ip_mroute.c revision 171744
1/*-
2 * Copyright (c) 1989 Stephen Deering
3 * Copyright (c) 1992, 1993
4 *      The Regents of the University of California.  All rights reserved.
5 *
6 * This code is derived from software contributed to Berkeley by
7 * Stephen Deering of Stanford University.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in the
16 *    documentation and/or other materials provided with the distribution.
17 * 4. Neither the name of the University nor the names of its contributors
18 *    may be used to endorse or promote products derived from this software
19 *    without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 *
33 *      @(#)ip_mroute.c 8.2 (Berkeley) 11/15/93
34 */
35
36/*
37 * IP multicast forwarding procedures
38 *
39 * Written by David Waitzman, BBN Labs, August 1988.
40 * Modified by Steve Deering, Stanford, February 1989.
41 * Modified by Mark J. Steiglitz, Stanford, May, 1991
42 * Modified by Van Jacobson, LBL, January 1993
43 * Modified by Ajit Thyagarajan, PARC, August 1993
44 * Modified by Bill Fenner, PARC, April 1995
45 * Modified by Ahmed Helmy, SGI, June 1996
46 * Modified by George Edmond Eddy (Rusty), ISI, February 1998
47 * Modified by Pavlin Radoslavov, USC/ISI, May 1998, August 1999, October 2000
48 * Modified by Hitoshi Asaeda, WIDE, August 2000
49 * Modified by Pavlin Radoslavov, ICSI, October 2002
50 *
51 * MROUTING Revision: 3.5
52 * and PIM-SMv2 and PIM-DM support, advanced API support,
53 * bandwidth metering and signaling
54 *
55 * $FreeBSD: head/sys/netinet/ip_mroute.c 171744 2007-08-06 14:26:03Z rwatson $
56 */
57
58#include "opt_inet.h"
59#include "opt_inet6.h"
60#include "opt_mac.h"
61#include "opt_mrouting.h"
62
63#define _PIM_VT 1
64
65#include <sys/param.h>
66#include <sys/kernel.h>
67#include <sys/lock.h>
68#include <sys/malloc.h>
69#include <sys/mbuf.h>
70#include <sys/module.h>
71#include <sys/priv.h>
72#include <sys/protosw.h>
73#include <sys/signalvar.h>
74#include <sys/socket.h>
75#include <sys/socketvar.h>
76#include <sys/sockio.h>
77#include <sys/sx.h>
78#include <sys/sysctl.h>
79#include <sys/syslog.h>
80#include <sys/systm.h>
81#include <sys/time.h>
82#include <net/if.h>
83#include <net/netisr.h>
84#include <net/route.h>
85#include <netinet/in.h>
86#include <netinet/igmp.h>
87#include <netinet/in_systm.h>
88#include <netinet/in_var.h>
89#include <netinet/ip.h>
90#include <netinet/ip_encap.h>
91#include <netinet/ip_mroute.h>
92#include <netinet/ip_var.h>
93#include <netinet/ip_options.h>
94#include <netinet/pim.h>
95#include <netinet/pim_var.h>
96#include <netinet/udp.h>
97#ifdef INET6
98#include <netinet/ip6.h>
99#include <netinet6/in6_var.h>
100#include <netinet6/ip6_mroute.h>
101#include <netinet6/ip6_var.h>
102#endif
103#include <machine/in_cksum.h>
104
105#include <security/mac/mac_framework.h>
106
107/*
108 * Control debugging code for rsvp and multicast routing code.
109 * Can only set them with the debugger.
110 */
111static u_int    rsvpdebug;		/* non-zero enables debugging	*/
112
113static u_int	mrtdebug;		/* any set of the flags below	*/
114#define		DEBUG_MFC	0x02
115#define		DEBUG_FORWARD	0x04
116#define		DEBUG_EXPIRE	0x08
117#define		DEBUG_XMIT	0x10
118#define		DEBUG_PIM	0x20
119
120#define		VIFI_INVALID	((vifi_t) -1)
121
122#define M_HASCL(m)	((m)->m_flags & M_EXT)
123
124static MALLOC_DEFINE(M_MRTABLE, "mroutetbl", "multicast routing tables");
125
126/*
127 * Locking.  We use two locks: one for the virtual interface table and
128 * one for the forwarding table.  These locks may be nested in which case
129 * the VIF lock must always be taken first.  Note that each lock is used
130 * to cover not only the specific data structure but also related data
131 * structures.  It may be better to add more fine-grained locking later;
132 * it's not clear how performance-critical this code is.
133 *
134 * XXX: This module could particularly benefit from being cleaned
135 *      up to use the <sys/queue.h> macros.
136 *
137 */
138
139static struct mrtstat	mrtstat;
140SYSCTL_STRUCT(_net_inet_ip, OID_AUTO, mrtstat, CTLFLAG_RW,
141    &mrtstat, mrtstat,
142    "Multicast Routing Statistics (struct mrtstat, netinet/ip_mroute.h)");
143
144static struct mfc	*mfctable[MFCTBLSIZ];
145SYSCTL_OPAQUE(_net_inet_ip, OID_AUTO, mfctable, CTLFLAG_RD,
146    &mfctable, sizeof(mfctable), "S,*mfc[MFCTBLSIZ]",
147    "Multicast Forwarding Table (struct *mfc[MFCTBLSIZ], netinet/ip_mroute.h)");
148
149static struct mtx mrouter_mtx;
150#define	MROUTER_LOCK()		mtx_lock(&mrouter_mtx)
151#define	MROUTER_UNLOCK()	mtx_unlock(&mrouter_mtx)
152#define	MROUTER_LOCK_ASSERT()	mtx_assert(&mrouter_mtx, MA_OWNED)
153#define	MROUTER_LOCK_INIT()	\
154	mtx_init(&mrouter_mtx, "IPv4 multicast forwarding", NULL, MTX_DEF)
155#define	MROUTER_LOCK_DESTROY()	mtx_destroy(&mrouter_mtx)
156
157static struct mtx mfc_mtx;
158#define	MFC_LOCK()	mtx_lock(&mfc_mtx)
159#define	MFC_UNLOCK()	mtx_unlock(&mfc_mtx)
160#define	MFC_LOCK_ASSERT()	mtx_assert(&mfc_mtx, MA_OWNED)
161#define	MFC_LOCK_INIT()	mtx_init(&mfc_mtx, "mroute mfc table", NULL, MTX_DEF)
162#define	MFC_LOCK_DESTROY()	mtx_destroy(&mfc_mtx)
163
164static struct vif	viftable[MAXVIFS];
165SYSCTL_OPAQUE(_net_inet_ip, OID_AUTO, viftable, CTLFLAG_RD,
166    &viftable, sizeof(viftable), "S,vif[MAXVIFS]",
167    "Multicast Virtual Interfaces (struct vif[MAXVIFS], netinet/ip_mroute.h)");
168
169static struct mtx vif_mtx;
170#define	VIF_LOCK()	mtx_lock(&vif_mtx)
171#define	VIF_UNLOCK()	mtx_unlock(&vif_mtx)
172#define	VIF_LOCK_ASSERT()	mtx_assert(&vif_mtx, MA_OWNED)
173#define	VIF_LOCK_INIT()	mtx_init(&vif_mtx, "mroute vif table", NULL, MTX_DEF)
174#define	VIF_LOCK_DESTROY()	mtx_destroy(&vif_mtx)
175
176static u_char		nexpire[MFCTBLSIZ];
177
178static eventhandler_tag if_detach_event_tag = NULL;
179
180static struct callout expire_upcalls_ch;
181
182#define		EXPIRE_TIMEOUT	(hz / 4)	/* 4x / second		*/
183#define		UPCALL_EXPIRE	6		/* number of timeouts	*/
184
185#define ENCAP_TTL 64
186
187/*
188 * Bandwidth meter variables and constants
189 */
190static MALLOC_DEFINE(M_BWMETER, "bwmeter", "multicast upcall bw meters");
191/*
192 * Pending timeouts are stored in a hash table, the key being the
193 * expiration time. Periodically, the entries are analysed and processed.
194 */
195#define BW_METER_BUCKETS	1024
196static struct bw_meter *bw_meter_timers[BW_METER_BUCKETS];
197static struct callout bw_meter_ch;
198#define BW_METER_PERIOD (hz)		/* periodical handling of bw meters */
199
200/*
201 * Pending upcalls are stored in a vector which is flushed when
202 * full, or periodically
203 */
204static struct bw_upcall	bw_upcalls[BW_UPCALLS_MAX];
205static u_int	bw_upcalls_n; /* # of pending upcalls */
206static struct callout bw_upcalls_ch;
207#define BW_UPCALLS_PERIOD (hz)		/* periodical flush of bw upcalls */
208
209static struct pimstat pimstat;
210
211SYSCTL_NODE(_net_inet, IPPROTO_PIM, pim, CTLFLAG_RW, 0, "PIM");
212SYSCTL_STRUCT(_net_inet_pim, PIMCTL_STATS, stats, CTLFLAG_RD,
213    &pimstat, pimstat,
214    "PIM Statistics (struct pimstat, netinet/pim_var.h)");
215
216static u_long	pim_squelch_wholepkt = 0;
217SYSCTL_ULONG(_net_inet_pim, OID_AUTO, squelch_wholepkt, CTLFLAG_RW,
218    &pim_squelch_wholepkt, 0,
219    "Disable IGMP_WHOLEPKT notifications if rendezvous point is unspecified");
220
221extern  struct domain inetdomain;
222struct protosw in_pim_protosw = {
223	.pr_type =		SOCK_RAW,
224	.pr_domain =		&inetdomain,
225	.pr_protocol =		IPPROTO_PIM,
226	.pr_flags =		PR_ATOMIC|PR_ADDR|PR_LASTHDR,
227	.pr_input =		pim_input,
228	.pr_output =		(pr_output_t*)rip_output,
229	.pr_ctloutput =		rip_ctloutput,
230	.pr_usrreqs =		&rip_usrreqs
231};
232static const struct encaptab *pim_encap_cookie;
233
234#ifdef INET6
235/* ip6_mroute.c glue */
236extern struct in6_protosw in6_pim_protosw;
237static const struct encaptab *pim6_encap_cookie;
238
239extern int X_ip6_mrouter_set(struct socket *, struct sockopt *);
240extern int X_ip6_mrouter_get(struct socket *, struct sockopt *);
241extern int X_ip6_mrouter_done(void);
242extern int X_ip6_mforward(struct ip6_hdr *, struct ifnet *, struct mbuf *);
243extern int X_mrt6_ioctl(int, caddr_t);
244#endif
245
246static int pim_encapcheck(const struct mbuf *, int, int, void *);
247
248/*
249 * Note: the PIM Register encapsulation adds the following in front of a
250 * data packet:
251 *
252 * struct pim_encap_hdr {
253 *    struct ip ip;
254 *    struct pim_encap_pimhdr  pim;
255 * }
256 *
257 */
258
259struct pim_encap_pimhdr {
260	struct pim pim;
261	uint32_t   flags;
262};
263
264static struct ip pim_encap_iphdr = {
265#if BYTE_ORDER == LITTLE_ENDIAN
266	sizeof(struct ip) >> 2,
267	IPVERSION,
268#else
269	IPVERSION,
270	sizeof(struct ip) >> 2,
271#endif
272	0,			/* tos */
273	sizeof(struct ip),	/* total length */
274	0,			/* id */
275	0,			/* frag offset */
276	ENCAP_TTL,
277	IPPROTO_PIM,
278	0,			/* checksum */
279};
280
281static struct pim_encap_pimhdr pim_encap_pimhdr = {
282    {
283	PIM_MAKE_VT(PIM_VERSION, PIM_REGISTER), /* PIM vers and message type */
284	0,			/* reserved */
285	0,			/* checksum */
286    },
287    0				/* flags */
288};
289
290static struct ifnet multicast_register_if;
291static vifi_t reg_vif_num = VIFI_INVALID;
292
293/*
294 * Private variables.
295 */
296static vifi_t	   numvifs;
297
298static u_long	X_ip_mcast_src(int vifi);
299static int	X_ip_mforward(struct ip *ip, struct ifnet *ifp,
300			struct mbuf *m, struct ip_moptions *imo);
301static int	X_ip_mrouter_done(void);
302static int	X_ip_mrouter_get(struct socket *so, struct sockopt *m);
303static int	X_ip_mrouter_set(struct socket *so, struct sockopt *m);
304static int	X_legal_vif_num(int vif);
305static int	X_mrt_ioctl(int cmd, caddr_t data);
306
307static int get_sg_cnt(struct sioc_sg_req *);
308static int get_vif_cnt(struct sioc_vif_req *);
309static void if_detached_event(void *arg __unused, struct ifnet *);
310static int ip_mrouter_init(struct socket *, int);
311static int add_vif(struct vifctl *);
312static int del_vif_locked(vifi_t);
313static int del_vif(vifi_t);
314static int add_mfc(struct mfcctl2 *);
315static int del_mfc(struct mfcctl2 *);
316static int set_api_config(uint32_t *); /* chose API capabilities */
317static int socket_send(struct socket *, struct mbuf *, struct sockaddr_in *);
318static int set_assert(int);
319static void expire_upcalls(void *);
320static int ip_mdq(struct mbuf *, struct ifnet *, struct mfc *, vifi_t);
321static void phyint_send(struct ip *, struct vif *, struct mbuf *);
322static void send_packet(struct vif *, struct mbuf *);
323
324/*
325 * Bandwidth monitoring
326 */
327static void free_bw_list(struct bw_meter *list);
328static int add_bw_upcall(struct bw_upcall *);
329static int del_bw_upcall(struct bw_upcall *);
330static void bw_meter_receive_packet(struct bw_meter *x, int plen,
331		struct timeval *nowp);
332static void bw_meter_prepare_upcall(struct bw_meter *x, struct timeval *nowp);
333static void bw_upcalls_send(void);
334static void schedule_bw_meter(struct bw_meter *x, struct timeval *nowp);
335static void unschedule_bw_meter(struct bw_meter *x);
336static void bw_meter_process(void);
337static void expire_bw_upcalls_send(void *);
338static void expire_bw_meter_process(void *);
339
340static int pim_register_send(struct ip *, struct vif *,
341		struct mbuf *, struct mfc *);
342static int pim_register_send_rp(struct ip *, struct vif *,
343		struct mbuf *, struct mfc *);
344static int pim_register_send_upcall(struct ip *, struct vif *,
345		struct mbuf *, struct mfc *);
346static struct mbuf *pim_register_prepare(struct ip *, struct mbuf *);
347
348/*
349 * whether or not special PIM assert processing is enabled.
350 */
351static int pim_assert;
352/*
353 * Rate limit for assert notification messages, in usec
354 */
355#define ASSERT_MSG_TIME		3000000
356
357/*
358 * Kernel multicast routing API capabilities and setup.
359 * If more API capabilities are added to the kernel, they should be
360 * recorded in `mrt_api_support'.
361 */
362static const uint32_t mrt_api_support = (MRT_MFC_FLAGS_DISABLE_WRONGVIF |
363					 MRT_MFC_FLAGS_BORDER_VIF |
364					 MRT_MFC_RP |
365					 MRT_MFC_BW_UPCALL);
366static uint32_t mrt_api_config = 0;
367
368/*
369 * Hash function for a source, group entry
370 */
371#define MFCHASH(a, g) MFCHASHMOD(((a) >> 20) ^ ((a) >> 10) ^ (a) ^ \
372			((g) >> 20) ^ ((g) >> 10) ^ (g))
373
374/*
375 * Find a route for a given origin IP address and Multicast group address
376 * Statistics are updated by the caller if needed
377 * (mrtstat.mrts_mfc_lookups and mrtstat.mrts_mfc_misses)
378 */
379static struct mfc *
380mfc_find(in_addr_t o, in_addr_t g)
381{
382    struct mfc *rt;
383
384    MFC_LOCK_ASSERT();
385
386    for (rt = mfctable[MFCHASH(o,g)]; rt; rt = rt->mfc_next)
387	if ((rt->mfc_origin.s_addr == o) &&
388		(rt->mfc_mcastgrp.s_addr == g) && (rt->mfc_stall == NULL))
389	    break;
390    return rt;
391}
392
393/*
394 * Macros to compute elapsed time efficiently
395 * Borrowed from Van Jacobson's scheduling code
396 */
397#define TV_DELTA(a, b, delta) {					\
398	int xxs;						\
399	delta = (a).tv_usec - (b).tv_usec;			\
400	if ((xxs = (a).tv_sec - (b).tv_sec)) {			\
401		switch (xxs) {					\
402		case 2:						\
403		      delta += 1000000;				\
404		      /* FALLTHROUGH */				\
405		case 1:						\
406		      delta += 1000000;				\
407		      break;					\
408		default:					\
409		      delta += (1000000 * xxs);			\
410		}						\
411	}							\
412}
413
414#define TV_LT(a, b) (((a).tv_usec < (b).tv_usec && \
415	      (a).tv_sec <= (b).tv_sec) || (a).tv_sec < (b).tv_sec)
416
417/*
418 * Handle MRT setsockopt commands to modify the multicast routing tables.
419 */
420static int
421X_ip_mrouter_set(struct socket *so, struct sockopt *sopt)
422{
423    int	error, optval;
424    vifi_t	vifi;
425    struct	vifctl vifc;
426    struct	mfcctl2 mfc;
427    struct	bw_upcall bw_upcall;
428    uint32_t	i;
429
430    if (so != ip_mrouter && sopt->sopt_name != MRT_INIT)
431	return EPERM;
432
433    error = 0;
434    switch (sopt->sopt_name) {
435    case MRT_INIT:
436	error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval);
437	if (error)
438	    break;
439	error = ip_mrouter_init(so, optval);
440	break;
441
442    case MRT_DONE:
443	error = ip_mrouter_done();
444	break;
445
446    case MRT_ADD_VIF:
447	error = sooptcopyin(sopt, &vifc, sizeof vifc, sizeof vifc);
448	if (error)
449	    break;
450	error = add_vif(&vifc);
451	break;
452
453    case MRT_DEL_VIF:
454	error = sooptcopyin(sopt, &vifi, sizeof vifi, sizeof vifi);
455	if (error)
456	    break;
457	error = del_vif(vifi);
458	break;
459
460    case MRT_ADD_MFC:
461    case MRT_DEL_MFC:
462	/*
463	 * select data size depending on API version.
464	 */
465	if (sopt->sopt_name == MRT_ADD_MFC &&
466		mrt_api_config & MRT_API_FLAGS_ALL) {
467	    error = sooptcopyin(sopt, &mfc, sizeof(struct mfcctl2),
468				sizeof(struct mfcctl2));
469	} else {
470	    error = sooptcopyin(sopt, &mfc, sizeof(struct mfcctl),
471				sizeof(struct mfcctl));
472	    bzero((caddr_t)&mfc + sizeof(struct mfcctl),
473			sizeof(mfc) - sizeof(struct mfcctl));
474	}
475	if (error)
476	    break;
477	if (sopt->sopt_name == MRT_ADD_MFC)
478	    error = add_mfc(&mfc);
479	else
480	    error = del_mfc(&mfc);
481	break;
482
483    case MRT_ASSERT:
484	error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval);
485	if (error)
486	    break;
487	set_assert(optval);
488	break;
489
490    case MRT_API_CONFIG:
491	error = sooptcopyin(sopt, &i, sizeof i, sizeof i);
492	if (!error)
493	    error = set_api_config(&i);
494	if (!error)
495	    error = sooptcopyout(sopt, &i, sizeof i);
496	break;
497
498    case MRT_ADD_BW_UPCALL:
499    case MRT_DEL_BW_UPCALL:
500	error = sooptcopyin(sopt, &bw_upcall, sizeof bw_upcall,
501				sizeof bw_upcall);
502	if (error)
503	    break;
504	if (sopt->sopt_name == MRT_ADD_BW_UPCALL)
505	    error = add_bw_upcall(&bw_upcall);
506	else
507	    error = del_bw_upcall(&bw_upcall);
508	break;
509
510    default:
511	error = EOPNOTSUPP;
512	break;
513    }
514    return error;
515}
516
517/*
518 * Handle MRT getsockopt commands
519 */
520static int
521X_ip_mrouter_get(struct socket *so, struct sockopt *sopt)
522{
523    int error;
524    static int version = 0x0305; /* !!! why is this here? XXX */
525
526    switch (sopt->sopt_name) {
527    case MRT_VERSION:
528	error = sooptcopyout(sopt, &version, sizeof version);
529	break;
530
531    case MRT_ASSERT:
532	error = sooptcopyout(sopt, &pim_assert, sizeof pim_assert);
533	break;
534
535    case MRT_API_SUPPORT:
536	error = sooptcopyout(sopt, &mrt_api_support, sizeof mrt_api_support);
537	break;
538
539    case MRT_API_CONFIG:
540	error = sooptcopyout(sopt, &mrt_api_config, sizeof mrt_api_config);
541	break;
542
543    default:
544	error = EOPNOTSUPP;
545	break;
546    }
547    return error;
548}
549
550/*
551 * Handle ioctl commands to obtain information from the cache
552 */
553static int
554X_mrt_ioctl(int cmd, caddr_t data)
555{
556    int error = 0;
557
558    /*
559     * Currently the only function calling this ioctl routine is rtioctl().
560     * Typically, only root can create the raw socket in order to execute
561     * this ioctl method, however the request might be coming from a prison
562     */
563    error = priv_check(curthread, PRIV_NETINET_MROUTE);
564    if (error)
565	return (error);
566    switch (cmd) {
567    case (SIOCGETVIFCNT):
568	error = get_vif_cnt((struct sioc_vif_req *)data);
569	break;
570
571    case (SIOCGETSGCNT):
572	error = get_sg_cnt((struct sioc_sg_req *)data);
573	break;
574
575    default:
576	error = EINVAL;
577	break;
578    }
579    return error;
580}
581
582/*
583 * returns the packet, byte, rpf-failure count for the source group provided
584 */
585static int
586get_sg_cnt(struct sioc_sg_req *req)
587{
588    struct mfc *rt;
589
590    MFC_LOCK();
591    rt = mfc_find(req->src.s_addr, req->grp.s_addr);
592    if (rt == NULL) {
593	MFC_UNLOCK();
594	req->pktcnt = req->bytecnt = req->wrong_if = 0xffffffff;
595	return EADDRNOTAVAIL;
596    }
597    req->pktcnt = rt->mfc_pkt_cnt;
598    req->bytecnt = rt->mfc_byte_cnt;
599    req->wrong_if = rt->mfc_wrong_if;
600    MFC_UNLOCK();
601    return 0;
602}
603
604/*
605 * returns the input and output packet and byte counts on the vif provided
606 */
607static int
608get_vif_cnt(struct sioc_vif_req *req)
609{
610    vifi_t vifi = req->vifi;
611
612    VIF_LOCK();
613    if (vifi >= numvifs) {
614	VIF_UNLOCK();
615	return EINVAL;
616    }
617
618    req->icount = viftable[vifi].v_pkt_in;
619    req->ocount = viftable[vifi].v_pkt_out;
620    req->ibytes = viftable[vifi].v_bytes_in;
621    req->obytes = viftable[vifi].v_bytes_out;
622    VIF_UNLOCK();
623
624    return 0;
625}
626
627static void
628ip_mrouter_reset(void)
629{
630    bzero((caddr_t)mfctable, sizeof(mfctable));
631    bzero((caddr_t)nexpire, sizeof(nexpire));
632
633    pim_assert = 0;
634    mrt_api_config = 0;
635
636    callout_init(&expire_upcalls_ch, CALLOUT_MPSAFE);
637
638    bw_upcalls_n = 0;
639    bzero((caddr_t)bw_meter_timers, sizeof(bw_meter_timers));
640    callout_init(&bw_upcalls_ch, CALLOUT_MPSAFE);
641    callout_init(&bw_meter_ch, CALLOUT_MPSAFE);
642}
643
644static void
645if_detached_event(void *arg __unused, struct ifnet *ifp)
646{
647    vifi_t vifi;
648    int i;
649    struct mfc *mfc;
650    struct mfc *nmfc;
651    struct mfc **ppmfc;	/* Pointer to previous node's next-pointer */
652    struct rtdetq *pq;
653    struct rtdetq *npq;
654
655    MROUTER_LOCK();
656    if (ip_mrouter == NULL) {
657	MROUTER_UNLOCK();
658    }
659
660    /*
661     * Tear down multicast forwarder state associated with this ifnet.
662     * 1. Walk the vif list, matching vifs against this ifnet.
663     * 2. Walk the multicast forwarding cache (mfc) looking for
664     *    inner matches with this vif's index.
665     * 3. Free any pending mbufs for this mfc.
666     * 4. Free the associated mfc entry and state associated with this vif.
667     *    Be very careful about unlinking from a singly-linked list whose
668     *    "head node" is a pointer in a simple array.
669     * 5. Free vif state. This should disable ALLMULTI on the interface.
670     */
671    VIF_LOCK();
672    MFC_LOCK();
673    for (vifi = 0; vifi < numvifs; vifi++) {
674	if (viftable[vifi].v_ifp != ifp)
675		continue;
676	for (i = 0; i < MFCTBLSIZ; i++) {
677	    ppmfc = &mfctable[i];
678	    for (mfc = mfctable[i]; mfc != NULL; ) {
679		nmfc = mfc->mfc_next;
680		if (mfc->mfc_parent == vifi) {
681		    for (pq = mfc->mfc_stall; pq != NULL; ) {
682			npq = pq->next;
683			m_freem(pq->m);
684			free(pq, M_MRTABLE);
685			pq = npq;
686		    }
687		    free_bw_list(mfc->mfc_bw_meter);
688		    free(mfc, M_MRTABLE);
689		    *ppmfc = nmfc;
690		} else {
691		    ppmfc = &mfc->mfc_next;
692		}
693		mfc = nmfc;
694	    }
695	}
696	del_vif_locked(vifi);
697    }
698    MFC_UNLOCK();
699    VIF_UNLOCK();
700
701    MROUTER_UNLOCK();
702}
703
704/*
705 * Enable multicast routing
706 */
707static int
708ip_mrouter_init(struct socket *so, int version)
709{
710    if (mrtdebug)
711	log(LOG_DEBUG, "ip_mrouter_init: so_type = %d, pr_protocol = %d\n",
712	    so->so_type, so->so_proto->pr_protocol);
713
714    if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_IGMP)
715	return EOPNOTSUPP;
716
717    if (version != 1)
718	return ENOPROTOOPT;
719
720    MROUTER_LOCK();
721
722    if (ip_mrouter != NULL) {
723	MROUTER_UNLOCK();
724	return EADDRINUSE;
725    }
726
727    if_detach_event_tag = EVENTHANDLER_REGISTER(ifnet_departure_event,
728        if_detached_event, NULL, EVENTHANDLER_PRI_ANY);
729    if (if_detach_event_tag == NULL) {
730	MROUTER_UNLOCK();
731	return (ENOMEM);
732    }
733
734    callout_reset(&expire_upcalls_ch, EXPIRE_TIMEOUT, expire_upcalls, NULL);
735
736    callout_reset(&bw_upcalls_ch, BW_UPCALLS_PERIOD,
737	expire_bw_upcalls_send, NULL);
738    callout_reset(&bw_meter_ch, BW_METER_PERIOD, expire_bw_meter_process, NULL);
739
740    ip_mrouter = so;
741
742    MROUTER_UNLOCK();
743
744    if (mrtdebug)
745	log(LOG_DEBUG, "ip_mrouter_init\n");
746
747    return 0;
748}
749
750/*
751 * Disable multicast routing
752 */
753static int
754X_ip_mrouter_done(void)
755{
756    vifi_t vifi;
757    int i;
758    struct ifnet *ifp;
759    struct ifreq ifr;
760    struct mfc *rt;
761    struct rtdetq *rte;
762
763    MROUTER_LOCK();
764
765    if (ip_mrouter == NULL) {
766	MROUTER_UNLOCK();
767	return EINVAL;
768    }
769
770    /*
771     * Detach/disable hooks to the reset of the system.
772     */
773    ip_mrouter = NULL;
774    mrt_api_config = 0;
775
776    VIF_LOCK();
777    /*
778     * For each phyint in use, disable promiscuous reception of all IP
779     * multicasts.
780     */
781    for (vifi = 0; vifi < numvifs; vifi++) {
782	if (viftable[vifi].v_lcl_addr.s_addr != 0 &&
783		!(viftable[vifi].v_flags & (VIFF_TUNNEL | VIFF_REGISTER))) {
784	    struct sockaddr_in *so = (struct sockaddr_in *)&(ifr.ifr_addr);
785
786	    so->sin_len = sizeof(struct sockaddr_in);
787	    so->sin_family = AF_INET;
788	    so->sin_addr.s_addr = INADDR_ANY;
789	    ifp = viftable[vifi].v_ifp;
790	    if_allmulti(ifp, 0);
791	}
792    }
793    bzero((caddr_t)viftable, sizeof(viftable));
794    numvifs = 0;
795    pim_assert = 0;
796    VIF_UNLOCK();
797    EVENTHANDLER_DEREGISTER(ifnet_departure_event, if_detach_event_tag);
798
799    /*
800     * Free all multicast forwarding cache entries.
801     */
802    callout_stop(&expire_upcalls_ch);
803    callout_stop(&bw_upcalls_ch);
804    callout_stop(&bw_meter_ch);
805
806    MFC_LOCK();
807    for (i = 0; i < MFCTBLSIZ; i++) {
808	for (rt = mfctable[i]; rt != NULL; ) {
809	    struct mfc *nr = rt->mfc_next;
810
811	    for (rte = rt->mfc_stall; rte != NULL; ) {
812		struct rtdetq *n = rte->next;
813
814		m_freem(rte->m);
815		free(rte, M_MRTABLE);
816		rte = n;
817	    }
818	    free_bw_list(rt->mfc_bw_meter);
819	    free(rt, M_MRTABLE);
820	    rt = nr;
821	}
822    }
823    bzero((caddr_t)mfctable, sizeof(mfctable));
824    bzero((caddr_t)nexpire, sizeof(nexpire));
825    bw_upcalls_n = 0;
826    bzero(bw_meter_timers, sizeof(bw_meter_timers));
827    MFC_UNLOCK();
828
829    reg_vif_num = VIFI_INVALID;
830
831    MROUTER_UNLOCK();
832
833    if (mrtdebug)
834	log(LOG_DEBUG, "ip_mrouter_done\n");
835
836    return 0;
837}
838
839/*
840 * Set PIM assert processing global
841 */
842static int
843set_assert(int i)
844{
845    if ((i != 1) && (i != 0))
846	return EINVAL;
847
848    pim_assert = i;
849
850    return 0;
851}
852
853/*
854 * Configure API capabilities
855 */
856int
857set_api_config(uint32_t *apival)
858{
859    int i;
860
861    /*
862     * We can set the API capabilities only if it is the first operation
863     * after MRT_INIT. I.e.:
864     *  - there are no vifs installed
865     *  - pim_assert is not enabled
866     *  - the MFC table is empty
867     */
868    if (numvifs > 0) {
869	*apival = 0;
870	return EPERM;
871    }
872    if (pim_assert) {
873	*apival = 0;
874	return EPERM;
875    }
876    for (i = 0; i < MFCTBLSIZ; i++) {
877	if (mfctable[i] != NULL) {
878	    *apival = 0;
879	    return EPERM;
880	}
881    }
882
883    mrt_api_config = *apival & mrt_api_support;
884    *apival = mrt_api_config;
885
886    return 0;
887}
888
889/*
890 * Add a vif to the vif table
891 */
892static int
893add_vif(struct vifctl *vifcp)
894{
895    struct vif *vifp = viftable + vifcp->vifc_vifi;
896    struct sockaddr_in sin = {sizeof sin, AF_INET};
897    struct ifaddr *ifa;
898    struct ifnet *ifp;
899    int error;
900
901    VIF_LOCK();
902    if (vifcp->vifc_vifi >= MAXVIFS) {
903	VIF_UNLOCK();
904	return EINVAL;
905    }
906    /* rate limiting is no longer supported by this code */
907    if (vifcp->vifc_rate_limit != 0) {
908	log(LOG_ERR, "rate limiting is no longer supported\n");
909	VIF_UNLOCK();
910	return EINVAL;
911    }
912    if (vifp->v_lcl_addr.s_addr != INADDR_ANY) {
913	VIF_UNLOCK();
914	return EADDRINUSE;
915    }
916    if (vifcp->vifc_lcl_addr.s_addr == INADDR_ANY) {
917	VIF_UNLOCK();
918	return EADDRNOTAVAIL;
919    }
920
921    /* Find the interface with an address in AF_INET family */
922    if (vifcp->vifc_flags & VIFF_REGISTER) {
923	/*
924	 * XXX: Because VIFF_REGISTER does not really need a valid
925	 * local interface (e.g. it could be 127.0.0.2), we don't
926	 * check its address.
927	 */
928	ifp = NULL;
929    } else {
930	sin.sin_addr = vifcp->vifc_lcl_addr;
931	ifa = ifa_ifwithaddr((struct sockaddr *)&sin);
932	if (ifa == NULL) {
933	    VIF_UNLOCK();
934	    return EADDRNOTAVAIL;
935	}
936	ifp = ifa->ifa_ifp;
937    }
938
939    if ((vifcp->vifc_flags & VIFF_TUNNEL) != 0) {
940	log(LOG_ERR, "tunnels are no longer supported\n");
941	VIF_UNLOCK();
942	return EOPNOTSUPP;
943    } else if (vifcp->vifc_flags & VIFF_REGISTER) {
944	ifp = &multicast_register_if;
945	if (mrtdebug)
946	    log(LOG_DEBUG, "Adding a register vif, ifp: %p\n",
947		    (void *)&multicast_register_if);
948	if (reg_vif_num == VIFI_INVALID) {
949	    if_initname(&multicast_register_if, "register_vif", 0);
950	    multicast_register_if.if_flags = IFF_LOOPBACK;
951	    reg_vif_num = vifcp->vifc_vifi;
952	}
953    } else {		/* Make sure the interface supports multicast */
954	if ((ifp->if_flags & IFF_MULTICAST) == 0) {
955	    VIF_UNLOCK();
956	    return EOPNOTSUPP;
957	}
958
959	/* Enable promiscuous reception of all IP multicasts from the if */
960	error = if_allmulti(ifp, 1);
961	if (error) {
962	    VIF_UNLOCK();
963	    return error;
964	}
965    }
966
967    vifp->v_flags     = vifcp->vifc_flags;
968    vifp->v_threshold = vifcp->vifc_threshold;
969    vifp->v_lcl_addr  = vifcp->vifc_lcl_addr;
970    vifp->v_rmt_addr  = vifcp->vifc_rmt_addr;
971    vifp->v_ifp       = ifp;
972    vifp->v_rsvp_on   = 0;
973    vifp->v_rsvpd     = NULL;
974    /* initialize per vif pkt counters */
975    vifp->v_pkt_in    = 0;
976    vifp->v_pkt_out   = 0;
977    vifp->v_bytes_in  = 0;
978    vifp->v_bytes_out = 0;
979    bzero(&vifp->v_route, sizeof(vifp->v_route));
980
981    /* Adjust numvifs up if the vifi is higher than numvifs */
982    if (numvifs <= vifcp->vifc_vifi) numvifs = vifcp->vifc_vifi + 1;
983
984    VIF_UNLOCK();
985
986    if (mrtdebug)
987	log(LOG_DEBUG, "add_vif #%d, lcladdr %lx, %s %lx, thresh %x\n",
988	    vifcp->vifc_vifi,
989	    (u_long)ntohl(vifcp->vifc_lcl_addr.s_addr),
990	    (vifcp->vifc_flags & VIFF_TUNNEL) ? "rmtaddr" : "mask",
991	    (u_long)ntohl(vifcp->vifc_rmt_addr.s_addr),
992	    vifcp->vifc_threshold);
993
994    return 0;
995}
996
997/*
998 * Delete a vif from the vif table
999 */
1000static int
1001del_vif_locked(vifi_t vifi)
1002{
1003    struct vif *vifp;
1004
1005    VIF_LOCK_ASSERT();
1006
1007    if (vifi >= numvifs) {
1008	return EINVAL;
1009    }
1010    vifp = &viftable[vifi];
1011    if (vifp->v_lcl_addr.s_addr == INADDR_ANY) {
1012	return EADDRNOTAVAIL;
1013    }
1014
1015    if (!(vifp->v_flags & (VIFF_TUNNEL | VIFF_REGISTER)))
1016	if_allmulti(vifp->v_ifp, 0);
1017
1018    if (vifp->v_flags & VIFF_REGISTER)
1019	reg_vif_num = VIFI_INVALID;
1020
1021    bzero((caddr_t)vifp, sizeof (*vifp));
1022
1023    if (mrtdebug)
1024	log(LOG_DEBUG, "del_vif %d, numvifs %d\n", vifi, numvifs);
1025
1026    /* Adjust numvifs down */
1027    for (vifi = numvifs; vifi > 0; vifi--)
1028	if (viftable[vifi-1].v_lcl_addr.s_addr != INADDR_ANY)
1029	    break;
1030    numvifs = vifi;
1031
1032    return 0;
1033}
1034
1035static int
1036del_vif(vifi_t vifi)
1037{
1038    int cc;
1039
1040    VIF_LOCK();
1041    cc = del_vif_locked(vifi);
1042    VIF_UNLOCK();
1043
1044    return cc;
1045}
1046
1047/*
1048 * update an mfc entry without resetting counters and S,G addresses.
1049 */
1050static void
1051update_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp)
1052{
1053    int i;
1054
1055    rt->mfc_parent = mfccp->mfcc_parent;
1056    for (i = 0; i < numvifs; i++) {
1057	rt->mfc_ttls[i] = mfccp->mfcc_ttls[i];
1058	rt->mfc_flags[i] = mfccp->mfcc_flags[i] & mrt_api_config &
1059	    MRT_MFC_FLAGS_ALL;
1060    }
1061    /* set the RP address */
1062    if (mrt_api_config & MRT_MFC_RP)
1063	rt->mfc_rp = mfccp->mfcc_rp;
1064    else
1065	rt->mfc_rp.s_addr = INADDR_ANY;
1066}
1067
1068/*
1069 * fully initialize an mfc entry from the parameter.
1070 */
1071static void
1072init_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp)
1073{
1074    rt->mfc_origin     = mfccp->mfcc_origin;
1075    rt->mfc_mcastgrp   = mfccp->mfcc_mcastgrp;
1076
1077    update_mfc_params(rt, mfccp);
1078
1079    /* initialize pkt counters per src-grp */
1080    rt->mfc_pkt_cnt    = 0;
1081    rt->mfc_byte_cnt   = 0;
1082    rt->mfc_wrong_if   = 0;
1083    rt->mfc_last_assert.tv_sec = rt->mfc_last_assert.tv_usec = 0;
1084}
1085
1086
1087/*
1088 * Add an mfc entry
1089 */
1090static int
1091add_mfc(struct mfcctl2 *mfccp)
1092{
1093    struct mfc *rt;
1094    u_long hash;
1095    struct rtdetq *rte;
1096    u_short nstl;
1097
1098    VIF_LOCK();
1099    MFC_LOCK();
1100
1101    rt = mfc_find(mfccp->mfcc_origin.s_addr, mfccp->mfcc_mcastgrp.s_addr);
1102
1103    /* If an entry already exists, just update the fields */
1104    if (rt) {
1105	if (mrtdebug & DEBUG_MFC)
1106	    log(LOG_DEBUG,"add_mfc update o %lx g %lx p %x\n",
1107		(u_long)ntohl(mfccp->mfcc_origin.s_addr),
1108		(u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr),
1109		mfccp->mfcc_parent);
1110
1111	update_mfc_params(rt, mfccp);
1112	MFC_UNLOCK();
1113	VIF_UNLOCK();
1114	return 0;
1115    }
1116
1117    /*
1118     * Find the entry for which the upcall was made and update
1119     */
1120    hash = MFCHASH(mfccp->mfcc_origin.s_addr, mfccp->mfcc_mcastgrp.s_addr);
1121    for (rt = mfctable[hash], nstl = 0; rt; rt = rt->mfc_next) {
1122
1123	if ((rt->mfc_origin.s_addr == mfccp->mfcc_origin.s_addr) &&
1124		(rt->mfc_mcastgrp.s_addr == mfccp->mfcc_mcastgrp.s_addr) &&
1125		(rt->mfc_stall != NULL)) {
1126
1127	    if (nstl++)
1128		log(LOG_ERR, "add_mfc %s o %lx g %lx p %x dbx %p\n",
1129		    "multiple kernel entries",
1130		    (u_long)ntohl(mfccp->mfcc_origin.s_addr),
1131		    (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr),
1132		    mfccp->mfcc_parent, (void *)rt->mfc_stall);
1133
1134	    if (mrtdebug & DEBUG_MFC)
1135		log(LOG_DEBUG,"add_mfc o %lx g %lx p %x dbg %p\n",
1136		    (u_long)ntohl(mfccp->mfcc_origin.s_addr),
1137		    (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr),
1138		    mfccp->mfcc_parent, (void *)rt->mfc_stall);
1139
1140	    init_mfc_params(rt, mfccp);
1141
1142	    rt->mfc_expire = 0;	/* Don't clean this guy up */
1143	    nexpire[hash]--;
1144
1145	    /* free packets Qed at the end of this entry */
1146	    for (rte = rt->mfc_stall; rte != NULL; ) {
1147		struct rtdetq *n = rte->next;
1148
1149		ip_mdq(rte->m, rte->ifp, rt, -1);
1150		m_freem(rte->m);
1151		free(rte, M_MRTABLE);
1152		rte = n;
1153	    }
1154	    rt->mfc_stall = NULL;
1155	}
1156    }
1157
1158    /*
1159     * It is possible that an entry is being inserted without an upcall
1160     */
1161    if (nstl == 0) {
1162	if (mrtdebug & DEBUG_MFC)
1163	    log(LOG_DEBUG,"add_mfc no upcall h %lu o %lx g %lx p %x\n",
1164		hash, (u_long)ntohl(mfccp->mfcc_origin.s_addr),
1165		(u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr),
1166		mfccp->mfcc_parent);
1167
1168	for (rt = mfctable[hash]; rt != NULL; rt = rt->mfc_next) {
1169	    if ((rt->mfc_origin.s_addr == mfccp->mfcc_origin.s_addr) &&
1170		    (rt->mfc_mcastgrp.s_addr == mfccp->mfcc_mcastgrp.s_addr)) {
1171		init_mfc_params(rt, mfccp);
1172		if (rt->mfc_expire)
1173		    nexpire[hash]--;
1174		rt->mfc_expire = 0;
1175		break; /* XXX */
1176	    }
1177	}
1178	if (rt == NULL) {		/* no upcall, so make a new entry */
1179	    rt = (struct mfc *)malloc(sizeof(*rt), M_MRTABLE, M_NOWAIT);
1180	    if (rt == NULL) {
1181		MFC_UNLOCK();
1182		VIF_UNLOCK();
1183		return ENOBUFS;
1184	    }
1185
1186	    init_mfc_params(rt, mfccp);
1187	    rt->mfc_expire     = 0;
1188	    rt->mfc_stall      = NULL;
1189
1190	    rt->mfc_bw_meter = NULL;
1191	    /* insert new entry at head of hash chain */
1192	    rt->mfc_next = mfctable[hash];
1193	    mfctable[hash] = rt;
1194	}
1195    }
1196    MFC_UNLOCK();
1197    VIF_UNLOCK();
1198    return 0;
1199}
1200
1201/*
1202 * Delete an mfc entry
1203 */
1204static int
1205del_mfc(struct mfcctl2 *mfccp)
1206{
1207    struct in_addr	origin;
1208    struct in_addr	mcastgrp;
1209    struct mfc		*rt;
1210    struct mfc		**nptr;
1211    u_long		hash;
1212    struct bw_meter	*list;
1213
1214    origin = mfccp->mfcc_origin;
1215    mcastgrp = mfccp->mfcc_mcastgrp;
1216
1217    if (mrtdebug & DEBUG_MFC)
1218	log(LOG_DEBUG,"del_mfc orig %lx mcastgrp %lx\n",
1219	    (u_long)ntohl(origin.s_addr), (u_long)ntohl(mcastgrp.s_addr));
1220
1221    MFC_LOCK();
1222
1223    hash = MFCHASH(origin.s_addr, mcastgrp.s_addr);
1224    for (nptr = &mfctable[hash]; (rt = *nptr) != NULL; nptr = &rt->mfc_next)
1225	if (origin.s_addr == rt->mfc_origin.s_addr &&
1226		mcastgrp.s_addr == rt->mfc_mcastgrp.s_addr &&
1227		rt->mfc_stall == NULL)
1228	    break;
1229    if (rt == NULL) {
1230	MFC_UNLOCK();
1231	return EADDRNOTAVAIL;
1232    }
1233
1234    *nptr = rt->mfc_next;
1235
1236    /*
1237     * free the bw_meter entries
1238     */
1239    list = rt->mfc_bw_meter;
1240    rt->mfc_bw_meter = NULL;
1241
1242    free(rt, M_MRTABLE);
1243
1244    free_bw_list(list);
1245
1246    MFC_UNLOCK();
1247
1248    return 0;
1249}
1250
1251/*
1252 * Send a message to the routing daemon on the multicast routing socket
1253 */
1254static int
1255socket_send(struct socket *s, struct mbuf *mm, struct sockaddr_in *src)
1256{
1257    if (s) {
1258	SOCKBUF_LOCK(&s->so_rcv);
1259	if (sbappendaddr_locked(&s->so_rcv, (struct sockaddr *)src, mm,
1260	    NULL) != 0) {
1261	    sorwakeup_locked(s);
1262	    return 0;
1263	}
1264	SOCKBUF_UNLOCK(&s->so_rcv);
1265    }
1266    m_freem(mm);
1267    return -1;
1268}
1269
1270/*
1271 * IP multicast forwarding function. This function assumes that the packet
1272 * pointed to by "ip" has arrived on (or is about to be sent to) the interface
1273 * pointed to by "ifp", and the packet is to be relayed to other networks
1274 * that have members of the packet's destination IP multicast group.
1275 *
1276 * The packet is returned unscathed to the caller, unless it is
1277 * erroneous, in which case a non-zero return value tells the caller to
1278 * discard it.
1279 */
1280
1281#define TUNNEL_LEN  12  /* # bytes of IP option for tunnel encapsulation  */
1282
1283static int
1284X_ip_mforward(struct ip *ip, struct ifnet *ifp, struct mbuf *m,
1285    struct ip_moptions *imo)
1286{
1287    struct mfc *rt;
1288    int error;
1289    vifi_t vifi;
1290
1291    if (mrtdebug & DEBUG_FORWARD)
1292	log(LOG_DEBUG, "ip_mforward: src %lx, dst %lx, ifp %p\n",
1293	    (u_long)ntohl(ip->ip_src.s_addr), (u_long)ntohl(ip->ip_dst.s_addr),
1294	    (void *)ifp);
1295
1296    if (ip->ip_hl < (sizeof(struct ip) + TUNNEL_LEN) >> 2 ||
1297		((u_char *)(ip + 1))[1] != IPOPT_LSRR ) {
1298	/*
1299	 * Packet arrived via a physical interface or
1300	 * an encapsulated tunnel or a register_vif.
1301	 */
1302    } else {
1303	/*
1304	 * Packet arrived through a source-route tunnel.
1305	 * Source-route tunnels are no longer supported.
1306	 */
1307	static int last_log;
1308	if (last_log != time_uptime) {
1309	    last_log = time_uptime;
1310	    log(LOG_ERR,
1311		"ip_mforward: received source-routed packet from %lx\n",
1312		(u_long)ntohl(ip->ip_src.s_addr));
1313	}
1314	return 1;
1315    }
1316
1317    VIF_LOCK();
1318    MFC_LOCK();
1319    if (imo && ((vifi = imo->imo_multicast_vif) < numvifs)) {
1320	if (ip->ip_ttl < MAXTTL)
1321	    ip->ip_ttl++;	/* compensate for -1 in *_send routines */
1322	if (rsvpdebug && ip->ip_p == IPPROTO_RSVP) {
1323	    struct vif *vifp = viftable + vifi;
1324
1325	    printf("Sending IPPROTO_RSVP from %lx to %lx on vif %d (%s%s)\n",
1326		(long)ntohl(ip->ip_src.s_addr), (long)ntohl(ip->ip_dst.s_addr),
1327		vifi,
1328		(vifp->v_flags & VIFF_TUNNEL) ? "tunnel on " : "",
1329		vifp->v_ifp->if_xname);
1330	}
1331	error = ip_mdq(m, ifp, NULL, vifi);
1332	MFC_UNLOCK();
1333	VIF_UNLOCK();
1334	return error;
1335    }
1336    if (rsvpdebug && ip->ip_p == IPPROTO_RSVP) {
1337	printf("Warning: IPPROTO_RSVP from %lx to %lx without vif option\n",
1338	    (long)ntohl(ip->ip_src.s_addr), (long)ntohl(ip->ip_dst.s_addr));
1339	if (!imo)
1340	    printf("In fact, no options were specified at all\n");
1341    }
1342
1343    /*
1344     * Don't forward a packet with time-to-live of zero or one,
1345     * or a packet destined to a local-only group.
1346     */
1347    if (ip->ip_ttl <= 1 || IN_LOCAL_GROUP(ntohl(ip->ip_dst.s_addr))) {
1348	MFC_UNLOCK();
1349	VIF_UNLOCK();
1350	return 0;
1351    }
1352
1353    /*
1354     * Determine forwarding vifs from the forwarding cache table
1355     */
1356    ++mrtstat.mrts_mfc_lookups;
1357    rt = mfc_find(ip->ip_src.s_addr, ip->ip_dst.s_addr);
1358
1359    /* Entry exists, so forward if necessary */
1360    if (rt != NULL) {
1361	error = ip_mdq(m, ifp, rt, -1);
1362	MFC_UNLOCK();
1363	VIF_UNLOCK();
1364	return error;
1365    } else {
1366	/*
1367	 * If we don't have a route for packet's origin,
1368	 * Make a copy of the packet & send message to routing daemon
1369	 */
1370
1371	struct mbuf *mb0;
1372	struct rtdetq *rte;
1373	u_long hash;
1374	int hlen = ip->ip_hl << 2;
1375
1376	++mrtstat.mrts_mfc_misses;
1377
1378	mrtstat.mrts_no_route++;
1379	if (mrtdebug & (DEBUG_FORWARD | DEBUG_MFC))
1380	    log(LOG_DEBUG, "ip_mforward: no rte s %lx g %lx\n",
1381		(u_long)ntohl(ip->ip_src.s_addr),
1382		(u_long)ntohl(ip->ip_dst.s_addr));
1383
1384	/*
1385	 * Allocate mbufs early so that we don't do extra work if we are
1386	 * just going to fail anyway.  Make sure to pullup the header so
1387	 * that other people can't step on it.
1388	 */
1389	rte = (struct rtdetq *)malloc((sizeof *rte), M_MRTABLE, M_NOWAIT);
1390	if (rte == NULL) {
1391	    MFC_UNLOCK();
1392	    VIF_UNLOCK();
1393	    return ENOBUFS;
1394	}
1395	mb0 = m_copypacket(m, M_DONTWAIT);
1396	if (mb0 && (M_HASCL(mb0) || mb0->m_len < hlen))
1397	    mb0 = m_pullup(mb0, hlen);
1398	if (mb0 == NULL) {
1399	    free(rte, M_MRTABLE);
1400	    MFC_UNLOCK();
1401	    VIF_UNLOCK();
1402	    return ENOBUFS;
1403	}
1404
1405	/* is there an upcall waiting for this flow ? */
1406	hash = MFCHASH(ip->ip_src.s_addr, ip->ip_dst.s_addr);
1407	for (rt = mfctable[hash]; rt; rt = rt->mfc_next) {
1408	    if ((ip->ip_src.s_addr == rt->mfc_origin.s_addr) &&
1409		    (ip->ip_dst.s_addr == rt->mfc_mcastgrp.s_addr) &&
1410		    (rt->mfc_stall != NULL))
1411		break;
1412	}
1413
1414	if (rt == NULL) {
1415	    int i;
1416	    struct igmpmsg *im;
1417	    struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
1418	    struct mbuf *mm;
1419
1420	    /*
1421	     * Locate the vifi for the incoming interface for this packet.
1422	     * If none found, drop packet.
1423	     */
1424	    for (vifi=0; vifi < numvifs && viftable[vifi].v_ifp != ifp; vifi++)
1425		;
1426	    if (vifi >= numvifs)	/* vif not found, drop packet */
1427		goto non_fatal;
1428
1429	    /* no upcall, so make a new entry */
1430	    rt = (struct mfc *)malloc(sizeof(*rt), M_MRTABLE, M_NOWAIT);
1431	    if (rt == NULL)
1432		goto fail;
1433	    /* Make a copy of the header to send to the user level process */
1434	    mm = m_copy(mb0, 0, hlen);
1435	    if (mm == NULL)
1436		goto fail1;
1437
1438	    /*
1439	     * Send message to routing daemon to install
1440	     * a route into the kernel table
1441	     */
1442
1443	    im = mtod(mm, struct igmpmsg *);
1444	    im->im_msgtype = IGMPMSG_NOCACHE;
1445	    im->im_mbz = 0;
1446	    im->im_vif = vifi;
1447
1448	    mrtstat.mrts_upcalls++;
1449
1450	    k_igmpsrc.sin_addr = ip->ip_src;
1451	    if (socket_send(ip_mrouter, mm, &k_igmpsrc) < 0) {
1452		log(LOG_WARNING, "ip_mforward: ip_mrouter socket queue full\n");
1453		++mrtstat.mrts_upq_sockfull;
1454fail1:
1455		free(rt, M_MRTABLE);
1456fail:
1457		free(rte, M_MRTABLE);
1458		m_freem(mb0);
1459		MFC_UNLOCK();
1460		VIF_UNLOCK();
1461		return ENOBUFS;
1462	    }
1463
1464	    /* insert new entry at head of hash chain */
1465	    rt->mfc_origin.s_addr     = ip->ip_src.s_addr;
1466	    rt->mfc_mcastgrp.s_addr   = ip->ip_dst.s_addr;
1467	    rt->mfc_expire	      = UPCALL_EXPIRE;
1468	    nexpire[hash]++;
1469	    for (i = 0; i < numvifs; i++) {
1470		rt->mfc_ttls[i] = 0;
1471		rt->mfc_flags[i] = 0;
1472	    }
1473	    rt->mfc_parent = -1;
1474
1475	    rt->mfc_rp.s_addr = INADDR_ANY; /* clear the RP address */
1476
1477	    rt->mfc_bw_meter = NULL;
1478
1479	    /* link into table */
1480	    rt->mfc_next   = mfctable[hash];
1481	    mfctable[hash] = rt;
1482	    rt->mfc_stall = rte;
1483
1484	} else {
1485	    /* determine if q has overflowed */
1486	    int npkts = 0;
1487	    struct rtdetq **p;
1488
1489	    /*
1490	     * XXX ouch! we need to append to the list, but we
1491	     * only have a pointer to the front, so we have to
1492	     * scan the entire list every time.
1493	     */
1494	    for (p = &rt->mfc_stall; *p != NULL; p = &(*p)->next)
1495		npkts++;
1496
1497	    if (npkts > MAX_UPQ) {
1498		mrtstat.mrts_upq_ovflw++;
1499non_fatal:
1500		free(rte, M_MRTABLE);
1501		m_freem(mb0);
1502		MFC_UNLOCK();
1503		VIF_UNLOCK();
1504		return 0;
1505	    }
1506
1507	    /* Add this entry to the end of the queue */
1508	    *p = rte;
1509	}
1510
1511	rte->m			= mb0;
1512	rte->ifp		= ifp;
1513	rte->next		= NULL;
1514
1515	MFC_UNLOCK();
1516	VIF_UNLOCK();
1517
1518	return 0;
1519    }
1520}
1521
1522/*
1523 * Clean up the cache entry if upcall is not serviced
1524 */
1525static void
1526expire_upcalls(void *unused)
1527{
1528    struct rtdetq *rte;
1529    struct mfc *mfc, **nptr;
1530    int i;
1531
1532    MFC_LOCK();
1533    for (i = 0; i < MFCTBLSIZ; i++) {
1534	if (nexpire[i] == 0)
1535	    continue;
1536	nptr = &mfctable[i];
1537	for (mfc = *nptr; mfc != NULL; mfc = *nptr) {
1538	    /*
1539	     * Skip real cache entries
1540	     * Make sure it wasn't marked to not expire (shouldn't happen)
1541	     * If it expires now
1542	     */
1543	    if (mfc->mfc_stall != NULL && mfc->mfc_expire != 0 &&
1544		    --mfc->mfc_expire == 0) {
1545		if (mrtdebug & DEBUG_EXPIRE)
1546		    log(LOG_DEBUG, "expire_upcalls: expiring (%lx %lx)\n",
1547			(u_long)ntohl(mfc->mfc_origin.s_addr),
1548			(u_long)ntohl(mfc->mfc_mcastgrp.s_addr));
1549		/*
1550		 * drop all the packets
1551		 * free the mbuf with the pkt, if, timing info
1552		 */
1553		for (rte = mfc->mfc_stall; rte; ) {
1554		    struct rtdetq *n = rte->next;
1555
1556		    m_freem(rte->m);
1557		    free(rte, M_MRTABLE);
1558		    rte = n;
1559		}
1560		++mrtstat.mrts_cache_cleanups;
1561		nexpire[i]--;
1562
1563		/*
1564		 * free the bw_meter entries
1565		 */
1566		while (mfc->mfc_bw_meter != NULL) {
1567		    struct bw_meter *x = mfc->mfc_bw_meter;
1568
1569		    mfc->mfc_bw_meter = x->bm_mfc_next;
1570		    free(x, M_BWMETER);
1571		}
1572
1573		*nptr = mfc->mfc_next;
1574		free(mfc, M_MRTABLE);
1575	    } else {
1576		nptr = &mfc->mfc_next;
1577	    }
1578	}
1579    }
1580    MFC_UNLOCK();
1581
1582    callout_reset(&expire_upcalls_ch, EXPIRE_TIMEOUT, expire_upcalls, NULL);
1583}
1584
1585/*
1586 * Packet forwarding routine once entry in the cache is made
1587 */
1588static int
1589ip_mdq(struct mbuf *m, struct ifnet *ifp, struct mfc *rt, vifi_t xmt_vif)
1590{
1591    struct ip  *ip = mtod(m, struct ip *);
1592    vifi_t vifi;
1593    int plen = ip->ip_len;
1594
1595    VIF_LOCK_ASSERT();
1596
1597    /*
1598     * If xmt_vif is not -1, send on only the requested vif.
1599     *
1600     * (since vifi_t is u_short, -1 becomes MAXUSHORT, which > numvifs.)
1601     */
1602    if (xmt_vif < numvifs) {
1603	if (viftable[xmt_vif].v_flags & VIFF_REGISTER)
1604		pim_register_send(ip, viftable + xmt_vif, m, rt);
1605	else
1606		phyint_send(ip, viftable + xmt_vif, m);
1607	return 1;
1608    }
1609
1610    /*
1611     * Don't forward if it didn't arrive from the parent vif for its origin.
1612     */
1613    vifi = rt->mfc_parent;
1614    if ((vifi >= numvifs) || (viftable[vifi].v_ifp != ifp)) {
1615	/* came in the wrong interface */
1616	if (mrtdebug & DEBUG_FORWARD)
1617	    log(LOG_DEBUG, "wrong if: ifp %p vifi %d vififp %p\n",
1618		(void *)ifp, vifi, (void *)viftable[vifi].v_ifp);
1619	++mrtstat.mrts_wrong_if;
1620	++rt->mfc_wrong_if;
1621	/*
1622	 * If we are doing PIM assert processing, send a message
1623	 * to the routing daemon.
1624	 *
1625	 * XXX: A PIM-SM router needs the WRONGVIF detection so it
1626	 * can complete the SPT switch, regardless of the type
1627	 * of the iif (broadcast media, GRE tunnel, etc).
1628	 */
1629	if (pim_assert && (vifi < numvifs) && viftable[vifi].v_ifp) {
1630	    struct timeval now;
1631	    u_long delta;
1632
1633	    if (ifp == &multicast_register_if)
1634		pimstat.pims_rcv_registers_wrongiif++;
1635
1636	    /* Get vifi for the incoming packet */
1637	    for (vifi=0; vifi < numvifs && viftable[vifi].v_ifp != ifp; vifi++)
1638		;
1639	    if (vifi >= numvifs)
1640		return 0;	/* The iif is not found: ignore the packet. */
1641
1642	    if (rt->mfc_flags[vifi] & MRT_MFC_FLAGS_DISABLE_WRONGVIF)
1643		return 0;	/* WRONGVIF disabled: ignore the packet */
1644
1645	    GET_TIME(now);
1646
1647	    TV_DELTA(now, rt->mfc_last_assert, delta);
1648
1649	    if (delta > ASSERT_MSG_TIME) {
1650		struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
1651		struct igmpmsg *im;
1652		int hlen = ip->ip_hl << 2;
1653		struct mbuf *mm = m_copy(m, 0, hlen);
1654
1655		if (mm && (M_HASCL(mm) || mm->m_len < hlen))
1656		    mm = m_pullup(mm, hlen);
1657		if (mm == NULL)
1658		    return ENOBUFS;
1659
1660		rt->mfc_last_assert = now;
1661
1662		im = mtod(mm, struct igmpmsg *);
1663		im->im_msgtype	= IGMPMSG_WRONGVIF;
1664		im->im_mbz		= 0;
1665		im->im_vif		= vifi;
1666
1667		mrtstat.mrts_upcalls++;
1668
1669		k_igmpsrc.sin_addr = im->im_src;
1670		if (socket_send(ip_mrouter, mm, &k_igmpsrc) < 0) {
1671		    log(LOG_WARNING,
1672			"ip_mforward: ip_mrouter socket queue full\n");
1673		    ++mrtstat.mrts_upq_sockfull;
1674		    return ENOBUFS;
1675		}
1676	    }
1677	}
1678	return 0;
1679    }
1680
1681    /* If I sourced this packet, it counts as output, else it was input. */
1682    if (ip->ip_src.s_addr == viftable[vifi].v_lcl_addr.s_addr) {
1683	viftable[vifi].v_pkt_out++;
1684	viftable[vifi].v_bytes_out += plen;
1685    } else {
1686	viftable[vifi].v_pkt_in++;
1687	viftable[vifi].v_bytes_in += plen;
1688    }
1689    rt->mfc_pkt_cnt++;
1690    rt->mfc_byte_cnt += plen;
1691
1692    /*
1693     * For each vif, decide if a copy of the packet should be forwarded.
1694     * Forward if:
1695     *		- the ttl exceeds the vif's threshold
1696     *		- there are group members downstream on interface
1697     */
1698    for (vifi = 0; vifi < numvifs; vifi++)
1699	if ((rt->mfc_ttls[vifi] > 0) && (ip->ip_ttl > rt->mfc_ttls[vifi])) {
1700	    viftable[vifi].v_pkt_out++;
1701	    viftable[vifi].v_bytes_out += plen;
1702	    if (viftable[vifi].v_flags & VIFF_REGISTER)
1703		pim_register_send(ip, viftable + vifi, m, rt);
1704	    else
1705		phyint_send(ip, viftable + vifi, m);
1706	}
1707
1708    /*
1709     * Perform upcall-related bw measuring.
1710     */
1711    if (rt->mfc_bw_meter != NULL) {
1712	struct bw_meter *x;
1713	struct timeval now;
1714
1715	GET_TIME(now);
1716	MFC_LOCK_ASSERT();
1717	for (x = rt->mfc_bw_meter; x != NULL; x = x->bm_mfc_next)
1718	    bw_meter_receive_packet(x, plen, &now);
1719    }
1720
1721    return 0;
1722}
1723
1724/*
1725 * check if a vif number is legal/ok. This is used by ip_output.
1726 */
1727static int
1728X_legal_vif_num(int vif)
1729{
1730    /* XXX unlocked, matter? */
1731    return (vif >= 0 && vif < numvifs);
1732}
1733
1734/*
1735 * Return the local address used by this vif
1736 */
1737static u_long
1738X_ip_mcast_src(int vifi)
1739{
1740    /* XXX unlocked, matter? */
1741    if (vifi >= 0 && vifi < numvifs)
1742	return viftable[vifi].v_lcl_addr.s_addr;
1743    else
1744	return INADDR_ANY;
1745}
1746
1747static void
1748phyint_send(struct ip *ip, struct vif *vifp, struct mbuf *m)
1749{
1750    struct mbuf *mb_copy;
1751    int hlen = ip->ip_hl << 2;
1752
1753    VIF_LOCK_ASSERT();
1754
1755    /*
1756     * Make a new reference to the packet; make sure that
1757     * the IP header is actually copied, not just referenced,
1758     * so that ip_output() only scribbles on the copy.
1759     */
1760    mb_copy = m_copypacket(m, M_DONTWAIT);
1761    if (mb_copy && (M_HASCL(mb_copy) || mb_copy->m_len < hlen))
1762	mb_copy = m_pullup(mb_copy, hlen);
1763    if (mb_copy == NULL)
1764	return;
1765
1766    send_packet(vifp, mb_copy);
1767}
1768
1769static void
1770send_packet(struct vif *vifp, struct mbuf *m)
1771{
1772	struct ip_moptions imo;
1773	struct in_multi *imm[2];
1774	int error;
1775
1776	VIF_LOCK_ASSERT();
1777
1778	imo.imo_multicast_ifp  = vifp->v_ifp;
1779	imo.imo_multicast_ttl  = mtod(m, struct ip *)->ip_ttl - 1;
1780	imo.imo_multicast_loop = 1;
1781	imo.imo_multicast_vif  = -1;
1782	imo.imo_num_memberships = 0;
1783	imo.imo_max_memberships = 2;
1784	imo.imo_membership  = &imm[0];
1785
1786	/*
1787	 * Re-entrancy should not be a problem here, because
1788	 * the packets that we send out and are looped back at us
1789	 * should get rejected because they appear to come from
1790	 * the loopback interface, thus preventing looping.
1791	 */
1792	error = ip_output(m, NULL, &vifp->v_route, IP_FORWARDING, &imo, NULL);
1793	if (mrtdebug & DEBUG_XMIT) {
1794	    log(LOG_DEBUG, "phyint_send on vif %td err %d\n",
1795		vifp - viftable, error);
1796	}
1797}
1798
1799static int
1800X_ip_rsvp_vif(struct socket *so, struct sockopt *sopt)
1801{
1802    int error, vifi;
1803
1804    if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_RSVP)
1805	return EOPNOTSUPP;
1806
1807    error = sooptcopyin(sopt, &vifi, sizeof vifi, sizeof vifi);
1808    if (error)
1809	return error;
1810
1811    VIF_LOCK();
1812
1813    if (vifi < 0 || vifi >= numvifs) {	/* Error if vif is invalid */
1814	VIF_UNLOCK();
1815	return EADDRNOTAVAIL;
1816    }
1817
1818    if (sopt->sopt_name == IP_RSVP_VIF_ON) {
1819	/* Check if socket is available. */
1820	if (viftable[vifi].v_rsvpd != NULL) {
1821	    VIF_UNLOCK();
1822	    return EADDRINUSE;
1823	}
1824
1825	viftable[vifi].v_rsvpd = so;
1826	/* This may seem silly, but we need to be sure we don't over-increment
1827	 * the RSVP counter, in case something slips up.
1828	 */
1829	if (!viftable[vifi].v_rsvp_on) {
1830	    viftable[vifi].v_rsvp_on = 1;
1831	    rsvp_on++;
1832	}
1833    } else { /* must be VIF_OFF */
1834	/*
1835	 * XXX as an additional consistency check, one could make sure
1836	 * that viftable[vifi].v_rsvpd == so, otherwise passing so as
1837	 * first parameter is pretty useless.
1838	 */
1839	viftable[vifi].v_rsvpd = NULL;
1840	/*
1841	 * This may seem silly, but we need to be sure we don't over-decrement
1842	 * the RSVP counter, in case something slips up.
1843	 */
1844	if (viftable[vifi].v_rsvp_on) {
1845	    viftable[vifi].v_rsvp_on = 0;
1846	    rsvp_on--;
1847	}
1848    }
1849    VIF_UNLOCK();
1850    return 0;
1851}
1852
1853static void
1854X_ip_rsvp_force_done(struct socket *so)
1855{
1856    int vifi;
1857
1858    /* Don't bother if it is not the right type of socket. */
1859    if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_RSVP)
1860	return;
1861
1862    VIF_LOCK();
1863
1864    /* The socket may be attached to more than one vif...this
1865     * is perfectly legal.
1866     */
1867    for (vifi = 0; vifi < numvifs; vifi++) {
1868	if (viftable[vifi].v_rsvpd == so) {
1869	    viftable[vifi].v_rsvpd = NULL;
1870	    /* This may seem silly, but we need to be sure we don't
1871	     * over-decrement the RSVP counter, in case something slips up.
1872	     */
1873	    if (viftable[vifi].v_rsvp_on) {
1874		viftable[vifi].v_rsvp_on = 0;
1875		rsvp_on--;
1876	    }
1877	}
1878    }
1879
1880    VIF_UNLOCK();
1881}
1882
1883static void
1884X_rsvp_input(struct mbuf *m, int off)
1885{
1886    int vifi;
1887    struct ip *ip = mtod(m, struct ip *);
1888    struct sockaddr_in rsvp_src = { sizeof rsvp_src, AF_INET };
1889    struct ifnet *ifp;
1890
1891    if (rsvpdebug)
1892	printf("rsvp_input: rsvp_on %d\n",rsvp_on);
1893
1894    /* Can still get packets with rsvp_on = 0 if there is a local member
1895     * of the group to which the RSVP packet is addressed.  But in this
1896     * case we want to throw the packet away.
1897     */
1898    if (!rsvp_on) {
1899	m_freem(m);
1900	return;
1901    }
1902
1903    if (rsvpdebug)
1904	printf("rsvp_input: check vifs\n");
1905
1906#ifdef DIAGNOSTIC
1907    M_ASSERTPKTHDR(m);
1908#endif
1909
1910    ifp = m->m_pkthdr.rcvif;
1911
1912    VIF_LOCK();
1913    /* Find which vif the packet arrived on. */
1914    for (vifi = 0; vifi < numvifs; vifi++)
1915	if (viftable[vifi].v_ifp == ifp)
1916	    break;
1917
1918    if (vifi == numvifs || viftable[vifi].v_rsvpd == NULL) {
1919	/*
1920	 * Drop the lock here to avoid holding it across rip_input.
1921	 * This could make rsvpdebug printfs wrong.  If you care,
1922	 * record the state of stuff before dropping the lock.
1923	 */
1924	VIF_UNLOCK();
1925	/*
1926	 * If the old-style non-vif-associated socket is set,
1927	 * then use it.  Otherwise, drop packet since there
1928	 * is no specific socket for this vif.
1929	 */
1930	if (ip_rsvpd != NULL) {
1931	    if (rsvpdebug)
1932		printf("rsvp_input: Sending packet up old-style socket\n");
1933	    rip_input(m, off);  /* xxx */
1934	} else {
1935	    if (rsvpdebug && vifi == numvifs)
1936		printf("rsvp_input: Can't find vif for packet.\n");
1937	    else if (rsvpdebug && viftable[vifi].v_rsvpd == NULL)
1938		printf("rsvp_input: No socket defined for vif %d\n",vifi);
1939	    m_freem(m);
1940	}
1941	return;
1942    }
1943    rsvp_src.sin_addr = ip->ip_src;
1944
1945    if (rsvpdebug && m)
1946	printf("rsvp_input: m->m_len = %d, sbspace() = %ld\n",
1947	       m->m_len,sbspace(&(viftable[vifi].v_rsvpd->so_rcv)));
1948
1949    if (socket_send(viftable[vifi].v_rsvpd, m, &rsvp_src) < 0) {
1950	if (rsvpdebug)
1951	    printf("rsvp_input: Failed to append to socket\n");
1952    } else {
1953	if (rsvpdebug)
1954	    printf("rsvp_input: send packet up\n");
1955    }
1956    VIF_UNLOCK();
1957}
1958
1959/*
1960 * Code for bandwidth monitors
1961 */
1962
1963/*
1964 * Define common interface for timeval-related methods
1965 */
1966#define	BW_TIMEVALCMP(tvp, uvp, cmp) timevalcmp((tvp), (uvp), cmp)
1967#define	BW_TIMEVALDECR(vvp, uvp) timevalsub((vvp), (uvp))
1968#define	BW_TIMEVALADD(vvp, uvp) timevaladd((vvp), (uvp))
1969
1970static uint32_t
1971compute_bw_meter_flags(struct bw_upcall *req)
1972{
1973    uint32_t flags = 0;
1974
1975    if (req->bu_flags & BW_UPCALL_UNIT_PACKETS)
1976	flags |= BW_METER_UNIT_PACKETS;
1977    if (req->bu_flags & BW_UPCALL_UNIT_BYTES)
1978	flags |= BW_METER_UNIT_BYTES;
1979    if (req->bu_flags & BW_UPCALL_GEQ)
1980	flags |= BW_METER_GEQ;
1981    if (req->bu_flags & BW_UPCALL_LEQ)
1982	flags |= BW_METER_LEQ;
1983
1984    return flags;
1985}
1986
1987/*
1988 * Add a bw_meter entry
1989 */
1990static int
1991add_bw_upcall(struct bw_upcall *req)
1992{
1993    struct mfc *mfc;
1994    struct timeval delta = { BW_UPCALL_THRESHOLD_INTERVAL_MIN_SEC,
1995		BW_UPCALL_THRESHOLD_INTERVAL_MIN_USEC };
1996    struct timeval now;
1997    struct bw_meter *x;
1998    uint32_t flags;
1999
2000    if (!(mrt_api_config & MRT_MFC_BW_UPCALL))
2001	return EOPNOTSUPP;
2002
2003    /* Test if the flags are valid */
2004    if (!(req->bu_flags & (BW_UPCALL_UNIT_PACKETS | BW_UPCALL_UNIT_BYTES)))
2005	return EINVAL;
2006    if (!(req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ)))
2007	return EINVAL;
2008    if ((req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ))
2009	    == (BW_UPCALL_GEQ | BW_UPCALL_LEQ))
2010	return EINVAL;
2011
2012    /* Test if the threshold time interval is valid */
2013    if (BW_TIMEVALCMP(&req->bu_threshold.b_time, &delta, <))
2014	return EINVAL;
2015
2016    flags = compute_bw_meter_flags(req);
2017
2018    /*
2019     * Find if we have already same bw_meter entry
2020     */
2021    MFC_LOCK();
2022    mfc = mfc_find(req->bu_src.s_addr, req->bu_dst.s_addr);
2023    if (mfc == NULL) {
2024	MFC_UNLOCK();
2025	return EADDRNOTAVAIL;
2026    }
2027    for (x = mfc->mfc_bw_meter; x != NULL; x = x->bm_mfc_next) {
2028	if ((BW_TIMEVALCMP(&x->bm_threshold.b_time,
2029			   &req->bu_threshold.b_time, ==)) &&
2030	    (x->bm_threshold.b_packets == req->bu_threshold.b_packets) &&
2031	    (x->bm_threshold.b_bytes == req->bu_threshold.b_bytes) &&
2032	    (x->bm_flags & BW_METER_USER_FLAGS) == flags)  {
2033	    MFC_UNLOCK();
2034	    return 0;		/* XXX Already installed */
2035	}
2036    }
2037
2038    /* Allocate the new bw_meter entry */
2039    x = (struct bw_meter *)malloc(sizeof(*x), M_BWMETER, M_NOWAIT);
2040    if (x == NULL) {
2041	MFC_UNLOCK();
2042	return ENOBUFS;
2043    }
2044
2045    /* Set the new bw_meter entry */
2046    x->bm_threshold.b_time = req->bu_threshold.b_time;
2047    GET_TIME(now);
2048    x->bm_start_time = now;
2049    x->bm_threshold.b_packets = req->bu_threshold.b_packets;
2050    x->bm_threshold.b_bytes = req->bu_threshold.b_bytes;
2051    x->bm_measured.b_packets = 0;
2052    x->bm_measured.b_bytes = 0;
2053    x->bm_flags = flags;
2054    x->bm_time_next = NULL;
2055    x->bm_time_hash = BW_METER_BUCKETS;
2056
2057    /* Add the new bw_meter entry to the front of entries for this MFC */
2058    x->bm_mfc = mfc;
2059    x->bm_mfc_next = mfc->mfc_bw_meter;
2060    mfc->mfc_bw_meter = x;
2061    schedule_bw_meter(x, &now);
2062    MFC_UNLOCK();
2063
2064    return 0;
2065}
2066
2067static void
2068free_bw_list(struct bw_meter *list)
2069{
2070    while (list != NULL) {
2071	struct bw_meter *x = list;
2072
2073	list = list->bm_mfc_next;
2074	unschedule_bw_meter(x);
2075	free(x, M_BWMETER);
2076    }
2077}
2078
2079/*
2080 * Delete one or multiple bw_meter entries
2081 */
2082static int
2083del_bw_upcall(struct bw_upcall *req)
2084{
2085    struct mfc *mfc;
2086    struct bw_meter *x;
2087
2088    if (!(mrt_api_config & MRT_MFC_BW_UPCALL))
2089	return EOPNOTSUPP;
2090
2091    MFC_LOCK();
2092    /* Find the corresponding MFC entry */
2093    mfc = mfc_find(req->bu_src.s_addr, req->bu_dst.s_addr);
2094    if (mfc == NULL) {
2095	MFC_UNLOCK();
2096	return EADDRNOTAVAIL;
2097    } else if (req->bu_flags & BW_UPCALL_DELETE_ALL) {
2098	/*
2099	 * Delete all bw_meter entries for this mfc
2100	 */
2101	struct bw_meter *list;
2102
2103	list = mfc->mfc_bw_meter;
2104	mfc->mfc_bw_meter = NULL;
2105	free_bw_list(list);
2106	MFC_UNLOCK();
2107	return 0;
2108    } else {			/* Delete a single bw_meter entry */
2109	struct bw_meter *prev;
2110	uint32_t flags = 0;
2111
2112	flags = compute_bw_meter_flags(req);
2113
2114	/* Find the bw_meter entry to delete */
2115	for (prev = NULL, x = mfc->mfc_bw_meter; x != NULL;
2116	     prev = x, x = x->bm_mfc_next) {
2117	    if ((BW_TIMEVALCMP(&x->bm_threshold.b_time,
2118			       &req->bu_threshold.b_time, ==)) &&
2119		(x->bm_threshold.b_packets == req->bu_threshold.b_packets) &&
2120		(x->bm_threshold.b_bytes == req->bu_threshold.b_bytes) &&
2121		(x->bm_flags & BW_METER_USER_FLAGS) == flags)
2122		break;
2123	}
2124	if (x != NULL) { /* Delete entry from the list for this MFC */
2125	    if (prev != NULL)
2126		prev->bm_mfc_next = x->bm_mfc_next;	/* remove from middle*/
2127	    else
2128		x->bm_mfc->mfc_bw_meter = x->bm_mfc_next;/* new head of list */
2129
2130	    unschedule_bw_meter(x);
2131	    MFC_UNLOCK();
2132	    /* Free the bw_meter entry */
2133	    free(x, M_BWMETER);
2134	    return 0;
2135	} else {
2136	    MFC_UNLOCK();
2137	    return EINVAL;
2138	}
2139    }
2140    /* NOTREACHED */
2141}
2142
2143/*
2144 * Perform bandwidth measurement processing that may result in an upcall
2145 */
2146static void
2147bw_meter_receive_packet(struct bw_meter *x, int plen, struct timeval *nowp)
2148{
2149    struct timeval delta;
2150
2151    MFC_LOCK_ASSERT();
2152
2153    delta = *nowp;
2154    BW_TIMEVALDECR(&delta, &x->bm_start_time);
2155
2156    if (x->bm_flags & BW_METER_GEQ) {
2157	/*
2158	 * Processing for ">=" type of bw_meter entry
2159	 */
2160	if (BW_TIMEVALCMP(&delta, &x->bm_threshold.b_time, >)) {
2161	    /* Reset the bw_meter entry */
2162	    x->bm_start_time = *nowp;
2163	    x->bm_measured.b_packets = 0;
2164	    x->bm_measured.b_bytes = 0;
2165	    x->bm_flags &= ~BW_METER_UPCALL_DELIVERED;
2166	}
2167
2168	/* Record that a packet is received */
2169	x->bm_measured.b_packets++;
2170	x->bm_measured.b_bytes += plen;
2171
2172	/*
2173	 * Test if we should deliver an upcall
2174	 */
2175	if (!(x->bm_flags & BW_METER_UPCALL_DELIVERED)) {
2176	    if (((x->bm_flags & BW_METER_UNIT_PACKETS) &&
2177		 (x->bm_measured.b_packets >= x->bm_threshold.b_packets)) ||
2178		((x->bm_flags & BW_METER_UNIT_BYTES) &&
2179		 (x->bm_measured.b_bytes >= x->bm_threshold.b_bytes))) {
2180		/* Prepare an upcall for delivery */
2181		bw_meter_prepare_upcall(x, nowp);
2182		x->bm_flags |= BW_METER_UPCALL_DELIVERED;
2183	    }
2184	}
2185    } else if (x->bm_flags & BW_METER_LEQ) {
2186	/*
2187	 * Processing for "<=" type of bw_meter entry
2188	 */
2189	if (BW_TIMEVALCMP(&delta, &x->bm_threshold.b_time, >)) {
2190	    /*
2191	     * We are behind time with the multicast forwarding table
2192	     * scanning for "<=" type of bw_meter entries, so test now
2193	     * if we should deliver an upcall.
2194	     */
2195	    if (((x->bm_flags & BW_METER_UNIT_PACKETS) &&
2196		 (x->bm_measured.b_packets <= x->bm_threshold.b_packets)) ||
2197		((x->bm_flags & BW_METER_UNIT_BYTES) &&
2198		 (x->bm_measured.b_bytes <= x->bm_threshold.b_bytes))) {
2199		/* Prepare an upcall for delivery */
2200		bw_meter_prepare_upcall(x, nowp);
2201	    }
2202	    /* Reschedule the bw_meter entry */
2203	    unschedule_bw_meter(x);
2204	    schedule_bw_meter(x, nowp);
2205	}
2206
2207	/* Record that a packet is received */
2208	x->bm_measured.b_packets++;
2209	x->bm_measured.b_bytes += plen;
2210
2211	/*
2212	 * Test if we should restart the measuring interval
2213	 */
2214	if ((x->bm_flags & BW_METER_UNIT_PACKETS &&
2215	     x->bm_measured.b_packets <= x->bm_threshold.b_packets) ||
2216	    (x->bm_flags & BW_METER_UNIT_BYTES &&
2217	     x->bm_measured.b_bytes <= x->bm_threshold.b_bytes)) {
2218	    /* Don't restart the measuring interval */
2219	} else {
2220	    /* Do restart the measuring interval */
2221	    /*
2222	     * XXX: note that we don't unschedule and schedule, because this
2223	     * might be too much overhead per packet. Instead, when we process
2224	     * all entries for a given timer hash bin, we check whether it is
2225	     * really a timeout. If not, we reschedule at that time.
2226	     */
2227	    x->bm_start_time = *nowp;
2228	    x->bm_measured.b_packets = 0;
2229	    x->bm_measured.b_bytes = 0;
2230	    x->bm_flags &= ~BW_METER_UPCALL_DELIVERED;
2231	}
2232    }
2233}
2234
2235/*
2236 * Prepare a bandwidth-related upcall
2237 */
2238static void
2239bw_meter_prepare_upcall(struct bw_meter *x, struct timeval *nowp)
2240{
2241    struct timeval delta;
2242    struct bw_upcall *u;
2243
2244    MFC_LOCK_ASSERT();
2245
2246    /*
2247     * Compute the measured time interval
2248     */
2249    delta = *nowp;
2250    BW_TIMEVALDECR(&delta, &x->bm_start_time);
2251
2252    /*
2253     * If there are too many pending upcalls, deliver them now
2254     */
2255    if (bw_upcalls_n >= BW_UPCALLS_MAX)
2256	bw_upcalls_send();
2257
2258    /*
2259     * Set the bw_upcall entry
2260     */
2261    u = &bw_upcalls[bw_upcalls_n++];
2262    u->bu_src = x->bm_mfc->mfc_origin;
2263    u->bu_dst = x->bm_mfc->mfc_mcastgrp;
2264    u->bu_threshold.b_time = x->bm_threshold.b_time;
2265    u->bu_threshold.b_packets = x->bm_threshold.b_packets;
2266    u->bu_threshold.b_bytes = x->bm_threshold.b_bytes;
2267    u->bu_measured.b_time = delta;
2268    u->bu_measured.b_packets = x->bm_measured.b_packets;
2269    u->bu_measured.b_bytes = x->bm_measured.b_bytes;
2270    u->bu_flags = 0;
2271    if (x->bm_flags & BW_METER_UNIT_PACKETS)
2272	u->bu_flags |= BW_UPCALL_UNIT_PACKETS;
2273    if (x->bm_flags & BW_METER_UNIT_BYTES)
2274	u->bu_flags |= BW_UPCALL_UNIT_BYTES;
2275    if (x->bm_flags & BW_METER_GEQ)
2276	u->bu_flags |= BW_UPCALL_GEQ;
2277    if (x->bm_flags & BW_METER_LEQ)
2278	u->bu_flags |= BW_UPCALL_LEQ;
2279}
2280
2281/*
2282 * Send the pending bandwidth-related upcalls
2283 */
2284static void
2285bw_upcalls_send(void)
2286{
2287    struct mbuf *m;
2288    int len = bw_upcalls_n * sizeof(bw_upcalls[0]);
2289    struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
2290    static struct igmpmsg igmpmsg = { 0,		/* unused1 */
2291				      0,		/* unused2 */
2292				      IGMPMSG_BW_UPCALL,/* im_msgtype */
2293				      0,		/* im_mbz  */
2294				      0,		/* im_vif  */
2295				      0,		/* unused3 */
2296				      { 0 },		/* im_src  */
2297				      { 0 } };		/* im_dst  */
2298
2299    MFC_LOCK_ASSERT();
2300
2301    if (bw_upcalls_n == 0)
2302	return;			/* No pending upcalls */
2303
2304    bw_upcalls_n = 0;
2305
2306    /*
2307     * Allocate a new mbuf, initialize it with the header and
2308     * the payload for the pending calls.
2309     */
2310    MGETHDR(m, M_DONTWAIT, MT_DATA);
2311    if (m == NULL) {
2312	log(LOG_WARNING, "bw_upcalls_send: cannot allocate mbuf\n");
2313	return;
2314    }
2315
2316    m->m_len = m->m_pkthdr.len = 0;
2317    m_copyback(m, 0, sizeof(struct igmpmsg), (caddr_t)&igmpmsg);
2318    m_copyback(m, sizeof(struct igmpmsg), len, (caddr_t)&bw_upcalls[0]);
2319
2320    /*
2321     * Send the upcalls
2322     * XXX do we need to set the address in k_igmpsrc ?
2323     */
2324    mrtstat.mrts_upcalls++;
2325    if (socket_send(ip_mrouter, m, &k_igmpsrc) < 0) {
2326	log(LOG_WARNING, "bw_upcalls_send: ip_mrouter socket queue full\n");
2327	++mrtstat.mrts_upq_sockfull;
2328    }
2329}
2330
2331/*
2332 * Compute the timeout hash value for the bw_meter entries
2333 */
2334#define	BW_METER_TIMEHASH(bw_meter, hash)				\
2335    do {								\
2336	struct timeval next_timeval = (bw_meter)->bm_start_time;	\
2337									\
2338	BW_TIMEVALADD(&next_timeval, &(bw_meter)->bm_threshold.b_time); \
2339	(hash) = next_timeval.tv_sec;					\
2340	if (next_timeval.tv_usec)					\
2341	    (hash)++; /* XXX: make sure we don't timeout early */	\
2342	(hash) %= BW_METER_BUCKETS;					\
2343    } while (0)
2344
2345/*
2346 * Schedule a timer to process periodically bw_meter entry of type "<="
2347 * by linking the entry in the proper hash bucket.
2348 */
2349static void
2350schedule_bw_meter(struct bw_meter *x, struct timeval *nowp)
2351{
2352    int time_hash;
2353
2354    MFC_LOCK_ASSERT();
2355
2356    if (!(x->bm_flags & BW_METER_LEQ))
2357	return;		/* XXX: we schedule timers only for "<=" entries */
2358
2359    /*
2360     * Reset the bw_meter entry
2361     */
2362    x->bm_start_time = *nowp;
2363    x->bm_measured.b_packets = 0;
2364    x->bm_measured.b_bytes = 0;
2365    x->bm_flags &= ~BW_METER_UPCALL_DELIVERED;
2366
2367    /*
2368     * Compute the timeout hash value and insert the entry
2369     */
2370    BW_METER_TIMEHASH(x, time_hash);
2371    x->bm_time_next = bw_meter_timers[time_hash];
2372    bw_meter_timers[time_hash] = x;
2373    x->bm_time_hash = time_hash;
2374}
2375
2376/*
2377 * Unschedule the periodic timer that processes bw_meter entry of type "<="
2378 * by removing the entry from the proper hash bucket.
2379 */
2380static void
2381unschedule_bw_meter(struct bw_meter *x)
2382{
2383    int time_hash;
2384    struct bw_meter *prev, *tmp;
2385
2386    MFC_LOCK_ASSERT();
2387
2388    if (!(x->bm_flags & BW_METER_LEQ))
2389	return;		/* XXX: we schedule timers only for "<=" entries */
2390
2391    /*
2392     * Compute the timeout hash value and delete the entry
2393     */
2394    time_hash = x->bm_time_hash;
2395    if (time_hash >= BW_METER_BUCKETS)
2396	return;		/* Entry was not scheduled */
2397
2398    for (prev = NULL, tmp = bw_meter_timers[time_hash];
2399	     tmp != NULL; prev = tmp, tmp = tmp->bm_time_next)
2400	if (tmp == x)
2401	    break;
2402
2403    if (tmp == NULL)
2404	panic("unschedule_bw_meter: bw_meter entry not found");
2405
2406    if (prev != NULL)
2407	prev->bm_time_next = x->bm_time_next;
2408    else
2409	bw_meter_timers[time_hash] = x->bm_time_next;
2410
2411    x->bm_time_next = NULL;
2412    x->bm_time_hash = BW_METER_BUCKETS;
2413}
2414
2415
2416/*
2417 * Process all "<=" type of bw_meter that should be processed now,
2418 * and for each entry prepare an upcall if necessary. Each processed
2419 * entry is rescheduled again for the (periodic) processing.
2420 *
2421 * This is run periodically (once per second normally). On each round,
2422 * all the potentially matching entries are in the hash slot that we are
2423 * looking at.
2424 */
2425static void
2426bw_meter_process()
2427{
2428    static uint32_t last_tv_sec;	/* last time we processed this */
2429
2430    uint32_t loops;
2431    int i;
2432    struct timeval now, process_endtime;
2433
2434    GET_TIME(now);
2435    if (last_tv_sec == now.tv_sec)
2436	return;		/* nothing to do */
2437
2438    loops = now.tv_sec - last_tv_sec;
2439    last_tv_sec = now.tv_sec;
2440    if (loops > BW_METER_BUCKETS)
2441	loops = BW_METER_BUCKETS;
2442
2443    MFC_LOCK();
2444    /*
2445     * Process all bins of bw_meter entries from the one after the last
2446     * processed to the current one. On entry, i points to the last bucket
2447     * visited, so we need to increment i at the beginning of the loop.
2448     */
2449    for (i = (now.tv_sec - loops) % BW_METER_BUCKETS; loops > 0; loops--) {
2450	struct bw_meter *x, *tmp_list;
2451
2452	if (++i >= BW_METER_BUCKETS)
2453	    i = 0;
2454
2455	/* Disconnect the list of bw_meter entries from the bin */
2456	tmp_list = bw_meter_timers[i];
2457	bw_meter_timers[i] = NULL;
2458
2459	/* Process the list of bw_meter entries */
2460	while (tmp_list != NULL) {
2461	    x = tmp_list;
2462	    tmp_list = tmp_list->bm_time_next;
2463
2464	    /* Test if the time interval is over */
2465	    process_endtime = x->bm_start_time;
2466	    BW_TIMEVALADD(&process_endtime, &x->bm_threshold.b_time);
2467	    if (BW_TIMEVALCMP(&process_endtime, &now, >)) {
2468		/* Not yet: reschedule, but don't reset */
2469		int time_hash;
2470
2471		BW_METER_TIMEHASH(x, time_hash);
2472		if (time_hash == i && process_endtime.tv_sec == now.tv_sec) {
2473		    /*
2474		     * XXX: somehow the bin processing is a bit ahead of time.
2475		     * Put the entry in the next bin.
2476		     */
2477		    if (++time_hash >= BW_METER_BUCKETS)
2478			time_hash = 0;
2479		}
2480		x->bm_time_next = bw_meter_timers[time_hash];
2481		bw_meter_timers[time_hash] = x;
2482		x->bm_time_hash = time_hash;
2483
2484		continue;
2485	    }
2486
2487	    /*
2488	     * Test if we should deliver an upcall
2489	     */
2490	    if (((x->bm_flags & BW_METER_UNIT_PACKETS) &&
2491		 (x->bm_measured.b_packets <= x->bm_threshold.b_packets)) ||
2492		((x->bm_flags & BW_METER_UNIT_BYTES) &&
2493		 (x->bm_measured.b_bytes <= x->bm_threshold.b_bytes))) {
2494		/* Prepare an upcall for delivery */
2495		bw_meter_prepare_upcall(x, &now);
2496	    }
2497
2498	    /*
2499	     * Reschedule for next processing
2500	     */
2501	    schedule_bw_meter(x, &now);
2502	}
2503    }
2504
2505    /* Send all upcalls that are pending delivery */
2506    bw_upcalls_send();
2507
2508    MFC_UNLOCK();
2509}
2510
2511/*
2512 * A periodic function for sending all upcalls that are pending delivery
2513 */
2514static void
2515expire_bw_upcalls_send(void *unused)
2516{
2517    MFC_LOCK();
2518    bw_upcalls_send();
2519    MFC_UNLOCK();
2520
2521    callout_reset(&bw_upcalls_ch, BW_UPCALLS_PERIOD,
2522	expire_bw_upcalls_send, NULL);
2523}
2524
2525/*
2526 * A periodic function for periodic scanning of the multicast forwarding
2527 * table for processing all "<=" bw_meter entries.
2528 */
2529static void
2530expire_bw_meter_process(void *unused)
2531{
2532    if (mrt_api_config & MRT_MFC_BW_UPCALL)
2533	bw_meter_process();
2534
2535    callout_reset(&bw_meter_ch, BW_METER_PERIOD, expire_bw_meter_process, NULL);
2536}
2537
2538/*
2539 * End of bandwidth monitoring code
2540 */
2541
2542/*
2543 * Send the packet up to the user daemon, or eventually do kernel encapsulation
2544 *
2545 */
2546static int
2547pim_register_send(struct ip *ip, struct vif *vifp, struct mbuf *m,
2548    struct mfc *rt)
2549{
2550    struct mbuf *mb_copy, *mm;
2551
2552    if (mrtdebug & DEBUG_PIM)
2553	log(LOG_DEBUG, "pim_register_send: ");
2554
2555    /*
2556     * Do not send IGMP_WHOLEPKT notifications to userland, if the
2557     * rendezvous point was unspecified, and we were told not to.
2558     */
2559    if (pim_squelch_wholepkt != 0 && (mrt_api_config & MRT_MFC_RP) &&
2560	(rt->mfc_rp.s_addr == INADDR_ANY))
2561	return 0;
2562
2563    mb_copy = pim_register_prepare(ip, m);
2564    if (mb_copy == NULL)
2565	return ENOBUFS;
2566
2567    /*
2568     * Send all the fragments. Note that the mbuf for each fragment
2569     * is freed by the sending machinery.
2570     */
2571    for (mm = mb_copy; mm; mm = mb_copy) {
2572	mb_copy = mm->m_nextpkt;
2573	mm->m_nextpkt = 0;
2574	mm = m_pullup(mm, sizeof(struct ip));
2575	if (mm != NULL) {
2576	    ip = mtod(mm, struct ip *);
2577	    if ((mrt_api_config & MRT_MFC_RP) &&
2578		(rt->mfc_rp.s_addr != INADDR_ANY)) {
2579		pim_register_send_rp(ip, vifp, mm, rt);
2580	    } else {
2581		pim_register_send_upcall(ip, vifp, mm, rt);
2582	    }
2583	}
2584    }
2585
2586    return 0;
2587}
2588
2589/*
2590 * Return a copy of the data packet that is ready for PIM Register
2591 * encapsulation.
2592 * XXX: Note that in the returned copy the IP header is a valid one.
2593 */
2594static struct mbuf *
2595pim_register_prepare(struct ip *ip, struct mbuf *m)
2596{
2597    struct mbuf *mb_copy = NULL;
2598    int mtu;
2599
2600    /* Take care of delayed checksums */
2601    if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
2602	in_delayed_cksum(m);
2603	m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
2604    }
2605
2606    /*
2607     * Copy the old packet & pullup its IP header into the
2608     * new mbuf so we can modify it.
2609     */
2610    mb_copy = m_copypacket(m, M_DONTWAIT);
2611    if (mb_copy == NULL)
2612	return NULL;
2613    mb_copy = m_pullup(mb_copy, ip->ip_hl << 2);
2614    if (mb_copy == NULL)
2615	return NULL;
2616
2617    /* take care of the TTL */
2618    ip = mtod(mb_copy, struct ip *);
2619    --ip->ip_ttl;
2620
2621    /* Compute the MTU after the PIM Register encapsulation */
2622    mtu = 0xffff - sizeof(pim_encap_iphdr) - sizeof(pim_encap_pimhdr);
2623
2624    if (ip->ip_len <= mtu) {
2625	/* Turn the IP header into a valid one */
2626	ip->ip_len = htons(ip->ip_len);
2627	ip->ip_off = htons(ip->ip_off);
2628	ip->ip_sum = 0;
2629	ip->ip_sum = in_cksum(mb_copy, ip->ip_hl << 2);
2630    } else {
2631	/* Fragment the packet */
2632	if (ip_fragment(ip, &mb_copy, mtu, 0, CSUM_DELAY_IP) != 0) {
2633	    m_freem(mb_copy);
2634	    return NULL;
2635	}
2636    }
2637    return mb_copy;
2638}
2639
2640/*
2641 * Send an upcall with the data packet to the user-level process.
2642 */
2643static int
2644pim_register_send_upcall(struct ip *ip, struct vif *vifp,
2645    struct mbuf *mb_copy, struct mfc *rt)
2646{
2647    struct mbuf *mb_first;
2648    int len = ntohs(ip->ip_len);
2649    struct igmpmsg *im;
2650    struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
2651
2652    VIF_LOCK_ASSERT();
2653
2654    /*
2655     * Add a new mbuf with an upcall header
2656     */
2657    MGETHDR(mb_first, M_DONTWAIT, MT_DATA);
2658    if (mb_first == NULL) {
2659	m_freem(mb_copy);
2660	return ENOBUFS;
2661    }
2662    mb_first->m_data += max_linkhdr;
2663    mb_first->m_pkthdr.len = len + sizeof(struct igmpmsg);
2664    mb_first->m_len = sizeof(struct igmpmsg);
2665    mb_first->m_next = mb_copy;
2666
2667    /* Send message to routing daemon */
2668    im = mtod(mb_first, struct igmpmsg *);
2669    im->im_msgtype	= IGMPMSG_WHOLEPKT;
2670    im->im_mbz		= 0;
2671    im->im_vif		= vifp - viftable;
2672    im->im_src		= ip->ip_src;
2673    im->im_dst		= ip->ip_dst;
2674
2675    k_igmpsrc.sin_addr	= ip->ip_src;
2676
2677    mrtstat.mrts_upcalls++;
2678
2679    if (socket_send(ip_mrouter, mb_first, &k_igmpsrc) < 0) {
2680	if (mrtdebug & DEBUG_PIM)
2681	    log(LOG_WARNING,
2682		"mcast: pim_register_send_upcall: ip_mrouter socket queue full");
2683	++mrtstat.mrts_upq_sockfull;
2684	return ENOBUFS;
2685    }
2686
2687    /* Keep statistics */
2688    pimstat.pims_snd_registers_msgs++;
2689    pimstat.pims_snd_registers_bytes += len;
2690
2691    return 0;
2692}
2693
2694/*
2695 * Encapsulate the data packet in PIM Register message and send it to the RP.
2696 */
2697static int
2698pim_register_send_rp(struct ip *ip, struct vif *vifp, struct mbuf *mb_copy,
2699    struct mfc *rt)
2700{
2701    struct mbuf *mb_first;
2702    struct ip *ip_outer;
2703    struct pim_encap_pimhdr *pimhdr;
2704    int len = ntohs(ip->ip_len);
2705    vifi_t vifi = rt->mfc_parent;
2706
2707    VIF_LOCK_ASSERT();
2708
2709    if ((vifi >= numvifs) || (viftable[vifi].v_lcl_addr.s_addr == 0)) {
2710	m_freem(mb_copy);
2711	return EADDRNOTAVAIL;		/* The iif vif is invalid */
2712    }
2713
2714    /*
2715     * Add a new mbuf with the encapsulating header
2716     */
2717    MGETHDR(mb_first, M_DONTWAIT, MT_DATA);
2718    if (mb_first == NULL) {
2719	m_freem(mb_copy);
2720	return ENOBUFS;
2721    }
2722    mb_first->m_data += max_linkhdr;
2723    mb_first->m_len = sizeof(pim_encap_iphdr) + sizeof(pim_encap_pimhdr);
2724    mb_first->m_next = mb_copy;
2725
2726    mb_first->m_pkthdr.len = len + mb_first->m_len;
2727
2728    /*
2729     * Fill in the encapsulating IP and PIM header
2730     */
2731    ip_outer = mtod(mb_first, struct ip *);
2732    *ip_outer = pim_encap_iphdr;
2733    ip_outer->ip_id = ip_newid();
2734    ip_outer->ip_len = len + sizeof(pim_encap_iphdr) + sizeof(pim_encap_pimhdr);
2735    ip_outer->ip_src = viftable[vifi].v_lcl_addr;
2736    ip_outer->ip_dst = rt->mfc_rp;
2737    /*
2738     * Copy the inner header TOS to the outer header, and take care of the
2739     * IP_DF bit.
2740     */
2741    ip_outer->ip_tos = ip->ip_tos;
2742    if (ntohs(ip->ip_off) & IP_DF)
2743	ip_outer->ip_off |= IP_DF;
2744    pimhdr = (struct pim_encap_pimhdr *)((caddr_t)ip_outer
2745					 + sizeof(pim_encap_iphdr));
2746    *pimhdr = pim_encap_pimhdr;
2747    /* If the iif crosses a border, set the Border-bit */
2748    if (rt->mfc_flags[vifi] & MRT_MFC_FLAGS_BORDER_VIF & mrt_api_config)
2749	pimhdr->flags |= htonl(PIM_BORDER_REGISTER);
2750
2751    mb_first->m_data += sizeof(pim_encap_iphdr);
2752    pimhdr->pim.pim_cksum = in_cksum(mb_first, sizeof(pim_encap_pimhdr));
2753    mb_first->m_data -= sizeof(pim_encap_iphdr);
2754
2755    send_packet(vifp, mb_first);
2756
2757    /* Keep statistics */
2758    pimstat.pims_snd_registers_msgs++;
2759    pimstat.pims_snd_registers_bytes += len;
2760
2761    return 0;
2762}
2763
2764/*
2765 * pim_encapcheck() is called by the encap[46]_input() path at runtime to
2766 * determine if a packet is for PIM; allowing PIM to be dynamically loaded
2767 * into the kernel.
2768 */
2769static int
2770pim_encapcheck(const struct mbuf *m, int off, int proto, void *arg)
2771{
2772
2773#ifdef DIAGNOSTIC
2774    KASSERT(proto == IPPROTO_PIM, ("not for IPPROTO_PIM"));
2775#endif
2776    if (proto != IPPROTO_PIM)
2777	return 0;	/* not for us; reject the datagram. */
2778
2779    return 64;		/* claim the datagram. */
2780}
2781
2782/*
2783 * PIM-SMv2 and PIM-DM messages processing.
2784 * Receives and verifies the PIM control messages, and passes them
2785 * up to the listening socket, using rip_input().
2786 * The only message with special processing is the PIM_REGISTER message
2787 * (used by PIM-SM): the PIM header is stripped off, and the inner packet
2788 * is passed to if_simloop().
2789 */
2790void
2791pim_input(struct mbuf *m, int off)
2792{
2793    struct ip *ip = mtod(m, struct ip *);
2794    struct pim *pim;
2795    int minlen;
2796    int datalen = ip->ip_len;
2797    int ip_tos;
2798    int iphlen = off;
2799
2800    /* Keep statistics */
2801    pimstat.pims_rcv_total_msgs++;
2802    pimstat.pims_rcv_total_bytes += datalen;
2803
2804    /*
2805     * Validate lengths
2806     */
2807    if (datalen < PIM_MINLEN) {
2808	pimstat.pims_rcv_tooshort++;
2809	log(LOG_ERR, "pim_input: packet size too small %d from %lx\n",
2810	    datalen, (u_long)ip->ip_src.s_addr);
2811	m_freem(m);
2812	return;
2813    }
2814
2815    /*
2816     * If the packet is at least as big as a REGISTER, go agead
2817     * and grab the PIM REGISTER header size, to avoid another
2818     * possible m_pullup() later.
2819     *
2820     * PIM_MINLEN       == pimhdr + u_int32_t == 4 + 4 = 8
2821     * PIM_REG_MINLEN   == pimhdr + reghdr + encap_iphdr == 4 + 4 + 20 = 28
2822     */
2823    minlen = iphlen + (datalen >= PIM_REG_MINLEN ? PIM_REG_MINLEN : PIM_MINLEN);
2824    /*
2825     * Get the IP and PIM headers in contiguous memory, and
2826     * possibly the PIM REGISTER header.
2827     */
2828    if ((m->m_flags & M_EXT || m->m_len < minlen) &&
2829	(m = m_pullup(m, minlen)) == 0) {
2830	log(LOG_ERR, "pim_input: m_pullup failure\n");
2831	return;
2832    }
2833    /* m_pullup() may have given us a new mbuf so reset ip. */
2834    ip = mtod(m, struct ip *);
2835    ip_tos = ip->ip_tos;
2836
2837    /* adjust mbuf to point to the PIM header */
2838    m->m_data += iphlen;
2839    m->m_len  -= iphlen;
2840    pim = mtod(m, struct pim *);
2841
2842    /*
2843     * Validate checksum. If PIM REGISTER, exclude the data packet.
2844     *
2845     * XXX: some older PIMv2 implementations don't make this distinction,
2846     * so for compatibility reason perform the checksum over part of the
2847     * message, and if error, then over the whole message.
2848     */
2849    if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER && in_cksum(m, PIM_MINLEN) == 0) {
2850	/* do nothing, checksum okay */
2851    } else if (in_cksum(m, datalen)) {
2852	pimstat.pims_rcv_badsum++;
2853	if (mrtdebug & DEBUG_PIM)
2854	    log(LOG_DEBUG, "pim_input: invalid checksum");
2855	m_freem(m);
2856	return;
2857    }
2858
2859    /* PIM version check */
2860    if (PIM_VT_V(pim->pim_vt) < PIM_VERSION) {
2861	pimstat.pims_rcv_badversion++;
2862	log(LOG_ERR, "pim_input: incorrect version %d, expecting %d\n",
2863	    PIM_VT_V(pim->pim_vt), PIM_VERSION);
2864	m_freem(m);
2865	return;
2866    }
2867
2868    /* restore mbuf back to the outer IP */
2869    m->m_data -= iphlen;
2870    m->m_len  += iphlen;
2871
2872    if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER) {
2873	/*
2874	 * Since this is a REGISTER, we'll make a copy of the register
2875	 * headers ip + pim + u_int32 + encap_ip, to be passed up to the
2876	 * routing daemon.
2877	 */
2878	struct sockaddr_in dst = { sizeof(dst), AF_INET };
2879	struct mbuf *mcp;
2880	struct ip *encap_ip;
2881	u_int32_t *reghdr;
2882	struct ifnet *vifp;
2883
2884	VIF_LOCK();
2885	if ((reg_vif_num >= numvifs) || (reg_vif_num == VIFI_INVALID)) {
2886	    VIF_UNLOCK();
2887	    if (mrtdebug & DEBUG_PIM)
2888		log(LOG_DEBUG,
2889		    "pim_input: register vif not set: %d\n", reg_vif_num);
2890	    m_freem(m);
2891	    return;
2892	}
2893	/* XXX need refcnt? */
2894	vifp = viftable[reg_vif_num].v_ifp;
2895	VIF_UNLOCK();
2896
2897	/*
2898	 * Validate length
2899	 */
2900	if (datalen < PIM_REG_MINLEN) {
2901	    pimstat.pims_rcv_tooshort++;
2902	    pimstat.pims_rcv_badregisters++;
2903	    log(LOG_ERR,
2904		"pim_input: register packet size too small %d from %lx\n",
2905		datalen, (u_long)ip->ip_src.s_addr);
2906	    m_freem(m);
2907	    return;
2908	}
2909
2910	reghdr = (u_int32_t *)(pim + 1);
2911	encap_ip = (struct ip *)(reghdr + 1);
2912
2913	if (mrtdebug & DEBUG_PIM) {
2914	    log(LOG_DEBUG,
2915		"pim_input[register], encap_ip: %lx -> %lx, encap_ip len %d\n",
2916		(u_long)ntohl(encap_ip->ip_src.s_addr),
2917		(u_long)ntohl(encap_ip->ip_dst.s_addr),
2918		ntohs(encap_ip->ip_len));
2919	}
2920
2921	/* verify the version number of the inner packet */
2922	if (encap_ip->ip_v != IPVERSION) {
2923	    pimstat.pims_rcv_badregisters++;
2924	    if (mrtdebug & DEBUG_PIM) {
2925		log(LOG_DEBUG, "pim_input: invalid IP version (%d) "
2926		    "of the inner packet\n", encap_ip->ip_v);
2927	    }
2928	    m_freem(m);
2929	    return;
2930	}
2931
2932	/* verify the inner packet is destined to a mcast group */
2933	if (!IN_MULTICAST(ntohl(encap_ip->ip_dst.s_addr))) {
2934	    pimstat.pims_rcv_badregisters++;
2935	    if (mrtdebug & DEBUG_PIM)
2936		log(LOG_DEBUG,
2937		    "pim_input: inner packet of register is not "
2938		    "multicast %lx\n",
2939		    (u_long)ntohl(encap_ip->ip_dst.s_addr));
2940	    m_freem(m);
2941	    return;
2942	}
2943
2944	/* If a NULL_REGISTER, pass it to the daemon */
2945	if ((ntohl(*reghdr) & PIM_NULL_REGISTER))
2946	    goto pim_input_to_daemon;
2947
2948	/*
2949	 * Copy the TOS from the outer IP header to the inner IP header.
2950	 */
2951	if (encap_ip->ip_tos != ip_tos) {
2952	    /* Outer TOS -> inner TOS */
2953	    encap_ip->ip_tos = ip_tos;
2954	    /* Recompute the inner header checksum. Sigh... */
2955
2956	    /* adjust mbuf to point to the inner IP header */
2957	    m->m_data += (iphlen + PIM_MINLEN);
2958	    m->m_len  -= (iphlen + PIM_MINLEN);
2959
2960	    encap_ip->ip_sum = 0;
2961	    encap_ip->ip_sum = in_cksum(m, encap_ip->ip_hl << 2);
2962
2963	    /* restore mbuf to point back to the outer IP header */
2964	    m->m_data -= (iphlen + PIM_MINLEN);
2965	    m->m_len  += (iphlen + PIM_MINLEN);
2966	}
2967
2968	/*
2969	 * Decapsulate the inner IP packet and loopback to forward it
2970	 * as a normal multicast packet. Also, make a copy of the
2971	 *     outer_iphdr + pimhdr + reghdr + encap_iphdr
2972	 * to pass to the daemon later, so it can take the appropriate
2973	 * actions (e.g., send back PIM_REGISTER_STOP).
2974	 * XXX: here m->m_data points to the outer IP header.
2975	 */
2976	mcp = m_copy(m, 0, iphlen + PIM_REG_MINLEN);
2977	if (mcp == NULL) {
2978	    log(LOG_ERR,
2979		"pim_input: pim register: could not copy register head\n");
2980	    m_freem(m);
2981	    return;
2982	}
2983
2984	/* Keep statistics */
2985	/* XXX: registers_bytes include only the encap. mcast pkt */
2986	pimstat.pims_rcv_registers_msgs++;
2987	pimstat.pims_rcv_registers_bytes += ntohs(encap_ip->ip_len);
2988
2989	/*
2990	 * forward the inner ip packet; point m_data at the inner ip.
2991	 */
2992	m_adj(m, iphlen + PIM_MINLEN);
2993
2994	if (mrtdebug & DEBUG_PIM) {
2995	    log(LOG_DEBUG,
2996		"pim_input: forwarding decapsulated register: "
2997		"src %lx, dst %lx, vif %d\n",
2998		(u_long)ntohl(encap_ip->ip_src.s_addr),
2999		(u_long)ntohl(encap_ip->ip_dst.s_addr),
3000		reg_vif_num);
3001	}
3002	/* NB: vifp was collected above; can it change on us? */
3003	if_simloop(vifp, m, dst.sin_family, 0);
3004
3005	/* prepare the register head to send to the mrouting daemon */
3006	m = mcp;
3007    }
3008
3009pim_input_to_daemon:
3010    /*
3011     * Pass the PIM message up to the daemon; if it is a Register message,
3012     * pass the 'head' only up to the daemon. This includes the
3013     * outer IP header, PIM header, PIM-Register header and the
3014     * inner IP header.
3015     * XXX: the outer IP header pkt size of a Register is not adjust to
3016     * reflect the fact that the inner multicast data is truncated.
3017     */
3018    rip_input(m, iphlen);
3019
3020    return;
3021}
3022
3023/*
3024 * XXX: This is common code for dealing with initialization for both
3025 * the IPv4 and IPv6 multicast forwarding paths. It could do with cleanup.
3026 */
3027static int
3028ip_mroute_modevent(module_t mod, int type, void *unused)
3029{
3030    switch (type) {
3031    case MOD_LOAD:
3032	MROUTER_LOCK_INIT();
3033	MFC_LOCK_INIT();
3034	VIF_LOCK_INIT();
3035	ip_mrouter_reset();
3036	TUNABLE_ULONG_FETCH("net.inet.pim.squelch_wholepkt",
3037	    &pim_squelch_wholepkt);
3038
3039	pim_encap_cookie = encap_attach_func(AF_INET, IPPROTO_PIM,
3040	    pim_encapcheck, &in_pim_protosw, NULL);
3041	if (pim_encap_cookie == NULL) {
3042		printf("ip_mroute: unable to attach pim encap\n");
3043		VIF_LOCK_DESTROY();
3044		MFC_LOCK_DESTROY();
3045		MROUTER_LOCK_DESTROY();
3046		return (EINVAL);
3047	}
3048
3049#ifdef INET6
3050	pim6_encap_cookie = encap_attach_func(AF_INET6, IPPROTO_PIM,
3051	    pim_encapcheck, (struct protosw *)&in6_pim_protosw, NULL);
3052	if (pim6_encap_cookie == NULL) {
3053		printf("ip_mroute: unable to attach pim6 encap\n");
3054		if (pim_encap_cookie) {
3055		    encap_detach(pim_encap_cookie);
3056		    pim_encap_cookie = NULL;
3057		}
3058		VIF_LOCK_DESTROY();
3059		MFC_LOCK_DESTROY();
3060		MROUTER_LOCK_DESTROY();
3061		return (EINVAL);
3062	}
3063#endif
3064
3065	ip_mcast_src = X_ip_mcast_src;
3066	ip_mforward = X_ip_mforward;
3067	ip_mrouter_done = X_ip_mrouter_done;
3068	ip_mrouter_get = X_ip_mrouter_get;
3069	ip_mrouter_set = X_ip_mrouter_set;
3070
3071#ifdef INET6
3072	ip6_mforward = X_ip6_mforward;
3073	ip6_mrouter_done = X_ip6_mrouter_done;
3074	ip6_mrouter_get = X_ip6_mrouter_get;
3075	ip6_mrouter_set = X_ip6_mrouter_set;
3076	mrt6_ioctl = X_mrt6_ioctl;
3077#endif
3078
3079	ip_rsvp_force_done = X_ip_rsvp_force_done;
3080	ip_rsvp_vif = X_ip_rsvp_vif;
3081
3082	legal_vif_num = X_legal_vif_num;
3083	mrt_ioctl = X_mrt_ioctl;
3084	rsvp_input_p = X_rsvp_input;
3085	break;
3086
3087    case MOD_UNLOAD:
3088	/*
3089	 * Typically module unload happens after the user-level
3090	 * process has shutdown the kernel services (the check
3091	 * below insures someone can't just yank the module out
3092	 * from under a running process).  But if the module is
3093	 * just loaded and then unloaded w/o starting up a user
3094	 * process we still need to cleanup.
3095	 */
3096	if (ip_mrouter
3097#ifdef INET6
3098	    || ip6_mrouter
3099#endif
3100	)
3101	    return EINVAL;
3102
3103#ifdef INET6
3104	if (pim6_encap_cookie) {
3105	    encap_detach(pim6_encap_cookie);
3106	    pim6_encap_cookie = NULL;
3107	}
3108	X_ip6_mrouter_done();
3109	ip6_mforward = NULL;
3110	ip6_mrouter_done = NULL;
3111	ip6_mrouter_get = NULL;
3112	ip6_mrouter_set = NULL;
3113	mrt6_ioctl = NULL;
3114#endif
3115
3116	if (pim_encap_cookie) {
3117	    encap_detach(pim_encap_cookie);
3118	    pim_encap_cookie = NULL;
3119	}
3120	X_ip_mrouter_done();
3121	ip_mcast_src = NULL;
3122	ip_mforward = NULL;
3123	ip_mrouter_done = NULL;
3124	ip_mrouter_get = NULL;
3125	ip_mrouter_set = NULL;
3126
3127	ip_rsvp_force_done = NULL;
3128	ip_rsvp_vif = NULL;
3129
3130	legal_vif_num = NULL;
3131	mrt_ioctl = NULL;
3132	rsvp_input_p = NULL;
3133
3134	VIF_LOCK_DESTROY();
3135	MFC_LOCK_DESTROY();
3136	MROUTER_LOCK_DESTROY();
3137	break;
3138
3139    default:
3140	return EOPNOTSUPP;
3141    }
3142    return 0;
3143}
3144
3145static moduledata_t ip_mroutemod = {
3146    "ip_mroute",
3147    ip_mroute_modevent,
3148    0
3149};
3150DECLARE_MODULE(ip_mroute, ip_mroutemod, SI_SUB_PSEUDO, SI_ORDER_ANY);
3151