ip_mroute.c revision 190012
1/*-
2 * Copyright (c) 1989 Stephen Deering
3 * Copyright (c) 1992, 1993
4 *      The Regents of the University of California.  All rights reserved.
5 *
6 * This code is derived from software contributed to Berkeley by
7 * Stephen Deering of Stanford University.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in the
16 *    documentation and/or other materials provided with the distribution.
17 * 4. Neither the name of the University nor the names of its contributors
18 *    may be used to endorse or promote products derived from this software
19 *    without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 *
33 *      @(#)ip_mroute.c 8.2 (Berkeley) 11/15/93
34 */
35
36/*
37 * IP multicast forwarding procedures
38 *
39 * Written by David Waitzman, BBN Labs, August 1988.
40 * Modified by Steve Deering, Stanford, February 1989.
41 * Modified by Mark J. Steiglitz, Stanford, May, 1991
42 * Modified by Van Jacobson, LBL, January 1993
43 * Modified by Ajit Thyagarajan, PARC, August 1993
44 * Modified by Bill Fenner, PARC, April 1995
45 * Modified by Ahmed Helmy, SGI, June 1996
46 * Modified by George Edmond Eddy (Rusty), ISI, February 1998
47 * Modified by Pavlin Radoslavov, USC/ISI, May 1998, August 1999, October 2000
48 * Modified by Hitoshi Asaeda, WIDE, August 2000
49 * Modified by Pavlin Radoslavov, ICSI, October 2002
50 *
51 * MROUTING Revision: 3.5
52 * and PIM-SMv2 and PIM-DM support, advanced API support,
53 * bandwidth metering and signaling
54 */
55
56/*
57 * TODO: Prefix functions with ipmf_.
58 * TODO: Maintain a refcount on if_allmulti() in ifnet or in the protocol
59 * domain attachment (if_afdata) so we can track consumers of that service.
60 * TODO: Deprecate routing socket path for SIOCGETSGCNT and SIOCGETVIFCNT,
61 * move it to socket options.
62 * TODO: Rototile log_debug to use KTR.
63 * TODO: Cleanup LSRR removal further.
64 * TODO: Push RSVP stubs into raw_ip.c.
65 * TODO: Use bitstring.h for vif set.
66 * TODO: Fix mrt6_ioctl dangling ref when dynamically loaded.
67 * TODO: Sync ip6_mroute.c with this file.
68 */
69
70#include <sys/cdefs.h>
71__FBSDID("$FreeBSD: head/sys/netinet/ip_mroute.c 190012 2009-03-19 01:43:03Z bms $");
72
73#include "opt_inet.h"
74#include "opt_mac.h"
75#include "opt_mrouting.h"
76
77#define _PIM_VT 1
78
79#include <sys/param.h>
80#include <sys/kernel.h>
81#include <sys/lock.h>
82#include <sys/malloc.h>
83#include <sys/mbuf.h>
84#include <sys/module.h>
85#include <sys/priv.h>
86#include <sys/protosw.h>
87#include <sys/signalvar.h>
88#include <sys/socket.h>
89#include <sys/socketvar.h>
90#include <sys/sockio.h>
91#include <sys/sx.h>
92#include <sys/sysctl.h>
93#include <sys/syslog.h>
94#include <sys/systm.h>
95#include <sys/time.h>
96#include <sys/vimage.h>
97
98#include <net/if.h>
99#include <net/netisr.h>
100#include <net/route.h>
101
102#include <netinet/in.h>
103#include <netinet/igmp.h>
104#include <netinet/in_systm.h>
105#include <netinet/in_var.h>
106#include <netinet/ip.h>
107#include <netinet/ip_encap.h>
108#include <netinet/ip_mroute.h>
109#include <netinet/ip_var.h>
110#include <netinet/ip_options.h>
111#include <netinet/pim.h>
112#include <netinet/pim_var.h>
113#include <netinet/udp.h>
114#include <netinet/vinet.h>
115
116#include <machine/in_cksum.h>
117
118#include <security/mac/mac_framework.h>
119
120#define		DEBUG_MFC	0x02
121#define		DEBUG_FORWARD	0x04
122#define		DEBUG_EXPIRE	0x08
123#define		DEBUG_XMIT	0x10
124#define		DEBUG_PIM	0x20
125static u_int	mrtdebug;
126SYSCTL_INT(_debug, OID_AUTO, mrtdebug, CTLFLAG_RW, &mrtdebug, 0,
127    "Enable/disable IPv4 multicast forwarding debugging flags");
128
129#define		VIFI_INVALID	((vifi_t) -1)
130#define		M_HASCL(m)	((m)->m_flags & M_EXT)
131
132static MALLOC_DEFINE(M_MRTABLE, "mroutetbl", "multicast forwarding cache");
133
134/*
135 * Locking.  We use two locks: one for the virtual interface table and
136 * one for the forwarding table.  These locks may be nested in which case
137 * the VIF lock must always be taken first.  Note that each lock is used
138 * to cover not only the specific data structure but also related data
139 * structures.
140 */
141
142static struct mtx mrouter_mtx;
143#define	MROUTER_LOCK()		mtx_lock(&mrouter_mtx)
144#define	MROUTER_UNLOCK()	mtx_unlock(&mrouter_mtx)
145#define	MROUTER_LOCK_ASSERT()	mtx_assert(&mrouter_mtx, MA_OWNED)
146#define	MROUTER_LOCK_INIT()						\
147	mtx_init(&mrouter_mtx, "IPv4 multicast forwarding", NULL, MTX_DEF)
148#define	MROUTER_LOCK_DESTROY()	mtx_destroy(&mrouter_mtx)
149
150static struct mrtstat	mrtstat;
151SYSCTL_STRUCT(_net_inet_ip, OID_AUTO, mrtstat, CTLFLAG_RW,
152    &mrtstat, mrtstat,
153    "IPv4 Multicast Forwarding Statistics (struct mrtstat, "
154    "netinet/ip_mroute.h)");
155
156static u_long			 mfchash;
157#define MFCHASH(a, g)							\
158	((((a).s_addr >> 20) ^ ((a).s_addr >> 10) ^ (a).s_addr ^ \
159	  ((g).s_addr >> 20) ^ ((g).s_addr >> 10) ^ (g).s_addr) & mfchash)
160#define MFCHASHSIZE	256
161
162static u_char			*nexpire;	/* 0..mfchashsize-1 */
163static u_long			 mfchashsize;	/* Hash size */
164LIST_HEAD(mfchashhdr, mfc)	*mfchashtbl;
165
166static struct mtx mfc_mtx;
167#define	MFC_LOCK()		mtx_lock(&mfc_mtx)
168#define	MFC_UNLOCK()		mtx_unlock(&mfc_mtx)
169#define	MFC_LOCK_ASSERT()	mtx_assert(&mfc_mtx, MA_OWNED)
170#define	MFC_LOCK_INIT()							\
171	mtx_init(&mfc_mtx, "IPv4 multicast forwarding cache", NULL, MTX_DEF)
172#define	MFC_LOCK_DESTROY()	mtx_destroy(&mfc_mtx)
173
174static vifi_t		numvifs;
175static struct vif	viftable[MAXVIFS];
176SYSCTL_OPAQUE(_net_inet_ip, OID_AUTO, viftable, CTLFLAG_RD,
177    &viftable, sizeof(viftable), "S,vif[MAXVIFS]",
178    "IPv4 Multicast Interfaces (struct vif[MAXVIFS], netinet/ip_mroute.h)");
179
180static struct mtx vif_mtx;
181#define	VIF_LOCK()		mtx_lock(&vif_mtx)
182#define	VIF_UNLOCK()		mtx_unlock(&vif_mtx)
183#define	VIF_LOCK_ASSERT()	mtx_assert(&vif_mtx, MA_OWNED)
184#define	VIF_LOCK_INIT()							\
185	mtx_init(&vif_mtx, "IPv4 multicast interfaces", NULL, MTX_DEF)
186#define	VIF_LOCK_DESTROY()	mtx_destroy(&vif_mtx)
187
188static eventhandler_tag if_detach_event_tag = NULL;
189
190static struct callout expire_upcalls_ch;
191#define		EXPIRE_TIMEOUT	(hz / 4)	/* 4x / second		*/
192#define		UPCALL_EXPIRE	6		/* number of timeouts	*/
193
194/*
195 * Bandwidth meter variables and constants
196 */
197static MALLOC_DEFINE(M_BWMETER, "bwmeter", "multicast upcall bw meters");
198/*
199 * Pending timeouts are stored in a hash table, the key being the
200 * expiration time. Periodically, the entries are analysed and processed.
201 */
202#define BW_METER_BUCKETS	1024
203static struct bw_meter *bw_meter_timers[BW_METER_BUCKETS];
204static struct callout bw_meter_ch;
205#define BW_METER_PERIOD (hz)		/* periodical handling of bw meters */
206
207/*
208 * Pending upcalls are stored in a vector which is flushed when
209 * full, or periodically
210 */
211static struct bw_upcall	bw_upcalls[BW_UPCALLS_MAX];
212static u_int	bw_upcalls_n; /* # of pending upcalls */
213static struct callout bw_upcalls_ch;
214#define BW_UPCALLS_PERIOD (hz)		/* periodical flush of bw upcalls */
215
216static struct pimstat pimstat;
217
218SYSCTL_NODE(_net_inet, IPPROTO_PIM, pim, CTLFLAG_RW, 0, "PIM");
219SYSCTL_STRUCT(_net_inet_pim, PIMCTL_STATS, stats, CTLFLAG_RD,
220    &pimstat, pimstat,
221    "PIM Statistics (struct pimstat, netinet/pim_var.h)");
222
223static u_long	pim_squelch_wholepkt = 0;
224SYSCTL_ULONG(_net_inet_pim, OID_AUTO, squelch_wholepkt, CTLFLAG_RW,
225    &pim_squelch_wholepkt, 0,
226    "Disable IGMP_WHOLEPKT notifications if rendezvous point is unspecified");
227
228extern  struct domain inetdomain;
229static const struct protosw in_pim_protosw = {
230	.pr_type =		SOCK_RAW,
231	.pr_domain =		&inetdomain,
232	.pr_protocol =		IPPROTO_PIM,
233	.pr_flags =		PR_ATOMIC|PR_ADDR|PR_LASTHDR,
234	.pr_input =		pim_input,
235	.pr_output =		(pr_output_t*)rip_output,
236	.pr_ctloutput =		rip_ctloutput,
237	.pr_usrreqs =		&rip_usrreqs
238};
239static const struct encaptab *pim_encap_cookie;
240
241static int pim_encapcheck(const struct mbuf *, int, int, void *);
242
243/*
244 * Note: the PIM Register encapsulation adds the following in front of a
245 * data packet:
246 *
247 * struct pim_encap_hdr {
248 *    struct ip ip;
249 *    struct pim_encap_pimhdr  pim;
250 * }
251 *
252 */
253
254struct pim_encap_pimhdr {
255	struct pim pim;
256	uint32_t   flags;
257};
258#define		PIM_ENCAP_TTL	64
259
260static struct ip pim_encap_iphdr = {
261#if BYTE_ORDER == LITTLE_ENDIAN
262	sizeof(struct ip) >> 2,
263	IPVERSION,
264#else
265	IPVERSION,
266	sizeof(struct ip) >> 2,
267#endif
268	0,			/* tos */
269	sizeof(struct ip),	/* total length */
270	0,			/* id */
271	0,			/* frag offset */
272	PIM_ENCAP_TTL,
273	IPPROTO_PIM,
274	0,			/* checksum */
275};
276
277static struct pim_encap_pimhdr pim_encap_pimhdr = {
278    {
279	PIM_MAKE_VT(PIM_VERSION, PIM_REGISTER), /* PIM vers and message type */
280	0,			/* reserved */
281	0,			/* checksum */
282    },
283    0				/* flags */
284};
285
286static struct ifnet multicast_register_if;
287static vifi_t reg_vif_num = VIFI_INVALID;
288
289/*
290 * Private variables.
291 */
292
293static u_long	X_ip_mcast_src(int);
294static int	X_ip_mforward(struct ip *, struct ifnet *, struct mbuf *,
295		    struct ip_moptions *);
296static int	X_ip_mrouter_done(void);
297static int	X_ip_mrouter_get(struct socket *, struct sockopt *);
298static int	X_ip_mrouter_set(struct socket *, struct sockopt *);
299static int	X_legal_vif_num(int);
300static int	X_mrt_ioctl(int, caddr_t, int);
301
302static int	add_bw_upcall(struct bw_upcall *);
303static int	add_mfc(struct mfcctl2 *);
304static int	add_vif(struct vifctl *);
305static void	bw_meter_prepare_upcall(struct bw_meter *, struct timeval *);
306static void	bw_meter_process(void);
307static void	bw_meter_receive_packet(struct bw_meter *, int,
308		    struct timeval *);
309static void	bw_upcalls_send(void);
310static int	del_bw_upcall(struct bw_upcall *);
311static int	del_mfc(struct mfcctl2 *);
312static int	del_vif(vifi_t);
313static int	del_vif_locked(vifi_t);
314static void	expire_bw_meter_process(void *);
315static void	expire_bw_upcalls_send(void *);
316static void	expire_mfc(struct mfc *);
317static void	expire_upcalls(void *);
318static void	free_bw_list(struct bw_meter *);
319static int	get_sg_cnt(struct sioc_sg_req *);
320static int	get_vif_cnt(struct sioc_vif_req *);
321static void	if_detached_event(void *, struct ifnet *);
322static int	ip_mdq(struct mbuf *, struct ifnet *, struct mfc *, vifi_t);
323static int	ip_mrouter_init(struct socket *, int);
324static __inline struct mfc *
325		mfc_find(struct in_addr *, struct in_addr *);
326static void	phyint_send(struct ip *, struct vif *, struct mbuf *);
327static struct mbuf *
328		pim_register_prepare(struct ip *, struct mbuf *);
329static int	pim_register_send(struct ip *, struct vif *,
330		    struct mbuf *, struct mfc *);
331static int	pim_register_send_rp(struct ip *, struct vif *,
332		    struct mbuf *, struct mfc *);
333static int	pim_register_send_upcall(struct ip *, struct vif *,
334		    struct mbuf *, struct mfc *);
335static void	schedule_bw_meter(struct bw_meter *, struct timeval *);
336static void	send_packet(struct vif *, struct mbuf *);
337static int	set_api_config(uint32_t *);
338static int	set_assert(int);
339static int	socket_send(struct socket *, struct mbuf *,
340		    struct sockaddr_in *);
341static void	unschedule_bw_meter(struct bw_meter *);
342
343/*
344 * Kernel multicast forwarding API capabilities and setup.
345 * If more API capabilities are added to the kernel, they should be
346 * recorded in `mrt_api_support'.
347 */
348#define MRT_API_VERSION		0x0305
349
350static const int mrt_api_version = MRT_API_VERSION;
351static const uint32_t mrt_api_support = (MRT_MFC_FLAGS_DISABLE_WRONGVIF |
352					 MRT_MFC_FLAGS_BORDER_VIF |
353					 MRT_MFC_RP |
354					 MRT_MFC_BW_UPCALL);
355static uint32_t mrt_api_config = 0;
356
357static int pim_assert_enabled;
358static struct timeval pim_assert_interval = { 3, 0 };	/* Rate limit */
359
360/*
361 * Find a route for a given origin IP address and multicast group address.
362 * Statistics must be updated by the caller.
363 */
364static __inline struct mfc *
365mfc_find(struct in_addr *o, struct in_addr *g)
366{
367	struct mfc *rt;
368
369	MFC_LOCK_ASSERT();
370
371	LIST_FOREACH(rt, &mfchashtbl[MFCHASH(*o, *g)], mfc_hash) {
372		if (in_hosteq(rt->mfc_origin, *o) &&
373		    in_hosteq(rt->mfc_mcastgrp, *g) &&
374		    TAILQ_EMPTY(&rt->mfc_stall))
375			break;
376	}
377
378	return (rt);
379}
380
381/*
382 * Handle MRT setsockopt commands to modify the multicast forwarding tables.
383 */
384static int
385X_ip_mrouter_set(struct socket *so, struct sockopt *sopt)
386{
387    INIT_VNET_INET(curvnet);
388    int	error, optval;
389    vifi_t	vifi;
390    struct	vifctl vifc;
391    struct	mfcctl2 mfc;
392    struct	bw_upcall bw_upcall;
393    uint32_t	i;
394
395    if (so != V_ip_mrouter && sopt->sopt_name != MRT_INIT)
396	return EPERM;
397
398    error = 0;
399    switch (sopt->sopt_name) {
400    case MRT_INIT:
401	error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval);
402	if (error)
403	    break;
404	error = ip_mrouter_init(so, optval);
405	break;
406
407    case MRT_DONE:
408	error = ip_mrouter_done();
409	break;
410
411    case MRT_ADD_VIF:
412	error = sooptcopyin(sopt, &vifc, sizeof vifc, sizeof vifc);
413	if (error)
414	    break;
415	error = add_vif(&vifc);
416	break;
417
418    case MRT_DEL_VIF:
419	error = sooptcopyin(sopt, &vifi, sizeof vifi, sizeof vifi);
420	if (error)
421	    break;
422	error = del_vif(vifi);
423	break;
424
425    case MRT_ADD_MFC:
426    case MRT_DEL_MFC:
427	/*
428	 * select data size depending on API version.
429	 */
430	if (sopt->sopt_name == MRT_ADD_MFC &&
431		mrt_api_config & MRT_API_FLAGS_ALL) {
432	    error = sooptcopyin(sopt, &mfc, sizeof(struct mfcctl2),
433				sizeof(struct mfcctl2));
434	} else {
435	    error = sooptcopyin(sopt, &mfc, sizeof(struct mfcctl),
436				sizeof(struct mfcctl));
437	    bzero((caddr_t)&mfc + sizeof(struct mfcctl),
438			sizeof(mfc) - sizeof(struct mfcctl));
439	}
440	if (error)
441	    break;
442	if (sopt->sopt_name == MRT_ADD_MFC)
443	    error = add_mfc(&mfc);
444	else
445	    error = del_mfc(&mfc);
446	break;
447
448    case MRT_ASSERT:
449	error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval);
450	if (error)
451	    break;
452	set_assert(optval);
453	break;
454
455    case MRT_API_CONFIG:
456	error = sooptcopyin(sopt, &i, sizeof i, sizeof i);
457	if (!error)
458	    error = set_api_config(&i);
459	if (!error)
460	    error = sooptcopyout(sopt, &i, sizeof i);
461	break;
462
463    case MRT_ADD_BW_UPCALL:
464    case MRT_DEL_BW_UPCALL:
465	error = sooptcopyin(sopt, &bw_upcall, sizeof bw_upcall,
466				sizeof bw_upcall);
467	if (error)
468	    break;
469	if (sopt->sopt_name == MRT_ADD_BW_UPCALL)
470	    error = add_bw_upcall(&bw_upcall);
471	else
472	    error = del_bw_upcall(&bw_upcall);
473	break;
474
475    default:
476	error = EOPNOTSUPP;
477	break;
478    }
479    return error;
480}
481
482/*
483 * Handle MRT getsockopt commands
484 */
485static int
486X_ip_mrouter_get(struct socket *so, struct sockopt *sopt)
487{
488    int error;
489
490    switch (sopt->sopt_name) {
491    case MRT_VERSION:
492	error = sooptcopyout(sopt, &mrt_api_version, sizeof mrt_api_version);
493	break;
494
495    case MRT_ASSERT:
496	error = sooptcopyout(sopt, &pim_assert_enabled,
497	    sizeof pim_assert_enabled);
498	break;
499
500    case MRT_API_SUPPORT:
501	error = sooptcopyout(sopt, &mrt_api_support, sizeof mrt_api_support);
502	break;
503
504    case MRT_API_CONFIG:
505	error = sooptcopyout(sopt, &mrt_api_config, sizeof mrt_api_config);
506	break;
507
508    default:
509	error = EOPNOTSUPP;
510	break;
511    }
512    return error;
513}
514
515/*
516 * Handle ioctl commands to obtain information from the cache
517 */
518static int
519X_mrt_ioctl(int cmd, caddr_t data, int fibnum __unused)
520{
521    int error = 0;
522
523    /*
524     * Currently the only function calling this ioctl routine is rtioctl().
525     * Typically, only root can create the raw socket in order to execute
526     * this ioctl method, however the request might be coming from a prison
527     */
528    error = priv_check(curthread, PRIV_NETINET_MROUTE);
529    if (error)
530	return (error);
531    switch (cmd) {
532    case (SIOCGETVIFCNT):
533	error = get_vif_cnt((struct sioc_vif_req *)data);
534	break;
535
536    case (SIOCGETSGCNT):
537	error = get_sg_cnt((struct sioc_sg_req *)data);
538	break;
539
540    default:
541	error = EINVAL;
542	break;
543    }
544    return error;
545}
546
547/*
548 * returns the packet, byte, rpf-failure count for the source group provided
549 */
550static int
551get_sg_cnt(struct sioc_sg_req *req)
552{
553    struct mfc *rt;
554
555    MFC_LOCK();
556    rt = mfc_find(&req->src, &req->grp);
557    if (rt == NULL) {
558	MFC_UNLOCK();
559	req->pktcnt = req->bytecnt = req->wrong_if = 0xffffffff;
560	return EADDRNOTAVAIL;
561    }
562    req->pktcnt = rt->mfc_pkt_cnt;
563    req->bytecnt = rt->mfc_byte_cnt;
564    req->wrong_if = rt->mfc_wrong_if;
565    MFC_UNLOCK();
566    return 0;
567}
568
569/*
570 * returns the input and output packet and byte counts on the vif provided
571 */
572static int
573get_vif_cnt(struct sioc_vif_req *req)
574{
575    vifi_t vifi = req->vifi;
576
577    VIF_LOCK();
578    if (vifi >= numvifs) {
579	VIF_UNLOCK();
580	return EINVAL;
581    }
582
583    req->icount = viftable[vifi].v_pkt_in;
584    req->ocount = viftable[vifi].v_pkt_out;
585    req->ibytes = viftable[vifi].v_bytes_in;
586    req->obytes = viftable[vifi].v_bytes_out;
587    VIF_UNLOCK();
588
589    return 0;
590}
591
592static void
593ip_mrouter_reset(void)
594{
595
596    pim_assert_enabled = 0;
597    mrt_api_config = 0;
598
599    callout_init(&expire_upcalls_ch, CALLOUT_MPSAFE);
600
601    bw_upcalls_n = 0;
602    bzero((caddr_t)bw_meter_timers, sizeof(bw_meter_timers));
603    callout_init(&bw_upcalls_ch, CALLOUT_MPSAFE);
604    callout_init(&bw_meter_ch, CALLOUT_MPSAFE);
605}
606
607static void
608if_detached_event(void *arg __unused, struct ifnet *ifp)
609{
610    INIT_VNET_INET(curvnet);
611    vifi_t vifi;
612    int i;
613
614    MROUTER_LOCK();
615
616    if (V_ip_mrouter == NULL) {
617	MROUTER_UNLOCK();
618	return;
619    }
620
621    VIF_LOCK();
622    MFC_LOCK();
623
624    /*
625     * Tear down multicast forwarder state associated with this ifnet.
626     * 1. Walk the vif list, matching vifs against this ifnet.
627     * 2. Walk the multicast forwarding cache (mfc) looking for
628     *    inner matches with this vif's index.
629     * 3. Expire any matching multicast forwarding cache entries.
630     * 4. Free vif state. This should disable ALLMULTI on the interface.
631     */
632    for (vifi = 0; vifi < numvifs; vifi++) {
633	if (viftable[vifi].v_ifp != ifp)
634		continue;
635	for (i = 0; i < mfchashsize; i++) {
636		struct mfc *rt, *nrt;
637		for (rt = LIST_FIRST(&mfchashtbl[i]); rt; rt = nrt) {
638			nrt = LIST_NEXT(rt, mfc_hash);
639			if (rt->mfc_parent == vifi) {
640				expire_mfc(rt);
641			}
642		}
643	}
644	del_vif_locked(vifi);
645    }
646
647    MFC_UNLOCK();
648    VIF_UNLOCK();
649
650    MROUTER_UNLOCK();
651}
652
653/*
654 * Enable multicast forwarding.
655 */
656static int
657ip_mrouter_init(struct socket *so, int version)
658{
659    INIT_VNET_INET(curvnet);
660
661    if (mrtdebug)
662	log(LOG_DEBUG, "ip_mrouter_init: so_type = %d, pr_protocol = %d\n",
663	    so->so_type, so->so_proto->pr_protocol);
664
665    if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_IGMP)
666	return EOPNOTSUPP;
667
668    if (version != 1)
669	return ENOPROTOOPT;
670
671    MROUTER_LOCK();
672
673    if (V_ip_mrouter != NULL) {
674	MROUTER_UNLOCK();
675	return EADDRINUSE;
676    }
677
678    if_detach_event_tag = EVENTHANDLER_REGISTER(ifnet_departure_event,
679        if_detached_event, NULL, EVENTHANDLER_PRI_ANY);
680    if (if_detach_event_tag == NULL) {
681	MROUTER_UNLOCK();
682	return (ENOMEM);
683    }
684
685    mfchashtbl = hashinit_flags(mfchashsize, M_MRTABLE, &mfchash, HASH_NOWAIT);
686
687    callout_reset(&expire_upcalls_ch, EXPIRE_TIMEOUT, expire_upcalls, NULL);
688
689    callout_reset(&bw_upcalls_ch, BW_UPCALLS_PERIOD,
690	expire_bw_upcalls_send, NULL);
691    callout_reset(&bw_meter_ch, BW_METER_PERIOD, expire_bw_meter_process, NULL);
692
693    V_ip_mrouter = so;
694
695    MROUTER_UNLOCK();
696
697    if (mrtdebug)
698	log(LOG_DEBUG, "ip_mrouter_init\n");
699
700    return 0;
701}
702
703/*
704 * Disable multicast forwarding.
705 */
706static int
707X_ip_mrouter_done(void)
708{
709    INIT_VNET_INET(curvnet);
710    vifi_t vifi;
711    int i;
712    struct ifnet *ifp;
713    struct ifreq ifr;
714
715    MROUTER_LOCK();
716
717    if (V_ip_mrouter == NULL) {
718	MROUTER_UNLOCK();
719	return EINVAL;
720    }
721
722    /*
723     * Detach/disable hooks to the reset of the system.
724     */
725    V_ip_mrouter = NULL;
726    mrt_api_config = 0;
727
728    VIF_LOCK();
729
730    /*
731     * For each phyint in use, disable promiscuous reception of all IP
732     * multicasts.
733     */
734    for (vifi = 0; vifi < numvifs; vifi++) {
735	if (!in_nullhost(viftable[vifi].v_lcl_addr) &&
736		!(viftable[vifi].v_flags & (VIFF_TUNNEL | VIFF_REGISTER))) {
737	    struct sockaddr_in *so = (struct sockaddr_in *)&(ifr.ifr_addr);
738
739	    so->sin_len = sizeof(struct sockaddr_in);
740	    so->sin_family = AF_INET;
741	    so->sin_addr.s_addr = INADDR_ANY;
742	    ifp = viftable[vifi].v_ifp;
743	    if_allmulti(ifp, 0);
744	}
745    }
746    bzero((caddr_t)viftable, sizeof(viftable));
747    numvifs = 0;
748    pim_assert_enabled = 0;
749
750    VIF_UNLOCK();
751
752    EVENTHANDLER_DEREGISTER(ifnet_departure_event, if_detach_event_tag);
753
754    callout_stop(&expire_upcalls_ch);
755    callout_stop(&bw_upcalls_ch);
756    callout_stop(&bw_meter_ch);
757
758    MFC_LOCK();
759
760    /*
761     * Free all multicast forwarding cache entries.
762     * Do not use hashdestroy(), as we must perform other cleanup.
763     */
764    for (i = 0; i < mfchashsize; i++) {
765	struct mfc *rt, *nrt;
766	for (rt = LIST_FIRST(&mfchashtbl[i]); rt; rt = nrt) {
767		nrt = LIST_NEXT(rt, mfc_hash);
768		expire_mfc(rt);
769	}
770    }
771    free(mfchashtbl, M_MRTABLE);
772    mfchashtbl = NULL;
773
774    bzero(nexpire, sizeof(nexpire[0]) * mfchashsize);
775
776    bw_upcalls_n = 0;
777    bzero(bw_meter_timers, sizeof(bw_meter_timers));
778
779    MFC_UNLOCK();
780
781    reg_vif_num = VIFI_INVALID;
782
783    MROUTER_UNLOCK();
784
785    if (mrtdebug)
786	log(LOG_DEBUG, "ip_mrouter_done\n");
787
788    return 0;
789}
790
791/*
792 * Set PIM assert processing global
793 */
794static int
795set_assert(int i)
796{
797    if ((i != 1) && (i != 0))
798	return EINVAL;
799
800    pim_assert_enabled = i;
801
802    return 0;
803}
804
805/*
806 * Configure API capabilities
807 */
808int
809set_api_config(uint32_t *apival)
810{
811    int i;
812
813    /*
814     * We can set the API capabilities only if it is the first operation
815     * after MRT_INIT. I.e.:
816     *  - there are no vifs installed
817     *  - pim_assert is not enabled
818     *  - the MFC table is empty
819     */
820    if (numvifs > 0) {
821	*apival = 0;
822	return EPERM;
823    }
824    if (pim_assert_enabled) {
825	*apival = 0;
826	return EPERM;
827    }
828
829    MFC_LOCK();
830
831    for (i = 0; i < mfchashsize; i++) {
832	if (LIST_FIRST(&mfchashtbl[i]) != NULL) {
833	    *apival = 0;
834	    return EPERM;
835	}
836    }
837
838    MFC_UNLOCK();
839
840    mrt_api_config = *apival & mrt_api_support;
841    *apival = mrt_api_config;
842
843    return 0;
844}
845
846/*
847 * Add a vif to the vif table
848 */
849static int
850add_vif(struct vifctl *vifcp)
851{
852    struct vif *vifp = viftable + vifcp->vifc_vifi;
853    struct sockaddr_in sin = {sizeof sin, AF_INET};
854    struct ifaddr *ifa;
855    struct ifnet *ifp;
856    int error;
857
858    VIF_LOCK();
859    if (vifcp->vifc_vifi >= MAXVIFS) {
860	VIF_UNLOCK();
861	return EINVAL;
862    }
863    /* rate limiting is no longer supported by this code */
864    if (vifcp->vifc_rate_limit != 0) {
865	log(LOG_ERR, "rate limiting is no longer supported\n");
866	VIF_UNLOCK();
867	return EINVAL;
868    }
869    if (!in_nullhost(vifp->v_lcl_addr)) {
870	VIF_UNLOCK();
871	return EADDRINUSE;
872    }
873    if (in_nullhost(vifcp->vifc_lcl_addr)) {
874	VIF_UNLOCK();
875	return EADDRNOTAVAIL;
876    }
877
878    /* Find the interface with an address in AF_INET family */
879    if (vifcp->vifc_flags & VIFF_REGISTER) {
880	/*
881	 * XXX: Because VIFF_REGISTER does not really need a valid
882	 * local interface (e.g. it could be 127.0.0.2), we don't
883	 * check its address.
884	 */
885	ifp = NULL;
886    } else {
887	sin.sin_addr = vifcp->vifc_lcl_addr;
888	ifa = ifa_ifwithaddr((struct sockaddr *)&sin);
889	if (ifa == NULL) {
890	    VIF_UNLOCK();
891	    return EADDRNOTAVAIL;
892	}
893	ifp = ifa->ifa_ifp;
894    }
895
896    if ((vifcp->vifc_flags & VIFF_TUNNEL) != 0) {
897	log(LOG_ERR, "tunnels are no longer supported\n");
898	VIF_UNLOCK();
899	return EOPNOTSUPP;
900    } else if (vifcp->vifc_flags & VIFF_REGISTER) {
901	ifp = &multicast_register_if;
902	if (mrtdebug)
903	    log(LOG_DEBUG, "Adding a register vif, ifp: %p\n",
904		    (void *)&multicast_register_if);
905	if (reg_vif_num == VIFI_INVALID) {
906	    if_initname(&multicast_register_if, "register_vif", 0);
907	    multicast_register_if.if_flags = IFF_LOOPBACK;
908	    reg_vif_num = vifcp->vifc_vifi;
909	}
910    } else {		/* Make sure the interface supports multicast */
911	if ((ifp->if_flags & IFF_MULTICAST) == 0) {
912	    VIF_UNLOCK();
913	    return EOPNOTSUPP;
914	}
915
916	/* Enable promiscuous reception of all IP multicasts from the if */
917	error = if_allmulti(ifp, 1);
918	if (error) {
919	    VIF_UNLOCK();
920	    return error;
921	}
922    }
923
924    vifp->v_flags     = vifcp->vifc_flags;
925    vifp->v_threshold = vifcp->vifc_threshold;
926    vifp->v_lcl_addr  = vifcp->vifc_lcl_addr;
927    vifp->v_rmt_addr  = vifcp->vifc_rmt_addr;
928    vifp->v_ifp       = ifp;
929    /* initialize per vif pkt counters */
930    vifp->v_pkt_in    = 0;
931    vifp->v_pkt_out   = 0;
932    vifp->v_bytes_in  = 0;
933    vifp->v_bytes_out = 0;
934    bzero(&vifp->v_route, sizeof(vifp->v_route));
935
936    /* Adjust numvifs up if the vifi is higher than numvifs */
937    if (numvifs <= vifcp->vifc_vifi)
938	numvifs = vifcp->vifc_vifi + 1;
939
940    VIF_UNLOCK();
941
942    if (mrtdebug)
943	log(LOG_DEBUG, "add_vif #%d, lcladdr %lx, %s %lx, thresh %x\n",
944	    vifcp->vifc_vifi,
945	    (u_long)ntohl(vifcp->vifc_lcl_addr.s_addr),
946	    (vifcp->vifc_flags & VIFF_TUNNEL) ? "rmtaddr" : "mask",
947	    (u_long)ntohl(vifcp->vifc_rmt_addr.s_addr),
948	    vifcp->vifc_threshold);
949
950    return 0;
951}
952
953/*
954 * Delete a vif from the vif table
955 */
956static int
957del_vif_locked(vifi_t vifi)
958{
959    struct vif *vifp;
960
961    VIF_LOCK_ASSERT();
962
963    if (vifi >= numvifs) {
964	return EINVAL;
965    }
966    vifp = &viftable[vifi];
967    if (in_nullhost(vifp->v_lcl_addr)) {
968	return EADDRNOTAVAIL;
969    }
970
971    if (!(vifp->v_flags & (VIFF_TUNNEL | VIFF_REGISTER)))
972	if_allmulti(vifp->v_ifp, 0);
973
974    if (vifp->v_flags & VIFF_REGISTER)
975	reg_vif_num = VIFI_INVALID;
976
977    bzero((caddr_t)vifp, sizeof (*vifp));
978
979    if (mrtdebug)
980	log(LOG_DEBUG, "del_vif %d, numvifs %d\n", vifi, numvifs);
981
982    /* Adjust numvifs down */
983    for (vifi = numvifs; vifi > 0; vifi--)
984	if (!in_nullhost(viftable[vifi-1].v_lcl_addr))
985	    break;
986    numvifs = vifi;
987
988    return 0;
989}
990
991static int
992del_vif(vifi_t vifi)
993{
994    int cc;
995
996    VIF_LOCK();
997    cc = del_vif_locked(vifi);
998    VIF_UNLOCK();
999
1000    return cc;
1001}
1002
1003/*
1004 * update an mfc entry without resetting counters and S,G addresses.
1005 */
1006static void
1007update_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp)
1008{
1009    int i;
1010
1011    rt->mfc_parent = mfccp->mfcc_parent;
1012    for (i = 0; i < numvifs; i++) {
1013	rt->mfc_ttls[i] = mfccp->mfcc_ttls[i];
1014	rt->mfc_flags[i] = mfccp->mfcc_flags[i] & mrt_api_config &
1015	    MRT_MFC_FLAGS_ALL;
1016    }
1017    /* set the RP address */
1018    if (mrt_api_config & MRT_MFC_RP)
1019	rt->mfc_rp = mfccp->mfcc_rp;
1020    else
1021	rt->mfc_rp.s_addr = INADDR_ANY;
1022}
1023
1024/*
1025 * fully initialize an mfc entry from the parameter.
1026 */
1027static void
1028init_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp)
1029{
1030    rt->mfc_origin     = mfccp->mfcc_origin;
1031    rt->mfc_mcastgrp   = mfccp->mfcc_mcastgrp;
1032
1033    update_mfc_params(rt, mfccp);
1034
1035    /* initialize pkt counters per src-grp */
1036    rt->mfc_pkt_cnt    = 0;
1037    rt->mfc_byte_cnt   = 0;
1038    rt->mfc_wrong_if   = 0;
1039    timevalclear(&rt->mfc_last_assert);
1040}
1041
1042static void
1043expire_mfc(struct mfc *rt)
1044{
1045	struct rtdetq *rte, *nrte;
1046
1047	free_bw_list(rt->mfc_bw_meter);
1048
1049	TAILQ_FOREACH_SAFE(rte, &rt->mfc_stall, rte_link, nrte) {
1050		m_freem(rte->m);
1051		TAILQ_REMOVE(&rt->mfc_stall, rte, rte_link);
1052		free(rte, M_MRTABLE);
1053	}
1054
1055	LIST_REMOVE(rt, mfc_hash);
1056	free(rt, M_MRTABLE);
1057}
1058
1059/*
1060 * Add an mfc entry
1061 */
1062static int
1063add_mfc(struct mfcctl2 *mfccp)
1064{
1065    struct mfc *rt;
1066    struct rtdetq *rte, *nrte;
1067    u_long hash = 0;
1068    u_short nstl;
1069
1070    VIF_LOCK();
1071    MFC_LOCK();
1072
1073    rt = mfc_find(&mfccp->mfcc_origin, &mfccp->mfcc_mcastgrp);
1074
1075    /* If an entry already exists, just update the fields */
1076    if (rt) {
1077	if (mrtdebug & DEBUG_MFC)
1078	    log(LOG_DEBUG,"add_mfc update o %lx g %lx p %x\n",
1079		(u_long)ntohl(mfccp->mfcc_origin.s_addr),
1080		(u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr),
1081		mfccp->mfcc_parent);
1082
1083	update_mfc_params(rt, mfccp);
1084	MFC_UNLOCK();
1085	VIF_UNLOCK();
1086	return (0);
1087    }
1088
1089    /*
1090     * Find the entry for which the upcall was made and update
1091     */
1092    nstl = 0;
1093    hash = MFCHASH(mfccp->mfcc_origin, mfccp->mfcc_mcastgrp);
1094    LIST_FOREACH(rt, &mfchashtbl[hash], mfc_hash) {
1095	if (in_hosteq(rt->mfc_origin, mfccp->mfcc_origin) &&
1096	    in_hosteq(rt->mfc_mcastgrp, mfccp->mfcc_mcastgrp) &&
1097	    !TAILQ_EMPTY(&rt->mfc_stall)) {
1098		if (nstl++) {
1099			log(LOG_ERR, "add_mfc %s o %lx g %lx p %x dbx %p\n",
1100			    "multiple kernel entries",
1101			    (u_long)ntohl(mfccp->mfcc_origin.s_addr),
1102			    (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr),
1103			    mfccp->mfcc_parent,
1104			    (void *)TAILQ_FIRST(&rt->mfc_stall));
1105		}
1106
1107		if (mrtdebug & DEBUG_MFC) {
1108			log(LOG_DEBUG,"add_mfc o %lx g %lx p %x dbg %p\n",
1109			    (u_long)ntohl(mfccp->mfcc_origin.s_addr),
1110			    (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr),
1111			    mfccp->mfcc_parent,
1112			    (void *)TAILQ_FIRST(&rt->mfc_stall));
1113		}
1114
1115		init_mfc_params(rt, mfccp);
1116		rt->mfc_expire = 0;	/* Don't clean this guy up */
1117		nexpire[hash]--;
1118
1119		/* Free queued packets, but attempt to forward them first. */
1120		TAILQ_FOREACH_SAFE(rte, &rt->mfc_stall, rte_link, nrte) {
1121			if (rte->ifp != NULL)
1122				ip_mdq(rte->m, rte->ifp, rt, -1);
1123			m_freem(rte->m);
1124			TAILQ_REMOVE(&rt->mfc_stall, rte, rte_link);
1125			rt->mfc_nstall--;
1126			free(rte, M_MRTABLE);
1127		}
1128	}
1129    }
1130
1131    /*
1132     * It is possible that an entry is being inserted without an upcall
1133     */
1134    if (nstl == 0) {
1135	/*
1136	 * No mfc; make a new one
1137	 */
1138	if (mrtdebug & DEBUG_MFC)
1139	    log(LOG_DEBUG,"add_mfc no upcall h %lu o %lx g %lx p %x\n",
1140		hash, (u_long)ntohl(mfccp->mfcc_origin.s_addr),
1141		(u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr),
1142		mfccp->mfcc_parent);
1143
1144	LIST_FOREACH(rt, &mfchashtbl[hash], mfc_hash) {
1145		if (in_hosteq(rt->mfc_origin, mfccp->mfcc_origin) &&
1146		    in_hosteq(rt->mfc_mcastgrp, mfccp->mfcc_mcastgrp)) {
1147			init_mfc_params(rt, mfccp);
1148			if (rt->mfc_expire)
1149			    nexpire[hash]--;
1150			rt->mfc_expire = 0;
1151			break; /* XXX */
1152		}
1153	}
1154
1155	if (rt == NULL) {		/* no upcall, so make a new entry */
1156	    rt = (struct mfc *)malloc(sizeof(*rt), M_MRTABLE, M_NOWAIT);
1157	    if (rt == NULL) {
1158		MFC_UNLOCK();
1159		VIF_UNLOCK();
1160		return (ENOBUFS);
1161	    }
1162
1163	    init_mfc_params(rt, mfccp);
1164	    TAILQ_INIT(&rt->mfc_stall);
1165	    rt->mfc_nstall = 0;
1166
1167	    rt->mfc_expire     = 0;
1168	    rt->mfc_bw_meter = NULL;
1169
1170	    /* insert new entry at head of hash chain */
1171	    LIST_INSERT_HEAD(&mfchashtbl[hash], rt, mfc_hash);
1172	}
1173    }
1174
1175    MFC_UNLOCK();
1176    VIF_UNLOCK();
1177
1178    return (0);
1179}
1180
1181/*
1182 * Delete an mfc entry
1183 */
1184static int
1185del_mfc(struct mfcctl2 *mfccp)
1186{
1187    struct in_addr	origin;
1188    struct in_addr	mcastgrp;
1189    struct mfc		*rt;
1190
1191    origin = mfccp->mfcc_origin;
1192    mcastgrp = mfccp->mfcc_mcastgrp;
1193
1194    if (mrtdebug & DEBUG_MFC) {
1195	log(LOG_DEBUG,"del_mfc orig %lx mcastgrp %lx\n",
1196	    (u_long)ntohl(origin.s_addr),
1197	    (u_long)ntohl(mcastgrp.s_addr));
1198    }
1199
1200    MFC_LOCK();
1201
1202    rt = mfc_find(&origin, &mcastgrp);
1203    if (rt == NULL) {
1204	MFC_UNLOCK();
1205	return EADDRNOTAVAIL;
1206    }
1207
1208    /*
1209     * free the bw_meter entries
1210     */
1211    free_bw_list(rt->mfc_bw_meter);
1212    rt->mfc_bw_meter = NULL;
1213
1214    LIST_REMOVE(rt, mfc_hash);
1215    free(rt, M_MRTABLE);
1216
1217    MFC_UNLOCK();
1218
1219    return (0);
1220}
1221
1222/*
1223 * Send a message to the routing daemon on the multicast routing socket.
1224 */
1225static int
1226socket_send(struct socket *s, struct mbuf *mm, struct sockaddr_in *src)
1227{
1228    if (s) {
1229	SOCKBUF_LOCK(&s->so_rcv);
1230	if (sbappendaddr_locked(&s->so_rcv, (struct sockaddr *)src, mm,
1231	    NULL) != 0) {
1232	    sorwakeup_locked(s);
1233	    return 0;
1234	}
1235	SOCKBUF_UNLOCK(&s->so_rcv);
1236    }
1237    m_freem(mm);
1238    return -1;
1239}
1240
1241/*
1242 * IP multicast forwarding function. This function assumes that the packet
1243 * pointed to by "ip" has arrived on (or is about to be sent to) the interface
1244 * pointed to by "ifp", and the packet is to be relayed to other networks
1245 * that have members of the packet's destination IP multicast group.
1246 *
1247 * The packet is returned unscathed to the caller, unless it is
1248 * erroneous, in which case a non-zero return value tells the caller to
1249 * discard it.
1250 */
1251
1252#define TUNNEL_LEN  12  /* # bytes of IP option for tunnel encapsulation  */
1253
1254static int
1255X_ip_mforward(struct ip *ip, struct ifnet *ifp, struct mbuf *m,
1256    struct ip_moptions *imo)
1257{
1258    INIT_VNET_INET(curvnet);
1259    struct mfc *rt;
1260    int error;
1261    vifi_t vifi;
1262
1263    if (mrtdebug & DEBUG_FORWARD)
1264	log(LOG_DEBUG, "ip_mforward: src %lx, dst %lx, ifp %p\n",
1265	    (u_long)ntohl(ip->ip_src.s_addr), (u_long)ntohl(ip->ip_dst.s_addr),
1266	    (void *)ifp);
1267
1268    if (ip->ip_hl < (sizeof(struct ip) + TUNNEL_LEN) >> 2 ||
1269		((u_char *)(ip + 1))[1] != IPOPT_LSRR ) {
1270	/*
1271	 * Packet arrived via a physical interface or
1272	 * an encapsulated tunnel or a register_vif.
1273	 */
1274    } else {
1275	/*
1276	 * Packet arrived through a source-route tunnel.
1277	 * Source-route tunnels are no longer supported.
1278	 */
1279	static int last_log;
1280	if (last_log != time_uptime) {
1281	    last_log = time_uptime;
1282	    log(LOG_ERR,
1283		"ip_mforward: received source-routed packet from %lx\n",
1284		(u_long)ntohl(ip->ip_src.s_addr));
1285	}
1286	return 1;
1287    }
1288
1289    VIF_LOCK();
1290    MFC_LOCK();
1291    if (imo && ((vifi = imo->imo_multicast_vif) < numvifs)) {
1292	if (ip->ip_ttl < MAXTTL)
1293	    ip->ip_ttl++;	/* compensate for -1 in *_send routines */
1294	error = ip_mdq(m, ifp, NULL, vifi);
1295	MFC_UNLOCK();
1296	VIF_UNLOCK();
1297	return error;
1298    }
1299
1300    /*
1301     * Don't forward a packet with time-to-live of zero or one,
1302     * or a packet destined to a local-only group.
1303     */
1304    if (ip->ip_ttl <= 1 || IN_LOCAL_GROUP(ntohl(ip->ip_dst.s_addr))) {
1305	MFC_UNLOCK();
1306	VIF_UNLOCK();
1307	return 0;
1308    }
1309
1310    /*
1311     * Determine forwarding vifs from the forwarding cache table
1312     */
1313    ++mrtstat.mrts_mfc_lookups;
1314    rt = mfc_find(&ip->ip_src, &ip->ip_dst);
1315
1316    /* Entry exists, so forward if necessary */
1317    if (rt != NULL) {
1318	error = ip_mdq(m, ifp, rt, -1);
1319	MFC_UNLOCK();
1320	VIF_UNLOCK();
1321	return error;
1322    } else {
1323	/*
1324	 * If we don't have a route for packet's origin,
1325	 * Make a copy of the packet & send message to routing daemon
1326	 */
1327
1328	struct mbuf *mb0;
1329	struct rtdetq *rte;
1330	u_long hash;
1331	int hlen = ip->ip_hl << 2;
1332
1333	++mrtstat.mrts_mfc_misses;
1334
1335	mrtstat.mrts_no_route++;
1336	if (mrtdebug & (DEBUG_FORWARD | DEBUG_MFC))
1337	    log(LOG_DEBUG, "ip_mforward: no rte s %lx g %lx\n",
1338		(u_long)ntohl(ip->ip_src.s_addr),
1339		(u_long)ntohl(ip->ip_dst.s_addr));
1340
1341	/*
1342	 * Allocate mbufs early so that we don't do extra work if we are
1343	 * just going to fail anyway.  Make sure to pullup the header so
1344	 * that other people can't step on it.
1345	 */
1346	rte = (struct rtdetq *)malloc((sizeof *rte), M_MRTABLE,
1347	    M_NOWAIT|M_ZERO);
1348	if (rte == NULL) {
1349	    MFC_UNLOCK();
1350	    VIF_UNLOCK();
1351	    return ENOBUFS;
1352	}
1353
1354	mb0 = m_copypacket(m, M_DONTWAIT);
1355	if (mb0 && (M_HASCL(mb0) || mb0->m_len < hlen))
1356	    mb0 = m_pullup(mb0, hlen);
1357	if (mb0 == NULL) {
1358	    free(rte, M_MRTABLE);
1359	    MFC_UNLOCK();
1360	    VIF_UNLOCK();
1361	    return ENOBUFS;
1362	}
1363
1364	/* is there an upcall waiting for this flow ? */
1365	hash = MFCHASH(ip->ip_src, ip->ip_dst);
1366	LIST_FOREACH(rt, &mfchashtbl[hash], mfc_hash) {
1367		if (in_hosteq(ip->ip_src, rt->mfc_origin) &&
1368		    in_hosteq(ip->ip_dst, rt->mfc_mcastgrp) &&
1369		    !TAILQ_EMPTY(&rt->mfc_stall))
1370			break;
1371	}
1372
1373	if (rt == NULL) {
1374	    int i;
1375	    struct igmpmsg *im;
1376	    struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
1377	    struct mbuf *mm;
1378
1379	    /*
1380	     * Locate the vifi for the incoming interface for this packet.
1381	     * If none found, drop packet.
1382	     */
1383	    for (vifi = 0; vifi < numvifs &&
1384		    viftable[vifi].v_ifp != ifp; vifi++)
1385		;
1386	    if (vifi >= numvifs)	/* vif not found, drop packet */
1387		goto non_fatal;
1388
1389	    /* no upcall, so make a new entry */
1390	    rt = (struct mfc *)malloc(sizeof(*rt), M_MRTABLE, M_NOWAIT);
1391	    if (rt == NULL)
1392		goto fail;
1393	    /* Make a copy of the header to send to the user level process */
1394	    mm = m_copy(mb0, 0, hlen);
1395	    if (mm == NULL)
1396		goto fail1;
1397
1398	    /*
1399	     * Send message to routing daemon to install
1400	     * a route into the kernel table
1401	     */
1402
1403	    im = mtod(mm, struct igmpmsg *);
1404	    im->im_msgtype = IGMPMSG_NOCACHE;
1405	    im->im_mbz = 0;
1406	    im->im_vif = vifi;
1407
1408	    mrtstat.mrts_upcalls++;
1409
1410	    k_igmpsrc.sin_addr = ip->ip_src;
1411	    if (socket_send(V_ip_mrouter, mm, &k_igmpsrc) < 0) {
1412		log(LOG_WARNING, "ip_mforward: ip_mrouter socket queue full\n");
1413		++mrtstat.mrts_upq_sockfull;
1414fail1:
1415		free(rt, M_MRTABLE);
1416fail:
1417		free(rte, M_MRTABLE);
1418		m_freem(mb0);
1419		MFC_UNLOCK();
1420		VIF_UNLOCK();
1421		return ENOBUFS;
1422	    }
1423
1424	    /* insert new entry at head of hash chain */
1425	    rt->mfc_origin.s_addr     = ip->ip_src.s_addr;
1426	    rt->mfc_mcastgrp.s_addr   = ip->ip_dst.s_addr;
1427	    rt->mfc_expire	      = UPCALL_EXPIRE;
1428	    nexpire[hash]++;
1429	    for (i = 0; i < numvifs; i++) {
1430		rt->mfc_ttls[i] = 0;
1431		rt->mfc_flags[i] = 0;
1432	    }
1433	    rt->mfc_parent = -1;
1434
1435	    /* clear the RP address */
1436	    rt->mfc_rp.s_addr = INADDR_ANY;
1437	    rt->mfc_bw_meter = NULL;
1438
1439	    /* link into table */
1440	    LIST_INSERT_HEAD(&mfchashtbl[hash], rt, mfc_hash);
1441	    TAILQ_INSERT_HEAD(&rt->mfc_stall, rte, rte_link);
1442	    rt->mfc_nstall++;
1443
1444	} else {
1445	    /* determine if queue has overflowed */
1446	    if (rt->mfc_nstall > MAX_UPQ) {
1447		mrtstat.mrts_upq_ovflw++;
1448non_fatal:
1449		free(rte, M_MRTABLE);
1450		m_freem(mb0);
1451		MFC_UNLOCK();
1452		VIF_UNLOCK();
1453		return (0);
1454	    }
1455	    TAILQ_INSERT_TAIL(&rt->mfc_stall, rte, rte_link);
1456	    rt->mfc_nstall++;
1457	}
1458
1459	rte->m			= mb0;
1460	rte->ifp		= ifp;
1461
1462	MFC_UNLOCK();
1463	VIF_UNLOCK();
1464
1465	return 0;
1466    }
1467}
1468
1469/*
1470 * Clean up the cache entry if upcall is not serviced
1471 */
1472static void
1473expire_upcalls(void *unused)
1474{
1475    int i;
1476
1477    MFC_LOCK();
1478
1479    for (i = 0; i < mfchashsize; i++) {
1480	struct mfc *rt, *nrt;
1481
1482	if (nexpire[i] == 0)
1483	    continue;
1484
1485	for (rt = LIST_FIRST(&mfchashtbl[i]); rt; rt = nrt) {
1486		nrt = LIST_NEXT(rt, mfc_hash);
1487
1488		if (TAILQ_EMPTY(&rt->mfc_stall))
1489			continue;
1490
1491		if (rt->mfc_expire == 0 || --rt->mfc_expire > 0)
1492			continue;
1493
1494		/*
1495		 * free the bw_meter entries
1496		 */
1497		while (rt->mfc_bw_meter != NULL) {
1498		    struct bw_meter *x = rt->mfc_bw_meter;
1499
1500		    rt->mfc_bw_meter = x->bm_mfc_next;
1501		    free(x, M_BWMETER);
1502		}
1503
1504		++mrtstat.mrts_cache_cleanups;
1505		if (mrtdebug & DEBUG_EXPIRE) {
1506		    log(LOG_DEBUG, "expire_upcalls: expiring (%lx %lx)\n",
1507			(u_long)ntohl(rt->mfc_origin.s_addr),
1508			(u_long)ntohl(rt->mfc_mcastgrp.s_addr));
1509		}
1510
1511		expire_mfc(rt);
1512	    }
1513    }
1514
1515    MFC_UNLOCK();
1516
1517    callout_reset(&expire_upcalls_ch, EXPIRE_TIMEOUT, expire_upcalls, NULL);
1518}
1519
1520/*
1521 * Packet forwarding routine once entry in the cache is made
1522 */
1523static int
1524ip_mdq(struct mbuf *m, struct ifnet *ifp, struct mfc *rt, vifi_t xmt_vif)
1525{
1526    INIT_VNET_INET(curvnet);
1527    struct ip  *ip = mtod(m, struct ip *);
1528    vifi_t vifi;
1529    int plen = ip->ip_len;
1530
1531    VIF_LOCK_ASSERT();
1532
1533    /*
1534     * If xmt_vif is not -1, send on only the requested vif.
1535     *
1536     * (since vifi_t is u_short, -1 becomes MAXUSHORT, which > numvifs.)
1537     */
1538    if (xmt_vif < numvifs) {
1539	if (viftable[xmt_vif].v_flags & VIFF_REGISTER)
1540		pim_register_send(ip, viftable + xmt_vif, m, rt);
1541	else
1542		phyint_send(ip, viftable + xmt_vif, m);
1543	return 1;
1544    }
1545
1546    /*
1547     * Don't forward if it didn't arrive from the parent vif for its origin.
1548     */
1549    vifi = rt->mfc_parent;
1550    if ((vifi >= numvifs) || (viftable[vifi].v_ifp != ifp)) {
1551	/* came in the wrong interface */
1552	if (mrtdebug & DEBUG_FORWARD)
1553	    log(LOG_DEBUG, "wrong if: ifp %p vifi %d vififp %p\n",
1554		(void *)ifp, vifi, (void *)viftable[vifi].v_ifp);
1555	++mrtstat.mrts_wrong_if;
1556	++rt->mfc_wrong_if;
1557	/*
1558	 * If we are doing PIM assert processing, send a message
1559	 * to the routing daemon.
1560	 *
1561	 * XXX: A PIM-SM router needs the WRONGVIF detection so it
1562	 * can complete the SPT switch, regardless of the type
1563	 * of the iif (broadcast media, GRE tunnel, etc).
1564	 */
1565	if (pim_assert_enabled && (vifi < numvifs) && viftable[vifi].v_ifp) {
1566
1567	    if (ifp == &multicast_register_if)
1568		pimstat.pims_rcv_registers_wrongiif++;
1569
1570	    /* Get vifi for the incoming packet */
1571	    for (vifi=0; vifi < numvifs && viftable[vifi].v_ifp != ifp; vifi++)
1572		;
1573	    if (vifi >= numvifs)
1574		return 0;	/* The iif is not found: ignore the packet. */
1575
1576	    if (rt->mfc_flags[vifi] & MRT_MFC_FLAGS_DISABLE_WRONGVIF)
1577		return 0;	/* WRONGVIF disabled: ignore the packet */
1578
1579	    if (ratecheck(&rt->mfc_last_assert, &pim_assert_interval)) {
1580		struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
1581		struct igmpmsg *im;
1582		int hlen = ip->ip_hl << 2;
1583		struct mbuf *mm = m_copy(m, 0, hlen);
1584
1585		if (mm && (M_HASCL(mm) || mm->m_len < hlen))
1586		    mm = m_pullup(mm, hlen);
1587		if (mm == NULL)
1588		    return ENOBUFS;
1589
1590		im = mtod(mm, struct igmpmsg *);
1591		im->im_msgtype	= IGMPMSG_WRONGVIF;
1592		im->im_mbz		= 0;
1593		im->im_vif		= vifi;
1594
1595		mrtstat.mrts_upcalls++;
1596
1597		k_igmpsrc.sin_addr = im->im_src;
1598		if (socket_send(V_ip_mrouter, mm, &k_igmpsrc) < 0) {
1599		    log(LOG_WARNING,
1600			"ip_mforward: ip_mrouter socket queue full\n");
1601		    ++mrtstat.mrts_upq_sockfull;
1602		    return ENOBUFS;
1603		}
1604	    }
1605	}
1606	return 0;
1607    }
1608
1609
1610    /* If I sourced this packet, it counts as output, else it was input. */
1611    if (in_hosteq(ip->ip_src, viftable[vifi].v_lcl_addr)) {
1612	viftable[vifi].v_pkt_out++;
1613	viftable[vifi].v_bytes_out += plen;
1614    } else {
1615	viftable[vifi].v_pkt_in++;
1616	viftable[vifi].v_bytes_in += plen;
1617    }
1618    rt->mfc_pkt_cnt++;
1619    rt->mfc_byte_cnt += plen;
1620
1621    /*
1622     * For each vif, decide if a copy of the packet should be forwarded.
1623     * Forward if:
1624     *		- the ttl exceeds the vif's threshold
1625     *		- there are group members downstream on interface
1626     */
1627    for (vifi = 0; vifi < numvifs; vifi++)
1628	if ((rt->mfc_ttls[vifi] > 0) && (ip->ip_ttl > rt->mfc_ttls[vifi])) {
1629	    viftable[vifi].v_pkt_out++;
1630	    viftable[vifi].v_bytes_out += plen;
1631	    if (viftable[vifi].v_flags & VIFF_REGISTER)
1632		pim_register_send(ip, viftable + vifi, m, rt);
1633	    else
1634		phyint_send(ip, viftable + vifi, m);
1635	}
1636
1637    /*
1638     * Perform upcall-related bw measuring.
1639     */
1640    if (rt->mfc_bw_meter != NULL) {
1641	struct bw_meter *x;
1642	struct timeval now;
1643
1644	microtime(&now);
1645	MFC_LOCK_ASSERT();
1646	for (x = rt->mfc_bw_meter; x != NULL; x = x->bm_mfc_next)
1647	    bw_meter_receive_packet(x, plen, &now);
1648    }
1649
1650    return 0;
1651}
1652
1653/*
1654 * Check if a vif number is legal/ok. This is used by in_mcast.c.
1655 */
1656static int
1657X_legal_vif_num(int vif)
1658{
1659	int ret;
1660
1661	ret = 0;
1662	if (vif < 0)
1663		return (ret);
1664
1665	VIF_LOCK();
1666	if (vif < numvifs)
1667		ret = 1;
1668	VIF_UNLOCK();
1669
1670	return (ret);
1671}
1672
1673/*
1674 * Return the local address used by this vif
1675 */
1676static u_long
1677X_ip_mcast_src(int vifi)
1678{
1679	in_addr_t addr;
1680
1681	addr = INADDR_ANY;
1682	if (vifi < 0)
1683		return (addr);
1684
1685	VIF_LOCK();
1686	if (vifi < numvifs)
1687		addr = viftable[vifi].v_lcl_addr.s_addr;
1688	VIF_UNLOCK();
1689
1690	return (addr);
1691}
1692
1693static void
1694phyint_send(struct ip *ip, struct vif *vifp, struct mbuf *m)
1695{
1696    struct mbuf *mb_copy;
1697    int hlen = ip->ip_hl << 2;
1698
1699    VIF_LOCK_ASSERT();
1700
1701    /*
1702     * Make a new reference to the packet; make sure that
1703     * the IP header is actually copied, not just referenced,
1704     * so that ip_output() only scribbles on the copy.
1705     */
1706    mb_copy = m_copypacket(m, M_DONTWAIT);
1707    if (mb_copy && (M_HASCL(mb_copy) || mb_copy->m_len < hlen))
1708	mb_copy = m_pullup(mb_copy, hlen);
1709    if (mb_copy == NULL)
1710	return;
1711
1712    send_packet(vifp, mb_copy);
1713}
1714
1715static void
1716send_packet(struct vif *vifp, struct mbuf *m)
1717{
1718	struct ip_moptions imo;
1719	struct in_multi *imm[2];
1720	int error;
1721
1722	VIF_LOCK_ASSERT();
1723
1724	imo.imo_multicast_ifp  = vifp->v_ifp;
1725	imo.imo_multicast_ttl  = mtod(m, struct ip *)->ip_ttl - 1;
1726	imo.imo_multicast_loop = 1;
1727	imo.imo_multicast_vif  = -1;
1728	imo.imo_num_memberships = 0;
1729	imo.imo_max_memberships = 2;
1730	imo.imo_membership  = &imm[0];
1731
1732	/*
1733	 * Re-entrancy should not be a problem here, because
1734	 * the packets that we send out and are looped back at us
1735	 * should get rejected because they appear to come from
1736	 * the loopback interface, thus preventing looping.
1737	 */
1738	error = ip_output(m, NULL, &vifp->v_route, IP_FORWARDING, &imo, NULL);
1739	if (mrtdebug & DEBUG_XMIT) {
1740	    log(LOG_DEBUG, "phyint_send on vif %td err %d\n",
1741		vifp - viftable, error);
1742	}
1743}
1744
1745/*
1746 * Stubs for old RSVP socket shim implementation.
1747 */
1748
1749static int
1750X_ip_rsvp_vif(struct socket *so __unused, struct sockopt *sopt __unused)
1751{
1752
1753	return (EOPNOTSUPP);
1754}
1755
1756static void
1757X_ip_rsvp_force_done(struct socket *so __unused)
1758{
1759
1760}
1761
1762static void
1763X_rsvp_input(struct mbuf *m, int off __unused)
1764{
1765
1766	if (!V_rsvp_on)
1767		m_freem(m);
1768}
1769
1770/*
1771 * Code for bandwidth monitors
1772 */
1773
1774/*
1775 * Define common interface for timeval-related methods
1776 */
1777#define	BW_TIMEVALCMP(tvp, uvp, cmp) timevalcmp((tvp), (uvp), cmp)
1778#define	BW_TIMEVALDECR(vvp, uvp) timevalsub((vvp), (uvp))
1779#define	BW_TIMEVALADD(vvp, uvp) timevaladd((vvp), (uvp))
1780
1781static uint32_t
1782compute_bw_meter_flags(struct bw_upcall *req)
1783{
1784    uint32_t flags = 0;
1785
1786    if (req->bu_flags & BW_UPCALL_UNIT_PACKETS)
1787	flags |= BW_METER_UNIT_PACKETS;
1788    if (req->bu_flags & BW_UPCALL_UNIT_BYTES)
1789	flags |= BW_METER_UNIT_BYTES;
1790    if (req->bu_flags & BW_UPCALL_GEQ)
1791	flags |= BW_METER_GEQ;
1792    if (req->bu_flags & BW_UPCALL_LEQ)
1793	flags |= BW_METER_LEQ;
1794
1795    return flags;
1796}
1797
1798/*
1799 * Add a bw_meter entry
1800 */
1801static int
1802add_bw_upcall(struct bw_upcall *req)
1803{
1804    struct mfc *mfc;
1805    struct timeval delta = { BW_UPCALL_THRESHOLD_INTERVAL_MIN_SEC,
1806		BW_UPCALL_THRESHOLD_INTERVAL_MIN_USEC };
1807    struct timeval now;
1808    struct bw_meter *x;
1809    uint32_t flags;
1810
1811    if (!(mrt_api_config & MRT_MFC_BW_UPCALL))
1812	return EOPNOTSUPP;
1813
1814    /* Test if the flags are valid */
1815    if (!(req->bu_flags & (BW_UPCALL_UNIT_PACKETS | BW_UPCALL_UNIT_BYTES)))
1816	return EINVAL;
1817    if (!(req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ)))
1818	return EINVAL;
1819    if ((req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ))
1820	    == (BW_UPCALL_GEQ | BW_UPCALL_LEQ))
1821	return EINVAL;
1822
1823    /* Test if the threshold time interval is valid */
1824    if (BW_TIMEVALCMP(&req->bu_threshold.b_time, &delta, <))
1825	return EINVAL;
1826
1827    flags = compute_bw_meter_flags(req);
1828
1829    /*
1830     * Find if we have already same bw_meter entry
1831     */
1832    MFC_LOCK();
1833    mfc = mfc_find(&req->bu_src, &req->bu_dst);
1834    if (mfc == NULL) {
1835	MFC_UNLOCK();
1836	return EADDRNOTAVAIL;
1837    }
1838    for (x = mfc->mfc_bw_meter; x != NULL; x = x->bm_mfc_next) {
1839	if ((BW_TIMEVALCMP(&x->bm_threshold.b_time,
1840			   &req->bu_threshold.b_time, ==)) &&
1841	    (x->bm_threshold.b_packets == req->bu_threshold.b_packets) &&
1842	    (x->bm_threshold.b_bytes == req->bu_threshold.b_bytes) &&
1843	    (x->bm_flags & BW_METER_USER_FLAGS) == flags)  {
1844	    MFC_UNLOCK();
1845	    return 0;		/* XXX Already installed */
1846	}
1847    }
1848
1849    /* Allocate the new bw_meter entry */
1850    x = (struct bw_meter *)malloc(sizeof(*x), M_BWMETER, M_NOWAIT);
1851    if (x == NULL) {
1852	MFC_UNLOCK();
1853	return ENOBUFS;
1854    }
1855
1856    /* Set the new bw_meter entry */
1857    x->bm_threshold.b_time = req->bu_threshold.b_time;
1858    microtime(&now);
1859    x->bm_start_time = now;
1860    x->bm_threshold.b_packets = req->bu_threshold.b_packets;
1861    x->bm_threshold.b_bytes = req->bu_threshold.b_bytes;
1862    x->bm_measured.b_packets = 0;
1863    x->bm_measured.b_bytes = 0;
1864    x->bm_flags = flags;
1865    x->bm_time_next = NULL;
1866    x->bm_time_hash = BW_METER_BUCKETS;
1867
1868    /* Add the new bw_meter entry to the front of entries for this MFC */
1869    x->bm_mfc = mfc;
1870    x->bm_mfc_next = mfc->mfc_bw_meter;
1871    mfc->mfc_bw_meter = x;
1872    schedule_bw_meter(x, &now);
1873    MFC_UNLOCK();
1874
1875    return 0;
1876}
1877
1878static void
1879free_bw_list(struct bw_meter *list)
1880{
1881    while (list != NULL) {
1882	struct bw_meter *x = list;
1883
1884	list = list->bm_mfc_next;
1885	unschedule_bw_meter(x);
1886	free(x, M_BWMETER);
1887    }
1888}
1889
1890/*
1891 * Delete one or multiple bw_meter entries
1892 */
1893static int
1894del_bw_upcall(struct bw_upcall *req)
1895{
1896    struct mfc *mfc;
1897    struct bw_meter *x;
1898
1899    if (!(mrt_api_config & MRT_MFC_BW_UPCALL))
1900	return EOPNOTSUPP;
1901
1902    MFC_LOCK();
1903
1904    /* Find the corresponding MFC entry */
1905    mfc = mfc_find(&req->bu_src, &req->bu_dst);
1906    if (mfc == NULL) {
1907	MFC_UNLOCK();
1908	return EADDRNOTAVAIL;
1909    } else if (req->bu_flags & BW_UPCALL_DELETE_ALL) {
1910	/*
1911	 * Delete all bw_meter entries for this mfc
1912	 */
1913	struct bw_meter *list;
1914
1915	list = mfc->mfc_bw_meter;
1916	mfc->mfc_bw_meter = NULL;
1917	free_bw_list(list);
1918	MFC_UNLOCK();
1919	return 0;
1920    } else {			/* Delete a single bw_meter entry */
1921	struct bw_meter *prev;
1922	uint32_t flags = 0;
1923
1924	flags = compute_bw_meter_flags(req);
1925
1926	/* Find the bw_meter entry to delete */
1927	for (prev = NULL, x = mfc->mfc_bw_meter; x != NULL;
1928	     prev = x, x = x->bm_mfc_next) {
1929	    if ((BW_TIMEVALCMP(&x->bm_threshold.b_time,
1930			       &req->bu_threshold.b_time, ==)) &&
1931		(x->bm_threshold.b_packets == req->bu_threshold.b_packets) &&
1932		(x->bm_threshold.b_bytes == req->bu_threshold.b_bytes) &&
1933		(x->bm_flags & BW_METER_USER_FLAGS) == flags)
1934		break;
1935	}
1936	if (x != NULL) { /* Delete entry from the list for this MFC */
1937	    if (prev != NULL)
1938		prev->bm_mfc_next = x->bm_mfc_next;	/* remove from middle*/
1939	    else
1940		x->bm_mfc->mfc_bw_meter = x->bm_mfc_next;/* new head of list */
1941
1942	    unschedule_bw_meter(x);
1943	    MFC_UNLOCK();
1944	    /* Free the bw_meter entry */
1945	    free(x, M_BWMETER);
1946	    return 0;
1947	} else {
1948	    MFC_UNLOCK();
1949	    return EINVAL;
1950	}
1951    }
1952    /* NOTREACHED */
1953}
1954
1955/*
1956 * Perform bandwidth measurement processing that may result in an upcall
1957 */
1958static void
1959bw_meter_receive_packet(struct bw_meter *x, int plen, struct timeval *nowp)
1960{
1961    struct timeval delta;
1962
1963    MFC_LOCK_ASSERT();
1964
1965    delta = *nowp;
1966    BW_TIMEVALDECR(&delta, &x->bm_start_time);
1967
1968    if (x->bm_flags & BW_METER_GEQ) {
1969	/*
1970	 * Processing for ">=" type of bw_meter entry
1971	 */
1972	if (BW_TIMEVALCMP(&delta, &x->bm_threshold.b_time, >)) {
1973	    /* Reset the bw_meter entry */
1974	    x->bm_start_time = *nowp;
1975	    x->bm_measured.b_packets = 0;
1976	    x->bm_measured.b_bytes = 0;
1977	    x->bm_flags &= ~BW_METER_UPCALL_DELIVERED;
1978	}
1979
1980	/* Record that a packet is received */
1981	x->bm_measured.b_packets++;
1982	x->bm_measured.b_bytes += plen;
1983
1984	/*
1985	 * Test if we should deliver an upcall
1986	 */
1987	if (!(x->bm_flags & BW_METER_UPCALL_DELIVERED)) {
1988	    if (((x->bm_flags & BW_METER_UNIT_PACKETS) &&
1989		 (x->bm_measured.b_packets >= x->bm_threshold.b_packets)) ||
1990		((x->bm_flags & BW_METER_UNIT_BYTES) &&
1991		 (x->bm_measured.b_bytes >= x->bm_threshold.b_bytes))) {
1992		/* Prepare an upcall for delivery */
1993		bw_meter_prepare_upcall(x, nowp);
1994		x->bm_flags |= BW_METER_UPCALL_DELIVERED;
1995	    }
1996	}
1997    } else if (x->bm_flags & BW_METER_LEQ) {
1998	/*
1999	 * Processing for "<=" type of bw_meter entry
2000	 */
2001	if (BW_TIMEVALCMP(&delta, &x->bm_threshold.b_time, >)) {
2002	    /*
2003	     * We are behind time with the multicast forwarding table
2004	     * scanning for "<=" type of bw_meter entries, so test now
2005	     * if we should deliver an upcall.
2006	     */
2007	    if (((x->bm_flags & BW_METER_UNIT_PACKETS) &&
2008		 (x->bm_measured.b_packets <= x->bm_threshold.b_packets)) ||
2009		((x->bm_flags & BW_METER_UNIT_BYTES) &&
2010		 (x->bm_measured.b_bytes <= x->bm_threshold.b_bytes))) {
2011		/* Prepare an upcall for delivery */
2012		bw_meter_prepare_upcall(x, nowp);
2013	    }
2014	    /* Reschedule the bw_meter entry */
2015	    unschedule_bw_meter(x);
2016	    schedule_bw_meter(x, nowp);
2017	}
2018
2019	/* Record that a packet is received */
2020	x->bm_measured.b_packets++;
2021	x->bm_measured.b_bytes += plen;
2022
2023	/*
2024	 * Test if we should restart the measuring interval
2025	 */
2026	if ((x->bm_flags & BW_METER_UNIT_PACKETS &&
2027	     x->bm_measured.b_packets <= x->bm_threshold.b_packets) ||
2028	    (x->bm_flags & BW_METER_UNIT_BYTES &&
2029	     x->bm_measured.b_bytes <= x->bm_threshold.b_bytes)) {
2030	    /* Don't restart the measuring interval */
2031	} else {
2032	    /* Do restart the measuring interval */
2033	    /*
2034	     * XXX: note that we don't unschedule and schedule, because this
2035	     * might be too much overhead per packet. Instead, when we process
2036	     * all entries for a given timer hash bin, we check whether it is
2037	     * really a timeout. If not, we reschedule at that time.
2038	     */
2039	    x->bm_start_time = *nowp;
2040	    x->bm_measured.b_packets = 0;
2041	    x->bm_measured.b_bytes = 0;
2042	    x->bm_flags &= ~BW_METER_UPCALL_DELIVERED;
2043	}
2044    }
2045}
2046
2047/*
2048 * Prepare a bandwidth-related upcall
2049 */
2050static void
2051bw_meter_prepare_upcall(struct bw_meter *x, struct timeval *nowp)
2052{
2053    struct timeval delta;
2054    struct bw_upcall *u;
2055
2056    MFC_LOCK_ASSERT();
2057
2058    /*
2059     * Compute the measured time interval
2060     */
2061    delta = *nowp;
2062    BW_TIMEVALDECR(&delta, &x->bm_start_time);
2063
2064    /*
2065     * If there are too many pending upcalls, deliver them now
2066     */
2067    if (bw_upcalls_n >= BW_UPCALLS_MAX)
2068	bw_upcalls_send();
2069
2070    /*
2071     * Set the bw_upcall entry
2072     */
2073    u = &bw_upcalls[bw_upcalls_n++];
2074    u->bu_src = x->bm_mfc->mfc_origin;
2075    u->bu_dst = x->bm_mfc->mfc_mcastgrp;
2076    u->bu_threshold.b_time = x->bm_threshold.b_time;
2077    u->bu_threshold.b_packets = x->bm_threshold.b_packets;
2078    u->bu_threshold.b_bytes = x->bm_threshold.b_bytes;
2079    u->bu_measured.b_time = delta;
2080    u->bu_measured.b_packets = x->bm_measured.b_packets;
2081    u->bu_measured.b_bytes = x->bm_measured.b_bytes;
2082    u->bu_flags = 0;
2083    if (x->bm_flags & BW_METER_UNIT_PACKETS)
2084	u->bu_flags |= BW_UPCALL_UNIT_PACKETS;
2085    if (x->bm_flags & BW_METER_UNIT_BYTES)
2086	u->bu_flags |= BW_UPCALL_UNIT_BYTES;
2087    if (x->bm_flags & BW_METER_GEQ)
2088	u->bu_flags |= BW_UPCALL_GEQ;
2089    if (x->bm_flags & BW_METER_LEQ)
2090	u->bu_flags |= BW_UPCALL_LEQ;
2091}
2092
2093/*
2094 * Send the pending bandwidth-related upcalls
2095 */
2096static void
2097bw_upcalls_send(void)
2098{
2099    INIT_VNET_INET(curvnet);
2100    struct mbuf *m;
2101    int len = bw_upcalls_n * sizeof(bw_upcalls[0]);
2102    struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
2103    static struct igmpmsg igmpmsg = { 0,		/* unused1 */
2104				      0,		/* unused2 */
2105				      IGMPMSG_BW_UPCALL,/* im_msgtype */
2106				      0,		/* im_mbz  */
2107				      0,		/* im_vif  */
2108				      0,		/* unused3 */
2109				      { 0 },		/* im_src  */
2110				      { 0 } };		/* im_dst  */
2111
2112    MFC_LOCK_ASSERT();
2113
2114    if (bw_upcalls_n == 0)
2115	return;			/* No pending upcalls */
2116
2117    bw_upcalls_n = 0;
2118
2119    /*
2120     * Allocate a new mbuf, initialize it with the header and
2121     * the payload for the pending calls.
2122     */
2123    MGETHDR(m, M_DONTWAIT, MT_DATA);
2124    if (m == NULL) {
2125	log(LOG_WARNING, "bw_upcalls_send: cannot allocate mbuf\n");
2126	return;
2127    }
2128
2129    m->m_len = m->m_pkthdr.len = 0;
2130    m_copyback(m, 0, sizeof(struct igmpmsg), (caddr_t)&igmpmsg);
2131    m_copyback(m, sizeof(struct igmpmsg), len, (caddr_t)&bw_upcalls[0]);
2132
2133    /*
2134     * Send the upcalls
2135     * XXX do we need to set the address in k_igmpsrc ?
2136     */
2137    mrtstat.mrts_upcalls++;
2138    if (socket_send(V_ip_mrouter, m, &k_igmpsrc) < 0) {
2139	log(LOG_WARNING, "bw_upcalls_send: ip_mrouter socket queue full\n");
2140	++mrtstat.mrts_upq_sockfull;
2141    }
2142}
2143
2144/*
2145 * Compute the timeout hash value for the bw_meter entries
2146 */
2147#define	BW_METER_TIMEHASH(bw_meter, hash)				\
2148    do {								\
2149	struct timeval next_timeval = (bw_meter)->bm_start_time;	\
2150									\
2151	BW_TIMEVALADD(&next_timeval, &(bw_meter)->bm_threshold.b_time); \
2152	(hash) = next_timeval.tv_sec;					\
2153	if (next_timeval.tv_usec)					\
2154	    (hash)++; /* XXX: make sure we don't timeout early */	\
2155	(hash) %= BW_METER_BUCKETS;					\
2156    } while (0)
2157
2158/*
2159 * Schedule a timer to process periodically bw_meter entry of type "<="
2160 * by linking the entry in the proper hash bucket.
2161 */
2162static void
2163schedule_bw_meter(struct bw_meter *x, struct timeval *nowp)
2164{
2165    int time_hash;
2166
2167    MFC_LOCK_ASSERT();
2168
2169    if (!(x->bm_flags & BW_METER_LEQ))
2170	return;		/* XXX: we schedule timers only for "<=" entries */
2171
2172    /*
2173     * Reset the bw_meter entry
2174     */
2175    x->bm_start_time = *nowp;
2176    x->bm_measured.b_packets = 0;
2177    x->bm_measured.b_bytes = 0;
2178    x->bm_flags &= ~BW_METER_UPCALL_DELIVERED;
2179
2180    /*
2181     * Compute the timeout hash value and insert the entry
2182     */
2183    BW_METER_TIMEHASH(x, time_hash);
2184    x->bm_time_next = bw_meter_timers[time_hash];
2185    bw_meter_timers[time_hash] = x;
2186    x->bm_time_hash = time_hash;
2187}
2188
2189/*
2190 * Unschedule the periodic timer that processes bw_meter entry of type "<="
2191 * by removing the entry from the proper hash bucket.
2192 */
2193static void
2194unschedule_bw_meter(struct bw_meter *x)
2195{
2196    int time_hash;
2197    struct bw_meter *prev, *tmp;
2198
2199    MFC_LOCK_ASSERT();
2200
2201    if (!(x->bm_flags & BW_METER_LEQ))
2202	return;		/* XXX: we schedule timers only for "<=" entries */
2203
2204    /*
2205     * Compute the timeout hash value and delete the entry
2206     */
2207    time_hash = x->bm_time_hash;
2208    if (time_hash >= BW_METER_BUCKETS)
2209	return;		/* Entry was not scheduled */
2210
2211    for (prev = NULL, tmp = bw_meter_timers[time_hash];
2212	     tmp != NULL; prev = tmp, tmp = tmp->bm_time_next)
2213	if (tmp == x)
2214	    break;
2215
2216    if (tmp == NULL)
2217	panic("unschedule_bw_meter: bw_meter entry not found");
2218
2219    if (prev != NULL)
2220	prev->bm_time_next = x->bm_time_next;
2221    else
2222	bw_meter_timers[time_hash] = x->bm_time_next;
2223
2224    x->bm_time_next = NULL;
2225    x->bm_time_hash = BW_METER_BUCKETS;
2226}
2227
2228
2229/*
2230 * Process all "<=" type of bw_meter that should be processed now,
2231 * and for each entry prepare an upcall if necessary. Each processed
2232 * entry is rescheduled again for the (periodic) processing.
2233 *
2234 * This is run periodically (once per second normally). On each round,
2235 * all the potentially matching entries are in the hash slot that we are
2236 * looking at.
2237 */
2238static void
2239bw_meter_process()
2240{
2241    static uint32_t last_tv_sec;	/* last time we processed this */
2242
2243    uint32_t loops;
2244    int i;
2245    struct timeval now, process_endtime;
2246
2247    microtime(&now);
2248    if (last_tv_sec == now.tv_sec)
2249	return;		/* nothing to do */
2250
2251    loops = now.tv_sec - last_tv_sec;
2252    last_tv_sec = now.tv_sec;
2253    if (loops > BW_METER_BUCKETS)
2254	loops = BW_METER_BUCKETS;
2255
2256    MFC_LOCK();
2257    /*
2258     * Process all bins of bw_meter entries from the one after the last
2259     * processed to the current one. On entry, i points to the last bucket
2260     * visited, so we need to increment i at the beginning of the loop.
2261     */
2262    for (i = (now.tv_sec - loops) % BW_METER_BUCKETS; loops > 0; loops--) {
2263	struct bw_meter *x, *tmp_list;
2264
2265	if (++i >= BW_METER_BUCKETS)
2266	    i = 0;
2267
2268	/* Disconnect the list of bw_meter entries from the bin */
2269	tmp_list = bw_meter_timers[i];
2270	bw_meter_timers[i] = NULL;
2271
2272	/* Process the list of bw_meter entries */
2273	while (tmp_list != NULL) {
2274	    x = tmp_list;
2275	    tmp_list = tmp_list->bm_time_next;
2276
2277	    /* Test if the time interval is over */
2278	    process_endtime = x->bm_start_time;
2279	    BW_TIMEVALADD(&process_endtime, &x->bm_threshold.b_time);
2280	    if (BW_TIMEVALCMP(&process_endtime, &now, >)) {
2281		/* Not yet: reschedule, but don't reset */
2282		int time_hash;
2283
2284		BW_METER_TIMEHASH(x, time_hash);
2285		if (time_hash == i && process_endtime.tv_sec == now.tv_sec) {
2286		    /*
2287		     * XXX: somehow the bin processing is a bit ahead of time.
2288		     * Put the entry in the next bin.
2289		     */
2290		    if (++time_hash >= BW_METER_BUCKETS)
2291			time_hash = 0;
2292		}
2293		x->bm_time_next = bw_meter_timers[time_hash];
2294		bw_meter_timers[time_hash] = x;
2295		x->bm_time_hash = time_hash;
2296
2297		continue;
2298	    }
2299
2300	    /*
2301	     * Test if we should deliver an upcall
2302	     */
2303	    if (((x->bm_flags & BW_METER_UNIT_PACKETS) &&
2304		 (x->bm_measured.b_packets <= x->bm_threshold.b_packets)) ||
2305		((x->bm_flags & BW_METER_UNIT_BYTES) &&
2306		 (x->bm_measured.b_bytes <= x->bm_threshold.b_bytes))) {
2307		/* Prepare an upcall for delivery */
2308		bw_meter_prepare_upcall(x, &now);
2309	    }
2310
2311	    /*
2312	     * Reschedule for next processing
2313	     */
2314	    schedule_bw_meter(x, &now);
2315	}
2316    }
2317
2318    /* Send all upcalls that are pending delivery */
2319    bw_upcalls_send();
2320
2321    MFC_UNLOCK();
2322}
2323
2324/*
2325 * A periodic function for sending all upcalls that are pending delivery
2326 */
2327static void
2328expire_bw_upcalls_send(void *unused)
2329{
2330    MFC_LOCK();
2331    bw_upcalls_send();
2332    MFC_UNLOCK();
2333
2334    callout_reset(&bw_upcalls_ch, BW_UPCALLS_PERIOD,
2335	expire_bw_upcalls_send, NULL);
2336}
2337
2338/*
2339 * A periodic function for periodic scanning of the multicast forwarding
2340 * table for processing all "<=" bw_meter entries.
2341 */
2342static void
2343expire_bw_meter_process(void *unused)
2344{
2345    if (mrt_api_config & MRT_MFC_BW_UPCALL)
2346	bw_meter_process();
2347
2348    callout_reset(&bw_meter_ch, BW_METER_PERIOD, expire_bw_meter_process, NULL);
2349}
2350
2351/*
2352 * End of bandwidth monitoring code
2353 */
2354
2355/*
2356 * Send the packet up to the user daemon, or eventually do kernel encapsulation
2357 *
2358 */
2359static int
2360pim_register_send(struct ip *ip, struct vif *vifp, struct mbuf *m,
2361    struct mfc *rt)
2362{
2363    struct mbuf *mb_copy, *mm;
2364
2365    if (mrtdebug & DEBUG_PIM)
2366	log(LOG_DEBUG, "pim_register_send: ");
2367
2368    /*
2369     * Do not send IGMP_WHOLEPKT notifications to userland, if the
2370     * rendezvous point was unspecified, and we were told not to.
2371     */
2372    if (pim_squelch_wholepkt != 0 && (mrt_api_config & MRT_MFC_RP) &&
2373	in_nullhost(rt->mfc_rp))
2374	return 0;
2375
2376    mb_copy = pim_register_prepare(ip, m);
2377    if (mb_copy == NULL)
2378	return ENOBUFS;
2379
2380    /*
2381     * Send all the fragments. Note that the mbuf for each fragment
2382     * is freed by the sending machinery.
2383     */
2384    for (mm = mb_copy; mm; mm = mb_copy) {
2385	mb_copy = mm->m_nextpkt;
2386	mm->m_nextpkt = 0;
2387	mm = m_pullup(mm, sizeof(struct ip));
2388	if (mm != NULL) {
2389	    ip = mtod(mm, struct ip *);
2390	    if ((mrt_api_config & MRT_MFC_RP) && !in_nullhost(rt->mfc_rp)) {
2391		pim_register_send_rp(ip, vifp, mm, rt);
2392	    } else {
2393		pim_register_send_upcall(ip, vifp, mm, rt);
2394	    }
2395	}
2396    }
2397
2398    return 0;
2399}
2400
2401/*
2402 * Return a copy of the data packet that is ready for PIM Register
2403 * encapsulation.
2404 * XXX: Note that in the returned copy the IP header is a valid one.
2405 */
2406static struct mbuf *
2407pim_register_prepare(struct ip *ip, struct mbuf *m)
2408{
2409    struct mbuf *mb_copy = NULL;
2410    int mtu;
2411
2412    /* Take care of delayed checksums */
2413    if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
2414	in_delayed_cksum(m);
2415	m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
2416    }
2417
2418    /*
2419     * Copy the old packet & pullup its IP header into the
2420     * new mbuf so we can modify it.
2421     */
2422    mb_copy = m_copypacket(m, M_DONTWAIT);
2423    if (mb_copy == NULL)
2424	return NULL;
2425    mb_copy = m_pullup(mb_copy, ip->ip_hl << 2);
2426    if (mb_copy == NULL)
2427	return NULL;
2428
2429    /* take care of the TTL */
2430    ip = mtod(mb_copy, struct ip *);
2431    --ip->ip_ttl;
2432
2433    /* Compute the MTU after the PIM Register encapsulation */
2434    mtu = 0xffff - sizeof(pim_encap_iphdr) - sizeof(pim_encap_pimhdr);
2435
2436    if (ip->ip_len <= mtu) {
2437	/* Turn the IP header into a valid one */
2438	ip->ip_len = htons(ip->ip_len);
2439	ip->ip_off = htons(ip->ip_off);
2440	ip->ip_sum = 0;
2441	ip->ip_sum = in_cksum(mb_copy, ip->ip_hl << 2);
2442    } else {
2443	/* Fragment the packet */
2444	if (ip_fragment(ip, &mb_copy, mtu, 0, CSUM_DELAY_IP) != 0) {
2445	    m_freem(mb_copy);
2446	    return NULL;
2447	}
2448    }
2449    return mb_copy;
2450}
2451
2452/*
2453 * Send an upcall with the data packet to the user-level process.
2454 */
2455static int
2456pim_register_send_upcall(struct ip *ip, struct vif *vifp,
2457    struct mbuf *mb_copy, struct mfc *rt)
2458{
2459    INIT_VNET_INET(curvnet);
2460    struct mbuf *mb_first;
2461    int len = ntohs(ip->ip_len);
2462    struct igmpmsg *im;
2463    struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
2464
2465    VIF_LOCK_ASSERT();
2466
2467    /*
2468     * Add a new mbuf with an upcall header
2469     */
2470    MGETHDR(mb_first, M_DONTWAIT, MT_DATA);
2471    if (mb_first == NULL) {
2472	m_freem(mb_copy);
2473	return ENOBUFS;
2474    }
2475    mb_first->m_data += max_linkhdr;
2476    mb_first->m_pkthdr.len = len + sizeof(struct igmpmsg);
2477    mb_first->m_len = sizeof(struct igmpmsg);
2478    mb_first->m_next = mb_copy;
2479
2480    /* Send message to routing daemon */
2481    im = mtod(mb_first, struct igmpmsg *);
2482    im->im_msgtype	= IGMPMSG_WHOLEPKT;
2483    im->im_mbz		= 0;
2484    im->im_vif		= vifp - viftable;
2485    im->im_src		= ip->ip_src;
2486    im->im_dst		= ip->ip_dst;
2487
2488    k_igmpsrc.sin_addr	= ip->ip_src;
2489
2490    mrtstat.mrts_upcalls++;
2491
2492    if (socket_send(V_ip_mrouter, mb_first, &k_igmpsrc) < 0) {
2493	if (mrtdebug & DEBUG_PIM)
2494	    log(LOG_WARNING,
2495		"mcast: pim_register_send_upcall: ip_mrouter socket queue full");
2496	++mrtstat.mrts_upq_sockfull;
2497	return ENOBUFS;
2498    }
2499
2500    /* Keep statistics */
2501    pimstat.pims_snd_registers_msgs++;
2502    pimstat.pims_snd_registers_bytes += len;
2503
2504    return 0;
2505}
2506
2507/*
2508 * Encapsulate the data packet in PIM Register message and send it to the RP.
2509 */
2510static int
2511pim_register_send_rp(struct ip *ip, struct vif *vifp, struct mbuf *mb_copy,
2512    struct mfc *rt)
2513{
2514    INIT_VNET_INET(curvnet);
2515    struct mbuf *mb_first;
2516    struct ip *ip_outer;
2517    struct pim_encap_pimhdr *pimhdr;
2518    int len = ntohs(ip->ip_len);
2519    vifi_t vifi = rt->mfc_parent;
2520
2521    VIF_LOCK_ASSERT();
2522
2523    if ((vifi >= numvifs) || in_nullhost(viftable[vifi].v_lcl_addr)) {
2524	m_freem(mb_copy);
2525	return EADDRNOTAVAIL;		/* The iif vif is invalid */
2526    }
2527
2528    /*
2529     * Add a new mbuf with the encapsulating header
2530     */
2531    MGETHDR(mb_first, M_DONTWAIT, MT_DATA);
2532    if (mb_first == NULL) {
2533	m_freem(mb_copy);
2534	return ENOBUFS;
2535    }
2536    mb_first->m_data += max_linkhdr;
2537    mb_first->m_len = sizeof(pim_encap_iphdr) + sizeof(pim_encap_pimhdr);
2538    mb_first->m_next = mb_copy;
2539
2540    mb_first->m_pkthdr.len = len + mb_first->m_len;
2541
2542    /*
2543     * Fill in the encapsulating IP and PIM header
2544     */
2545    ip_outer = mtod(mb_first, struct ip *);
2546    *ip_outer = pim_encap_iphdr;
2547    ip_outer->ip_id = ip_newid();
2548    ip_outer->ip_len = len + sizeof(pim_encap_iphdr) + sizeof(pim_encap_pimhdr);
2549    ip_outer->ip_src = viftable[vifi].v_lcl_addr;
2550    ip_outer->ip_dst = rt->mfc_rp;
2551    /*
2552     * Copy the inner header TOS to the outer header, and take care of the
2553     * IP_DF bit.
2554     */
2555    ip_outer->ip_tos = ip->ip_tos;
2556    if (ntohs(ip->ip_off) & IP_DF)
2557	ip_outer->ip_off |= IP_DF;
2558    pimhdr = (struct pim_encap_pimhdr *)((caddr_t)ip_outer
2559					 + sizeof(pim_encap_iphdr));
2560    *pimhdr = pim_encap_pimhdr;
2561    /* If the iif crosses a border, set the Border-bit */
2562    if (rt->mfc_flags[vifi] & MRT_MFC_FLAGS_BORDER_VIF & mrt_api_config)
2563	pimhdr->flags |= htonl(PIM_BORDER_REGISTER);
2564
2565    mb_first->m_data += sizeof(pim_encap_iphdr);
2566    pimhdr->pim.pim_cksum = in_cksum(mb_first, sizeof(pim_encap_pimhdr));
2567    mb_first->m_data -= sizeof(pim_encap_iphdr);
2568
2569    send_packet(vifp, mb_first);
2570
2571    /* Keep statistics */
2572    pimstat.pims_snd_registers_msgs++;
2573    pimstat.pims_snd_registers_bytes += len;
2574
2575    return 0;
2576}
2577
2578/*
2579 * pim_encapcheck() is called by the encap4_input() path at runtime to
2580 * determine if a packet is for PIM; allowing PIM to be dynamically loaded
2581 * into the kernel.
2582 */
2583static int
2584pim_encapcheck(const struct mbuf *m, int off, int proto, void *arg)
2585{
2586
2587#ifdef DIAGNOSTIC
2588    KASSERT(proto == IPPROTO_PIM, ("not for IPPROTO_PIM"));
2589#endif
2590    if (proto != IPPROTO_PIM)
2591	return 0;	/* not for us; reject the datagram. */
2592
2593    return 64;		/* claim the datagram. */
2594}
2595
2596/*
2597 * PIM-SMv2 and PIM-DM messages processing.
2598 * Receives and verifies the PIM control messages, and passes them
2599 * up to the listening socket, using rip_input().
2600 * The only message with special processing is the PIM_REGISTER message
2601 * (used by PIM-SM): the PIM header is stripped off, and the inner packet
2602 * is passed to if_simloop().
2603 */
2604void
2605pim_input(struct mbuf *m, int off)
2606{
2607    struct ip *ip = mtod(m, struct ip *);
2608    struct pim *pim;
2609    int minlen;
2610    int datalen = ip->ip_len;
2611    int ip_tos;
2612    int iphlen = off;
2613
2614    /* Keep statistics */
2615    pimstat.pims_rcv_total_msgs++;
2616    pimstat.pims_rcv_total_bytes += datalen;
2617
2618    /*
2619     * Validate lengths
2620     */
2621    if (datalen < PIM_MINLEN) {
2622	pimstat.pims_rcv_tooshort++;
2623	log(LOG_ERR, "pim_input: packet size too small %d from %lx\n",
2624	    datalen, (u_long)ip->ip_src.s_addr);
2625	m_freem(m);
2626	return;
2627    }
2628
2629    /*
2630     * If the packet is at least as big as a REGISTER, go agead
2631     * and grab the PIM REGISTER header size, to avoid another
2632     * possible m_pullup() later.
2633     *
2634     * PIM_MINLEN       == pimhdr + u_int32_t == 4 + 4 = 8
2635     * PIM_REG_MINLEN   == pimhdr + reghdr + encap_iphdr == 4 + 4 + 20 = 28
2636     */
2637    minlen = iphlen + (datalen >= PIM_REG_MINLEN ? PIM_REG_MINLEN : PIM_MINLEN);
2638    /*
2639     * Get the IP and PIM headers in contiguous memory, and
2640     * possibly the PIM REGISTER header.
2641     */
2642    if ((m->m_flags & M_EXT || m->m_len < minlen) &&
2643	(m = m_pullup(m, minlen)) == 0) {
2644	log(LOG_ERR, "pim_input: m_pullup failure\n");
2645	return;
2646    }
2647    /* m_pullup() may have given us a new mbuf so reset ip. */
2648    ip = mtod(m, struct ip *);
2649    ip_tos = ip->ip_tos;
2650
2651    /* adjust mbuf to point to the PIM header */
2652    m->m_data += iphlen;
2653    m->m_len  -= iphlen;
2654    pim = mtod(m, struct pim *);
2655
2656    /*
2657     * Validate checksum. If PIM REGISTER, exclude the data packet.
2658     *
2659     * XXX: some older PIMv2 implementations don't make this distinction,
2660     * so for compatibility reason perform the checksum over part of the
2661     * message, and if error, then over the whole message.
2662     */
2663    if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER && in_cksum(m, PIM_MINLEN) == 0) {
2664	/* do nothing, checksum okay */
2665    } else if (in_cksum(m, datalen)) {
2666	pimstat.pims_rcv_badsum++;
2667	if (mrtdebug & DEBUG_PIM)
2668	    log(LOG_DEBUG, "pim_input: invalid checksum");
2669	m_freem(m);
2670	return;
2671    }
2672
2673    /* PIM version check */
2674    if (PIM_VT_V(pim->pim_vt) < PIM_VERSION) {
2675	pimstat.pims_rcv_badversion++;
2676	log(LOG_ERR, "pim_input: incorrect version %d, expecting %d\n",
2677	    PIM_VT_V(pim->pim_vt), PIM_VERSION);
2678	m_freem(m);
2679	return;
2680    }
2681
2682    /* restore mbuf back to the outer IP */
2683    m->m_data -= iphlen;
2684    m->m_len  += iphlen;
2685
2686    if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER) {
2687	/*
2688	 * Since this is a REGISTER, we'll make a copy of the register
2689	 * headers ip + pim + u_int32 + encap_ip, to be passed up to the
2690	 * routing daemon.
2691	 */
2692	struct sockaddr_in dst = { sizeof(dst), AF_INET };
2693	struct mbuf *mcp;
2694	struct ip *encap_ip;
2695	u_int32_t *reghdr;
2696	struct ifnet *vifp;
2697
2698	VIF_LOCK();
2699	if ((reg_vif_num >= numvifs) || (reg_vif_num == VIFI_INVALID)) {
2700	    VIF_UNLOCK();
2701	    if (mrtdebug & DEBUG_PIM)
2702		log(LOG_DEBUG,
2703		    "pim_input: register vif not set: %d\n", reg_vif_num);
2704	    m_freem(m);
2705	    return;
2706	}
2707	/* XXX need refcnt? */
2708	vifp = viftable[reg_vif_num].v_ifp;
2709	VIF_UNLOCK();
2710
2711	/*
2712	 * Validate length
2713	 */
2714	if (datalen < PIM_REG_MINLEN) {
2715	    pimstat.pims_rcv_tooshort++;
2716	    pimstat.pims_rcv_badregisters++;
2717	    log(LOG_ERR,
2718		"pim_input: register packet size too small %d from %lx\n",
2719		datalen, (u_long)ip->ip_src.s_addr);
2720	    m_freem(m);
2721	    return;
2722	}
2723
2724	reghdr = (u_int32_t *)(pim + 1);
2725	encap_ip = (struct ip *)(reghdr + 1);
2726
2727	if (mrtdebug & DEBUG_PIM) {
2728	    log(LOG_DEBUG,
2729		"pim_input[register], encap_ip: %lx -> %lx, encap_ip len %d\n",
2730		(u_long)ntohl(encap_ip->ip_src.s_addr),
2731		(u_long)ntohl(encap_ip->ip_dst.s_addr),
2732		ntohs(encap_ip->ip_len));
2733	}
2734
2735	/* verify the version number of the inner packet */
2736	if (encap_ip->ip_v != IPVERSION) {
2737	    pimstat.pims_rcv_badregisters++;
2738	    if (mrtdebug & DEBUG_PIM) {
2739		log(LOG_DEBUG, "pim_input: invalid IP version (%d) "
2740		    "of the inner packet\n", encap_ip->ip_v);
2741	    }
2742	    m_freem(m);
2743	    return;
2744	}
2745
2746	/* verify the inner packet is destined to a mcast group */
2747	if (!IN_MULTICAST(ntohl(encap_ip->ip_dst.s_addr))) {
2748	    pimstat.pims_rcv_badregisters++;
2749	    if (mrtdebug & DEBUG_PIM)
2750		log(LOG_DEBUG,
2751		    "pim_input: inner packet of register is not "
2752		    "multicast %lx\n",
2753		    (u_long)ntohl(encap_ip->ip_dst.s_addr));
2754	    m_freem(m);
2755	    return;
2756	}
2757
2758	/* If a NULL_REGISTER, pass it to the daemon */
2759	if ((ntohl(*reghdr) & PIM_NULL_REGISTER))
2760	    goto pim_input_to_daemon;
2761
2762	/*
2763	 * Copy the TOS from the outer IP header to the inner IP header.
2764	 */
2765	if (encap_ip->ip_tos != ip_tos) {
2766	    /* Outer TOS -> inner TOS */
2767	    encap_ip->ip_tos = ip_tos;
2768	    /* Recompute the inner header checksum. Sigh... */
2769
2770	    /* adjust mbuf to point to the inner IP header */
2771	    m->m_data += (iphlen + PIM_MINLEN);
2772	    m->m_len  -= (iphlen + PIM_MINLEN);
2773
2774	    encap_ip->ip_sum = 0;
2775	    encap_ip->ip_sum = in_cksum(m, encap_ip->ip_hl << 2);
2776
2777	    /* restore mbuf to point back to the outer IP header */
2778	    m->m_data -= (iphlen + PIM_MINLEN);
2779	    m->m_len  += (iphlen + PIM_MINLEN);
2780	}
2781
2782	/*
2783	 * Decapsulate the inner IP packet and loopback to forward it
2784	 * as a normal multicast packet. Also, make a copy of the
2785	 *     outer_iphdr + pimhdr + reghdr + encap_iphdr
2786	 * to pass to the daemon later, so it can take the appropriate
2787	 * actions (e.g., send back PIM_REGISTER_STOP).
2788	 * XXX: here m->m_data points to the outer IP header.
2789	 */
2790	mcp = m_copy(m, 0, iphlen + PIM_REG_MINLEN);
2791	if (mcp == NULL) {
2792	    log(LOG_ERR,
2793		"pim_input: pim register: could not copy register head\n");
2794	    m_freem(m);
2795	    return;
2796	}
2797
2798	/* Keep statistics */
2799	/* XXX: registers_bytes include only the encap. mcast pkt */
2800	pimstat.pims_rcv_registers_msgs++;
2801	pimstat.pims_rcv_registers_bytes += ntohs(encap_ip->ip_len);
2802
2803	/*
2804	 * forward the inner ip packet; point m_data at the inner ip.
2805	 */
2806	m_adj(m, iphlen + PIM_MINLEN);
2807
2808	if (mrtdebug & DEBUG_PIM) {
2809	    log(LOG_DEBUG,
2810		"pim_input: forwarding decapsulated register: "
2811		"src %lx, dst %lx, vif %d\n",
2812		(u_long)ntohl(encap_ip->ip_src.s_addr),
2813		(u_long)ntohl(encap_ip->ip_dst.s_addr),
2814		reg_vif_num);
2815	}
2816	/* NB: vifp was collected above; can it change on us? */
2817	if_simloop(vifp, m, dst.sin_family, 0);
2818
2819	/* prepare the register head to send to the mrouting daemon */
2820	m = mcp;
2821    }
2822
2823pim_input_to_daemon:
2824    /*
2825     * Pass the PIM message up to the daemon; if it is a Register message,
2826     * pass the 'head' only up to the daemon. This includes the
2827     * outer IP header, PIM header, PIM-Register header and the
2828     * inner IP header.
2829     * XXX: the outer IP header pkt size of a Register is not adjust to
2830     * reflect the fact that the inner multicast data is truncated.
2831     */
2832    rip_input(m, iphlen);
2833
2834    return;
2835}
2836
2837static int
2838sysctl_mfctable(SYSCTL_HANDLER_ARGS)
2839{
2840	struct mfc	*rt;
2841	int		 error, i;
2842
2843	if (req->newptr)
2844		return (EPERM);
2845	if (mfchashtbl == NULL)	/* XXX unlocked */
2846		return (0);
2847	error = sysctl_wire_old_buffer(req, 0);
2848	if (error)
2849		return (error);
2850
2851	MFC_LOCK();
2852	for (i = 0; i < mfchashsize; i++) {
2853		LIST_FOREACH(rt, &mfchashtbl[i], mfc_hash) {
2854			error = SYSCTL_OUT(req, rt, sizeof(struct mfc));
2855			if (error)
2856				goto out_locked;
2857		}
2858	}
2859out_locked:
2860	MFC_UNLOCK();
2861	return (error);
2862}
2863
2864SYSCTL_NODE(_net_inet_ip, OID_AUTO, mfctable, CTLFLAG_RD, sysctl_mfctable,
2865    "IPv4 Multicast Forwarding Table (struct *mfc[mfchashsize], "
2866    "netinet/ip_mroute.h)");
2867
2868static int
2869ip_mroute_modevent(module_t mod, int type, void *unused)
2870{
2871    INIT_VNET_INET(curvnet);
2872
2873    switch (type) {
2874    case MOD_LOAD:
2875	MROUTER_LOCK_INIT();
2876	MFC_LOCK_INIT();
2877	VIF_LOCK_INIT();
2878
2879	mfchashsize = MFCHASHSIZE;
2880	if (TUNABLE_ULONG_FETCH("net.inet.ip.mfchashsize", &mfchashsize) &&
2881	    !powerof2(mfchashsize)) {
2882		printf("WARNING: %s not a power of 2; using default\n",
2883		    "net.inet.ip.mfchashsize");
2884		mfchashsize = MFCHASHSIZE;
2885	}
2886	MALLOC(nexpire, u_char *, mfchashsize, M_MRTABLE, M_WAITOK|M_ZERO);
2887
2888	pim_squelch_wholepkt = 0;
2889	TUNABLE_ULONG_FETCH("net.inet.pim.squelch_wholepkt",
2890	    &pim_squelch_wholepkt);
2891	ip_mrouter_reset();
2892
2893	pim_encap_cookie = encap_attach_func(AF_INET, IPPROTO_PIM,
2894	    pim_encapcheck, &in_pim_protosw, NULL);
2895	if (pim_encap_cookie == NULL) {
2896		printf("ip_mroute: unable to attach pim encap\n");
2897		VIF_LOCK_DESTROY();
2898		MFC_LOCK_DESTROY();
2899		MROUTER_LOCK_DESTROY();
2900		return (EINVAL);
2901	}
2902
2903	ip_mcast_src = X_ip_mcast_src;
2904	ip_mforward = X_ip_mforward;
2905	ip_mrouter_done = X_ip_mrouter_done;
2906	ip_mrouter_get = X_ip_mrouter_get;
2907	ip_mrouter_set = X_ip_mrouter_set;
2908
2909	ip_rsvp_force_done = X_ip_rsvp_force_done;
2910	ip_rsvp_vif = X_ip_rsvp_vif;
2911
2912	legal_vif_num = X_legal_vif_num;
2913	mrt_ioctl = X_mrt_ioctl;
2914	rsvp_input_p = X_rsvp_input;
2915	break;
2916
2917    case MOD_UNLOAD:
2918	/*
2919	 * Typically module unload happens after the user-level
2920	 * process has shutdown the kernel services (the check
2921	 * below insures someone can't just yank the module out
2922	 * from under a running process).  But if the module is
2923	 * just loaded and then unloaded w/o starting up a user
2924	 * process we still need to cleanup.
2925	 */
2926	if (V_ip_mrouter != NULL)
2927	    return (EINVAL);
2928
2929	if (pim_encap_cookie) {
2930	    encap_detach(pim_encap_cookie);
2931	    pim_encap_cookie = NULL;
2932	}
2933	X_ip_mrouter_done();
2934
2935	FREE(nexpire, M_MRTABLE);
2936	nexpire = NULL;
2937
2938	ip_mcast_src = NULL;
2939	ip_mforward = NULL;
2940	ip_mrouter_done = NULL;
2941	ip_mrouter_get = NULL;
2942	ip_mrouter_set = NULL;
2943
2944	ip_rsvp_force_done = NULL;
2945	ip_rsvp_vif = NULL;
2946
2947	legal_vif_num = NULL;
2948	mrt_ioctl = NULL;
2949	rsvp_input_p = NULL;
2950
2951	VIF_LOCK_DESTROY();
2952	MFC_LOCK_DESTROY();
2953	MROUTER_LOCK_DESTROY();
2954	break;
2955
2956    default:
2957	return EOPNOTSUPP;
2958    }
2959    return 0;
2960}
2961
2962static moduledata_t ip_mroutemod = {
2963    "ip_mroute",
2964    ip_mroute_modevent,
2965    0
2966};
2967
2968DECLARE_MODULE(ip_mroute, ip_mroutemod, SI_SUB_PSEUDO, SI_ORDER_ANY);
2969