ip_mroute.c revision 201254
1/*-
2 * Copyright (c) 1989 Stephen Deering
3 * Copyright (c) 1992, 1993
4 *      The Regents of the University of California.  All rights reserved.
5 *
6 * This code is derived from software contributed to Berkeley by
7 * Stephen Deering of Stanford University.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in the
16 *    documentation and/or other materials provided with the distribution.
17 * 4. Neither the name of the University nor the names of its contributors
18 *    may be used to endorse or promote products derived from this software
19 *    without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 *
33 *      @(#)ip_mroute.c 8.2 (Berkeley) 11/15/93
34 */
35
36/*
37 * IP multicast forwarding procedures
38 *
39 * Written by David Waitzman, BBN Labs, August 1988.
40 * Modified by Steve Deering, Stanford, February 1989.
41 * Modified by Mark J. Steiglitz, Stanford, May, 1991
42 * Modified by Van Jacobson, LBL, January 1993
43 * Modified by Ajit Thyagarajan, PARC, August 1993
44 * Modified by Bill Fenner, PARC, April 1995
45 * Modified by Ahmed Helmy, SGI, June 1996
46 * Modified by George Edmond Eddy (Rusty), ISI, February 1998
47 * Modified by Pavlin Radoslavov, USC/ISI, May 1998, August 1999, October 2000
48 * Modified by Hitoshi Asaeda, WIDE, August 2000
49 * Modified by Pavlin Radoslavov, ICSI, October 2002
50 *
51 * MROUTING Revision: 3.5
52 * and PIM-SMv2 and PIM-DM support, advanced API support,
53 * bandwidth metering and signaling
54 */
55
56/*
57 * TODO: Prefix functions with ipmf_.
58 * TODO: Maintain a refcount on if_allmulti() in ifnet or in the protocol
59 * domain attachment (if_afdata) so we can track consumers of that service.
60 * TODO: Deprecate routing socket path for SIOCGETSGCNT and SIOCGETVIFCNT,
61 * move it to socket options.
62 * TODO: Cleanup LSRR removal further.
63 * TODO: Push RSVP stubs into raw_ip.c.
64 * TODO: Use bitstring.h for vif set.
65 * TODO: Fix mrt6_ioctl dangling ref when dynamically loaded.
66 * TODO: Sync ip6_mroute.c with this file.
67 */
68
69#include <sys/cdefs.h>
70__FBSDID("$FreeBSD: head/sys/netinet/ip_mroute.c 201254 2009-12-30 08:52:13Z syrinx $");
71
72#include "opt_inet.h"
73#include "opt_mrouting.h"
74
75#define _PIM_VT 1
76
77#include <sys/param.h>
78#include <sys/kernel.h>
79#include <sys/stddef.h>
80#include <sys/lock.h>
81#include <sys/ktr.h>
82#include <sys/malloc.h>
83#include <sys/mbuf.h>
84#include <sys/module.h>
85#include <sys/priv.h>
86#include <sys/protosw.h>
87#include <sys/signalvar.h>
88#include <sys/socket.h>
89#include <sys/socketvar.h>
90#include <sys/sockio.h>
91#include <sys/sx.h>
92#include <sys/sysctl.h>
93#include <sys/syslog.h>
94#include <sys/systm.h>
95#include <sys/time.h>
96
97#include <net/if.h>
98#include <net/netisr.h>
99#include <net/route.h>
100#include <net/vnet.h>
101
102#include <netinet/in.h>
103#include <netinet/igmp.h>
104#include <netinet/in_systm.h>
105#include <netinet/in_var.h>
106#include <netinet/ip.h>
107#include <netinet/ip_encap.h>
108#include <netinet/ip_mroute.h>
109#include <netinet/ip_var.h>
110#include <netinet/ip_options.h>
111#include <netinet/pim.h>
112#include <netinet/pim_var.h>
113#include <netinet/udp.h>
114
115#include <machine/in_cksum.h>
116
117#include <security/mac/mac_framework.h>
118
119#ifndef KTR_IPMF
120#define KTR_IPMF KTR_INET
121#endif
122
123#define		VIFI_INVALID	((vifi_t) -1)
124#define		M_HASCL(m)	((m)->m_flags & M_EXT)
125
126static MALLOC_DEFINE(M_MRTABLE, "mroutetbl", "multicast forwarding cache");
127
128/*
129 * Locking.  We use two locks: one for the virtual interface table and
130 * one for the forwarding table.  These locks may be nested in which case
131 * the VIF lock must always be taken first.  Note that each lock is used
132 * to cover not only the specific data structure but also related data
133 * structures.
134 */
135
136static struct mtx mrouter_mtx;
137#define	MROUTER_LOCK()		mtx_lock(&mrouter_mtx)
138#define	MROUTER_UNLOCK()	mtx_unlock(&mrouter_mtx)
139#define	MROUTER_LOCK_ASSERT()	mtx_assert(&mrouter_mtx, MA_OWNED)
140#define	MROUTER_LOCK_INIT()						\
141	mtx_init(&mrouter_mtx, "IPv4 multicast forwarding", NULL, MTX_DEF)
142#define	MROUTER_LOCK_DESTROY()	mtx_destroy(&mrouter_mtx)
143
144static struct mrtstat	mrtstat;
145SYSCTL_STRUCT(_net_inet_ip, OID_AUTO, mrtstat, CTLFLAG_RW,
146    &mrtstat, mrtstat,
147    "IPv4 Multicast Forwarding Statistics (struct mrtstat, "
148    "netinet/ip_mroute.h)");
149
150static u_long			 mfchash;
151#define MFCHASH(a, g)							\
152	((((a).s_addr >> 20) ^ ((a).s_addr >> 10) ^ (a).s_addr ^ \
153	  ((g).s_addr >> 20) ^ ((g).s_addr >> 10) ^ (g).s_addr) & mfchash)
154#define MFCHASHSIZE	256
155
156static u_char			*nexpire;	/* 0..mfchashsize-1 */
157static u_long			 mfchashsize;	/* Hash size */
158LIST_HEAD(mfchashhdr, mfc)	*mfchashtbl;
159
160static struct mtx mfc_mtx;
161#define	MFC_LOCK()		mtx_lock(&mfc_mtx)
162#define	MFC_UNLOCK()		mtx_unlock(&mfc_mtx)
163#define	MFC_LOCK_ASSERT()	mtx_assert(&mfc_mtx, MA_OWNED)
164#define	MFC_LOCK_INIT()							\
165	mtx_init(&mfc_mtx, "IPv4 multicast forwarding cache", NULL, MTX_DEF)
166#define	MFC_LOCK_DESTROY()	mtx_destroy(&mfc_mtx)
167
168static vifi_t		numvifs;
169static struct vif	viftable[MAXVIFS];
170SYSCTL_OPAQUE(_net_inet_ip, OID_AUTO, viftable, CTLFLAG_RD,
171    &viftable, sizeof(viftable), "S,vif[MAXVIFS]",
172    "IPv4 Multicast Interfaces (struct vif[MAXVIFS], netinet/ip_mroute.h)");
173
174static struct mtx vif_mtx;
175#define	VIF_LOCK()		mtx_lock(&vif_mtx)
176#define	VIF_UNLOCK()		mtx_unlock(&vif_mtx)
177#define	VIF_LOCK_ASSERT()	mtx_assert(&vif_mtx, MA_OWNED)
178#define	VIF_LOCK_INIT()							\
179	mtx_init(&vif_mtx, "IPv4 multicast interfaces", NULL, MTX_DEF)
180#define	VIF_LOCK_DESTROY()	mtx_destroy(&vif_mtx)
181
182static eventhandler_tag if_detach_event_tag = NULL;
183
184static struct callout expire_upcalls_ch;
185#define		EXPIRE_TIMEOUT	(hz / 4)	/* 4x / second		*/
186#define		UPCALL_EXPIRE	6		/* number of timeouts	*/
187
188/*
189 * Bandwidth meter variables and constants
190 */
191static MALLOC_DEFINE(M_BWMETER, "bwmeter", "multicast upcall bw meters");
192/*
193 * Pending timeouts are stored in a hash table, the key being the
194 * expiration time. Periodically, the entries are analysed and processed.
195 */
196#define BW_METER_BUCKETS	1024
197static struct bw_meter *bw_meter_timers[BW_METER_BUCKETS];
198static struct callout bw_meter_ch;
199#define BW_METER_PERIOD (hz)		/* periodical handling of bw meters */
200
201/*
202 * Pending upcalls are stored in a vector which is flushed when
203 * full, or periodically
204 */
205static struct bw_upcall	bw_upcalls[BW_UPCALLS_MAX];
206static u_int	bw_upcalls_n; /* # of pending upcalls */
207static struct callout bw_upcalls_ch;
208#define BW_UPCALLS_PERIOD (hz)		/* periodical flush of bw upcalls */
209
210static struct pimstat pimstat;
211
212SYSCTL_NODE(_net_inet, IPPROTO_PIM, pim, CTLFLAG_RW, 0, "PIM");
213SYSCTL_STRUCT(_net_inet_pim, PIMCTL_STATS, stats, CTLFLAG_RD,
214    &pimstat, pimstat,
215    "PIM Statistics (struct pimstat, netinet/pim_var.h)");
216
217static u_long	pim_squelch_wholepkt = 0;
218SYSCTL_ULONG(_net_inet_pim, OID_AUTO, squelch_wholepkt, CTLFLAG_RW,
219    &pim_squelch_wholepkt, 0,
220    "Disable IGMP_WHOLEPKT notifications if rendezvous point is unspecified");
221
222extern  struct domain inetdomain;
223static const struct protosw in_pim_protosw = {
224	.pr_type =		SOCK_RAW,
225	.pr_domain =		&inetdomain,
226	.pr_protocol =		IPPROTO_PIM,
227	.pr_flags =		PR_ATOMIC|PR_ADDR|PR_LASTHDR,
228	.pr_input =		pim_input,
229	.pr_output =		(pr_output_t*)rip_output,
230	.pr_ctloutput =		rip_ctloutput,
231	.pr_usrreqs =		&rip_usrreqs
232};
233static const struct encaptab *pim_encap_cookie;
234
235static int pim_encapcheck(const struct mbuf *, int, int, void *);
236
237/*
238 * Note: the PIM Register encapsulation adds the following in front of a
239 * data packet:
240 *
241 * struct pim_encap_hdr {
242 *    struct ip ip;
243 *    struct pim_encap_pimhdr  pim;
244 * }
245 *
246 */
247
248struct pim_encap_pimhdr {
249	struct pim pim;
250	uint32_t   flags;
251};
252#define		PIM_ENCAP_TTL	64
253
254static struct ip pim_encap_iphdr = {
255#if BYTE_ORDER == LITTLE_ENDIAN
256	sizeof(struct ip) >> 2,
257	IPVERSION,
258#else
259	IPVERSION,
260	sizeof(struct ip) >> 2,
261#endif
262	0,			/* tos */
263	sizeof(struct ip),	/* total length */
264	0,			/* id */
265	0,			/* frag offset */
266	PIM_ENCAP_TTL,
267	IPPROTO_PIM,
268	0,			/* checksum */
269};
270
271static struct pim_encap_pimhdr pim_encap_pimhdr = {
272    {
273	PIM_MAKE_VT(PIM_VERSION, PIM_REGISTER), /* PIM vers and message type */
274	0,			/* reserved */
275	0,			/* checksum */
276    },
277    0				/* flags */
278};
279
280static struct ifnet multicast_register_if;
281static vifi_t reg_vif_num = VIFI_INVALID;
282
283/*
284 * Private variables.
285 */
286
287static u_long	X_ip_mcast_src(int);
288static int	X_ip_mforward(struct ip *, struct ifnet *, struct mbuf *,
289		    struct ip_moptions *);
290static int	X_ip_mrouter_done(void);
291static int	X_ip_mrouter_get(struct socket *, struct sockopt *);
292static int	X_ip_mrouter_set(struct socket *, struct sockopt *);
293static int	X_legal_vif_num(int);
294static int	X_mrt_ioctl(u_long, caddr_t, int);
295
296static int	add_bw_upcall(struct bw_upcall *);
297static int	add_mfc(struct mfcctl2 *);
298static int	add_vif(struct vifctl *);
299static void	bw_meter_prepare_upcall(struct bw_meter *, struct timeval *);
300static void	bw_meter_process(void);
301static void	bw_meter_receive_packet(struct bw_meter *, int,
302		    struct timeval *);
303static void	bw_upcalls_send(void);
304static int	del_bw_upcall(struct bw_upcall *);
305static int	del_mfc(struct mfcctl2 *);
306static int	del_vif(vifi_t);
307static int	del_vif_locked(vifi_t);
308static void	expire_bw_meter_process(void *);
309static void	expire_bw_upcalls_send(void *);
310static void	expire_mfc(struct mfc *);
311static void	expire_upcalls(void *);
312static void	free_bw_list(struct bw_meter *);
313static int	get_sg_cnt(struct sioc_sg_req *);
314static int	get_vif_cnt(struct sioc_vif_req *);
315static void	if_detached_event(void *, struct ifnet *);
316static int	ip_mdq(struct mbuf *, struct ifnet *, struct mfc *, vifi_t);
317static int	ip_mrouter_init(struct socket *, int);
318static __inline struct mfc *
319		mfc_find(struct in_addr *, struct in_addr *);
320static void	phyint_send(struct ip *, struct vif *, struct mbuf *);
321static struct mbuf *
322		pim_register_prepare(struct ip *, struct mbuf *);
323static int	pim_register_send(struct ip *, struct vif *,
324		    struct mbuf *, struct mfc *);
325static int	pim_register_send_rp(struct ip *, struct vif *,
326		    struct mbuf *, struct mfc *);
327static int	pim_register_send_upcall(struct ip *, struct vif *,
328		    struct mbuf *, struct mfc *);
329static void	schedule_bw_meter(struct bw_meter *, struct timeval *);
330static void	send_packet(struct vif *, struct mbuf *);
331static int	set_api_config(uint32_t *);
332static int	set_assert(int);
333static int	socket_send(struct socket *, struct mbuf *,
334		    struct sockaddr_in *);
335static void	unschedule_bw_meter(struct bw_meter *);
336
337/*
338 * Kernel multicast forwarding API capabilities and setup.
339 * If more API capabilities are added to the kernel, they should be
340 * recorded in `mrt_api_support'.
341 */
342#define MRT_API_VERSION		0x0305
343
344static const int mrt_api_version = MRT_API_VERSION;
345static const uint32_t mrt_api_support = (MRT_MFC_FLAGS_DISABLE_WRONGVIF |
346					 MRT_MFC_FLAGS_BORDER_VIF |
347					 MRT_MFC_RP |
348					 MRT_MFC_BW_UPCALL);
349static uint32_t mrt_api_config = 0;
350
351static int pim_assert_enabled;
352static struct timeval pim_assert_interval = { 3, 0 };	/* Rate limit */
353
354/*
355 * Find a route for a given origin IP address and multicast group address.
356 * Statistics must be updated by the caller.
357 */
358static __inline struct mfc *
359mfc_find(struct in_addr *o, struct in_addr *g)
360{
361	struct mfc *rt;
362
363	MFC_LOCK_ASSERT();
364
365	LIST_FOREACH(rt, &mfchashtbl[MFCHASH(*o, *g)], mfc_hash) {
366		if (in_hosteq(rt->mfc_origin, *o) &&
367		    in_hosteq(rt->mfc_mcastgrp, *g) &&
368		    TAILQ_EMPTY(&rt->mfc_stall))
369			break;
370	}
371
372	return (rt);
373}
374
375/*
376 * Handle MRT setsockopt commands to modify the multicast forwarding tables.
377 */
378static int
379X_ip_mrouter_set(struct socket *so, struct sockopt *sopt)
380{
381    int	error, optval;
382    vifi_t	vifi;
383    struct	vifctl vifc;
384    struct	mfcctl2 mfc;
385    struct	bw_upcall bw_upcall;
386    uint32_t	i;
387
388    if (so != V_ip_mrouter && sopt->sopt_name != MRT_INIT)
389	return EPERM;
390
391    error = 0;
392    switch (sopt->sopt_name) {
393    case MRT_INIT:
394	error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval);
395	if (error)
396	    break;
397	error = ip_mrouter_init(so, optval);
398	break;
399
400    case MRT_DONE:
401	error = ip_mrouter_done();
402	break;
403
404    case MRT_ADD_VIF:
405	error = sooptcopyin(sopt, &vifc, sizeof vifc, sizeof vifc);
406	if (error)
407	    break;
408	error = add_vif(&vifc);
409	break;
410
411    case MRT_DEL_VIF:
412	error = sooptcopyin(sopt, &vifi, sizeof vifi, sizeof vifi);
413	if (error)
414	    break;
415	error = del_vif(vifi);
416	break;
417
418    case MRT_ADD_MFC:
419    case MRT_DEL_MFC:
420	/*
421	 * select data size depending on API version.
422	 */
423	if (sopt->sopt_name == MRT_ADD_MFC &&
424		mrt_api_config & MRT_API_FLAGS_ALL) {
425	    error = sooptcopyin(sopt, &mfc, sizeof(struct mfcctl2),
426				sizeof(struct mfcctl2));
427	} else {
428	    error = sooptcopyin(sopt, &mfc, sizeof(struct mfcctl),
429				sizeof(struct mfcctl));
430	    bzero((caddr_t)&mfc + sizeof(struct mfcctl),
431			sizeof(mfc) - sizeof(struct mfcctl));
432	}
433	if (error)
434	    break;
435	if (sopt->sopt_name == MRT_ADD_MFC)
436	    error = add_mfc(&mfc);
437	else
438	    error = del_mfc(&mfc);
439	break;
440
441    case MRT_ASSERT:
442	error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval);
443	if (error)
444	    break;
445	set_assert(optval);
446	break;
447
448    case MRT_API_CONFIG:
449	error = sooptcopyin(sopt, &i, sizeof i, sizeof i);
450	if (!error)
451	    error = set_api_config(&i);
452	if (!error)
453	    error = sooptcopyout(sopt, &i, sizeof i);
454	break;
455
456    case MRT_ADD_BW_UPCALL:
457    case MRT_DEL_BW_UPCALL:
458	error = sooptcopyin(sopt, &bw_upcall, sizeof bw_upcall,
459				sizeof bw_upcall);
460	if (error)
461	    break;
462	if (sopt->sopt_name == MRT_ADD_BW_UPCALL)
463	    error = add_bw_upcall(&bw_upcall);
464	else
465	    error = del_bw_upcall(&bw_upcall);
466	break;
467
468    default:
469	error = EOPNOTSUPP;
470	break;
471    }
472    return error;
473}
474
475/*
476 * Handle MRT getsockopt commands
477 */
478static int
479X_ip_mrouter_get(struct socket *so, struct sockopt *sopt)
480{
481    int error;
482
483    switch (sopt->sopt_name) {
484    case MRT_VERSION:
485	error = sooptcopyout(sopt, &mrt_api_version, sizeof mrt_api_version);
486	break;
487
488    case MRT_ASSERT:
489	error = sooptcopyout(sopt, &pim_assert_enabled,
490	    sizeof pim_assert_enabled);
491	break;
492
493    case MRT_API_SUPPORT:
494	error = sooptcopyout(sopt, &mrt_api_support, sizeof mrt_api_support);
495	break;
496
497    case MRT_API_CONFIG:
498	error = sooptcopyout(sopt, &mrt_api_config, sizeof mrt_api_config);
499	break;
500
501    default:
502	error = EOPNOTSUPP;
503	break;
504    }
505    return error;
506}
507
508/*
509 * Handle ioctl commands to obtain information from the cache
510 */
511static int
512X_mrt_ioctl(u_long cmd, caddr_t data, int fibnum __unused)
513{
514    int error = 0;
515
516    /*
517     * Currently the only function calling this ioctl routine is rtioctl().
518     * Typically, only root can create the raw socket in order to execute
519     * this ioctl method, however the request might be coming from a prison
520     */
521    error = priv_check(curthread, PRIV_NETINET_MROUTE);
522    if (error)
523	return (error);
524    switch (cmd) {
525    case (SIOCGETVIFCNT):
526	error = get_vif_cnt((struct sioc_vif_req *)data);
527	break;
528
529    case (SIOCGETSGCNT):
530	error = get_sg_cnt((struct sioc_sg_req *)data);
531	break;
532
533    default:
534	error = EINVAL;
535	break;
536    }
537    return error;
538}
539
540/*
541 * returns the packet, byte, rpf-failure count for the source group provided
542 */
543static int
544get_sg_cnt(struct sioc_sg_req *req)
545{
546    struct mfc *rt;
547
548    MFC_LOCK();
549    rt = mfc_find(&req->src, &req->grp);
550    if (rt == NULL) {
551	MFC_UNLOCK();
552	req->pktcnt = req->bytecnt = req->wrong_if = 0xffffffff;
553	return EADDRNOTAVAIL;
554    }
555    req->pktcnt = rt->mfc_pkt_cnt;
556    req->bytecnt = rt->mfc_byte_cnt;
557    req->wrong_if = rt->mfc_wrong_if;
558    MFC_UNLOCK();
559    return 0;
560}
561
562/*
563 * returns the input and output packet and byte counts on the vif provided
564 */
565static int
566get_vif_cnt(struct sioc_vif_req *req)
567{
568    vifi_t vifi = req->vifi;
569
570    VIF_LOCK();
571    if (vifi >= numvifs) {
572	VIF_UNLOCK();
573	return EINVAL;
574    }
575
576    req->icount = viftable[vifi].v_pkt_in;
577    req->ocount = viftable[vifi].v_pkt_out;
578    req->ibytes = viftable[vifi].v_bytes_in;
579    req->obytes = viftable[vifi].v_bytes_out;
580    VIF_UNLOCK();
581
582    return 0;
583}
584
585static void
586ip_mrouter_reset(void)
587{
588
589    pim_assert_enabled = 0;
590    mrt_api_config = 0;
591
592    callout_init(&expire_upcalls_ch, CALLOUT_MPSAFE);
593
594    bw_upcalls_n = 0;
595    bzero((caddr_t)bw_meter_timers, sizeof(bw_meter_timers));
596    callout_init(&bw_upcalls_ch, CALLOUT_MPSAFE);
597    callout_init(&bw_meter_ch, CALLOUT_MPSAFE);
598}
599
600static void
601if_detached_event(void *arg __unused, struct ifnet *ifp)
602{
603    vifi_t vifi;
604    int i;
605
606    MROUTER_LOCK();
607
608    if (V_ip_mrouter == NULL) {
609	MROUTER_UNLOCK();
610	return;
611    }
612
613    VIF_LOCK();
614    MFC_LOCK();
615
616    /*
617     * Tear down multicast forwarder state associated with this ifnet.
618     * 1. Walk the vif list, matching vifs against this ifnet.
619     * 2. Walk the multicast forwarding cache (mfc) looking for
620     *    inner matches with this vif's index.
621     * 3. Expire any matching multicast forwarding cache entries.
622     * 4. Free vif state. This should disable ALLMULTI on the interface.
623     */
624    for (vifi = 0; vifi < numvifs; vifi++) {
625	if (viftable[vifi].v_ifp != ifp)
626		continue;
627	for (i = 0; i < mfchashsize; i++) {
628		struct mfc *rt, *nrt;
629		for (rt = LIST_FIRST(&mfchashtbl[i]); rt; rt = nrt) {
630			nrt = LIST_NEXT(rt, mfc_hash);
631			if (rt->mfc_parent == vifi) {
632				expire_mfc(rt);
633			}
634		}
635	}
636	del_vif_locked(vifi);
637    }
638
639    MFC_UNLOCK();
640    VIF_UNLOCK();
641
642    MROUTER_UNLOCK();
643}
644
645/*
646 * Enable multicast forwarding.
647 */
648static int
649ip_mrouter_init(struct socket *so, int version)
650{
651
652    CTR3(KTR_IPMF, "%s: so_type %d, pr_protocol %d", __func__,
653        so->so_type, so->so_proto->pr_protocol);
654
655    if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_IGMP)
656	return EOPNOTSUPP;
657
658    if (version != 1)
659	return ENOPROTOOPT;
660
661    MROUTER_LOCK();
662
663    if (V_ip_mrouter != NULL) {
664	MROUTER_UNLOCK();
665	return EADDRINUSE;
666    }
667
668    if_detach_event_tag = EVENTHANDLER_REGISTER(ifnet_departure_event,
669        if_detached_event, NULL, EVENTHANDLER_PRI_ANY);
670    if (if_detach_event_tag == NULL) {
671	MROUTER_UNLOCK();
672	return (ENOMEM);
673    }
674
675    mfchashtbl = hashinit_flags(mfchashsize, M_MRTABLE, &mfchash, HASH_NOWAIT);
676
677    callout_reset(&expire_upcalls_ch, EXPIRE_TIMEOUT, expire_upcalls, NULL);
678
679    callout_reset(&bw_upcalls_ch, BW_UPCALLS_PERIOD,
680	expire_bw_upcalls_send, NULL);
681    callout_reset(&bw_meter_ch, BW_METER_PERIOD, expire_bw_meter_process, NULL);
682
683    V_ip_mrouter = so;
684
685    MROUTER_UNLOCK();
686
687    CTR1(KTR_IPMF, "%s: done", __func__);
688
689    return 0;
690}
691
692/*
693 * Disable multicast forwarding.
694 */
695static int
696X_ip_mrouter_done(void)
697{
698    vifi_t vifi;
699    int i;
700    struct ifnet *ifp;
701    struct ifreq ifr;
702
703    MROUTER_LOCK();
704
705    if (V_ip_mrouter == NULL) {
706	MROUTER_UNLOCK();
707	return EINVAL;
708    }
709
710    /*
711     * Detach/disable hooks to the reset of the system.
712     */
713    V_ip_mrouter = NULL;
714    mrt_api_config = 0;
715
716    VIF_LOCK();
717
718    /*
719     * For each phyint in use, disable promiscuous reception of all IP
720     * multicasts.
721     */
722    for (vifi = 0; vifi < numvifs; vifi++) {
723	if (!in_nullhost(viftable[vifi].v_lcl_addr) &&
724		!(viftable[vifi].v_flags & (VIFF_TUNNEL | VIFF_REGISTER))) {
725	    struct sockaddr_in *so = (struct sockaddr_in *)&(ifr.ifr_addr);
726
727	    so->sin_len = sizeof(struct sockaddr_in);
728	    so->sin_family = AF_INET;
729	    so->sin_addr.s_addr = INADDR_ANY;
730	    ifp = viftable[vifi].v_ifp;
731	    if_allmulti(ifp, 0);
732	}
733    }
734    bzero((caddr_t)viftable, sizeof(viftable));
735    numvifs = 0;
736    pim_assert_enabled = 0;
737
738    VIF_UNLOCK();
739
740    EVENTHANDLER_DEREGISTER(ifnet_departure_event, if_detach_event_tag);
741
742    callout_stop(&expire_upcalls_ch);
743    callout_stop(&bw_upcalls_ch);
744    callout_stop(&bw_meter_ch);
745
746    MFC_LOCK();
747
748    /*
749     * Free all multicast forwarding cache entries.
750     * Do not use hashdestroy(), as we must perform other cleanup.
751     */
752    for (i = 0; i < mfchashsize; i++) {
753	struct mfc *rt, *nrt;
754	for (rt = LIST_FIRST(&mfchashtbl[i]); rt; rt = nrt) {
755		nrt = LIST_NEXT(rt, mfc_hash);
756		expire_mfc(rt);
757	}
758    }
759    free(mfchashtbl, M_MRTABLE);
760    mfchashtbl = NULL;
761
762    bzero(nexpire, sizeof(nexpire[0]) * mfchashsize);
763
764    bw_upcalls_n = 0;
765    bzero(bw_meter_timers, sizeof(bw_meter_timers));
766
767    MFC_UNLOCK();
768
769    reg_vif_num = VIFI_INVALID;
770
771    MROUTER_UNLOCK();
772
773    CTR1(KTR_IPMF, "%s: done", __func__);
774
775    return 0;
776}
777
778/*
779 * Set PIM assert processing global
780 */
781static int
782set_assert(int i)
783{
784    if ((i != 1) && (i != 0))
785	return EINVAL;
786
787    pim_assert_enabled = i;
788
789    return 0;
790}
791
792/*
793 * Configure API capabilities
794 */
795int
796set_api_config(uint32_t *apival)
797{
798    int i;
799
800    /*
801     * We can set the API capabilities only if it is the first operation
802     * after MRT_INIT. I.e.:
803     *  - there are no vifs installed
804     *  - pim_assert is not enabled
805     *  - the MFC table is empty
806     */
807    if (numvifs > 0) {
808	*apival = 0;
809	return EPERM;
810    }
811    if (pim_assert_enabled) {
812	*apival = 0;
813	return EPERM;
814    }
815
816    MFC_LOCK();
817
818    for (i = 0; i < mfchashsize; i++) {
819	if (LIST_FIRST(&mfchashtbl[i]) != NULL) {
820	    *apival = 0;
821	    return EPERM;
822	}
823    }
824
825    MFC_UNLOCK();
826
827    mrt_api_config = *apival & mrt_api_support;
828    *apival = mrt_api_config;
829
830    return 0;
831}
832
833/*
834 * Add a vif to the vif table
835 */
836static int
837add_vif(struct vifctl *vifcp)
838{
839    struct vif *vifp = viftable + vifcp->vifc_vifi;
840    struct sockaddr_in sin = {sizeof sin, AF_INET};
841    struct ifaddr *ifa;
842    struct ifnet *ifp;
843    int error;
844
845    VIF_LOCK();
846    if (vifcp->vifc_vifi >= MAXVIFS) {
847	VIF_UNLOCK();
848	return EINVAL;
849    }
850    /* rate limiting is no longer supported by this code */
851    if (vifcp->vifc_rate_limit != 0) {
852	log(LOG_ERR, "rate limiting is no longer supported\n");
853	VIF_UNLOCK();
854	return EINVAL;
855    }
856    if (!in_nullhost(vifp->v_lcl_addr)) {
857	VIF_UNLOCK();
858	return EADDRINUSE;
859    }
860    if (in_nullhost(vifcp->vifc_lcl_addr)) {
861	VIF_UNLOCK();
862	return EADDRNOTAVAIL;
863    }
864
865    /* Find the interface with an address in AF_INET family */
866    if (vifcp->vifc_flags & VIFF_REGISTER) {
867	/*
868	 * XXX: Because VIFF_REGISTER does not really need a valid
869	 * local interface (e.g. it could be 127.0.0.2), we don't
870	 * check its address.
871	 */
872	ifp = NULL;
873    } else {
874	sin.sin_addr = vifcp->vifc_lcl_addr;
875	ifa = ifa_ifwithaddr((struct sockaddr *)&sin);
876	if (ifa == NULL) {
877	    VIF_UNLOCK();
878	    return EADDRNOTAVAIL;
879	}
880	ifp = ifa->ifa_ifp;
881	ifa_free(ifa);
882    }
883
884    if ((vifcp->vifc_flags & VIFF_TUNNEL) != 0) {
885	CTR1(KTR_IPMF, "%s: tunnels are no longer supported", __func__);
886	VIF_UNLOCK();
887	return EOPNOTSUPP;
888    } else if (vifcp->vifc_flags & VIFF_REGISTER) {
889	ifp = &multicast_register_if;
890	CTR2(KTR_IPMF, "%s: add register vif for ifp %p", __func__, ifp);
891	if (reg_vif_num == VIFI_INVALID) {
892	    if_initname(&multicast_register_if, "register_vif", 0);
893	    multicast_register_if.if_flags = IFF_LOOPBACK;
894	    reg_vif_num = vifcp->vifc_vifi;
895	}
896    } else {		/* Make sure the interface supports multicast */
897	if ((ifp->if_flags & IFF_MULTICAST) == 0) {
898	    VIF_UNLOCK();
899	    return EOPNOTSUPP;
900	}
901
902	/* Enable promiscuous reception of all IP multicasts from the if */
903	error = if_allmulti(ifp, 1);
904	if (error) {
905	    VIF_UNLOCK();
906	    return error;
907	}
908    }
909
910    vifp->v_flags     = vifcp->vifc_flags;
911    vifp->v_threshold = vifcp->vifc_threshold;
912    vifp->v_lcl_addr  = vifcp->vifc_lcl_addr;
913    vifp->v_rmt_addr  = vifcp->vifc_rmt_addr;
914    vifp->v_ifp       = ifp;
915    /* initialize per vif pkt counters */
916    vifp->v_pkt_in    = 0;
917    vifp->v_pkt_out   = 0;
918    vifp->v_bytes_in  = 0;
919    vifp->v_bytes_out = 0;
920    bzero(&vifp->v_route, sizeof(vifp->v_route));
921
922    /* Adjust numvifs up if the vifi is higher than numvifs */
923    if (numvifs <= vifcp->vifc_vifi)
924	numvifs = vifcp->vifc_vifi + 1;
925
926    VIF_UNLOCK();
927
928    CTR4(KTR_IPMF, "%s: add vif %d laddr %s thresh %x", __func__,
929	(int)vifcp->vifc_vifi, inet_ntoa(vifcp->vifc_lcl_addr),
930	(int)vifcp->vifc_threshold);
931
932    return 0;
933}
934
935/*
936 * Delete a vif from the vif table
937 */
938static int
939del_vif_locked(vifi_t vifi)
940{
941    struct vif *vifp;
942
943    VIF_LOCK_ASSERT();
944
945    if (vifi >= numvifs) {
946	return EINVAL;
947    }
948    vifp = &viftable[vifi];
949    if (in_nullhost(vifp->v_lcl_addr)) {
950	return EADDRNOTAVAIL;
951    }
952
953    if (!(vifp->v_flags & (VIFF_TUNNEL | VIFF_REGISTER)))
954	if_allmulti(vifp->v_ifp, 0);
955
956    if (vifp->v_flags & VIFF_REGISTER)
957	reg_vif_num = VIFI_INVALID;
958
959    bzero((caddr_t)vifp, sizeof (*vifp));
960
961    CTR2(KTR_IPMF, "%s: delete vif %d", __func__, (int)vifi);
962
963    /* Adjust numvifs down */
964    for (vifi = numvifs; vifi > 0; vifi--)
965	if (!in_nullhost(viftable[vifi-1].v_lcl_addr))
966	    break;
967    numvifs = vifi;
968
969    return 0;
970}
971
972static int
973del_vif(vifi_t vifi)
974{
975    int cc;
976
977    VIF_LOCK();
978    cc = del_vif_locked(vifi);
979    VIF_UNLOCK();
980
981    return cc;
982}
983
984/*
985 * update an mfc entry without resetting counters and S,G addresses.
986 */
987static void
988update_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp)
989{
990    int i;
991
992    rt->mfc_parent = mfccp->mfcc_parent;
993    for (i = 0; i < numvifs; i++) {
994	rt->mfc_ttls[i] = mfccp->mfcc_ttls[i];
995	rt->mfc_flags[i] = mfccp->mfcc_flags[i] & mrt_api_config &
996	    MRT_MFC_FLAGS_ALL;
997    }
998    /* set the RP address */
999    if (mrt_api_config & MRT_MFC_RP)
1000	rt->mfc_rp = mfccp->mfcc_rp;
1001    else
1002	rt->mfc_rp.s_addr = INADDR_ANY;
1003}
1004
1005/*
1006 * fully initialize an mfc entry from the parameter.
1007 */
1008static void
1009init_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp)
1010{
1011    rt->mfc_origin     = mfccp->mfcc_origin;
1012    rt->mfc_mcastgrp   = mfccp->mfcc_mcastgrp;
1013
1014    update_mfc_params(rt, mfccp);
1015
1016    /* initialize pkt counters per src-grp */
1017    rt->mfc_pkt_cnt    = 0;
1018    rt->mfc_byte_cnt   = 0;
1019    rt->mfc_wrong_if   = 0;
1020    timevalclear(&rt->mfc_last_assert);
1021}
1022
1023static void
1024expire_mfc(struct mfc *rt)
1025{
1026	struct rtdetq *rte, *nrte;
1027
1028	MFC_LOCK_ASSERT();
1029
1030	free_bw_list(rt->mfc_bw_meter);
1031
1032	TAILQ_FOREACH_SAFE(rte, &rt->mfc_stall, rte_link, nrte) {
1033		m_freem(rte->m);
1034		TAILQ_REMOVE(&rt->mfc_stall, rte, rte_link);
1035		free(rte, M_MRTABLE);
1036	}
1037
1038	LIST_REMOVE(rt, mfc_hash);
1039	free(rt, M_MRTABLE);
1040}
1041
1042/*
1043 * Add an mfc entry
1044 */
1045static int
1046add_mfc(struct mfcctl2 *mfccp)
1047{
1048    struct mfc *rt;
1049    struct rtdetq *rte, *nrte;
1050    u_long hash = 0;
1051    u_short nstl;
1052
1053    VIF_LOCK();
1054    MFC_LOCK();
1055
1056    rt = mfc_find(&mfccp->mfcc_origin, &mfccp->mfcc_mcastgrp);
1057
1058    /* If an entry already exists, just update the fields */
1059    if (rt) {
1060	CTR4(KTR_IPMF, "%s: update mfc orig %s group %lx parent %x",
1061	    __func__, inet_ntoa(mfccp->mfcc_origin),
1062	    (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr),
1063	    mfccp->mfcc_parent);
1064	update_mfc_params(rt, mfccp);
1065	MFC_UNLOCK();
1066	VIF_UNLOCK();
1067	return (0);
1068    }
1069
1070    /*
1071     * Find the entry for which the upcall was made and update
1072     */
1073    nstl = 0;
1074    hash = MFCHASH(mfccp->mfcc_origin, mfccp->mfcc_mcastgrp);
1075    LIST_FOREACH(rt, &mfchashtbl[hash], mfc_hash) {
1076	if (in_hosteq(rt->mfc_origin, mfccp->mfcc_origin) &&
1077	    in_hosteq(rt->mfc_mcastgrp, mfccp->mfcc_mcastgrp) &&
1078	    !TAILQ_EMPTY(&rt->mfc_stall)) {
1079		CTR5(KTR_IPMF,
1080		    "%s: add mfc orig %s group %lx parent %x qh %p",
1081		    __func__, inet_ntoa(mfccp->mfcc_origin),
1082		    (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr),
1083		    mfccp->mfcc_parent,
1084		    TAILQ_FIRST(&rt->mfc_stall));
1085		if (nstl++)
1086			CTR1(KTR_IPMF, "%s: multiple matches", __func__);
1087
1088		init_mfc_params(rt, mfccp);
1089		rt->mfc_expire = 0;	/* Don't clean this guy up */
1090		nexpire[hash]--;
1091
1092		/* Free queued packets, but attempt to forward them first. */
1093		TAILQ_FOREACH_SAFE(rte, &rt->mfc_stall, rte_link, nrte) {
1094			if (rte->ifp != NULL)
1095				ip_mdq(rte->m, rte->ifp, rt, -1);
1096			m_freem(rte->m);
1097			TAILQ_REMOVE(&rt->mfc_stall, rte, rte_link);
1098			rt->mfc_nstall--;
1099			free(rte, M_MRTABLE);
1100		}
1101	}
1102    }
1103
1104    /*
1105     * It is possible that an entry is being inserted without an upcall
1106     */
1107    if (nstl == 0) {
1108	CTR1(KTR_IPMF, "%s: adding mfc w/o upcall", __func__);
1109	LIST_FOREACH(rt, &mfchashtbl[hash], mfc_hash) {
1110		if (in_hosteq(rt->mfc_origin, mfccp->mfcc_origin) &&
1111		    in_hosteq(rt->mfc_mcastgrp, mfccp->mfcc_mcastgrp)) {
1112			init_mfc_params(rt, mfccp);
1113			if (rt->mfc_expire)
1114			    nexpire[hash]--;
1115			rt->mfc_expire = 0;
1116			break; /* XXX */
1117		}
1118	}
1119
1120	if (rt == NULL) {		/* no upcall, so make a new entry */
1121	    rt = (struct mfc *)malloc(sizeof(*rt), M_MRTABLE, M_NOWAIT);
1122	    if (rt == NULL) {
1123		MFC_UNLOCK();
1124		VIF_UNLOCK();
1125		return (ENOBUFS);
1126	    }
1127
1128	    init_mfc_params(rt, mfccp);
1129	    TAILQ_INIT(&rt->mfc_stall);
1130	    rt->mfc_nstall = 0;
1131
1132	    rt->mfc_expire     = 0;
1133	    rt->mfc_bw_meter = NULL;
1134
1135	    /* insert new entry at head of hash chain */
1136	    LIST_INSERT_HEAD(&mfchashtbl[hash], rt, mfc_hash);
1137	}
1138    }
1139
1140    MFC_UNLOCK();
1141    VIF_UNLOCK();
1142
1143    return (0);
1144}
1145
1146/*
1147 * Delete an mfc entry
1148 */
1149static int
1150del_mfc(struct mfcctl2 *mfccp)
1151{
1152    struct in_addr	origin;
1153    struct in_addr	mcastgrp;
1154    struct mfc		*rt;
1155
1156    origin = mfccp->mfcc_origin;
1157    mcastgrp = mfccp->mfcc_mcastgrp;
1158
1159    CTR3(KTR_IPMF, "%s: delete mfc orig %s group %lx", __func__,
1160	inet_ntoa(origin), (u_long)ntohl(mcastgrp.s_addr));
1161
1162    MFC_LOCK();
1163
1164    rt = mfc_find(&origin, &mcastgrp);
1165    if (rt == NULL) {
1166	MFC_UNLOCK();
1167	return EADDRNOTAVAIL;
1168    }
1169
1170    /*
1171     * free the bw_meter entries
1172     */
1173    free_bw_list(rt->mfc_bw_meter);
1174    rt->mfc_bw_meter = NULL;
1175
1176    LIST_REMOVE(rt, mfc_hash);
1177    free(rt, M_MRTABLE);
1178
1179    MFC_UNLOCK();
1180
1181    return (0);
1182}
1183
1184/*
1185 * Send a message to the routing daemon on the multicast routing socket.
1186 */
1187static int
1188socket_send(struct socket *s, struct mbuf *mm, struct sockaddr_in *src)
1189{
1190    if (s) {
1191	SOCKBUF_LOCK(&s->so_rcv);
1192	if (sbappendaddr_locked(&s->so_rcv, (struct sockaddr *)src, mm,
1193	    NULL) != 0) {
1194	    sorwakeup_locked(s);
1195	    return 0;
1196	}
1197	SOCKBUF_UNLOCK(&s->so_rcv);
1198    }
1199    m_freem(mm);
1200    return -1;
1201}
1202
1203/*
1204 * IP multicast forwarding function. This function assumes that the packet
1205 * pointed to by "ip" has arrived on (or is about to be sent to) the interface
1206 * pointed to by "ifp", and the packet is to be relayed to other networks
1207 * that have members of the packet's destination IP multicast group.
1208 *
1209 * The packet is returned unscathed to the caller, unless it is
1210 * erroneous, in which case a non-zero return value tells the caller to
1211 * discard it.
1212 */
1213
1214#define TUNNEL_LEN  12  /* # bytes of IP option for tunnel encapsulation  */
1215
1216static int
1217X_ip_mforward(struct ip *ip, struct ifnet *ifp, struct mbuf *m,
1218    struct ip_moptions *imo)
1219{
1220    struct mfc *rt;
1221    int error;
1222    vifi_t vifi;
1223
1224    CTR3(KTR_IPMF, "ip_mforward: delete mfc orig %s group %lx ifp %p",
1225	inet_ntoa(ip->ip_src), (u_long)ntohl(ip->ip_dst.s_addr), ifp);
1226
1227    if (ip->ip_hl < (sizeof(struct ip) + TUNNEL_LEN) >> 2 ||
1228		((u_char *)(ip + 1))[1] != IPOPT_LSRR ) {
1229	/*
1230	 * Packet arrived via a physical interface or
1231	 * an encapsulated tunnel or a register_vif.
1232	 */
1233    } else {
1234	/*
1235	 * Packet arrived through a source-route tunnel.
1236	 * Source-route tunnels are no longer supported.
1237	 */
1238	return (1);
1239    }
1240
1241    VIF_LOCK();
1242    MFC_LOCK();
1243    if (imo && ((vifi = imo->imo_multicast_vif) < numvifs)) {
1244	if (ip->ip_ttl < MAXTTL)
1245	    ip->ip_ttl++;	/* compensate for -1 in *_send routines */
1246	error = ip_mdq(m, ifp, NULL, vifi);
1247	MFC_UNLOCK();
1248	VIF_UNLOCK();
1249	return error;
1250    }
1251
1252    /*
1253     * Don't forward a packet with time-to-live of zero or one,
1254     * or a packet destined to a local-only group.
1255     */
1256    if (ip->ip_ttl <= 1 || IN_LOCAL_GROUP(ntohl(ip->ip_dst.s_addr))) {
1257	MFC_UNLOCK();
1258	VIF_UNLOCK();
1259	return 0;
1260    }
1261
1262    /*
1263     * Determine forwarding vifs from the forwarding cache table
1264     */
1265    MRTSTAT_INC(mrts_mfc_lookups);
1266    rt = mfc_find(&ip->ip_src, &ip->ip_dst);
1267
1268    /* Entry exists, so forward if necessary */
1269    if (rt != NULL) {
1270	error = ip_mdq(m, ifp, rt, -1);
1271	MFC_UNLOCK();
1272	VIF_UNLOCK();
1273	return error;
1274    } else {
1275	/*
1276	 * If we don't have a route for packet's origin,
1277	 * Make a copy of the packet & send message to routing daemon
1278	 */
1279
1280	struct mbuf *mb0;
1281	struct rtdetq *rte;
1282	u_long hash;
1283	int hlen = ip->ip_hl << 2;
1284
1285	MRTSTAT_INC(mrts_mfc_misses);
1286	MRTSTAT_INC(mrts_no_route);
1287	CTR2(KTR_IPMF, "ip_mforward: no mfc for (%s,%lx)",
1288	    inet_ntoa(ip->ip_src), (u_long)ntohl(ip->ip_dst.s_addr));
1289
1290	/*
1291	 * Allocate mbufs early so that we don't do extra work if we are
1292	 * just going to fail anyway.  Make sure to pullup the header so
1293	 * that other people can't step on it.
1294	 */
1295	rte = (struct rtdetq *)malloc((sizeof *rte), M_MRTABLE,
1296	    M_NOWAIT|M_ZERO);
1297	if (rte == NULL) {
1298	    MFC_UNLOCK();
1299	    VIF_UNLOCK();
1300	    return ENOBUFS;
1301	}
1302
1303	mb0 = m_copypacket(m, M_DONTWAIT);
1304	if (mb0 && (M_HASCL(mb0) || mb0->m_len < hlen))
1305	    mb0 = m_pullup(mb0, hlen);
1306	if (mb0 == NULL) {
1307	    free(rte, M_MRTABLE);
1308	    MFC_UNLOCK();
1309	    VIF_UNLOCK();
1310	    return ENOBUFS;
1311	}
1312
1313	/* is there an upcall waiting for this flow ? */
1314	hash = MFCHASH(ip->ip_src, ip->ip_dst);
1315	LIST_FOREACH(rt, &mfchashtbl[hash], mfc_hash) {
1316		if (in_hosteq(ip->ip_src, rt->mfc_origin) &&
1317		    in_hosteq(ip->ip_dst, rt->mfc_mcastgrp) &&
1318		    !TAILQ_EMPTY(&rt->mfc_stall))
1319			break;
1320	}
1321
1322	if (rt == NULL) {
1323	    int i;
1324	    struct igmpmsg *im;
1325	    struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
1326	    struct mbuf *mm;
1327
1328	    /*
1329	     * Locate the vifi for the incoming interface for this packet.
1330	     * If none found, drop packet.
1331	     */
1332	    for (vifi = 0; vifi < numvifs &&
1333		    viftable[vifi].v_ifp != ifp; vifi++)
1334		;
1335	    if (vifi >= numvifs)	/* vif not found, drop packet */
1336		goto non_fatal;
1337
1338	    /* no upcall, so make a new entry */
1339	    rt = (struct mfc *)malloc(sizeof(*rt), M_MRTABLE, M_NOWAIT);
1340	    if (rt == NULL)
1341		goto fail;
1342
1343	    /* Make a copy of the header to send to the user level process */
1344	    mm = m_copy(mb0, 0, hlen);
1345	    if (mm == NULL)
1346		goto fail1;
1347
1348	    /*
1349	     * Send message to routing daemon to install
1350	     * a route into the kernel table
1351	     */
1352
1353	    im = mtod(mm, struct igmpmsg *);
1354	    im->im_msgtype = IGMPMSG_NOCACHE;
1355	    im->im_mbz = 0;
1356	    im->im_vif = vifi;
1357
1358	    MRTSTAT_INC(mrts_upcalls);
1359
1360	    k_igmpsrc.sin_addr = ip->ip_src;
1361	    if (socket_send(V_ip_mrouter, mm, &k_igmpsrc) < 0) {
1362		CTR0(KTR_IPMF, "ip_mforward: socket queue full");
1363		MRTSTAT_INC(mrts_upq_sockfull);
1364fail1:
1365		free(rt, M_MRTABLE);
1366fail:
1367		free(rte, M_MRTABLE);
1368		m_freem(mb0);
1369		MFC_UNLOCK();
1370		VIF_UNLOCK();
1371		return ENOBUFS;
1372	    }
1373
1374	    /* insert new entry at head of hash chain */
1375	    rt->mfc_origin.s_addr     = ip->ip_src.s_addr;
1376	    rt->mfc_mcastgrp.s_addr   = ip->ip_dst.s_addr;
1377	    rt->mfc_expire	      = UPCALL_EXPIRE;
1378	    nexpire[hash]++;
1379	    for (i = 0; i < numvifs; i++) {
1380		rt->mfc_ttls[i] = 0;
1381		rt->mfc_flags[i] = 0;
1382	    }
1383	    rt->mfc_parent = -1;
1384
1385	    /* clear the RP address */
1386	    rt->mfc_rp.s_addr = INADDR_ANY;
1387	    rt->mfc_bw_meter = NULL;
1388
1389	    /* initialize pkt counters per src-grp */
1390	    rt->mfc_pkt_cnt = 0;
1391	    rt->mfc_byte_cnt = 0;
1392	    rt->mfc_wrong_if = 0;
1393	    timevalclear(&rt->mfc_last_assert);
1394
1395	    TAILQ_INIT(&rt->mfc_stall);
1396	    rt->mfc_nstall = 0;
1397
1398	    /* link into table */
1399	    LIST_INSERT_HEAD(&mfchashtbl[hash], rt, mfc_hash);
1400	    TAILQ_INSERT_HEAD(&rt->mfc_stall, rte, rte_link);
1401	    rt->mfc_nstall++;
1402
1403	} else {
1404	    /* determine if queue has overflowed */
1405	    if (rt->mfc_nstall > MAX_UPQ) {
1406		MRTSTAT_INC(mrts_upq_ovflw);
1407non_fatal:
1408		free(rte, M_MRTABLE);
1409		m_freem(mb0);
1410		MFC_UNLOCK();
1411		VIF_UNLOCK();
1412		return (0);
1413	    }
1414	    TAILQ_INSERT_TAIL(&rt->mfc_stall, rte, rte_link);
1415	    rt->mfc_nstall++;
1416	}
1417
1418	rte->m			= mb0;
1419	rte->ifp		= ifp;
1420
1421	MFC_UNLOCK();
1422	VIF_UNLOCK();
1423
1424	return 0;
1425    }
1426}
1427
1428/*
1429 * Clean up the cache entry if upcall is not serviced
1430 */
1431static void
1432expire_upcalls(void *unused)
1433{
1434    int i;
1435
1436    MFC_LOCK();
1437
1438    for (i = 0; i < mfchashsize; i++) {
1439	struct mfc *rt, *nrt;
1440
1441	if (nexpire[i] == 0)
1442	    continue;
1443
1444	for (rt = LIST_FIRST(&mfchashtbl[i]); rt; rt = nrt) {
1445		nrt = LIST_NEXT(rt, mfc_hash);
1446
1447		if (TAILQ_EMPTY(&rt->mfc_stall))
1448			continue;
1449
1450		if (rt->mfc_expire == 0 || --rt->mfc_expire > 0)
1451			continue;
1452
1453		/*
1454		 * free the bw_meter entries
1455		 */
1456		while (rt->mfc_bw_meter != NULL) {
1457		    struct bw_meter *x = rt->mfc_bw_meter;
1458
1459		    rt->mfc_bw_meter = x->bm_mfc_next;
1460		    free(x, M_BWMETER);
1461		}
1462
1463		MRTSTAT_INC(mrts_cache_cleanups);
1464		CTR3(KTR_IPMF, "%s: expire (%lx, %lx)", __func__,
1465		    (u_long)ntohl(rt->mfc_origin.s_addr),
1466		    (u_long)ntohl(rt->mfc_mcastgrp.s_addr));
1467
1468		expire_mfc(rt);
1469	    }
1470    }
1471
1472    MFC_UNLOCK();
1473
1474    callout_reset(&expire_upcalls_ch, EXPIRE_TIMEOUT, expire_upcalls, NULL);
1475}
1476
1477/*
1478 * Packet forwarding routine once entry in the cache is made
1479 */
1480static int
1481ip_mdq(struct mbuf *m, struct ifnet *ifp, struct mfc *rt, vifi_t xmt_vif)
1482{
1483    struct ip  *ip = mtod(m, struct ip *);
1484    vifi_t vifi;
1485    int plen = ip->ip_len;
1486
1487    VIF_LOCK_ASSERT();
1488
1489    /*
1490     * If xmt_vif is not -1, send on only the requested vif.
1491     *
1492     * (since vifi_t is u_short, -1 becomes MAXUSHORT, which > numvifs.)
1493     */
1494    if (xmt_vif < numvifs) {
1495	if (viftable[xmt_vif].v_flags & VIFF_REGISTER)
1496		pim_register_send(ip, viftable + xmt_vif, m, rt);
1497	else
1498		phyint_send(ip, viftable + xmt_vif, m);
1499	return 1;
1500    }
1501
1502    /*
1503     * Don't forward if it didn't arrive from the parent vif for its origin.
1504     */
1505    vifi = rt->mfc_parent;
1506    if ((vifi >= numvifs) || (viftable[vifi].v_ifp != ifp)) {
1507	CTR4(KTR_IPMF, "%s: rx on wrong ifp %p (vifi %d, v_ifp %p)",
1508	    __func__, ifp, (int)vifi, viftable[vifi].v_ifp);
1509	MRTSTAT_INC(mrts_wrong_if);
1510	++rt->mfc_wrong_if;
1511	/*
1512	 * If we are doing PIM assert processing, send a message
1513	 * to the routing daemon.
1514	 *
1515	 * XXX: A PIM-SM router needs the WRONGVIF detection so it
1516	 * can complete the SPT switch, regardless of the type
1517	 * of the iif (broadcast media, GRE tunnel, etc).
1518	 */
1519	if (pim_assert_enabled && (vifi < numvifs) && viftable[vifi].v_ifp) {
1520
1521	    if (ifp == &multicast_register_if)
1522		PIMSTAT_INC(pims_rcv_registers_wrongiif);
1523
1524	    /* Get vifi for the incoming packet */
1525	    for (vifi=0; vifi < numvifs && viftable[vifi].v_ifp != ifp; vifi++)
1526		;
1527	    if (vifi >= numvifs)
1528		return 0;	/* The iif is not found: ignore the packet. */
1529
1530	    if (rt->mfc_flags[vifi] & MRT_MFC_FLAGS_DISABLE_WRONGVIF)
1531		return 0;	/* WRONGVIF disabled: ignore the packet */
1532
1533	    if (ratecheck(&rt->mfc_last_assert, &pim_assert_interval)) {
1534		struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
1535		struct igmpmsg *im;
1536		int hlen = ip->ip_hl << 2;
1537		struct mbuf *mm = m_copy(m, 0, hlen);
1538
1539		if (mm && (M_HASCL(mm) || mm->m_len < hlen))
1540		    mm = m_pullup(mm, hlen);
1541		if (mm == NULL)
1542		    return ENOBUFS;
1543
1544		im = mtod(mm, struct igmpmsg *);
1545		im->im_msgtype	= IGMPMSG_WRONGVIF;
1546		im->im_mbz		= 0;
1547		im->im_vif		= vifi;
1548
1549		MRTSTAT_INC(mrts_upcalls);
1550
1551		k_igmpsrc.sin_addr = im->im_src;
1552		if (socket_send(V_ip_mrouter, mm, &k_igmpsrc) < 0) {
1553		    CTR1(KTR_IPMF, "%s: socket queue full", __func__);
1554		    MRTSTAT_INC(mrts_upq_sockfull);
1555		    return ENOBUFS;
1556		}
1557	    }
1558	}
1559	return 0;
1560    }
1561
1562
1563    /* If I sourced this packet, it counts as output, else it was input. */
1564    if (in_hosteq(ip->ip_src, viftable[vifi].v_lcl_addr)) {
1565	viftable[vifi].v_pkt_out++;
1566	viftable[vifi].v_bytes_out += plen;
1567    } else {
1568	viftable[vifi].v_pkt_in++;
1569	viftable[vifi].v_bytes_in += plen;
1570    }
1571    rt->mfc_pkt_cnt++;
1572    rt->mfc_byte_cnt += plen;
1573
1574    /*
1575     * For each vif, decide if a copy of the packet should be forwarded.
1576     * Forward if:
1577     *		- the ttl exceeds the vif's threshold
1578     *		- there are group members downstream on interface
1579     */
1580    for (vifi = 0; vifi < numvifs; vifi++)
1581	if ((rt->mfc_ttls[vifi] > 0) && (ip->ip_ttl > rt->mfc_ttls[vifi])) {
1582	    viftable[vifi].v_pkt_out++;
1583	    viftable[vifi].v_bytes_out += plen;
1584	    if (viftable[vifi].v_flags & VIFF_REGISTER)
1585		pim_register_send(ip, viftable + vifi, m, rt);
1586	    else
1587		phyint_send(ip, viftable + vifi, m);
1588	}
1589
1590    /*
1591     * Perform upcall-related bw measuring.
1592     */
1593    if (rt->mfc_bw_meter != NULL) {
1594	struct bw_meter *x;
1595	struct timeval now;
1596
1597	microtime(&now);
1598	MFC_LOCK_ASSERT();
1599	for (x = rt->mfc_bw_meter; x != NULL; x = x->bm_mfc_next)
1600	    bw_meter_receive_packet(x, plen, &now);
1601    }
1602
1603    return 0;
1604}
1605
1606/*
1607 * Check if a vif number is legal/ok. This is used by in_mcast.c.
1608 */
1609static int
1610X_legal_vif_num(int vif)
1611{
1612	int ret;
1613
1614	ret = 0;
1615	if (vif < 0)
1616		return (ret);
1617
1618	VIF_LOCK();
1619	if (vif < numvifs)
1620		ret = 1;
1621	VIF_UNLOCK();
1622
1623	return (ret);
1624}
1625
1626/*
1627 * Return the local address used by this vif
1628 */
1629static u_long
1630X_ip_mcast_src(int vifi)
1631{
1632	in_addr_t addr;
1633
1634	addr = INADDR_ANY;
1635	if (vifi < 0)
1636		return (addr);
1637
1638	VIF_LOCK();
1639	if (vifi < numvifs)
1640		addr = viftable[vifi].v_lcl_addr.s_addr;
1641	VIF_UNLOCK();
1642
1643	return (addr);
1644}
1645
1646static void
1647phyint_send(struct ip *ip, struct vif *vifp, struct mbuf *m)
1648{
1649    struct mbuf *mb_copy;
1650    int hlen = ip->ip_hl << 2;
1651
1652    VIF_LOCK_ASSERT();
1653
1654    /*
1655     * Make a new reference to the packet; make sure that
1656     * the IP header is actually copied, not just referenced,
1657     * so that ip_output() only scribbles on the copy.
1658     */
1659    mb_copy = m_copypacket(m, M_DONTWAIT);
1660    if (mb_copy && (M_HASCL(mb_copy) || mb_copy->m_len < hlen))
1661	mb_copy = m_pullup(mb_copy, hlen);
1662    if (mb_copy == NULL)
1663	return;
1664
1665    send_packet(vifp, mb_copy);
1666}
1667
1668static void
1669send_packet(struct vif *vifp, struct mbuf *m)
1670{
1671	struct ip_moptions imo;
1672	struct in_multi *imm[2];
1673	int error;
1674
1675	VIF_LOCK_ASSERT();
1676
1677	imo.imo_multicast_ifp  = vifp->v_ifp;
1678	imo.imo_multicast_ttl  = mtod(m, struct ip *)->ip_ttl - 1;
1679	imo.imo_multicast_loop = 1;
1680	imo.imo_multicast_vif  = -1;
1681	imo.imo_num_memberships = 0;
1682	imo.imo_max_memberships = 2;
1683	imo.imo_membership  = &imm[0];
1684
1685	/*
1686	 * Re-entrancy should not be a problem here, because
1687	 * the packets that we send out and are looped back at us
1688	 * should get rejected because they appear to come from
1689	 * the loopback interface, thus preventing looping.
1690	 */
1691	error = ip_output(m, NULL, &vifp->v_route, IP_FORWARDING, &imo, NULL);
1692	CTR3(KTR_IPMF, "%s: vif %td err %d", __func__,
1693	    (ptrdiff_t)(vifp - viftable), error);
1694}
1695
1696/*
1697 * Stubs for old RSVP socket shim implementation.
1698 */
1699
1700static int
1701X_ip_rsvp_vif(struct socket *so __unused, struct sockopt *sopt __unused)
1702{
1703
1704	return (EOPNOTSUPP);
1705}
1706
1707static void
1708X_ip_rsvp_force_done(struct socket *so __unused)
1709{
1710
1711}
1712
1713static void
1714X_rsvp_input(struct mbuf *m, int off __unused)
1715{
1716
1717	if (!V_rsvp_on)
1718		m_freem(m);
1719}
1720
1721/*
1722 * Code for bandwidth monitors
1723 */
1724
1725/*
1726 * Define common interface for timeval-related methods
1727 */
1728#define	BW_TIMEVALCMP(tvp, uvp, cmp) timevalcmp((tvp), (uvp), cmp)
1729#define	BW_TIMEVALDECR(vvp, uvp) timevalsub((vvp), (uvp))
1730#define	BW_TIMEVALADD(vvp, uvp) timevaladd((vvp), (uvp))
1731
1732static uint32_t
1733compute_bw_meter_flags(struct bw_upcall *req)
1734{
1735    uint32_t flags = 0;
1736
1737    if (req->bu_flags & BW_UPCALL_UNIT_PACKETS)
1738	flags |= BW_METER_UNIT_PACKETS;
1739    if (req->bu_flags & BW_UPCALL_UNIT_BYTES)
1740	flags |= BW_METER_UNIT_BYTES;
1741    if (req->bu_flags & BW_UPCALL_GEQ)
1742	flags |= BW_METER_GEQ;
1743    if (req->bu_flags & BW_UPCALL_LEQ)
1744	flags |= BW_METER_LEQ;
1745
1746    return flags;
1747}
1748
1749/*
1750 * Add a bw_meter entry
1751 */
1752static int
1753add_bw_upcall(struct bw_upcall *req)
1754{
1755    struct mfc *mfc;
1756    struct timeval delta = { BW_UPCALL_THRESHOLD_INTERVAL_MIN_SEC,
1757		BW_UPCALL_THRESHOLD_INTERVAL_MIN_USEC };
1758    struct timeval now;
1759    struct bw_meter *x;
1760    uint32_t flags;
1761
1762    if (!(mrt_api_config & MRT_MFC_BW_UPCALL))
1763	return EOPNOTSUPP;
1764
1765    /* Test if the flags are valid */
1766    if (!(req->bu_flags & (BW_UPCALL_UNIT_PACKETS | BW_UPCALL_UNIT_BYTES)))
1767	return EINVAL;
1768    if (!(req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ)))
1769	return EINVAL;
1770    if ((req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ))
1771	    == (BW_UPCALL_GEQ | BW_UPCALL_LEQ))
1772	return EINVAL;
1773
1774    /* Test if the threshold time interval is valid */
1775    if (BW_TIMEVALCMP(&req->bu_threshold.b_time, &delta, <))
1776	return EINVAL;
1777
1778    flags = compute_bw_meter_flags(req);
1779
1780    /*
1781     * Find if we have already same bw_meter entry
1782     */
1783    MFC_LOCK();
1784    mfc = mfc_find(&req->bu_src, &req->bu_dst);
1785    if (mfc == NULL) {
1786	MFC_UNLOCK();
1787	return EADDRNOTAVAIL;
1788    }
1789    for (x = mfc->mfc_bw_meter; x != NULL; x = x->bm_mfc_next) {
1790	if ((BW_TIMEVALCMP(&x->bm_threshold.b_time,
1791			   &req->bu_threshold.b_time, ==)) &&
1792	    (x->bm_threshold.b_packets == req->bu_threshold.b_packets) &&
1793	    (x->bm_threshold.b_bytes == req->bu_threshold.b_bytes) &&
1794	    (x->bm_flags & BW_METER_USER_FLAGS) == flags)  {
1795	    MFC_UNLOCK();
1796	    return 0;		/* XXX Already installed */
1797	}
1798    }
1799
1800    /* Allocate the new bw_meter entry */
1801    x = (struct bw_meter *)malloc(sizeof(*x), M_BWMETER, M_NOWAIT);
1802    if (x == NULL) {
1803	MFC_UNLOCK();
1804	return ENOBUFS;
1805    }
1806
1807    /* Set the new bw_meter entry */
1808    x->bm_threshold.b_time = req->bu_threshold.b_time;
1809    microtime(&now);
1810    x->bm_start_time = now;
1811    x->bm_threshold.b_packets = req->bu_threshold.b_packets;
1812    x->bm_threshold.b_bytes = req->bu_threshold.b_bytes;
1813    x->bm_measured.b_packets = 0;
1814    x->bm_measured.b_bytes = 0;
1815    x->bm_flags = flags;
1816    x->bm_time_next = NULL;
1817    x->bm_time_hash = BW_METER_BUCKETS;
1818
1819    /* Add the new bw_meter entry to the front of entries for this MFC */
1820    x->bm_mfc = mfc;
1821    x->bm_mfc_next = mfc->mfc_bw_meter;
1822    mfc->mfc_bw_meter = x;
1823    schedule_bw_meter(x, &now);
1824    MFC_UNLOCK();
1825
1826    return 0;
1827}
1828
1829static void
1830free_bw_list(struct bw_meter *list)
1831{
1832    while (list != NULL) {
1833	struct bw_meter *x = list;
1834
1835	list = list->bm_mfc_next;
1836	unschedule_bw_meter(x);
1837	free(x, M_BWMETER);
1838    }
1839}
1840
1841/*
1842 * Delete one or multiple bw_meter entries
1843 */
1844static int
1845del_bw_upcall(struct bw_upcall *req)
1846{
1847    struct mfc *mfc;
1848    struct bw_meter *x;
1849
1850    if (!(mrt_api_config & MRT_MFC_BW_UPCALL))
1851	return EOPNOTSUPP;
1852
1853    MFC_LOCK();
1854
1855    /* Find the corresponding MFC entry */
1856    mfc = mfc_find(&req->bu_src, &req->bu_dst);
1857    if (mfc == NULL) {
1858	MFC_UNLOCK();
1859	return EADDRNOTAVAIL;
1860    } else if (req->bu_flags & BW_UPCALL_DELETE_ALL) {
1861	/*
1862	 * Delete all bw_meter entries for this mfc
1863	 */
1864	struct bw_meter *list;
1865
1866	list = mfc->mfc_bw_meter;
1867	mfc->mfc_bw_meter = NULL;
1868	free_bw_list(list);
1869	MFC_UNLOCK();
1870	return 0;
1871    } else {			/* Delete a single bw_meter entry */
1872	struct bw_meter *prev;
1873	uint32_t flags = 0;
1874
1875	flags = compute_bw_meter_flags(req);
1876
1877	/* Find the bw_meter entry to delete */
1878	for (prev = NULL, x = mfc->mfc_bw_meter; x != NULL;
1879	     prev = x, x = x->bm_mfc_next) {
1880	    if ((BW_TIMEVALCMP(&x->bm_threshold.b_time,
1881			       &req->bu_threshold.b_time, ==)) &&
1882		(x->bm_threshold.b_packets == req->bu_threshold.b_packets) &&
1883		(x->bm_threshold.b_bytes == req->bu_threshold.b_bytes) &&
1884		(x->bm_flags & BW_METER_USER_FLAGS) == flags)
1885		break;
1886	}
1887	if (x != NULL) { /* Delete entry from the list for this MFC */
1888	    if (prev != NULL)
1889		prev->bm_mfc_next = x->bm_mfc_next;	/* remove from middle*/
1890	    else
1891		x->bm_mfc->mfc_bw_meter = x->bm_mfc_next;/* new head of list */
1892
1893	    unschedule_bw_meter(x);
1894	    MFC_UNLOCK();
1895	    /* Free the bw_meter entry */
1896	    free(x, M_BWMETER);
1897	    return 0;
1898	} else {
1899	    MFC_UNLOCK();
1900	    return EINVAL;
1901	}
1902    }
1903    /* NOTREACHED */
1904}
1905
1906/*
1907 * Perform bandwidth measurement processing that may result in an upcall
1908 */
1909static void
1910bw_meter_receive_packet(struct bw_meter *x, int plen, struct timeval *nowp)
1911{
1912    struct timeval delta;
1913
1914    MFC_LOCK_ASSERT();
1915
1916    delta = *nowp;
1917    BW_TIMEVALDECR(&delta, &x->bm_start_time);
1918
1919    if (x->bm_flags & BW_METER_GEQ) {
1920	/*
1921	 * Processing for ">=" type of bw_meter entry
1922	 */
1923	if (BW_TIMEVALCMP(&delta, &x->bm_threshold.b_time, >)) {
1924	    /* Reset the bw_meter entry */
1925	    x->bm_start_time = *nowp;
1926	    x->bm_measured.b_packets = 0;
1927	    x->bm_measured.b_bytes = 0;
1928	    x->bm_flags &= ~BW_METER_UPCALL_DELIVERED;
1929	}
1930
1931	/* Record that a packet is received */
1932	x->bm_measured.b_packets++;
1933	x->bm_measured.b_bytes += plen;
1934
1935	/*
1936	 * Test if we should deliver an upcall
1937	 */
1938	if (!(x->bm_flags & BW_METER_UPCALL_DELIVERED)) {
1939	    if (((x->bm_flags & BW_METER_UNIT_PACKETS) &&
1940		 (x->bm_measured.b_packets >= x->bm_threshold.b_packets)) ||
1941		((x->bm_flags & BW_METER_UNIT_BYTES) &&
1942		 (x->bm_measured.b_bytes >= x->bm_threshold.b_bytes))) {
1943		/* Prepare an upcall for delivery */
1944		bw_meter_prepare_upcall(x, nowp);
1945		x->bm_flags |= BW_METER_UPCALL_DELIVERED;
1946	    }
1947	}
1948    } else if (x->bm_flags & BW_METER_LEQ) {
1949	/*
1950	 * Processing for "<=" type of bw_meter entry
1951	 */
1952	if (BW_TIMEVALCMP(&delta, &x->bm_threshold.b_time, >)) {
1953	    /*
1954	     * We are behind time with the multicast forwarding table
1955	     * scanning for "<=" type of bw_meter entries, so test now
1956	     * if we should deliver an upcall.
1957	     */
1958	    if (((x->bm_flags & BW_METER_UNIT_PACKETS) &&
1959		 (x->bm_measured.b_packets <= x->bm_threshold.b_packets)) ||
1960		((x->bm_flags & BW_METER_UNIT_BYTES) &&
1961		 (x->bm_measured.b_bytes <= x->bm_threshold.b_bytes))) {
1962		/* Prepare an upcall for delivery */
1963		bw_meter_prepare_upcall(x, nowp);
1964	    }
1965	    /* Reschedule the bw_meter entry */
1966	    unschedule_bw_meter(x);
1967	    schedule_bw_meter(x, nowp);
1968	}
1969
1970	/* Record that a packet is received */
1971	x->bm_measured.b_packets++;
1972	x->bm_measured.b_bytes += plen;
1973
1974	/*
1975	 * Test if we should restart the measuring interval
1976	 */
1977	if ((x->bm_flags & BW_METER_UNIT_PACKETS &&
1978	     x->bm_measured.b_packets <= x->bm_threshold.b_packets) ||
1979	    (x->bm_flags & BW_METER_UNIT_BYTES &&
1980	     x->bm_measured.b_bytes <= x->bm_threshold.b_bytes)) {
1981	    /* Don't restart the measuring interval */
1982	} else {
1983	    /* Do restart the measuring interval */
1984	    /*
1985	     * XXX: note that we don't unschedule and schedule, because this
1986	     * might be too much overhead per packet. Instead, when we process
1987	     * all entries for a given timer hash bin, we check whether it is
1988	     * really a timeout. If not, we reschedule at that time.
1989	     */
1990	    x->bm_start_time = *nowp;
1991	    x->bm_measured.b_packets = 0;
1992	    x->bm_measured.b_bytes = 0;
1993	    x->bm_flags &= ~BW_METER_UPCALL_DELIVERED;
1994	}
1995    }
1996}
1997
1998/*
1999 * Prepare a bandwidth-related upcall
2000 */
2001static void
2002bw_meter_prepare_upcall(struct bw_meter *x, struct timeval *nowp)
2003{
2004    struct timeval delta;
2005    struct bw_upcall *u;
2006
2007    MFC_LOCK_ASSERT();
2008
2009    /*
2010     * Compute the measured time interval
2011     */
2012    delta = *nowp;
2013    BW_TIMEVALDECR(&delta, &x->bm_start_time);
2014
2015    /*
2016     * If there are too many pending upcalls, deliver them now
2017     */
2018    if (bw_upcalls_n >= BW_UPCALLS_MAX)
2019	bw_upcalls_send();
2020
2021    /*
2022     * Set the bw_upcall entry
2023     */
2024    u = &bw_upcalls[bw_upcalls_n++];
2025    u->bu_src = x->bm_mfc->mfc_origin;
2026    u->bu_dst = x->bm_mfc->mfc_mcastgrp;
2027    u->bu_threshold.b_time = x->bm_threshold.b_time;
2028    u->bu_threshold.b_packets = x->bm_threshold.b_packets;
2029    u->bu_threshold.b_bytes = x->bm_threshold.b_bytes;
2030    u->bu_measured.b_time = delta;
2031    u->bu_measured.b_packets = x->bm_measured.b_packets;
2032    u->bu_measured.b_bytes = x->bm_measured.b_bytes;
2033    u->bu_flags = 0;
2034    if (x->bm_flags & BW_METER_UNIT_PACKETS)
2035	u->bu_flags |= BW_UPCALL_UNIT_PACKETS;
2036    if (x->bm_flags & BW_METER_UNIT_BYTES)
2037	u->bu_flags |= BW_UPCALL_UNIT_BYTES;
2038    if (x->bm_flags & BW_METER_GEQ)
2039	u->bu_flags |= BW_UPCALL_GEQ;
2040    if (x->bm_flags & BW_METER_LEQ)
2041	u->bu_flags |= BW_UPCALL_LEQ;
2042}
2043
2044/*
2045 * Send the pending bandwidth-related upcalls
2046 */
2047static void
2048bw_upcalls_send(void)
2049{
2050    struct mbuf *m;
2051    int len = bw_upcalls_n * sizeof(bw_upcalls[0]);
2052    struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
2053    static struct igmpmsg igmpmsg = { 0,		/* unused1 */
2054				      0,		/* unused2 */
2055				      IGMPMSG_BW_UPCALL,/* im_msgtype */
2056				      0,		/* im_mbz  */
2057				      0,		/* im_vif  */
2058				      0,		/* unused3 */
2059				      { 0 },		/* im_src  */
2060				      { 0 } };		/* im_dst  */
2061
2062    MFC_LOCK_ASSERT();
2063
2064    if (bw_upcalls_n == 0)
2065	return;			/* No pending upcalls */
2066
2067    bw_upcalls_n = 0;
2068
2069    /*
2070     * Allocate a new mbuf, initialize it with the header and
2071     * the payload for the pending calls.
2072     */
2073    MGETHDR(m, M_DONTWAIT, MT_DATA);
2074    if (m == NULL) {
2075	log(LOG_WARNING, "bw_upcalls_send: cannot allocate mbuf\n");
2076	return;
2077    }
2078
2079    m->m_len = m->m_pkthdr.len = 0;
2080    m_copyback(m, 0, sizeof(struct igmpmsg), (caddr_t)&igmpmsg);
2081    m_copyback(m, sizeof(struct igmpmsg), len, (caddr_t)&bw_upcalls[0]);
2082
2083    /*
2084     * Send the upcalls
2085     * XXX do we need to set the address in k_igmpsrc ?
2086     */
2087    MRTSTAT_INC(mrts_upcalls);
2088    if (socket_send(V_ip_mrouter, m, &k_igmpsrc) < 0) {
2089	log(LOG_WARNING, "bw_upcalls_send: ip_mrouter socket queue full\n");
2090	MRTSTAT_INC(mrts_upq_sockfull);
2091    }
2092}
2093
2094/*
2095 * Compute the timeout hash value for the bw_meter entries
2096 */
2097#define	BW_METER_TIMEHASH(bw_meter, hash)				\
2098    do {								\
2099	struct timeval next_timeval = (bw_meter)->bm_start_time;	\
2100									\
2101	BW_TIMEVALADD(&next_timeval, &(bw_meter)->bm_threshold.b_time); \
2102	(hash) = next_timeval.tv_sec;					\
2103	if (next_timeval.tv_usec)					\
2104	    (hash)++; /* XXX: make sure we don't timeout early */	\
2105	(hash) %= BW_METER_BUCKETS;					\
2106    } while (0)
2107
2108/*
2109 * Schedule a timer to process periodically bw_meter entry of type "<="
2110 * by linking the entry in the proper hash bucket.
2111 */
2112static void
2113schedule_bw_meter(struct bw_meter *x, struct timeval *nowp)
2114{
2115    int time_hash;
2116
2117    MFC_LOCK_ASSERT();
2118
2119    if (!(x->bm_flags & BW_METER_LEQ))
2120	return;		/* XXX: we schedule timers only for "<=" entries */
2121
2122    /*
2123     * Reset the bw_meter entry
2124     */
2125    x->bm_start_time = *nowp;
2126    x->bm_measured.b_packets = 0;
2127    x->bm_measured.b_bytes = 0;
2128    x->bm_flags &= ~BW_METER_UPCALL_DELIVERED;
2129
2130    /*
2131     * Compute the timeout hash value and insert the entry
2132     */
2133    BW_METER_TIMEHASH(x, time_hash);
2134    x->bm_time_next = bw_meter_timers[time_hash];
2135    bw_meter_timers[time_hash] = x;
2136    x->bm_time_hash = time_hash;
2137}
2138
2139/*
2140 * Unschedule the periodic timer that processes bw_meter entry of type "<="
2141 * by removing the entry from the proper hash bucket.
2142 */
2143static void
2144unschedule_bw_meter(struct bw_meter *x)
2145{
2146    int time_hash;
2147    struct bw_meter *prev, *tmp;
2148
2149    MFC_LOCK_ASSERT();
2150
2151    if (!(x->bm_flags & BW_METER_LEQ))
2152	return;		/* XXX: we schedule timers only for "<=" entries */
2153
2154    /*
2155     * Compute the timeout hash value and delete the entry
2156     */
2157    time_hash = x->bm_time_hash;
2158    if (time_hash >= BW_METER_BUCKETS)
2159	return;		/* Entry was not scheduled */
2160
2161    for (prev = NULL, tmp = bw_meter_timers[time_hash];
2162	     tmp != NULL; prev = tmp, tmp = tmp->bm_time_next)
2163	if (tmp == x)
2164	    break;
2165
2166    if (tmp == NULL)
2167	panic("unschedule_bw_meter: bw_meter entry not found");
2168
2169    if (prev != NULL)
2170	prev->bm_time_next = x->bm_time_next;
2171    else
2172	bw_meter_timers[time_hash] = x->bm_time_next;
2173
2174    x->bm_time_next = NULL;
2175    x->bm_time_hash = BW_METER_BUCKETS;
2176}
2177
2178
2179/*
2180 * Process all "<=" type of bw_meter that should be processed now,
2181 * and for each entry prepare an upcall if necessary. Each processed
2182 * entry is rescheduled again for the (periodic) processing.
2183 *
2184 * This is run periodically (once per second normally). On each round,
2185 * all the potentially matching entries are in the hash slot that we are
2186 * looking at.
2187 */
2188static void
2189bw_meter_process()
2190{
2191    static uint32_t last_tv_sec;	/* last time we processed this */
2192
2193    uint32_t loops;
2194    int i;
2195    struct timeval now, process_endtime;
2196
2197    microtime(&now);
2198    if (last_tv_sec == now.tv_sec)
2199	return;		/* nothing to do */
2200
2201    loops = now.tv_sec - last_tv_sec;
2202    last_tv_sec = now.tv_sec;
2203    if (loops > BW_METER_BUCKETS)
2204	loops = BW_METER_BUCKETS;
2205
2206    MFC_LOCK();
2207    /*
2208     * Process all bins of bw_meter entries from the one after the last
2209     * processed to the current one. On entry, i points to the last bucket
2210     * visited, so we need to increment i at the beginning of the loop.
2211     */
2212    for (i = (now.tv_sec - loops) % BW_METER_BUCKETS; loops > 0; loops--) {
2213	struct bw_meter *x, *tmp_list;
2214
2215	if (++i >= BW_METER_BUCKETS)
2216	    i = 0;
2217
2218	/* Disconnect the list of bw_meter entries from the bin */
2219	tmp_list = bw_meter_timers[i];
2220	bw_meter_timers[i] = NULL;
2221
2222	/* Process the list of bw_meter entries */
2223	while (tmp_list != NULL) {
2224	    x = tmp_list;
2225	    tmp_list = tmp_list->bm_time_next;
2226
2227	    /* Test if the time interval is over */
2228	    process_endtime = x->bm_start_time;
2229	    BW_TIMEVALADD(&process_endtime, &x->bm_threshold.b_time);
2230	    if (BW_TIMEVALCMP(&process_endtime, &now, >)) {
2231		/* Not yet: reschedule, but don't reset */
2232		int time_hash;
2233
2234		BW_METER_TIMEHASH(x, time_hash);
2235		if (time_hash == i && process_endtime.tv_sec == now.tv_sec) {
2236		    /*
2237		     * XXX: somehow the bin processing is a bit ahead of time.
2238		     * Put the entry in the next bin.
2239		     */
2240		    if (++time_hash >= BW_METER_BUCKETS)
2241			time_hash = 0;
2242		}
2243		x->bm_time_next = bw_meter_timers[time_hash];
2244		bw_meter_timers[time_hash] = x;
2245		x->bm_time_hash = time_hash;
2246
2247		continue;
2248	    }
2249
2250	    /*
2251	     * Test if we should deliver an upcall
2252	     */
2253	    if (((x->bm_flags & BW_METER_UNIT_PACKETS) &&
2254		 (x->bm_measured.b_packets <= x->bm_threshold.b_packets)) ||
2255		((x->bm_flags & BW_METER_UNIT_BYTES) &&
2256		 (x->bm_measured.b_bytes <= x->bm_threshold.b_bytes))) {
2257		/* Prepare an upcall for delivery */
2258		bw_meter_prepare_upcall(x, &now);
2259	    }
2260
2261	    /*
2262	     * Reschedule for next processing
2263	     */
2264	    schedule_bw_meter(x, &now);
2265	}
2266    }
2267
2268    /* Send all upcalls that are pending delivery */
2269    bw_upcalls_send();
2270
2271    MFC_UNLOCK();
2272}
2273
2274/*
2275 * A periodic function for sending all upcalls that are pending delivery
2276 */
2277static void
2278expire_bw_upcalls_send(void *unused)
2279{
2280    MFC_LOCK();
2281    bw_upcalls_send();
2282    MFC_UNLOCK();
2283
2284    callout_reset(&bw_upcalls_ch, BW_UPCALLS_PERIOD,
2285	expire_bw_upcalls_send, NULL);
2286}
2287
2288/*
2289 * A periodic function for periodic scanning of the multicast forwarding
2290 * table for processing all "<=" bw_meter entries.
2291 */
2292static void
2293expire_bw_meter_process(void *unused)
2294{
2295    if (mrt_api_config & MRT_MFC_BW_UPCALL)
2296	bw_meter_process();
2297
2298    callout_reset(&bw_meter_ch, BW_METER_PERIOD, expire_bw_meter_process, NULL);
2299}
2300
2301/*
2302 * End of bandwidth monitoring code
2303 */
2304
2305/*
2306 * Send the packet up to the user daemon, or eventually do kernel encapsulation
2307 *
2308 */
2309static int
2310pim_register_send(struct ip *ip, struct vif *vifp, struct mbuf *m,
2311    struct mfc *rt)
2312{
2313    struct mbuf *mb_copy, *mm;
2314
2315    /*
2316     * Do not send IGMP_WHOLEPKT notifications to userland, if the
2317     * rendezvous point was unspecified, and we were told not to.
2318     */
2319    if (pim_squelch_wholepkt != 0 && (mrt_api_config & MRT_MFC_RP) &&
2320	in_nullhost(rt->mfc_rp))
2321	return 0;
2322
2323    mb_copy = pim_register_prepare(ip, m);
2324    if (mb_copy == NULL)
2325	return ENOBUFS;
2326
2327    /*
2328     * Send all the fragments. Note that the mbuf for each fragment
2329     * is freed by the sending machinery.
2330     */
2331    for (mm = mb_copy; mm; mm = mb_copy) {
2332	mb_copy = mm->m_nextpkt;
2333	mm->m_nextpkt = 0;
2334	mm = m_pullup(mm, sizeof(struct ip));
2335	if (mm != NULL) {
2336	    ip = mtod(mm, struct ip *);
2337	    if ((mrt_api_config & MRT_MFC_RP) && !in_nullhost(rt->mfc_rp)) {
2338		pim_register_send_rp(ip, vifp, mm, rt);
2339	    } else {
2340		pim_register_send_upcall(ip, vifp, mm, rt);
2341	    }
2342	}
2343    }
2344
2345    return 0;
2346}
2347
2348/*
2349 * Return a copy of the data packet that is ready for PIM Register
2350 * encapsulation.
2351 * XXX: Note that in the returned copy the IP header is a valid one.
2352 */
2353static struct mbuf *
2354pim_register_prepare(struct ip *ip, struct mbuf *m)
2355{
2356    struct mbuf *mb_copy = NULL;
2357    int mtu;
2358
2359    /* Take care of delayed checksums */
2360    if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
2361	in_delayed_cksum(m);
2362	m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
2363    }
2364
2365    /*
2366     * Copy the old packet & pullup its IP header into the
2367     * new mbuf so we can modify it.
2368     */
2369    mb_copy = m_copypacket(m, M_DONTWAIT);
2370    if (mb_copy == NULL)
2371	return NULL;
2372    mb_copy = m_pullup(mb_copy, ip->ip_hl << 2);
2373    if (mb_copy == NULL)
2374	return NULL;
2375
2376    /* take care of the TTL */
2377    ip = mtod(mb_copy, struct ip *);
2378    --ip->ip_ttl;
2379
2380    /* Compute the MTU after the PIM Register encapsulation */
2381    mtu = 0xffff - sizeof(pim_encap_iphdr) - sizeof(pim_encap_pimhdr);
2382
2383    if (ip->ip_len <= mtu) {
2384	/* Turn the IP header into a valid one */
2385	ip->ip_len = htons(ip->ip_len);
2386	ip->ip_off = htons(ip->ip_off);
2387	ip->ip_sum = 0;
2388	ip->ip_sum = in_cksum(mb_copy, ip->ip_hl << 2);
2389    } else {
2390	/* Fragment the packet */
2391	if (ip_fragment(ip, &mb_copy, mtu, 0, CSUM_DELAY_IP) != 0) {
2392	    m_freem(mb_copy);
2393	    return NULL;
2394	}
2395    }
2396    return mb_copy;
2397}
2398
2399/*
2400 * Send an upcall with the data packet to the user-level process.
2401 */
2402static int
2403pim_register_send_upcall(struct ip *ip, struct vif *vifp,
2404    struct mbuf *mb_copy, struct mfc *rt)
2405{
2406    struct mbuf *mb_first;
2407    int len = ntohs(ip->ip_len);
2408    struct igmpmsg *im;
2409    struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
2410
2411    VIF_LOCK_ASSERT();
2412
2413    /*
2414     * Add a new mbuf with an upcall header
2415     */
2416    MGETHDR(mb_first, M_DONTWAIT, MT_DATA);
2417    if (mb_first == NULL) {
2418	m_freem(mb_copy);
2419	return ENOBUFS;
2420    }
2421    mb_first->m_data += max_linkhdr;
2422    mb_first->m_pkthdr.len = len + sizeof(struct igmpmsg);
2423    mb_first->m_len = sizeof(struct igmpmsg);
2424    mb_first->m_next = mb_copy;
2425
2426    /* Send message to routing daemon */
2427    im = mtod(mb_first, struct igmpmsg *);
2428    im->im_msgtype	= IGMPMSG_WHOLEPKT;
2429    im->im_mbz		= 0;
2430    im->im_vif		= vifp - viftable;
2431    im->im_src		= ip->ip_src;
2432    im->im_dst		= ip->ip_dst;
2433
2434    k_igmpsrc.sin_addr	= ip->ip_src;
2435
2436    MRTSTAT_INC(mrts_upcalls);
2437
2438    if (socket_send(V_ip_mrouter, mb_first, &k_igmpsrc) < 0) {
2439	CTR1(KTR_IPMF, "%s: socket queue full", __func__);
2440	MRTSTAT_INC(mrts_upq_sockfull);
2441	return ENOBUFS;
2442    }
2443
2444    /* Keep statistics */
2445    PIMSTAT_INC(pims_snd_registers_msgs);
2446    PIMSTAT_ADD(pims_snd_registers_bytes, len);
2447
2448    return 0;
2449}
2450
2451/*
2452 * Encapsulate the data packet in PIM Register message and send it to the RP.
2453 */
2454static int
2455pim_register_send_rp(struct ip *ip, struct vif *vifp, struct mbuf *mb_copy,
2456    struct mfc *rt)
2457{
2458    struct mbuf *mb_first;
2459    struct ip *ip_outer;
2460    struct pim_encap_pimhdr *pimhdr;
2461    int len = ntohs(ip->ip_len);
2462    vifi_t vifi = rt->mfc_parent;
2463
2464    VIF_LOCK_ASSERT();
2465
2466    if ((vifi >= numvifs) || in_nullhost(viftable[vifi].v_lcl_addr)) {
2467	m_freem(mb_copy);
2468	return EADDRNOTAVAIL;		/* The iif vif is invalid */
2469    }
2470
2471    /*
2472     * Add a new mbuf with the encapsulating header
2473     */
2474    MGETHDR(mb_first, M_DONTWAIT, MT_DATA);
2475    if (mb_first == NULL) {
2476	m_freem(mb_copy);
2477	return ENOBUFS;
2478    }
2479    mb_first->m_data += max_linkhdr;
2480    mb_first->m_len = sizeof(pim_encap_iphdr) + sizeof(pim_encap_pimhdr);
2481    mb_first->m_next = mb_copy;
2482
2483    mb_first->m_pkthdr.len = len + mb_first->m_len;
2484
2485    /*
2486     * Fill in the encapsulating IP and PIM header
2487     */
2488    ip_outer = mtod(mb_first, struct ip *);
2489    *ip_outer = pim_encap_iphdr;
2490    ip_outer->ip_id = ip_newid();
2491    ip_outer->ip_len = len + sizeof(pim_encap_iphdr) + sizeof(pim_encap_pimhdr);
2492    ip_outer->ip_src = viftable[vifi].v_lcl_addr;
2493    ip_outer->ip_dst = rt->mfc_rp;
2494    /*
2495     * Copy the inner header TOS to the outer header, and take care of the
2496     * IP_DF bit.
2497     */
2498    ip_outer->ip_tos = ip->ip_tos;
2499    if (ntohs(ip->ip_off) & IP_DF)
2500	ip_outer->ip_off |= IP_DF;
2501    pimhdr = (struct pim_encap_pimhdr *)((caddr_t)ip_outer
2502					 + sizeof(pim_encap_iphdr));
2503    *pimhdr = pim_encap_pimhdr;
2504    /* If the iif crosses a border, set the Border-bit */
2505    if (rt->mfc_flags[vifi] & MRT_MFC_FLAGS_BORDER_VIF & mrt_api_config)
2506	pimhdr->flags |= htonl(PIM_BORDER_REGISTER);
2507
2508    mb_first->m_data += sizeof(pim_encap_iphdr);
2509    pimhdr->pim.pim_cksum = in_cksum(mb_first, sizeof(pim_encap_pimhdr));
2510    mb_first->m_data -= sizeof(pim_encap_iphdr);
2511
2512    send_packet(vifp, mb_first);
2513
2514    /* Keep statistics */
2515    PIMSTAT_INC(pims_snd_registers_msgs);
2516    PIMSTAT_ADD(pims_snd_registers_bytes, len);
2517
2518    return 0;
2519}
2520
2521/*
2522 * pim_encapcheck() is called by the encap4_input() path at runtime to
2523 * determine if a packet is for PIM; allowing PIM to be dynamically loaded
2524 * into the kernel.
2525 */
2526static int
2527pim_encapcheck(const struct mbuf *m, int off, int proto, void *arg)
2528{
2529
2530#ifdef DIAGNOSTIC
2531    KASSERT(proto == IPPROTO_PIM, ("not for IPPROTO_PIM"));
2532#endif
2533    if (proto != IPPROTO_PIM)
2534	return 0;	/* not for us; reject the datagram. */
2535
2536    return 64;		/* claim the datagram. */
2537}
2538
2539/*
2540 * PIM-SMv2 and PIM-DM messages processing.
2541 * Receives and verifies the PIM control messages, and passes them
2542 * up to the listening socket, using rip_input().
2543 * The only message with special processing is the PIM_REGISTER message
2544 * (used by PIM-SM): the PIM header is stripped off, and the inner packet
2545 * is passed to if_simloop().
2546 */
2547void
2548pim_input(struct mbuf *m, int off)
2549{
2550    struct ip *ip = mtod(m, struct ip *);
2551    struct pim *pim;
2552    int minlen;
2553    int datalen = ip->ip_len;
2554    int ip_tos;
2555    int iphlen = off;
2556
2557    /* Keep statistics */
2558    PIMSTAT_INC(pims_rcv_total_msgs);
2559    PIMSTAT_ADD(pims_rcv_total_bytes, datalen);
2560
2561    /*
2562     * Validate lengths
2563     */
2564    if (datalen < PIM_MINLEN) {
2565	PIMSTAT_INC(pims_rcv_tooshort);
2566	CTR3(KTR_IPMF, "%s: short packet (%d) from %s",
2567	    __func__, datalen, inet_ntoa(ip->ip_src));
2568	m_freem(m);
2569	return;
2570    }
2571
2572    /*
2573     * If the packet is at least as big as a REGISTER, go agead
2574     * and grab the PIM REGISTER header size, to avoid another
2575     * possible m_pullup() later.
2576     *
2577     * PIM_MINLEN       == pimhdr + u_int32_t == 4 + 4 = 8
2578     * PIM_REG_MINLEN   == pimhdr + reghdr + encap_iphdr == 4 + 4 + 20 = 28
2579     */
2580    minlen = iphlen + (datalen >= PIM_REG_MINLEN ? PIM_REG_MINLEN : PIM_MINLEN);
2581    /*
2582     * Get the IP and PIM headers in contiguous memory, and
2583     * possibly the PIM REGISTER header.
2584     */
2585    if ((m->m_flags & M_EXT || m->m_len < minlen) &&
2586	(m = m_pullup(m, minlen)) == 0) {
2587	CTR1(KTR_IPMF, "%s: m_pullup() failed", __func__);
2588	return;
2589    }
2590
2591    /* m_pullup() may have given us a new mbuf so reset ip. */
2592    ip = mtod(m, struct ip *);
2593    ip_tos = ip->ip_tos;
2594
2595    /* adjust mbuf to point to the PIM header */
2596    m->m_data += iphlen;
2597    m->m_len  -= iphlen;
2598    pim = mtod(m, struct pim *);
2599
2600    /*
2601     * Validate checksum. If PIM REGISTER, exclude the data packet.
2602     *
2603     * XXX: some older PIMv2 implementations don't make this distinction,
2604     * so for compatibility reason perform the checksum over part of the
2605     * message, and if error, then over the whole message.
2606     */
2607    if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER && in_cksum(m, PIM_MINLEN) == 0) {
2608	/* do nothing, checksum okay */
2609    } else if (in_cksum(m, datalen)) {
2610	PIMSTAT_INC(pims_rcv_badsum);
2611	CTR1(KTR_IPMF, "%s: invalid checksum", __func__);
2612	m_freem(m);
2613	return;
2614    }
2615
2616    /* PIM version check */
2617    if (PIM_VT_V(pim->pim_vt) < PIM_VERSION) {
2618	PIMSTAT_INC(pims_rcv_badversion);
2619	CTR3(KTR_IPMF, "%s: bad version %d expect %d", __func__,
2620	    (int)PIM_VT_V(pim->pim_vt), PIM_VERSION);
2621	m_freem(m);
2622	return;
2623    }
2624
2625    /* restore mbuf back to the outer IP */
2626    m->m_data -= iphlen;
2627    m->m_len  += iphlen;
2628
2629    if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER) {
2630	/*
2631	 * Since this is a REGISTER, we'll make a copy of the register
2632	 * headers ip + pim + u_int32 + encap_ip, to be passed up to the
2633	 * routing daemon.
2634	 */
2635	struct sockaddr_in dst = { sizeof(dst), AF_INET };
2636	struct mbuf *mcp;
2637	struct ip *encap_ip;
2638	u_int32_t *reghdr;
2639	struct ifnet *vifp;
2640
2641	VIF_LOCK();
2642	if ((reg_vif_num >= numvifs) || (reg_vif_num == VIFI_INVALID)) {
2643	    VIF_UNLOCK();
2644	    CTR2(KTR_IPMF, "%s: register vif not set: %d", __func__,
2645		(int)reg_vif_num);
2646	    m_freem(m);
2647	    return;
2648	}
2649	/* XXX need refcnt? */
2650	vifp = viftable[reg_vif_num].v_ifp;
2651	VIF_UNLOCK();
2652
2653	/*
2654	 * Validate length
2655	 */
2656	if (datalen < PIM_REG_MINLEN) {
2657	    PIMSTAT_INC(pims_rcv_tooshort);
2658	    PIMSTAT_INC(pims_rcv_badregisters);
2659	    CTR1(KTR_IPMF, "%s: register packet size too small", __func__);
2660	    m_freem(m);
2661	    return;
2662	}
2663
2664	reghdr = (u_int32_t *)(pim + 1);
2665	encap_ip = (struct ip *)(reghdr + 1);
2666
2667	CTR3(KTR_IPMF, "%s: register: encap ip src %s len %d",
2668	    __func__, inet_ntoa(encap_ip->ip_src), ntohs(encap_ip->ip_len));
2669
2670	/* verify the version number of the inner packet */
2671	if (encap_ip->ip_v != IPVERSION) {
2672	    PIMSTAT_INC(pims_rcv_badregisters);
2673	    CTR1(KTR_IPMF, "%s: bad encap ip version", __func__);
2674	    m_freem(m);
2675	    return;
2676	}
2677
2678	/* verify the inner packet is destined to a mcast group */
2679	if (!IN_MULTICAST(ntohl(encap_ip->ip_dst.s_addr))) {
2680	    PIMSTAT_INC(pims_rcv_badregisters);
2681	    CTR2(KTR_IPMF, "%s: bad encap ip dest %s", __func__,
2682		inet_ntoa(encap_ip->ip_dst));
2683	    m_freem(m);
2684	    return;
2685	}
2686
2687	/* If a NULL_REGISTER, pass it to the daemon */
2688	if ((ntohl(*reghdr) & PIM_NULL_REGISTER))
2689	    goto pim_input_to_daemon;
2690
2691	/*
2692	 * Copy the TOS from the outer IP header to the inner IP header.
2693	 */
2694	if (encap_ip->ip_tos != ip_tos) {
2695	    /* Outer TOS -> inner TOS */
2696	    encap_ip->ip_tos = ip_tos;
2697	    /* Recompute the inner header checksum. Sigh... */
2698
2699	    /* adjust mbuf to point to the inner IP header */
2700	    m->m_data += (iphlen + PIM_MINLEN);
2701	    m->m_len  -= (iphlen + PIM_MINLEN);
2702
2703	    encap_ip->ip_sum = 0;
2704	    encap_ip->ip_sum = in_cksum(m, encap_ip->ip_hl << 2);
2705
2706	    /* restore mbuf to point back to the outer IP header */
2707	    m->m_data -= (iphlen + PIM_MINLEN);
2708	    m->m_len  += (iphlen + PIM_MINLEN);
2709	}
2710
2711	/*
2712	 * Decapsulate the inner IP packet and loopback to forward it
2713	 * as a normal multicast packet. Also, make a copy of the
2714	 *     outer_iphdr + pimhdr + reghdr + encap_iphdr
2715	 * to pass to the daemon later, so it can take the appropriate
2716	 * actions (e.g., send back PIM_REGISTER_STOP).
2717	 * XXX: here m->m_data points to the outer IP header.
2718	 */
2719	mcp = m_copy(m, 0, iphlen + PIM_REG_MINLEN);
2720	if (mcp == NULL) {
2721	    CTR1(KTR_IPMF, "%s: m_copy() failed", __func__);
2722	    m_freem(m);
2723	    return;
2724	}
2725
2726	/* Keep statistics */
2727	/* XXX: registers_bytes include only the encap. mcast pkt */
2728	PIMSTAT_INC(pims_rcv_registers_msgs);
2729	PIMSTAT_ADD(pims_rcv_registers_bytes, ntohs(encap_ip->ip_len));
2730
2731	/*
2732	 * forward the inner ip packet; point m_data at the inner ip.
2733	 */
2734	m_adj(m, iphlen + PIM_MINLEN);
2735
2736	CTR4(KTR_IPMF,
2737	    "%s: forward decap'd REGISTER: src %lx dst %lx vif %d",
2738	    __func__,
2739	    (u_long)ntohl(encap_ip->ip_src.s_addr),
2740	    (u_long)ntohl(encap_ip->ip_dst.s_addr),
2741	    (int)reg_vif_num);
2742
2743	/* NB: vifp was collected above; can it change on us? */
2744	if_simloop(vifp, m, dst.sin_family, 0);
2745
2746	/* prepare the register head to send to the mrouting daemon */
2747	m = mcp;
2748    }
2749
2750pim_input_to_daemon:
2751    /*
2752     * Pass the PIM message up to the daemon; if it is a Register message,
2753     * pass the 'head' only up to the daemon. This includes the
2754     * outer IP header, PIM header, PIM-Register header and the
2755     * inner IP header.
2756     * XXX: the outer IP header pkt size of a Register is not adjust to
2757     * reflect the fact that the inner multicast data is truncated.
2758     */
2759    rip_input(m, iphlen);
2760
2761    return;
2762}
2763
2764static int
2765sysctl_mfctable(SYSCTL_HANDLER_ARGS)
2766{
2767	struct mfc	*rt;
2768	int		 error, i;
2769
2770	if (req->newptr)
2771		return (EPERM);
2772	if (mfchashtbl == NULL)	/* XXX unlocked */
2773		return (0);
2774	error = sysctl_wire_old_buffer(req, 0);
2775	if (error)
2776		return (error);
2777
2778	MFC_LOCK();
2779	for (i = 0; i < mfchashsize; i++) {
2780		LIST_FOREACH(rt, &mfchashtbl[i], mfc_hash) {
2781			error = SYSCTL_OUT(req, rt, sizeof(struct mfc));
2782			if (error)
2783				goto out_locked;
2784		}
2785	}
2786out_locked:
2787	MFC_UNLOCK();
2788	return (error);
2789}
2790
2791SYSCTL_NODE(_net_inet_ip, OID_AUTO, mfctable, CTLFLAG_RD, sysctl_mfctable,
2792    "IPv4 Multicast Forwarding Table (struct *mfc[mfchashsize], "
2793    "netinet/ip_mroute.h)");
2794
2795static int
2796ip_mroute_modevent(module_t mod, int type, void *unused)
2797{
2798
2799    switch (type) {
2800    case MOD_LOAD:
2801	MROUTER_LOCK_INIT();
2802	MFC_LOCK_INIT();
2803	VIF_LOCK_INIT();
2804
2805	mfchashsize = MFCHASHSIZE;
2806	if (TUNABLE_ULONG_FETCH("net.inet.ip.mfchashsize", &mfchashsize) &&
2807	    !powerof2(mfchashsize)) {
2808		printf("WARNING: %s not a power of 2; using default\n",
2809		    "net.inet.ip.mfchashsize");
2810		mfchashsize = MFCHASHSIZE;
2811	}
2812	MALLOC(nexpire, u_char *, mfchashsize, M_MRTABLE, M_WAITOK|M_ZERO);
2813
2814	pim_squelch_wholepkt = 0;
2815	TUNABLE_ULONG_FETCH("net.inet.pim.squelch_wholepkt",
2816	    &pim_squelch_wholepkt);
2817	ip_mrouter_reset();
2818
2819	pim_encap_cookie = encap_attach_func(AF_INET, IPPROTO_PIM,
2820	    pim_encapcheck, &in_pim_protosw, NULL);
2821	if (pim_encap_cookie == NULL) {
2822		printf("ip_mroute: unable to attach pim encap\n");
2823		VIF_LOCK_DESTROY();
2824		MFC_LOCK_DESTROY();
2825		MROUTER_LOCK_DESTROY();
2826		return (EINVAL);
2827	}
2828
2829	ip_mcast_src = X_ip_mcast_src;
2830	ip_mforward = X_ip_mforward;
2831	ip_mrouter_done = X_ip_mrouter_done;
2832	ip_mrouter_get = X_ip_mrouter_get;
2833	ip_mrouter_set = X_ip_mrouter_set;
2834
2835	ip_rsvp_force_done = X_ip_rsvp_force_done;
2836	ip_rsvp_vif = X_ip_rsvp_vif;
2837
2838	legal_vif_num = X_legal_vif_num;
2839	mrt_ioctl = X_mrt_ioctl;
2840	rsvp_input_p = X_rsvp_input;
2841	break;
2842
2843    case MOD_UNLOAD:
2844	/*
2845	 * Typically module unload happens after the user-level
2846	 * process has shutdown the kernel services (the check
2847	 * below insures someone can't just yank the module out
2848	 * from under a running process).  But if the module is
2849	 * just loaded and then unloaded w/o starting up a user
2850	 * process we still need to cleanup.
2851	 */
2852	if (V_ip_mrouter != NULL)
2853	    return (EINVAL);
2854
2855	if (pim_encap_cookie) {
2856	    encap_detach(pim_encap_cookie);
2857	    pim_encap_cookie = NULL;
2858	}
2859	X_ip_mrouter_done();
2860
2861	FREE(nexpire, M_MRTABLE);
2862	nexpire = NULL;
2863
2864	ip_mcast_src = NULL;
2865	ip_mforward = NULL;
2866	ip_mrouter_done = NULL;
2867	ip_mrouter_get = NULL;
2868	ip_mrouter_set = NULL;
2869
2870	ip_rsvp_force_done = NULL;
2871	ip_rsvp_vif = NULL;
2872
2873	legal_vif_num = NULL;
2874	mrt_ioctl = NULL;
2875	rsvp_input_p = NULL;
2876
2877	VIF_LOCK_DESTROY();
2878	MFC_LOCK_DESTROY();
2879	MROUTER_LOCK_DESTROY();
2880	break;
2881
2882    default:
2883	return EOPNOTSUPP;
2884    }
2885    return 0;
2886}
2887
2888static moduledata_t ip_mroutemod = {
2889    "ip_mroute",
2890    ip_mroute_modevent,
2891    0
2892};
2893
2894DECLARE_MODULE(ip_mroute, ip_mroutemod, SI_SUB_PSEUDO, SI_ORDER_ANY);
2895