ip_mroute.c revision 195699
11558Srgrimes/*-
254263Sshin * Copyright (c) 1989 Stephen Deering
31558Srgrimes * Copyright (c) 1992, 1993
41558Srgrimes *      The Regents of the University of California.  All rights reserved.
574815Sru *
624554Sphk * This code is derived from software contributed to Berkeley by
718965Sjkh * Stephen Deering of Stanford University.
854624Sshin *
91558Srgrimes * Redistribution and use in source and binary forms, with or without
101558Srgrimes * modification, are permitted provided that the following conditions
111558Srgrimes * are met:
121558Srgrimes * 1. Redistributions of source code must retain the above copyright
131558Srgrimes *    notice, this list of conditions and the following disclaimer.
141558Srgrimes * 2. Redistributions in binary form must reproduce the above copyright
151558Srgrimes *    notice, this list of conditions and the following disclaimer in the
161558Srgrimes *    documentation and/or other materials provided with the distribution.
171558Srgrimes * 4. Neither the name of the University nor the names of its contributors
181558Srgrimes *    may be used to endorse or promote products derived from this software
191558Srgrimes *    without specific prior written permission.
201558Srgrimes *
211558Srgrimes * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
221855Swollman * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
231855Swollman * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
241558Srgrimes * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
251558Srgrimes * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
261558Srgrimes * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 *
33 *      @(#)ip_mroute.c 8.2 (Berkeley) 11/15/93
34 */
35
36/*
37 * IP multicast forwarding procedures
38 *
39 * Written by David Waitzman, BBN Labs, August 1988.
40 * Modified by Steve Deering, Stanford, February 1989.
41 * Modified by Mark J. Steiglitz, Stanford, May, 1991
42 * Modified by Van Jacobson, LBL, January 1993
43 * Modified by Ajit Thyagarajan, PARC, August 1993
44 * Modified by Bill Fenner, PARC, April 1995
45 * Modified by Ahmed Helmy, SGI, June 1996
46 * Modified by George Edmond Eddy (Rusty), ISI, February 1998
47 * Modified by Pavlin Radoslavov, USC/ISI, May 1998, August 1999, October 2000
48 * Modified by Hitoshi Asaeda, WIDE, August 2000
49 * Modified by Pavlin Radoslavov, ICSI, October 2002
50 *
51 * MROUTING Revision: 3.5
52 * and PIM-SMv2 and PIM-DM support, advanced API support,
53 * bandwidth metering and signaling
54 */
55
56/*
57 * TODO: Prefix functions with ipmf_.
58 * TODO: Maintain a refcount on if_allmulti() in ifnet or in the protocol
59 * domain attachment (if_afdata) so we can track consumers of that service.
60 * TODO: Deprecate routing socket path for SIOCGETSGCNT and SIOCGETVIFCNT,
61 * move it to socket options.
62 * TODO: Cleanup LSRR removal further.
63 * TODO: Push RSVP stubs into raw_ip.c.
64 * TODO: Use bitstring.h for vif set.
65 * TODO: Fix mrt6_ioctl dangling ref when dynamically loaded.
66 * TODO: Sync ip6_mroute.c with this file.
67 */
68
69#include <sys/cdefs.h>
70__FBSDID("$FreeBSD: head/sys/netinet/ip_mroute.c 195699 2009-07-14 22:48:30Z rwatson $");
71
72#include "opt_inet.h"
73#include "opt_mrouting.h"
74
75#define _PIM_VT 1
76
77#include <sys/param.h>
78#include <sys/kernel.h>
79#include <sys/stddef.h>
80#include <sys/lock.h>
81#include <sys/ktr.h>
82#include <sys/malloc.h>
83#include <sys/mbuf.h>
84#include <sys/module.h>
85#include <sys/priv.h>
86#include <sys/protosw.h>
87#include <sys/signalvar.h>
88#include <sys/socket.h>
89#include <sys/socketvar.h>
90#include <sys/sockio.h>
91#include <sys/sx.h>
92#include <sys/sysctl.h>
93#include <sys/syslog.h>
94#include <sys/systm.h>
95#include <sys/time.h>
96#include <sys/vimage.h>
97
98#include <net/if.h>
99#include <net/netisr.h>
100#include <net/route.h>
101
102#include <netinet/in.h>
103#include <netinet/igmp.h>
104#include <netinet/in_systm.h>
105#include <netinet/in_var.h>
106#include <netinet/ip.h>
107#include <netinet/ip_encap.h>
108#include <netinet/ip_mroute.h>
109#include <netinet/ip_var.h>
110#include <netinet/ip_options.h>
111#include <netinet/pim.h>
112#include <netinet/pim_var.h>
113#include <netinet/udp.h>
114
115#include <machine/in_cksum.h>
116
117#include <security/mac/mac_framework.h>
118
119#ifndef KTR_IPMF
120#define KTR_IPMF KTR_INET
121#endif
122
123#define		VIFI_INVALID	((vifi_t) -1)
124#define		M_HASCL(m)	((m)->m_flags & M_EXT)
125
126static MALLOC_DEFINE(M_MRTABLE, "mroutetbl", "multicast forwarding cache");
127
128/*
129 * Locking.  We use two locks: one for the virtual interface table and
130 * one for the forwarding table.  These locks may be nested in which case
131 * the VIF lock must always be taken first.  Note that each lock is used
132 * to cover not only the specific data structure but also related data
133 * structures.
134 */
135
136static struct mtx mrouter_mtx;
137#define	MROUTER_LOCK()		mtx_lock(&mrouter_mtx)
138#define	MROUTER_UNLOCK()	mtx_unlock(&mrouter_mtx)
139#define	MROUTER_LOCK_ASSERT()	mtx_assert(&mrouter_mtx, MA_OWNED)
140#define	MROUTER_LOCK_INIT()						\
141	mtx_init(&mrouter_mtx, "IPv4 multicast forwarding", NULL, MTX_DEF)
142#define	MROUTER_LOCK_DESTROY()	mtx_destroy(&mrouter_mtx)
143
144static struct mrtstat	mrtstat;
145SYSCTL_STRUCT(_net_inet_ip, OID_AUTO, mrtstat, CTLFLAG_RW,
146    &mrtstat, mrtstat,
147    "IPv4 Multicast Forwarding Statistics (struct mrtstat, "
148    "netinet/ip_mroute.h)");
149
150static u_long			 mfchash;
151#define MFCHASH(a, g)							\
152	((((a).s_addr >> 20) ^ ((a).s_addr >> 10) ^ (a).s_addr ^ \
153	  ((g).s_addr >> 20) ^ ((g).s_addr >> 10) ^ (g).s_addr) & mfchash)
154#define MFCHASHSIZE	256
155
156static u_char			*nexpire;	/* 0..mfchashsize-1 */
157static u_long			 mfchashsize;	/* Hash size */
158LIST_HEAD(mfchashhdr, mfc)	*mfchashtbl;
159
160static struct mtx mfc_mtx;
161#define	MFC_LOCK()		mtx_lock(&mfc_mtx)
162#define	MFC_UNLOCK()		mtx_unlock(&mfc_mtx)
163#define	MFC_LOCK_ASSERT()	mtx_assert(&mfc_mtx, MA_OWNED)
164#define	MFC_LOCK_INIT()							\
165	mtx_init(&mfc_mtx, "IPv4 multicast forwarding cache", NULL, MTX_DEF)
166#define	MFC_LOCK_DESTROY()	mtx_destroy(&mfc_mtx)
167
168static vifi_t		numvifs;
169static struct vif	viftable[MAXVIFS];
170SYSCTL_OPAQUE(_net_inet_ip, OID_AUTO, viftable, CTLFLAG_RD,
171    &viftable, sizeof(viftable), "S,vif[MAXVIFS]",
172    "IPv4 Multicast Interfaces (struct vif[MAXVIFS], netinet/ip_mroute.h)");
173
174static struct mtx vif_mtx;
175#define	VIF_LOCK()		mtx_lock(&vif_mtx)
176#define	VIF_UNLOCK()		mtx_unlock(&vif_mtx)
177#define	VIF_LOCK_ASSERT()	mtx_assert(&vif_mtx, MA_OWNED)
178#define	VIF_LOCK_INIT()							\
179	mtx_init(&vif_mtx, "IPv4 multicast interfaces", NULL, MTX_DEF)
180#define	VIF_LOCK_DESTROY()	mtx_destroy(&vif_mtx)
181
182static eventhandler_tag if_detach_event_tag = NULL;
183
184static struct callout expire_upcalls_ch;
185#define		EXPIRE_TIMEOUT	(hz / 4)	/* 4x / second		*/
186#define		UPCALL_EXPIRE	6		/* number of timeouts	*/
187
188/*
189 * Bandwidth meter variables and constants
190 */
191static MALLOC_DEFINE(M_BWMETER, "bwmeter", "multicast upcall bw meters");
192/*
193 * Pending timeouts are stored in a hash table, the key being the
194 * expiration time. Periodically, the entries are analysed and processed.
195 */
196#define BW_METER_BUCKETS	1024
197static struct bw_meter *bw_meter_timers[BW_METER_BUCKETS];
198static struct callout bw_meter_ch;
199#define BW_METER_PERIOD (hz)		/* periodical handling of bw meters */
200
201/*
202 * Pending upcalls are stored in a vector which is flushed when
203 * full, or periodically
204 */
205static struct bw_upcall	bw_upcalls[BW_UPCALLS_MAX];
206static u_int	bw_upcalls_n; /* # of pending upcalls */
207static struct callout bw_upcalls_ch;
208#define BW_UPCALLS_PERIOD (hz)		/* periodical flush of bw upcalls */
209
210static struct pimstat pimstat;
211
212SYSCTL_NODE(_net_inet, IPPROTO_PIM, pim, CTLFLAG_RW, 0, "PIM");
213SYSCTL_STRUCT(_net_inet_pim, PIMCTL_STATS, stats, CTLFLAG_RD,
214    &pimstat, pimstat,
215    "PIM Statistics (struct pimstat, netinet/pim_var.h)");
216
217static u_long	pim_squelch_wholepkt = 0;
218SYSCTL_ULONG(_net_inet_pim, OID_AUTO, squelch_wholepkt, CTLFLAG_RW,
219    &pim_squelch_wholepkt, 0,
220    "Disable IGMP_WHOLEPKT notifications if rendezvous point is unspecified");
221
222extern  struct domain inetdomain;
223static const struct protosw in_pim_protosw = {
224	.pr_type =		SOCK_RAW,
225	.pr_domain =		&inetdomain,
226	.pr_protocol =		IPPROTO_PIM,
227	.pr_flags =		PR_ATOMIC|PR_ADDR|PR_LASTHDR,
228	.pr_input =		pim_input,
229	.pr_output =		(pr_output_t*)rip_output,
230	.pr_ctloutput =		rip_ctloutput,
231	.pr_usrreqs =		&rip_usrreqs
232};
233static const struct encaptab *pim_encap_cookie;
234
235static int pim_encapcheck(const struct mbuf *, int, int, void *);
236
237/*
238 * Note: the PIM Register encapsulation adds the following in front of a
239 * data packet:
240 *
241 * struct pim_encap_hdr {
242 *    struct ip ip;
243 *    struct pim_encap_pimhdr  pim;
244 * }
245 *
246 */
247
248struct pim_encap_pimhdr {
249	struct pim pim;
250	uint32_t   flags;
251};
252#define		PIM_ENCAP_TTL	64
253
254static struct ip pim_encap_iphdr = {
255#if BYTE_ORDER == LITTLE_ENDIAN
256	sizeof(struct ip) >> 2,
257	IPVERSION,
258#else
259	IPVERSION,
260	sizeof(struct ip) >> 2,
261#endif
262	0,			/* tos */
263	sizeof(struct ip),	/* total length */
264	0,			/* id */
265	0,			/* frag offset */
266	PIM_ENCAP_TTL,
267	IPPROTO_PIM,
268	0,			/* checksum */
269};
270
271static struct pim_encap_pimhdr pim_encap_pimhdr = {
272    {
273	PIM_MAKE_VT(PIM_VERSION, PIM_REGISTER), /* PIM vers and message type */
274	0,			/* reserved */
275	0,			/* checksum */
276    },
277    0				/* flags */
278};
279
280static struct ifnet multicast_register_if;
281static vifi_t reg_vif_num = VIFI_INVALID;
282
283/*
284 * Private variables.
285 */
286
287static u_long	X_ip_mcast_src(int);
288static int	X_ip_mforward(struct ip *, struct ifnet *, struct mbuf *,
289		    struct ip_moptions *);
290static int	X_ip_mrouter_done(void);
291static int	X_ip_mrouter_get(struct socket *, struct sockopt *);
292static int	X_ip_mrouter_set(struct socket *, struct sockopt *);
293static int	X_legal_vif_num(int);
294static int	X_mrt_ioctl(u_long, caddr_t, int);
295
296static int	add_bw_upcall(struct bw_upcall *);
297static int	add_mfc(struct mfcctl2 *);
298static int	add_vif(struct vifctl *);
299static void	bw_meter_prepare_upcall(struct bw_meter *, struct timeval *);
300static void	bw_meter_process(void);
301static void	bw_meter_receive_packet(struct bw_meter *, int,
302		    struct timeval *);
303static void	bw_upcalls_send(void);
304static int	del_bw_upcall(struct bw_upcall *);
305static int	del_mfc(struct mfcctl2 *);
306static int	del_vif(vifi_t);
307static int	del_vif_locked(vifi_t);
308static void	expire_bw_meter_process(void *);
309static void	expire_bw_upcalls_send(void *);
310static void	expire_mfc(struct mfc *);
311static void	expire_upcalls(void *);
312static void	free_bw_list(struct bw_meter *);
313static int	get_sg_cnt(struct sioc_sg_req *);
314static int	get_vif_cnt(struct sioc_vif_req *);
315static void	if_detached_event(void *, struct ifnet *);
316static int	ip_mdq(struct mbuf *, struct ifnet *, struct mfc *, vifi_t);
317static int	ip_mrouter_init(struct socket *, int);
318static __inline struct mfc *
319		mfc_find(struct in_addr *, struct in_addr *);
320static void	phyint_send(struct ip *, struct vif *, struct mbuf *);
321static struct mbuf *
322		pim_register_prepare(struct ip *, struct mbuf *);
323static int	pim_register_send(struct ip *, struct vif *,
324		    struct mbuf *, struct mfc *);
325static int	pim_register_send_rp(struct ip *, struct vif *,
326		    struct mbuf *, struct mfc *);
327static int	pim_register_send_upcall(struct ip *, struct vif *,
328		    struct mbuf *, struct mfc *);
329static void	schedule_bw_meter(struct bw_meter *, struct timeval *);
330static void	send_packet(struct vif *, struct mbuf *);
331static int	set_api_config(uint32_t *);
332static int	set_assert(int);
333static int	socket_send(struct socket *, struct mbuf *,
334		    struct sockaddr_in *);
335static void	unschedule_bw_meter(struct bw_meter *);
336
337/*
338 * Kernel multicast forwarding API capabilities and setup.
339 * If more API capabilities are added to the kernel, they should be
340 * recorded in `mrt_api_support'.
341 */
342#define MRT_API_VERSION		0x0305
343
344static const int mrt_api_version = MRT_API_VERSION;
345static const uint32_t mrt_api_support = (MRT_MFC_FLAGS_DISABLE_WRONGVIF |
346					 MRT_MFC_FLAGS_BORDER_VIF |
347					 MRT_MFC_RP |
348					 MRT_MFC_BW_UPCALL);
349static uint32_t mrt_api_config = 0;
350
351static int pim_assert_enabled;
352static struct timeval pim_assert_interval = { 3, 0 };	/* Rate limit */
353
354/*
355 * Find a route for a given origin IP address and multicast group address.
356 * Statistics must be updated by the caller.
357 */
358static __inline struct mfc *
359mfc_find(struct in_addr *o, struct in_addr *g)
360{
361	struct mfc *rt;
362
363	MFC_LOCK_ASSERT();
364
365	LIST_FOREACH(rt, &mfchashtbl[MFCHASH(*o, *g)], mfc_hash) {
366		if (in_hosteq(rt->mfc_origin, *o) &&
367		    in_hosteq(rt->mfc_mcastgrp, *g) &&
368		    TAILQ_EMPTY(&rt->mfc_stall))
369			break;
370	}
371
372	return (rt);
373}
374
375/*
376 * Handle MRT setsockopt commands to modify the multicast forwarding tables.
377 */
378static int
379X_ip_mrouter_set(struct socket *so, struct sockopt *sopt)
380{
381    int	error, optval;
382    vifi_t	vifi;
383    struct	vifctl vifc;
384    struct	mfcctl2 mfc;
385    struct	bw_upcall bw_upcall;
386    uint32_t	i;
387
388    if (so != V_ip_mrouter && sopt->sopt_name != MRT_INIT)
389	return EPERM;
390
391    error = 0;
392    switch (sopt->sopt_name) {
393    case MRT_INIT:
394	error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval);
395	if (error)
396	    break;
397	error = ip_mrouter_init(so, optval);
398	break;
399
400    case MRT_DONE:
401	error = ip_mrouter_done();
402	break;
403
404    case MRT_ADD_VIF:
405	error = sooptcopyin(sopt, &vifc, sizeof vifc, sizeof vifc);
406	if (error)
407	    break;
408	error = add_vif(&vifc);
409	break;
410
411    case MRT_DEL_VIF:
412	error = sooptcopyin(sopt, &vifi, sizeof vifi, sizeof vifi);
413	if (error)
414	    break;
415	error = del_vif(vifi);
416	break;
417
418    case MRT_ADD_MFC:
419    case MRT_DEL_MFC:
420	/*
421	 * select data size depending on API version.
422	 */
423	if (sopt->sopt_name == MRT_ADD_MFC &&
424		mrt_api_config & MRT_API_FLAGS_ALL) {
425	    error = sooptcopyin(sopt, &mfc, sizeof(struct mfcctl2),
426				sizeof(struct mfcctl2));
427	} else {
428	    error = sooptcopyin(sopt, &mfc, sizeof(struct mfcctl),
429				sizeof(struct mfcctl));
430	    bzero((caddr_t)&mfc + sizeof(struct mfcctl),
431			sizeof(mfc) - sizeof(struct mfcctl));
432	}
433	if (error)
434	    break;
435	if (sopt->sopt_name == MRT_ADD_MFC)
436	    error = add_mfc(&mfc);
437	else
438	    error = del_mfc(&mfc);
439	break;
440
441    case MRT_ASSERT:
442	error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval);
443	if (error)
444	    break;
445	set_assert(optval);
446	break;
447
448    case MRT_API_CONFIG:
449	error = sooptcopyin(sopt, &i, sizeof i, sizeof i);
450	if (!error)
451	    error = set_api_config(&i);
452	if (!error)
453	    error = sooptcopyout(sopt, &i, sizeof i);
454	break;
455
456    case MRT_ADD_BW_UPCALL:
457    case MRT_DEL_BW_UPCALL:
458	error = sooptcopyin(sopt, &bw_upcall, sizeof bw_upcall,
459				sizeof bw_upcall);
460	if (error)
461	    break;
462	if (sopt->sopt_name == MRT_ADD_BW_UPCALL)
463	    error = add_bw_upcall(&bw_upcall);
464	else
465	    error = del_bw_upcall(&bw_upcall);
466	break;
467
468    default:
469	error = EOPNOTSUPP;
470	break;
471    }
472    return error;
473}
474
475/*
476 * Handle MRT getsockopt commands
477 */
478static int
479X_ip_mrouter_get(struct socket *so, struct sockopt *sopt)
480{
481    int error;
482
483    switch (sopt->sopt_name) {
484    case MRT_VERSION:
485	error = sooptcopyout(sopt, &mrt_api_version, sizeof mrt_api_version);
486	break;
487
488    case MRT_ASSERT:
489	error = sooptcopyout(sopt, &pim_assert_enabled,
490	    sizeof pim_assert_enabled);
491	break;
492
493    case MRT_API_SUPPORT:
494	error = sooptcopyout(sopt, &mrt_api_support, sizeof mrt_api_support);
495	break;
496
497    case MRT_API_CONFIG:
498	error = sooptcopyout(sopt, &mrt_api_config, sizeof mrt_api_config);
499	break;
500
501    default:
502	error = EOPNOTSUPP;
503	break;
504    }
505    return error;
506}
507
508/*
509 * Handle ioctl commands to obtain information from the cache
510 */
511static int
512X_mrt_ioctl(u_long cmd, caddr_t data, int fibnum __unused)
513{
514    int error = 0;
515
516    /*
517     * Currently the only function calling this ioctl routine is rtioctl().
518     * Typically, only root can create the raw socket in order to execute
519     * this ioctl method, however the request might be coming from a prison
520     */
521    error = priv_check(curthread, PRIV_NETINET_MROUTE);
522    if (error)
523	return (error);
524    switch (cmd) {
525    case (SIOCGETVIFCNT):
526	error = get_vif_cnt((struct sioc_vif_req *)data);
527	break;
528
529    case (SIOCGETSGCNT):
530	error = get_sg_cnt((struct sioc_sg_req *)data);
531	break;
532
533    default:
534	error = EINVAL;
535	break;
536    }
537    return error;
538}
539
540/*
541 * returns the packet, byte, rpf-failure count for the source group provided
542 */
543static int
544get_sg_cnt(struct sioc_sg_req *req)
545{
546    struct mfc *rt;
547
548    MFC_LOCK();
549    rt = mfc_find(&req->src, &req->grp);
550    if (rt == NULL) {
551	MFC_UNLOCK();
552	req->pktcnt = req->bytecnt = req->wrong_if = 0xffffffff;
553	return EADDRNOTAVAIL;
554    }
555    req->pktcnt = rt->mfc_pkt_cnt;
556    req->bytecnt = rt->mfc_byte_cnt;
557    req->wrong_if = rt->mfc_wrong_if;
558    MFC_UNLOCK();
559    return 0;
560}
561
562/*
563 * returns the input and output packet and byte counts on the vif provided
564 */
565static int
566get_vif_cnt(struct sioc_vif_req *req)
567{
568    vifi_t vifi = req->vifi;
569
570    VIF_LOCK();
571    if (vifi >= numvifs) {
572	VIF_UNLOCK();
573	return EINVAL;
574    }
575
576    req->icount = viftable[vifi].v_pkt_in;
577    req->ocount = viftable[vifi].v_pkt_out;
578    req->ibytes = viftable[vifi].v_bytes_in;
579    req->obytes = viftable[vifi].v_bytes_out;
580    VIF_UNLOCK();
581
582    return 0;
583}
584
585static void
586ip_mrouter_reset(void)
587{
588
589    pim_assert_enabled = 0;
590    mrt_api_config = 0;
591
592    callout_init(&expire_upcalls_ch, CALLOUT_MPSAFE);
593
594    bw_upcalls_n = 0;
595    bzero((caddr_t)bw_meter_timers, sizeof(bw_meter_timers));
596    callout_init(&bw_upcalls_ch, CALLOUT_MPSAFE);
597    callout_init(&bw_meter_ch, CALLOUT_MPSAFE);
598}
599
600static void
601if_detached_event(void *arg __unused, struct ifnet *ifp)
602{
603    vifi_t vifi;
604    int i;
605
606    MROUTER_LOCK();
607
608    if (V_ip_mrouter == NULL) {
609	MROUTER_UNLOCK();
610	return;
611    }
612
613    VIF_LOCK();
614    MFC_LOCK();
615
616    /*
617     * Tear down multicast forwarder state associated with this ifnet.
618     * 1. Walk the vif list, matching vifs against this ifnet.
619     * 2. Walk the multicast forwarding cache (mfc) looking for
620     *    inner matches with this vif's index.
621     * 3. Expire any matching multicast forwarding cache entries.
622     * 4. Free vif state. This should disable ALLMULTI on the interface.
623     */
624    for (vifi = 0; vifi < numvifs; vifi++) {
625	if (viftable[vifi].v_ifp != ifp)
626		continue;
627	for (i = 0; i < mfchashsize; i++) {
628		struct mfc *rt, *nrt;
629		for (rt = LIST_FIRST(&mfchashtbl[i]); rt; rt = nrt) {
630			nrt = LIST_NEXT(rt, mfc_hash);
631			if (rt->mfc_parent == vifi) {
632				expire_mfc(rt);
633			}
634		}
635	}
636	del_vif_locked(vifi);
637    }
638
639    MFC_UNLOCK();
640    VIF_UNLOCK();
641
642    MROUTER_UNLOCK();
643}
644
645/*
646 * Enable multicast forwarding.
647 */
648static int
649ip_mrouter_init(struct socket *so, int version)
650{
651
652    CTR3(KTR_IPMF, "%s: so_type %d, pr_protocol %d", __func__,
653        so->so_type, so->so_proto->pr_protocol);
654
655    if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_IGMP)
656	return EOPNOTSUPP;
657
658    if (version != 1)
659	return ENOPROTOOPT;
660
661    MROUTER_LOCK();
662
663    if (V_ip_mrouter != NULL) {
664	MROUTER_UNLOCK();
665	return EADDRINUSE;
666    }
667
668    if_detach_event_tag = EVENTHANDLER_REGISTER(ifnet_departure_event,
669        if_detached_event, NULL, EVENTHANDLER_PRI_ANY);
670    if (if_detach_event_tag == NULL) {
671	MROUTER_UNLOCK();
672	return (ENOMEM);
673    }
674
675    mfchashtbl = hashinit_flags(mfchashsize, M_MRTABLE, &mfchash, HASH_NOWAIT);
676
677    callout_reset(&expire_upcalls_ch, EXPIRE_TIMEOUT, expire_upcalls, NULL);
678
679    callout_reset(&bw_upcalls_ch, BW_UPCALLS_PERIOD,
680	expire_bw_upcalls_send, NULL);
681    callout_reset(&bw_meter_ch, BW_METER_PERIOD, expire_bw_meter_process, NULL);
682
683    V_ip_mrouter = so;
684
685    MROUTER_UNLOCK();
686
687    CTR1(KTR_IPMF, "%s: done", __func__);
688
689    return 0;
690}
691
692/*
693 * Disable multicast forwarding.
694 */
695static int
696X_ip_mrouter_done(void)
697{
698    vifi_t vifi;
699    int i;
700    struct ifnet *ifp;
701    struct ifreq ifr;
702
703    MROUTER_LOCK();
704
705    if (V_ip_mrouter == NULL) {
706	MROUTER_UNLOCK();
707	return EINVAL;
708    }
709
710    /*
711     * Detach/disable hooks to the reset of the system.
712     */
713    V_ip_mrouter = NULL;
714    mrt_api_config = 0;
715
716    VIF_LOCK();
717
718    /*
719     * For each phyint in use, disable promiscuous reception of all IP
720     * multicasts.
721     */
722    for (vifi = 0; vifi < numvifs; vifi++) {
723	if (!in_nullhost(viftable[vifi].v_lcl_addr) &&
724		!(viftable[vifi].v_flags & (VIFF_TUNNEL | VIFF_REGISTER))) {
725	    struct sockaddr_in *so = (struct sockaddr_in *)&(ifr.ifr_addr);
726
727	    so->sin_len = sizeof(struct sockaddr_in);
728	    so->sin_family = AF_INET;
729	    so->sin_addr.s_addr = INADDR_ANY;
730	    ifp = viftable[vifi].v_ifp;
731	    if_allmulti(ifp, 0);
732	}
733    }
734    bzero((caddr_t)viftable, sizeof(viftable));
735    numvifs = 0;
736    pim_assert_enabled = 0;
737
738    VIF_UNLOCK();
739
740    EVENTHANDLER_DEREGISTER(ifnet_departure_event, if_detach_event_tag);
741
742    callout_stop(&expire_upcalls_ch);
743    callout_stop(&bw_upcalls_ch);
744    callout_stop(&bw_meter_ch);
745
746    MFC_LOCK();
747
748    /*
749     * Free all multicast forwarding cache entries.
750     * Do not use hashdestroy(), as we must perform other cleanup.
751     */
752    for (i = 0; i < mfchashsize; i++) {
753	struct mfc *rt, *nrt;
754	for (rt = LIST_FIRST(&mfchashtbl[i]); rt; rt = nrt) {
755		nrt = LIST_NEXT(rt, mfc_hash);
756		expire_mfc(rt);
757	}
758    }
759    free(mfchashtbl, M_MRTABLE);
760    mfchashtbl = NULL;
761
762    bzero(nexpire, sizeof(nexpire[0]) * mfchashsize);
763
764    bw_upcalls_n = 0;
765    bzero(bw_meter_timers, sizeof(bw_meter_timers));
766
767    MFC_UNLOCK();
768
769    reg_vif_num = VIFI_INVALID;
770
771    MROUTER_UNLOCK();
772
773    CTR1(KTR_IPMF, "%s: done", __func__);
774
775    return 0;
776}
777
778/*
779 * Set PIM assert processing global
780 */
781static int
782set_assert(int i)
783{
784    if ((i != 1) && (i != 0))
785	return EINVAL;
786
787    pim_assert_enabled = i;
788
789    return 0;
790}
791
792/*
793 * Configure API capabilities
794 */
795int
796set_api_config(uint32_t *apival)
797{
798    int i;
799
800    /*
801     * We can set the API capabilities only if it is the first operation
802     * after MRT_INIT. I.e.:
803     *  - there are no vifs installed
804     *  - pim_assert is not enabled
805     *  - the MFC table is empty
806     */
807    if (numvifs > 0) {
808	*apival = 0;
809	return EPERM;
810    }
811    if (pim_assert_enabled) {
812	*apival = 0;
813	return EPERM;
814    }
815
816    MFC_LOCK();
817
818    for (i = 0; i < mfchashsize; i++) {
819	if (LIST_FIRST(&mfchashtbl[i]) != NULL) {
820	    *apival = 0;
821	    return EPERM;
822	}
823    }
824
825    MFC_UNLOCK();
826
827    mrt_api_config = *apival & mrt_api_support;
828    *apival = mrt_api_config;
829
830    return 0;
831}
832
833/*
834 * Add a vif to the vif table
835 */
836static int
837add_vif(struct vifctl *vifcp)
838{
839    struct vif *vifp = viftable + vifcp->vifc_vifi;
840    struct sockaddr_in sin = {sizeof sin, AF_INET};
841    struct ifaddr *ifa;
842    struct ifnet *ifp;
843    int error;
844
845    VIF_LOCK();
846    if (vifcp->vifc_vifi >= MAXVIFS) {
847	VIF_UNLOCK();
848	return EINVAL;
849    }
850    /* rate limiting is no longer supported by this code */
851    if (vifcp->vifc_rate_limit != 0) {
852	log(LOG_ERR, "rate limiting is no longer supported\n");
853	VIF_UNLOCK();
854	return EINVAL;
855    }
856    if (!in_nullhost(vifp->v_lcl_addr)) {
857	VIF_UNLOCK();
858	return EADDRINUSE;
859    }
860    if (in_nullhost(vifcp->vifc_lcl_addr)) {
861	VIF_UNLOCK();
862	return EADDRNOTAVAIL;
863    }
864
865    /* Find the interface with an address in AF_INET family */
866    if (vifcp->vifc_flags & VIFF_REGISTER) {
867	/*
868	 * XXX: Because VIFF_REGISTER does not really need a valid
869	 * local interface (e.g. it could be 127.0.0.2), we don't
870	 * check its address.
871	 */
872	ifp = NULL;
873    } else {
874	sin.sin_addr = vifcp->vifc_lcl_addr;
875	ifa = ifa_ifwithaddr((struct sockaddr *)&sin);
876	if (ifa == NULL) {
877	    VIF_UNLOCK();
878	    return EADDRNOTAVAIL;
879	}
880	ifp = ifa->ifa_ifp;
881	ifa_free(ifa);
882    }
883
884    if ((vifcp->vifc_flags & VIFF_TUNNEL) != 0) {
885	CTR1(KTR_IPMF, "%s: tunnels are no longer supported", __func__);
886	VIF_UNLOCK();
887	return EOPNOTSUPP;
888    } else if (vifcp->vifc_flags & VIFF_REGISTER) {
889	ifp = &multicast_register_if;
890	CTR2(KTR_IPMF, "%s: add register vif for ifp %p", __func__, ifp);
891	if (reg_vif_num == VIFI_INVALID) {
892	    if_initname(&multicast_register_if, "register_vif", 0);
893	    multicast_register_if.if_flags = IFF_LOOPBACK;
894	    reg_vif_num = vifcp->vifc_vifi;
895	}
896    } else {		/* Make sure the interface supports multicast */
897	if ((ifp->if_flags & IFF_MULTICAST) == 0) {
898	    VIF_UNLOCK();
899	    return EOPNOTSUPP;
900	}
901
902	/* Enable promiscuous reception of all IP multicasts from the if */
903	error = if_allmulti(ifp, 1);
904	if (error) {
905	    VIF_UNLOCK();
906	    return error;
907	}
908    }
909
910    vifp->v_flags     = vifcp->vifc_flags;
911    vifp->v_threshold = vifcp->vifc_threshold;
912    vifp->v_lcl_addr  = vifcp->vifc_lcl_addr;
913    vifp->v_rmt_addr  = vifcp->vifc_rmt_addr;
914    vifp->v_ifp       = ifp;
915    /* initialize per vif pkt counters */
916    vifp->v_pkt_in    = 0;
917    vifp->v_pkt_out   = 0;
918    vifp->v_bytes_in  = 0;
919    vifp->v_bytes_out = 0;
920    bzero(&vifp->v_route, sizeof(vifp->v_route));
921
922    /* Adjust numvifs up if the vifi is higher than numvifs */
923    if (numvifs <= vifcp->vifc_vifi)
924	numvifs = vifcp->vifc_vifi + 1;
925
926    VIF_UNLOCK();
927
928    CTR4(KTR_IPMF, "%s: add vif %d laddr %s thresh %x", __func__,
929	(int)vifcp->vifc_vifi, inet_ntoa(vifcp->vifc_lcl_addr),
930	(int)vifcp->vifc_threshold);
931
932    return 0;
933}
934
935/*
936 * Delete a vif from the vif table
937 */
938static int
939del_vif_locked(vifi_t vifi)
940{
941    struct vif *vifp;
942
943    VIF_LOCK_ASSERT();
944
945    if (vifi >= numvifs) {
946	return EINVAL;
947    }
948    vifp = &viftable[vifi];
949    if (in_nullhost(vifp->v_lcl_addr)) {
950	return EADDRNOTAVAIL;
951    }
952
953    if (!(vifp->v_flags & (VIFF_TUNNEL | VIFF_REGISTER)))
954	if_allmulti(vifp->v_ifp, 0);
955
956    if (vifp->v_flags & VIFF_REGISTER)
957	reg_vif_num = VIFI_INVALID;
958
959    bzero((caddr_t)vifp, sizeof (*vifp));
960
961    CTR2(KTR_IPMF, "%s: delete vif %d", __func__, (int)vifi);
962
963    /* Adjust numvifs down */
964    for (vifi = numvifs; vifi > 0; vifi--)
965	if (!in_nullhost(viftable[vifi-1].v_lcl_addr))
966	    break;
967    numvifs = vifi;
968
969    return 0;
970}
971
972static int
973del_vif(vifi_t vifi)
974{
975    int cc;
976
977    VIF_LOCK();
978    cc = del_vif_locked(vifi);
979    VIF_UNLOCK();
980
981    return cc;
982}
983
984/*
985 * update an mfc entry without resetting counters and S,G addresses.
986 */
987static void
988update_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp)
989{
990    int i;
991
992    rt->mfc_parent = mfccp->mfcc_parent;
993    for (i = 0; i < numvifs; i++) {
994	rt->mfc_ttls[i] = mfccp->mfcc_ttls[i];
995	rt->mfc_flags[i] = mfccp->mfcc_flags[i] & mrt_api_config &
996	    MRT_MFC_FLAGS_ALL;
997    }
998    /* set the RP address */
999    if (mrt_api_config & MRT_MFC_RP)
1000	rt->mfc_rp = mfccp->mfcc_rp;
1001    else
1002	rt->mfc_rp.s_addr = INADDR_ANY;
1003}
1004
1005/*
1006 * fully initialize an mfc entry from the parameter.
1007 */
1008static void
1009init_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp)
1010{
1011    rt->mfc_origin     = mfccp->mfcc_origin;
1012    rt->mfc_mcastgrp   = mfccp->mfcc_mcastgrp;
1013
1014    update_mfc_params(rt, mfccp);
1015
1016    /* initialize pkt counters per src-grp */
1017    rt->mfc_pkt_cnt    = 0;
1018    rt->mfc_byte_cnt   = 0;
1019    rt->mfc_wrong_if   = 0;
1020    timevalclear(&rt->mfc_last_assert);
1021}
1022
1023static void
1024expire_mfc(struct mfc *rt)
1025{
1026	struct rtdetq *rte, *nrte;
1027
1028	free_bw_list(rt->mfc_bw_meter);
1029
1030	TAILQ_FOREACH_SAFE(rte, &rt->mfc_stall, rte_link, nrte) {
1031		m_freem(rte->m);
1032		TAILQ_REMOVE(&rt->mfc_stall, rte, rte_link);
1033		free(rte, M_MRTABLE);
1034	}
1035
1036	LIST_REMOVE(rt, mfc_hash);
1037	free(rt, M_MRTABLE);
1038}
1039
1040/*
1041 * Add an mfc entry
1042 */
1043static int
1044add_mfc(struct mfcctl2 *mfccp)
1045{
1046    struct mfc *rt;
1047    struct rtdetq *rte, *nrte;
1048    u_long hash = 0;
1049    u_short nstl;
1050
1051    VIF_LOCK();
1052    MFC_LOCK();
1053
1054    rt = mfc_find(&mfccp->mfcc_origin, &mfccp->mfcc_mcastgrp);
1055
1056    /* If an entry already exists, just update the fields */
1057    if (rt) {
1058	CTR4(KTR_IPMF, "%s: update mfc orig %s group %lx parent %x",
1059	    __func__, inet_ntoa(mfccp->mfcc_origin),
1060	    (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr),
1061	    mfccp->mfcc_parent);
1062	update_mfc_params(rt, mfccp);
1063	MFC_UNLOCK();
1064	VIF_UNLOCK();
1065	return (0);
1066    }
1067
1068    /*
1069     * Find the entry for which the upcall was made and update
1070     */
1071    nstl = 0;
1072    hash = MFCHASH(mfccp->mfcc_origin, mfccp->mfcc_mcastgrp);
1073    LIST_FOREACH(rt, &mfchashtbl[hash], mfc_hash) {
1074	if (in_hosteq(rt->mfc_origin, mfccp->mfcc_origin) &&
1075	    in_hosteq(rt->mfc_mcastgrp, mfccp->mfcc_mcastgrp) &&
1076	    !TAILQ_EMPTY(&rt->mfc_stall)) {
1077		CTR5(KTR_IPMF,
1078		    "%s: add mfc orig %s group %lx parent %x qh %p",
1079		    __func__, inet_ntoa(mfccp->mfcc_origin),
1080		    (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr),
1081		    mfccp->mfcc_parent,
1082		    TAILQ_FIRST(&rt->mfc_stall));
1083		if (nstl++)
1084			CTR1(KTR_IPMF, "%s: multiple matches", __func__);
1085
1086		init_mfc_params(rt, mfccp);
1087		rt->mfc_expire = 0;	/* Don't clean this guy up */
1088		nexpire[hash]--;
1089
1090		/* Free queued packets, but attempt to forward them first. */
1091		TAILQ_FOREACH_SAFE(rte, &rt->mfc_stall, rte_link, nrte) {
1092			if (rte->ifp != NULL)
1093				ip_mdq(rte->m, rte->ifp, rt, -1);
1094			m_freem(rte->m);
1095			TAILQ_REMOVE(&rt->mfc_stall, rte, rte_link);
1096			rt->mfc_nstall--;
1097			free(rte, M_MRTABLE);
1098		}
1099	}
1100    }
1101
1102    /*
1103     * It is possible that an entry is being inserted without an upcall
1104     */
1105    if (nstl == 0) {
1106	CTR1(KTR_IPMF, "%s: adding mfc w/o upcall", __func__);
1107	LIST_FOREACH(rt, &mfchashtbl[hash], mfc_hash) {
1108		if (in_hosteq(rt->mfc_origin, mfccp->mfcc_origin) &&
1109		    in_hosteq(rt->mfc_mcastgrp, mfccp->mfcc_mcastgrp)) {
1110			init_mfc_params(rt, mfccp);
1111			if (rt->mfc_expire)
1112			    nexpire[hash]--;
1113			rt->mfc_expire = 0;
1114			break; /* XXX */
1115		}
1116	}
1117
1118	if (rt == NULL) {		/* no upcall, so make a new entry */
1119	    rt = (struct mfc *)malloc(sizeof(*rt), M_MRTABLE, M_NOWAIT);
1120	    if (rt == NULL) {
1121		MFC_UNLOCK();
1122		VIF_UNLOCK();
1123		return (ENOBUFS);
1124	    }
1125
1126	    init_mfc_params(rt, mfccp);
1127	    TAILQ_INIT(&rt->mfc_stall);
1128	    rt->mfc_nstall = 0;
1129
1130	    rt->mfc_expire     = 0;
1131	    rt->mfc_bw_meter = NULL;
1132
1133	    /* insert new entry at head of hash chain */
1134	    LIST_INSERT_HEAD(&mfchashtbl[hash], rt, mfc_hash);
1135	}
1136    }
1137
1138    MFC_UNLOCK();
1139    VIF_UNLOCK();
1140
1141    return (0);
1142}
1143
1144/*
1145 * Delete an mfc entry
1146 */
1147static int
1148del_mfc(struct mfcctl2 *mfccp)
1149{
1150    struct in_addr	origin;
1151    struct in_addr	mcastgrp;
1152    struct mfc		*rt;
1153
1154    origin = mfccp->mfcc_origin;
1155    mcastgrp = mfccp->mfcc_mcastgrp;
1156
1157    CTR3(KTR_IPMF, "%s: delete mfc orig %s group %lx", __func__,
1158	inet_ntoa(origin), (u_long)ntohl(mcastgrp.s_addr));
1159
1160    MFC_LOCK();
1161
1162    rt = mfc_find(&origin, &mcastgrp);
1163    if (rt == NULL) {
1164	MFC_UNLOCK();
1165	return EADDRNOTAVAIL;
1166    }
1167
1168    /*
1169     * free the bw_meter entries
1170     */
1171    free_bw_list(rt->mfc_bw_meter);
1172    rt->mfc_bw_meter = NULL;
1173
1174    LIST_REMOVE(rt, mfc_hash);
1175    free(rt, M_MRTABLE);
1176
1177    MFC_UNLOCK();
1178
1179    return (0);
1180}
1181
1182/*
1183 * Send a message to the routing daemon on the multicast routing socket.
1184 */
1185static int
1186socket_send(struct socket *s, struct mbuf *mm, struct sockaddr_in *src)
1187{
1188    if (s) {
1189	SOCKBUF_LOCK(&s->so_rcv);
1190	if (sbappendaddr_locked(&s->so_rcv, (struct sockaddr *)src, mm,
1191	    NULL) != 0) {
1192	    sorwakeup_locked(s);
1193	    return 0;
1194	}
1195	SOCKBUF_UNLOCK(&s->so_rcv);
1196    }
1197    m_freem(mm);
1198    return -1;
1199}
1200
1201/*
1202 * IP multicast forwarding function. This function assumes that the packet
1203 * pointed to by "ip" has arrived on (or is about to be sent to) the interface
1204 * pointed to by "ifp", and the packet is to be relayed to other networks
1205 * that have members of the packet's destination IP multicast group.
1206 *
1207 * The packet is returned unscathed to the caller, unless it is
1208 * erroneous, in which case a non-zero return value tells the caller to
1209 * discard it.
1210 */
1211
1212#define TUNNEL_LEN  12  /* # bytes of IP option for tunnel encapsulation  */
1213
1214static int
1215X_ip_mforward(struct ip *ip, struct ifnet *ifp, struct mbuf *m,
1216    struct ip_moptions *imo)
1217{
1218    struct mfc *rt;
1219    int error;
1220    vifi_t vifi;
1221
1222    CTR3(KTR_IPMF, "ip_mforward: delete mfc orig %s group %lx ifp %p",
1223	inet_ntoa(ip->ip_src), (u_long)ntohl(ip->ip_dst.s_addr), ifp);
1224
1225    if (ip->ip_hl < (sizeof(struct ip) + TUNNEL_LEN) >> 2 ||
1226		((u_char *)(ip + 1))[1] != IPOPT_LSRR ) {
1227	/*
1228	 * Packet arrived via a physical interface or
1229	 * an encapsulated tunnel or a register_vif.
1230	 */
1231    } else {
1232	/*
1233	 * Packet arrived through a source-route tunnel.
1234	 * Source-route tunnels are no longer supported.
1235	 */
1236	return (1);
1237    }
1238
1239    VIF_LOCK();
1240    MFC_LOCK();
1241    if (imo && ((vifi = imo->imo_multicast_vif) < numvifs)) {
1242	if (ip->ip_ttl < MAXTTL)
1243	    ip->ip_ttl++;	/* compensate for -1 in *_send routines */
1244	error = ip_mdq(m, ifp, NULL, vifi);
1245	MFC_UNLOCK();
1246	VIF_UNLOCK();
1247	return error;
1248    }
1249
1250    /*
1251     * Don't forward a packet with time-to-live of zero or one,
1252     * or a packet destined to a local-only group.
1253     */
1254    if (ip->ip_ttl <= 1 || IN_LOCAL_GROUP(ntohl(ip->ip_dst.s_addr))) {
1255	MFC_UNLOCK();
1256	VIF_UNLOCK();
1257	return 0;
1258    }
1259
1260    /*
1261     * Determine forwarding vifs from the forwarding cache table
1262     */
1263    MRTSTAT_INC(mrts_mfc_lookups);
1264    rt = mfc_find(&ip->ip_src, &ip->ip_dst);
1265
1266    /* Entry exists, so forward if necessary */
1267    if (rt != NULL) {
1268	error = ip_mdq(m, ifp, rt, -1);
1269	MFC_UNLOCK();
1270	VIF_UNLOCK();
1271	return error;
1272    } else {
1273	/*
1274	 * If we don't have a route for packet's origin,
1275	 * Make a copy of the packet & send message to routing daemon
1276	 */
1277
1278	struct mbuf *mb0;
1279	struct rtdetq *rte;
1280	u_long hash;
1281	int hlen = ip->ip_hl << 2;
1282
1283	MRTSTAT_INC(mrts_mfc_misses);
1284	MRTSTAT_INC(mrts_no_route);
1285	CTR2(KTR_IPMF, "ip_mforward: no mfc for (%s,%lx)",
1286	    inet_ntoa(ip->ip_src), (u_long)ntohl(ip->ip_dst.s_addr));
1287
1288	/*
1289	 * Allocate mbufs early so that we don't do extra work if we are
1290	 * just going to fail anyway.  Make sure to pullup the header so
1291	 * that other people can't step on it.
1292	 */
1293	rte = (struct rtdetq *)malloc((sizeof *rte), M_MRTABLE,
1294	    M_NOWAIT|M_ZERO);
1295	if (rte == NULL) {
1296	    MFC_UNLOCK();
1297	    VIF_UNLOCK();
1298	    return ENOBUFS;
1299	}
1300
1301	mb0 = m_copypacket(m, M_DONTWAIT);
1302	if (mb0 && (M_HASCL(mb0) || mb0->m_len < hlen))
1303	    mb0 = m_pullup(mb0, hlen);
1304	if (mb0 == NULL) {
1305	    free(rte, M_MRTABLE);
1306	    MFC_UNLOCK();
1307	    VIF_UNLOCK();
1308	    return ENOBUFS;
1309	}
1310
1311	/* is there an upcall waiting for this flow ? */
1312	hash = MFCHASH(ip->ip_src, ip->ip_dst);
1313	LIST_FOREACH(rt, &mfchashtbl[hash], mfc_hash) {
1314		if (in_hosteq(ip->ip_src, rt->mfc_origin) &&
1315		    in_hosteq(ip->ip_dst, rt->mfc_mcastgrp) &&
1316		    !TAILQ_EMPTY(&rt->mfc_stall))
1317			break;
1318	}
1319
1320	if (rt == NULL) {
1321	    int i;
1322	    struct igmpmsg *im;
1323	    struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
1324	    struct mbuf *mm;
1325
1326	    /*
1327	     * Locate the vifi for the incoming interface for this packet.
1328	     * If none found, drop packet.
1329	     */
1330	    for (vifi = 0; vifi < numvifs &&
1331		    viftable[vifi].v_ifp != ifp; vifi++)
1332		;
1333	    if (vifi >= numvifs)	/* vif not found, drop packet */
1334		goto non_fatal;
1335
1336	    /* no upcall, so make a new entry */
1337	    rt = (struct mfc *)malloc(sizeof(*rt), M_MRTABLE, M_NOWAIT);
1338	    if (rt == NULL)
1339		goto fail;
1340
1341	    /* Make a copy of the header to send to the user level process */
1342	    mm = m_copy(mb0, 0, hlen);
1343	    if (mm == NULL)
1344		goto fail1;
1345
1346	    /*
1347	     * Send message to routing daemon to install
1348	     * a route into the kernel table
1349	     */
1350
1351	    im = mtod(mm, struct igmpmsg *);
1352	    im->im_msgtype = IGMPMSG_NOCACHE;
1353	    im->im_mbz = 0;
1354	    im->im_vif = vifi;
1355
1356	    MRTSTAT_INC(mrts_upcalls);
1357
1358	    k_igmpsrc.sin_addr = ip->ip_src;
1359	    if (socket_send(V_ip_mrouter, mm, &k_igmpsrc) < 0) {
1360		CTR0(KTR_IPMF, "ip_mforward: socket queue full");
1361		MRTSTAT_INC(mrts_upq_sockfull);
1362fail1:
1363		free(rt, M_MRTABLE);
1364fail:
1365		free(rte, M_MRTABLE);
1366		m_freem(mb0);
1367		MFC_UNLOCK();
1368		VIF_UNLOCK();
1369		return ENOBUFS;
1370	    }
1371
1372	    /* insert new entry at head of hash chain */
1373	    rt->mfc_origin.s_addr     = ip->ip_src.s_addr;
1374	    rt->mfc_mcastgrp.s_addr   = ip->ip_dst.s_addr;
1375	    rt->mfc_expire	      = UPCALL_EXPIRE;
1376	    nexpire[hash]++;
1377	    for (i = 0; i < numvifs; i++) {
1378		rt->mfc_ttls[i] = 0;
1379		rt->mfc_flags[i] = 0;
1380	    }
1381	    rt->mfc_parent = -1;
1382
1383	    /* clear the RP address */
1384	    rt->mfc_rp.s_addr = INADDR_ANY;
1385	    rt->mfc_bw_meter = NULL;
1386
1387	    /* link into table */
1388	    LIST_INSERT_HEAD(&mfchashtbl[hash], rt, mfc_hash);
1389	    TAILQ_INSERT_HEAD(&rt->mfc_stall, rte, rte_link);
1390	    rt->mfc_nstall++;
1391
1392	} else {
1393	    /* determine if queue has overflowed */
1394	    if (rt->mfc_nstall > MAX_UPQ) {
1395		MRTSTAT_INC(mrts_upq_ovflw);
1396non_fatal:
1397		free(rte, M_MRTABLE);
1398		m_freem(mb0);
1399		MFC_UNLOCK();
1400		VIF_UNLOCK();
1401		return (0);
1402	    }
1403	    TAILQ_INSERT_TAIL(&rt->mfc_stall, rte, rte_link);
1404	    rt->mfc_nstall++;
1405	}
1406
1407	rte->m			= mb0;
1408	rte->ifp		= ifp;
1409
1410	MFC_UNLOCK();
1411	VIF_UNLOCK();
1412
1413	return 0;
1414    }
1415}
1416
1417/*
1418 * Clean up the cache entry if upcall is not serviced
1419 */
1420static void
1421expire_upcalls(void *unused)
1422{
1423    int i;
1424
1425    MFC_LOCK();
1426
1427    for (i = 0; i < mfchashsize; i++) {
1428	struct mfc *rt, *nrt;
1429
1430	if (nexpire[i] == 0)
1431	    continue;
1432
1433	for (rt = LIST_FIRST(&mfchashtbl[i]); rt; rt = nrt) {
1434		nrt = LIST_NEXT(rt, mfc_hash);
1435
1436		if (TAILQ_EMPTY(&rt->mfc_stall))
1437			continue;
1438
1439		if (rt->mfc_expire == 0 || --rt->mfc_expire > 0)
1440			continue;
1441
1442		/*
1443		 * free the bw_meter entries
1444		 */
1445		while (rt->mfc_bw_meter != NULL) {
1446		    struct bw_meter *x = rt->mfc_bw_meter;
1447
1448		    rt->mfc_bw_meter = x->bm_mfc_next;
1449		    free(x, M_BWMETER);
1450		}
1451
1452		MRTSTAT_INC(mrts_cache_cleanups);
1453		CTR3(KTR_IPMF, "%s: expire (%lx, %lx)", __func__,
1454		    (u_long)ntohl(rt->mfc_origin.s_addr),
1455		    (u_long)ntohl(rt->mfc_mcastgrp.s_addr));
1456
1457		expire_mfc(rt);
1458	    }
1459    }
1460
1461    MFC_UNLOCK();
1462
1463    callout_reset(&expire_upcalls_ch, EXPIRE_TIMEOUT, expire_upcalls, NULL);
1464}
1465
1466/*
1467 * Packet forwarding routine once entry in the cache is made
1468 */
1469static int
1470ip_mdq(struct mbuf *m, struct ifnet *ifp, struct mfc *rt, vifi_t xmt_vif)
1471{
1472    struct ip  *ip = mtod(m, struct ip *);
1473    vifi_t vifi;
1474    int plen = ip->ip_len;
1475
1476    VIF_LOCK_ASSERT();
1477
1478    /*
1479     * If xmt_vif is not -1, send on only the requested vif.
1480     *
1481     * (since vifi_t is u_short, -1 becomes MAXUSHORT, which > numvifs.)
1482     */
1483    if (xmt_vif < numvifs) {
1484	if (viftable[xmt_vif].v_flags & VIFF_REGISTER)
1485		pim_register_send(ip, viftable + xmt_vif, m, rt);
1486	else
1487		phyint_send(ip, viftable + xmt_vif, m);
1488	return 1;
1489    }
1490
1491    /*
1492     * Don't forward if it didn't arrive from the parent vif for its origin.
1493     */
1494    vifi = rt->mfc_parent;
1495    if ((vifi >= numvifs) || (viftable[vifi].v_ifp != ifp)) {
1496	CTR4(KTR_IPMF, "%s: rx on wrong ifp %p (vifi %d, v_ifp %p)",
1497	    __func__, ifp, (int)vifi, viftable[vifi].v_ifp);
1498	MRTSTAT_INC(mrts_wrong_if);
1499	++rt->mfc_wrong_if;
1500	/*
1501	 * If we are doing PIM assert processing, send a message
1502	 * to the routing daemon.
1503	 *
1504	 * XXX: A PIM-SM router needs the WRONGVIF detection so it
1505	 * can complete the SPT switch, regardless of the type
1506	 * of the iif (broadcast media, GRE tunnel, etc).
1507	 */
1508	if (pim_assert_enabled && (vifi < numvifs) && viftable[vifi].v_ifp) {
1509
1510	    if (ifp == &multicast_register_if)
1511		PIMSTAT_INC(pims_rcv_registers_wrongiif);
1512
1513	    /* Get vifi for the incoming packet */
1514	    for (vifi=0; vifi < numvifs && viftable[vifi].v_ifp != ifp; vifi++)
1515		;
1516	    if (vifi >= numvifs)
1517		return 0;	/* The iif is not found: ignore the packet. */
1518
1519	    if (rt->mfc_flags[vifi] & MRT_MFC_FLAGS_DISABLE_WRONGVIF)
1520		return 0;	/* WRONGVIF disabled: ignore the packet */
1521
1522	    if (ratecheck(&rt->mfc_last_assert, &pim_assert_interval)) {
1523		struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
1524		struct igmpmsg *im;
1525		int hlen = ip->ip_hl << 2;
1526		struct mbuf *mm = m_copy(m, 0, hlen);
1527
1528		if (mm && (M_HASCL(mm) || mm->m_len < hlen))
1529		    mm = m_pullup(mm, hlen);
1530		if (mm == NULL)
1531		    return ENOBUFS;
1532
1533		im = mtod(mm, struct igmpmsg *);
1534		im->im_msgtype	= IGMPMSG_WRONGVIF;
1535		im->im_mbz		= 0;
1536		im->im_vif		= vifi;
1537
1538		MRTSTAT_INC(mrts_upcalls);
1539
1540		k_igmpsrc.sin_addr = im->im_src;
1541		if (socket_send(V_ip_mrouter, mm, &k_igmpsrc) < 0) {
1542		    CTR1(KTR_IPMF, "%s: socket queue full", __func__);
1543		    MRTSTAT_INC(mrts_upq_sockfull);
1544		    return ENOBUFS;
1545		}
1546	    }
1547	}
1548	return 0;
1549    }
1550
1551
1552    /* If I sourced this packet, it counts as output, else it was input. */
1553    if (in_hosteq(ip->ip_src, viftable[vifi].v_lcl_addr)) {
1554	viftable[vifi].v_pkt_out++;
1555	viftable[vifi].v_bytes_out += plen;
1556    } else {
1557	viftable[vifi].v_pkt_in++;
1558	viftable[vifi].v_bytes_in += plen;
1559    }
1560    rt->mfc_pkt_cnt++;
1561    rt->mfc_byte_cnt += plen;
1562
1563    /*
1564     * For each vif, decide if a copy of the packet should be forwarded.
1565     * Forward if:
1566     *		- the ttl exceeds the vif's threshold
1567     *		- there are group members downstream on interface
1568     */
1569    for (vifi = 0; vifi < numvifs; vifi++)
1570	if ((rt->mfc_ttls[vifi] > 0) && (ip->ip_ttl > rt->mfc_ttls[vifi])) {
1571	    viftable[vifi].v_pkt_out++;
1572	    viftable[vifi].v_bytes_out += plen;
1573	    if (viftable[vifi].v_flags & VIFF_REGISTER)
1574		pim_register_send(ip, viftable + vifi, m, rt);
1575	    else
1576		phyint_send(ip, viftable + vifi, m);
1577	}
1578
1579    /*
1580     * Perform upcall-related bw measuring.
1581     */
1582    if (rt->mfc_bw_meter != NULL) {
1583	struct bw_meter *x;
1584	struct timeval now;
1585
1586	microtime(&now);
1587	MFC_LOCK_ASSERT();
1588	for (x = rt->mfc_bw_meter; x != NULL; x = x->bm_mfc_next)
1589	    bw_meter_receive_packet(x, plen, &now);
1590    }
1591
1592    return 0;
1593}
1594
1595/*
1596 * Check if a vif number is legal/ok. This is used by in_mcast.c.
1597 */
1598static int
1599X_legal_vif_num(int vif)
1600{
1601	int ret;
1602
1603	ret = 0;
1604	if (vif < 0)
1605		return (ret);
1606
1607	VIF_LOCK();
1608	if (vif < numvifs)
1609		ret = 1;
1610	VIF_UNLOCK();
1611
1612	return (ret);
1613}
1614
1615/*
1616 * Return the local address used by this vif
1617 */
1618static u_long
1619X_ip_mcast_src(int vifi)
1620{
1621	in_addr_t addr;
1622
1623	addr = INADDR_ANY;
1624	if (vifi < 0)
1625		return (addr);
1626
1627	VIF_LOCK();
1628	if (vifi < numvifs)
1629		addr = viftable[vifi].v_lcl_addr.s_addr;
1630	VIF_UNLOCK();
1631
1632	return (addr);
1633}
1634
1635static void
1636phyint_send(struct ip *ip, struct vif *vifp, struct mbuf *m)
1637{
1638    struct mbuf *mb_copy;
1639    int hlen = ip->ip_hl << 2;
1640
1641    VIF_LOCK_ASSERT();
1642
1643    /*
1644     * Make a new reference to the packet; make sure that
1645     * the IP header is actually copied, not just referenced,
1646     * so that ip_output() only scribbles on the copy.
1647     */
1648    mb_copy = m_copypacket(m, M_DONTWAIT);
1649    if (mb_copy && (M_HASCL(mb_copy) || mb_copy->m_len < hlen))
1650	mb_copy = m_pullup(mb_copy, hlen);
1651    if (mb_copy == NULL)
1652	return;
1653
1654    send_packet(vifp, mb_copy);
1655}
1656
1657static void
1658send_packet(struct vif *vifp, struct mbuf *m)
1659{
1660	struct ip_moptions imo;
1661	struct in_multi *imm[2];
1662	int error;
1663
1664	VIF_LOCK_ASSERT();
1665
1666	imo.imo_multicast_ifp  = vifp->v_ifp;
1667	imo.imo_multicast_ttl  = mtod(m, struct ip *)->ip_ttl - 1;
1668	imo.imo_multicast_loop = 1;
1669	imo.imo_multicast_vif  = -1;
1670	imo.imo_num_memberships = 0;
1671	imo.imo_max_memberships = 2;
1672	imo.imo_membership  = &imm[0];
1673
1674	/*
1675	 * Re-entrancy should not be a problem here, because
1676	 * the packets that we send out and are looped back at us
1677	 * should get rejected because they appear to come from
1678	 * the loopback interface, thus preventing looping.
1679	 */
1680	error = ip_output(m, NULL, &vifp->v_route, IP_FORWARDING, &imo, NULL);
1681	CTR3(KTR_IPMF, "%s: vif %td err %d", __func__,
1682	    (ptrdiff_t)(vifp - viftable), error);
1683}
1684
1685/*
1686 * Stubs for old RSVP socket shim implementation.
1687 */
1688
1689static int
1690X_ip_rsvp_vif(struct socket *so __unused, struct sockopt *sopt __unused)
1691{
1692
1693	return (EOPNOTSUPP);
1694}
1695
1696static void
1697X_ip_rsvp_force_done(struct socket *so __unused)
1698{
1699
1700}
1701
1702static void
1703X_rsvp_input(struct mbuf *m, int off __unused)
1704{
1705
1706	if (!V_rsvp_on)
1707		m_freem(m);
1708}
1709
1710/*
1711 * Code for bandwidth monitors
1712 */
1713
1714/*
1715 * Define common interface for timeval-related methods
1716 */
1717#define	BW_TIMEVALCMP(tvp, uvp, cmp) timevalcmp((tvp), (uvp), cmp)
1718#define	BW_TIMEVALDECR(vvp, uvp) timevalsub((vvp), (uvp))
1719#define	BW_TIMEVALADD(vvp, uvp) timevaladd((vvp), (uvp))
1720
1721static uint32_t
1722compute_bw_meter_flags(struct bw_upcall *req)
1723{
1724    uint32_t flags = 0;
1725
1726    if (req->bu_flags & BW_UPCALL_UNIT_PACKETS)
1727	flags |= BW_METER_UNIT_PACKETS;
1728    if (req->bu_flags & BW_UPCALL_UNIT_BYTES)
1729	flags |= BW_METER_UNIT_BYTES;
1730    if (req->bu_flags & BW_UPCALL_GEQ)
1731	flags |= BW_METER_GEQ;
1732    if (req->bu_flags & BW_UPCALL_LEQ)
1733	flags |= BW_METER_LEQ;
1734
1735    return flags;
1736}
1737
1738/*
1739 * Add a bw_meter entry
1740 */
1741static int
1742add_bw_upcall(struct bw_upcall *req)
1743{
1744    struct mfc *mfc;
1745    struct timeval delta = { BW_UPCALL_THRESHOLD_INTERVAL_MIN_SEC,
1746		BW_UPCALL_THRESHOLD_INTERVAL_MIN_USEC };
1747    struct timeval now;
1748    struct bw_meter *x;
1749    uint32_t flags;
1750
1751    if (!(mrt_api_config & MRT_MFC_BW_UPCALL))
1752	return EOPNOTSUPP;
1753
1754    /* Test if the flags are valid */
1755    if (!(req->bu_flags & (BW_UPCALL_UNIT_PACKETS | BW_UPCALL_UNIT_BYTES)))
1756	return EINVAL;
1757    if (!(req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ)))
1758	return EINVAL;
1759    if ((req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ))
1760	    == (BW_UPCALL_GEQ | BW_UPCALL_LEQ))
1761	return EINVAL;
1762
1763    /* Test if the threshold time interval is valid */
1764    if (BW_TIMEVALCMP(&req->bu_threshold.b_time, &delta, <))
1765	return EINVAL;
1766
1767    flags = compute_bw_meter_flags(req);
1768
1769    /*
1770     * Find if we have already same bw_meter entry
1771     */
1772    MFC_LOCK();
1773    mfc = mfc_find(&req->bu_src, &req->bu_dst);
1774    if (mfc == NULL) {
1775	MFC_UNLOCK();
1776	return EADDRNOTAVAIL;
1777    }
1778    for (x = mfc->mfc_bw_meter; x != NULL; x = x->bm_mfc_next) {
1779	if ((BW_TIMEVALCMP(&x->bm_threshold.b_time,
1780			   &req->bu_threshold.b_time, ==)) &&
1781	    (x->bm_threshold.b_packets == req->bu_threshold.b_packets) &&
1782	    (x->bm_threshold.b_bytes == req->bu_threshold.b_bytes) &&
1783	    (x->bm_flags & BW_METER_USER_FLAGS) == flags)  {
1784	    MFC_UNLOCK();
1785	    return 0;		/* XXX Already installed */
1786	}
1787    }
1788
1789    /* Allocate the new bw_meter entry */
1790    x = (struct bw_meter *)malloc(sizeof(*x), M_BWMETER, M_NOWAIT);
1791    if (x == NULL) {
1792	MFC_UNLOCK();
1793	return ENOBUFS;
1794    }
1795
1796    /* Set the new bw_meter entry */
1797    x->bm_threshold.b_time = req->bu_threshold.b_time;
1798    microtime(&now);
1799    x->bm_start_time = now;
1800    x->bm_threshold.b_packets = req->bu_threshold.b_packets;
1801    x->bm_threshold.b_bytes = req->bu_threshold.b_bytes;
1802    x->bm_measured.b_packets = 0;
1803    x->bm_measured.b_bytes = 0;
1804    x->bm_flags = flags;
1805    x->bm_time_next = NULL;
1806    x->bm_time_hash = BW_METER_BUCKETS;
1807
1808    /* Add the new bw_meter entry to the front of entries for this MFC */
1809    x->bm_mfc = mfc;
1810    x->bm_mfc_next = mfc->mfc_bw_meter;
1811    mfc->mfc_bw_meter = x;
1812    schedule_bw_meter(x, &now);
1813    MFC_UNLOCK();
1814
1815    return 0;
1816}
1817
1818static void
1819free_bw_list(struct bw_meter *list)
1820{
1821    while (list != NULL) {
1822	struct bw_meter *x = list;
1823
1824	list = list->bm_mfc_next;
1825	unschedule_bw_meter(x);
1826	free(x, M_BWMETER);
1827    }
1828}
1829
1830/*
1831 * Delete one or multiple bw_meter entries
1832 */
1833static int
1834del_bw_upcall(struct bw_upcall *req)
1835{
1836    struct mfc *mfc;
1837    struct bw_meter *x;
1838
1839    if (!(mrt_api_config & MRT_MFC_BW_UPCALL))
1840	return EOPNOTSUPP;
1841
1842    MFC_LOCK();
1843
1844    /* Find the corresponding MFC entry */
1845    mfc = mfc_find(&req->bu_src, &req->bu_dst);
1846    if (mfc == NULL) {
1847	MFC_UNLOCK();
1848	return EADDRNOTAVAIL;
1849    } else if (req->bu_flags & BW_UPCALL_DELETE_ALL) {
1850	/*
1851	 * Delete all bw_meter entries for this mfc
1852	 */
1853	struct bw_meter *list;
1854
1855	list = mfc->mfc_bw_meter;
1856	mfc->mfc_bw_meter = NULL;
1857	free_bw_list(list);
1858	MFC_UNLOCK();
1859	return 0;
1860    } else {			/* Delete a single bw_meter entry */
1861	struct bw_meter *prev;
1862	uint32_t flags = 0;
1863
1864	flags = compute_bw_meter_flags(req);
1865
1866	/* Find the bw_meter entry to delete */
1867	for (prev = NULL, x = mfc->mfc_bw_meter; x != NULL;
1868	     prev = x, x = x->bm_mfc_next) {
1869	    if ((BW_TIMEVALCMP(&x->bm_threshold.b_time,
1870			       &req->bu_threshold.b_time, ==)) &&
1871		(x->bm_threshold.b_packets == req->bu_threshold.b_packets) &&
1872		(x->bm_threshold.b_bytes == req->bu_threshold.b_bytes) &&
1873		(x->bm_flags & BW_METER_USER_FLAGS) == flags)
1874		break;
1875	}
1876	if (x != NULL) { /* Delete entry from the list for this MFC */
1877	    if (prev != NULL)
1878		prev->bm_mfc_next = x->bm_mfc_next;	/* remove from middle*/
1879	    else
1880		x->bm_mfc->mfc_bw_meter = x->bm_mfc_next;/* new head of list */
1881
1882	    unschedule_bw_meter(x);
1883	    MFC_UNLOCK();
1884	    /* Free the bw_meter entry */
1885	    free(x, M_BWMETER);
1886	    return 0;
1887	} else {
1888	    MFC_UNLOCK();
1889	    return EINVAL;
1890	}
1891    }
1892    /* NOTREACHED */
1893}
1894
1895/*
1896 * Perform bandwidth measurement processing that may result in an upcall
1897 */
1898static void
1899bw_meter_receive_packet(struct bw_meter *x, int plen, struct timeval *nowp)
1900{
1901    struct timeval delta;
1902
1903    MFC_LOCK_ASSERT();
1904
1905    delta = *nowp;
1906    BW_TIMEVALDECR(&delta, &x->bm_start_time);
1907
1908    if (x->bm_flags & BW_METER_GEQ) {
1909	/*
1910	 * Processing for ">=" type of bw_meter entry
1911	 */
1912	if (BW_TIMEVALCMP(&delta, &x->bm_threshold.b_time, >)) {
1913	    /* Reset the bw_meter entry */
1914	    x->bm_start_time = *nowp;
1915	    x->bm_measured.b_packets = 0;
1916	    x->bm_measured.b_bytes = 0;
1917	    x->bm_flags &= ~BW_METER_UPCALL_DELIVERED;
1918	}
1919
1920	/* Record that a packet is received */
1921	x->bm_measured.b_packets++;
1922	x->bm_measured.b_bytes += plen;
1923
1924	/*
1925	 * Test if we should deliver an upcall
1926	 */
1927	if (!(x->bm_flags & BW_METER_UPCALL_DELIVERED)) {
1928	    if (((x->bm_flags & BW_METER_UNIT_PACKETS) &&
1929		 (x->bm_measured.b_packets >= x->bm_threshold.b_packets)) ||
1930		((x->bm_flags & BW_METER_UNIT_BYTES) &&
1931		 (x->bm_measured.b_bytes >= x->bm_threshold.b_bytes))) {
1932		/* Prepare an upcall for delivery */
1933		bw_meter_prepare_upcall(x, nowp);
1934		x->bm_flags |= BW_METER_UPCALL_DELIVERED;
1935	    }
1936	}
1937    } else if (x->bm_flags & BW_METER_LEQ) {
1938	/*
1939	 * Processing for "<=" type of bw_meter entry
1940	 */
1941	if (BW_TIMEVALCMP(&delta, &x->bm_threshold.b_time, >)) {
1942	    /*
1943	     * We are behind time with the multicast forwarding table
1944	     * scanning for "<=" type of bw_meter entries, so test now
1945	     * if we should deliver an upcall.
1946	     */
1947	    if (((x->bm_flags & BW_METER_UNIT_PACKETS) &&
1948		 (x->bm_measured.b_packets <= x->bm_threshold.b_packets)) ||
1949		((x->bm_flags & BW_METER_UNIT_BYTES) &&
1950		 (x->bm_measured.b_bytes <= x->bm_threshold.b_bytes))) {
1951		/* Prepare an upcall for delivery */
1952		bw_meter_prepare_upcall(x, nowp);
1953	    }
1954	    /* Reschedule the bw_meter entry */
1955	    unschedule_bw_meter(x);
1956	    schedule_bw_meter(x, nowp);
1957	}
1958
1959	/* Record that a packet is received */
1960	x->bm_measured.b_packets++;
1961	x->bm_measured.b_bytes += plen;
1962
1963	/*
1964	 * Test if we should restart the measuring interval
1965	 */
1966	if ((x->bm_flags & BW_METER_UNIT_PACKETS &&
1967	     x->bm_measured.b_packets <= x->bm_threshold.b_packets) ||
1968	    (x->bm_flags & BW_METER_UNIT_BYTES &&
1969	     x->bm_measured.b_bytes <= x->bm_threshold.b_bytes)) {
1970	    /* Don't restart the measuring interval */
1971	} else {
1972	    /* Do restart the measuring interval */
1973	    /*
1974	     * XXX: note that we don't unschedule and schedule, because this
1975	     * might be too much overhead per packet. Instead, when we process
1976	     * all entries for a given timer hash bin, we check whether it is
1977	     * really a timeout. If not, we reschedule at that time.
1978	     */
1979	    x->bm_start_time = *nowp;
1980	    x->bm_measured.b_packets = 0;
1981	    x->bm_measured.b_bytes = 0;
1982	    x->bm_flags &= ~BW_METER_UPCALL_DELIVERED;
1983	}
1984    }
1985}
1986
1987/*
1988 * Prepare a bandwidth-related upcall
1989 */
1990static void
1991bw_meter_prepare_upcall(struct bw_meter *x, struct timeval *nowp)
1992{
1993    struct timeval delta;
1994    struct bw_upcall *u;
1995
1996    MFC_LOCK_ASSERT();
1997
1998    /*
1999     * Compute the measured time interval
2000     */
2001    delta = *nowp;
2002    BW_TIMEVALDECR(&delta, &x->bm_start_time);
2003
2004    /*
2005     * If there are too many pending upcalls, deliver them now
2006     */
2007    if (bw_upcalls_n >= BW_UPCALLS_MAX)
2008	bw_upcalls_send();
2009
2010    /*
2011     * Set the bw_upcall entry
2012     */
2013    u = &bw_upcalls[bw_upcalls_n++];
2014    u->bu_src = x->bm_mfc->mfc_origin;
2015    u->bu_dst = x->bm_mfc->mfc_mcastgrp;
2016    u->bu_threshold.b_time = x->bm_threshold.b_time;
2017    u->bu_threshold.b_packets = x->bm_threshold.b_packets;
2018    u->bu_threshold.b_bytes = x->bm_threshold.b_bytes;
2019    u->bu_measured.b_time = delta;
2020    u->bu_measured.b_packets = x->bm_measured.b_packets;
2021    u->bu_measured.b_bytes = x->bm_measured.b_bytes;
2022    u->bu_flags = 0;
2023    if (x->bm_flags & BW_METER_UNIT_PACKETS)
2024	u->bu_flags |= BW_UPCALL_UNIT_PACKETS;
2025    if (x->bm_flags & BW_METER_UNIT_BYTES)
2026	u->bu_flags |= BW_UPCALL_UNIT_BYTES;
2027    if (x->bm_flags & BW_METER_GEQ)
2028	u->bu_flags |= BW_UPCALL_GEQ;
2029    if (x->bm_flags & BW_METER_LEQ)
2030	u->bu_flags |= BW_UPCALL_LEQ;
2031}
2032
2033/*
2034 * Send the pending bandwidth-related upcalls
2035 */
2036static void
2037bw_upcalls_send(void)
2038{
2039    struct mbuf *m;
2040    int len = bw_upcalls_n * sizeof(bw_upcalls[0]);
2041    struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
2042    static struct igmpmsg igmpmsg = { 0,		/* unused1 */
2043				      0,		/* unused2 */
2044				      IGMPMSG_BW_UPCALL,/* im_msgtype */
2045				      0,		/* im_mbz  */
2046				      0,		/* im_vif  */
2047				      0,		/* unused3 */
2048				      { 0 },		/* im_src  */
2049				      { 0 } };		/* im_dst  */
2050
2051    MFC_LOCK_ASSERT();
2052
2053    if (bw_upcalls_n == 0)
2054	return;			/* No pending upcalls */
2055
2056    bw_upcalls_n = 0;
2057
2058    /*
2059     * Allocate a new mbuf, initialize it with the header and
2060     * the payload for the pending calls.
2061     */
2062    MGETHDR(m, M_DONTWAIT, MT_DATA);
2063    if (m == NULL) {
2064	log(LOG_WARNING, "bw_upcalls_send: cannot allocate mbuf\n");
2065	return;
2066    }
2067
2068    m->m_len = m->m_pkthdr.len = 0;
2069    m_copyback(m, 0, sizeof(struct igmpmsg), (caddr_t)&igmpmsg);
2070    m_copyback(m, sizeof(struct igmpmsg), len, (caddr_t)&bw_upcalls[0]);
2071
2072    /*
2073     * Send the upcalls
2074     * XXX do we need to set the address in k_igmpsrc ?
2075     */
2076    MRTSTAT_INC(mrts_upcalls);
2077    if (socket_send(V_ip_mrouter, m, &k_igmpsrc) < 0) {
2078	log(LOG_WARNING, "bw_upcalls_send: ip_mrouter socket queue full\n");
2079	MRTSTAT_INC(mrts_upq_sockfull);
2080    }
2081}
2082
2083/*
2084 * Compute the timeout hash value for the bw_meter entries
2085 */
2086#define	BW_METER_TIMEHASH(bw_meter, hash)				\
2087    do {								\
2088	struct timeval next_timeval = (bw_meter)->bm_start_time;	\
2089									\
2090	BW_TIMEVALADD(&next_timeval, &(bw_meter)->bm_threshold.b_time); \
2091	(hash) = next_timeval.tv_sec;					\
2092	if (next_timeval.tv_usec)					\
2093	    (hash)++; /* XXX: make sure we don't timeout early */	\
2094	(hash) %= BW_METER_BUCKETS;					\
2095    } while (0)
2096
2097/*
2098 * Schedule a timer to process periodically bw_meter entry of type "<="
2099 * by linking the entry in the proper hash bucket.
2100 */
2101static void
2102schedule_bw_meter(struct bw_meter *x, struct timeval *nowp)
2103{
2104    int time_hash;
2105
2106    MFC_LOCK_ASSERT();
2107
2108    if (!(x->bm_flags & BW_METER_LEQ))
2109	return;		/* XXX: we schedule timers only for "<=" entries */
2110
2111    /*
2112     * Reset the bw_meter entry
2113     */
2114    x->bm_start_time = *nowp;
2115    x->bm_measured.b_packets = 0;
2116    x->bm_measured.b_bytes = 0;
2117    x->bm_flags &= ~BW_METER_UPCALL_DELIVERED;
2118
2119    /*
2120     * Compute the timeout hash value and insert the entry
2121     */
2122    BW_METER_TIMEHASH(x, time_hash);
2123    x->bm_time_next = bw_meter_timers[time_hash];
2124    bw_meter_timers[time_hash] = x;
2125    x->bm_time_hash = time_hash;
2126}
2127
2128/*
2129 * Unschedule the periodic timer that processes bw_meter entry of type "<="
2130 * by removing the entry from the proper hash bucket.
2131 */
2132static void
2133unschedule_bw_meter(struct bw_meter *x)
2134{
2135    int time_hash;
2136    struct bw_meter *prev, *tmp;
2137
2138    MFC_LOCK_ASSERT();
2139
2140    if (!(x->bm_flags & BW_METER_LEQ))
2141	return;		/* XXX: we schedule timers only for "<=" entries */
2142
2143    /*
2144     * Compute the timeout hash value and delete the entry
2145     */
2146    time_hash = x->bm_time_hash;
2147    if (time_hash >= BW_METER_BUCKETS)
2148	return;		/* Entry was not scheduled */
2149
2150    for (prev = NULL, tmp = bw_meter_timers[time_hash];
2151	     tmp != NULL; prev = tmp, tmp = tmp->bm_time_next)
2152	if (tmp == x)
2153	    break;
2154
2155    if (tmp == NULL)
2156	panic("unschedule_bw_meter: bw_meter entry not found");
2157
2158    if (prev != NULL)
2159	prev->bm_time_next = x->bm_time_next;
2160    else
2161	bw_meter_timers[time_hash] = x->bm_time_next;
2162
2163    x->bm_time_next = NULL;
2164    x->bm_time_hash = BW_METER_BUCKETS;
2165}
2166
2167
2168/*
2169 * Process all "<=" type of bw_meter that should be processed now,
2170 * and for each entry prepare an upcall if necessary. Each processed
2171 * entry is rescheduled again for the (periodic) processing.
2172 *
2173 * This is run periodically (once per second normally). On each round,
2174 * all the potentially matching entries are in the hash slot that we are
2175 * looking at.
2176 */
2177static void
2178bw_meter_process()
2179{
2180    static uint32_t last_tv_sec;	/* last time we processed this */
2181
2182    uint32_t loops;
2183    int i;
2184    struct timeval now, process_endtime;
2185
2186    microtime(&now);
2187    if (last_tv_sec == now.tv_sec)
2188	return;		/* nothing to do */
2189
2190    loops = now.tv_sec - last_tv_sec;
2191    last_tv_sec = now.tv_sec;
2192    if (loops > BW_METER_BUCKETS)
2193	loops = BW_METER_BUCKETS;
2194
2195    MFC_LOCK();
2196    /*
2197     * Process all bins of bw_meter entries from the one after the last
2198     * processed to the current one. On entry, i points to the last bucket
2199     * visited, so we need to increment i at the beginning of the loop.
2200     */
2201    for (i = (now.tv_sec - loops) % BW_METER_BUCKETS; loops > 0; loops--) {
2202	struct bw_meter *x, *tmp_list;
2203
2204	if (++i >= BW_METER_BUCKETS)
2205	    i = 0;
2206
2207	/* Disconnect the list of bw_meter entries from the bin */
2208	tmp_list = bw_meter_timers[i];
2209	bw_meter_timers[i] = NULL;
2210
2211	/* Process the list of bw_meter entries */
2212	while (tmp_list != NULL) {
2213	    x = tmp_list;
2214	    tmp_list = tmp_list->bm_time_next;
2215
2216	    /* Test if the time interval is over */
2217	    process_endtime = x->bm_start_time;
2218	    BW_TIMEVALADD(&process_endtime, &x->bm_threshold.b_time);
2219	    if (BW_TIMEVALCMP(&process_endtime, &now, >)) {
2220		/* Not yet: reschedule, but don't reset */
2221		int time_hash;
2222
2223		BW_METER_TIMEHASH(x, time_hash);
2224		if (time_hash == i && process_endtime.tv_sec == now.tv_sec) {
2225		    /*
2226		     * XXX: somehow the bin processing is a bit ahead of time.
2227		     * Put the entry in the next bin.
2228		     */
2229		    if (++time_hash >= BW_METER_BUCKETS)
2230			time_hash = 0;
2231		}
2232		x->bm_time_next = bw_meter_timers[time_hash];
2233		bw_meter_timers[time_hash] = x;
2234		x->bm_time_hash = time_hash;
2235
2236		continue;
2237	    }
2238
2239	    /*
2240	     * Test if we should deliver an upcall
2241	     */
2242	    if (((x->bm_flags & BW_METER_UNIT_PACKETS) &&
2243		 (x->bm_measured.b_packets <= x->bm_threshold.b_packets)) ||
2244		((x->bm_flags & BW_METER_UNIT_BYTES) &&
2245		 (x->bm_measured.b_bytes <= x->bm_threshold.b_bytes))) {
2246		/* Prepare an upcall for delivery */
2247		bw_meter_prepare_upcall(x, &now);
2248	    }
2249
2250	    /*
2251	     * Reschedule for next processing
2252	     */
2253	    schedule_bw_meter(x, &now);
2254	}
2255    }
2256
2257    /* Send all upcalls that are pending delivery */
2258    bw_upcalls_send();
2259
2260    MFC_UNLOCK();
2261}
2262
2263/*
2264 * A periodic function for sending all upcalls that are pending delivery
2265 */
2266static void
2267expire_bw_upcalls_send(void *unused)
2268{
2269    MFC_LOCK();
2270    bw_upcalls_send();
2271    MFC_UNLOCK();
2272
2273    callout_reset(&bw_upcalls_ch, BW_UPCALLS_PERIOD,
2274	expire_bw_upcalls_send, NULL);
2275}
2276
2277/*
2278 * A periodic function for periodic scanning of the multicast forwarding
2279 * table for processing all "<=" bw_meter entries.
2280 */
2281static void
2282expire_bw_meter_process(void *unused)
2283{
2284    if (mrt_api_config & MRT_MFC_BW_UPCALL)
2285	bw_meter_process();
2286
2287    callout_reset(&bw_meter_ch, BW_METER_PERIOD, expire_bw_meter_process, NULL);
2288}
2289
2290/*
2291 * End of bandwidth monitoring code
2292 */
2293
2294/*
2295 * Send the packet up to the user daemon, or eventually do kernel encapsulation
2296 *
2297 */
2298static int
2299pim_register_send(struct ip *ip, struct vif *vifp, struct mbuf *m,
2300    struct mfc *rt)
2301{
2302    struct mbuf *mb_copy, *mm;
2303
2304    /*
2305     * Do not send IGMP_WHOLEPKT notifications to userland, if the
2306     * rendezvous point was unspecified, and we were told not to.
2307     */
2308    if (pim_squelch_wholepkt != 0 && (mrt_api_config & MRT_MFC_RP) &&
2309	in_nullhost(rt->mfc_rp))
2310	return 0;
2311
2312    mb_copy = pim_register_prepare(ip, m);
2313    if (mb_copy == NULL)
2314	return ENOBUFS;
2315
2316    /*
2317     * Send all the fragments. Note that the mbuf for each fragment
2318     * is freed by the sending machinery.
2319     */
2320    for (mm = mb_copy; mm; mm = mb_copy) {
2321	mb_copy = mm->m_nextpkt;
2322	mm->m_nextpkt = 0;
2323	mm = m_pullup(mm, sizeof(struct ip));
2324	if (mm != NULL) {
2325	    ip = mtod(mm, struct ip *);
2326	    if ((mrt_api_config & MRT_MFC_RP) && !in_nullhost(rt->mfc_rp)) {
2327		pim_register_send_rp(ip, vifp, mm, rt);
2328	    } else {
2329		pim_register_send_upcall(ip, vifp, mm, rt);
2330	    }
2331	}
2332    }
2333
2334    return 0;
2335}
2336
2337/*
2338 * Return a copy of the data packet that is ready for PIM Register
2339 * encapsulation.
2340 * XXX: Note that in the returned copy the IP header is a valid one.
2341 */
2342static struct mbuf *
2343pim_register_prepare(struct ip *ip, struct mbuf *m)
2344{
2345    struct mbuf *mb_copy = NULL;
2346    int mtu;
2347
2348    /* Take care of delayed checksums */
2349    if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
2350	in_delayed_cksum(m);
2351	m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
2352    }
2353
2354    /*
2355     * Copy the old packet & pullup its IP header into the
2356     * new mbuf so we can modify it.
2357     */
2358    mb_copy = m_copypacket(m, M_DONTWAIT);
2359    if (mb_copy == NULL)
2360	return NULL;
2361    mb_copy = m_pullup(mb_copy, ip->ip_hl << 2);
2362    if (mb_copy == NULL)
2363	return NULL;
2364
2365    /* take care of the TTL */
2366    ip = mtod(mb_copy, struct ip *);
2367    --ip->ip_ttl;
2368
2369    /* Compute the MTU after the PIM Register encapsulation */
2370    mtu = 0xffff - sizeof(pim_encap_iphdr) - sizeof(pim_encap_pimhdr);
2371
2372    if (ip->ip_len <= mtu) {
2373	/* Turn the IP header into a valid one */
2374	ip->ip_len = htons(ip->ip_len);
2375	ip->ip_off = htons(ip->ip_off);
2376	ip->ip_sum = 0;
2377	ip->ip_sum = in_cksum(mb_copy, ip->ip_hl << 2);
2378    } else {
2379	/* Fragment the packet */
2380	if (ip_fragment(ip, &mb_copy, mtu, 0, CSUM_DELAY_IP) != 0) {
2381	    m_freem(mb_copy);
2382	    return NULL;
2383	}
2384    }
2385    return mb_copy;
2386}
2387
2388/*
2389 * Send an upcall with the data packet to the user-level process.
2390 */
2391static int
2392pim_register_send_upcall(struct ip *ip, struct vif *vifp,
2393    struct mbuf *mb_copy, struct mfc *rt)
2394{
2395    struct mbuf *mb_first;
2396    int len = ntohs(ip->ip_len);
2397    struct igmpmsg *im;
2398    struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
2399
2400    VIF_LOCK_ASSERT();
2401
2402    /*
2403     * Add a new mbuf with an upcall header
2404     */
2405    MGETHDR(mb_first, M_DONTWAIT, MT_DATA);
2406    if (mb_first == NULL) {
2407	m_freem(mb_copy);
2408	return ENOBUFS;
2409    }
2410    mb_first->m_data += max_linkhdr;
2411    mb_first->m_pkthdr.len = len + sizeof(struct igmpmsg);
2412    mb_first->m_len = sizeof(struct igmpmsg);
2413    mb_first->m_next = mb_copy;
2414
2415    /* Send message to routing daemon */
2416    im = mtod(mb_first, struct igmpmsg *);
2417    im->im_msgtype	= IGMPMSG_WHOLEPKT;
2418    im->im_mbz		= 0;
2419    im->im_vif		= vifp - viftable;
2420    im->im_src		= ip->ip_src;
2421    im->im_dst		= ip->ip_dst;
2422
2423    k_igmpsrc.sin_addr	= ip->ip_src;
2424
2425    MRTSTAT_INC(mrts_upcalls);
2426
2427    if (socket_send(V_ip_mrouter, mb_first, &k_igmpsrc) < 0) {
2428	CTR1(KTR_IPMF, "%s: socket queue full", __func__);
2429	MRTSTAT_INC(mrts_upq_sockfull);
2430	return ENOBUFS;
2431    }
2432
2433    /* Keep statistics */
2434    PIMSTAT_INC(pims_snd_registers_msgs);
2435    PIMSTAT_ADD(pims_snd_registers_bytes, len);
2436
2437    return 0;
2438}
2439
2440/*
2441 * Encapsulate the data packet in PIM Register message and send it to the RP.
2442 */
2443static int
2444pim_register_send_rp(struct ip *ip, struct vif *vifp, struct mbuf *mb_copy,
2445    struct mfc *rt)
2446{
2447    struct mbuf *mb_first;
2448    struct ip *ip_outer;
2449    struct pim_encap_pimhdr *pimhdr;
2450    int len = ntohs(ip->ip_len);
2451    vifi_t vifi = rt->mfc_parent;
2452
2453    VIF_LOCK_ASSERT();
2454
2455    if ((vifi >= numvifs) || in_nullhost(viftable[vifi].v_lcl_addr)) {
2456	m_freem(mb_copy);
2457	return EADDRNOTAVAIL;		/* The iif vif is invalid */
2458    }
2459
2460    /*
2461     * Add a new mbuf with the encapsulating header
2462     */
2463    MGETHDR(mb_first, M_DONTWAIT, MT_DATA);
2464    if (mb_first == NULL) {
2465	m_freem(mb_copy);
2466	return ENOBUFS;
2467    }
2468    mb_first->m_data += max_linkhdr;
2469    mb_first->m_len = sizeof(pim_encap_iphdr) + sizeof(pim_encap_pimhdr);
2470    mb_first->m_next = mb_copy;
2471
2472    mb_first->m_pkthdr.len = len + mb_first->m_len;
2473
2474    /*
2475     * Fill in the encapsulating IP and PIM header
2476     */
2477    ip_outer = mtod(mb_first, struct ip *);
2478    *ip_outer = pim_encap_iphdr;
2479    ip_outer->ip_id = ip_newid();
2480    ip_outer->ip_len = len + sizeof(pim_encap_iphdr) + sizeof(pim_encap_pimhdr);
2481    ip_outer->ip_src = viftable[vifi].v_lcl_addr;
2482    ip_outer->ip_dst = rt->mfc_rp;
2483    /*
2484     * Copy the inner header TOS to the outer header, and take care of the
2485     * IP_DF bit.
2486     */
2487    ip_outer->ip_tos = ip->ip_tos;
2488    if (ntohs(ip->ip_off) & IP_DF)
2489	ip_outer->ip_off |= IP_DF;
2490    pimhdr = (struct pim_encap_pimhdr *)((caddr_t)ip_outer
2491					 + sizeof(pim_encap_iphdr));
2492    *pimhdr = pim_encap_pimhdr;
2493    /* If the iif crosses a border, set the Border-bit */
2494    if (rt->mfc_flags[vifi] & MRT_MFC_FLAGS_BORDER_VIF & mrt_api_config)
2495	pimhdr->flags |= htonl(PIM_BORDER_REGISTER);
2496
2497    mb_first->m_data += sizeof(pim_encap_iphdr);
2498    pimhdr->pim.pim_cksum = in_cksum(mb_first, sizeof(pim_encap_pimhdr));
2499    mb_first->m_data -= sizeof(pim_encap_iphdr);
2500
2501    send_packet(vifp, mb_first);
2502
2503    /* Keep statistics */
2504    PIMSTAT_INC(pims_snd_registers_msgs);
2505    PIMSTAT_ADD(pims_snd_registers_bytes, len);
2506
2507    return 0;
2508}
2509
2510/*
2511 * pim_encapcheck() is called by the encap4_input() path at runtime to
2512 * determine if a packet is for PIM; allowing PIM to be dynamically loaded
2513 * into the kernel.
2514 */
2515static int
2516pim_encapcheck(const struct mbuf *m, int off, int proto, void *arg)
2517{
2518
2519#ifdef DIAGNOSTIC
2520    KASSERT(proto == IPPROTO_PIM, ("not for IPPROTO_PIM"));
2521#endif
2522    if (proto != IPPROTO_PIM)
2523	return 0;	/* not for us; reject the datagram. */
2524
2525    return 64;		/* claim the datagram. */
2526}
2527
2528/*
2529 * PIM-SMv2 and PIM-DM messages processing.
2530 * Receives and verifies the PIM control messages, and passes them
2531 * up to the listening socket, using rip_input().
2532 * The only message with special processing is the PIM_REGISTER message
2533 * (used by PIM-SM): the PIM header is stripped off, and the inner packet
2534 * is passed to if_simloop().
2535 */
2536void
2537pim_input(struct mbuf *m, int off)
2538{
2539    struct ip *ip = mtod(m, struct ip *);
2540    struct pim *pim;
2541    int minlen;
2542    int datalen = ip->ip_len;
2543    int ip_tos;
2544    int iphlen = off;
2545
2546    /* Keep statistics */
2547    PIMSTAT_INC(pims_rcv_total_msgs);
2548    PIMSTAT_ADD(pims_rcv_total_bytes, datalen);
2549
2550    /*
2551     * Validate lengths
2552     */
2553    if (datalen < PIM_MINLEN) {
2554	PIMSTAT_INC(pims_rcv_tooshort);
2555	CTR3(KTR_IPMF, "%s: short packet (%d) from %s",
2556	    __func__, datalen, inet_ntoa(ip->ip_src));
2557	m_freem(m);
2558	return;
2559    }
2560
2561    /*
2562     * If the packet is at least as big as a REGISTER, go agead
2563     * and grab the PIM REGISTER header size, to avoid another
2564     * possible m_pullup() later.
2565     *
2566     * PIM_MINLEN       == pimhdr + u_int32_t == 4 + 4 = 8
2567     * PIM_REG_MINLEN   == pimhdr + reghdr + encap_iphdr == 4 + 4 + 20 = 28
2568     */
2569    minlen = iphlen + (datalen >= PIM_REG_MINLEN ? PIM_REG_MINLEN : PIM_MINLEN);
2570    /*
2571     * Get the IP and PIM headers in contiguous memory, and
2572     * possibly the PIM REGISTER header.
2573     */
2574    if ((m->m_flags & M_EXT || m->m_len < minlen) &&
2575	(m = m_pullup(m, minlen)) == 0) {
2576	CTR1(KTR_IPMF, "%s: m_pullup() failed", __func__);
2577	return;
2578    }
2579
2580    /* m_pullup() may have given us a new mbuf so reset ip. */
2581    ip = mtod(m, struct ip *);
2582    ip_tos = ip->ip_tos;
2583
2584    /* adjust mbuf to point to the PIM header */
2585    m->m_data += iphlen;
2586    m->m_len  -= iphlen;
2587    pim = mtod(m, struct pim *);
2588
2589    /*
2590     * Validate checksum. If PIM REGISTER, exclude the data packet.
2591     *
2592     * XXX: some older PIMv2 implementations don't make this distinction,
2593     * so for compatibility reason perform the checksum over part of the
2594     * message, and if error, then over the whole message.
2595     */
2596    if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER && in_cksum(m, PIM_MINLEN) == 0) {
2597	/* do nothing, checksum okay */
2598    } else if (in_cksum(m, datalen)) {
2599	PIMSTAT_INC(pims_rcv_badsum);
2600	CTR1(KTR_IPMF, "%s: invalid checksum", __func__);
2601	m_freem(m);
2602	return;
2603    }
2604
2605    /* PIM version check */
2606    if (PIM_VT_V(pim->pim_vt) < PIM_VERSION) {
2607	PIMSTAT_INC(pims_rcv_badversion);
2608	CTR3(KTR_IPMF, "%s: bad version %d expect %d", __func__,
2609	    (int)PIM_VT_V(pim->pim_vt), PIM_VERSION);
2610	m_freem(m);
2611	return;
2612    }
2613
2614    /* restore mbuf back to the outer IP */
2615    m->m_data -= iphlen;
2616    m->m_len  += iphlen;
2617
2618    if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER) {
2619	/*
2620	 * Since this is a REGISTER, we'll make a copy of the register
2621	 * headers ip + pim + u_int32 + encap_ip, to be passed up to the
2622	 * routing daemon.
2623	 */
2624	struct sockaddr_in dst = { sizeof(dst), AF_INET };
2625	struct mbuf *mcp;
2626	struct ip *encap_ip;
2627	u_int32_t *reghdr;
2628	struct ifnet *vifp;
2629
2630	VIF_LOCK();
2631	if ((reg_vif_num >= numvifs) || (reg_vif_num == VIFI_INVALID)) {
2632	    VIF_UNLOCK();
2633	    CTR2(KTR_IPMF, "%s: register vif not set: %d", __func__,
2634		(int)reg_vif_num);
2635	    m_freem(m);
2636	    return;
2637	}
2638	/* XXX need refcnt? */
2639	vifp = viftable[reg_vif_num].v_ifp;
2640	VIF_UNLOCK();
2641
2642	/*
2643	 * Validate length
2644	 */
2645	if (datalen < PIM_REG_MINLEN) {
2646	    PIMSTAT_INC(pims_rcv_tooshort);
2647	    PIMSTAT_INC(pims_rcv_badregisters);
2648	    CTR1(KTR_IPMF, "%s: register packet size too small", __func__);
2649	    m_freem(m);
2650	    return;
2651	}
2652
2653	reghdr = (u_int32_t *)(pim + 1);
2654	encap_ip = (struct ip *)(reghdr + 1);
2655
2656	CTR3(KTR_IPMF, "%s: register: encap ip src %s len %d",
2657	    __func__, inet_ntoa(encap_ip->ip_src), ntohs(encap_ip->ip_len));
2658
2659	/* verify the version number of the inner packet */
2660	if (encap_ip->ip_v != IPVERSION) {
2661	    PIMSTAT_INC(pims_rcv_badregisters);
2662	    CTR1(KTR_IPMF, "%s: bad encap ip version", __func__);
2663	    m_freem(m);
2664	    return;
2665	}
2666
2667	/* verify the inner packet is destined to a mcast group */
2668	if (!IN_MULTICAST(ntohl(encap_ip->ip_dst.s_addr))) {
2669	    PIMSTAT_INC(pims_rcv_badregisters);
2670	    CTR2(KTR_IPMF, "%s: bad encap ip dest %s", __func__,
2671		inet_ntoa(encap_ip->ip_dst));
2672	    m_freem(m);
2673	    return;
2674	}
2675
2676	/* If a NULL_REGISTER, pass it to the daemon */
2677	if ((ntohl(*reghdr) & PIM_NULL_REGISTER))
2678	    goto pim_input_to_daemon;
2679
2680	/*
2681	 * Copy the TOS from the outer IP header to the inner IP header.
2682	 */
2683	if (encap_ip->ip_tos != ip_tos) {
2684	    /* Outer TOS -> inner TOS */
2685	    encap_ip->ip_tos = ip_tos;
2686	    /* Recompute the inner header checksum. Sigh... */
2687
2688	    /* adjust mbuf to point to the inner IP header */
2689	    m->m_data += (iphlen + PIM_MINLEN);
2690	    m->m_len  -= (iphlen + PIM_MINLEN);
2691
2692	    encap_ip->ip_sum = 0;
2693	    encap_ip->ip_sum = in_cksum(m, encap_ip->ip_hl << 2);
2694
2695	    /* restore mbuf to point back to the outer IP header */
2696	    m->m_data -= (iphlen + PIM_MINLEN);
2697	    m->m_len  += (iphlen + PIM_MINLEN);
2698	}
2699
2700	/*
2701	 * Decapsulate the inner IP packet and loopback to forward it
2702	 * as a normal multicast packet. Also, make a copy of the
2703	 *     outer_iphdr + pimhdr + reghdr + encap_iphdr
2704	 * to pass to the daemon later, so it can take the appropriate
2705	 * actions (e.g., send back PIM_REGISTER_STOP).
2706	 * XXX: here m->m_data points to the outer IP header.
2707	 */
2708	mcp = m_copy(m, 0, iphlen + PIM_REG_MINLEN);
2709	if (mcp == NULL) {
2710	    CTR1(KTR_IPMF, "%s: m_copy() failed", __func__);
2711	    m_freem(m);
2712	    return;
2713	}
2714
2715	/* Keep statistics */
2716	/* XXX: registers_bytes include only the encap. mcast pkt */
2717	PIMSTAT_INC(pims_rcv_registers_msgs);
2718	PIMSTAT_ADD(pims_rcv_registers_bytes, ntohs(encap_ip->ip_len));
2719
2720	/*
2721	 * forward the inner ip packet; point m_data at the inner ip.
2722	 */
2723	m_adj(m, iphlen + PIM_MINLEN);
2724
2725	CTR4(KTR_IPMF,
2726	    "%s: forward decap'd REGISTER: src %lx dst %lx vif %d",
2727	    __func__,
2728	    (u_long)ntohl(encap_ip->ip_src.s_addr),
2729	    (u_long)ntohl(encap_ip->ip_dst.s_addr),
2730	    (int)reg_vif_num);
2731
2732	/* NB: vifp was collected above; can it change on us? */
2733	if_simloop(vifp, m, dst.sin_family, 0);
2734
2735	/* prepare the register head to send to the mrouting daemon */
2736	m = mcp;
2737    }
2738
2739pim_input_to_daemon:
2740    /*
2741     * Pass the PIM message up to the daemon; if it is a Register message,
2742     * pass the 'head' only up to the daemon. This includes the
2743     * outer IP header, PIM header, PIM-Register header and the
2744     * inner IP header.
2745     * XXX: the outer IP header pkt size of a Register is not adjust to
2746     * reflect the fact that the inner multicast data is truncated.
2747     */
2748    rip_input(m, iphlen);
2749
2750    return;
2751}
2752
2753static int
2754sysctl_mfctable(SYSCTL_HANDLER_ARGS)
2755{
2756	struct mfc	*rt;
2757	int		 error, i;
2758
2759	if (req->newptr)
2760		return (EPERM);
2761	if (mfchashtbl == NULL)	/* XXX unlocked */
2762		return (0);
2763	error = sysctl_wire_old_buffer(req, 0);
2764	if (error)
2765		return (error);
2766
2767	MFC_LOCK();
2768	for (i = 0; i < mfchashsize; i++) {
2769		LIST_FOREACH(rt, &mfchashtbl[i], mfc_hash) {
2770			error = SYSCTL_OUT(req, rt, sizeof(struct mfc));
2771			if (error)
2772				goto out_locked;
2773		}
2774	}
2775out_locked:
2776	MFC_UNLOCK();
2777	return (error);
2778}
2779
2780SYSCTL_NODE(_net_inet_ip, OID_AUTO, mfctable, CTLFLAG_RD, sysctl_mfctable,
2781    "IPv4 Multicast Forwarding Table (struct *mfc[mfchashsize], "
2782    "netinet/ip_mroute.h)");
2783
2784static int
2785ip_mroute_modevent(module_t mod, int type, void *unused)
2786{
2787
2788    switch (type) {
2789    case MOD_LOAD:
2790	MROUTER_LOCK_INIT();
2791	MFC_LOCK_INIT();
2792	VIF_LOCK_INIT();
2793
2794	mfchashsize = MFCHASHSIZE;
2795	if (TUNABLE_ULONG_FETCH("net.inet.ip.mfchashsize", &mfchashsize) &&
2796	    !powerof2(mfchashsize)) {
2797		printf("WARNING: %s not a power of 2; using default\n",
2798		    "net.inet.ip.mfchashsize");
2799		mfchashsize = MFCHASHSIZE;
2800	}
2801	MALLOC(nexpire, u_char *, mfchashsize, M_MRTABLE, M_WAITOK|M_ZERO);
2802
2803	pim_squelch_wholepkt = 0;
2804	TUNABLE_ULONG_FETCH("net.inet.pim.squelch_wholepkt",
2805	    &pim_squelch_wholepkt);
2806	ip_mrouter_reset();
2807
2808	pim_encap_cookie = encap_attach_func(AF_INET, IPPROTO_PIM,
2809	    pim_encapcheck, &in_pim_protosw, NULL);
2810	if (pim_encap_cookie == NULL) {
2811		printf("ip_mroute: unable to attach pim encap\n");
2812		VIF_LOCK_DESTROY();
2813		MFC_LOCK_DESTROY();
2814		MROUTER_LOCK_DESTROY();
2815		return (EINVAL);
2816	}
2817
2818	ip_mcast_src = X_ip_mcast_src;
2819	ip_mforward = X_ip_mforward;
2820	ip_mrouter_done = X_ip_mrouter_done;
2821	ip_mrouter_get = X_ip_mrouter_get;
2822	ip_mrouter_set = X_ip_mrouter_set;
2823
2824	ip_rsvp_force_done = X_ip_rsvp_force_done;
2825	ip_rsvp_vif = X_ip_rsvp_vif;
2826
2827	legal_vif_num = X_legal_vif_num;
2828	mrt_ioctl = X_mrt_ioctl;
2829	rsvp_input_p = X_rsvp_input;
2830	break;
2831
2832    case MOD_UNLOAD:
2833	/*
2834	 * Typically module unload happens after the user-level
2835	 * process has shutdown the kernel services (the check
2836	 * below insures someone can't just yank the module out
2837	 * from under a running process).  But if the module is
2838	 * just loaded and then unloaded w/o starting up a user
2839	 * process we still need to cleanup.
2840	 */
2841	if (V_ip_mrouter != NULL)
2842	    return (EINVAL);
2843
2844	if (pim_encap_cookie) {
2845	    encap_detach(pim_encap_cookie);
2846	    pim_encap_cookie = NULL;
2847	}
2848	X_ip_mrouter_done();
2849
2850	FREE(nexpire, M_MRTABLE);
2851	nexpire = NULL;
2852
2853	ip_mcast_src = NULL;
2854	ip_mforward = NULL;
2855	ip_mrouter_done = NULL;
2856	ip_mrouter_get = NULL;
2857	ip_mrouter_set = NULL;
2858
2859	ip_rsvp_force_done = NULL;
2860	ip_rsvp_vif = NULL;
2861
2862	legal_vif_num = NULL;
2863	mrt_ioctl = NULL;
2864	rsvp_input_p = NULL;
2865
2866	VIF_LOCK_DESTROY();
2867	MFC_LOCK_DESTROY();
2868	MROUTER_LOCK_DESTROY();
2869	break;
2870
2871    default:
2872	return EOPNOTSUPP;
2873    }
2874    return 0;
2875}
2876
2877static moduledata_t ip_mroutemod = {
2878    "ip_mroute",
2879    ip_mroute_modevent,
2880    0
2881};
2882
2883DECLARE_MODULE(ip_mroute, ip_mroutemod, SI_SUB_PSEUDO, SI_ORDER_ANY);
2884