624/*
1625 * Return the local address used by this vif
1626 */
1627static u_long
1628X_ip_mcast_src(int vifi)
1629{
1630	in_addr_t addr;
1631
1632	addr = INADDR_ANY;
1633	if (vifi < 0)
1634		return (addr);
1635
1636	VIF_LOCK();
1637	if (vifi < numvifs)
1638		addr = viftable[vifi].v_lcl_addr.s_addr;
1639	VIF_UNLOCK();
1640
1641	return (addr);
1642}
1643
1644static void
1645phyint_send(struct ip *ip, struct vif *vifp, struct mbuf *m)
1646{
1647    struct mbuf *mb_copy;
1648    int hlen = ip->ip_hl << 2;
1649
1650    VIF_LOCK_ASSERT();
1651
1652    /*
1653     * Make a new reference to the packet; make sure that
1654     * the IP header is actually copied, not just referenced,
1655     * so that ip_output() only scribbles on the copy.
1656     */
1657    mb_copy = m_copypacket(m, M_DONTWAIT);
1658    if (mb_copy && (M_HASCL(mb_copy) || mb_copy->m_len < hlen))
1659	mb_copy = m_pullup(mb_copy, hlen);
1660    if (mb_copy == NULL)
1661	return;
1662
1663    send_packet(vifp, mb_copy);
1664}
1665
1666static void
1667send_packet(struct vif *vifp, struct mbuf *m)
1668{
1669	struct ip_moptions imo;
1670	struct in_multi *imm[2];
1671	int error;
1672
1673	VIF_LOCK_ASSERT();
1674
1675	imo.imo_multicast_ifp  = vifp->v_ifp;
1676	imo.imo_multicast_ttl  = mtod(m, struct ip *)->ip_ttl - 1;
1677	imo.imo_multicast_loop = 1;
1678	imo.imo_multicast_vif  = -1;
1679	imo.imo_num_memberships = 0;
1680	imo.imo_max_memberships = 2;
1681	imo.imo_membership  = &imm[0];
1682
1683	/*
1684	 * Re-entrancy should not be a problem here, because
1685	 * the packets that we send out and are looped back at us
1686	 * should get rejected because they appear to come from
1687	 * the loopback interface, thus preventing looping.
1688	 */
1689	error = ip_output(m, NULL, &vifp->v_route, IP_FORWARDING, &imo, NULL);
1690	CTR3(KTR_IPMF, "%s: vif %td err %d", __func__,
1691	    (ptrdiff_t)(vifp - viftable), error);
1692}
1693
1694/*
1695 * Stubs for old RSVP socket shim implementation.
1696 */
1697
1698static int
1699X_ip_rsvp_vif(struct socket *so __unused, struct sockopt *sopt __unused)
1700{
1701
1702	return (EOPNOTSUPP);
1703}
1704
1705static void
1706X_ip_rsvp_force_done(struct socket *so __unused)
1707{
1708
1709}
1710
1711static void
1712X_rsvp_input(struct mbuf *m, int off __unused)
1713{
1714
1715	if (!V_rsvp_on)
1716		m_freem(m);
1717}
1718
1719/*
1720 * Code for bandwidth monitors
1721 */
1722
1723/*
1724 * Define common interface for timeval-related methods
1725 */
1726#define	BW_TIMEVALCMP(tvp, uvp, cmp) timevalcmp((tvp), (uvp), cmp)
1727#define	BW_TIMEVALDECR(vvp, uvp) timevalsub((vvp), (uvp))
1728#define	BW_TIMEVALADD(vvp, uvp) timevaladd((vvp), (uvp))
1729
1730static uint32_t
1731compute_bw_meter_flags(struct bw_upcall *req)
1732{
1733    uint32_t flags = 0;
1734
1735    if (req->bu_flags & BW_UPCALL_UNIT_PACKETS)
1736	flags |= BW_METER_UNIT_PACKETS;
1737    if (req->bu_flags & BW_UPCALL_UNIT_BYTES)
1738	flags |= BW_METER_UNIT_BYTES;
1739    if (req->bu_flags & BW_UPCALL_GEQ)
1740	flags |= BW_METER_GEQ;
1741    if (req->bu_flags & BW_UPCALL_LEQ)
1742	flags |= BW_METER_LEQ;
1743
1744    return flags;
1745}
1746
1747/*
1748 * Add a bw_meter entry
1749 */
1750static int
1751add_bw_upcall(struct bw_upcall *req)
1752{
1753    struct mfc *mfc;
1754    struct timeval delta = { BW_UPCALL_THRESHOLD_INTERVAL_MIN_SEC,
1755		BW_UPCALL_THRESHOLD_INTERVAL_MIN_USEC };
1756    struct timeval now;
1757    struct bw_meter *x;
1758    uint32_t flags;
1759
1760    if (!(mrt_api_config & MRT_MFC_BW_UPCALL))
1761	return EOPNOTSUPP;
1762
1763    /* Test if the flags are valid */
1764    if (!(req->bu_flags & (BW_UPCALL_UNIT_PACKETS | BW_UPCALL_UNIT_BYTES)))
1765	return EINVAL;
1766    if (!(req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ)))
1767	return EINVAL;
1768    if ((req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ))
1769	    == (BW_UPCALL_GEQ | BW_UPCALL_LEQ))
1770	return EINVAL;
1771
1772    /* Test if the threshold time interval is valid */
1773    if (BW_TIMEVALCMP(&req->bu_threshold.b_time, &delta, <))
1774	return EINVAL;
1775
1776    flags = compute_bw_meter_flags(req);
1777
1778    /*
1779     * Find if we have already same bw_meter entry
1780     */
1781    MFC_LOCK();
1782    mfc = mfc_find(&req->bu_src, &req->bu_dst);
1783    if (mfc == NULL) {
1784	MFC_UNLOCK();
1785	return EADDRNOTAVAIL;
1786    }
1787    for (x = mfc->mfc_bw_meter; x != NULL; x = x->bm_mfc_next) {
1788	if ((BW_TIMEVALCMP(&x->bm_threshold.b_time,
1789			   &req->bu_threshold.b_time, ==)) &&
1790	    (x->bm_threshold.b_packets == req->bu_threshold.b_packets) &&
1791	    (x->bm_threshold.b_bytes == req->bu_threshold.b_bytes) &&
1792	    (x->bm_flags & BW_METER_USER_FLAGS) == flags)  {
1793	    MFC_UNLOCK();
1794	    return 0;		/* XXX Already installed */
1795	}
1796    }
1797
1798    /* Allocate the new bw_meter entry */
1799    x = (struct bw_meter *)malloc(sizeof(*x), M_BWMETER, M_NOWAIT);
1800    if (x == NULL) {
1801	MFC_UNLOCK();
1802	return ENOBUFS;
1803    }
1804
1805    /* Set the new bw_meter entry */
1806    x->bm_threshold.b_time = req->bu_threshold.b_time;
1807    microtime(&now);
1808    x->bm_start_time = now;
1809    x->bm_threshold.b_packets = req->bu_threshold.b_packets;
1810    x->bm_threshold.b_bytes = req->bu_threshold.b_bytes;
1811    x->bm_measured.b_packets = 0;
1812    x->bm_measured.b_bytes = 0;
1813    x->bm_flags = flags;
1814    x->bm_time_next = NULL;
1815    x->bm_time_hash = BW_METER_BUCKETS;
1816
1817    /* Add the new bw_meter entry to the front of entries for this MFC */
1818    x->bm_mfc = mfc;
1819    x->bm_mfc_next = mfc->mfc_bw_meter;
1820    mfc->mfc_bw_meter = x;
1821    schedule_bw_meter(x, &now);
1822    MFC_UNLOCK();
1823
1824    return 0;
1825}
1826
1827static void
1828free_bw_list(struct bw_meter *list)
1829{
1830    while (list != NULL) {
1831	struct bw_meter *x = list;
1832
1833	list = list->bm_mfc_next;
1834	unschedule_bw_meter(x);
1835	free(x, M_BWMETER);
1836    }
1837}
1838
1839/*
1840 * Delete one or multiple bw_meter entries
1841 */
1842static int
1843del_bw_upcall(struct bw_upcall *req)
1844{
1845    struct mfc *mfc;
1846    struct bw_meter *x;
1847
1848    if (!(mrt_api_config & MRT_MFC_BW_UPCALL))
1849	return EOPNOTSUPP;
1850
1851    MFC_LOCK();
1852
1853    /* Find the corresponding MFC entry */
1854    mfc = mfc_find(&req->bu_src, &req->bu_dst);
1855    if (mfc == NULL) {
1856	MFC_UNLOCK();
1857	return EADDRNOTAVAIL;
1858    } else if (req->bu_flags & BW_UPCALL_DELETE_ALL) {
1859	/*
1860	 * Delete all bw_meter entries for this mfc
1861	 */
1862	struct bw_meter *list;
1863
1864	list = mfc->mfc_bw_meter;
1865	mfc->mfc_bw_meter = NULL;
1866	free_bw_list(list);
1867	MFC_UNLOCK();
1868	return 0;
1869    } else {			/* Delete a single bw_meter entry */
1870	struct bw_meter *prev;
1871	uint32_t flags = 0;
1872
1873	flags = compute_bw_meter_flags(req);
1874
1875	/* Find the bw_meter entry to delete */
1876	for (prev = NULL, x = mfc->mfc_bw_meter; x != NULL;
1877	     prev = x, x = x->bm_mfc_next) {
1878	    if ((BW_TIMEVALCMP(&x->bm_threshold.b_time,
1879			       &req->bu_threshold.b_time, ==)) &&
1880		(x->bm_threshold.b_packets == req->bu_threshold.b_packets) &&
1881		(x->bm_threshold.b_bytes == req->bu_threshold.b_bytes) &&
1882		(x->bm_flags & BW_METER_USER_FLAGS) == flags)
1883		break;
1884	}
1885	if (x != NULL) { /* Delete entry from the list for this MFC */
1886	    if (prev != NULL)
1887		prev->bm_mfc_next = x->bm_mfc_next;	/* remove from middle*/
1888	    else
1889		x->bm_mfc->mfc_bw_meter = x->bm_mfc_next;/* new head of list */
1890
1891	    unschedule_bw_meter(x);
1892	    MFC_UNLOCK();
1893	    /* Free the bw_meter entry */
1894	    free(x, M_BWMETER);
1895	    return 0;
1896	} else {
1897	    MFC_UNLOCK();
1898	    return EINVAL;
1899	}
1900    }
1901    /* NOTREACHED */
1902}
1903
1904/*
1905 * Perform bandwidth measurement processing that may result in an upcall
1906 */
1907static void
1908bw_meter_receive_packet(struct bw_meter *x, int plen, struct timeval *nowp)
1909{
1910    struct timeval delta;
1911
1912    MFC_LOCK_ASSERT();
1913
1914    delta = *nowp;
1915    BW_TIMEVALDECR(&delta, &x->bm_start_time);
1916
1917    if (x->bm_flags & BW_METER_GEQ) {
1918	/*
1919	 * Processing for ">=" type of bw_meter entry
1920	 */
1921	if (BW_TIMEVALCMP(&delta, &x->bm_threshold.b_time, >)) {
1922	    /* Reset the bw_meter entry */
1923	    x->bm_start_time = *nowp;
1924	    x->bm_measured.b_packets = 0;
1925	    x->bm_measured.b_bytes = 0;
1926	    x->bm_flags &= ~BW_METER_UPCALL_DELIVERED;
1927	}
1928
1929	/* Record that a packet is received */
1930	x->bm_measured.b_packets++;
1931	x->bm_measured.b_bytes += plen;
1932
1933	/*
1934	 * Test if we should deliver an upcall
1935	 */
1936	if (!(x->bm_flags & BW_METER_UPCALL_DELIVERED)) {
1937	    if (((x->bm_flags & BW_METER_UNIT_PACKETS) &&
1938		 (x->bm_measured.b_packets >= x->bm_threshold.b_packets)) ||
1939		((x->bm_flags & BW_METER_UNIT_BYTES) &&
1940		 (x->bm_measured.b_bytes >= x->bm_threshold.b_bytes))) {
1941		/* Prepare an upcall for delivery */
1942		bw_meter_prepare_upcall(x, nowp);
1943		x->bm_flags |= BW_METER_UPCALL_DELIVERED;
1944	    }
1945	}
1946    } else if (x->bm_flags & BW_METER_LEQ) {
1947	/*
1948	 * Processing for "<=" type of bw_meter entry
1949	 */
1950	if (BW_TIMEVALCMP(&delta, &x->bm_threshold.b_time, >)) {
1951	    /*
1952	     * We are behind time with the multicast forwarding table
1953	     * scanning for "<=" type of bw_meter entries, so test now
1954	     * if we should deliver an upcall.
1955	     */
1956	    if (((x->bm_flags & BW_METER_UNIT_PACKETS) &&
1957		 (x->bm_measured.b_packets <= x->bm_threshold.b_packets)) ||
1958		((x->bm_flags & BW_METER_UNIT_BYTES) &&
1959		 (x->bm_measured.b_bytes <= x->bm_threshold.b_bytes))) {
1960		/* Prepare an upcall for delivery */
1961		bw_meter_prepare_upcall(x, nowp);
1962	    }
1963	    /* Reschedule the bw_meter entry */
1964	    unschedule_bw_meter(x);
1965	    schedule_bw_meter(x, nowp);
1966	}
1967
1968	/* Record that a packet is received */
1969	x->bm_measured.b_packets++;
1970	x->bm_measured.b_bytes += plen;
1971
1972	/*
1973	 * Test if we should restart the measuring interval
1974	 */
1975	if ((x->bm_flags & BW_METER_UNIT_PACKETS &&
1976	     x->bm_measured.b_packets <= x->bm_threshold.b_packets) ||
1977	    (x->bm_flags & BW_METER_UNIT_BYTES &&
1978	     x->bm_measured.b_bytes <= x->bm_threshold.b_bytes)) {
1979	    /* Don't restart the measuring interval */
1980	} else {
1981	    /* Do restart the measuring interval */
1982	    /*
1983	     * XXX: note that we don't unschedule and schedule, because this
1984	     * might be too much overhead per packet. Instead, when we process
1985	     * all entries for a given timer hash bin, we check whether it is
1986	     * really a timeout. If not, we reschedule at that time.
1987	     */
1988	    x->bm_start_time = *nowp;
1989	    x->bm_measured.b_packets = 0;
1990	    x->bm_measured.b_bytes = 0;
1991	    x->bm_flags &= ~BW_METER_UPCALL_DELIVERED;
1992	}
1993    }
1994}
1995
1996/*
1997 * Prepare a bandwidth-related upcall
1998 */
1999static void
2000bw_meter_prepare_upcall(struct bw_meter *x, struct timeval *nowp)
2001{
2002    struct timeval delta;
2003    struct bw_upcall *u;
2004
2005    MFC_LOCK_ASSERT();
2006
2007    /*
2008     * Compute the measured time interval
2009     */
2010    delta = *nowp;
2011    BW_TIMEVALDECR(&delta, &x->bm_start_time);
2012
2013    /*
2014     * If there are too many pending upcalls, deliver them now
2015     */
2016    if (bw_upcalls_n >= BW_UPCALLS_MAX)
2017	bw_upcalls_send();
2018
2019    /*
2020     * Set the bw_upcall entry
2021     */
2022    u = &bw_upcalls[bw_upcalls_n++];
2023    u->bu_src = x->bm_mfc->mfc_origin;
2024    u->bu_dst = x->bm_mfc->mfc_mcastgrp;
2025    u->bu_threshold.b_time = x->bm_threshold.b_time;
2026    u->bu_threshold.b_packets = x->bm_threshold.b_packets;
2027    u->bu_threshold.b_bytes = x->bm_threshold.b_bytes;
2028    u->bu_measured.b_time = delta;
2029    u->bu_measured.b_packets = x->bm_measured.b_packets;
2030    u->bu_measured.b_bytes = x->bm_measured.b_bytes;
2031    u->bu_flags = 0;
2032    if (x->bm_flags & BW_METER_UNIT_PACKETS)
2033	u->bu_flags |= BW_UPCALL_UNIT_PACKETS;
2034    if (x->bm_flags & BW_METER_UNIT_BYTES)
2035	u->bu_flags |= BW_UPCALL_UNIT_BYTES;
2036    if (x->bm_flags & BW_METER_GEQ)
2037	u->bu_flags |= BW_UPCALL_GEQ;
2038    if (x->bm_flags & BW_METER_LEQ)
2039	u->bu_flags |= BW_UPCALL_LEQ;
2040}
2041
2042/*
2043 * Send the pending bandwidth-related upcalls
2044 */
2045static void
2046bw_upcalls_send(void)
2047{
2048    struct mbuf *m;
2049    int len = bw_upcalls_n * sizeof(bw_upcalls[0]);
2050    struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
2051    static struct igmpmsg igmpmsg = { 0,		/* unused1 */
2052				      0,		/* unused2 */
2053				      IGMPMSG_BW_UPCALL,/* im_msgtype */
2054				      0,		/* im_mbz  */
2055				      0,		/* im_vif  */
2056				      0,		/* unused3 */
2057				      { 0 },		/* im_src  */
2058				      { 0 } };		/* im_dst  */
2059
2060    MFC_LOCK_ASSERT();
2061
2062    if (bw_upcalls_n == 0)
2063	return;			/* No pending upcalls */
2064
2065    bw_upcalls_n = 0;
2066
2067    /*
2068     * Allocate a new mbuf, initialize it with the header and
2069     * the payload for the pending calls.
2070     */
2071    MGETHDR(m, M_DONTWAIT, MT_DATA);
2072    if (m == NULL) {
2073	log(LOG_WARNING, "bw_upcalls_send: cannot allocate mbuf\n");
2074	return;
2075    }
2076
2077    m->m_len = m->m_pkthdr.len = 0;
2078    m_copyback(m, 0, sizeof(struct igmpmsg), (caddr_t)&igmpmsg);
2079    m_copyback(m, sizeof(struct igmpmsg), len, (caddr_t)&bw_upcalls[0]);
2080
2081    /*
2082     * Send the upcalls
2083     * XXX do we need to set the address in k_igmpsrc ?
2084     */
2085    MRTSTAT_INC(mrts_upcalls);
2086    if (socket_send(V_ip_mrouter, m, &k_igmpsrc) < 0) {
2087	log(LOG_WARNING, "bw_upcalls_send: ip_mrouter socket queue full\n");
2088	MRTSTAT_INC(mrts_upq_sockfull);
2089    }
2090}
2091
2092/*
2093 * Compute the timeout hash value for the bw_meter entries
2094 */
2095#define	BW_METER_TIMEHASH(bw_meter, hash)				\
2096    do {								\
2097	struct timeval next_timeval = (bw_meter)->bm_start_time;	\
2098									\
2099	BW_TIMEVALADD(&next_timeval, &(bw_meter)->bm_threshold.b_time); \
2100	(hash) = next_timeval.tv_sec;					\
2101	if (next_timeval.tv_usec)					\
2102	    (hash)++; /* XXX: make sure we don't timeout early */	\
2103	(hash) %= BW_METER_BUCKETS;					\
2104    } while (0)
2105
2106/*
2107 * Schedule a timer to process periodically bw_meter entry of type "<="
2108 * by linking the entry in the proper hash bucket.
2109 */
2110static void
2111schedule_bw_meter(struct bw_meter *x, struct timeval *nowp)
2112{
2113    int time_hash;
2114
2115    MFC_LOCK_ASSERT();
2116
2117    if (!(x->bm_flags & BW_METER_LEQ))
2118	return;		/* XXX: we schedule timers only for "<=" entries */
2119
2120    /*
2121     * Reset the bw_meter entry
2122     */
2123    x->bm_start_time = *nowp;
2124    x->bm_measured.b_packets = 0;
2125    x->bm_measured.b_bytes = 0;
2126    x->bm_flags &= ~BW_METER_UPCALL_DELIVERED;
2127
2128    /*
2129     * Compute the timeout hash value and insert the entry
2130     */
2131    BW_METER_TIMEHASH(x, time_hash);
2132    x->bm_time_next = bw_meter_timers[time_hash];
2133    bw_meter_timers[time_hash] = x;
2134    x->bm_time_hash = time_hash;
2135}
2136
2137/*
2138 * Unschedule the periodic timer that processes bw_meter entry of type "<="
2139 * by removing the entry from the proper hash bucket.
2140 */
2141static void
2142unschedule_bw_meter(struct bw_meter *x)
2143{
2144    int time_hash;
2145    struct bw_meter *prev, *tmp;
2146
2147    MFC_LOCK_ASSERT();
2148
2149    if (!(x->bm_flags & BW_METER_LEQ))
2150	return;		/* XXX: we schedule timers only for "<=" entries */
2151
2152    /*
2153     * Compute the timeout hash value and delete the entry
2154     */
2155    time_hash = x->bm_time_hash;
2156    if (time_hash >= BW_METER_BUCKETS)
2157	return;		/* Entry was not scheduled */
2158
2159    for (prev = NULL, tmp = bw_meter_timers[time_hash];
2160	     tmp != NULL; prev = tmp, tmp = tmp->bm_time_next)
2161	if (tmp == x)
2162	    break;
2163
2164    if (tmp == NULL)
2165	panic("unschedule_bw_meter: bw_meter entry not found");
2166
2167    if (prev != NULL)
2168	prev->bm_time_next = x->bm_time_next;
2169    else
2170	bw_meter_timers[time_hash] = x->bm_time_next;
2171
2172    x->bm_time_next = NULL;
2173    x->bm_time_hash = BW_METER_BUCKETS;
2174}
2175
2176
2177/*
2178 * Process all "<=" type of bw_meter that should be processed now,
2179 * and for each entry prepare an upcall if necessary. Each processed
2180 * entry is rescheduled again for the (periodic) processing.
2181 *
2182 * This is run periodically (once per second normally). On each round,
2183 * all the potentially matching entries are in the hash slot that we are
2184 * looking at.
2185 */
2186static void
2187bw_meter_process()
2188{
2189    static uint32_t last_tv_sec;	/* last time we processed this */
2190
2191    uint32_t loops;
2192    int i;
2193    struct timeval now, process_endtime;
2194
2195    microtime(&now);
2196    if (last_tv_sec == now.tv_sec)
2197	return;		/* nothing to do */
2198
2199    loops = now.tv_sec - last_tv_sec;
2200    last_tv_sec = now.tv_sec;
2201    if (loops > BW_METER_BUCKETS)
2202	loops = BW_METER_BUCKETS;
2203
2204    MFC_LOCK();
2205    /*
2206     * Process all bins of bw_meter entries from the one after the last
2207     * processed to the current one. On entry, i points to the last bucket
2208     * visited, so we need to increment i at the beginning of the loop.
2209     */
2210    for (i = (now.tv_sec - loops) % BW_METER_BUCKETS; loops > 0; loops--) {
2211	struct bw_meter *x, *tmp_list;
2212
2213	if (++i >= BW_METER_BUCKETS)
2214	    i = 0;
2215
2216	/* Disconnect the list of bw_meter entries from the bin */
2217	tmp_list = bw_meter_timers[i];
2218	bw_meter_timers[i] = NULL;
2219
2220	/* Process the list of bw_meter entries */
2221	while (tmp_list != NULL) {
2222	    x = tmp_list;
2223	    tmp_list = tmp_list->bm_time_next;
2224
2225	    /* Test if the time interval is over */
2226	    process_endtime = x->bm_start_time;
2227	    BW_TIMEVALADD(&process_endtime, &x->bm_threshold.b_time);
2228	    if (BW_TIMEVALCMP(&process_endtime, &now, >)) {
2229		/* Not yet: reschedule, but don't reset */
2230		int time_hash;
2231
2232		BW_METER_TIMEHASH(x, time_hash);
2233		if (time_hash == i && process_endtime.tv_sec == now.tv_sec) {
2234		    /*
2235		     * XXX: somehow the bin processing is a bit ahead of time.
2236		     * Put the entry in the next bin.
2237		     */
2238		    if (++time_hash >= BW_METER_BUCKETS)
2239			time_hash = 0;
2240		}
2241		x->bm_time_next = bw_meter_timers[time_hash];
2242		bw_meter_timers[time_hash] = x;
2243		x->bm_time_hash = time_hash;
2244
2245		continue;
2246	    }
2247
2248	    /*
2249	     * Test if we should deliver an upcall
2250	     */
2251	    if (((x->bm_flags & BW_METER_UNIT_PACKETS) &&
2252		 (x->bm_measured.b_packets <= x->bm_threshold.b_packets)) ||
2253		((x->bm_flags & BW_METER_UNIT_BYTES) &&
2254		 (x->bm_measured.b_bytes <= x->bm_threshold.b_bytes))) {
2255		/* Prepare an upcall for delivery */
2256		bw_meter_prepare_upcall(x, &now);
2257	    }
2258
2259	    /*
2260	     * Reschedule for next processing
2261	     */
2262	    schedule_bw_meter(x, &now);
2263	}
2264    }
2265
2266    /* Send all upcalls that are pending delivery */
2267    bw_upcalls_send();
2268
2269    MFC_UNLOCK();
2270}
2271
2272/*
2273 * A periodic function for sending all upcalls that are pending delivery
2274 */
2275static void
2276expire_bw_upcalls_send(void *unused)
2277{
2278    MFC_LOCK();
2279    bw_upcalls_send();
2280    MFC_UNLOCK();
2281
2282    callout_reset(&bw_upcalls_ch, BW_UPCALLS_PERIOD,
2283	expire_bw_upcalls_send, NULL);
2284}
2285
2286/*
2287 * A periodic function for periodic scanning of the multicast forwarding
2288 * table for processing all "<=" bw_meter entries.
2289 */
2290static void
2291expire_bw_meter_process(void *unused)
2292{
2293    if (mrt_api_config & MRT_MFC_BW_UPCALL)
2294	bw_meter_process();
2295
2296    callout_reset(&bw_meter_ch, BW_METER_PERIOD, expire_bw_meter_process, NULL);
2297}
2298
2299/*
2300 * End of bandwidth monitoring code
2301 */
2302
2303/*
2304 * Send the packet up to the user daemon, or eventually do kernel encapsulation
2305 *
2306 */
2307static int
2308pim_register_send(struct ip *ip, struct vif *vifp, struct mbuf *m,
2309    struct mfc *rt)
2310{
2311    struct mbuf *mb_copy, *mm;
2312
2313    /*
2314     * Do not send IGMP_WHOLEPKT notifications to userland, if the
2315     * rendezvous point was unspecified, and we were told not to.
2316     */
2317    if (pim_squelch_wholepkt != 0 && (mrt_api_config & MRT_MFC_RP) &&
2318	in_nullhost(rt->mfc_rp))
2319	return 0;
2320
2321    mb_copy = pim_register_prepare(ip, m);
2322    if (mb_copy == NULL)
2323	return ENOBUFS;
2324
2325    /*
2326     * Send all the fragments. Note that the mbuf for each fragment
2327     * is freed by the sending machinery.
2328     */
2329    for (mm = mb_copy; mm; mm = mb_copy) {
2330	mb_copy = mm->m_nextpkt;
2331	mm->m_nextpkt = 0;
2332	mm = m_pullup(mm, sizeof(struct ip));
2333	if (mm != NULL) {
2334	    ip = mtod(mm, struct ip *);
2335	    if ((mrt_api_config & MRT_MFC_RP) && !in_nullhost(rt->mfc_rp)) {
2336		pim_register_send_rp(ip, vifp, mm, rt);
2337	    } else {
2338		pim_register_send_upcall(ip, vifp, mm, rt);
2339	    }
2340	}
2341    }
2342
2343    return 0;
2344}
2345
2346/*
2347 * Return a copy of the data packet that is ready for PIM Register
2348 * encapsulation.
2349 * XXX: Note that in the returned copy the IP header is a valid one.
2350 */
2351static struct mbuf *
2352pim_register_prepare(struct ip *ip, struct mbuf *m)
2353{
2354    struct mbuf *mb_copy = NULL;
2355    int mtu;
2356
2357    /* Take care of delayed checksums */
2358    if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
2359	in_delayed_cksum(m);
2360	m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
2361    }
2362
2363    /*
2364     * Copy the old packet & pullup its IP header into the
2365     * new mbuf so we can modify it.
2366     */
2367    mb_copy = m_copypacket(m, M_DONTWAIT);
2368    if (mb_copy == NULL)
2369	return NULL;
2370    mb_copy = m_pullup(mb_copy, ip->ip_hl << 2);
2371    if (mb_copy == NULL)
2372	return NULL;
2373
2374    /* take care of the TTL */
2375    ip = mtod(mb_copy, struct ip *);
2376    --ip->ip_ttl;
2377
2378    /* Compute the MTU after the PIM Register encapsulation */
2379    mtu = 0xffff - sizeof(pim_encap_iphdr) - sizeof(pim_encap_pimhdr);
2380
2381    if (ip->ip_len <= mtu) {
2382	/* Turn the IP header into a valid one */
2383	ip->ip_len = htons(ip->ip_len);
2384	ip->ip_off = htons(ip->ip_off);
2385	ip->ip_sum = 0;
2386	ip->ip_sum = in_cksum(mb_copy, ip->ip_hl << 2);
2387    } else {
2388	/* Fragment the packet */
2389	if (ip_fragment(ip, &mb_copy, mtu, 0, CSUM_DELAY_IP) != 0) {
2390	    m_freem(mb_copy);
2391	    return NULL;
2392	}
2393    }
2394    return mb_copy;
2395}
2396
2397/*
2398 * Send an upcall with the data packet to the user-level process.
2399 */
2400static int
2401pim_register_send_upcall(struct ip *ip, struct vif *vifp,
2402    struct mbuf *mb_copy, struct mfc *rt)
2403{
2404    struct mbuf *mb_first;
2405    int len = ntohs(ip->ip_len);
2406    struct igmpmsg *im;
2407    struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
2408
2409    VIF_LOCK_ASSERT();
2410
2411    /*
2412     * Add a new mbuf with an upcall header
2413     */
2414    MGETHDR(mb_first, M_DONTWAIT, MT_DATA);
2415    if (mb_first == NULL) {
2416	m_freem(mb_copy);
2417	return ENOBUFS;
2418    }
2419    mb_first->m_data += max_linkhdr;
2420    mb_first->m_pkthdr.len = len + sizeof(struct igmpmsg);
2421    mb_first->m_len = sizeof(struct igmpmsg);
2422    mb_first->m_next = mb_copy;
2423
2424    /* Send message to routing daemon */
2425    im = mtod(mb_first, struct igmpmsg *);
2426    im->im_msgtype	= IGMPMSG_WHOLEPKT;
2427    im->im_mbz		= 0;
2428    im->im_vif		= vifp - viftable;
2429    im->im_src		= ip->ip_src;
2430    im->im_dst		= ip->ip_dst;
2431
2432    k_igmpsrc.sin_addr	= ip->ip_src;
2433
2434    MRTSTAT_INC(mrts_upcalls);
2435
2436    if (socket_send(V_ip_mrouter, mb_first, &k_igmpsrc) < 0) {
2437	CTR1(KTR_IPMF, "%s: socket queue full", __func__);
2438	MRTSTAT_INC(mrts_upq_sockfull);
2439	return ENOBUFS;
2440    }
2441
2442    /* Keep statistics */
2443    PIMSTAT_INC(pims_snd_registers_msgs);
2444    PIMSTAT_ADD(pims_snd_registers_bytes, len);
2445
2446    return 0;
2447}
2448
2449/*
2450 * Encapsulate the data packet in PIM Register message and send it to the RP.
2451 */
2452static int
2453pim_register_send_rp(struct ip *ip, struct vif *vifp, struct mbuf *mb_copy,
2454    struct mfc *rt)
2455{
2456    struct mbuf *mb_first;
2457    struct ip *ip_outer;
2458    struct pim_encap_pimhdr *pimhdr;
2459    int len = ntohs(ip->ip_len);
2460    vifi_t vifi = rt->mfc_parent;
2461
2462    VIF_LOCK_ASSERT();
2463
2464    if ((vifi >= numvifs) || in_nullhost(viftable[vifi].v_lcl_addr)) {
2465	m_freem(mb_copy);
2466	return EADDRNOTAVAIL;		/* The iif vif is invalid */
2467    }
2468
2469    /*
2470     * Add a new mbuf with the encapsulating header
2471     */
2472    MGETHDR(mb_first, M_DONTWAIT, MT_DATA);
2473    if (mb_first == NULL) {
2474	m_freem(mb_copy);
2475	return ENOBUFS;
2476    }
2477    mb_first->m_data += max_linkhdr;
2478    mb_first->m_len = sizeof(pim_encap_iphdr) + sizeof(pim_encap_pimhdr);
2479    mb_first->m_next = mb_copy;
2480
2481    mb_first->m_pkthdr.len = len + mb_first->m_len;
2482
2483    /*
2484     * Fill in the encapsulating IP and PIM header
2485     */
2486    ip_outer = mtod(mb_first, struct ip *);
2487    *ip_outer = pim_encap_iphdr;
2488    ip_outer->ip_id = ip_newid();
2489    ip_outer->ip_len = len + sizeof(pim_encap_iphdr) + sizeof(pim_encap_pimhdr);
2490    ip_outer->ip_src = viftable[vifi].v_lcl_addr;
2491    ip_outer->ip_dst = rt->mfc_rp;
2492    /*
2493     * Copy the inner header TOS to the outer header, and take care of the
2494     * IP_DF bit.
2495     */
2496    ip_outer->ip_tos = ip->ip_tos;
2497    if (ntohs(ip->ip_off) & IP_DF)
2498	ip_outer->ip_off |= IP_DF;
2499    pimhdr = (struct pim_encap_pimhdr *)((caddr_t)ip_outer
2500					 + sizeof(pim_encap_iphdr));
2501    *pimhdr = pim_encap_pimhdr;
2502    /* If the iif crosses a border, set the Border-bit */
2503    if (rt->mfc_flags[vifi] & MRT_MFC_FLAGS_BORDER_VIF & mrt_api_config)
2504	pimhdr->flags |= htonl(PIM_BORDER_REGISTER);
2505
2506    mb_first->m_data += sizeof(pim_encap_iphdr);
2507    pimhdr->pim.pim_cksum = in_cksum(mb_first, sizeof(pim_encap_pimhdr));
2508    mb_first->m_data -= sizeof(pim_encap_iphdr);
2509
2510    send_packet(vifp, mb_first);
2511
2512    /* Keep statistics */
2513    PIMSTAT_INC(pims_snd_registers_msgs);
2514    PIMSTAT_ADD(pims_snd_registers_bytes, len);
2515
2516    return 0;
2517}
2518
2519/*
2520 * pim_encapcheck() is called by the encap4_input() path at runtime to
2521 * determine if a packet is for PIM; allowing PIM to be dynamically loaded
2522 * into the kernel.
2523 */
2524static int
2525pim_encapcheck(const struct mbuf *m, int off, int proto, void *arg)
2526{
2527
2528#ifdef DIAGNOSTIC
2529    KASSERT(proto == IPPROTO_PIM, ("not for IPPROTO_PIM"));
2530#endif
2531    if (proto != IPPROTO_PIM)
2532	return 0;	/* not for us; reject the datagram. */
2533
2534    return 64;		/* claim the datagram. */
2535}
2536
2537/*
2538 * PIM-SMv2 and PIM-DM messages processing.
2539 * Receives and verifies the PIM control messages, and passes them
2540 * up to the listening socket, using rip_input().
2541 * The only message with special processing is the PIM_REGISTER message
2542 * (used by PIM-SM): the PIM header is stripped off, and the inner packet
2543 * is passed to if_simloop().
2544 */
2545void
2546pim_input(struct mbuf *m, int off)
2547{
2548    struct ip *ip = mtod(m, struct ip *);
2549    struct pim *pim;
2550    int minlen;
2551    int datalen = ip->ip_len;
2552    int ip_tos;
2553    int iphlen = off;
2554
2555    /* Keep statistics */
2556    PIMSTAT_INC(pims_rcv_total_msgs);
2557    PIMSTAT_ADD(pims_rcv_total_bytes, datalen);
2558
2559    /*
2560     * Validate lengths
2561     */
2562    if (datalen < PIM_MINLEN) {
2563	PIMSTAT_INC(pims_rcv_tooshort);
2564	CTR3(KTR_IPMF, "%s: short packet (%d) from %s",
2565	    __func__, datalen, inet_ntoa(ip->ip_src));
2566	m_freem(m);
2567	return;
2568    }
2569
2570    /*
2571     * If the packet is at least as big as a REGISTER, go agead
2572     * and grab the PIM REGISTER header size, to avoid another
2573     * possible m_pullup() later.
2574     *
2575     * PIM_MINLEN       == pimhdr + u_int32_t == 4 + 4 = 8
2576     * PIM_REG_MINLEN   == pimhdr + reghdr + encap_iphdr == 4 + 4 + 20 = 28
2577     */
2578    minlen = iphlen + (datalen >= PIM_REG_MINLEN ? PIM_REG_MINLEN : PIM_MINLEN);
2579    /*
2580     * Get the IP and PIM headers in contiguous memory, and
2581     * possibly the PIM REGISTER header.
2582     */
2583    if ((m->m_flags & M_EXT || m->m_len < minlen) &&
2584	(m = m_pullup(m, minlen)) == 0) {
2585	CTR1(KTR_IPMF, "%s: m_pullup() failed", __func__);
2586	return;
2587    }
2588
2589    /* m_pullup() may have given us a new mbuf so reset ip. */
2590    ip = mtod(m, struct ip *);
2591    ip_tos = ip->ip_tos;
2592
2593    /* adjust mbuf to point to the PIM header */
2594    m->m_data += iphlen;
2595    m->m_len  -= iphlen;
2596    pim = mtod(m, struct pim *);
2597
2598    /*
2599     * Validate checksum. If PIM REGISTER, exclude the data packet.
2600     *
2601     * XXX: some older PIMv2 implementations don't make this distinction,
2602     * so for compatibility reason perform the checksum over part of the
2603     * message, and if error, then over the whole message.
2604     */
2605    if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER && in_cksum(m, PIM_MINLEN) == 0) {
2606	/* do nothing, checksum okay */
2607    } else if (in_cksum(m, datalen)) {
2608	PIMSTAT_INC(pims_rcv_badsum);
2609	CTR1(KTR_IPMF, "%s: invalid checksum", __func__);
2610	m_freem(m);
2611	return;
2612    }
2613
2614    /* PIM version check */
2615    if (PIM_VT_V(pim->pim_vt) < PIM_VERSION) {
2616	PIMSTAT_INC(pims_rcv_badversion);
2617	CTR3(KTR_IPMF, "%s: bad version %d expect %d", __func__,
2618	    (int)PIM_VT_V(pim->pim_vt), PIM_VERSION);
2619	m_freem(m);
2620	return;
2621    }
2622
2623    /* restore mbuf back to the outer IP */
2624    m->m_data -= iphlen;
2625    m->m_len  += iphlen;
2626
2627    if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER) {
2628	/*
2629	 * Since this is a REGISTER, we'll make a copy of the register
2630	 * headers ip + pim + u_int32 + encap_ip, to be passed up to the
2631	 * routing daemon.
2632	 */
2633	struct sockaddr_in dst = { sizeof(dst), AF_INET };
2634	struct mbuf *mcp;
2635	struct ip *encap_ip;
2636	u_int32_t *reghdr;
2637	struct ifnet *vifp;
2638
2639	VIF_LOCK();
2640	if ((reg_vif_num >= numvifs) || (reg_vif_num == VIFI_INVALID)) {
2641	    VIF_UNLOCK();
2642	    CTR2(KTR_IPMF, "%s: register vif not set: %d", __func__,
2643		(int)reg_vif_num);
2644	    m_freem(m);
2645	    return;
2646	}
2647	/* XXX need refcnt? */
2648	vifp = viftable[reg_vif_num].v_ifp;
2649	VIF_UNLOCK();
2650
2651	/*
2652	 * Validate length
2653	 */
2654	if (datalen < PIM_REG_MINLEN) {
2655	    PIMSTAT_INC(pims_rcv_tooshort);
2656	    PIMSTAT_INC(pims_rcv_badregisters);
2657	    CTR1(KTR_IPMF, "%s: register packet size too small", __func__);
2658	    m_freem(m);
2659	    return;
2660	}
2661
2662	reghdr = (u_int32_t *)(pim + 1);
2663	encap_ip = (struct ip *)(reghdr + 1);
2664
2665	CTR3(KTR_IPMF, "%s: register: encap ip src %s len %d",
2666	    __func__, inet_ntoa(encap_ip->ip_src), ntohs(encap_ip->ip_len));
2667
2668	/* verify the version number of the inner packet */
2669	if (encap_ip->ip_v != IPVERSION) {
2670	    PIMSTAT_INC(pims_rcv_badregisters);
2671	    CTR1(KTR_IPMF, "%s: bad encap ip version", __func__);
2672	    m_freem(m);
2673	    return;
2674	}
2675
2676	/* verify the inner packet is destined to a mcast group */
2677	if (!IN_MULTICAST(ntohl(encap_ip->ip_dst.s_addr))) {
2678	    PIMSTAT_INC(pims_rcv_badregisters);
2679	    CTR2(KTR_IPMF, "%s: bad encap ip dest %s", __func__,
2680		inet_ntoa(encap_ip->ip_dst));
2681	    m_freem(m);
2682	    return;
2683	}
2684
2685	/* If a NULL_REGISTER, pass it to the daemon */
2686	if ((ntohl(*reghdr) & PIM_NULL_REGISTER))
2687	    goto pim_input_to_daemon;
2688
2689	/*
2690	 * Copy the TOS from the outer IP header to the inner IP header.
2691	 */
2692	if (encap_ip->ip_tos != ip_tos) {
2693	    /* Outer TOS -> inner TOS */
2694	    encap_ip->ip_tos = ip_tos;
2695	    /* Recompute the inner header checksum. Sigh... */
2696
2697	    /* adjust mbuf to point to the inner IP header */
2698	    m->m_data += (iphlen + PIM_MINLEN);
2699	    m->m_len  -= (iphlen + PIM_MINLEN);
2700
2701	    encap_ip->ip_sum = 0;
2702	    encap_ip->ip_sum = in_cksum(m, encap_ip->ip_hl << 2);
2703
2704	    /* restore mbuf to point back to the outer IP header */
2705	    m->m_data -= (iphlen + PIM_MINLEN);
2706	    m->m_len  += (iphlen + PIM_MINLEN);
2707	}
2708
2709	/*
2710	 * Decapsulate the inner IP packet and loopback to forward it
2711	 * as a normal multicast packet. Also, make a copy of the
2712	 *     outer_iphdr + pimhdr + reghdr + encap_iphdr
2713	 * to pass to the daemon later, so it can take the appropriate
2714	 * actions (e.g., send back PIM_REGISTER_STOP).
2715	 * XXX: here m->m_data points to the outer IP header.
2716	 */
2717	mcp = m_copy(m, 0, iphlen + PIM_REG_MINLEN);
2718	if (mcp == NULL) {
2719	    CTR1(KTR_IPMF, "%s: m_copy() failed", __func__);
2720	    m_freem(m);
2721	    return;
2722	}
2723
2724	/* Keep statistics */
2725	/* XXX: registers_bytes include only the encap. mcast pkt */
2726	PIMSTAT_INC(pims_rcv_registers_msgs);
2727	PIMSTAT_ADD(pims_rcv_registers_bytes, ntohs(encap_ip->ip_len));
2728
2729	/*
2730	 * forward the inner ip packet; point m_data at the inner ip.
2731	 */
2732	m_adj(m, iphlen + PIM_MINLEN);
2733
2734	CTR4(KTR_IPMF,
2735	    "%s: forward decap'd REGISTER: src %lx dst %lx vif %d",
2736	    __func__,
2737	    (u_long)ntohl(encap_ip->ip_src.s_addr),
2738	    (u_long)ntohl(encap_ip->ip_dst.s_addr),
2739	    (int)reg_vif_num);
2740
2741	/* NB: vifp was collected above; can it change on us? */
2742	if_simloop(vifp, m, dst.sin_family, 0);
2743
2744	/* prepare the register head to send to the mrouting daemon */
2745	m = mcp;
2746    }
2747
2748pim_input_to_daemon:
2749    /*
2750     * Pass the PIM message up to the daemon; if it is a Register message,
2751     * pass the 'head' only up to the daemon. This includes the
2752     * outer IP header, PIM header, PIM-Register header and the
2753     * inner IP header.
2754     * XXX: the outer IP header pkt size of a Register is not adjust to
2755     * reflect the fact that the inner multicast data is truncated.
2756     */
2757    rip_input(m, iphlen);
2758
2759    return;
2760}
2761
2762static int
2763sysctl_mfctable(SYSCTL_HANDLER_ARGS)
2764{
2765	struct mfc	*rt;
2766	int		 error, i;
2767
2768	if (req->newptr)
2769		return (EPERM);
2770	if (mfchashtbl == NULL)	/* XXX unlocked */
2771		return (0);
2772	error = sysctl_wire_old_buffer(req, 0);
2773	if (error)
2774		return (error);
2775
2776	MFC_LOCK();
2777	for (i = 0; i < mfchashsize; i++) {
2778		LIST_FOREACH(rt, &mfchashtbl[i], mfc_hash) {
2779			error = SYSCTL_OUT(req, rt, sizeof(struct mfc));
2780			if (error)
2781				goto out_locked;
2782		}
2783	}
2784out_locked:
2785	MFC_UNLOCK();
2786	return (error);
2787}
2788
2789SYSCTL_NODE(_net_inet_ip, OID_AUTO, mfctable, CTLFLAG_RD, sysctl_mfctable,
2790    "IPv4 Multicast Forwarding Table (struct *mfc[mfchashsize], "
2791    "netinet/ip_mroute.h)");
2792
2793static int
2794ip_mroute_modevent(module_t mod, int type, void *unused)
2795{
2796
2797    switch (type) {
2798    case MOD_LOAD:
2799	MROUTER_LOCK_INIT();
2800	MFC_LOCK_INIT();
2801	VIF_LOCK_INIT();
2802
2803	mfchashsize = MFCHASHSIZE;
2804	if (TUNABLE_ULONG_FETCH("net.inet.ip.mfchashsize", &mfchashsize) &&
2805	    !powerof2(mfchashsize)) {
2806		printf("WARNING: %s not a power of 2; using default\n",
2807		    "net.inet.ip.mfchashsize");
2808		mfchashsize = MFCHASHSIZE;
2809	}
2810	MALLOC(nexpire, u_char *, mfchashsize, M_MRTABLE, M_WAITOK|M_ZERO);
2811
2812	pim_squelch_wholepkt = 0;
2813	TUNABLE_ULONG_FETCH("net.inet.pim.squelch_wholepkt",
2814	    &pim_squelch_wholepkt);
2815	ip_mrouter_reset();
2816
2817	pim_encap_cookie = encap_attach_func(AF_INET, IPPROTO_PIM,
2818	    pim_encapcheck, &in_pim_protosw, NULL);
2819	if (pim_encap_cookie == NULL) {
2820		printf("ip_mroute: unable to attach pim encap\n");
2821		VIF_LOCK_DESTROY();
2822		MFC_LOCK_DESTROY();
2823		MROUTER_LOCK_DESTROY();
2824		return (EINVAL);
2825	}
2826
2827	ip_mcast_src = X_ip_mcast_src;
2828	ip_mforward = X_ip_mforward;
2829	ip_mrouter_done = X_ip_mrouter_done;
2830	ip_mrouter_get = X_ip_mrouter_get;
2831	ip_mrouter_set = X_ip_mrouter_set;
2832
2833	ip_rsvp_force_done = X_ip_rsvp_force_done;
2834	ip_rsvp_vif = X_ip_rsvp_vif;
2835
2836	legal_vif_num = X_legal_vif_num;
2837	mrt_ioctl = X_mrt_ioctl;
2838	rsvp_input_p = X_rsvp_input;
2839	break;
2840
2841    case MOD_UNLOAD:
2842	/*
2843	 * Typically module unload happens after the user-level
2844	 * process has shutdown the kernel services (the check
2845	 * below insures someone can't just yank the module out
2846	 * from under a running process).  But if the module is
2847	 * just loaded and then unloaded w/o starting up a user
2848	 * process we still need to cleanup.
2849	 */
2850	if (V_ip_mrouter != NULL)
2851	    return (EINVAL);
2852
2853	if (pim_encap_cookie) {
2854	    encap_detach(pim_encap_cookie);
2855	    pim_encap_cookie = NULL;
2856	}
2857	X_ip_mrouter_done();
2858
2859	FREE(nexpire, M_MRTABLE);
2860	nexpire = NULL;
2861
2862	ip_mcast_src = NULL;
2863	ip_mforward = NULL;
2864	ip_mrouter_done = NULL;
2865	ip_mrouter_get = NULL;
2866	ip_mrouter_set = NULL;
2867
2868	ip_rsvp_force_done = NULL;
2869	ip_rsvp_vif = NULL;
2870
2871	legal_vif_num = NULL;
2872	mrt_ioctl = NULL;
2873	rsvp_input_p = NULL;
2874
2875	VIF_LOCK_DESTROY();
2876	MFC_LOCK_DESTROY();
2877	MROUTER_LOCK_DESTROY();
2878	break;
2879
2880    default:
2881	return EOPNOTSUPP;
2882    }
2883    return 0;
2884}
2885
2886static moduledata_t ip_mroutemod = {
2887    "ip_mroute",
2888    ip_mroute_modevent,
2889    0
2890};
2891
2892DECLARE_MODULE(ip_mroute, ip_mroutemod, SI_SUB_PSEUDO, SI_ORDER_ANY);
2893