ip_mroute.c revision 197148
1/*-
2 * Copyright (c) 1989 Stephen Deering
3 * Copyright (c) 1992, 1993
4 *      The Regents of the University of California.  All rights reserved.
5 *
6 * This code is derived from software contributed to Berkeley by
7 * Stephen Deering of Stanford University.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in the
16 *    documentation and/or other materials provided with the distribution.
17 * 4. Neither the name of the University nor the names of its contributors
18 *    may be used to endorse or promote products derived from this software
19 *    without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 *
33 *      @(#)ip_mroute.c 8.2 (Berkeley) 11/15/93
34 */
35
36/*
37 * IP multicast forwarding procedures
38 *
39 * Written by David Waitzman, BBN Labs, August 1988.
40 * Modified by Steve Deering, Stanford, February 1989.
41 * Modified by Mark J. Steiglitz, Stanford, May, 1991
42 * Modified by Van Jacobson, LBL, January 1993
43 * Modified by Ajit Thyagarajan, PARC, August 1993
44 * Modified by Bill Fenner, PARC, April 1995
45 * Modified by Ahmed Helmy, SGI, June 1996
46 * Modified by George Edmond Eddy (Rusty), ISI, February 1998
47 * Modified by Pavlin Radoslavov, USC/ISI, May 1998, August 1999, October 2000
48 * Modified by Hitoshi Asaeda, WIDE, August 2000
49 * Modified by Pavlin Radoslavov, ICSI, October 2002
50 *
51 * MROUTING Revision: 3.5
52 * and PIM-SMv2 and PIM-DM support, advanced API support,
53 * bandwidth metering and signaling
54 */
55
56/*
57 * TODO: Prefix functions with ipmf_.
58 * TODO: Maintain a refcount on if_allmulti() in ifnet or in the protocol
59 * domain attachment (if_afdata) so we can track consumers of that service.
60 * TODO: Deprecate routing socket path for SIOCGETSGCNT and SIOCGETVIFCNT,
61 * move it to socket options.
62 * TODO: Cleanup LSRR removal further.
63 * TODO: Push RSVP stubs into raw_ip.c.
64 * TODO: Use bitstring.h for vif set.
65 * TODO: Fix mrt6_ioctl dangling ref when dynamically loaded.
66 * TODO: Sync ip6_mroute.c with this file.
67 */
68
69#include <sys/cdefs.h>
70__FBSDID("$FreeBSD: head/sys/netinet/ip_mroute.c 197148 2009-09-13 01:00:24Z bms $");
71
72#include "opt_inet.h"
73#include "opt_mrouting.h"
74
75#define _PIM_VT 1
76
77#include <sys/param.h>
78#include <sys/kernel.h>
79#include <sys/stddef.h>
80#include <sys/lock.h>
81#include <sys/ktr.h>
82#include <sys/malloc.h>
83#include <sys/mbuf.h>
84#include <sys/module.h>
85#include <sys/priv.h>
86#include <sys/protosw.h>
87#include <sys/signalvar.h>
88#include <sys/socket.h>
89#include <sys/socketvar.h>
90#include <sys/sockio.h>
91#include <sys/sx.h>
92#include <sys/sysctl.h>
93#include <sys/syslog.h>
94#include <sys/systm.h>
95#include <sys/time.h>
96
97#include <net/if.h>
98#include <net/netisr.h>
99#include <net/route.h>
100#include <net/vnet.h>
101
102#include <netinet/in.h>
103#include <netinet/igmp.h>
104#include <netinet/in_systm.h>
105#include <netinet/in_var.h>
106#include <netinet/ip.h>
107#include <netinet/ip_encap.h>
108#include <netinet/ip_mroute.h>
109#include <netinet/ip_var.h>
110#include <netinet/ip_options.h>
111#include <netinet/pim.h>
112#include <netinet/pim_var.h>
113#include <netinet/udp.h>
114
115#include <machine/in_cksum.h>
116
117#include <security/mac/mac_framework.h>
118
119#ifndef KTR_IPMF
120#define KTR_IPMF KTR_INET
121#endif
122
123#define		VIFI_INVALID	((vifi_t) -1)
124#define		M_HASCL(m)	((m)->m_flags & M_EXT)
125
126static MALLOC_DEFINE(M_MRTABLE, "mroutetbl", "multicast forwarding cache");
127
128/*
129 * Locking.  We use two locks: one for the virtual interface table and
130 * one for the forwarding table.  These locks may be nested in which case
131 * the VIF lock must always be taken first.  Note that each lock is used
132 * to cover not only the specific data structure but also related data
133 * structures.
134 */
135
136static struct mtx mrouter_mtx;
137#define	MROUTER_LOCK()		mtx_lock(&mrouter_mtx)
138#define	MROUTER_UNLOCK()	mtx_unlock(&mrouter_mtx)
139#define	MROUTER_LOCK_ASSERT()	mtx_assert(&mrouter_mtx, MA_OWNED)
140#define	MROUTER_LOCK_INIT()						\
141	mtx_init(&mrouter_mtx, "IPv4 multicast forwarding", NULL, MTX_DEF)
142#define	MROUTER_LOCK_DESTROY()	mtx_destroy(&mrouter_mtx)
143
144static struct mrtstat	mrtstat;
145SYSCTL_STRUCT(_net_inet_ip, OID_AUTO, mrtstat, CTLFLAG_RW,
146    &mrtstat, mrtstat,
147    "IPv4 Multicast Forwarding Statistics (struct mrtstat, "
148    "netinet/ip_mroute.h)");
149
150static u_long			 mfchash;
151#define MFCHASH(a, g)							\
152	((((a).s_addr >> 20) ^ ((a).s_addr >> 10) ^ (a).s_addr ^ \
153	  ((g).s_addr >> 20) ^ ((g).s_addr >> 10) ^ (g).s_addr) & mfchash)
154#define MFCHASHSIZE	256
155
156static u_char			*nexpire;	/* 0..mfchashsize-1 */
157static u_long			 mfchashsize;	/* Hash size */
158LIST_HEAD(mfchashhdr, mfc)	*mfchashtbl;
159
160static struct mtx mfc_mtx;
161#define	MFC_LOCK()		mtx_lock(&mfc_mtx)
162#define	MFC_UNLOCK()		mtx_unlock(&mfc_mtx)
163#define	MFC_LOCK_ASSERT()	mtx_assert(&mfc_mtx, MA_OWNED)
164#define	MFC_LOCK_INIT()							\
165	mtx_init(&mfc_mtx, "IPv4 multicast forwarding cache", NULL, MTX_DEF)
166#define	MFC_LOCK_DESTROY()	mtx_destroy(&mfc_mtx)
167
168static vifi_t		numvifs;
169static struct vif	viftable[MAXVIFS];
170SYSCTL_OPAQUE(_net_inet_ip, OID_AUTO, viftable, CTLFLAG_RD,
171    &viftable, sizeof(viftable), "S,vif[MAXVIFS]",
172    "IPv4 Multicast Interfaces (struct vif[MAXVIFS], netinet/ip_mroute.h)");
173
174static struct mtx vif_mtx;
175#define	VIF_LOCK()		mtx_lock(&vif_mtx)
176#define	VIF_UNLOCK()		mtx_unlock(&vif_mtx)
177#define	VIF_LOCK_ASSERT()	mtx_assert(&vif_mtx, MA_OWNED)
178#define	VIF_LOCK_INIT()							\
179	mtx_init(&vif_mtx, "IPv4 multicast interfaces", NULL, MTX_DEF)
180#define	VIF_LOCK_DESTROY()	mtx_destroy(&vif_mtx)
181
182static eventhandler_tag if_detach_event_tag = NULL;
183
184static struct callout expire_upcalls_ch;
185#define		EXPIRE_TIMEOUT	(hz / 4)	/* 4x / second		*/
186#define		UPCALL_EXPIRE	6		/* number of timeouts	*/
187
188/*
189 * Bandwidth meter variables and constants
190 */
191static MALLOC_DEFINE(M_BWMETER, "bwmeter", "multicast upcall bw meters");
192/*
193 * Pending timeouts are stored in a hash table, the key being the
194 * expiration time. Periodically, the entries are analysed and processed.
195 */
196#define BW_METER_BUCKETS	1024
197static struct bw_meter *bw_meter_timers[BW_METER_BUCKETS];
198static struct callout bw_meter_ch;
199#define BW_METER_PERIOD (hz)		/* periodical handling of bw meters */
200
201/*
202 * Pending upcalls are stored in a vector which is flushed when
203 * full, or periodically
204 */
205static struct bw_upcall	bw_upcalls[BW_UPCALLS_MAX];
206static u_int	bw_upcalls_n; /* # of pending upcalls */
207static struct callout bw_upcalls_ch;
208#define BW_UPCALLS_PERIOD (hz)		/* periodical flush of bw upcalls */
209
210static struct pimstat pimstat;
211
212SYSCTL_NODE(_net_inet, IPPROTO_PIM, pim, CTLFLAG_RW, 0, "PIM");
213SYSCTL_STRUCT(_net_inet_pim, PIMCTL_STATS, stats, CTLFLAG_RD,
214    &pimstat, pimstat,
215    "PIM Statistics (struct pimstat, netinet/pim_var.h)");
216
217static u_long	pim_squelch_wholepkt = 0;
218SYSCTL_ULONG(_net_inet_pim, OID_AUTO, squelch_wholepkt, CTLFLAG_RW,
219    &pim_squelch_wholepkt, 0,
220    "Disable IGMP_WHOLEPKT notifications if rendezvous point is unspecified");
221
222extern  struct domain inetdomain;
223static const struct protosw in_pim_protosw = {
224	.pr_type =		SOCK_RAW,
225	.pr_domain =		&inetdomain,
226	.pr_protocol =		IPPROTO_PIM,
227	.pr_flags =		PR_ATOMIC|PR_ADDR|PR_LASTHDR,
228	.pr_input =		pim_input,
229	.pr_output =		(pr_output_t*)rip_output,
230	.pr_ctloutput =		rip_ctloutput,
231	.pr_usrreqs =		&rip_usrreqs
232};
233static const struct encaptab *pim_encap_cookie;
234
235static int pim_encapcheck(const struct mbuf *, int, int, void *);
236
237/*
238 * Note: the PIM Register encapsulation adds the following in front of a
239 * data packet:
240 *
241 * struct pim_encap_hdr {
242 *    struct ip ip;
243 *    struct pim_encap_pimhdr  pim;
244 * }
245 *
246 */
247
248struct pim_encap_pimhdr {
249	struct pim pim;
250	uint32_t   flags;
251};
252#define		PIM_ENCAP_TTL	64
253
254static struct ip pim_encap_iphdr = {
255#if BYTE_ORDER == LITTLE_ENDIAN
256	sizeof(struct ip) >> 2,
257	IPVERSION,
258#else
259	IPVERSION,
260	sizeof(struct ip) >> 2,
261#endif
262	0,			/* tos */
263	sizeof(struct ip),	/* total length */
264	0,			/* id */
265	0,			/* frag offset */
266	PIM_ENCAP_TTL,
267	IPPROTO_PIM,
268	0,			/* checksum */
269};
270
271static struct pim_encap_pimhdr pim_encap_pimhdr = {
272    {
273	PIM_MAKE_VT(PIM_VERSION, PIM_REGISTER), /* PIM vers and message type */
274	0,			/* reserved */
275	0,			/* checksum */
276    },
277    0				/* flags */
278};
279
280static struct ifnet multicast_register_if;
281static vifi_t reg_vif_num = VIFI_INVALID;
282
283/*
284 * Private variables.
285 */
286
287static u_long	X_ip_mcast_src(int);
288static int	X_ip_mforward(struct ip *, struct ifnet *, struct mbuf *,
289		    struct ip_moptions *);
290static int	X_ip_mrouter_done(void);
291static int	X_ip_mrouter_get(struct socket *, struct sockopt *);
292static int	X_ip_mrouter_set(struct socket *, struct sockopt *);
293static int	X_legal_vif_num(int);
294static int	X_mrt_ioctl(u_long, caddr_t, int);
295
296static int	add_bw_upcall(struct bw_upcall *);
297static int	add_mfc(struct mfcctl2 *);
298static int	add_vif(struct vifctl *);
299static void	bw_meter_prepare_upcall(struct bw_meter *, struct timeval *);
300static void	bw_meter_process(void);
301static void	bw_meter_receive_packet(struct bw_meter *, int,
302		    struct timeval *);
303static void	bw_upcalls_send(void);
304static int	del_bw_upcall(struct bw_upcall *);
305static int	del_mfc(struct mfcctl2 *);
306static int	del_vif(vifi_t);
307static int	del_vif_locked(vifi_t);
308static void	expire_bw_meter_process(void *);
309static void	expire_bw_upcalls_send(void *);
310static void	expire_mfc(struct mfc *);
311static void	expire_upcalls(void *);
312static void	free_bw_list(struct bw_meter *);
313static int	get_sg_cnt(struct sioc_sg_req *);
314static int	get_vif_cnt(struct sioc_vif_req *);
315static void	if_detached_event(void *, struct ifnet *);
316static int	ip_mdq(struct mbuf *, struct ifnet *, struct mfc *, vifi_t);
317static int	ip_mrouter_init(struct socket *, int);
318static __inline struct mfc *
319		mfc_find(struct in_addr *, struct in_addr *);
320static void	phyint_send(struct ip *, struct vif *, struct mbuf *);
321static struct mbuf *
322		pim_register_prepare(struct ip *, struct mbuf *);
323static int	pim_register_send(struct ip *, struct vif *,
324		    struct mbuf *, struct mfc *);
325static int	pim_register_send_rp(struct ip *, struct vif *,
326		    struct mbuf *, struct mfc *);
327static int	pim_register_send_upcall(struct ip *, struct vif *,
328		    struct mbuf *, struct mfc *);
329static void	schedule_bw_meter(struct bw_meter *, struct timeval *);
330static void	send_packet(struct vif *, struct mbuf *);
331static int	set_api_config(uint32_t *);
332static int	set_assert(int);
333static int	socket_send(struct socket *, struct mbuf *,
334		    struct sockaddr_in *);
335static void	unschedule_bw_meter(struct bw_meter *);
336
337/*
338 * Kernel multicast forwarding API capabilities and setup.
339 * If more API capabilities are added to the kernel, they should be
340 * recorded in `mrt_api_support'.
341 */
342#define MRT_API_VERSION		0x0305
343
344static const int mrt_api_version = MRT_API_VERSION;
345static const uint32_t mrt_api_support = (MRT_MFC_FLAGS_DISABLE_WRONGVIF |
346					 MRT_MFC_FLAGS_BORDER_VIF |
347					 MRT_MFC_RP |
348					 MRT_MFC_BW_UPCALL);
349static uint32_t mrt_api_config = 0;
350
351static int pim_assert_enabled;
352static struct timeval pim_assert_interval = { 3, 0 };	/* Rate limit */
353
354/*
355 * Find a route for a given origin IP address and multicast group address.
356 * Statistics must be updated by the caller.
357 */
358static __inline struct mfc *
359mfc_find(struct in_addr *o, struct in_addr *g)
360{
361	struct mfc *rt;
362
363	MFC_LOCK_ASSERT();
364
365	LIST_FOREACH(rt, &mfchashtbl[MFCHASH(*o, *g)], mfc_hash) {
366		if (in_hosteq(rt->mfc_origin, *o) &&
367		    in_hosteq(rt->mfc_mcastgrp, *g) &&
368		    TAILQ_EMPTY(&rt->mfc_stall))
369			break;
370	}
371
372	return (rt);
373}
374
375/*
376 * Handle MRT setsockopt commands to modify the multicast forwarding tables.
377 */
378static int
379X_ip_mrouter_set(struct socket *so, struct sockopt *sopt)
380{
381    int	error, optval;
382    vifi_t	vifi;
383    struct	vifctl vifc;
384    struct	mfcctl2 mfc;
385    struct	bw_upcall bw_upcall;
386    uint32_t	i;
387
388    if (so != V_ip_mrouter && sopt->sopt_name != MRT_INIT)
389	return EPERM;
390
391    error = 0;
392    switch (sopt->sopt_name) {
393    case MRT_INIT:
394	error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval);
395	if (error)
396	    break;
397	error = ip_mrouter_init(so, optval);
398	break;
399
400    case MRT_DONE:
401	error = ip_mrouter_done();
402	break;
403
404    case MRT_ADD_VIF:
405	error = sooptcopyin(sopt, &vifc, sizeof vifc, sizeof vifc);
406	if (error)
407	    break;
408	error = add_vif(&vifc);
409	break;
410
411    case MRT_DEL_VIF:
412	error = sooptcopyin(sopt, &vifi, sizeof vifi, sizeof vifi);
413	if (error)
414	    break;
415	error = del_vif(vifi);
416	break;
417
418    case MRT_ADD_MFC:
419    case MRT_DEL_MFC:
420	/*
421	 * select data size depending on API version.
422	 */
423	if (sopt->sopt_name == MRT_ADD_MFC &&
424		mrt_api_config & MRT_API_FLAGS_ALL) {
425	    error = sooptcopyin(sopt, &mfc, sizeof(struct mfcctl2),
426				sizeof(struct mfcctl2));
427	} else {
428	    error = sooptcopyin(sopt, &mfc, sizeof(struct mfcctl),
429				sizeof(struct mfcctl));
430	    bzero((caddr_t)&mfc + sizeof(struct mfcctl),
431			sizeof(mfc) - sizeof(struct mfcctl));
432	}
433	if (error)
434	    break;
435	if (sopt->sopt_name == MRT_ADD_MFC)
436	    error = add_mfc(&mfc);
437	else
438	    error = del_mfc(&mfc);
439	break;
440
441    case MRT_ASSERT:
442	error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval);
443	if (error)
444	    break;
445	set_assert(optval);
446	break;
447
448    case MRT_API_CONFIG:
449	error = sooptcopyin(sopt, &i, sizeof i, sizeof i);
450	if (!error)
451	    error = set_api_config(&i);
452	if (!error)
453	    error = sooptcopyout(sopt, &i, sizeof i);
454	break;
455
456    case MRT_ADD_BW_UPCALL:
457    case MRT_DEL_BW_UPCALL:
458	error = sooptcopyin(sopt, &bw_upcall, sizeof bw_upcall,
459				sizeof bw_upcall);
460	if (error)
461	    break;
462	if (sopt->sopt_name == MRT_ADD_BW_UPCALL)
463	    error = add_bw_upcall(&bw_upcall);
464	else
465	    error = del_bw_upcall(&bw_upcall);
466	break;
467
468    default:
469	error = EOPNOTSUPP;
470	break;
471    }
472    return error;
473}
474
475/*
476 * Handle MRT getsockopt commands
477 */
478static int
479X_ip_mrouter_get(struct socket *so, struct sockopt *sopt)
480{
481    int error;
482
483    switch (sopt->sopt_name) {
484    case MRT_VERSION:
485	error = sooptcopyout(sopt, &mrt_api_version, sizeof mrt_api_version);
486	break;
487
488    case MRT_ASSERT:
489	error = sooptcopyout(sopt, &pim_assert_enabled,
490	    sizeof pim_assert_enabled);
491	break;
492
493    case MRT_API_SUPPORT:
494	error = sooptcopyout(sopt, &mrt_api_support, sizeof mrt_api_support);
495	break;
496
497    case MRT_API_CONFIG:
498	error = sooptcopyout(sopt, &mrt_api_config, sizeof mrt_api_config);
499	break;
500
501    default:
502	error = EOPNOTSUPP;
503	break;
504    }
505    return error;
506}
507
508/*
509 * Handle ioctl commands to obtain information from the cache
510 */
511static int
512X_mrt_ioctl(u_long cmd, caddr_t data, int fibnum __unused)
513{
514    int error = 0;
515
516    /*
517     * Currently the only function calling this ioctl routine is rtioctl().
518     * Typically, only root can create the raw socket in order to execute
519     * this ioctl method, however the request might be coming from a prison
520     */
521    error = priv_check(curthread, PRIV_NETINET_MROUTE);
522    if (error)
523	return (error);
524    switch (cmd) {
525    case (SIOCGETVIFCNT):
526	error = get_vif_cnt((struct sioc_vif_req *)data);
527	break;
528
529    case (SIOCGETSGCNT):
530	error = get_sg_cnt((struct sioc_sg_req *)data);
531	break;
532
533    default:
534	error = EINVAL;
535	break;
536    }
537    return error;
538}
539
540/*
541 * returns the packet, byte, rpf-failure count for the source group provided
542 */
543static int
544get_sg_cnt(struct sioc_sg_req *req)
545{
546    struct mfc *rt;
547
548    MFC_LOCK();
549    rt = mfc_find(&req->src, &req->grp);
550    if (rt == NULL) {
551	MFC_UNLOCK();
552	req->pktcnt = req->bytecnt = req->wrong_if = 0xffffffff;
553	return EADDRNOTAVAIL;
554    }
555    req->pktcnt = rt->mfc_pkt_cnt;
556    req->bytecnt = rt->mfc_byte_cnt;
557    req->wrong_if = rt->mfc_wrong_if;
558    MFC_UNLOCK();
559    return 0;
560}
561
562/*
563 * returns the input and output packet and byte counts on the vif provided
564 */
565static int
566get_vif_cnt(struct sioc_vif_req *req)
567{
568    vifi_t vifi = req->vifi;
569
570    VIF_LOCK();
571    if (vifi >= numvifs) {
572	VIF_UNLOCK();
573	return EINVAL;
574    }
575
576    req->icount = viftable[vifi].v_pkt_in;
577    req->ocount = viftable[vifi].v_pkt_out;
578    req->ibytes = viftable[vifi].v_bytes_in;
579    req->obytes = viftable[vifi].v_bytes_out;
580    VIF_UNLOCK();
581
582    return 0;
583}
584
585static void
586ip_mrouter_reset(void)
587{
588
589    pim_assert_enabled = 0;
590    mrt_api_config = 0;
591
592    callout_init(&expire_upcalls_ch, CALLOUT_MPSAFE);
593
594    bw_upcalls_n = 0;
595    bzero((caddr_t)bw_meter_timers, sizeof(bw_meter_timers));
596    callout_init(&bw_upcalls_ch, CALLOUT_MPSAFE);
597    callout_init(&bw_meter_ch, CALLOUT_MPSAFE);
598}
599
600static void
601if_detached_event(void *arg __unused, struct ifnet *ifp)
602{
603    vifi_t vifi;
604    int i;
605
606    MROUTER_LOCK();
607
608    if (V_ip_mrouter == NULL) {
609	MROUTER_UNLOCK();
610	return;
611    }
612
613    VIF_LOCK();
614    MFC_LOCK();
615
616    /*
617     * Tear down multicast forwarder state associated with this ifnet.
618     * 1. Walk the vif list, matching vifs against this ifnet.
619     * 2. Walk the multicast forwarding cache (mfc) looking for
620     *    inner matches with this vif's index.
621     * 3. Expire any matching multicast forwarding cache entries.
622     * 4. Free vif state. This should disable ALLMULTI on the interface.
623     */
624    for (vifi = 0; vifi < numvifs; vifi++) {
625	if (viftable[vifi].v_ifp != ifp)
626		continue;
627	for (i = 0; i < mfchashsize; i++) {
628		struct mfc *rt, *nrt;
629		for (rt = LIST_FIRST(&mfchashtbl[i]); rt; rt = nrt) {
630			nrt = LIST_NEXT(rt, mfc_hash);
631			if (rt->mfc_parent == vifi) {
632				expire_mfc(rt);
633			}
634		}
635	}
636	del_vif_locked(vifi);
637    }
638
639    MFC_UNLOCK();
640    VIF_UNLOCK();
641
642    MROUTER_UNLOCK();
643}
644
645/*
646 * Enable multicast forwarding.
647 */
648static int
649ip_mrouter_init(struct socket *so, int version)
650{
651
652    CTR3(KTR_IPMF, "%s: so_type %d, pr_protocol %d", __func__,
653        so->so_type, so->so_proto->pr_protocol);
654
655    if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_IGMP)
656	return EOPNOTSUPP;
657
658    if (version != 1)
659	return ENOPROTOOPT;
660
661    MROUTER_LOCK();
662
663    if (V_ip_mrouter != NULL) {
664	MROUTER_UNLOCK();
665	return EADDRINUSE;
666    }
667
668    if_detach_event_tag = EVENTHANDLER_REGISTER(ifnet_departure_event,
669        if_detached_event, NULL, EVENTHANDLER_PRI_ANY);
670    if (if_detach_event_tag == NULL) {
671	MROUTER_UNLOCK();
672	return (ENOMEM);
673    }
674
675    mfchashtbl = hashinit_flags(mfchashsize, M_MRTABLE, &mfchash, HASH_NOWAIT);
676
677    callout_reset(&expire_upcalls_ch, EXPIRE_TIMEOUT, expire_upcalls, NULL);
678
679    callout_reset(&bw_upcalls_ch, BW_UPCALLS_PERIOD,
680	expire_bw_upcalls_send, NULL);
681    callout_reset(&bw_meter_ch, BW_METER_PERIOD, expire_bw_meter_process, NULL);
682
683    V_ip_mrouter = so;
684
685    MROUTER_UNLOCK();
686
687    CTR1(KTR_IPMF, "%s: done", __func__);
688
689    return 0;
690}
691
692/*
693 * Disable multicast forwarding.
694 */
695static int
696X_ip_mrouter_done(void)
697{
698    vifi_t vifi;
699    int i;
700    struct ifnet *ifp;
701    struct ifreq ifr;
702
703    MROUTER_LOCK();
704
705    if (V_ip_mrouter == NULL) {
706	MROUTER_UNLOCK();
707	return EINVAL;
708    }
709
710    /*
711     * Detach/disable hooks to the reset of the system.
712     */
713    V_ip_mrouter = NULL;
714    mrt_api_config = 0;
715
716    VIF_LOCK();
717
718    /*
719     * For each phyint in use, disable promiscuous reception of all IP
720     * multicasts.
721     */
722    for (vifi = 0; vifi < numvifs; vifi++) {
723	if (!in_nullhost(viftable[vifi].v_lcl_addr) &&
724		!(viftable[vifi].v_flags & (VIFF_TUNNEL | VIFF_REGISTER))) {
725	    struct sockaddr_in *so = (struct sockaddr_in *)&(ifr.ifr_addr);
726
727	    so->sin_len = sizeof(struct sockaddr_in);
728	    so->sin_family = AF_INET;
729	    so->sin_addr.s_addr = INADDR_ANY;
730	    ifp = viftable[vifi].v_ifp;
731	    if_allmulti(ifp, 0);
732	}
733    }
734    bzero((caddr_t)viftable, sizeof(viftable));
735    numvifs = 0;
736    pim_assert_enabled = 0;
737
738    VIF_UNLOCK();
739
740    EVENTHANDLER_DEREGISTER(ifnet_departure_event, if_detach_event_tag);
741
742    callout_stop(&expire_upcalls_ch);
743    callout_stop(&bw_upcalls_ch);
744    callout_stop(&bw_meter_ch);
745
746    MFC_LOCK();
747
748    /*
749     * Free all multicast forwarding cache entries.
750     * Do not use hashdestroy(), as we must perform other cleanup.
751     */
752    for (i = 0; i < mfchashsize; i++) {
753	struct mfc *rt, *nrt;
754	for (rt = LIST_FIRST(&mfchashtbl[i]); rt; rt = nrt) {
755		nrt = LIST_NEXT(rt, mfc_hash);
756		expire_mfc(rt);
757	}
758    }
759    free(mfchashtbl, M_MRTABLE);
760    mfchashtbl = NULL;
761
762    bzero(nexpire, sizeof(nexpire[0]) * mfchashsize);
763
764    bw_upcalls_n = 0;
765    bzero(bw_meter_timers, sizeof(bw_meter_timers));
766
767    MFC_UNLOCK();
768
769    reg_vif_num = VIFI_INVALID;
770
771    MROUTER_UNLOCK();
772
773    CTR1(KTR_IPMF, "%s: done", __func__);
774
775    return 0;
776}
777
778/*
779 * Set PIM assert processing global
780 */
781static int
782set_assert(int i)
783{
784    if ((i != 1) && (i != 0))
785	return EINVAL;
786
787    pim_assert_enabled = i;
788
789    return 0;
790}
791
792/*
793 * Configure API capabilities
794 */
795int
796set_api_config(uint32_t *apival)
797{
798    int i;
799
800    /*
801     * We can set the API capabilities only if it is the first operation
802     * after MRT_INIT. I.e.:
803     *  - there are no vifs installed
804     *  - pim_assert is not enabled
805     *  - the MFC table is empty
806     */
807    if (numvifs > 0) {
808	*apival = 0;
809	return EPERM;
810    }
811    if (pim_assert_enabled) {
812	*apival = 0;
813	return EPERM;
814    }
815
816    MFC_LOCK();
817
818    for (i = 0; i < mfchashsize; i++) {
819	if (LIST_FIRST(&mfchashtbl[i]) != NULL) {
820	    *apival = 0;
821	    return EPERM;
822	}
823    }
824
825    MFC_UNLOCK();
826
827    mrt_api_config = *apival & mrt_api_support;
828    *apival = mrt_api_config;
829
830    return 0;
831}
832
833/*
834 * Add a vif to the vif table
835 */
836static int
837add_vif(struct vifctl *vifcp)
838{
839    struct vif *vifp = viftable + vifcp->vifc_vifi;
840    struct sockaddr_in sin = {sizeof sin, AF_INET};
841    struct ifaddr *ifa;
842    struct ifnet *ifp;
843    int error;
844
845    VIF_LOCK();
846    if (vifcp->vifc_vifi >= MAXVIFS) {
847	VIF_UNLOCK();
848	return EINVAL;
849    }
850    /* rate limiting is no longer supported by this code */
851    if (vifcp->vifc_rate_limit != 0) {
852	log(LOG_ERR, "rate limiting is no longer supported\n");
853	VIF_UNLOCK();
854	return EINVAL;
855    }
856    if (!in_nullhost(vifp->v_lcl_addr)) {
857	VIF_UNLOCK();
858	return EADDRINUSE;
859    }
860    if (in_nullhost(vifcp->vifc_lcl_addr)) {
861	VIF_UNLOCK();
862	return EADDRNOTAVAIL;
863    }
864
865    /* Find the interface with an address in AF_INET family */
866    if (vifcp->vifc_flags & VIFF_REGISTER) {
867	/*
868	 * XXX: Because VIFF_REGISTER does not really need a valid
869	 * local interface (e.g. it could be 127.0.0.2), we don't
870	 * check its address.
871	 */
872	ifp = NULL;
873    } else {
874	sin.sin_addr = vifcp->vifc_lcl_addr;
875	ifa = ifa_ifwithaddr((struct sockaddr *)&sin);
876	if (ifa == NULL) {
877	    VIF_UNLOCK();
878	    return EADDRNOTAVAIL;
879	}
880	ifp = ifa->ifa_ifp;
881	ifa_free(ifa);
882    }
883
884    if ((vifcp->vifc_flags & VIFF_TUNNEL) != 0) {
885	CTR1(KTR_IPMF, "%s: tunnels are no longer supported", __func__);
886	VIF_UNLOCK();
887	return EOPNOTSUPP;
888    } else if (vifcp->vifc_flags & VIFF_REGISTER) {
889	ifp = &multicast_register_if;
890	CTR2(KTR_IPMF, "%s: add register vif for ifp %p", __func__, ifp);
891	if (reg_vif_num == VIFI_INVALID) {
892	    if_initname(&multicast_register_if, "register_vif", 0);
893	    multicast_register_if.if_flags = IFF_LOOPBACK;
894	    reg_vif_num = vifcp->vifc_vifi;
895	}
896    } else {		/* Make sure the interface supports multicast */
897	if ((ifp->if_flags & IFF_MULTICAST) == 0) {
898	    VIF_UNLOCK();
899	    return EOPNOTSUPP;
900	}
901
902	/* Enable promiscuous reception of all IP multicasts from the if */
903	error = if_allmulti(ifp, 1);
904	if (error) {
905	    VIF_UNLOCK();
906	    return error;
907	}
908    }
909
910    vifp->v_flags     = vifcp->vifc_flags;
911    vifp->v_threshold = vifcp->vifc_threshold;
912    vifp->v_lcl_addr  = vifcp->vifc_lcl_addr;
913    vifp->v_rmt_addr  = vifcp->vifc_rmt_addr;
914    vifp->v_ifp       = ifp;
915    /* initialize per vif pkt counters */
916    vifp->v_pkt_in    = 0;
917    vifp->v_pkt_out   = 0;
918    vifp->v_bytes_in  = 0;
919    vifp->v_bytes_out = 0;
920    bzero(&vifp->v_route, sizeof(vifp->v_route));
921
922    /* Adjust numvifs up if the vifi is higher than numvifs */
923    if (numvifs <= vifcp->vifc_vifi)
924	numvifs = vifcp->vifc_vifi + 1;
925
926    VIF_UNLOCK();
927
928    CTR4(KTR_IPMF, "%s: add vif %d laddr %s thresh %x", __func__,
929	(int)vifcp->vifc_vifi, inet_ntoa(vifcp->vifc_lcl_addr),
930	(int)vifcp->vifc_threshold);
931
932    return 0;
933}
934
935/*
936 * Delete a vif from the vif table
937 */
938static int
939del_vif_locked(vifi_t vifi)
940{
941    struct vif *vifp;
942
943    VIF_LOCK_ASSERT();
944
945    if (vifi >= numvifs) {
946	return EINVAL;
947    }
948    vifp = &viftable[vifi];
949    if (in_nullhost(vifp->v_lcl_addr)) {
950	return EADDRNOTAVAIL;
951    }
952
953    if (!(vifp->v_flags & (VIFF_TUNNEL | VIFF_REGISTER)))
954	if_allmulti(vifp->v_ifp, 0);
955
956    if (vifp->v_flags & VIFF_REGISTER)
957	reg_vif_num = VIFI_INVALID;
958
959    bzero((caddr_t)vifp, sizeof (*vifp));
960
961    CTR2(KTR_IPMF, "%s: delete vif %d", __func__, (int)vifi);
962
963    /* Adjust numvifs down */
964    for (vifi = numvifs; vifi > 0; vifi--)
965	if (!in_nullhost(viftable[vifi-1].v_lcl_addr))
966	    break;
967    numvifs = vifi;
968
969    return 0;
970}
971
972static int
973del_vif(vifi_t vifi)
974{
975    int cc;
976
977    VIF_LOCK();
978    cc = del_vif_locked(vifi);
979    VIF_UNLOCK();
980
981    return cc;
982}
983
984/*
985 * update an mfc entry without resetting counters and S,G addresses.
986 */
987static void
988update_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp)
989{
990    int i;
991
992    rt->mfc_parent = mfccp->mfcc_parent;
993    for (i = 0; i < numvifs; i++) {
994	rt->mfc_ttls[i] = mfccp->mfcc_ttls[i];
995	rt->mfc_flags[i] = mfccp->mfcc_flags[i] & mrt_api_config &
996	    MRT_MFC_FLAGS_ALL;
997    }
998    /* set the RP address */
999    if (mrt_api_config & MRT_MFC_RP)
1000	rt->mfc_rp = mfccp->mfcc_rp;
1001    else
1002	rt->mfc_rp.s_addr = INADDR_ANY;
1003}
1004
1005/*
1006 * fully initialize an mfc entry from the parameter.
1007 */
1008static void
1009init_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp)
1010{
1011    rt->mfc_origin     = mfccp->mfcc_origin;
1012    rt->mfc_mcastgrp   = mfccp->mfcc_mcastgrp;
1013
1014    update_mfc_params(rt, mfccp);
1015
1016    /* initialize pkt counters per src-grp */
1017    rt->mfc_pkt_cnt    = 0;
1018    rt->mfc_byte_cnt   = 0;
1019    rt->mfc_wrong_if   = 0;
1020    timevalclear(&rt->mfc_last_assert);
1021}
1022
1023static void
1024expire_mfc(struct mfc *rt)
1025{
1026	struct rtdetq *rte, *nrte;
1027
1028	MFC_LOCK_ASSERT();
1029
1030	free_bw_list(rt->mfc_bw_meter);
1031
1032	TAILQ_FOREACH_SAFE(rte, &rt->mfc_stall, rte_link, nrte) {
1033		m_freem(rte->m);
1034		TAILQ_REMOVE(&rt->mfc_stall, rte, rte_link);
1035		free(rte, M_MRTABLE);
1036	}
1037
1038	LIST_REMOVE(rt, mfc_hash);
1039	free(rt, M_MRTABLE);
1040}
1041
1042/*
1043 * Add an mfc entry
1044 */
1045static int
1046add_mfc(struct mfcctl2 *mfccp)
1047{
1048    struct mfc *rt;
1049    struct rtdetq *rte, *nrte;
1050    u_long hash = 0;
1051    u_short nstl;
1052
1053    VIF_LOCK();
1054    MFC_LOCK();
1055
1056    rt = mfc_find(&mfccp->mfcc_origin, &mfccp->mfcc_mcastgrp);
1057
1058    /* If an entry already exists, just update the fields */
1059    if (rt) {
1060	CTR4(KTR_IPMF, "%s: update mfc orig %s group %lx parent %x",
1061	    __func__, inet_ntoa(mfccp->mfcc_origin),
1062	    (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr),
1063	    mfccp->mfcc_parent);
1064	update_mfc_params(rt, mfccp);
1065	MFC_UNLOCK();
1066	VIF_UNLOCK();
1067	return (0);
1068    }
1069
1070    /*
1071     * Find the entry for which the upcall was made and update
1072     */
1073    nstl = 0;
1074    hash = MFCHASH(mfccp->mfcc_origin, mfccp->mfcc_mcastgrp);
1075    LIST_FOREACH(rt, &mfchashtbl[hash], mfc_hash) {
1076	if (in_hosteq(rt->mfc_origin, mfccp->mfcc_origin) &&
1077	    in_hosteq(rt->mfc_mcastgrp, mfccp->mfcc_mcastgrp) &&
1078	    !TAILQ_EMPTY(&rt->mfc_stall)) {
1079		CTR5(KTR_IPMF,
1080		    "%s: add mfc orig %s group %lx parent %x qh %p",
1081		    __func__, inet_ntoa(mfccp->mfcc_origin),
1082		    (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr),
1083		    mfccp->mfcc_parent,
1084		    TAILQ_FIRST(&rt->mfc_stall));
1085		if (nstl++)
1086			CTR1(KTR_IPMF, "%s: multiple matches", __func__);
1087
1088		init_mfc_params(rt, mfccp);
1089		rt->mfc_expire = 0;	/* Don't clean this guy up */
1090		nexpire[hash]--;
1091
1092		/* Free queued packets, but attempt to forward them first. */
1093		TAILQ_FOREACH_SAFE(rte, &rt->mfc_stall, rte_link, nrte) {
1094			if (rte->ifp != NULL)
1095				ip_mdq(rte->m, rte->ifp, rt, -1);
1096			m_freem(rte->m);
1097			TAILQ_REMOVE(&rt->mfc_stall, rte, rte_link);
1098			rt->mfc_nstall--;
1099			free(rte, M_MRTABLE);
1100		}
1101	}
1102    }
1103
1104    /*
1105     * It is possible that an entry is being inserted without an upcall
1106     */
1107    if (nstl == 0) {
1108	CTR1(KTR_IPMF, "%s: adding mfc w/o upcall", __func__);
1109	LIST_FOREACH(rt, &mfchashtbl[hash], mfc_hash) {
1110		if (in_hosteq(rt->mfc_origin, mfccp->mfcc_origin) &&
1111		    in_hosteq(rt->mfc_mcastgrp, mfccp->mfcc_mcastgrp)) {
1112			init_mfc_params(rt, mfccp);
1113			if (rt->mfc_expire)
1114			    nexpire[hash]--;
1115			rt->mfc_expire = 0;
1116			break; /* XXX */
1117		}
1118	}
1119
1120	if (rt == NULL) {		/* no upcall, so make a new entry */
1121	    rt = (struct mfc *)malloc(sizeof(*rt), M_MRTABLE, M_NOWAIT);
1122	    if (rt == NULL) {
1123		MFC_UNLOCK();
1124		VIF_UNLOCK();
1125		return (ENOBUFS);
1126	    }
1127
1128	    init_mfc_params(rt, mfccp);
1129	    TAILQ_INIT(&rt->mfc_stall);
1130	    rt->mfc_nstall = 0;
1131
1132	    rt->mfc_expire     = 0;
1133	    rt->mfc_bw_meter = NULL;
1134
1135	    /* insert new entry at head of hash chain */
1136	    LIST_INSERT_HEAD(&mfchashtbl[hash], rt, mfc_hash);
1137	}
1138    }
1139
1140    MFC_UNLOCK();
1141    VIF_UNLOCK();
1142
1143    return (0);
1144}
1145
1146/*
1147 * Delete an mfc entry
1148 */
1149static int
1150del_mfc(struct mfcctl2 *mfccp)
1151{
1152    struct in_addr	origin;
1153    struct in_addr	mcastgrp;
1154    struct mfc		*rt;
1155
1156    origin = mfccp->mfcc_origin;
1157    mcastgrp = mfccp->mfcc_mcastgrp;
1158
1159    CTR3(KTR_IPMF, "%s: delete mfc orig %s group %lx", __func__,
1160	inet_ntoa(origin), (u_long)ntohl(mcastgrp.s_addr));
1161
1162    MFC_LOCK();
1163
1164    rt = mfc_find(&origin, &mcastgrp);
1165    if (rt == NULL) {
1166	MFC_UNLOCK();
1167	return EADDRNOTAVAIL;
1168    }
1169
1170    /*
1171     * free the bw_meter entries
1172     */
1173    free_bw_list(rt->mfc_bw_meter);
1174    rt->mfc_bw_meter = NULL;
1175
1176    LIST_REMOVE(rt, mfc_hash);
1177    free(rt, M_MRTABLE);
1178
1179    MFC_UNLOCK();
1180
1181    return (0);
1182}
1183
1184/*
1185 * Send a message to the routing daemon on the multicast routing socket.
1186 */
1187static int
1188socket_send(struct socket *s, struct mbuf *mm, struct sockaddr_in *src)
1189{
1190    if (s) {
1191	SOCKBUF_LOCK(&s->so_rcv);
1192	if (sbappendaddr_locked(&s->so_rcv, (struct sockaddr *)src, mm,
1193	    NULL) != 0) {
1194	    sorwakeup_locked(s);
1195	    return 0;
1196	}
1197	SOCKBUF_UNLOCK(&s->so_rcv);
1198    }
1199    m_freem(mm);
1200    return -1;
1201}
1202
1203/*
1204 * IP multicast forwarding function. This function assumes that the packet
1205 * pointed to by "ip" has arrived on (or is about to be sent to) the interface
1206 * pointed to by "ifp", and the packet is to be relayed to other networks
1207 * that have members of the packet's destination IP multicast group.
1208 *
1209 * The packet is returned unscathed to the caller, unless it is
1210 * erroneous, in which case a non-zero return value tells the caller to
1211 * discard it.
1212 */
1213
1214#define TUNNEL_LEN  12  /* # bytes of IP option for tunnel encapsulation  */
1215
1216static int
1217X_ip_mforward(struct ip *ip, struct ifnet *ifp, struct mbuf *m,
1218    struct ip_moptions *imo)
1219{
1220    struct mfc *rt;
1221    int error;
1222    vifi_t vifi;
1223
1224    CTR3(KTR_IPMF, "ip_mforward: delete mfc orig %s group %lx ifp %p",
1225	inet_ntoa(ip->ip_src), (u_long)ntohl(ip->ip_dst.s_addr), ifp);
1226
1227    if (ip->ip_hl < (sizeof(struct ip) + TUNNEL_LEN) >> 2 ||
1228		((u_char *)(ip + 1))[1] != IPOPT_LSRR ) {
1229	/*
1230	 * Packet arrived via a physical interface or
1231	 * an encapsulated tunnel or a register_vif.
1232	 */
1233    } else {
1234	/*
1235	 * Packet arrived through a source-route tunnel.
1236	 * Source-route tunnels are no longer supported.
1237	 */
1238	return (1);
1239    }
1240
1241    VIF_LOCK();
1242    MFC_LOCK();
1243    if (imo && ((vifi = imo->imo_multicast_vif) < numvifs)) {
1244	if (ip->ip_ttl < MAXTTL)
1245	    ip->ip_ttl++;	/* compensate for -1 in *_send routines */
1246	error = ip_mdq(m, ifp, NULL, vifi);
1247	MFC_UNLOCK();
1248	VIF_UNLOCK();
1249	return error;
1250    }
1251
1252    /*
1253     * Don't forward a packet with time-to-live of zero or one,
1254     * or a packet destined to a local-only group.
1255     */
1256    if (ip->ip_ttl <= 1 || IN_LOCAL_GROUP(ntohl(ip->ip_dst.s_addr))) {
1257	MFC_UNLOCK();
1258	VIF_UNLOCK();
1259	return 0;
1260    }
1261
1262    /*
1263     * Determine forwarding vifs from the forwarding cache table
1264     */
1265    MRTSTAT_INC(mrts_mfc_lookups);
1266    rt = mfc_find(&ip->ip_src, &ip->ip_dst);
1267
1268    /* Entry exists, so forward if necessary */
1269    if (rt != NULL) {
1270	error = ip_mdq(m, ifp, rt, -1);
1271	MFC_UNLOCK();
1272	VIF_UNLOCK();
1273	return error;
1274    } else {
1275	/*
1276	 * If we don't have a route for packet's origin,
1277	 * Make a copy of the packet & send message to routing daemon
1278	 */
1279
1280	struct mbuf *mb0;
1281	struct rtdetq *rte;
1282	u_long hash;
1283	int hlen = ip->ip_hl << 2;
1284
1285	MRTSTAT_INC(mrts_mfc_misses);
1286	MRTSTAT_INC(mrts_no_route);
1287	CTR2(KTR_IPMF, "ip_mforward: no mfc for (%s,%lx)",
1288	    inet_ntoa(ip->ip_src), (u_long)ntohl(ip->ip_dst.s_addr));
1289
1290	/*
1291	 * Allocate mbufs early so that we don't do extra work if we are
1292	 * just going to fail anyway.  Make sure to pullup the header so
1293	 * that other people can't step on it.
1294	 */
1295	rte = (struct rtdetq *)malloc((sizeof *rte), M_MRTABLE,
1296	    M_NOWAIT|M_ZERO);
1297	if (rte == NULL) {
1298	    MFC_UNLOCK();
1299	    VIF_UNLOCK();
1300	    return ENOBUFS;
1301	}
1302
1303	mb0 = m_copypacket(m, M_DONTWAIT);
1304	if (mb0 && (M_HASCL(mb0) || mb0->m_len < hlen))
1305	    mb0 = m_pullup(mb0, hlen);
1306	if (mb0 == NULL) {
1307	    free(rte, M_MRTABLE);
1308	    MFC_UNLOCK();
1309	    VIF_UNLOCK();
1310	    return ENOBUFS;
1311	}
1312
1313	/* is there an upcall waiting for this flow ? */
1314	hash = MFCHASH(ip->ip_src, ip->ip_dst);
1315	LIST_FOREACH(rt, &mfchashtbl[hash], mfc_hash) {
1316		if (in_hosteq(ip->ip_src, rt->mfc_origin) &&
1317		    in_hosteq(ip->ip_dst, rt->mfc_mcastgrp) &&
1318		    !TAILQ_EMPTY(&rt->mfc_stall))
1319			break;
1320	}
1321
1322	if (rt == NULL) {
1323	    int i;
1324	    struct igmpmsg *im;
1325	    struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
1326	    struct mbuf *mm;
1327
1328	    /*
1329	     * Locate the vifi for the incoming interface for this packet.
1330	     * If none found, drop packet.
1331	     */
1332	    for (vifi = 0; vifi < numvifs &&
1333		    viftable[vifi].v_ifp != ifp; vifi++)
1334		;
1335	    if (vifi >= numvifs)	/* vif not found, drop packet */
1336		goto non_fatal;
1337
1338	    /* no upcall, so make a new entry */
1339	    rt = (struct mfc *)malloc(sizeof(*rt), M_MRTABLE, M_NOWAIT);
1340	    if (rt == NULL)
1341		goto fail;
1342
1343	    /* Make a copy of the header to send to the user level process */
1344	    mm = m_copy(mb0, 0, hlen);
1345	    if (mm == NULL)
1346		goto fail1;
1347
1348	    /*
1349	     * Send message to routing daemon to install
1350	     * a route into the kernel table
1351	     */
1352
1353	    im = mtod(mm, struct igmpmsg *);
1354	    im->im_msgtype = IGMPMSG_NOCACHE;
1355	    im->im_mbz = 0;
1356	    im->im_vif = vifi;
1357
1358	    MRTSTAT_INC(mrts_upcalls);
1359
1360	    k_igmpsrc.sin_addr = ip->ip_src;
1361	    if (socket_send(V_ip_mrouter, mm, &k_igmpsrc) < 0) {
1362		CTR0(KTR_IPMF, "ip_mforward: socket queue full");
1363		MRTSTAT_INC(mrts_upq_sockfull);
1364fail1:
1365		free(rt, M_MRTABLE);
1366fail:
1367		free(rte, M_MRTABLE);
1368		m_freem(mb0);
1369		MFC_UNLOCK();
1370		VIF_UNLOCK();
1371		return ENOBUFS;
1372	    }
1373
1374	    /* insert new entry at head of hash chain */
1375	    rt->mfc_origin.s_addr     = ip->ip_src.s_addr;
1376	    rt->mfc_mcastgrp.s_addr   = ip->ip_dst.s_addr;
1377	    rt->mfc_expire	      = UPCALL_EXPIRE;
1378	    nexpire[hash]++;
1379	    for (i = 0; i < numvifs; i++) {
1380		rt->mfc_ttls[i] = 0;
1381		rt->mfc_flags[i] = 0;
1382	    }
1383	    rt->mfc_parent = -1;
1384
1385	    /* clear the RP address */
1386	    rt->mfc_rp.s_addr = INADDR_ANY;
1387	    rt->mfc_bw_meter = NULL;
1388
1389	    /* link into table */
1390	    LIST_INSERT_HEAD(&mfchashtbl[hash], rt, mfc_hash);
1391	    TAILQ_INSERT_HEAD(&rt->mfc_stall, rte, rte_link);
1392	    rt->mfc_nstall++;
1393
1394	} else {
1395	    /* determine if queue has overflowed */
1396	    if (rt->mfc_nstall > MAX_UPQ) {
1397		MRTSTAT_INC(mrts_upq_ovflw);
1398non_fatal:
1399		free(rte, M_MRTABLE);
1400		m_freem(mb0);
1401		MFC_UNLOCK();
1402		VIF_UNLOCK();
1403		return (0);
1404	    }
1405	    TAILQ_INSERT_TAIL(&rt->mfc_stall, rte, rte_link);
1406	    rt->mfc_nstall++;
1407	}
1408
1409	rte->m			= mb0;
1410	rte->ifp		= ifp;
1411
1412	MFC_UNLOCK();
1413	VIF_UNLOCK();
1414
1415	return 0;
1416    }
1417}
1418
1419/*
1420 * Clean up the cache entry if upcall is not serviced
1421 */
1422static void
1423expire_upcalls(void *unused)
1424{
1425    int i;
1426
1427    MFC_LOCK();
1428
1429    for (i = 0; i < mfchashsize; i++) {
1430	struct mfc *rt, *nrt;
1431
1432	if (nexpire[i] == 0)
1433	    continue;
1434
1435	for (rt = LIST_FIRST(&mfchashtbl[i]); rt; rt = nrt) {
1436		nrt = LIST_NEXT(rt, mfc_hash);
1437
1438		if (TAILQ_EMPTY(&rt->mfc_stall))
1439			continue;
1440
1441		if (rt->mfc_expire == 0 || --rt->mfc_expire > 0)
1442			continue;
1443
1444		/*
1445		 * free the bw_meter entries
1446		 */
1447		while (rt->mfc_bw_meter != NULL) {
1448		    struct bw_meter *x = rt->mfc_bw_meter;
1449
1450		    rt->mfc_bw_meter = x->bm_mfc_next;
1451		    free(x, M_BWMETER);
1452		}
1453
1454		MRTSTAT_INC(mrts_cache_cleanups);
1455		CTR3(KTR_IPMF, "%s: expire (%lx, %lx)", __func__,
1456		    (u_long)ntohl(rt->mfc_origin.s_addr),
1457		    (u_long)ntohl(rt->mfc_mcastgrp.s_addr));
1458
1459		expire_mfc(rt);
1460	    }
1461    }
1462
1463    MFC_UNLOCK();
1464
1465    callout_reset(&expire_upcalls_ch, EXPIRE_TIMEOUT, expire_upcalls, NULL);
1466}
1467
1468/*
1469 * Packet forwarding routine once entry in the cache is made
1470 */
1471static int
1472ip_mdq(struct mbuf *m, struct ifnet *ifp, struct mfc *rt, vifi_t xmt_vif)
1473{
1474    struct ip  *ip = mtod(m, struct ip *);
1475    vifi_t vifi;
1476    int plen = ip->ip_len;
1477
1478    VIF_LOCK_ASSERT();
1479
1480    /*
1481     * If xmt_vif is not -1, send on only the requested vif.
1482     *
1483     * (since vifi_t is u_short, -1 becomes MAXUSHORT, which > numvifs.)
1484     */
1485    if (xmt_vif < numvifs) {
1486	if (viftable[xmt_vif].v_flags & VIFF_REGISTER)
1487		pim_register_send(ip, viftable + xmt_vif, m, rt);
1488	else
1489		phyint_send(ip, viftable + xmt_vif, m);
1490	return 1;
1491    }
1492
1493    /*
1494     * Don't forward if it didn't arrive from the parent vif for its origin.
1495     */
1496    vifi = rt->mfc_parent;
1497    if ((vifi >= numvifs) || (viftable[vifi].v_ifp != ifp)) {
1498	CTR4(KTR_IPMF, "%s: rx on wrong ifp %p (vifi %d, v_ifp %p)",
1499	    __func__, ifp, (int)vifi, viftable[vifi].v_ifp);
1500	MRTSTAT_INC(mrts_wrong_if);
1501	++rt->mfc_wrong_if;
1502	/*
1503	 * If we are doing PIM assert processing, send a message
1504	 * to the routing daemon.
1505	 *
1506	 * XXX: A PIM-SM router needs the WRONGVIF detection so it
1507	 * can complete the SPT switch, regardless of the type
1508	 * of the iif (broadcast media, GRE tunnel, etc).
1509	 */
1510	if (pim_assert_enabled && (vifi < numvifs) && viftable[vifi].v_ifp) {
1511
1512	    if (ifp == &multicast_register_if)
1513		PIMSTAT_INC(pims_rcv_registers_wrongiif);
1514
1515	    /* Get vifi for the incoming packet */
1516	    for (vifi=0; vifi < numvifs && viftable[vifi].v_ifp != ifp; vifi++)
1517		;
1518	    if (vifi >= numvifs)
1519		return 0;	/* The iif is not found: ignore the packet. */
1520
1521	    if (rt->mfc_flags[vifi] & MRT_MFC_FLAGS_DISABLE_WRONGVIF)
1522		return 0;	/* WRONGVIF disabled: ignore the packet */
1523
1524	    if (ratecheck(&rt->mfc_last_assert, &pim_assert_interval)) {
1525		struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
1526		struct igmpmsg *im;
1527		int hlen = ip->ip_hl << 2;
1528		struct mbuf *mm = m_copy(m, 0, hlen);
1529
1530		if (mm && (M_HASCL(mm) || mm->m_len < hlen))
1531		    mm = m_pullup(mm, hlen);
1532		if (mm == NULL)
1533		    return ENOBUFS;
1534
1535		im = mtod(mm, struct igmpmsg *);
1536		im->im_msgtype	= IGMPMSG_WRONGVIF;
1537		im->im_mbz		= 0;
1538		im->im_vif		= vifi;
1539
1540		MRTSTAT_INC(mrts_upcalls);
1541
1542		k_igmpsrc.sin_addr = im->im_src;
1543		if (socket_send(V_ip_mrouter, mm, &k_igmpsrc) < 0) {
1544		    CTR1(KTR_IPMF, "%s: socket queue full", __func__);
1545		    MRTSTAT_INC(mrts_upq_sockfull);
1546		    return ENOBUFS;
1547		}
1548	    }
1549	}
1550	return 0;
1551    }
1552
1553
1554    /* If I sourced this packet, it counts as output, else it was input. */
1555    if (in_hosteq(ip->ip_src, viftable[vifi].v_lcl_addr)) {
1556	viftable[vifi].v_pkt_out++;
1557	viftable[vifi].v_bytes_out += plen;
1558    } else {
1559	viftable[vifi].v_pkt_in++;
1560	viftable[vifi].v_bytes_in += plen;
1561    }
1562    rt->mfc_pkt_cnt++;
1563    rt->mfc_byte_cnt += plen;
1564
1565    /*
1566     * For each vif, decide if a copy of the packet should be forwarded.
1567     * Forward if:
1568     *		- the ttl exceeds the vif's threshold
1569     *		- there are group members downstream on interface
1570     */
1571    for (vifi = 0; vifi < numvifs; vifi++)
1572	if ((rt->mfc_ttls[vifi] > 0) && (ip->ip_ttl > rt->mfc_ttls[vifi])) {
1573	    viftable[vifi].v_pkt_out++;
1574	    viftable[vifi].v_bytes_out += plen;
1575	    if (viftable[vifi].v_flags & VIFF_REGISTER)
1576		pim_register_send(ip, viftable + vifi, m, rt);
1577	    else
1578		phyint_send(ip, viftable + vifi, m);
1579	}
1580
1581    /*
1582     * Perform upcall-related bw measuring.
1583     */
1584    if (rt->mfc_bw_meter != NULL) {
1585	struct bw_meter *x;
1586	struct timeval now;
1587
1588	microtime(&now);
1589	MFC_LOCK_ASSERT();
1590	for (x = rt->mfc_bw_meter; x != NULL; x = x->bm_mfc_next)
1591	    bw_meter_receive_packet(x, plen, &now);
1592    }
1593
1594    return 0;
1595}
1596
1597/*
1598 * Check if a vif number is legal/ok. This is used by in_mcast.c.
1599 */
1600static int
1601X_legal_vif_num(int vif)
1602{
1603	int ret;
1604
1605	ret = 0;
1606	if (vif < 0)
1607		return (ret);
1608
1609	VIF_LOCK();
1610	if (vif < numvifs)
1611		ret = 1;
1612	VIF_UNLOCK();
1613
1614	return (ret);
1615}
1616
1617/*
1618 * Return the local address used by this vif
1619 */
1620static u_long
1621X_ip_mcast_src(int vifi)
1622{
1623	in_addr_t addr;
1624
1625	addr = INADDR_ANY;
1626	if (vifi < 0)
1627		return (addr);
1628
1629	VIF_LOCK();
1630	if (vifi < numvifs)
1631		addr = viftable[vifi].v_lcl_addr.s_addr;
1632	VIF_UNLOCK();
1633
1634	return (addr);
1635}
1636
1637static void
1638phyint_send(struct ip *ip, struct vif *vifp, struct mbuf *m)
1639{
1640    struct mbuf *mb_copy;
1641    int hlen = ip->ip_hl << 2;
1642
1643    VIF_LOCK_ASSERT();
1644
1645    /*
1646     * Make a new reference to the packet; make sure that
1647     * the IP header is actually copied, not just referenced,
1648     * so that ip_output() only scribbles on the copy.
1649     */
1650    mb_copy = m_copypacket(m, M_DONTWAIT);
1651    if (mb_copy && (M_HASCL(mb_copy) || mb_copy->m_len < hlen))
1652	mb_copy = m_pullup(mb_copy, hlen);
1653    if (mb_copy == NULL)
1654	return;
1655
1656    send_packet(vifp, mb_copy);
1657}
1658
1659static void
1660send_packet(struct vif *vifp, struct mbuf *m)
1661{
1662	struct ip_moptions imo;
1663	struct in_multi *imm[2];
1664	int error;
1665
1666	VIF_LOCK_ASSERT();
1667
1668	imo.imo_multicast_ifp  = vifp->v_ifp;
1669	imo.imo_multicast_ttl  = mtod(m, struct ip *)->ip_ttl - 1;
1670	imo.imo_multicast_loop = 1;
1671	imo.imo_multicast_vif  = -1;
1672	imo.imo_num_memberships = 0;
1673	imo.imo_max_memberships = 2;
1674	imo.imo_membership  = &imm[0];
1675
1676	/*
1677	 * Re-entrancy should not be a problem here, because
1678	 * the packets that we send out and are looped back at us
1679	 * should get rejected because they appear to come from
1680	 * the loopback interface, thus preventing looping.
1681	 */
1682	error = ip_output(m, NULL, &vifp->v_route, IP_FORWARDING, &imo, NULL);
1683	CTR3(KTR_IPMF, "%s: vif %td err %d", __func__,
1684	    (ptrdiff_t)(vifp - viftable), error);
1685}
1686
1687/*
1688 * Stubs for old RSVP socket shim implementation.
1689 */
1690
1691static int
1692X_ip_rsvp_vif(struct socket *so __unused, struct sockopt *sopt __unused)
1693{
1694
1695	return (EOPNOTSUPP);
1696}
1697
1698static void
1699X_ip_rsvp_force_done(struct socket *so __unused)
1700{
1701
1702}
1703
1704static void
1705X_rsvp_input(struct mbuf *m, int off __unused)
1706{
1707
1708	if (!V_rsvp_on)
1709		m_freem(m);
1710}
1711
1712/*
1713 * Code for bandwidth monitors
1714 */
1715
1716/*
1717 * Define common interface for timeval-related methods
1718 */
1719#define	BW_TIMEVALCMP(tvp, uvp, cmp) timevalcmp((tvp), (uvp), cmp)
1720#define	BW_TIMEVALDECR(vvp, uvp) timevalsub((vvp), (uvp))
1721#define	BW_TIMEVALADD(vvp, uvp) timevaladd((vvp), (uvp))
1722
1723static uint32_t
1724compute_bw_meter_flags(struct bw_upcall *req)
1725{
1726    uint32_t flags = 0;
1727
1728    if (req->bu_flags & BW_UPCALL_UNIT_PACKETS)
1729	flags |= BW_METER_UNIT_PACKETS;
1730    if (req->bu_flags & BW_UPCALL_UNIT_BYTES)
1731	flags |= BW_METER_UNIT_BYTES;
1732    if (req->bu_flags & BW_UPCALL_GEQ)
1733	flags |= BW_METER_GEQ;
1734    if (req->bu_flags & BW_UPCALL_LEQ)
1735	flags |= BW_METER_LEQ;
1736
1737    return flags;
1738}
1739
1740/*
1741 * Add a bw_meter entry
1742 */
1743static int
1744add_bw_upcall(struct bw_upcall *req)
1745{
1746    struct mfc *mfc;
1747    struct timeval delta = { BW_UPCALL_THRESHOLD_INTERVAL_MIN_SEC,
1748		BW_UPCALL_THRESHOLD_INTERVAL_MIN_USEC };
1749    struct timeval now;
1750    struct bw_meter *x;
1751    uint32_t flags;
1752
1753    if (!(mrt_api_config & MRT_MFC_BW_UPCALL))
1754	return EOPNOTSUPP;
1755
1756    /* Test if the flags are valid */
1757    if (!(req->bu_flags & (BW_UPCALL_UNIT_PACKETS | BW_UPCALL_UNIT_BYTES)))
1758	return EINVAL;
1759    if (!(req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ)))
1760	return EINVAL;
1761    if ((req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ))
1762	    == (BW_UPCALL_GEQ | BW_UPCALL_LEQ))
1763	return EINVAL;
1764
1765    /* Test if the threshold time interval is valid */
1766    if (BW_TIMEVALCMP(&req->bu_threshold.b_time, &delta, <))
1767	return EINVAL;
1768
1769    flags = compute_bw_meter_flags(req);
1770
1771    /*
1772     * Find if we have already same bw_meter entry
1773     */
1774    MFC_LOCK();
1775    mfc = mfc_find(&req->bu_src, &req->bu_dst);
1776    if (mfc == NULL) {
1777	MFC_UNLOCK();
1778	return EADDRNOTAVAIL;
1779    }
1780    for (x = mfc->mfc_bw_meter; x != NULL; x = x->bm_mfc_next) {
1781	if ((BW_TIMEVALCMP(&x->bm_threshold.b_time,
1782			   &req->bu_threshold.b_time, ==)) &&
1783	    (x->bm_threshold.b_packets == req->bu_threshold.b_packets) &&
1784	    (x->bm_threshold.b_bytes == req->bu_threshold.b_bytes) &&
1785	    (x->bm_flags & BW_METER_USER_FLAGS) == flags)  {
1786	    MFC_UNLOCK();
1787	    return 0;		/* XXX Already installed */
1788	}
1789    }
1790
1791    /* Allocate the new bw_meter entry */
1792    x = (struct bw_meter *)malloc(sizeof(*x), M_BWMETER, M_NOWAIT);
1793    if (x == NULL) {
1794	MFC_UNLOCK();
1795	return ENOBUFS;
1796    }
1797
1798    /* Set the new bw_meter entry */
1799    x->bm_threshold.b_time = req->bu_threshold.b_time;
1800    microtime(&now);
1801    x->bm_start_time = now;
1802    x->bm_threshold.b_packets = req->bu_threshold.b_packets;
1803    x->bm_threshold.b_bytes = req->bu_threshold.b_bytes;
1804    x->bm_measured.b_packets = 0;
1805    x->bm_measured.b_bytes = 0;
1806    x->bm_flags = flags;
1807    x->bm_time_next = NULL;
1808    x->bm_time_hash = BW_METER_BUCKETS;
1809
1810    /* Add the new bw_meter entry to the front of entries for this MFC */
1811    x->bm_mfc = mfc;
1812    x->bm_mfc_next = mfc->mfc_bw_meter;
1813    mfc->mfc_bw_meter = x;
1814    schedule_bw_meter(x, &now);
1815    MFC_UNLOCK();
1816
1817    return 0;
1818}
1819
1820static void
1821free_bw_list(struct bw_meter *list)
1822{
1823    while (list != NULL) {
1824	struct bw_meter *x = list;
1825
1826	list = list->bm_mfc_next;
1827	unschedule_bw_meter(x);
1828	free(x, M_BWMETER);
1829    }
1830}
1831
1832/*
1833 * Delete one or multiple bw_meter entries
1834 */
1835static int
1836del_bw_upcall(struct bw_upcall *req)
1837{
1838    struct mfc *mfc;
1839    struct bw_meter *x;
1840
1841    if (!(mrt_api_config & MRT_MFC_BW_UPCALL))
1842	return EOPNOTSUPP;
1843
1844    MFC_LOCK();
1845
1846    /* Find the corresponding MFC entry */
1847    mfc = mfc_find(&req->bu_src, &req->bu_dst);
1848    if (mfc == NULL) {
1849	MFC_UNLOCK();
1850	return EADDRNOTAVAIL;
1851    } else if (req->bu_flags & BW_UPCALL_DELETE_ALL) {
1852	/*
1853	 * Delete all bw_meter entries for this mfc
1854	 */
1855	struct bw_meter *list;
1856
1857	list = mfc->mfc_bw_meter;
1858	mfc->mfc_bw_meter = NULL;
1859	free_bw_list(list);
1860	MFC_UNLOCK();
1861	return 0;
1862    } else {			/* Delete a single bw_meter entry */
1863	struct bw_meter *prev;
1864	uint32_t flags = 0;
1865
1866	flags = compute_bw_meter_flags(req);
1867
1868	/* Find the bw_meter entry to delete */
1869	for (prev = NULL, x = mfc->mfc_bw_meter; x != NULL;
1870	     prev = x, x = x->bm_mfc_next) {
1871	    if ((BW_TIMEVALCMP(&x->bm_threshold.b_time,
1872			       &req->bu_threshold.b_time, ==)) &&
1873		(x->bm_threshold.b_packets == req->bu_threshold.b_packets) &&
1874		(x->bm_threshold.b_bytes == req->bu_threshold.b_bytes) &&
1875		(x->bm_flags & BW_METER_USER_FLAGS) == flags)
1876		break;
1877	}
1878	if (x != NULL) { /* Delete entry from the list for this MFC */
1879	    if (prev != NULL)
1880		prev->bm_mfc_next = x->bm_mfc_next;	/* remove from middle*/
1881	    else
1882		x->bm_mfc->mfc_bw_meter = x->bm_mfc_next;/* new head of list */
1883
1884	    unschedule_bw_meter(x);
1885	    MFC_UNLOCK();
1886	    /* Free the bw_meter entry */
1887	    free(x, M_BWMETER);
1888	    return 0;
1889	} else {
1890	    MFC_UNLOCK();
1891	    return EINVAL;
1892	}
1893    }
1894    /* NOTREACHED */
1895}
1896
1897/*
1898 * Perform bandwidth measurement processing that may result in an upcall
1899 */
1900static void
1901bw_meter_receive_packet(struct bw_meter *x, int plen, struct timeval *nowp)
1902{
1903    struct timeval delta;
1904
1905    MFC_LOCK_ASSERT();
1906
1907    delta = *nowp;
1908    BW_TIMEVALDECR(&delta, &x->bm_start_time);
1909
1910    if (x->bm_flags & BW_METER_GEQ) {
1911	/*
1912	 * Processing for ">=" type of bw_meter entry
1913	 */
1914	if (BW_TIMEVALCMP(&delta, &x->bm_threshold.b_time, >)) {
1915	    /* Reset the bw_meter entry */
1916	    x->bm_start_time = *nowp;
1917	    x->bm_measured.b_packets = 0;
1918	    x->bm_measured.b_bytes = 0;
1919	    x->bm_flags &= ~BW_METER_UPCALL_DELIVERED;
1920	}
1921
1922	/* Record that a packet is received */
1923	x->bm_measured.b_packets++;
1924	x->bm_measured.b_bytes += plen;
1925
1926	/*
1927	 * Test if we should deliver an upcall
1928	 */
1929	if (!(x->bm_flags & BW_METER_UPCALL_DELIVERED)) {
1930	    if (((x->bm_flags & BW_METER_UNIT_PACKETS) &&
1931		 (x->bm_measured.b_packets >= x->bm_threshold.b_packets)) ||
1932		((x->bm_flags & BW_METER_UNIT_BYTES) &&
1933		 (x->bm_measured.b_bytes >= x->bm_threshold.b_bytes))) {
1934		/* Prepare an upcall for delivery */
1935		bw_meter_prepare_upcall(x, nowp);
1936		x->bm_flags |= BW_METER_UPCALL_DELIVERED;
1937	    }
1938	}
1939    } else if (x->bm_flags & BW_METER_LEQ) {
1940	/*
1941	 * Processing for "<=" type of bw_meter entry
1942	 */
1943	if (BW_TIMEVALCMP(&delta, &x->bm_threshold.b_time, >)) {
1944	    /*
1945	     * We are behind time with the multicast forwarding table
1946	     * scanning for "<=" type of bw_meter entries, so test now
1947	     * if we should deliver an upcall.
1948	     */
1949	    if (((x->bm_flags & BW_METER_UNIT_PACKETS) &&
1950		 (x->bm_measured.b_packets <= x->bm_threshold.b_packets)) ||
1951		((x->bm_flags & BW_METER_UNIT_BYTES) &&
1952		 (x->bm_measured.b_bytes <= x->bm_threshold.b_bytes))) {
1953		/* Prepare an upcall for delivery */
1954		bw_meter_prepare_upcall(x, nowp);
1955	    }
1956	    /* Reschedule the bw_meter entry */
1957	    unschedule_bw_meter(x);
1958	    schedule_bw_meter(x, nowp);
1959	}
1960
1961	/* Record that a packet is received */
1962	x->bm_measured.b_packets++;
1963	x->bm_measured.b_bytes += plen;
1964
1965	/*
1966	 * Test if we should restart the measuring interval
1967	 */
1968	if ((x->bm_flags & BW_METER_UNIT_PACKETS &&
1969	     x->bm_measured.b_packets <= x->bm_threshold.b_packets) ||
1970	    (x->bm_flags & BW_METER_UNIT_BYTES &&
1971	     x->bm_measured.b_bytes <= x->bm_threshold.b_bytes)) {
1972	    /* Don't restart the measuring interval */
1973	} else {
1974	    /* Do restart the measuring interval */
1975	    /*
1976	     * XXX: note that we don't unschedule and schedule, because this
1977	     * might be too much overhead per packet. Instead, when we process
1978	     * all entries for a given timer hash bin, we check whether it is
1979	     * really a timeout. If not, we reschedule at that time.
1980	     */
1981	    x->bm_start_time = *nowp;
1982	    x->bm_measured.b_packets = 0;
1983	    x->bm_measured.b_bytes = 0;
1984	    x->bm_flags &= ~BW_METER_UPCALL_DELIVERED;
1985	}
1986    }
1987}
1988
1989/*
1990 * Prepare a bandwidth-related upcall
1991 */
1992static void
1993bw_meter_prepare_upcall(struct bw_meter *x, struct timeval *nowp)
1994{
1995    struct timeval delta;
1996    struct bw_upcall *u;
1997
1998    MFC_LOCK_ASSERT();
1999
2000    /*
2001     * Compute the measured time interval
2002     */
2003    delta = *nowp;
2004    BW_TIMEVALDECR(&delta, &x->bm_start_time);
2005
2006    /*
2007     * If there are too many pending upcalls, deliver them now
2008     */
2009    if (bw_upcalls_n >= BW_UPCALLS_MAX)
2010	bw_upcalls_send();
2011
2012    /*
2013     * Set the bw_upcall entry
2014     */
2015    u = &bw_upcalls[bw_upcalls_n++];
2016    u->bu_src = x->bm_mfc->mfc_origin;
2017    u->bu_dst = x->bm_mfc->mfc_mcastgrp;
2018    u->bu_threshold.b_time = x->bm_threshold.b_time;
2019    u->bu_threshold.b_packets = x->bm_threshold.b_packets;
2020    u->bu_threshold.b_bytes = x->bm_threshold.b_bytes;
2021    u->bu_measured.b_time = delta;
2022    u->bu_measured.b_packets = x->bm_measured.b_packets;
2023    u->bu_measured.b_bytes = x->bm_measured.b_bytes;
2024    u->bu_flags = 0;
2025    if (x->bm_flags & BW_METER_UNIT_PACKETS)
2026	u->bu_flags |= BW_UPCALL_UNIT_PACKETS;
2027    if (x->bm_flags & BW_METER_UNIT_BYTES)
2028	u->bu_flags |= BW_UPCALL_UNIT_BYTES;
2029    if (x->bm_flags & BW_METER_GEQ)
2030	u->bu_flags |= BW_UPCALL_GEQ;
2031    if (x->bm_flags & BW_METER_LEQ)
2032	u->bu_flags |= BW_UPCALL_LEQ;
2033}
2034
2035/*
2036 * Send the pending bandwidth-related upcalls
2037 */
2038static void
2039bw_upcalls_send(void)
2040{
2041    struct mbuf *m;
2042    int len = bw_upcalls_n * sizeof(bw_upcalls[0]);
2043    struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
2044    static struct igmpmsg igmpmsg = { 0,		/* unused1 */
2045				      0,		/* unused2 */
2046				      IGMPMSG_BW_UPCALL,/* im_msgtype */
2047				      0,		/* im_mbz  */
2048				      0,		/* im_vif  */
2049				      0,		/* unused3 */
2050				      { 0 },		/* im_src  */
2051				      { 0 } };		/* im_dst  */
2052
2053    MFC_LOCK_ASSERT();
2054
2055    if (bw_upcalls_n == 0)
2056	return;			/* No pending upcalls */
2057
2058    bw_upcalls_n = 0;
2059
2060    /*
2061     * Allocate a new mbuf, initialize it with the header and
2062     * the payload for the pending calls.
2063     */
2064    MGETHDR(m, M_DONTWAIT, MT_DATA);
2065    if (m == NULL) {
2066	log(LOG_WARNING, "bw_upcalls_send: cannot allocate mbuf\n");
2067	return;
2068    }
2069
2070    m->m_len = m->m_pkthdr.len = 0;
2071    m_copyback(m, 0, sizeof(struct igmpmsg), (caddr_t)&igmpmsg);
2072    m_copyback(m, sizeof(struct igmpmsg), len, (caddr_t)&bw_upcalls[0]);
2073
2074    /*
2075     * Send the upcalls
2076     * XXX do we need to set the address in k_igmpsrc ?
2077     */
2078    MRTSTAT_INC(mrts_upcalls);
2079    if (socket_send(V_ip_mrouter, m, &k_igmpsrc) < 0) {
2080	log(LOG_WARNING, "bw_upcalls_send: ip_mrouter socket queue full\n");
2081	MRTSTAT_INC(mrts_upq_sockfull);
2082    }
2083}
2084
2085/*
2086 * Compute the timeout hash value for the bw_meter entries
2087 */
2088#define	BW_METER_TIMEHASH(bw_meter, hash)				\
2089    do {								\
2090	struct timeval next_timeval = (bw_meter)->bm_start_time;	\
2091									\
2092	BW_TIMEVALADD(&next_timeval, &(bw_meter)->bm_threshold.b_time); \
2093	(hash) = next_timeval.tv_sec;					\
2094	if (next_timeval.tv_usec)					\
2095	    (hash)++; /* XXX: make sure we don't timeout early */	\
2096	(hash) %= BW_METER_BUCKETS;					\
2097    } while (0)
2098
2099/*
2100 * Schedule a timer to process periodically bw_meter entry of type "<="
2101 * by linking the entry in the proper hash bucket.
2102 */
2103static void
2104schedule_bw_meter(struct bw_meter *x, struct timeval *nowp)
2105{
2106    int time_hash;
2107
2108    MFC_LOCK_ASSERT();
2109
2110    if (!(x->bm_flags & BW_METER_LEQ))
2111	return;		/* XXX: we schedule timers only for "<=" entries */
2112
2113    /*
2114     * Reset the bw_meter entry
2115     */
2116    x->bm_start_time = *nowp;
2117    x->bm_measured.b_packets = 0;
2118    x->bm_measured.b_bytes = 0;
2119    x->bm_flags &= ~BW_METER_UPCALL_DELIVERED;
2120
2121    /*
2122     * Compute the timeout hash value and insert the entry
2123     */
2124    BW_METER_TIMEHASH(x, time_hash);
2125    x->bm_time_next = bw_meter_timers[time_hash];
2126    bw_meter_timers[time_hash] = x;
2127    x->bm_time_hash = time_hash;
2128}
2129
2130/*
2131 * Unschedule the periodic timer that processes bw_meter entry of type "<="
2132 * by removing the entry from the proper hash bucket.
2133 */
2134static void
2135unschedule_bw_meter(struct bw_meter *x)
2136{
2137    int time_hash;
2138    struct bw_meter *prev, *tmp;
2139
2140    MFC_LOCK_ASSERT();
2141
2142    if (!(x->bm_flags & BW_METER_LEQ))
2143	return;		/* XXX: we schedule timers only for "<=" entries */
2144
2145    /*
2146     * Compute the timeout hash value and delete the entry
2147     */
2148    time_hash = x->bm_time_hash;
2149    if (time_hash >= BW_METER_BUCKETS)
2150	return;		/* Entry was not scheduled */
2151
2152    for (prev = NULL, tmp = bw_meter_timers[time_hash];
2153	     tmp != NULL; prev = tmp, tmp = tmp->bm_time_next)
2154	if (tmp == x)
2155	    break;
2156
2157    if (tmp == NULL)
2158	panic("unschedule_bw_meter: bw_meter entry not found");
2159
2160    if (prev != NULL)
2161	prev->bm_time_next = x->bm_time_next;
2162    else
2163	bw_meter_timers[time_hash] = x->bm_time_next;
2164
2165    x->bm_time_next = NULL;
2166    x->bm_time_hash = BW_METER_BUCKETS;
2167}
2168
2169
2170/*
2171 * Process all "<=" type of bw_meter that should be processed now,
2172 * and for each entry prepare an upcall if necessary. Each processed
2173 * entry is rescheduled again for the (periodic) processing.
2174 *
2175 * This is run periodically (once per second normally). On each round,
2176 * all the potentially matching entries are in the hash slot that we are
2177 * looking at.
2178 */
2179static void
2180bw_meter_process()
2181{
2182    static uint32_t last_tv_sec;	/* last time we processed this */
2183
2184    uint32_t loops;
2185    int i;
2186    struct timeval now, process_endtime;
2187
2188    microtime(&now);
2189    if (last_tv_sec == now.tv_sec)
2190	return;		/* nothing to do */
2191
2192    loops = now.tv_sec - last_tv_sec;
2193    last_tv_sec = now.tv_sec;
2194    if (loops > BW_METER_BUCKETS)
2195	loops = BW_METER_BUCKETS;
2196
2197    MFC_LOCK();
2198    /*
2199     * Process all bins of bw_meter entries from the one after the last
2200     * processed to the current one. On entry, i points to the last bucket
2201     * visited, so we need to increment i at the beginning of the loop.
2202     */
2203    for (i = (now.tv_sec - loops) % BW_METER_BUCKETS; loops > 0; loops--) {
2204	struct bw_meter *x, *tmp_list;
2205
2206	if (++i >= BW_METER_BUCKETS)
2207	    i = 0;
2208
2209	/* Disconnect the list of bw_meter entries from the bin */
2210	tmp_list = bw_meter_timers[i];
2211	bw_meter_timers[i] = NULL;
2212
2213	/* Process the list of bw_meter entries */
2214	while (tmp_list != NULL) {
2215	    x = tmp_list;
2216	    tmp_list = tmp_list->bm_time_next;
2217
2218	    /* Test if the time interval is over */
2219	    process_endtime = x->bm_start_time;
2220	    BW_TIMEVALADD(&process_endtime, &x->bm_threshold.b_time);
2221	    if (BW_TIMEVALCMP(&process_endtime, &now, >)) {
2222		/* Not yet: reschedule, but don't reset */
2223		int time_hash;
2224
2225		BW_METER_TIMEHASH(x, time_hash);
2226		if (time_hash == i && process_endtime.tv_sec == now.tv_sec) {
2227		    /*
2228		     * XXX: somehow the bin processing is a bit ahead of time.
2229		     * Put the entry in the next bin.
2230		     */
2231		    if (++time_hash >= BW_METER_BUCKETS)
2232			time_hash = 0;
2233		}
2234		x->bm_time_next = bw_meter_timers[time_hash];
2235		bw_meter_timers[time_hash] = x;
2236		x->bm_time_hash = time_hash;
2237
2238		continue;
2239	    }
2240
2241	    /*
2242	     * Test if we should deliver an upcall
2243	     */
2244	    if (((x->bm_flags & BW_METER_UNIT_PACKETS) &&
2245		 (x->bm_measured.b_packets <= x->bm_threshold.b_packets)) ||
2246		((x->bm_flags & BW_METER_UNIT_BYTES) &&
2247		 (x->bm_measured.b_bytes <= x->bm_threshold.b_bytes))) {
2248		/* Prepare an upcall for delivery */
2249		bw_meter_prepare_upcall(x, &now);
2250	    }
2251
2252	    /*
2253	     * Reschedule for next processing
2254	     */
2255	    schedule_bw_meter(x, &now);
2256	}
2257    }
2258
2259    /* Send all upcalls that are pending delivery */
2260    bw_upcalls_send();
2261
2262    MFC_UNLOCK();
2263}
2264
2265/*
2266 * A periodic function for sending all upcalls that are pending delivery
2267 */
2268static void
2269expire_bw_upcalls_send(void *unused)
2270{
2271    MFC_LOCK();
2272    bw_upcalls_send();
2273    MFC_UNLOCK();
2274
2275    callout_reset(&bw_upcalls_ch, BW_UPCALLS_PERIOD,
2276	expire_bw_upcalls_send, NULL);
2277}
2278
2279/*
2280 * A periodic function for periodic scanning of the multicast forwarding
2281 * table for processing all "<=" bw_meter entries.
2282 */
2283static void
2284expire_bw_meter_process(void *unused)
2285{
2286    if (mrt_api_config & MRT_MFC_BW_UPCALL)
2287	bw_meter_process();
2288
2289    callout_reset(&bw_meter_ch, BW_METER_PERIOD, expire_bw_meter_process, NULL);
2290}
2291
2292/*
2293 * End of bandwidth monitoring code
2294 */
2295
2296/*
2297 * Send the packet up to the user daemon, or eventually do kernel encapsulation
2298 *
2299 */
2300static int
2301pim_register_send(struct ip *ip, struct vif *vifp, struct mbuf *m,
2302    struct mfc *rt)
2303{
2304    struct mbuf *mb_copy, *mm;
2305
2306    /*
2307     * Do not send IGMP_WHOLEPKT notifications to userland, if the
2308     * rendezvous point was unspecified, and we were told not to.
2309     */
2310    if (pim_squelch_wholepkt != 0 && (mrt_api_config & MRT_MFC_RP) &&
2311	in_nullhost(rt->mfc_rp))
2312	return 0;
2313
2314    mb_copy = pim_register_prepare(ip, m);
2315    if (mb_copy == NULL)
2316	return ENOBUFS;
2317
2318    /*
2319     * Send all the fragments. Note that the mbuf for each fragment
2320     * is freed by the sending machinery.
2321     */
2322    for (mm = mb_copy; mm; mm = mb_copy) {
2323	mb_copy = mm->m_nextpkt;
2324	mm->m_nextpkt = 0;
2325	mm = m_pullup(mm, sizeof(struct ip));
2326	if (mm != NULL) {
2327	    ip = mtod(mm, struct ip *);
2328	    if ((mrt_api_config & MRT_MFC_RP) && !in_nullhost(rt->mfc_rp)) {
2329		pim_register_send_rp(ip, vifp, mm, rt);
2330	    } else {
2331		pim_register_send_upcall(ip, vifp, mm, rt);
2332	    }
2333	}
2334    }
2335
2336    return 0;
2337}
2338
2339/*
2340 * Return a copy of the data packet that is ready for PIM Register
2341 * encapsulation.
2342 * XXX: Note that in the returned copy the IP header is a valid one.
2343 */
2344static struct mbuf *
2345pim_register_prepare(struct ip *ip, struct mbuf *m)
2346{
2347    struct mbuf *mb_copy = NULL;
2348    int mtu;
2349
2350    /* Take care of delayed checksums */
2351    if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
2352	in_delayed_cksum(m);
2353	m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
2354    }
2355
2356    /*
2357     * Copy the old packet & pullup its IP header into the
2358     * new mbuf so we can modify it.
2359     */
2360    mb_copy = m_copypacket(m, M_DONTWAIT);
2361    if (mb_copy == NULL)
2362	return NULL;
2363    mb_copy = m_pullup(mb_copy, ip->ip_hl << 2);
2364    if (mb_copy == NULL)
2365	return NULL;
2366
2367    /* take care of the TTL */
2368    ip = mtod(mb_copy, struct ip *);
2369    --ip->ip_ttl;
2370
2371    /* Compute the MTU after the PIM Register encapsulation */
2372    mtu = 0xffff - sizeof(pim_encap_iphdr) - sizeof(pim_encap_pimhdr);
2373
2374    if (ip->ip_len <= mtu) {
2375	/* Turn the IP header into a valid one */
2376	ip->ip_len = htons(ip->ip_len);
2377	ip->ip_off = htons(ip->ip_off);
2378	ip->ip_sum = 0;
2379	ip->ip_sum = in_cksum(mb_copy, ip->ip_hl << 2);
2380    } else {
2381	/* Fragment the packet */
2382	if (ip_fragment(ip, &mb_copy, mtu, 0, CSUM_DELAY_IP) != 0) {
2383	    m_freem(mb_copy);
2384	    return NULL;
2385	}
2386    }
2387    return mb_copy;
2388}
2389
2390/*
2391 * Send an upcall with the data packet to the user-level process.
2392 */
2393static int
2394pim_register_send_upcall(struct ip *ip, struct vif *vifp,
2395    struct mbuf *mb_copy, struct mfc *rt)
2396{
2397    struct mbuf *mb_first;
2398    int len = ntohs(ip->ip_len);
2399    struct igmpmsg *im;
2400    struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
2401
2402    VIF_LOCK_ASSERT();
2403
2404    /*
2405     * Add a new mbuf with an upcall header
2406     */
2407    MGETHDR(mb_first, M_DONTWAIT, MT_DATA);
2408    if (mb_first == NULL) {
2409	m_freem(mb_copy);
2410	return ENOBUFS;
2411    }
2412    mb_first->m_data += max_linkhdr;
2413    mb_first->m_pkthdr.len = len + sizeof(struct igmpmsg);
2414    mb_first->m_len = sizeof(struct igmpmsg);
2415    mb_first->m_next = mb_copy;
2416
2417    /* Send message to routing daemon */
2418    im = mtod(mb_first, struct igmpmsg *);
2419    im->im_msgtype	= IGMPMSG_WHOLEPKT;
2420    im->im_mbz		= 0;
2421    im->im_vif		= vifp - viftable;
2422    im->im_src		= ip->ip_src;
2423    im->im_dst		= ip->ip_dst;
2424
2425    k_igmpsrc.sin_addr	= ip->ip_src;
2426
2427    MRTSTAT_INC(mrts_upcalls);
2428
2429    if (socket_send(V_ip_mrouter, mb_first, &k_igmpsrc) < 0) {
2430	CTR1(KTR_IPMF, "%s: socket queue full", __func__);
2431	MRTSTAT_INC(mrts_upq_sockfull);
2432	return ENOBUFS;
2433    }
2434
2435    /* Keep statistics */
2436    PIMSTAT_INC(pims_snd_registers_msgs);
2437    PIMSTAT_ADD(pims_snd_registers_bytes, len);
2438
2439    return 0;
2440}
2441
2442/*
2443 * Encapsulate the data packet in PIM Register message and send it to the RP.
2444 */
2445static int
2446pim_register_send_rp(struct ip *ip, struct vif *vifp, struct mbuf *mb_copy,
2447    struct mfc *rt)
2448{
2449    struct mbuf *mb_first;
2450    struct ip *ip_outer;
2451    struct pim_encap_pimhdr *pimhdr;
2452    int len = ntohs(ip->ip_len);
2453    vifi_t vifi = rt->mfc_parent;
2454
2455    VIF_LOCK_ASSERT();
2456
2457    if ((vifi >= numvifs) || in_nullhost(viftable[vifi].v_lcl_addr)) {
2458	m_freem(mb_copy);
2459	return EADDRNOTAVAIL;		/* The iif vif is invalid */
2460    }
2461
2462    /*
2463     * Add a new mbuf with the encapsulating header
2464     */
2465    MGETHDR(mb_first, M_DONTWAIT, MT_DATA);
2466    if (mb_first == NULL) {
2467	m_freem(mb_copy);
2468	return ENOBUFS;
2469    }
2470    mb_first->m_data += max_linkhdr;
2471    mb_first->m_len = sizeof(pim_encap_iphdr) + sizeof(pim_encap_pimhdr);
2472    mb_first->m_next = mb_copy;
2473
2474    mb_first->m_pkthdr.len = len + mb_first->m_len;
2475
2476    /*
2477     * Fill in the encapsulating IP and PIM header
2478     */
2479    ip_outer = mtod(mb_first, struct ip *);
2480    *ip_outer = pim_encap_iphdr;
2481    ip_outer->ip_id = ip_newid();
2482    ip_outer->ip_len = len + sizeof(pim_encap_iphdr) + sizeof(pim_encap_pimhdr);
2483    ip_outer->ip_src = viftable[vifi].v_lcl_addr;
2484    ip_outer->ip_dst = rt->mfc_rp;
2485    /*
2486     * Copy the inner header TOS to the outer header, and take care of the
2487     * IP_DF bit.
2488     */
2489    ip_outer->ip_tos = ip->ip_tos;
2490    if (ntohs(ip->ip_off) & IP_DF)
2491	ip_outer->ip_off |= IP_DF;
2492    pimhdr = (struct pim_encap_pimhdr *)((caddr_t)ip_outer
2493					 + sizeof(pim_encap_iphdr));
2494    *pimhdr = pim_encap_pimhdr;
2495    /* If the iif crosses a border, set the Border-bit */
2496    if (rt->mfc_flags[vifi] & MRT_MFC_FLAGS_BORDER_VIF & mrt_api_config)
2497	pimhdr->flags |= htonl(PIM_BORDER_REGISTER);
2498
2499    mb_first->m_data += sizeof(pim_encap_iphdr);
2500    pimhdr->pim.pim_cksum = in_cksum(mb_first, sizeof(pim_encap_pimhdr));
2501    mb_first->m_data -= sizeof(pim_encap_iphdr);
2502
2503    send_packet(vifp, mb_first);
2504
2505    /* Keep statistics */
2506    PIMSTAT_INC(pims_snd_registers_msgs);
2507    PIMSTAT_ADD(pims_snd_registers_bytes, len);
2508
2509    return 0;
2510}
2511
2512/*
2513 * pim_encapcheck() is called by the encap4_input() path at runtime to
2514 * determine if a packet is for PIM; allowing PIM to be dynamically loaded
2515 * into the kernel.
2516 */
2517static int
2518pim_encapcheck(const struct mbuf *m, int off, int proto, void *arg)
2519{
2520
2521#ifdef DIAGNOSTIC
2522    KASSERT(proto == IPPROTO_PIM, ("not for IPPROTO_PIM"));
2523#endif
2524    if (proto != IPPROTO_PIM)
2525	return 0;	/* not for us; reject the datagram. */
2526
2527    return 64;		/* claim the datagram. */
2528}
2529
2530/*
2531 * PIM-SMv2 and PIM-DM messages processing.
2532 * Receives and verifies the PIM control messages, and passes them
2533 * up to the listening socket, using rip_input().
2534 * The only message with special processing is the PIM_REGISTER message
2535 * (used by PIM-SM): the PIM header is stripped off, and the inner packet
2536 * is passed to if_simloop().
2537 */
2538void
2539pim_input(struct mbuf *m, int off)
2540{
2541    struct ip *ip = mtod(m, struct ip *);
2542    struct pim *pim;
2543    int minlen;
2544    int datalen = ip->ip_len;
2545    int ip_tos;
2546    int iphlen = off;
2547
2548    /* Keep statistics */
2549    PIMSTAT_INC(pims_rcv_total_msgs);
2550    PIMSTAT_ADD(pims_rcv_total_bytes, datalen);
2551
2552    /*
2553     * Validate lengths
2554     */
2555    if (datalen < PIM_MINLEN) {
2556	PIMSTAT_INC(pims_rcv_tooshort);
2557	CTR3(KTR_IPMF, "%s: short packet (%d) from %s",
2558	    __func__, datalen, inet_ntoa(ip->ip_src));
2559	m_freem(m);
2560	return;
2561    }
2562
2563    /*
2564     * If the packet is at least as big as a REGISTER, go agead
2565     * and grab the PIM REGISTER header size, to avoid another
2566     * possible m_pullup() later.
2567     *
2568     * PIM_MINLEN       == pimhdr + u_int32_t == 4 + 4 = 8
2569     * PIM_REG_MINLEN   == pimhdr + reghdr + encap_iphdr == 4 + 4 + 20 = 28
2570     */
2571    minlen = iphlen + (datalen >= PIM_REG_MINLEN ? PIM_REG_MINLEN : PIM_MINLEN);
2572    /*
2573     * Get the IP and PIM headers in contiguous memory, and
2574     * possibly the PIM REGISTER header.
2575     */
2576    if ((m->m_flags & M_EXT || m->m_len < minlen) &&
2577	(m = m_pullup(m, minlen)) == 0) {
2578	CTR1(KTR_IPMF, "%s: m_pullup() failed", __func__);
2579	return;
2580    }
2581
2582    /* m_pullup() may have given us a new mbuf so reset ip. */
2583    ip = mtod(m, struct ip *);
2584    ip_tos = ip->ip_tos;
2585
2586    /* adjust mbuf to point to the PIM header */
2587    m->m_data += iphlen;
2588    m->m_len  -= iphlen;
2589    pim = mtod(m, struct pim *);
2590
2591    /*
2592     * Validate checksum. If PIM REGISTER, exclude the data packet.
2593     *
2594     * XXX: some older PIMv2 implementations don't make this distinction,
2595     * so for compatibility reason perform the checksum over part of the
2596     * message, and if error, then over the whole message.
2597     */
2598    if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER && in_cksum(m, PIM_MINLEN) == 0) {
2599	/* do nothing, checksum okay */
2600    } else if (in_cksum(m, datalen)) {
2601	PIMSTAT_INC(pims_rcv_badsum);
2602	CTR1(KTR_IPMF, "%s: invalid checksum", __func__);
2603	m_freem(m);
2604	return;
2605    }
2606
2607    /* PIM version check */
2608    if (PIM_VT_V(pim->pim_vt) < PIM_VERSION) {
2609	PIMSTAT_INC(pims_rcv_badversion);
2610	CTR3(KTR_IPMF, "%s: bad version %d expect %d", __func__,
2611	    (int)PIM_VT_V(pim->pim_vt), PIM_VERSION);
2612	m_freem(m);
2613	return;
2614    }
2615
2616    /* restore mbuf back to the outer IP */
2617    m->m_data -= iphlen;
2618    m->m_len  += iphlen;
2619
2620    if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER) {
2621	/*
2622	 * Since this is a REGISTER, we'll make a copy of the register
2623	 * headers ip + pim + u_int32 + encap_ip, to be passed up to the
2624	 * routing daemon.
2625	 */
2626	struct sockaddr_in dst = { sizeof(dst), AF_INET };
2627	struct mbuf *mcp;
2628	struct ip *encap_ip;
2629	u_int32_t *reghdr;
2630	struct ifnet *vifp;
2631
2632	VIF_LOCK();
2633	if ((reg_vif_num >= numvifs) || (reg_vif_num == VIFI_INVALID)) {
2634	    VIF_UNLOCK();
2635	    CTR2(KTR_IPMF, "%s: register vif not set: %d", __func__,
2636		(int)reg_vif_num);
2637	    m_freem(m);
2638	    return;
2639	}
2640	/* XXX need refcnt? */
2641	vifp = viftable[reg_vif_num].v_ifp;
2642	VIF_UNLOCK();
2643
2644	/*
2645	 * Validate length
2646	 */
2647	if (datalen < PIM_REG_MINLEN) {
2648	    PIMSTAT_INC(pims_rcv_tooshort);
2649	    PIMSTAT_INC(pims_rcv_badregisters);
2650	    CTR1(KTR_IPMF, "%s: register packet size too small", __func__);
2651	    m_freem(m);
2652	    return;
2653	}
2654
2655	reghdr = (u_int32_t *)(pim + 1);
2656	encap_ip = (struct ip *)(reghdr + 1);
2657
2658	CTR3(KTR_IPMF, "%s: register: encap ip src %s len %d",
2659	    __func__, inet_ntoa(encap_ip->ip_src), ntohs(encap_ip->ip_len));
2660
2661	/* verify the version number of the inner packet */
2662	if (encap_ip->ip_v != IPVERSION) {
2663	    PIMSTAT_INC(pims_rcv_badregisters);
2664	    CTR1(KTR_IPMF, "%s: bad encap ip version", __func__);
2665	    m_freem(m);
2666	    return;
2667	}
2668
2669	/* verify the inner packet is destined to a mcast group */
2670	if (!IN_MULTICAST(ntohl(encap_ip->ip_dst.s_addr))) {
2671	    PIMSTAT_INC(pims_rcv_badregisters);
2672	    CTR2(KTR_IPMF, "%s: bad encap ip dest %s", __func__,
2673		inet_ntoa(encap_ip->ip_dst));
2674	    m_freem(m);
2675	    return;
2676	}
2677
2678	/* If a NULL_REGISTER, pass it to the daemon */
2679	if ((ntohl(*reghdr) & PIM_NULL_REGISTER))
2680	    goto pim_input_to_daemon;
2681
2682	/*
2683	 * Copy the TOS from the outer IP header to the inner IP header.
2684	 */
2685	if (encap_ip->ip_tos != ip_tos) {
2686	    /* Outer TOS -> inner TOS */
2687	    encap_ip->ip_tos = ip_tos;
2688	    /* Recompute the inner header checksum. Sigh... */
2689
2690	    /* adjust mbuf to point to the inner IP header */
2691	    m->m_data += (iphlen + PIM_MINLEN);
2692	    m->m_len  -= (iphlen + PIM_MINLEN);
2693
2694	    encap_ip->ip_sum = 0;
2695	    encap_ip->ip_sum = in_cksum(m, encap_ip->ip_hl << 2);
2696
2697	    /* restore mbuf to point back to the outer IP header */
2698	    m->m_data -= (iphlen + PIM_MINLEN);
2699	    m->m_len  += (iphlen + PIM_MINLEN);
2700	}
2701
2702	/*
2703	 * Decapsulate the inner IP packet and loopback to forward it
2704	 * as a normal multicast packet. Also, make a copy of the
2705	 *     outer_iphdr + pimhdr + reghdr + encap_iphdr
2706	 * to pass to the daemon later, so it can take the appropriate
2707	 * actions (e.g., send back PIM_REGISTER_STOP).
2708	 * XXX: here m->m_data points to the outer IP header.
2709	 */
2710	mcp = m_copy(m, 0, iphlen + PIM_REG_MINLEN);
2711	if (mcp == NULL) {
2712	    CTR1(KTR_IPMF, "%s: m_copy() failed", __func__);
2713	    m_freem(m);
2714	    return;
2715	}
2716
2717	/* Keep statistics */
2718	/* XXX: registers_bytes include only the encap. mcast pkt */
2719	PIMSTAT_INC(pims_rcv_registers_msgs);
2720	PIMSTAT_ADD(pims_rcv_registers_bytes, ntohs(encap_ip->ip_len));
2721
2722	/*
2723	 * forward the inner ip packet; point m_data at the inner ip.
2724	 */
2725	m_adj(m, iphlen + PIM_MINLEN);
2726
2727	CTR4(KTR_IPMF,
2728	    "%s: forward decap'd REGISTER: src %lx dst %lx vif %d",
2729	    __func__,
2730	    (u_long)ntohl(encap_ip->ip_src.s_addr),
2731	    (u_long)ntohl(encap_ip->ip_dst.s_addr),
2732	    (int)reg_vif_num);
2733
2734	/* NB: vifp was collected above; can it change on us? */
2735	if_simloop(vifp, m, dst.sin_family, 0);
2736
2737	/* prepare the register head to send to the mrouting daemon */
2738	m = mcp;
2739    }
2740
2741pim_input_to_daemon:
2742    /*
2743     * Pass the PIM message up to the daemon; if it is a Register message,
2744     * pass the 'head' only up to the daemon. This includes the
2745     * outer IP header, PIM header, PIM-Register header and the
2746     * inner IP header.
2747     * XXX: the outer IP header pkt size of a Register is not adjust to
2748     * reflect the fact that the inner multicast data is truncated.
2749     */
2750    rip_input(m, iphlen);
2751
2752    return;
2753}
2754
2755static int
2756sysctl_mfctable(SYSCTL_HANDLER_ARGS)
2757{
2758	struct mfc	*rt;
2759	int		 error, i;
2760
2761	if (req->newptr)
2762		return (EPERM);
2763	if (mfchashtbl == NULL)	/* XXX unlocked */
2764		return (0);
2765	error = sysctl_wire_old_buffer(req, 0);
2766	if (error)
2767		return (error);
2768
2769	MFC_LOCK();
2770	for (i = 0; i < mfchashsize; i++) {
2771		LIST_FOREACH(rt, &mfchashtbl[i], mfc_hash) {
2772			error = SYSCTL_OUT(req, rt, sizeof(struct mfc));
2773			if (error)
2774				goto out_locked;
2775		}
2776	}
2777out_locked:
2778	MFC_UNLOCK();
2779	return (error);
2780}
2781
2782SYSCTL_NODE(_net_inet_ip, OID_AUTO, mfctable, CTLFLAG_RD, sysctl_mfctable,
2783    "IPv4 Multicast Forwarding Table (struct *mfc[mfchashsize], "
2784    "netinet/ip_mroute.h)");
2785
2786static int
2787ip_mroute_modevent(module_t mod, int type, void *unused)
2788{
2789
2790    switch (type) {
2791    case MOD_LOAD:
2792	MROUTER_LOCK_INIT();
2793	MFC_LOCK_INIT();
2794	VIF_LOCK_INIT();
2795
2796	mfchashsize = MFCHASHSIZE;
2797	if (TUNABLE_ULONG_FETCH("net.inet.ip.mfchashsize", &mfchashsize) &&
2798	    !powerof2(mfchashsize)) {
2799		printf("WARNING: %s not a power of 2; using default\n",
2800		    "net.inet.ip.mfchashsize");
2801		mfchashsize = MFCHASHSIZE;
2802	}
2803	MALLOC(nexpire, u_char *, mfchashsize, M_MRTABLE, M_WAITOK|M_ZERO);
2804
2805	pim_squelch_wholepkt = 0;
2806	TUNABLE_ULONG_FETCH("net.inet.pim.squelch_wholepkt",
2807	    &pim_squelch_wholepkt);
2808	ip_mrouter_reset();
2809
2810	pim_encap_cookie = encap_attach_func(AF_INET, IPPROTO_PIM,
2811	    pim_encapcheck, &in_pim_protosw, NULL);
2812	if (pim_encap_cookie == NULL) {
2813		printf("ip_mroute: unable to attach pim encap\n");
2814		VIF_LOCK_DESTROY();
2815		MFC_LOCK_DESTROY();
2816		MROUTER_LOCK_DESTROY();
2817		return (EINVAL);
2818	}
2819
2820	ip_mcast_src = X_ip_mcast_src;
2821	ip_mforward = X_ip_mforward;
2822	ip_mrouter_done = X_ip_mrouter_done;
2823	ip_mrouter_get = X_ip_mrouter_get;
2824	ip_mrouter_set = X_ip_mrouter_set;
2825
2826	ip_rsvp_force_done = X_ip_rsvp_force_done;
2827	ip_rsvp_vif = X_ip_rsvp_vif;
2828
2829	legal_vif_num = X_legal_vif_num;
2830	mrt_ioctl = X_mrt_ioctl;
2831	rsvp_input_p = X_rsvp_input;
2832	break;
2833
2834    case MOD_UNLOAD:
2835	/*
2836	 * Typically module unload happens after the user-level
2837	 * process has shutdown the kernel services (the check
2838	 * below insures someone can't just yank the module out
2839	 * from under a running process).  But if the module is
2840	 * just loaded and then unloaded w/o starting up a user
2841	 * process we still need to cleanup.
2842	 */
2843	if (V_ip_mrouter != NULL)
2844	    return (EINVAL);
2845
2846	if (pim_encap_cookie) {
2847	    encap_detach(pim_encap_cookie);
2848	    pim_encap_cookie = NULL;
2849	}
2850	X_ip_mrouter_done();
2851
2852	FREE(nexpire, M_MRTABLE);
2853	nexpire = NULL;
2854
2855	ip_mcast_src = NULL;
2856	ip_mforward = NULL;
2857	ip_mrouter_done = NULL;
2858	ip_mrouter_get = NULL;
2859	ip_mrouter_set = NULL;
2860
2861	ip_rsvp_force_done = NULL;
2862	ip_rsvp_vif = NULL;
2863
2864	legal_vif_num = NULL;
2865	mrt_ioctl = NULL;
2866	rsvp_input_p = NULL;
2867
2868	VIF_LOCK_DESTROY();
2869	MFC_LOCK_DESTROY();
2870	MROUTER_LOCK_DESTROY();
2871	break;
2872
2873    default:
2874	return EOPNOTSUPP;
2875    }
2876    return 0;
2877}
2878
2879static moduledata_t ip_mroutemod = {
2880    "ip_mroute",
2881    ip_mroute_modevent,
2882    0
2883};
2884
2885DECLARE_MODULE(ip_mroute, ip_mroutemod, SI_SUB_PSEUDO, SI_ORDER_ANY);
2886