ip_mroute.c revision 172467
1/*-
2 * Copyright (c) 1989 Stephen Deering
3 * Copyright (c) 1992, 1993
4 *      The Regents of the University of California.  All rights reserved.
5 *
6 * This code is derived from software contributed to Berkeley by
7 * Stephen Deering of Stanford University.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in the
16 *    documentation and/or other materials provided with the distribution.
17 * 4. Neither the name of the University nor the names of its contributors
18 *    may be used to endorse or promote products derived from this software
19 *    without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 *
33 *      @(#)ip_mroute.c 8.2 (Berkeley) 11/15/93
34 */
35
36/*
37 * IP multicast forwarding procedures
38 *
39 * Written by David Waitzman, BBN Labs, August 1988.
40 * Modified by Steve Deering, Stanford, February 1989.
41 * Modified by Mark J. Steiglitz, Stanford, May, 1991
42 * Modified by Van Jacobson, LBL, January 1993
43 * Modified by Ajit Thyagarajan, PARC, August 1993
44 * Modified by Bill Fenner, PARC, April 1995
45 * Modified by Ahmed Helmy, SGI, June 1996
46 * Modified by George Edmond Eddy (Rusty), ISI, February 1998
47 * Modified by Pavlin Radoslavov, USC/ISI, May 1998, August 1999, October 2000
48 * Modified by Hitoshi Asaeda, WIDE, August 2000
49 * Modified by Pavlin Radoslavov, ICSI, October 2002
50 *
51 * MROUTING Revision: 3.5
52 * and PIM-SMv2 and PIM-DM support, advanced API support,
53 * bandwidth metering and signaling
54 */
55
56#include <sys/cdefs.h>
57__FBSDID("$FreeBSD: head/sys/netinet/ip_mroute.c 172467 2007-10-07 20:44:24Z silby $");
58
59#include "opt_inet.h"
60#include "opt_inet6.h"
61#include "opt_mac.h"
62#include "opt_mrouting.h"
63
64#define _PIM_VT 1
65
66#include <sys/param.h>
67#include <sys/kernel.h>
68#include <sys/lock.h>
69#include <sys/malloc.h>
70#include <sys/mbuf.h>
71#include <sys/module.h>
72#include <sys/priv.h>
73#include <sys/protosw.h>
74#include <sys/signalvar.h>
75#include <sys/socket.h>
76#include <sys/socketvar.h>
77#include <sys/sockio.h>
78#include <sys/sx.h>
79#include <sys/sysctl.h>
80#include <sys/syslog.h>
81#include <sys/systm.h>
82#include <sys/time.h>
83#include <net/if.h>
84#include <net/netisr.h>
85#include <net/route.h>
86#include <netinet/in.h>
87#include <netinet/igmp.h>
88#include <netinet/in_systm.h>
89#include <netinet/in_var.h>
90#include <netinet/ip.h>
91#include <netinet/ip_encap.h>
92#include <netinet/ip_mroute.h>
93#include <netinet/ip_var.h>
94#include <netinet/ip_options.h>
95#include <netinet/pim.h>
96#include <netinet/pim_var.h>
97#include <netinet/udp.h>
98#ifdef INET6
99#include <netinet/ip6.h>
100#include <netinet6/in6_var.h>
101#include <netinet6/ip6_mroute.h>
102#include <netinet6/ip6_var.h>
103#endif
104#include <machine/in_cksum.h>
105
106#include <security/mac/mac_framework.h>
107
108/*
109 * Control debugging code for rsvp and multicast routing code.
110 * Can only set them with the debugger.
111 */
112static u_int    rsvpdebug;		/* non-zero enables debugging	*/
113
114static u_int	mrtdebug;		/* any set of the flags below	*/
115#define		DEBUG_MFC	0x02
116#define		DEBUG_FORWARD	0x04
117#define		DEBUG_EXPIRE	0x08
118#define		DEBUG_XMIT	0x10
119#define		DEBUG_PIM	0x20
120
121#define		VIFI_INVALID	((vifi_t) -1)
122
123#define M_HASCL(m)	((m)->m_flags & M_EXT)
124
125static MALLOC_DEFINE(M_MRTABLE, "mroutetbl", "multicast routing tables");
126
127/*
128 * Locking.  We use two locks: one for the virtual interface table and
129 * one for the forwarding table.  These locks may be nested in which case
130 * the VIF lock must always be taken first.  Note that each lock is used
131 * to cover not only the specific data structure but also related data
132 * structures.  It may be better to add more fine-grained locking later;
133 * it's not clear how performance-critical this code is.
134 *
135 * XXX: This module could particularly benefit from being cleaned
136 *      up to use the <sys/queue.h> macros.
137 *
138 */
139
140static struct mrtstat	mrtstat;
141SYSCTL_STRUCT(_net_inet_ip, OID_AUTO, mrtstat, CTLFLAG_RW,
142    &mrtstat, mrtstat,
143    "Multicast Routing Statistics (struct mrtstat, netinet/ip_mroute.h)");
144
145static struct mfc	*mfctable[MFCTBLSIZ];
146SYSCTL_OPAQUE(_net_inet_ip, OID_AUTO, mfctable, CTLFLAG_RD,
147    &mfctable, sizeof(mfctable), "S,*mfc[MFCTBLSIZ]",
148    "Multicast Forwarding Table (struct *mfc[MFCTBLSIZ], netinet/ip_mroute.h)");
149
150static struct mtx mrouter_mtx;
151#define	MROUTER_LOCK()		mtx_lock(&mrouter_mtx)
152#define	MROUTER_UNLOCK()	mtx_unlock(&mrouter_mtx)
153#define	MROUTER_LOCK_ASSERT()	mtx_assert(&mrouter_mtx, MA_OWNED)
154#define	MROUTER_LOCK_INIT()	\
155	mtx_init(&mrouter_mtx, "IPv4 multicast forwarding", NULL, MTX_DEF)
156#define	MROUTER_LOCK_DESTROY()	mtx_destroy(&mrouter_mtx)
157
158static struct mtx mfc_mtx;
159#define	MFC_LOCK()	mtx_lock(&mfc_mtx)
160#define	MFC_UNLOCK()	mtx_unlock(&mfc_mtx)
161#define	MFC_LOCK_ASSERT()	mtx_assert(&mfc_mtx, MA_OWNED)
162#define	MFC_LOCK_INIT()	mtx_init(&mfc_mtx, "mroute mfc table", NULL, MTX_DEF)
163#define	MFC_LOCK_DESTROY()	mtx_destroy(&mfc_mtx)
164
165static struct vif	viftable[MAXVIFS];
166SYSCTL_OPAQUE(_net_inet_ip, OID_AUTO, viftable, CTLFLAG_RD,
167    &viftable, sizeof(viftable), "S,vif[MAXVIFS]",
168    "Multicast Virtual Interfaces (struct vif[MAXVIFS], netinet/ip_mroute.h)");
169
170static struct mtx vif_mtx;
171#define	VIF_LOCK()	mtx_lock(&vif_mtx)
172#define	VIF_UNLOCK()	mtx_unlock(&vif_mtx)
173#define	VIF_LOCK_ASSERT()	mtx_assert(&vif_mtx, MA_OWNED)
174#define	VIF_LOCK_INIT()	mtx_init(&vif_mtx, "mroute vif table", NULL, MTX_DEF)
175#define	VIF_LOCK_DESTROY()	mtx_destroy(&vif_mtx)
176
177static u_char		nexpire[MFCTBLSIZ];
178
179static eventhandler_tag if_detach_event_tag = NULL;
180
181static struct callout expire_upcalls_ch;
182
183#define		EXPIRE_TIMEOUT	(hz / 4)	/* 4x / second		*/
184#define		UPCALL_EXPIRE	6		/* number of timeouts	*/
185
186#define ENCAP_TTL 64
187
188/*
189 * Bandwidth meter variables and constants
190 */
191static MALLOC_DEFINE(M_BWMETER, "bwmeter", "multicast upcall bw meters");
192/*
193 * Pending timeouts are stored in a hash table, the key being the
194 * expiration time. Periodically, the entries are analysed and processed.
195 */
196#define BW_METER_BUCKETS	1024
197static struct bw_meter *bw_meter_timers[BW_METER_BUCKETS];
198static struct callout bw_meter_ch;
199#define BW_METER_PERIOD (hz)		/* periodical handling of bw meters */
200
201/*
202 * Pending upcalls are stored in a vector which is flushed when
203 * full, or periodically
204 */
205static struct bw_upcall	bw_upcalls[BW_UPCALLS_MAX];
206static u_int	bw_upcalls_n; /* # of pending upcalls */
207static struct callout bw_upcalls_ch;
208#define BW_UPCALLS_PERIOD (hz)		/* periodical flush of bw upcalls */
209
210static struct pimstat pimstat;
211
212SYSCTL_NODE(_net_inet, IPPROTO_PIM, pim, CTLFLAG_RW, 0, "PIM");
213SYSCTL_STRUCT(_net_inet_pim, PIMCTL_STATS, stats, CTLFLAG_RD,
214    &pimstat, pimstat,
215    "PIM Statistics (struct pimstat, netinet/pim_var.h)");
216
217static u_long	pim_squelch_wholepkt = 0;
218SYSCTL_ULONG(_net_inet_pim, OID_AUTO, squelch_wholepkt, CTLFLAG_RW,
219    &pim_squelch_wholepkt, 0,
220    "Disable IGMP_WHOLEPKT notifications if rendezvous point is unspecified");
221
222extern  struct domain inetdomain;
223struct protosw in_pim_protosw = {
224	.pr_type =		SOCK_RAW,
225	.pr_domain =		&inetdomain,
226	.pr_protocol =		IPPROTO_PIM,
227	.pr_flags =		PR_ATOMIC|PR_ADDR|PR_LASTHDR,
228	.pr_input =		pim_input,
229	.pr_output =		(pr_output_t*)rip_output,
230	.pr_ctloutput =		rip_ctloutput,
231	.pr_usrreqs =		&rip_usrreqs
232};
233static const struct encaptab *pim_encap_cookie;
234
235#ifdef INET6
236/* ip6_mroute.c glue */
237extern struct in6_protosw in6_pim_protosw;
238static const struct encaptab *pim6_encap_cookie;
239
240extern int X_ip6_mrouter_set(struct socket *, struct sockopt *);
241extern int X_ip6_mrouter_get(struct socket *, struct sockopt *);
242extern int X_ip6_mrouter_done(void);
243extern int X_ip6_mforward(struct ip6_hdr *, struct ifnet *, struct mbuf *);
244extern int X_mrt6_ioctl(int, caddr_t);
245#endif
246
247static int pim_encapcheck(const struct mbuf *, int, int, void *);
248
249/*
250 * Note: the PIM Register encapsulation adds the following in front of a
251 * data packet:
252 *
253 * struct pim_encap_hdr {
254 *    struct ip ip;
255 *    struct pim_encap_pimhdr  pim;
256 * }
257 *
258 */
259
260struct pim_encap_pimhdr {
261	struct pim pim;
262	uint32_t   flags;
263};
264
265static struct ip pim_encap_iphdr = {
266#if BYTE_ORDER == LITTLE_ENDIAN
267	sizeof(struct ip) >> 2,
268	IPVERSION,
269#else
270	IPVERSION,
271	sizeof(struct ip) >> 2,
272#endif
273	0,			/* tos */
274	sizeof(struct ip),	/* total length */
275	0,			/* id */
276	0,			/* frag offset */
277	ENCAP_TTL,
278	IPPROTO_PIM,
279	0,			/* checksum */
280};
281
282static struct pim_encap_pimhdr pim_encap_pimhdr = {
283    {
284	PIM_MAKE_VT(PIM_VERSION, PIM_REGISTER), /* PIM vers and message type */
285	0,			/* reserved */
286	0,			/* checksum */
287    },
288    0				/* flags */
289};
290
291static struct ifnet multicast_register_if;
292static vifi_t reg_vif_num = VIFI_INVALID;
293
294/*
295 * Private variables.
296 */
297static vifi_t	   numvifs;
298
299static u_long	X_ip_mcast_src(int vifi);
300static int	X_ip_mforward(struct ip *ip, struct ifnet *ifp,
301			struct mbuf *m, struct ip_moptions *imo);
302static int	X_ip_mrouter_done(void);
303static int	X_ip_mrouter_get(struct socket *so, struct sockopt *m);
304static int	X_ip_mrouter_set(struct socket *so, struct sockopt *m);
305static int	X_legal_vif_num(int vif);
306static int	X_mrt_ioctl(int cmd, caddr_t data);
307
308static int get_sg_cnt(struct sioc_sg_req *);
309static int get_vif_cnt(struct sioc_vif_req *);
310static void if_detached_event(void *arg __unused, struct ifnet *);
311static int ip_mrouter_init(struct socket *, int);
312static int add_vif(struct vifctl *);
313static int del_vif_locked(vifi_t);
314static int del_vif(vifi_t);
315static int add_mfc(struct mfcctl2 *);
316static int del_mfc(struct mfcctl2 *);
317static int set_api_config(uint32_t *); /* chose API capabilities */
318static int socket_send(struct socket *, struct mbuf *, struct sockaddr_in *);
319static int set_assert(int);
320static void expire_upcalls(void *);
321static int ip_mdq(struct mbuf *, struct ifnet *, struct mfc *, vifi_t);
322static void phyint_send(struct ip *, struct vif *, struct mbuf *);
323static void send_packet(struct vif *, struct mbuf *);
324
325/*
326 * Bandwidth monitoring
327 */
328static void free_bw_list(struct bw_meter *list);
329static int add_bw_upcall(struct bw_upcall *);
330static int del_bw_upcall(struct bw_upcall *);
331static void bw_meter_receive_packet(struct bw_meter *x, int plen,
332		struct timeval *nowp);
333static void bw_meter_prepare_upcall(struct bw_meter *x, struct timeval *nowp);
334static void bw_upcalls_send(void);
335static void schedule_bw_meter(struct bw_meter *x, struct timeval *nowp);
336static void unschedule_bw_meter(struct bw_meter *x);
337static void bw_meter_process(void);
338static void expire_bw_upcalls_send(void *);
339static void expire_bw_meter_process(void *);
340
341static int pim_register_send(struct ip *, struct vif *,
342		struct mbuf *, struct mfc *);
343static int pim_register_send_rp(struct ip *, struct vif *,
344		struct mbuf *, struct mfc *);
345static int pim_register_send_upcall(struct ip *, struct vif *,
346		struct mbuf *, struct mfc *);
347static struct mbuf *pim_register_prepare(struct ip *, struct mbuf *);
348
349/*
350 * whether or not special PIM assert processing is enabled.
351 */
352static int pim_assert;
353/*
354 * Rate limit for assert notification messages, in usec
355 */
356#define ASSERT_MSG_TIME		3000000
357
358/*
359 * Kernel multicast routing API capabilities and setup.
360 * If more API capabilities are added to the kernel, they should be
361 * recorded in `mrt_api_support'.
362 */
363static const uint32_t mrt_api_support = (MRT_MFC_FLAGS_DISABLE_WRONGVIF |
364					 MRT_MFC_FLAGS_BORDER_VIF |
365					 MRT_MFC_RP |
366					 MRT_MFC_BW_UPCALL);
367static uint32_t mrt_api_config = 0;
368
369/*
370 * Hash function for a source, group entry
371 */
372#define MFCHASH(a, g) MFCHASHMOD(((a) >> 20) ^ ((a) >> 10) ^ (a) ^ \
373			((g) >> 20) ^ ((g) >> 10) ^ (g))
374
375/*
376 * Find a route for a given origin IP address and Multicast group address
377 * Statistics are updated by the caller if needed
378 * (mrtstat.mrts_mfc_lookups and mrtstat.mrts_mfc_misses)
379 */
380static struct mfc *
381mfc_find(in_addr_t o, in_addr_t g)
382{
383    struct mfc *rt;
384
385    MFC_LOCK_ASSERT();
386
387    for (rt = mfctable[MFCHASH(o,g)]; rt; rt = rt->mfc_next)
388	if ((rt->mfc_origin.s_addr == o) &&
389		(rt->mfc_mcastgrp.s_addr == g) && (rt->mfc_stall == NULL))
390	    break;
391    return rt;
392}
393
394/*
395 * Macros to compute elapsed time efficiently
396 * Borrowed from Van Jacobson's scheduling code
397 */
398#define TV_DELTA(a, b, delta) {					\
399	int xxs;						\
400	delta = (a).tv_usec - (b).tv_usec;			\
401	if ((xxs = (a).tv_sec - (b).tv_sec)) {			\
402		switch (xxs) {					\
403		case 2:						\
404		      delta += 1000000;				\
405		      /* FALLTHROUGH */				\
406		case 1:						\
407		      delta += 1000000;				\
408		      break;					\
409		default:					\
410		      delta += (1000000 * xxs);			\
411		}						\
412	}							\
413}
414
415#define TV_LT(a, b) (((a).tv_usec < (b).tv_usec && \
416	      (a).tv_sec <= (b).tv_sec) || (a).tv_sec < (b).tv_sec)
417
418/*
419 * Handle MRT setsockopt commands to modify the multicast routing tables.
420 */
421static int
422X_ip_mrouter_set(struct socket *so, struct sockopt *sopt)
423{
424    int	error, optval;
425    vifi_t	vifi;
426    struct	vifctl vifc;
427    struct	mfcctl2 mfc;
428    struct	bw_upcall bw_upcall;
429    uint32_t	i;
430
431    if (so != ip_mrouter && sopt->sopt_name != MRT_INIT)
432	return EPERM;
433
434    error = 0;
435    switch (sopt->sopt_name) {
436    case MRT_INIT:
437	error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval);
438	if (error)
439	    break;
440	error = ip_mrouter_init(so, optval);
441	break;
442
443    case MRT_DONE:
444	error = ip_mrouter_done();
445	break;
446
447    case MRT_ADD_VIF:
448	error = sooptcopyin(sopt, &vifc, sizeof vifc, sizeof vifc);
449	if (error)
450	    break;
451	error = add_vif(&vifc);
452	break;
453
454    case MRT_DEL_VIF:
455	error = sooptcopyin(sopt, &vifi, sizeof vifi, sizeof vifi);
456	if (error)
457	    break;
458	error = del_vif(vifi);
459	break;
460
461    case MRT_ADD_MFC:
462    case MRT_DEL_MFC:
463	/*
464	 * select data size depending on API version.
465	 */
466	if (sopt->sopt_name == MRT_ADD_MFC &&
467		mrt_api_config & MRT_API_FLAGS_ALL) {
468	    error = sooptcopyin(sopt, &mfc, sizeof(struct mfcctl2),
469				sizeof(struct mfcctl2));
470	} else {
471	    error = sooptcopyin(sopt, &mfc, sizeof(struct mfcctl),
472				sizeof(struct mfcctl));
473	    bzero((caddr_t)&mfc + sizeof(struct mfcctl),
474			sizeof(mfc) - sizeof(struct mfcctl));
475	}
476	if (error)
477	    break;
478	if (sopt->sopt_name == MRT_ADD_MFC)
479	    error = add_mfc(&mfc);
480	else
481	    error = del_mfc(&mfc);
482	break;
483
484    case MRT_ASSERT:
485	error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval);
486	if (error)
487	    break;
488	set_assert(optval);
489	break;
490
491    case MRT_API_CONFIG:
492	error = sooptcopyin(sopt, &i, sizeof i, sizeof i);
493	if (!error)
494	    error = set_api_config(&i);
495	if (!error)
496	    error = sooptcopyout(sopt, &i, sizeof i);
497	break;
498
499    case MRT_ADD_BW_UPCALL:
500    case MRT_DEL_BW_UPCALL:
501	error = sooptcopyin(sopt, &bw_upcall, sizeof bw_upcall,
502				sizeof bw_upcall);
503	if (error)
504	    break;
505	if (sopt->sopt_name == MRT_ADD_BW_UPCALL)
506	    error = add_bw_upcall(&bw_upcall);
507	else
508	    error = del_bw_upcall(&bw_upcall);
509	break;
510
511    default:
512	error = EOPNOTSUPP;
513	break;
514    }
515    return error;
516}
517
518/*
519 * Handle MRT getsockopt commands
520 */
521static int
522X_ip_mrouter_get(struct socket *so, struct sockopt *sopt)
523{
524    int error;
525    static int version = 0x0305; /* !!! why is this here? XXX */
526
527    switch (sopt->sopt_name) {
528    case MRT_VERSION:
529	error = sooptcopyout(sopt, &version, sizeof version);
530	break;
531
532    case MRT_ASSERT:
533	error = sooptcopyout(sopt, &pim_assert, sizeof pim_assert);
534	break;
535
536    case MRT_API_SUPPORT:
537	error = sooptcopyout(sopt, &mrt_api_support, sizeof mrt_api_support);
538	break;
539
540    case MRT_API_CONFIG:
541	error = sooptcopyout(sopt, &mrt_api_config, sizeof mrt_api_config);
542	break;
543
544    default:
545	error = EOPNOTSUPP;
546	break;
547    }
548    return error;
549}
550
551/*
552 * Handle ioctl commands to obtain information from the cache
553 */
554static int
555X_mrt_ioctl(int cmd, caddr_t data)
556{
557    int error = 0;
558
559    /*
560     * Currently the only function calling this ioctl routine is rtioctl().
561     * Typically, only root can create the raw socket in order to execute
562     * this ioctl method, however the request might be coming from a prison
563     */
564    error = priv_check(curthread, PRIV_NETINET_MROUTE);
565    if (error)
566	return (error);
567    switch (cmd) {
568    case (SIOCGETVIFCNT):
569	error = get_vif_cnt((struct sioc_vif_req *)data);
570	break;
571
572    case (SIOCGETSGCNT):
573	error = get_sg_cnt((struct sioc_sg_req *)data);
574	break;
575
576    default:
577	error = EINVAL;
578	break;
579    }
580    return error;
581}
582
583/*
584 * returns the packet, byte, rpf-failure count for the source group provided
585 */
586static int
587get_sg_cnt(struct sioc_sg_req *req)
588{
589    struct mfc *rt;
590
591    MFC_LOCK();
592    rt = mfc_find(req->src.s_addr, req->grp.s_addr);
593    if (rt == NULL) {
594	MFC_UNLOCK();
595	req->pktcnt = req->bytecnt = req->wrong_if = 0xffffffff;
596	return EADDRNOTAVAIL;
597    }
598    req->pktcnt = rt->mfc_pkt_cnt;
599    req->bytecnt = rt->mfc_byte_cnt;
600    req->wrong_if = rt->mfc_wrong_if;
601    MFC_UNLOCK();
602    return 0;
603}
604
605/*
606 * returns the input and output packet and byte counts on the vif provided
607 */
608static int
609get_vif_cnt(struct sioc_vif_req *req)
610{
611    vifi_t vifi = req->vifi;
612
613    VIF_LOCK();
614    if (vifi >= numvifs) {
615	VIF_UNLOCK();
616	return EINVAL;
617    }
618
619    req->icount = viftable[vifi].v_pkt_in;
620    req->ocount = viftable[vifi].v_pkt_out;
621    req->ibytes = viftable[vifi].v_bytes_in;
622    req->obytes = viftable[vifi].v_bytes_out;
623    VIF_UNLOCK();
624
625    return 0;
626}
627
628static void
629ip_mrouter_reset(void)
630{
631    bzero((caddr_t)mfctable, sizeof(mfctable));
632    bzero((caddr_t)nexpire, sizeof(nexpire));
633
634    pim_assert = 0;
635    mrt_api_config = 0;
636
637    callout_init(&expire_upcalls_ch, CALLOUT_MPSAFE);
638
639    bw_upcalls_n = 0;
640    bzero((caddr_t)bw_meter_timers, sizeof(bw_meter_timers));
641    callout_init(&bw_upcalls_ch, CALLOUT_MPSAFE);
642    callout_init(&bw_meter_ch, CALLOUT_MPSAFE);
643}
644
645static void
646if_detached_event(void *arg __unused, struct ifnet *ifp)
647{
648    vifi_t vifi;
649    int i;
650    struct mfc *mfc;
651    struct mfc *nmfc;
652    struct mfc **ppmfc;	/* Pointer to previous node's next-pointer */
653    struct rtdetq *pq;
654    struct rtdetq *npq;
655
656    MROUTER_LOCK();
657    if (ip_mrouter == NULL) {
658	MROUTER_UNLOCK();
659    }
660
661    /*
662     * Tear down multicast forwarder state associated with this ifnet.
663     * 1. Walk the vif list, matching vifs against this ifnet.
664     * 2. Walk the multicast forwarding cache (mfc) looking for
665     *    inner matches with this vif's index.
666     * 3. Free any pending mbufs for this mfc.
667     * 4. Free the associated mfc entry and state associated with this vif.
668     *    Be very careful about unlinking from a singly-linked list whose
669     *    "head node" is a pointer in a simple array.
670     * 5. Free vif state. This should disable ALLMULTI on the interface.
671     */
672    VIF_LOCK();
673    MFC_LOCK();
674    for (vifi = 0; vifi < numvifs; vifi++) {
675	if (viftable[vifi].v_ifp != ifp)
676		continue;
677	for (i = 0; i < MFCTBLSIZ; i++) {
678	    ppmfc = &mfctable[i];
679	    for (mfc = mfctable[i]; mfc != NULL; ) {
680		nmfc = mfc->mfc_next;
681		if (mfc->mfc_parent == vifi) {
682		    for (pq = mfc->mfc_stall; pq != NULL; ) {
683			npq = pq->next;
684			m_freem(pq->m);
685			free(pq, M_MRTABLE);
686			pq = npq;
687		    }
688		    free_bw_list(mfc->mfc_bw_meter);
689		    free(mfc, M_MRTABLE);
690		    *ppmfc = nmfc;
691		} else {
692		    ppmfc = &mfc->mfc_next;
693		}
694		mfc = nmfc;
695	    }
696	}
697	del_vif_locked(vifi);
698    }
699    MFC_UNLOCK();
700    VIF_UNLOCK();
701
702    MROUTER_UNLOCK();
703}
704
705/*
706 * Enable multicast routing
707 */
708static int
709ip_mrouter_init(struct socket *so, int version)
710{
711    if (mrtdebug)
712	log(LOG_DEBUG, "ip_mrouter_init: so_type = %d, pr_protocol = %d\n",
713	    so->so_type, so->so_proto->pr_protocol);
714
715    if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_IGMP)
716	return EOPNOTSUPP;
717
718    if (version != 1)
719	return ENOPROTOOPT;
720
721    MROUTER_LOCK();
722
723    if (ip_mrouter != NULL) {
724	MROUTER_UNLOCK();
725	return EADDRINUSE;
726    }
727
728    if_detach_event_tag = EVENTHANDLER_REGISTER(ifnet_departure_event,
729        if_detached_event, NULL, EVENTHANDLER_PRI_ANY);
730    if (if_detach_event_tag == NULL) {
731	MROUTER_UNLOCK();
732	return (ENOMEM);
733    }
734
735    callout_reset(&expire_upcalls_ch, EXPIRE_TIMEOUT, expire_upcalls, NULL);
736
737    callout_reset(&bw_upcalls_ch, BW_UPCALLS_PERIOD,
738	expire_bw_upcalls_send, NULL);
739    callout_reset(&bw_meter_ch, BW_METER_PERIOD, expire_bw_meter_process, NULL);
740
741    ip_mrouter = so;
742
743    MROUTER_UNLOCK();
744
745    if (mrtdebug)
746	log(LOG_DEBUG, "ip_mrouter_init\n");
747
748    return 0;
749}
750
751/*
752 * Disable multicast routing
753 */
754static int
755X_ip_mrouter_done(void)
756{
757    vifi_t vifi;
758    int i;
759    struct ifnet *ifp;
760    struct ifreq ifr;
761    struct mfc *rt;
762    struct rtdetq *rte;
763
764    MROUTER_LOCK();
765
766    if (ip_mrouter == NULL) {
767	MROUTER_UNLOCK();
768	return EINVAL;
769    }
770
771    /*
772     * Detach/disable hooks to the reset of the system.
773     */
774    ip_mrouter = NULL;
775    mrt_api_config = 0;
776
777    VIF_LOCK();
778    /*
779     * For each phyint in use, disable promiscuous reception of all IP
780     * multicasts.
781     */
782    for (vifi = 0; vifi < numvifs; vifi++) {
783	if (viftable[vifi].v_lcl_addr.s_addr != 0 &&
784		!(viftable[vifi].v_flags & (VIFF_TUNNEL | VIFF_REGISTER))) {
785	    struct sockaddr_in *so = (struct sockaddr_in *)&(ifr.ifr_addr);
786
787	    so->sin_len = sizeof(struct sockaddr_in);
788	    so->sin_family = AF_INET;
789	    so->sin_addr.s_addr = INADDR_ANY;
790	    ifp = viftable[vifi].v_ifp;
791	    if_allmulti(ifp, 0);
792	}
793    }
794    bzero((caddr_t)viftable, sizeof(viftable));
795    numvifs = 0;
796    pim_assert = 0;
797    VIF_UNLOCK();
798    EVENTHANDLER_DEREGISTER(ifnet_departure_event, if_detach_event_tag);
799
800    /*
801     * Free all multicast forwarding cache entries.
802     */
803    callout_stop(&expire_upcalls_ch);
804    callout_stop(&bw_upcalls_ch);
805    callout_stop(&bw_meter_ch);
806
807    MFC_LOCK();
808    for (i = 0; i < MFCTBLSIZ; i++) {
809	for (rt = mfctable[i]; rt != NULL; ) {
810	    struct mfc *nr = rt->mfc_next;
811
812	    for (rte = rt->mfc_stall; rte != NULL; ) {
813		struct rtdetq *n = rte->next;
814
815		m_freem(rte->m);
816		free(rte, M_MRTABLE);
817		rte = n;
818	    }
819	    free_bw_list(rt->mfc_bw_meter);
820	    free(rt, M_MRTABLE);
821	    rt = nr;
822	}
823    }
824    bzero((caddr_t)mfctable, sizeof(mfctable));
825    bzero((caddr_t)nexpire, sizeof(nexpire));
826    bw_upcalls_n = 0;
827    bzero(bw_meter_timers, sizeof(bw_meter_timers));
828    MFC_UNLOCK();
829
830    reg_vif_num = VIFI_INVALID;
831
832    MROUTER_UNLOCK();
833
834    if (mrtdebug)
835	log(LOG_DEBUG, "ip_mrouter_done\n");
836
837    return 0;
838}
839
840/*
841 * Set PIM assert processing global
842 */
843static int
844set_assert(int i)
845{
846    if ((i != 1) && (i != 0))
847	return EINVAL;
848
849    pim_assert = i;
850
851    return 0;
852}
853
854/*
855 * Configure API capabilities
856 */
857int
858set_api_config(uint32_t *apival)
859{
860    int i;
861
862    /*
863     * We can set the API capabilities only if it is the first operation
864     * after MRT_INIT. I.e.:
865     *  - there are no vifs installed
866     *  - pim_assert is not enabled
867     *  - the MFC table is empty
868     */
869    if (numvifs > 0) {
870	*apival = 0;
871	return EPERM;
872    }
873    if (pim_assert) {
874	*apival = 0;
875	return EPERM;
876    }
877    for (i = 0; i < MFCTBLSIZ; i++) {
878	if (mfctable[i] != NULL) {
879	    *apival = 0;
880	    return EPERM;
881	}
882    }
883
884    mrt_api_config = *apival & mrt_api_support;
885    *apival = mrt_api_config;
886
887    return 0;
888}
889
890/*
891 * Add a vif to the vif table
892 */
893static int
894add_vif(struct vifctl *vifcp)
895{
896    struct vif *vifp = viftable + vifcp->vifc_vifi;
897    struct sockaddr_in sin = {sizeof sin, AF_INET};
898    struct ifaddr *ifa;
899    struct ifnet *ifp;
900    int error;
901
902    VIF_LOCK();
903    if (vifcp->vifc_vifi >= MAXVIFS) {
904	VIF_UNLOCK();
905	return EINVAL;
906    }
907    /* rate limiting is no longer supported by this code */
908    if (vifcp->vifc_rate_limit != 0) {
909	log(LOG_ERR, "rate limiting is no longer supported\n");
910	VIF_UNLOCK();
911	return EINVAL;
912    }
913    if (vifp->v_lcl_addr.s_addr != INADDR_ANY) {
914	VIF_UNLOCK();
915	return EADDRINUSE;
916    }
917    if (vifcp->vifc_lcl_addr.s_addr == INADDR_ANY) {
918	VIF_UNLOCK();
919	return EADDRNOTAVAIL;
920    }
921
922    /* Find the interface with an address in AF_INET family */
923    if (vifcp->vifc_flags & VIFF_REGISTER) {
924	/*
925	 * XXX: Because VIFF_REGISTER does not really need a valid
926	 * local interface (e.g. it could be 127.0.0.2), we don't
927	 * check its address.
928	 */
929	ifp = NULL;
930    } else {
931	sin.sin_addr = vifcp->vifc_lcl_addr;
932	ifa = ifa_ifwithaddr((struct sockaddr *)&sin);
933	if (ifa == NULL) {
934	    VIF_UNLOCK();
935	    return EADDRNOTAVAIL;
936	}
937	ifp = ifa->ifa_ifp;
938    }
939
940    if ((vifcp->vifc_flags & VIFF_TUNNEL) != 0) {
941	log(LOG_ERR, "tunnels are no longer supported\n");
942	VIF_UNLOCK();
943	return EOPNOTSUPP;
944    } else if (vifcp->vifc_flags & VIFF_REGISTER) {
945	ifp = &multicast_register_if;
946	if (mrtdebug)
947	    log(LOG_DEBUG, "Adding a register vif, ifp: %p\n",
948		    (void *)&multicast_register_if);
949	if (reg_vif_num == VIFI_INVALID) {
950	    if_initname(&multicast_register_if, "register_vif", 0);
951	    multicast_register_if.if_flags = IFF_LOOPBACK;
952	    reg_vif_num = vifcp->vifc_vifi;
953	}
954    } else {		/* Make sure the interface supports multicast */
955	if ((ifp->if_flags & IFF_MULTICAST) == 0) {
956	    VIF_UNLOCK();
957	    return EOPNOTSUPP;
958	}
959
960	/* Enable promiscuous reception of all IP multicasts from the if */
961	error = if_allmulti(ifp, 1);
962	if (error) {
963	    VIF_UNLOCK();
964	    return error;
965	}
966    }
967
968    vifp->v_flags     = vifcp->vifc_flags;
969    vifp->v_threshold = vifcp->vifc_threshold;
970    vifp->v_lcl_addr  = vifcp->vifc_lcl_addr;
971    vifp->v_rmt_addr  = vifcp->vifc_rmt_addr;
972    vifp->v_ifp       = ifp;
973    vifp->v_rsvp_on   = 0;
974    vifp->v_rsvpd     = NULL;
975    /* initialize per vif pkt counters */
976    vifp->v_pkt_in    = 0;
977    vifp->v_pkt_out   = 0;
978    vifp->v_bytes_in  = 0;
979    vifp->v_bytes_out = 0;
980    bzero(&vifp->v_route, sizeof(vifp->v_route));
981
982    /* Adjust numvifs up if the vifi is higher than numvifs */
983    if (numvifs <= vifcp->vifc_vifi) numvifs = vifcp->vifc_vifi + 1;
984
985    VIF_UNLOCK();
986
987    if (mrtdebug)
988	log(LOG_DEBUG, "add_vif #%d, lcladdr %lx, %s %lx, thresh %x\n",
989	    vifcp->vifc_vifi,
990	    (u_long)ntohl(vifcp->vifc_lcl_addr.s_addr),
991	    (vifcp->vifc_flags & VIFF_TUNNEL) ? "rmtaddr" : "mask",
992	    (u_long)ntohl(vifcp->vifc_rmt_addr.s_addr),
993	    vifcp->vifc_threshold);
994
995    return 0;
996}
997
998/*
999 * Delete a vif from the vif table
1000 */
1001static int
1002del_vif_locked(vifi_t vifi)
1003{
1004    struct vif *vifp;
1005
1006    VIF_LOCK_ASSERT();
1007
1008    if (vifi >= numvifs) {
1009	return EINVAL;
1010    }
1011    vifp = &viftable[vifi];
1012    if (vifp->v_lcl_addr.s_addr == INADDR_ANY) {
1013	return EADDRNOTAVAIL;
1014    }
1015
1016    if (!(vifp->v_flags & (VIFF_TUNNEL | VIFF_REGISTER)))
1017	if_allmulti(vifp->v_ifp, 0);
1018
1019    if (vifp->v_flags & VIFF_REGISTER)
1020	reg_vif_num = VIFI_INVALID;
1021
1022    bzero((caddr_t)vifp, sizeof (*vifp));
1023
1024    if (mrtdebug)
1025	log(LOG_DEBUG, "del_vif %d, numvifs %d\n", vifi, numvifs);
1026
1027    /* Adjust numvifs down */
1028    for (vifi = numvifs; vifi > 0; vifi--)
1029	if (viftable[vifi-1].v_lcl_addr.s_addr != INADDR_ANY)
1030	    break;
1031    numvifs = vifi;
1032
1033    return 0;
1034}
1035
1036static int
1037del_vif(vifi_t vifi)
1038{
1039    int cc;
1040
1041    VIF_LOCK();
1042    cc = del_vif_locked(vifi);
1043    VIF_UNLOCK();
1044
1045    return cc;
1046}
1047
1048/*
1049 * update an mfc entry without resetting counters and S,G addresses.
1050 */
1051static void
1052update_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp)
1053{
1054    int i;
1055
1056    rt->mfc_parent = mfccp->mfcc_parent;
1057    for (i = 0; i < numvifs; i++) {
1058	rt->mfc_ttls[i] = mfccp->mfcc_ttls[i];
1059	rt->mfc_flags[i] = mfccp->mfcc_flags[i] & mrt_api_config &
1060	    MRT_MFC_FLAGS_ALL;
1061    }
1062    /* set the RP address */
1063    if (mrt_api_config & MRT_MFC_RP)
1064	rt->mfc_rp = mfccp->mfcc_rp;
1065    else
1066	rt->mfc_rp.s_addr = INADDR_ANY;
1067}
1068
1069/*
1070 * fully initialize an mfc entry from the parameter.
1071 */
1072static void
1073init_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp)
1074{
1075    rt->mfc_origin     = mfccp->mfcc_origin;
1076    rt->mfc_mcastgrp   = mfccp->mfcc_mcastgrp;
1077
1078    update_mfc_params(rt, mfccp);
1079
1080    /* initialize pkt counters per src-grp */
1081    rt->mfc_pkt_cnt    = 0;
1082    rt->mfc_byte_cnt   = 0;
1083    rt->mfc_wrong_if   = 0;
1084    rt->mfc_last_assert.tv_sec = rt->mfc_last_assert.tv_usec = 0;
1085}
1086
1087
1088/*
1089 * Add an mfc entry
1090 */
1091static int
1092add_mfc(struct mfcctl2 *mfccp)
1093{
1094    struct mfc *rt;
1095    u_long hash;
1096    struct rtdetq *rte;
1097    u_short nstl;
1098
1099    VIF_LOCK();
1100    MFC_LOCK();
1101
1102    rt = mfc_find(mfccp->mfcc_origin.s_addr, mfccp->mfcc_mcastgrp.s_addr);
1103
1104    /* If an entry already exists, just update the fields */
1105    if (rt) {
1106	if (mrtdebug & DEBUG_MFC)
1107	    log(LOG_DEBUG,"add_mfc update o %lx g %lx p %x\n",
1108		(u_long)ntohl(mfccp->mfcc_origin.s_addr),
1109		(u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr),
1110		mfccp->mfcc_parent);
1111
1112	update_mfc_params(rt, mfccp);
1113	MFC_UNLOCK();
1114	VIF_UNLOCK();
1115	return 0;
1116    }
1117
1118    /*
1119     * Find the entry for which the upcall was made and update
1120     */
1121    hash = MFCHASH(mfccp->mfcc_origin.s_addr, mfccp->mfcc_mcastgrp.s_addr);
1122    for (rt = mfctable[hash], nstl = 0; rt; rt = rt->mfc_next) {
1123
1124	if ((rt->mfc_origin.s_addr == mfccp->mfcc_origin.s_addr) &&
1125		(rt->mfc_mcastgrp.s_addr == mfccp->mfcc_mcastgrp.s_addr) &&
1126		(rt->mfc_stall != NULL)) {
1127
1128	    if (nstl++)
1129		log(LOG_ERR, "add_mfc %s o %lx g %lx p %x dbx %p\n",
1130		    "multiple kernel entries",
1131		    (u_long)ntohl(mfccp->mfcc_origin.s_addr),
1132		    (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr),
1133		    mfccp->mfcc_parent, (void *)rt->mfc_stall);
1134
1135	    if (mrtdebug & DEBUG_MFC)
1136		log(LOG_DEBUG,"add_mfc o %lx g %lx p %x dbg %p\n",
1137		    (u_long)ntohl(mfccp->mfcc_origin.s_addr),
1138		    (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr),
1139		    mfccp->mfcc_parent, (void *)rt->mfc_stall);
1140
1141	    init_mfc_params(rt, mfccp);
1142
1143	    rt->mfc_expire = 0;	/* Don't clean this guy up */
1144	    nexpire[hash]--;
1145
1146	    /* free packets Qed at the end of this entry */
1147	    for (rte = rt->mfc_stall; rte != NULL; ) {
1148		struct rtdetq *n = rte->next;
1149
1150		ip_mdq(rte->m, rte->ifp, rt, -1);
1151		m_freem(rte->m);
1152		free(rte, M_MRTABLE);
1153		rte = n;
1154	    }
1155	    rt->mfc_stall = NULL;
1156	}
1157    }
1158
1159    /*
1160     * It is possible that an entry is being inserted without an upcall
1161     */
1162    if (nstl == 0) {
1163	if (mrtdebug & DEBUG_MFC)
1164	    log(LOG_DEBUG,"add_mfc no upcall h %lu o %lx g %lx p %x\n",
1165		hash, (u_long)ntohl(mfccp->mfcc_origin.s_addr),
1166		(u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr),
1167		mfccp->mfcc_parent);
1168
1169	for (rt = mfctable[hash]; rt != NULL; rt = rt->mfc_next) {
1170	    if ((rt->mfc_origin.s_addr == mfccp->mfcc_origin.s_addr) &&
1171		    (rt->mfc_mcastgrp.s_addr == mfccp->mfcc_mcastgrp.s_addr)) {
1172		init_mfc_params(rt, mfccp);
1173		if (rt->mfc_expire)
1174		    nexpire[hash]--;
1175		rt->mfc_expire = 0;
1176		break; /* XXX */
1177	    }
1178	}
1179	if (rt == NULL) {		/* no upcall, so make a new entry */
1180	    rt = (struct mfc *)malloc(sizeof(*rt), M_MRTABLE, M_NOWAIT);
1181	    if (rt == NULL) {
1182		MFC_UNLOCK();
1183		VIF_UNLOCK();
1184		return ENOBUFS;
1185	    }
1186
1187	    init_mfc_params(rt, mfccp);
1188	    rt->mfc_expire     = 0;
1189	    rt->mfc_stall      = NULL;
1190
1191	    rt->mfc_bw_meter = NULL;
1192	    /* insert new entry at head of hash chain */
1193	    rt->mfc_next = mfctable[hash];
1194	    mfctable[hash] = rt;
1195	}
1196    }
1197    MFC_UNLOCK();
1198    VIF_UNLOCK();
1199    return 0;
1200}
1201
1202/*
1203 * Delete an mfc entry
1204 */
1205static int
1206del_mfc(struct mfcctl2 *mfccp)
1207{
1208    struct in_addr	origin;
1209    struct in_addr	mcastgrp;
1210    struct mfc		*rt;
1211    struct mfc		**nptr;
1212    u_long		hash;
1213    struct bw_meter	*list;
1214
1215    origin = mfccp->mfcc_origin;
1216    mcastgrp = mfccp->mfcc_mcastgrp;
1217
1218    if (mrtdebug & DEBUG_MFC)
1219	log(LOG_DEBUG,"del_mfc orig %lx mcastgrp %lx\n",
1220	    (u_long)ntohl(origin.s_addr), (u_long)ntohl(mcastgrp.s_addr));
1221
1222    MFC_LOCK();
1223
1224    hash = MFCHASH(origin.s_addr, mcastgrp.s_addr);
1225    for (nptr = &mfctable[hash]; (rt = *nptr) != NULL; nptr = &rt->mfc_next)
1226	if (origin.s_addr == rt->mfc_origin.s_addr &&
1227		mcastgrp.s_addr == rt->mfc_mcastgrp.s_addr &&
1228		rt->mfc_stall == NULL)
1229	    break;
1230    if (rt == NULL) {
1231	MFC_UNLOCK();
1232	return EADDRNOTAVAIL;
1233    }
1234
1235    *nptr = rt->mfc_next;
1236
1237    /*
1238     * free the bw_meter entries
1239     */
1240    list = rt->mfc_bw_meter;
1241    rt->mfc_bw_meter = NULL;
1242
1243    free(rt, M_MRTABLE);
1244
1245    free_bw_list(list);
1246
1247    MFC_UNLOCK();
1248
1249    return 0;
1250}
1251
1252/*
1253 * Send a message to the routing daemon on the multicast routing socket
1254 */
1255static int
1256socket_send(struct socket *s, struct mbuf *mm, struct sockaddr_in *src)
1257{
1258    if (s) {
1259	SOCKBUF_LOCK(&s->so_rcv);
1260	if (sbappendaddr_locked(&s->so_rcv, (struct sockaddr *)src, mm,
1261	    NULL) != 0) {
1262	    sorwakeup_locked(s);
1263	    return 0;
1264	}
1265	SOCKBUF_UNLOCK(&s->so_rcv);
1266    }
1267    m_freem(mm);
1268    return -1;
1269}
1270
1271/*
1272 * IP multicast forwarding function. This function assumes that the packet
1273 * pointed to by "ip" has arrived on (or is about to be sent to) the interface
1274 * pointed to by "ifp", and the packet is to be relayed to other networks
1275 * that have members of the packet's destination IP multicast group.
1276 *
1277 * The packet is returned unscathed to the caller, unless it is
1278 * erroneous, in which case a non-zero return value tells the caller to
1279 * discard it.
1280 */
1281
1282#define TUNNEL_LEN  12  /* # bytes of IP option for tunnel encapsulation  */
1283
1284static int
1285X_ip_mforward(struct ip *ip, struct ifnet *ifp, struct mbuf *m,
1286    struct ip_moptions *imo)
1287{
1288    struct mfc *rt;
1289    int error;
1290    vifi_t vifi;
1291
1292    if (mrtdebug & DEBUG_FORWARD)
1293	log(LOG_DEBUG, "ip_mforward: src %lx, dst %lx, ifp %p\n",
1294	    (u_long)ntohl(ip->ip_src.s_addr), (u_long)ntohl(ip->ip_dst.s_addr),
1295	    (void *)ifp);
1296
1297    if (ip->ip_hl < (sizeof(struct ip) + TUNNEL_LEN) >> 2 ||
1298		((u_char *)(ip + 1))[1] != IPOPT_LSRR ) {
1299	/*
1300	 * Packet arrived via a physical interface or
1301	 * an encapsulated tunnel or a register_vif.
1302	 */
1303    } else {
1304	/*
1305	 * Packet arrived through a source-route tunnel.
1306	 * Source-route tunnels are no longer supported.
1307	 */
1308	static int last_log;
1309	if (last_log != time_uptime) {
1310	    last_log = time_uptime;
1311	    log(LOG_ERR,
1312		"ip_mforward: received source-routed packet from %lx\n",
1313		(u_long)ntohl(ip->ip_src.s_addr));
1314	}
1315	return 1;
1316    }
1317
1318    VIF_LOCK();
1319    MFC_LOCK();
1320    if (imo && ((vifi = imo->imo_multicast_vif) < numvifs)) {
1321	if (ip->ip_ttl < MAXTTL)
1322	    ip->ip_ttl++;	/* compensate for -1 in *_send routines */
1323	if (rsvpdebug && ip->ip_p == IPPROTO_RSVP) {
1324	    struct vif *vifp = viftable + vifi;
1325
1326	    printf("Sending IPPROTO_RSVP from %lx to %lx on vif %d (%s%s)\n",
1327		(long)ntohl(ip->ip_src.s_addr), (long)ntohl(ip->ip_dst.s_addr),
1328		vifi,
1329		(vifp->v_flags & VIFF_TUNNEL) ? "tunnel on " : "",
1330		vifp->v_ifp->if_xname);
1331	}
1332	error = ip_mdq(m, ifp, NULL, vifi);
1333	MFC_UNLOCK();
1334	VIF_UNLOCK();
1335	return error;
1336    }
1337    if (rsvpdebug && ip->ip_p == IPPROTO_RSVP) {
1338	printf("Warning: IPPROTO_RSVP from %lx to %lx without vif option\n",
1339	    (long)ntohl(ip->ip_src.s_addr), (long)ntohl(ip->ip_dst.s_addr));
1340	if (!imo)
1341	    printf("In fact, no options were specified at all\n");
1342    }
1343
1344    /*
1345     * Don't forward a packet with time-to-live of zero or one,
1346     * or a packet destined to a local-only group.
1347     */
1348    if (ip->ip_ttl <= 1 || IN_LOCAL_GROUP(ntohl(ip->ip_dst.s_addr))) {
1349	MFC_UNLOCK();
1350	VIF_UNLOCK();
1351	return 0;
1352    }
1353
1354    /*
1355     * Determine forwarding vifs from the forwarding cache table
1356     */
1357    ++mrtstat.mrts_mfc_lookups;
1358    rt = mfc_find(ip->ip_src.s_addr, ip->ip_dst.s_addr);
1359
1360    /* Entry exists, so forward if necessary */
1361    if (rt != NULL) {
1362	error = ip_mdq(m, ifp, rt, -1);
1363	MFC_UNLOCK();
1364	VIF_UNLOCK();
1365	return error;
1366    } else {
1367	/*
1368	 * If we don't have a route for packet's origin,
1369	 * Make a copy of the packet & send message to routing daemon
1370	 */
1371
1372	struct mbuf *mb0;
1373	struct rtdetq *rte;
1374	u_long hash;
1375	int hlen = ip->ip_hl << 2;
1376
1377	++mrtstat.mrts_mfc_misses;
1378
1379	mrtstat.mrts_no_route++;
1380	if (mrtdebug & (DEBUG_FORWARD | DEBUG_MFC))
1381	    log(LOG_DEBUG, "ip_mforward: no rte s %lx g %lx\n",
1382		(u_long)ntohl(ip->ip_src.s_addr),
1383		(u_long)ntohl(ip->ip_dst.s_addr));
1384
1385	/*
1386	 * Allocate mbufs early so that we don't do extra work if we are
1387	 * just going to fail anyway.  Make sure to pullup the header so
1388	 * that other people can't step on it.
1389	 */
1390	rte = (struct rtdetq *)malloc((sizeof *rte), M_MRTABLE, M_NOWAIT);
1391	if (rte == NULL) {
1392	    MFC_UNLOCK();
1393	    VIF_UNLOCK();
1394	    return ENOBUFS;
1395	}
1396	mb0 = m_copypacket(m, M_DONTWAIT);
1397	if (mb0 && (M_HASCL(mb0) || mb0->m_len < hlen))
1398	    mb0 = m_pullup(mb0, hlen);
1399	if (mb0 == NULL) {
1400	    free(rte, M_MRTABLE);
1401	    MFC_UNLOCK();
1402	    VIF_UNLOCK();
1403	    return ENOBUFS;
1404	}
1405
1406	/* is there an upcall waiting for this flow ? */
1407	hash = MFCHASH(ip->ip_src.s_addr, ip->ip_dst.s_addr);
1408	for (rt = mfctable[hash]; rt; rt = rt->mfc_next) {
1409	    if ((ip->ip_src.s_addr == rt->mfc_origin.s_addr) &&
1410		    (ip->ip_dst.s_addr == rt->mfc_mcastgrp.s_addr) &&
1411		    (rt->mfc_stall != NULL))
1412		break;
1413	}
1414
1415	if (rt == NULL) {
1416	    int i;
1417	    struct igmpmsg *im;
1418	    struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
1419	    struct mbuf *mm;
1420
1421	    /*
1422	     * Locate the vifi for the incoming interface for this packet.
1423	     * If none found, drop packet.
1424	     */
1425	    for (vifi=0; vifi < numvifs && viftable[vifi].v_ifp != ifp; vifi++)
1426		;
1427	    if (vifi >= numvifs)	/* vif not found, drop packet */
1428		goto non_fatal;
1429
1430	    /* no upcall, so make a new entry */
1431	    rt = (struct mfc *)malloc(sizeof(*rt), M_MRTABLE, M_NOWAIT);
1432	    if (rt == NULL)
1433		goto fail;
1434	    /* Make a copy of the header to send to the user level process */
1435	    mm = m_copy(mb0, 0, hlen);
1436	    if (mm == NULL)
1437		goto fail1;
1438
1439	    /*
1440	     * Send message to routing daemon to install
1441	     * a route into the kernel table
1442	     */
1443
1444	    im = mtod(mm, struct igmpmsg *);
1445	    im->im_msgtype = IGMPMSG_NOCACHE;
1446	    im->im_mbz = 0;
1447	    im->im_vif = vifi;
1448
1449	    mrtstat.mrts_upcalls++;
1450
1451	    k_igmpsrc.sin_addr = ip->ip_src;
1452	    if (socket_send(ip_mrouter, mm, &k_igmpsrc) < 0) {
1453		log(LOG_WARNING, "ip_mforward: ip_mrouter socket queue full\n");
1454		++mrtstat.mrts_upq_sockfull;
1455fail1:
1456		free(rt, M_MRTABLE);
1457fail:
1458		free(rte, M_MRTABLE);
1459		m_freem(mb0);
1460		MFC_UNLOCK();
1461		VIF_UNLOCK();
1462		return ENOBUFS;
1463	    }
1464
1465	    /* insert new entry at head of hash chain */
1466	    rt->mfc_origin.s_addr     = ip->ip_src.s_addr;
1467	    rt->mfc_mcastgrp.s_addr   = ip->ip_dst.s_addr;
1468	    rt->mfc_expire	      = UPCALL_EXPIRE;
1469	    nexpire[hash]++;
1470	    for (i = 0; i < numvifs; i++) {
1471		rt->mfc_ttls[i] = 0;
1472		rt->mfc_flags[i] = 0;
1473	    }
1474	    rt->mfc_parent = -1;
1475
1476	    rt->mfc_rp.s_addr = INADDR_ANY; /* clear the RP address */
1477
1478	    rt->mfc_bw_meter = NULL;
1479
1480	    /* link into table */
1481	    rt->mfc_next   = mfctable[hash];
1482	    mfctable[hash] = rt;
1483	    rt->mfc_stall = rte;
1484
1485	} else {
1486	    /* determine if q has overflowed */
1487	    int npkts = 0;
1488	    struct rtdetq **p;
1489
1490	    /*
1491	     * XXX ouch! we need to append to the list, but we
1492	     * only have a pointer to the front, so we have to
1493	     * scan the entire list every time.
1494	     */
1495	    for (p = &rt->mfc_stall; *p != NULL; p = &(*p)->next)
1496		npkts++;
1497
1498	    if (npkts > MAX_UPQ) {
1499		mrtstat.mrts_upq_ovflw++;
1500non_fatal:
1501		free(rte, M_MRTABLE);
1502		m_freem(mb0);
1503		MFC_UNLOCK();
1504		VIF_UNLOCK();
1505		return 0;
1506	    }
1507
1508	    /* Add this entry to the end of the queue */
1509	    *p = rte;
1510	}
1511
1512	rte->m			= mb0;
1513	rte->ifp		= ifp;
1514	rte->next		= NULL;
1515
1516	MFC_UNLOCK();
1517	VIF_UNLOCK();
1518
1519	return 0;
1520    }
1521}
1522
1523/*
1524 * Clean up the cache entry if upcall is not serviced
1525 */
1526static void
1527expire_upcalls(void *unused)
1528{
1529    struct rtdetq *rte;
1530    struct mfc *mfc, **nptr;
1531    int i;
1532
1533    MFC_LOCK();
1534    for (i = 0; i < MFCTBLSIZ; i++) {
1535	if (nexpire[i] == 0)
1536	    continue;
1537	nptr = &mfctable[i];
1538	for (mfc = *nptr; mfc != NULL; mfc = *nptr) {
1539	    /*
1540	     * Skip real cache entries
1541	     * Make sure it wasn't marked to not expire (shouldn't happen)
1542	     * If it expires now
1543	     */
1544	    if (mfc->mfc_stall != NULL && mfc->mfc_expire != 0 &&
1545		    --mfc->mfc_expire == 0) {
1546		if (mrtdebug & DEBUG_EXPIRE)
1547		    log(LOG_DEBUG, "expire_upcalls: expiring (%lx %lx)\n",
1548			(u_long)ntohl(mfc->mfc_origin.s_addr),
1549			(u_long)ntohl(mfc->mfc_mcastgrp.s_addr));
1550		/*
1551		 * drop all the packets
1552		 * free the mbuf with the pkt, if, timing info
1553		 */
1554		for (rte = mfc->mfc_stall; rte; ) {
1555		    struct rtdetq *n = rte->next;
1556
1557		    m_freem(rte->m);
1558		    free(rte, M_MRTABLE);
1559		    rte = n;
1560		}
1561		++mrtstat.mrts_cache_cleanups;
1562		nexpire[i]--;
1563
1564		/*
1565		 * free the bw_meter entries
1566		 */
1567		while (mfc->mfc_bw_meter != NULL) {
1568		    struct bw_meter *x = mfc->mfc_bw_meter;
1569
1570		    mfc->mfc_bw_meter = x->bm_mfc_next;
1571		    free(x, M_BWMETER);
1572		}
1573
1574		*nptr = mfc->mfc_next;
1575		free(mfc, M_MRTABLE);
1576	    } else {
1577		nptr = &mfc->mfc_next;
1578	    }
1579	}
1580    }
1581    MFC_UNLOCK();
1582
1583    callout_reset(&expire_upcalls_ch, EXPIRE_TIMEOUT, expire_upcalls, NULL);
1584}
1585
1586/*
1587 * Packet forwarding routine once entry in the cache is made
1588 */
1589static int
1590ip_mdq(struct mbuf *m, struct ifnet *ifp, struct mfc *rt, vifi_t xmt_vif)
1591{
1592    struct ip  *ip = mtod(m, struct ip *);
1593    vifi_t vifi;
1594    int plen = ip->ip_len;
1595
1596    VIF_LOCK_ASSERT();
1597
1598    /*
1599     * If xmt_vif is not -1, send on only the requested vif.
1600     *
1601     * (since vifi_t is u_short, -1 becomes MAXUSHORT, which > numvifs.)
1602     */
1603    if (xmt_vif < numvifs) {
1604	if (viftable[xmt_vif].v_flags & VIFF_REGISTER)
1605		pim_register_send(ip, viftable + xmt_vif, m, rt);
1606	else
1607		phyint_send(ip, viftable + xmt_vif, m);
1608	return 1;
1609    }
1610
1611    /*
1612     * Don't forward if it didn't arrive from the parent vif for its origin.
1613     */
1614    vifi = rt->mfc_parent;
1615    if ((vifi >= numvifs) || (viftable[vifi].v_ifp != ifp)) {
1616	/* came in the wrong interface */
1617	if (mrtdebug & DEBUG_FORWARD)
1618	    log(LOG_DEBUG, "wrong if: ifp %p vifi %d vififp %p\n",
1619		(void *)ifp, vifi, (void *)viftable[vifi].v_ifp);
1620	++mrtstat.mrts_wrong_if;
1621	++rt->mfc_wrong_if;
1622	/*
1623	 * If we are doing PIM assert processing, send a message
1624	 * to the routing daemon.
1625	 *
1626	 * XXX: A PIM-SM router needs the WRONGVIF detection so it
1627	 * can complete the SPT switch, regardless of the type
1628	 * of the iif (broadcast media, GRE tunnel, etc).
1629	 */
1630	if (pim_assert && (vifi < numvifs) && viftable[vifi].v_ifp) {
1631	    struct timeval now;
1632	    u_long delta;
1633
1634	    if (ifp == &multicast_register_if)
1635		pimstat.pims_rcv_registers_wrongiif++;
1636
1637	    /* Get vifi for the incoming packet */
1638	    for (vifi=0; vifi < numvifs && viftable[vifi].v_ifp != ifp; vifi++)
1639		;
1640	    if (vifi >= numvifs)
1641		return 0;	/* The iif is not found: ignore the packet. */
1642
1643	    if (rt->mfc_flags[vifi] & MRT_MFC_FLAGS_DISABLE_WRONGVIF)
1644		return 0;	/* WRONGVIF disabled: ignore the packet */
1645
1646	    GET_TIME(now);
1647
1648	    TV_DELTA(now, rt->mfc_last_assert, delta);
1649
1650	    if (delta > ASSERT_MSG_TIME) {
1651		struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
1652		struct igmpmsg *im;
1653		int hlen = ip->ip_hl << 2;
1654		struct mbuf *mm = m_copy(m, 0, hlen);
1655
1656		if (mm && (M_HASCL(mm) || mm->m_len < hlen))
1657		    mm = m_pullup(mm, hlen);
1658		if (mm == NULL)
1659		    return ENOBUFS;
1660
1661		rt->mfc_last_assert = now;
1662
1663		im = mtod(mm, struct igmpmsg *);
1664		im->im_msgtype	= IGMPMSG_WRONGVIF;
1665		im->im_mbz		= 0;
1666		im->im_vif		= vifi;
1667
1668		mrtstat.mrts_upcalls++;
1669
1670		k_igmpsrc.sin_addr = im->im_src;
1671		if (socket_send(ip_mrouter, mm, &k_igmpsrc) < 0) {
1672		    log(LOG_WARNING,
1673			"ip_mforward: ip_mrouter socket queue full\n");
1674		    ++mrtstat.mrts_upq_sockfull;
1675		    return ENOBUFS;
1676		}
1677	    }
1678	}
1679	return 0;
1680    }
1681
1682    /* If I sourced this packet, it counts as output, else it was input. */
1683    if (ip->ip_src.s_addr == viftable[vifi].v_lcl_addr.s_addr) {
1684	viftable[vifi].v_pkt_out++;
1685	viftable[vifi].v_bytes_out += plen;
1686    } else {
1687	viftable[vifi].v_pkt_in++;
1688	viftable[vifi].v_bytes_in += plen;
1689    }
1690    rt->mfc_pkt_cnt++;
1691    rt->mfc_byte_cnt += plen;
1692
1693    /*
1694     * For each vif, decide if a copy of the packet should be forwarded.
1695     * Forward if:
1696     *		- the ttl exceeds the vif's threshold
1697     *		- there are group members downstream on interface
1698     */
1699    for (vifi = 0; vifi < numvifs; vifi++)
1700	if ((rt->mfc_ttls[vifi] > 0) && (ip->ip_ttl > rt->mfc_ttls[vifi])) {
1701	    viftable[vifi].v_pkt_out++;
1702	    viftable[vifi].v_bytes_out += plen;
1703	    if (viftable[vifi].v_flags & VIFF_REGISTER)
1704		pim_register_send(ip, viftable + vifi, m, rt);
1705	    else
1706		phyint_send(ip, viftable + vifi, m);
1707	}
1708
1709    /*
1710     * Perform upcall-related bw measuring.
1711     */
1712    if (rt->mfc_bw_meter != NULL) {
1713	struct bw_meter *x;
1714	struct timeval now;
1715
1716	GET_TIME(now);
1717	MFC_LOCK_ASSERT();
1718	for (x = rt->mfc_bw_meter; x != NULL; x = x->bm_mfc_next)
1719	    bw_meter_receive_packet(x, plen, &now);
1720    }
1721
1722    return 0;
1723}
1724
1725/*
1726 * check if a vif number is legal/ok. This is used by ip_output.
1727 */
1728static int
1729X_legal_vif_num(int vif)
1730{
1731    /* XXX unlocked, matter? */
1732    return (vif >= 0 && vif < numvifs);
1733}
1734
1735/*
1736 * Return the local address used by this vif
1737 */
1738static u_long
1739X_ip_mcast_src(int vifi)
1740{
1741    /* XXX unlocked, matter? */
1742    if (vifi >= 0 && vifi < numvifs)
1743	return viftable[vifi].v_lcl_addr.s_addr;
1744    else
1745	return INADDR_ANY;
1746}
1747
1748static void
1749phyint_send(struct ip *ip, struct vif *vifp, struct mbuf *m)
1750{
1751    struct mbuf *mb_copy;
1752    int hlen = ip->ip_hl << 2;
1753
1754    VIF_LOCK_ASSERT();
1755
1756    /*
1757     * Make a new reference to the packet; make sure that
1758     * the IP header is actually copied, not just referenced,
1759     * so that ip_output() only scribbles on the copy.
1760     */
1761    mb_copy = m_copypacket(m, M_DONTWAIT);
1762    if (mb_copy && (M_HASCL(mb_copy) || mb_copy->m_len < hlen))
1763	mb_copy = m_pullup(mb_copy, hlen);
1764    if (mb_copy == NULL)
1765	return;
1766
1767    send_packet(vifp, mb_copy);
1768}
1769
1770static void
1771send_packet(struct vif *vifp, struct mbuf *m)
1772{
1773	struct ip_moptions imo;
1774	struct in_multi *imm[2];
1775	int error;
1776
1777	VIF_LOCK_ASSERT();
1778
1779	imo.imo_multicast_ifp  = vifp->v_ifp;
1780	imo.imo_multicast_ttl  = mtod(m, struct ip *)->ip_ttl - 1;
1781	imo.imo_multicast_loop = 1;
1782	imo.imo_multicast_vif  = -1;
1783	imo.imo_num_memberships = 0;
1784	imo.imo_max_memberships = 2;
1785	imo.imo_membership  = &imm[0];
1786
1787	/*
1788	 * Re-entrancy should not be a problem here, because
1789	 * the packets that we send out and are looped back at us
1790	 * should get rejected because they appear to come from
1791	 * the loopback interface, thus preventing looping.
1792	 */
1793	error = ip_output(m, NULL, &vifp->v_route, IP_FORWARDING, &imo, NULL);
1794	if (mrtdebug & DEBUG_XMIT) {
1795	    log(LOG_DEBUG, "phyint_send on vif %td err %d\n",
1796		vifp - viftable, error);
1797	}
1798}
1799
1800static int
1801X_ip_rsvp_vif(struct socket *so, struct sockopt *sopt)
1802{
1803    int error, vifi;
1804
1805    if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_RSVP)
1806	return EOPNOTSUPP;
1807
1808    error = sooptcopyin(sopt, &vifi, sizeof vifi, sizeof vifi);
1809    if (error)
1810	return error;
1811
1812    VIF_LOCK();
1813
1814    if (vifi < 0 || vifi >= numvifs) {	/* Error if vif is invalid */
1815	VIF_UNLOCK();
1816	return EADDRNOTAVAIL;
1817    }
1818
1819    if (sopt->sopt_name == IP_RSVP_VIF_ON) {
1820	/* Check if socket is available. */
1821	if (viftable[vifi].v_rsvpd != NULL) {
1822	    VIF_UNLOCK();
1823	    return EADDRINUSE;
1824	}
1825
1826	viftable[vifi].v_rsvpd = so;
1827	/* This may seem silly, but we need to be sure we don't over-increment
1828	 * the RSVP counter, in case something slips up.
1829	 */
1830	if (!viftable[vifi].v_rsvp_on) {
1831	    viftable[vifi].v_rsvp_on = 1;
1832	    rsvp_on++;
1833	}
1834    } else { /* must be VIF_OFF */
1835	/*
1836	 * XXX as an additional consistency check, one could make sure
1837	 * that viftable[vifi].v_rsvpd == so, otherwise passing so as
1838	 * first parameter is pretty useless.
1839	 */
1840	viftable[vifi].v_rsvpd = NULL;
1841	/*
1842	 * This may seem silly, but we need to be sure we don't over-decrement
1843	 * the RSVP counter, in case something slips up.
1844	 */
1845	if (viftable[vifi].v_rsvp_on) {
1846	    viftable[vifi].v_rsvp_on = 0;
1847	    rsvp_on--;
1848	}
1849    }
1850    VIF_UNLOCK();
1851    return 0;
1852}
1853
1854static void
1855X_ip_rsvp_force_done(struct socket *so)
1856{
1857    int vifi;
1858
1859    /* Don't bother if it is not the right type of socket. */
1860    if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_RSVP)
1861	return;
1862
1863    VIF_LOCK();
1864
1865    /* The socket may be attached to more than one vif...this
1866     * is perfectly legal.
1867     */
1868    for (vifi = 0; vifi < numvifs; vifi++) {
1869	if (viftable[vifi].v_rsvpd == so) {
1870	    viftable[vifi].v_rsvpd = NULL;
1871	    /* This may seem silly, but we need to be sure we don't
1872	     * over-decrement the RSVP counter, in case something slips up.
1873	     */
1874	    if (viftable[vifi].v_rsvp_on) {
1875		viftable[vifi].v_rsvp_on = 0;
1876		rsvp_on--;
1877	    }
1878	}
1879    }
1880
1881    VIF_UNLOCK();
1882}
1883
1884static void
1885X_rsvp_input(struct mbuf *m, int off)
1886{
1887    int vifi;
1888    struct ip *ip = mtod(m, struct ip *);
1889    struct sockaddr_in rsvp_src = { sizeof rsvp_src, AF_INET };
1890    struct ifnet *ifp;
1891
1892    if (rsvpdebug)
1893	printf("rsvp_input: rsvp_on %d\n",rsvp_on);
1894
1895    /* Can still get packets with rsvp_on = 0 if there is a local member
1896     * of the group to which the RSVP packet is addressed.  But in this
1897     * case we want to throw the packet away.
1898     */
1899    if (!rsvp_on) {
1900	m_freem(m);
1901	return;
1902    }
1903
1904    if (rsvpdebug)
1905	printf("rsvp_input: check vifs\n");
1906
1907#ifdef DIAGNOSTIC
1908    M_ASSERTPKTHDR(m);
1909#endif
1910
1911    ifp = m->m_pkthdr.rcvif;
1912
1913    VIF_LOCK();
1914    /* Find which vif the packet arrived on. */
1915    for (vifi = 0; vifi < numvifs; vifi++)
1916	if (viftable[vifi].v_ifp == ifp)
1917	    break;
1918
1919    if (vifi == numvifs || viftable[vifi].v_rsvpd == NULL) {
1920	/*
1921	 * Drop the lock here to avoid holding it across rip_input.
1922	 * This could make rsvpdebug printfs wrong.  If you care,
1923	 * record the state of stuff before dropping the lock.
1924	 */
1925	VIF_UNLOCK();
1926	/*
1927	 * If the old-style non-vif-associated socket is set,
1928	 * then use it.  Otherwise, drop packet since there
1929	 * is no specific socket for this vif.
1930	 */
1931	if (ip_rsvpd != NULL) {
1932	    if (rsvpdebug)
1933		printf("rsvp_input: Sending packet up old-style socket\n");
1934	    rip_input(m, off);  /* xxx */
1935	} else {
1936	    if (rsvpdebug && vifi == numvifs)
1937		printf("rsvp_input: Can't find vif for packet.\n");
1938	    else if (rsvpdebug && viftable[vifi].v_rsvpd == NULL)
1939		printf("rsvp_input: No socket defined for vif %d\n",vifi);
1940	    m_freem(m);
1941	}
1942	return;
1943    }
1944    rsvp_src.sin_addr = ip->ip_src;
1945
1946    if (rsvpdebug && m)
1947	printf("rsvp_input: m->m_len = %d, sbspace() = %ld\n",
1948	       m->m_len,sbspace(&(viftable[vifi].v_rsvpd->so_rcv)));
1949
1950    if (socket_send(viftable[vifi].v_rsvpd, m, &rsvp_src) < 0) {
1951	if (rsvpdebug)
1952	    printf("rsvp_input: Failed to append to socket\n");
1953    } else {
1954	if (rsvpdebug)
1955	    printf("rsvp_input: send packet up\n");
1956    }
1957    VIF_UNLOCK();
1958}
1959
1960/*
1961 * Code for bandwidth monitors
1962 */
1963
1964/*
1965 * Define common interface for timeval-related methods
1966 */
1967#define	BW_TIMEVALCMP(tvp, uvp, cmp) timevalcmp((tvp), (uvp), cmp)
1968#define	BW_TIMEVALDECR(vvp, uvp) timevalsub((vvp), (uvp))
1969#define	BW_TIMEVALADD(vvp, uvp) timevaladd((vvp), (uvp))
1970
1971static uint32_t
1972compute_bw_meter_flags(struct bw_upcall *req)
1973{
1974    uint32_t flags = 0;
1975
1976    if (req->bu_flags & BW_UPCALL_UNIT_PACKETS)
1977	flags |= BW_METER_UNIT_PACKETS;
1978    if (req->bu_flags & BW_UPCALL_UNIT_BYTES)
1979	flags |= BW_METER_UNIT_BYTES;
1980    if (req->bu_flags & BW_UPCALL_GEQ)
1981	flags |= BW_METER_GEQ;
1982    if (req->bu_flags & BW_UPCALL_LEQ)
1983	flags |= BW_METER_LEQ;
1984
1985    return flags;
1986}
1987
1988/*
1989 * Add a bw_meter entry
1990 */
1991static int
1992add_bw_upcall(struct bw_upcall *req)
1993{
1994    struct mfc *mfc;
1995    struct timeval delta = { BW_UPCALL_THRESHOLD_INTERVAL_MIN_SEC,
1996		BW_UPCALL_THRESHOLD_INTERVAL_MIN_USEC };
1997    struct timeval now;
1998    struct bw_meter *x;
1999    uint32_t flags;
2000
2001    if (!(mrt_api_config & MRT_MFC_BW_UPCALL))
2002	return EOPNOTSUPP;
2003
2004    /* Test if the flags are valid */
2005    if (!(req->bu_flags & (BW_UPCALL_UNIT_PACKETS | BW_UPCALL_UNIT_BYTES)))
2006	return EINVAL;
2007    if (!(req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ)))
2008	return EINVAL;
2009    if ((req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ))
2010	    == (BW_UPCALL_GEQ | BW_UPCALL_LEQ))
2011	return EINVAL;
2012
2013    /* Test if the threshold time interval is valid */
2014    if (BW_TIMEVALCMP(&req->bu_threshold.b_time, &delta, <))
2015	return EINVAL;
2016
2017    flags = compute_bw_meter_flags(req);
2018
2019    /*
2020     * Find if we have already same bw_meter entry
2021     */
2022    MFC_LOCK();
2023    mfc = mfc_find(req->bu_src.s_addr, req->bu_dst.s_addr);
2024    if (mfc == NULL) {
2025	MFC_UNLOCK();
2026	return EADDRNOTAVAIL;
2027    }
2028    for (x = mfc->mfc_bw_meter; x != NULL; x = x->bm_mfc_next) {
2029	if ((BW_TIMEVALCMP(&x->bm_threshold.b_time,
2030			   &req->bu_threshold.b_time, ==)) &&
2031	    (x->bm_threshold.b_packets == req->bu_threshold.b_packets) &&
2032	    (x->bm_threshold.b_bytes == req->bu_threshold.b_bytes) &&
2033	    (x->bm_flags & BW_METER_USER_FLAGS) == flags)  {
2034	    MFC_UNLOCK();
2035	    return 0;		/* XXX Already installed */
2036	}
2037    }
2038
2039    /* Allocate the new bw_meter entry */
2040    x = (struct bw_meter *)malloc(sizeof(*x), M_BWMETER, M_NOWAIT);
2041    if (x == NULL) {
2042	MFC_UNLOCK();
2043	return ENOBUFS;
2044    }
2045
2046    /* Set the new bw_meter entry */
2047    x->bm_threshold.b_time = req->bu_threshold.b_time;
2048    GET_TIME(now);
2049    x->bm_start_time = now;
2050    x->bm_threshold.b_packets = req->bu_threshold.b_packets;
2051    x->bm_threshold.b_bytes = req->bu_threshold.b_bytes;
2052    x->bm_measured.b_packets = 0;
2053    x->bm_measured.b_bytes = 0;
2054    x->bm_flags = flags;
2055    x->bm_time_next = NULL;
2056    x->bm_time_hash = BW_METER_BUCKETS;
2057
2058    /* Add the new bw_meter entry to the front of entries for this MFC */
2059    x->bm_mfc = mfc;
2060    x->bm_mfc_next = mfc->mfc_bw_meter;
2061    mfc->mfc_bw_meter = x;
2062    schedule_bw_meter(x, &now);
2063    MFC_UNLOCK();
2064
2065    return 0;
2066}
2067
2068static void
2069free_bw_list(struct bw_meter *list)
2070{
2071    while (list != NULL) {
2072	struct bw_meter *x = list;
2073
2074	list = list->bm_mfc_next;
2075	unschedule_bw_meter(x);
2076	free(x, M_BWMETER);
2077    }
2078}
2079
2080/*
2081 * Delete one or multiple bw_meter entries
2082 */
2083static int
2084del_bw_upcall(struct bw_upcall *req)
2085{
2086    struct mfc *mfc;
2087    struct bw_meter *x;
2088
2089    if (!(mrt_api_config & MRT_MFC_BW_UPCALL))
2090	return EOPNOTSUPP;
2091
2092    MFC_LOCK();
2093    /* Find the corresponding MFC entry */
2094    mfc = mfc_find(req->bu_src.s_addr, req->bu_dst.s_addr);
2095    if (mfc == NULL) {
2096	MFC_UNLOCK();
2097	return EADDRNOTAVAIL;
2098    } else if (req->bu_flags & BW_UPCALL_DELETE_ALL) {
2099	/*
2100	 * Delete all bw_meter entries for this mfc
2101	 */
2102	struct bw_meter *list;
2103
2104	list = mfc->mfc_bw_meter;
2105	mfc->mfc_bw_meter = NULL;
2106	free_bw_list(list);
2107	MFC_UNLOCK();
2108	return 0;
2109    } else {			/* Delete a single bw_meter entry */
2110	struct bw_meter *prev;
2111	uint32_t flags = 0;
2112
2113	flags = compute_bw_meter_flags(req);
2114
2115	/* Find the bw_meter entry to delete */
2116	for (prev = NULL, x = mfc->mfc_bw_meter; x != NULL;
2117	     prev = x, x = x->bm_mfc_next) {
2118	    if ((BW_TIMEVALCMP(&x->bm_threshold.b_time,
2119			       &req->bu_threshold.b_time, ==)) &&
2120		(x->bm_threshold.b_packets == req->bu_threshold.b_packets) &&
2121		(x->bm_threshold.b_bytes == req->bu_threshold.b_bytes) &&
2122		(x->bm_flags & BW_METER_USER_FLAGS) == flags)
2123		break;
2124	}
2125	if (x != NULL) { /* Delete entry from the list for this MFC */
2126	    if (prev != NULL)
2127		prev->bm_mfc_next = x->bm_mfc_next;	/* remove from middle*/
2128	    else
2129		x->bm_mfc->mfc_bw_meter = x->bm_mfc_next;/* new head of list */
2130
2131	    unschedule_bw_meter(x);
2132	    MFC_UNLOCK();
2133	    /* Free the bw_meter entry */
2134	    free(x, M_BWMETER);
2135	    return 0;
2136	} else {
2137	    MFC_UNLOCK();
2138	    return EINVAL;
2139	}
2140    }
2141    /* NOTREACHED */
2142}
2143
2144/*
2145 * Perform bandwidth measurement processing that may result in an upcall
2146 */
2147static void
2148bw_meter_receive_packet(struct bw_meter *x, int plen, struct timeval *nowp)
2149{
2150    struct timeval delta;
2151
2152    MFC_LOCK_ASSERT();
2153
2154    delta = *nowp;
2155    BW_TIMEVALDECR(&delta, &x->bm_start_time);
2156
2157    if (x->bm_flags & BW_METER_GEQ) {
2158	/*
2159	 * Processing for ">=" type of bw_meter entry
2160	 */
2161	if (BW_TIMEVALCMP(&delta, &x->bm_threshold.b_time, >)) {
2162	    /* Reset the bw_meter entry */
2163	    x->bm_start_time = *nowp;
2164	    x->bm_measured.b_packets = 0;
2165	    x->bm_measured.b_bytes = 0;
2166	    x->bm_flags &= ~BW_METER_UPCALL_DELIVERED;
2167	}
2168
2169	/* Record that a packet is received */
2170	x->bm_measured.b_packets++;
2171	x->bm_measured.b_bytes += plen;
2172
2173	/*
2174	 * Test if we should deliver an upcall
2175	 */
2176	if (!(x->bm_flags & BW_METER_UPCALL_DELIVERED)) {
2177	    if (((x->bm_flags & BW_METER_UNIT_PACKETS) &&
2178		 (x->bm_measured.b_packets >= x->bm_threshold.b_packets)) ||
2179		((x->bm_flags & BW_METER_UNIT_BYTES) &&
2180		 (x->bm_measured.b_bytes >= x->bm_threshold.b_bytes))) {
2181		/* Prepare an upcall for delivery */
2182		bw_meter_prepare_upcall(x, nowp);
2183		x->bm_flags |= BW_METER_UPCALL_DELIVERED;
2184	    }
2185	}
2186    } else if (x->bm_flags & BW_METER_LEQ) {
2187	/*
2188	 * Processing for "<=" type of bw_meter entry
2189	 */
2190	if (BW_TIMEVALCMP(&delta, &x->bm_threshold.b_time, >)) {
2191	    /*
2192	     * We are behind time with the multicast forwarding table
2193	     * scanning for "<=" type of bw_meter entries, so test now
2194	     * if we should deliver an upcall.
2195	     */
2196	    if (((x->bm_flags & BW_METER_UNIT_PACKETS) &&
2197		 (x->bm_measured.b_packets <= x->bm_threshold.b_packets)) ||
2198		((x->bm_flags & BW_METER_UNIT_BYTES) &&
2199		 (x->bm_measured.b_bytes <= x->bm_threshold.b_bytes))) {
2200		/* Prepare an upcall for delivery */
2201		bw_meter_prepare_upcall(x, nowp);
2202	    }
2203	    /* Reschedule the bw_meter entry */
2204	    unschedule_bw_meter(x);
2205	    schedule_bw_meter(x, nowp);
2206	}
2207
2208	/* Record that a packet is received */
2209	x->bm_measured.b_packets++;
2210	x->bm_measured.b_bytes += plen;
2211
2212	/*
2213	 * Test if we should restart the measuring interval
2214	 */
2215	if ((x->bm_flags & BW_METER_UNIT_PACKETS &&
2216	     x->bm_measured.b_packets <= x->bm_threshold.b_packets) ||
2217	    (x->bm_flags & BW_METER_UNIT_BYTES &&
2218	     x->bm_measured.b_bytes <= x->bm_threshold.b_bytes)) {
2219	    /* Don't restart the measuring interval */
2220	} else {
2221	    /* Do restart the measuring interval */
2222	    /*
2223	     * XXX: note that we don't unschedule and schedule, because this
2224	     * might be too much overhead per packet. Instead, when we process
2225	     * all entries for a given timer hash bin, we check whether it is
2226	     * really a timeout. If not, we reschedule at that time.
2227	     */
2228	    x->bm_start_time = *nowp;
2229	    x->bm_measured.b_packets = 0;
2230	    x->bm_measured.b_bytes = 0;
2231	    x->bm_flags &= ~BW_METER_UPCALL_DELIVERED;
2232	}
2233    }
2234}
2235
2236/*
2237 * Prepare a bandwidth-related upcall
2238 */
2239static void
2240bw_meter_prepare_upcall(struct bw_meter *x, struct timeval *nowp)
2241{
2242    struct timeval delta;
2243    struct bw_upcall *u;
2244
2245    MFC_LOCK_ASSERT();
2246
2247    /*
2248     * Compute the measured time interval
2249     */
2250    delta = *nowp;
2251    BW_TIMEVALDECR(&delta, &x->bm_start_time);
2252
2253    /*
2254     * If there are too many pending upcalls, deliver them now
2255     */
2256    if (bw_upcalls_n >= BW_UPCALLS_MAX)
2257	bw_upcalls_send();
2258
2259    /*
2260     * Set the bw_upcall entry
2261     */
2262    u = &bw_upcalls[bw_upcalls_n++];
2263    u->bu_src = x->bm_mfc->mfc_origin;
2264    u->bu_dst = x->bm_mfc->mfc_mcastgrp;
2265    u->bu_threshold.b_time = x->bm_threshold.b_time;
2266    u->bu_threshold.b_packets = x->bm_threshold.b_packets;
2267    u->bu_threshold.b_bytes = x->bm_threshold.b_bytes;
2268    u->bu_measured.b_time = delta;
2269    u->bu_measured.b_packets = x->bm_measured.b_packets;
2270    u->bu_measured.b_bytes = x->bm_measured.b_bytes;
2271    u->bu_flags = 0;
2272    if (x->bm_flags & BW_METER_UNIT_PACKETS)
2273	u->bu_flags |= BW_UPCALL_UNIT_PACKETS;
2274    if (x->bm_flags & BW_METER_UNIT_BYTES)
2275	u->bu_flags |= BW_UPCALL_UNIT_BYTES;
2276    if (x->bm_flags & BW_METER_GEQ)
2277	u->bu_flags |= BW_UPCALL_GEQ;
2278    if (x->bm_flags & BW_METER_LEQ)
2279	u->bu_flags |= BW_UPCALL_LEQ;
2280}
2281
2282/*
2283 * Send the pending bandwidth-related upcalls
2284 */
2285static void
2286bw_upcalls_send(void)
2287{
2288    struct mbuf *m;
2289    int len = bw_upcalls_n * sizeof(bw_upcalls[0]);
2290    struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
2291    static struct igmpmsg igmpmsg = { 0,		/* unused1 */
2292				      0,		/* unused2 */
2293				      IGMPMSG_BW_UPCALL,/* im_msgtype */
2294				      0,		/* im_mbz  */
2295				      0,		/* im_vif  */
2296				      0,		/* unused3 */
2297				      { 0 },		/* im_src  */
2298				      { 0 } };		/* im_dst  */
2299
2300    MFC_LOCK_ASSERT();
2301
2302    if (bw_upcalls_n == 0)
2303	return;			/* No pending upcalls */
2304
2305    bw_upcalls_n = 0;
2306
2307    /*
2308     * Allocate a new mbuf, initialize it with the header and
2309     * the payload for the pending calls.
2310     */
2311    MGETHDR(m, M_DONTWAIT, MT_DATA);
2312    if (m == NULL) {
2313	log(LOG_WARNING, "bw_upcalls_send: cannot allocate mbuf\n");
2314	return;
2315    }
2316
2317    m->m_len = m->m_pkthdr.len = 0;
2318    m_copyback(m, 0, sizeof(struct igmpmsg), (caddr_t)&igmpmsg);
2319    m_copyback(m, sizeof(struct igmpmsg), len, (caddr_t)&bw_upcalls[0]);
2320
2321    /*
2322     * Send the upcalls
2323     * XXX do we need to set the address in k_igmpsrc ?
2324     */
2325    mrtstat.mrts_upcalls++;
2326    if (socket_send(ip_mrouter, m, &k_igmpsrc) < 0) {
2327	log(LOG_WARNING, "bw_upcalls_send: ip_mrouter socket queue full\n");
2328	++mrtstat.mrts_upq_sockfull;
2329    }
2330}
2331
2332/*
2333 * Compute the timeout hash value for the bw_meter entries
2334 */
2335#define	BW_METER_TIMEHASH(bw_meter, hash)				\
2336    do {								\
2337	struct timeval next_timeval = (bw_meter)->bm_start_time;	\
2338									\
2339	BW_TIMEVALADD(&next_timeval, &(bw_meter)->bm_threshold.b_time); \
2340	(hash) = next_timeval.tv_sec;					\
2341	if (next_timeval.tv_usec)					\
2342	    (hash)++; /* XXX: make sure we don't timeout early */	\
2343	(hash) %= BW_METER_BUCKETS;					\
2344    } while (0)
2345
2346/*
2347 * Schedule a timer to process periodically bw_meter entry of type "<="
2348 * by linking the entry in the proper hash bucket.
2349 */
2350static void
2351schedule_bw_meter(struct bw_meter *x, struct timeval *nowp)
2352{
2353    int time_hash;
2354
2355    MFC_LOCK_ASSERT();
2356
2357    if (!(x->bm_flags & BW_METER_LEQ))
2358	return;		/* XXX: we schedule timers only for "<=" entries */
2359
2360    /*
2361     * Reset the bw_meter entry
2362     */
2363    x->bm_start_time = *nowp;
2364    x->bm_measured.b_packets = 0;
2365    x->bm_measured.b_bytes = 0;
2366    x->bm_flags &= ~BW_METER_UPCALL_DELIVERED;
2367
2368    /*
2369     * Compute the timeout hash value and insert the entry
2370     */
2371    BW_METER_TIMEHASH(x, time_hash);
2372    x->bm_time_next = bw_meter_timers[time_hash];
2373    bw_meter_timers[time_hash] = x;
2374    x->bm_time_hash = time_hash;
2375}
2376
2377/*
2378 * Unschedule the periodic timer that processes bw_meter entry of type "<="
2379 * by removing the entry from the proper hash bucket.
2380 */
2381static void
2382unschedule_bw_meter(struct bw_meter *x)
2383{
2384    int time_hash;
2385    struct bw_meter *prev, *tmp;
2386
2387    MFC_LOCK_ASSERT();
2388
2389    if (!(x->bm_flags & BW_METER_LEQ))
2390	return;		/* XXX: we schedule timers only for "<=" entries */
2391
2392    /*
2393     * Compute the timeout hash value and delete the entry
2394     */
2395    time_hash = x->bm_time_hash;
2396    if (time_hash >= BW_METER_BUCKETS)
2397	return;		/* Entry was not scheduled */
2398
2399    for (prev = NULL, tmp = bw_meter_timers[time_hash];
2400	     tmp != NULL; prev = tmp, tmp = tmp->bm_time_next)
2401	if (tmp == x)
2402	    break;
2403
2404    if (tmp == NULL)
2405	panic("unschedule_bw_meter: bw_meter entry not found");
2406
2407    if (prev != NULL)
2408	prev->bm_time_next = x->bm_time_next;
2409    else
2410	bw_meter_timers[time_hash] = x->bm_time_next;
2411
2412    x->bm_time_next = NULL;
2413    x->bm_time_hash = BW_METER_BUCKETS;
2414}
2415
2416
2417/*
2418 * Process all "<=" type of bw_meter that should be processed now,
2419 * and for each entry prepare an upcall if necessary. Each processed
2420 * entry is rescheduled again for the (periodic) processing.
2421 *
2422 * This is run periodically (once per second normally). On each round,
2423 * all the potentially matching entries are in the hash slot that we are
2424 * looking at.
2425 */
2426static void
2427bw_meter_process()
2428{
2429    static uint32_t last_tv_sec;	/* last time we processed this */
2430
2431    uint32_t loops;
2432    int i;
2433    struct timeval now, process_endtime;
2434
2435    GET_TIME(now);
2436    if (last_tv_sec == now.tv_sec)
2437	return;		/* nothing to do */
2438
2439    loops = now.tv_sec - last_tv_sec;
2440    last_tv_sec = now.tv_sec;
2441    if (loops > BW_METER_BUCKETS)
2442	loops = BW_METER_BUCKETS;
2443
2444    MFC_LOCK();
2445    /*
2446     * Process all bins of bw_meter entries from the one after the last
2447     * processed to the current one. On entry, i points to the last bucket
2448     * visited, so we need to increment i at the beginning of the loop.
2449     */
2450    for (i = (now.tv_sec - loops) % BW_METER_BUCKETS; loops > 0; loops--) {
2451	struct bw_meter *x, *tmp_list;
2452
2453	if (++i >= BW_METER_BUCKETS)
2454	    i = 0;
2455
2456	/* Disconnect the list of bw_meter entries from the bin */
2457	tmp_list = bw_meter_timers[i];
2458	bw_meter_timers[i] = NULL;
2459
2460	/* Process the list of bw_meter entries */
2461	while (tmp_list != NULL) {
2462	    x = tmp_list;
2463	    tmp_list = tmp_list->bm_time_next;
2464
2465	    /* Test if the time interval is over */
2466	    process_endtime = x->bm_start_time;
2467	    BW_TIMEVALADD(&process_endtime, &x->bm_threshold.b_time);
2468	    if (BW_TIMEVALCMP(&process_endtime, &now, >)) {
2469		/* Not yet: reschedule, but don't reset */
2470		int time_hash;
2471
2472		BW_METER_TIMEHASH(x, time_hash);
2473		if (time_hash == i && process_endtime.tv_sec == now.tv_sec) {
2474		    /*
2475		     * XXX: somehow the bin processing is a bit ahead of time.
2476		     * Put the entry in the next bin.
2477		     */
2478		    if (++time_hash >= BW_METER_BUCKETS)
2479			time_hash = 0;
2480		}
2481		x->bm_time_next = bw_meter_timers[time_hash];
2482		bw_meter_timers[time_hash] = x;
2483		x->bm_time_hash = time_hash;
2484
2485		continue;
2486	    }
2487
2488	    /*
2489	     * Test if we should deliver an upcall
2490	     */
2491	    if (((x->bm_flags & BW_METER_UNIT_PACKETS) &&
2492		 (x->bm_measured.b_packets <= x->bm_threshold.b_packets)) ||
2493		((x->bm_flags & BW_METER_UNIT_BYTES) &&
2494		 (x->bm_measured.b_bytes <= x->bm_threshold.b_bytes))) {
2495		/* Prepare an upcall for delivery */
2496		bw_meter_prepare_upcall(x, &now);
2497	    }
2498
2499	    /*
2500	     * Reschedule for next processing
2501	     */
2502	    schedule_bw_meter(x, &now);
2503	}
2504    }
2505
2506    /* Send all upcalls that are pending delivery */
2507    bw_upcalls_send();
2508
2509    MFC_UNLOCK();
2510}
2511
2512/*
2513 * A periodic function for sending all upcalls that are pending delivery
2514 */
2515static void
2516expire_bw_upcalls_send(void *unused)
2517{
2518    MFC_LOCK();
2519    bw_upcalls_send();
2520    MFC_UNLOCK();
2521
2522    callout_reset(&bw_upcalls_ch, BW_UPCALLS_PERIOD,
2523	expire_bw_upcalls_send, NULL);
2524}
2525
2526/*
2527 * A periodic function for periodic scanning of the multicast forwarding
2528 * table for processing all "<=" bw_meter entries.
2529 */
2530static void
2531expire_bw_meter_process(void *unused)
2532{
2533    if (mrt_api_config & MRT_MFC_BW_UPCALL)
2534	bw_meter_process();
2535
2536    callout_reset(&bw_meter_ch, BW_METER_PERIOD, expire_bw_meter_process, NULL);
2537}
2538
2539/*
2540 * End of bandwidth monitoring code
2541 */
2542
2543/*
2544 * Send the packet up to the user daemon, or eventually do kernel encapsulation
2545 *
2546 */
2547static int
2548pim_register_send(struct ip *ip, struct vif *vifp, struct mbuf *m,
2549    struct mfc *rt)
2550{
2551    struct mbuf *mb_copy, *mm;
2552
2553    if (mrtdebug & DEBUG_PIM)
2554	log(LOG_DEBUG, "pim_register_send: ");
2555
2556    /*
2557     * Do not send IGMP_WHOLEPKT notifications to userland, if the
2558     * rendezvous point was unspecified, and we were told not to.
2559     */
2560    if (pim_squelch_wholepkt != 0 && (mrt_api_config & MRT_MFC_RP) &&
2561	(rt->mfc_rp.s_addr == INADDR_ANY))
2562	return 0;
2563
2564    mb_copy = pim_register_prepare(ip, m);
2565    if (mb_copy == NULL)
2566	return ENOBUFS;
2567
2568    /*
2569     * Send all the fragments. Note that the mbuf for each fragment
2570     * is freed by the sending machinery.
2571     */
2572    for (mm = mb_copy; mm; mm = mb_copy) {
2573	mb_copy = mm->m_nextpkt;
2574	mm->m_nextpkt = 0;
2575	mm = m_pullup(mm, sizeof(struct ip));
2576	if (mm != NULL) {
2577	    ip = mtod(mm, struct ip *);
2578	    if ((mrt_api_config & MRT_MFC_RP) &&
2579		(rt->mfc_rp.s_addr != INADDR_ANY)) {
2580		pim_register_send_rp(ip, vifp, mm, rt);
2581	    } else {
2582		pim_register_send_upcall(ip, vifp, mm, rt);
2583	    }
2584	}
2585    }
2586
2587    return 0;
2588}
2589
2590/*
2591 * Return a copy of the data packet that is ready for PIM Register
2592 * encapsulation.
2593 * XXX: Note that in the returned copy the IP header is a valid one.
2594 */
2595static struct mbuf *
2596pim_register_prepare(struct ip *ip, struct mbuf *m)
2597{
2598    struct mbuf *mb_copy = NULL;
2599    int mtu;
2600
2601    /* Take care of delayed checksums */
2602    if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
2603	in_delayed_cksum(m);
2604	m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
2605    }
2606
2607    /*
2608     * Copy the old packet & pullup its IP header into the
2609     * new mbuf so we can modify it.
2610     */
2611    mb_copy = m_copypacket(m, M_DONTWAIT);
2612    if (mb_copy == NULL)
2613	return NULL;
2614    mb_copy = m_pullup(mb_copy, ip->ip_hl << 2);
2615    if (mb_copy == NULL)
2616	return NULL;
2617
2618    /* take care of the TTL */
2619    ip = mtod(mb_copy, struct ip *);
2620    --ip->ip_ttl;
2621
2622    /* Compute the MTU after the PIM Register encapsulation */
2623    mtu = 0xffff - sizeof(pim_encap_iphdr) - sizeof(pim_encap_pimhdr);
2624
2625    if (ip->ip_len <= mtu) {
2626	/* Turn the IP header into a valid one */
2627	ip->ip_len = htons(ip->ip_len);
2628	ip->ip_off = htons(ip->ip_off);
2629	ip->ip_sum = 0;
2630	ip->ip_sum = in_cksum(mb_copy, ip->ip_hl << 2);
2631    } else {
2632	/* Fragment the packet */
2633	if (ip_fragment(ip, &mb_copy, mtu, 0, CSUM_DELAY_IP) != 0) {
2634	    m_freem(mb_copy);
2635	    return NULL;
2636	}
2637    }
2638    return mb_copy;
2639}
2640
2641/*
2642 * Send an upcall with the data packet to the user-level process.
2643 */
2644static int
2645pim_register_send_upcall(struct ip *ip, struct vif *vifp,
2646    struct mbuf *mb_copy, struct mfc *rt)
2647{
2648    struct mbuf *mb_first;
2649    int len = ntohs(ip->ip_len);
2650    struct igmpmsg *im;
2651    struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
2652
2653    VIF_LOCK_ASSERT();
2654
2655    /*
2656     * Add a new mbuf with an upcall header
2657     */
2658    MGETHDR(mb_first, M_DONTWAIT, MT_DATA);
2659    if (mb_first == NULL) {
2660	m_freem(mb_copy);
2661	return ENOBUFS;
2662    }
2663    mb_first->m_data += max_linkhdr;
2664    mb_first->m_pkthdr.len = len + sizeof(struct igmpmsg);
2665    mb_first->m_len = sizeof(struct igmpmsg);
2666    mb_first->m_next = mb_copy;
2667
2668    /* Send message to routing daemon */
2669    im = mtod(mb_first, struct igmpmsg *);
2670    im->im_msgtype	= IGMPMSG_WHOLEPKT;
2671    im->im_mbz		= 0;
2672    im->im_vif		= vifp - viftable;
2673    im->im_src		= ip->ip_src;
2674    im->im_dst		= ip->ip_dst;
2675
2676    k_igmpsrc.sin_addr	= ip->ip_src;
2677
2678    mrtstat.mrts_upcalls++;
2679
2680    if (socket_send(ip_mrouter, mb_first, &k_igmpsrc) < 0) {
2681	if (mrtdebug & DEBUG_PIM)
2682	    log(LOG_WARNING,
2683		"mcast: pim_register_send_upcall: ip_mrouter socket queue full");
2684	++mrtstat.mrts_upq_sockfull;
2685	return ENOBUFS;
2686    }
2687
2688    /* Keep statistics */
2689    pimstat.pims_snd_registers_msgs++;
2690    pimstat.pims_snd_registers_bytes += len;
2691
2692    return 0;
2693}
2694
2695/*
2696 * Encapsulate the data packet in PIM Register message and send it to the RP.
2697 */
2698static int
2699pim_register_send_rp(struct ip *ip, struct vif *vifp, struct mbuf *mb_copy,
2700    struct mfc *rt)
2701{
2702    struct mbuf *mb_first;
2703    struct ip *ip_outer;
2704    struct pim_encap_pimhdr *pimhdr;
2705    int len = ntohs(ip->ip_len);
2706    vifi_t vifi = rt->mfc_parent;
2707
2708    VIF_LOCK_ASSERT();
2709
2710    if ((vifi >= numvifs) || (viftable[vifi].v_lcl_addr.s_addr == 0)) {
2711	m_freem(mb_copy);
2712	return EADDRNOTAVAIL;		/* The iif vif is invalid */
2713    }
2714
2715    /*
2716     * Add a new mbuf with the encapsulating header
2717     */
2718    MGETHDR(mb_first, M_DONTWAIT, MT_DATA);
2719    if (mb_first == NULL) {
2720	m_freem(mb_copy);
2721	return ENOBUFS;
2722    }
2723    mb_first->m_data += max_linkhdr;
2724    mb_first->m_len = sizeof(pim_encap_iphdr) + sizeof(pim_encap_pimhdr);
2725    mb_first->m_next = mb_copy;
2726
2727    mb_first->m_pkthdr.len = len + mb_first->m_len;
2728
2729    /*
2730     * Fill in the encapsulating IP and PIM header
2731     */
2732    ip_outer = mtod(mb_first, struct ip *);
2733    *ip_outer = pim_encap_iphdr;
2734    ip_outer->ip_id = ip_newid();
2735    ip_outer->ip_len = len + sizeof(pim_encap_iphdr) + sizeof(pim_encap_pimhdr);
2736    ip_outer->ip_src = viftable[vifi].v_lcl_addr;
2737    ip_outer->ip_dst = rt->mfc_rp;
2738    /*
2739     * Copy the inner header TOS to the outer header, and take care of the
2740     * IP_DF bit.
2741     */
2742    ip_outer->ip_tos = ip->ip_tos;
2743    if (ntohs(ip->ip_off) & IP_DF)
2744	ip_outer->ip_off |= IP_DF;
2745    pimhdr = (struct pim_encap_pimhdr *)((caddr_t)ip_outer
2746					 + sizeof(pim_encap_iphdr));
2747    *pimhdr = pim_encap_pimhdr;
2748    /* If the iif crosses a border, set the Border-bit */
2749    if (rt->mfc_flags[vifi] & MRT_MFC_FLAGS_BORDER_VIF & mrt_api_config)
2750	pimhdr->flags |= htonl(PIM_BORDER_REGISTER);
2751
2752    mb_first->m_data += sizeof(pim_encap_iphdr);
2753    pimhdr->pim.pim_cksum = in_cksum(mb_first, sizeof(pim_encap_pimhdr));
2754    mb_first->m_data -= sizeof(pim_encap_iphdr);
2755
2756    send_packet(vifp, mb_first);
2757
2758    /* Keep statistics */
2759    pimstat.pims_snd_registers_msgs++;
2760    pimstat.pims_snd_registers_bytes += len;
2761
2762    return 0;
2763}
2764
2765/*
2766 * pim_encapcheck() is called by the encap[46]_input() path at runtime to
2767 * determine if a packet is for PIM; allowing PIM to be dynamically loaded
2768 * into the kernel.
2769 */
2770static int
2771pim_encapcheck(const struct mbuf *m, int off, int proto, void *arg)
2772{
2773
2774#ifdef DIAGNOSTIC
2775    KASSERT(proto == IPPROTO_PIM, ("not for IPPROTO_PIM"));
2776#endif
2777    if (proto != IPPROTO_PIM)
2778	return 0;	/* not for us; reject the datagram. */
2779
2780    return 64;		/* claim the datagram. */
2781}
2782
2783/*
2784 * PIM-SMv2 and PIM-DM messages processing.
2785 * Receives and verifies the PIM control messages, and passes them
2786 * up to the listening socket, using rip_input().
2787 * The only message with special processing is the PIM_REGISTER message
2788 * (used by PIM-SM): the PIM header is stripped off, and the inner packet
2789 * is passed to if_simloop().
2790 */
2791void
2792pim_input(struct mbuf *m, int off)
2793{
2794    struct ip *ip = mtod(m, struct ip *);
2795    struct pim *pim;
2796    int minlen;
2797    int datalen = ip->ip_len;
2798    int ip_tos;
2799    int iphlen = off;
2800
2801    /* Keep statistics */
2802    pimstat.pims_rcv_total_msgs++;
2803    pimstat.pims_rcv_total_bytes += datalen;
2804
2805    /*
2806     * Validate lengths
2807     */
2808    if (datalen < PIM_MINLEN) {
2809	pimstat.pims_rcv_tooshort++;
2810	log(LOG_ERR, "pim_input: packet size too small %d from %lx\n",
2811	    datalen, (u_long)ip->ip_src.s_addr);
2812	m_freem(m);
2813	return;
2814    }
2815
2816    /*
2817     * If the packet is at least as big as a REGISTER, go agead
2818     * and grab the PIM REGISTER header size, to avoid another
2819     * possible m_pullup() later.
2820     *
2821     * PIM_MINLEN       == pimhdr + u_int32_t == 4 + 4 = 8
2822     * PIM_REG_MINLEN   == pimhdr + reghdr + encap_iphdr == 4 + 4 + 20 = 28
2823     */
2824    minlen = iphlen + (datalen >= PIM_REG_MINLEN ? PIM_REG_MINLEN : PIM_MINLEN);
2825    /*
2826     * Get the IP and PIM headers in contiguous memory, and
2827     * possibly the PIM REGISTER header.
2828     */
2829    if ((m->m_flags & M_EXT || m->m_len < minlen) &&
2830	(m = m_pullup(m, minlen)) == 0) {
2831	log(LOG_ERR, "pim_input: m_pullup failure\n");
2832	return;
2833    }
2834    /* m_pullup() may have given us a new mbuf so reset ip. */
2835    ip = mtod(m, struct ip *);
2836    ip_tos = ip->ip_tos;
2837
2838    /* adjust mbuf to point to the PIM header */
2839    m->m_data += iphlen;
2840    m->m_len  -= iphlen;
2841    pim = mtod(m, struct pim *);
2842
2843    /*
2844     * Validate checksum. If PIM REGISTER, exclude the data packet.
2845     *
2846     * XXX: some older PIMv2 implementations don't make this distinction,
2847     * so for compatibility reason perform the checksum over part of the
2848     * message, and if error, then over the whole message.
2849     */
2850    if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER && in_cksum(m, PIM_MINLEN) == 0) {
2851	/* do nothing, checksum okay */
2852    } else if (in_cksum(m, datalen)) {
2853	pimstat.pims_rcv_badsum++;
2854	if (mrtdebug & DEBUG_PIM)
2855	    log(LOG_DEBUG, "pim_input: invalid checksum");
2856	m_freem(m);
2857	return;
2858    }
2859
2860    /* PIM version check */
2861    if (PIM_VT_V(pim->pim_vt) < PIM_VERSION) {
2862	pimstat.pims_rcv_badversion++;
2863	log(LOG_ERR, "pim_input: incorrect version %d, expecting %d\n",
2864	    PIM_VT_V(pim->pim_vt), PIM_VERSION);
2865	m_freem(m);
2866	return;
2867    }
2868
2869    /* restore mbuf back to the outer IP */
2870    m->m_data -= iphlen;
2871    m->m_len  += iphlen;
2872
2873    if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER) {
2874	/*
2875	 * Since this is a REGISTER, we'll make a copy of the register
2876	 * headers ip + pim + u_int32 + encap_ip, to be passed up to the
2877	 * routing daemon.
2878	 */
2879	struct sockaddr_in dst = { sizeof(dst), AF_INET };
2880	struct mbuf *mcp;
2881	struct ip *encap_ip;
2882	u_int32_t *reghdr;
2883	struct ifnet *vifp;
2884
2885	VIF_LOCK();
2886	if ((reg_vif_num >= numvifs) || (reg_vif_num == VIFI_INVALID)) {
2887	    VIF_UNLOCK();
2888	    if (mrtdebug & DEBUG_PIM)
2889		log(LOG_DEBUG,
2890		    "pim_input: register vif not set: %d\n", reg_vif_num);
2891	    m_freem(m);
2892	    return;
2893	}
2894	/* XXX need refcnt? */
2895	vifp = viftable[reg_vif_num].v_ifp;
2896	VIF_UNLOCK();
2897
2898	/*
2899	 * Validate length
2900	 */
2901	if (datalen < PIM_REG_MINLEN) {
2902	    pimstat.pims_rcv_tooshort++;
2903	    pimstat.pims_rcv_badregisters++;
2904	    log(LOG_ERR,
2905		"pim_input: register packet size too small %d from %lx\n",
2906		datalen, (u_long)ip->ip_src.s_addr);
2907	    m_freem(m);
2908	    return;
2909	}
2910
2911	reghdr = (u_int32_t *)(pim + 1);
2912	encap_ip = (struct ip *)(reghdr + 1);
2913
2914	if (mrtdebug & DEBUG_PIM) {
2915	    log(LOG_DEBUG,
2916		"pim_input[register], encap_ip: %lx -> %lx, encap_ip len %d\n",
2917		(u_long)ntohl(encap_ip->ip_src.s_addr),
2918		(u_long)ntohl(encap_ip->ip_dst.s_addr),
2919		ntohs(encap_ip->ip_len));
2920	}
2921
2922	/* verify the version number of the inner packet */
2923	if (encap_ip->ip_v != IPVERSION) {
2924	    pimstat.pims_rcv_badregisters++;
2925	    if (mrtdebug & DEBUG_PIM) {
2926		log(LOG_DEBUG, "pim_input: invalid IP version (%d) "
2927		    "of the inner packet\n", encap_ip->ip_v);
2928	    }
2929	    m_freem(m);
2930	    return;
2931	}
2932
2933	/* verify the inner packet is destined to a mcast group */
2934	if (!IN_MULTICAST(ntohl(encap_ip->ip_dst.s_addr))) {
2935	    pimstat.pims_rcv_badregisters++;
2936	    if (mrtdebug & DEBUG_PIM)
2937		log(LOG_DEBUG,
2938		    "pim_input: inner packet of register is not "
2939		    "multicast %lx\n",
2940		    (u_long)ntohl(encap_ip->ip_dst.s_addr));
2941	    m_freem(m);
2942	    return;
2943	}
2944
2945	/* If a NULL_REGISTER, pass it to the daemon */
2946	if ((ntohl(*reghdr) & PIM_NULL_REGISTER))
2947	    goto pim_input_to_daemon;
2948
2949	/*
2950	 * Copy the TOS from the outer IP header to the inner IP header.
2951	 */
2952	if (encap_ip->ip_tos != ip_tos) {
2953	    /* Outer TOS -> inner TOS */
2954	    encap_ip->ip_tos = ip_tos;
2955	    /* Recompute the inner header checksum. Sigh... */
2956
2957	    /* adjust mbuf to point to the inner IP header */
2958	    m->m_data += (iphlen + PIM_MINLEN);
2959	    m->m_len  -= (iphlen + PIM_MINLEN);
2960
2961	    encap_ip->ip_sum = 0;
2962	    encap_ip->ip_sum = in_cksum(m, encap_ip->ip_hl << 2);
2963
2964	    /* restore mbuf to point back to the outer IP header */
2965	    m->m_data -= (iphlen + PIM_MINLEN);
2966	    m->m_len  += (iphlen + PIM_MINLEN);
2967	}
2968
2969	/*
2970	 * Decapsulate the inner IP packet and loopback to forward it
2971	 * as a normal multicast packet. Also, make a copy of the
2972	 *     outer_iphdr + pimhdr + reghdr + encap_iphdr
2973	 * to pass to the daemon later, so it can take the appropriate
2974	 * actions (e.g., send back PIM_REGISTER_STOP).
2975	 * XXX: here m->m_data points to the outer IP header.
2976	 */
2977	mcp = m_copy(m, 0, iphlen + PIM_REG_MINLEN);
2978	if (mcp == NULL) {
2979	    log(LOG_ERR,
2980		"pim_input: pim register: could not copy register head\n");
2981	    m_freem(m);
2982	    return;
2983	}
2984
2985	/* Keep statistics */
2986	/* XXX: registers_bytes include only the encap. mcast pkt */
2987	pimstat.pims_rcv_registers_msgs++;
2988	pimstat.pims_rcv_registers_bytes += ntohs(encap_ip->ip_len);
2989
2990	/*
2991	 * forward the inner ip packet; point m_data at the inner ip.
2992	 */
2993	m_adj(m, iphlen + PIM_MINLEN);
2994
2995	if (mrtdebug & DEBUG_PIM) {
2996	    log(LOG_DEBUG,
2997		"pim_input: forwarding decapsulated register: "
2998		"src %lx, dst %lx, vif %d\n",
2999		(u_long)ntohl(encap_ip->ip_src.s_addr),
3000		(u_long)ntohl(encap_ip->ip_dst.s_addr),
3001		reg_vif_num);
3002	}
3003	/* NB: vifp was collected above; can it change on us? */
3004	if_simloop(vifp, m, dst.sin_family, 0);
3005
3006	/* prepare the register head to send to the mrouting daemon */
3007	m = mcp;
3008    }
3009
3010pim_input_to_daemon:
3011    /*
3012     * Pass the PIM message up to the daemon; if it is a Register message,
3013     * pass the 'head' only up to the daemon. This includes the
3014     * outer IP header, PIM header, PIM-Register header and the
3015     * inner IP header.
3016     * XXX: the outer IP header pkt size of a Register is not adjust to
3017     * reflect the fact that the inner multicast data is truncated.
3018     */
3019    rip_input(m, iphlen);
3020
3021    return;
3022}
3023
3024/*
3025 * XXX: This is common code for dealing with initialization for both
3026 * the IPv4 and IPv6 multicast forwarding paths. It could do with cleanup.
3027 */
3028static int
3029ip_mroute_modevent(module_t mod, int type, void *unused)
3030{
3031    switch (type) {
3032    case MOD_LOAD:
3033	MROUTER_LOCK_INIT();
3034	MFC_LOCK_INIT();
3035	VIF_LOCK_INIT();
3036	ip_mrouter_reset();
3037	TUNABLE_ULONG_FETCH("net.inet.pim.squelch_wholepkt",
3038	    &pim_squelch_wholepkt);
3039
3040	pim_encap_cookie = encap_attach_func(AF_INET, IPPROTO_PIM,
3041	    pim_encapcheck, &in_pim_protosw, NULL);
3042	if (pim_encap_cookie == NULL) {
3043		printf("ip_mroute: unable to attach pim encap\n");
3044		VIF_LOCK_DESTROY();
3045		MFC_LOCK_DESTROY();
3046		MROUTER_LOCK_DESTROY();
3047		return (EINVAL);
3048	}
3049
3050#ifdef INET6
3051	pim6_encap_cookie = encap_attach_func(AF_INET6, IPPROTO_PIM,
3052	    pim_encapcheck, (struct protosw *)&in6_pim_protosw, NULL);
3053	if (pim6_encap_cookie == NULL) {
3054		printf("ip_mroute: unable to attach pim6 encap\n");
3055		if (pim_encap_cookie) {
3056		    encap_detach(pim_encap_cookie);
3057		    pim_encap_cookie = NULL;
3058		}
3059		VIF_LOCK_DESTROY();
3060		MFC_LOCK_DESTROY();
3061		MROUTER_LOCK_DESTROY();
3062		return (EINVAL);
3063	}
3064#endif
3065
3066	ip_mcast_src = X_ip_mcast_src;
3067	ip_mforward = X_ip_mforward;
3068	ip_mrouter_done = X_ip_mrouter_done;
3069	ip_mrouter_get = X_ip_mrouter_get;
3070	ip_mrouter_set = X_ip_mrouter_set;
3071
3072#ifdef INET6
3073	ip6_mforward = X_ip6_mforward;
3074	ip6_mrouter_done = X_ip6_mrouter_done;
3075	ip6_mrouter_get = X_ip6_mrouter_get;
3076	ip6_mrouter_set = X_ip6_mrouter_set;
3077	mrt6_ioctl = X_mrt6_ioctl;
3078#endif
3079
3080	ip_rsvp_force_done = X_ip_rsvp_force_done;
3081	ip_rsvp_vif = X_ip_rsvp_vif;
3082
3083	legal_vif_num = X_legal_vif_num;
3084	mrt_ioctl = X_mrt_ioctl;
3085	rsvp_input_p = X_rsvp_input;
3086	break;
3087
3088    case MOD_UNLOAD:
3089	/*
3090	 * Typically module unload happens after the user-level
3091	 * process has shutdown the kernel services (the check
3092	 * below insures someone can't just yank the module out
3093	 * from under a running process).  But if the module is
3094	 * just loaded and then unloaded w/o starting up a user
3095	 * process we still need to cleanup.
3096	 */
3097	if (ip_mrouter
3098#ifdef INET6
3099	    || ip6_mrouter
3100#endif
3101	)
3102	    return EINVAL;
3103
3104#ifdef INET6
3105	if (pim6_encap_cookie) {
3106	    encap_detach(pim6_encap_cookie);
3107	    pim6_encap_cookie = NULL;
3108	}
3109	X_ip6_mrouter_done();
3110	ip6_mforward = NULL;
3111	ip6_mrouter_done = NULL;
3112	ip6_mrouter_get = NULL;
3113	ip6_mrouter_set = NULL;
3114	mrt6_ioctl = NULL;
3115#endif
3116
3117	if (pim_encap_cookie) {
3118	    encap_detach(pim_encap_cookie);
3119	    pim_encap_cookie = NULL;
3120	}
3121	X_ip_mrouter_done();
3122	ip_mcast_src = NULL;
3123	ip_mforward = NULL;
3124	ip_mrouter_done = NULL;
3125	ip_mrouter_get = NULL;
3126	ip_mrouter_set = NULL;
3127
3128	ip_rsvp_force_done = NULL;
3129	ip_rsvp_vif = NULL;
3130
3131	legal_vif_num = NULL;
3132	mrt_ioctl = NULL;
3133	rsvp_input_p = NULL;
3134
3135	VIF_LOCK_DESTROY();
3136	MFC_LOCK_DESTROY();
3137	MROUTER_LOCK_DESTROY();
3138	break;
3139
3140    default:
3141	return EOPNOTSUPP;
3142    }
3143    return 0;
3144}
3145
3146static moduledata_t ip_mroutemod = {
3147    "ip_mroute",
3148    ip_mroute_modevent,
3149    0
3150};
3151DECLARE_MODULE(ip_mroute, ip_mroutemod, SI_SUB_PSEUDO, SI_ORDER_ANY);
3152