ip_mroute.c revision 169454
1/*-
2 * Copyright (c) 1989 Stephen Deering
3 * Copyright (c) 1992, 1993
4 *      The Regents of the University of California.  All rights reserved.
5 *
6 * This code is derived from software contributed to Berkeley by
7 * Stephen Deering of Stanford University.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in the
16 *    documentation and/or other materials provided with the distribution.
17 * 4. Neither the name of the University nor the names of its contributors
18 *    may be used to endorse or promote products derived from this software
19 *    without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 *
33 *      @(#)ip_mroute.c 8.2 (Berkeley) 11/15/93
34 */
35
36/*
37 * IP multicast forwarding procedures
38 *
39 * Written by David Waitzman, BBN Labs, August 1988.
40 * Modified by Steve Deering, Stanford, February 1989.
41 * Modified by Mark J. Steiglitz, Stanford, May, 1991
42 * Modified by Van Jacobson, LBL, January 1993
43 * Modified by Ajit Thyagarajan, PARC, August 1993
44 * Modified by Bill Fenner, PARC, April 1995
45 * Modified by Ahmed Helmy, SGI, June 1996
46 * Modified by George Edmond Eddy (Rusty), ISI, February 1998
47 * Modified by Pavlin Radoslavov, USC/ISI, May 1998, August 1999, October 2000
48 * Modified by Hitoshi Asaeda, WIDE, August 2000
49 * Modified by Pavlin Radoslavov, ICSI, October 2002
50 *
51 * MROUTING Revision: 3.5
52 * and PIM-SMv2 and PIM-DM support, advanced API support,
53 * bandwidth metering and signaling
54 *
55 * $FreeBSD: head/sys/netinet/ip_mroute.c 169454 2007-05-10 15:58:48Z rwatson $
56 */
57
58#include "opt_inet.h"
59#include "opt_inet6.h"
60#include "opt_mac.h"
61#include "opt_mrouting.h"
62
63#define _PIM_VT 1
64
65#include <sys/param.h>
66#include <sys/kernel.h>
67#include <sys/lock.h>
68#include <sys/malloc.h>
69#include <sys/mbuf.h>
70#include <sys/module.h>
71#include <sys/priv.h>
72#include <sys/protosw.h>
73#include <sys/signalvar.h>
74#include <sys/socket.h>
75#include <sys/socketvar.h>
76#include <sys/sockio.h>
77#include <sys/sx.h>
78#include <sys/sysctl.h>
79#include <sys/syslog.h>
80#include <sys/systm.h>
81#include <sys/time.h>
82#include <net/if.h>
83#include <net/netisr.h>
84#include <net/route.h>
85#include <netinet/in.h>
86#include <netinet/igmp.h>
87#include <netinet/in_systm.h>
88#include <netinet/in_var.h>
89#include <netinet/ip.h>
90#include <netinet/ip_encap.h>
91#include <netinet/ip_mroute.h>
92#include <netinet/ip_var.h>
93#include <netinet/ip_options.h>
94#include <netinet/pim.h>
95#include <netinet/pim_var.h>
96#include <netinet/udp.h>
97#ifdef INET6
98#include <netinet/ip6.h>
99#include <netinet6/in6_var.h>
100#include <netinet6/ip6_mroute.h>
101#include <netinet6/ip6_var.h>
102#endif
103#include <machine/in_cksum.h>
104
105#include <security/mac/mac_framework.h>
106
107/*
108 * Control debugging code for rsvp and multicast routing code.
109 * Can only set them with the debugger.
110 */
111static u_int    rsvpdebug;		/* non-zero enables debugging	*/
112
113static u_int	mrtdebug;		/* any set of the flags below	*/
114#define		DEBUG_MFC	0x02
115#define		DEBUG_FORWARD	0x04
116#define		DEBUG_EXPIRE	0x08
117#define		DEBUG_XMIT	0x10
118#define		DEBUG_PIM	0x20
119
120#define		VIFI_INVALID	((vifi_t) -1)
121
122#define M_HASCL(m)	((m)->m_flags & M_EXT)
123
124static MALLOC_DEFINE(M_MRTABLE, "mroutetbl", "multicast routing tables");
125
126/*
127 * Locking.  We use two locks: one for the virtual interface table and
128 * one for the forwarding table.  These locks may be nested in which case
129 * the VIF lock must always be taken first.  Note that each lock is used
130 * to cover not only the specific data structure but also related data
131 * structures.  It may be better to add more fine-grained locking later;
132 * it's not clear how performance-critical this code is.
133 *
134 * XXX: This module could particularly benefit from being cleaned
135 *      up to use the <sys/queue.h> macros.
136 *
137 */
138
139static struct mrtstat	mrtstat;
140SYSCTL_STRUCT(_net_inet_ip, OID_AUTO, mrtstat, CTLFLAG_RW,
141    &mrtstat, mrtstat,
142    "Multicast Routing Statistics (struct mrtstat, netinet/ip_mroute.h)");
143
144static struct mfc	*mfctable[MFCTBLSIZ];
145SYSCTL_OPAQUE(_net_inet_ip, OID_AUTO, mfctable, CTLFLAG_RD,
146    &mfctable, sizeof(mfctable), "S,*mfc[MFCTBLSIZ]",
147    "Multicast Forwarding Table (struct *mfc[MFCTBLSIZ], netinet/ip_mroute.h)");
148
149static struct mtx mrouter_mtx;
150#define	MROUTER_LOCK()		mtx_lock(&mrouter_mtx)
151#define	MROUTER_UNLOCK()	mtx_unlock(&mrouter_mtx)
152#define	MROUTER_LOCK_ASSERT()	do {					\
153	mtx_assert(&mrouter_mtx, MA_OWNED);				\
154	NET_ASSERT_GIANT();						\
155} while (0)
156#define	MROUTER_LOCK_INIT()	\
157	mtx_init(&mrouter_mtx, "IPv4 multicast forwarding", NULL, MTX_DEF)
158#define	MROUTER_LOCK_DESTROY()	mtx_destroy(&mrouter_mtx)
159
160static struct mtx mfc_mtx;
161#define	MFC_LOCK()	mtx_lock(&mfc_mtx)
162#define	MFC_UNLOCK()	mtx_unlock(&mfc_mtx)
163#define	MFC_LOCK_ASSERT()	do {					\
164	mtx_assert(&mfc_mtx, MA_OWNED);					\
165	NET_ASSERT_GIANT();						\
166} while (0)
167#define	MFC_LOCK_INIT()	mtx_init(&mfc_mtx, "mroute mfc table", NULL, MTX_DEF)
168#define	MFC_LOCK_DESTROY()	mtx_destroy(&mfc_mtx)
169
170static struct vif	viftable[MAXVIFS];
171SYSCTL_OPAQUE(_net_inet_ip, OID_AUTO, viftable, CTLFLAG_RD,
172    &viftable, sizeof(viftable), "S,vif[MAXVIFS]",
173    "Multicast Virtual Interfaces (struct vif[MAXVIFS], netinet/ip_mroute.h)");
174
175static struct mtx vif_mtx;
176#define	VIF_LOCK()	mtx_lock(&vif_mtx)
177#define	VIF_UNLOCK()	mtx_unlock(&vif_mtx)
178#define	VIF_LOCK_ASSERT()	mtx_assert(&vif_mtx, MA_OWNED)
179#define	VIF_LOCK_INIT()	mtx_init(&vif_mtx, "mroute vif table", NULL, MTX_DEF)
180#define	VIF_LOCK_DESTROY()	mtx_destroy(&vif_mtx)
181
182static u_char		nexpire[MFCTBLSIZ];
183
184static eventhandler_tag if_detach_event_tag = NULL;
185
186static struct callout expire_upcalls_ch;
187
188#define		EXPIRE_TIMEOUT	(hz / 4)	/* 4x / second		*/
189#define		UPCALL_EXPIRE	6		/* number of timeouts	*/
190
191#define ENCAP_TTL 64
192
193/*
194 * Bandwidth meter variables and constants
195 */
196static MALLOC_DEFINE(M_BWMETER, "bwmeter", "multicast upcall bw meters");
197/*
198 * Pending timeouts are stored in a hash table, the key being the
199 * expiration time. Periodically, the entries are analysed and processed.
200 */
201#define BW_METER_BUCKETS	1024
202static struct bw_meter *bw_meter_timers[BW_METER_BUCKETS];
203static struct callout bw_meter_ch;
204#define BW_METER_PERIOD (hz)		/* periodical handling of bw meters */
205
206/*
207 * Pending upcalls are stored in a vector which is flushed when
208 * full, or periodically
209 */
210static struct bw_upcall	bw_upcalls[BW_UPCALLS_MAX];
211static u_int	bw_upcalls_n; /* # of pending upcalls */
212static struct callout bw_upcalls_ch;
213#define BW_UPCALLS_PERIOD (hz)		/* periodical flush of bw upcalls */
214
215static struct pimstat pimstat;
216
217SYSCTL_NODE(_net_inet, IPPROTO_PIM, pim, CTLFLAG_RW, 0, "PIM");
218SYSCTL_STRUCT(_net_inet_pim, PIMCTL_STATS, stats, CTLFLAG_RD,
219    &pimstat, pimstat,
220    "PIM Statistics (struct pimstat, netinet/pim_var.h)");
221
222static u_long	pim_squelch_wholepkt = 0;
223SYSCTL_ULONG(_net_inet_pim, OID_AUTO, squelch_wholepkt, CTLFLAG_RW,
224    &pim_squelch_wholepkt, 0,
225    "Disable IGMP_WHOLEPKT notifications if rendezvous point is unspecified");
226
227extern  struct domain inetdomain;
228struct protosw in_pim_protosw = {
229	.pr_type =		SOCK_RAW,
230	.pr_domain =		&inetdomain,
231	.pr_protocol =		IPPROTO_PIM,
232	.pr_flags =		PR_ATOMIC|PR_ADDR|PR_LASTHDR,
233	.pr_input =		pim_input,
234	.pr_output =		(pr_output_t*)rip_output,
235	.pr_ctloutput =		rip_ctloutput,
236	.pr_usrreqs =		&rip_usrreqs
237};
238static const struct encaptab *pim_encap_cookie;
239
240#ifdef INET6
241/* ip6_mroute.c glue */
242extern struct in6_protosw in6_pim_protosw;
243static const struct encaptab *pim6_encap_cookie;
244
245extern int X_ip6_mrouter_set(struct socket *, struct sockopt *);
246extern int X_ip6_mrouter_get(struct socket *, struct sockopt *);
247extern int X_ip6_mrouter_done(void);
248extern int X_ip6_mforward(struct ip6_hdr *, struct ifnet *, struct mbuf *);
249extern int X_mrt6_ioctl(int, caddr_t);
250#endif
251
252static int pim_encapcheck(const struct mbuf *, int, int, void *);
253
254/*
255 * Note: the PIM Register encapsulation adds the following in front of a
256 * data packet:
257 *
258 * struct pim_encap_hdr {
259 *    struct ip ip;
260 *    struct pim_encap_pimhdr  pim;
261 * }
262 *
263 */
264
265struct pim_encap_pimhdr {
266	struct pim pim;
267	uint32_t   flags;
268};
269
270static struct ip pim_encap_iphdr = {
271#if BYTE_ORDER == LITTLE_ENDIAN
272	sizeof(struct ip) >> 2,
273	IPVERSION,
274#else
275	IPVERSION,
276	sizeof(struct ip) >> 2,
277#endif
278	0,			/* tos */
279	sizeof(struct ip),	/* total length */
280	0,			/* id */
281	0,			/* frag offset */
282	ENCAP_TTL,
283	IPPROTO_PIM,
284	0,			/* checksum */
285};
286
287static struct pim_encap_pimhdr pim_encap_pimhdr = {
288    {
289	PIM_MAKE_VT(PIM_VERSION, PIM_REGISTER), /* PIM vers and message type */
290	0,			/* reserved */
291	0,			/* checksum */
292    },
293    0				/* flags */
294};
295
296static struct ifnet multicast_register_if;
297static vifi_t reg_vif_num = VIFI_INVALID;
298
299/*
300 * Private variables.
301 */
302static vifi_t	   numvifs;
303
304static u_long	X_ip_mcast_src(int vifi);
305static int	X_ip_mforward(struct ip *ip, struct ifnet *ifp,
306			struct mbuf *m, struct ip_moptions *imo);
307static int	X_ip_mrouter_done(void);
308static int	X_ip_mrouter_get(struct socket *so, struct sockopt *m);
309static int	X_ip_mrouter_set(struct socket *so, struct sockopt *m);
310static int	X_legal_vif_num(int vif);
311static int	X_mrt_ioctl(int cmd, caddr_t data);
312
313static int get_sg_cnt(struct sioc_sg_req *);
314static int get_vif_cnt(struct sioc_vif_req *);
315static void if_detached_event(void *arg __unused, struct ifnet *);
316static int ip_mrouter_init(struct socket *, int);
317static int add_vif(struct vifctl *);
318static int del_vif_locked(vifi_t);
319static int del_vif(vifi_t);
320static int add_mfc(struct mfcctl2 *);
321static int del_mfc(struct mfcctl2 *);
322static int set_api_config(uint32_t *); /* chose API capabilities */
323static int socket_send(struct socket *, struct mbuf *, struct sockaddr_in *);
324static int set_assert(int);
325static void expire_upcalls(void *);
326static int ip_mdq(struct mbuf *, struct ifnet *, struct mfc *, vifi_t);
327static void phyint_send(struct ip *, struct vif *, struct mbuf *);
328static void send_packet(struct vif *, struct mbuf *);
329
330/*
331 * Bandwidth monitoring
332 */
333static void free_bw_list(struct bw_meter *list);
334static int add_bw_upcall(struct bw_upcall *);
335static int del_bw_upcall(struct bw_upcall *);
336static void bw_meter_receive_packet(struct bw_meter *x, int plen,
337		struct timeval *nowp);
338static void bw_meter_prepare_upcall(struct bw_meter *x, struct timeval *nowp);
339static void bw_upcalls_send(void);
340static void schedule_bw_meter(struct bw_meter *x, struct timeval *nowp);
341static void unschedule_bw_meter(struct bw_meter *x);
342static void bw_meter_process(void);
343static void expire_bw_upcalls_send(void *);
344static void expire_bw_meter_process(void *);
345
346static int pim_register_send(struct ip *, struct vif *,
347		struct mbuf *, struct mfc *);
348static int pim_register_send_rp(struct ip *, struct vif *,
349		struct mbuf *, struct mfc *);
350static int pim_register_send_upcall(struct ip *, struct vif *,
351		struct mbuf *, struct mfc *);
352static struct mbuf *pim_register_prepare(struct ip *, struct mbuf *);
353
354/*
355 * whether or not special PIM assert processing is enabled.
356 */
357static int pim_assert;
358/*
359 * Rate limit for assert notification messages, in usec
360 */
361#define ASSERT_MSG_TIME		3000000
362
363/*
364 * Kernel multicast routing API capabilities and setup.
365 * If more API capabilities are added to the kernel, they should be
366 * recorded in `mrt_api_support'.
367 */
368static const uint32_t mrt_api_support = (MRT_MFC_FLAGS_DISABLE_WRONGVIF |
369					 MRT_MFC_FLAGS_BORDER_VIF |
370					 MRT_MFC_RP |
371					 MRT_MFC_BW_UPCALL);
372static uint32_t mrt_api_config = 0;
373
374/*
375 * Hash function for a source, group entry
376 */
377#define MFCHASH(a, g) MFCHASHMOD(((a) >> 20) ^ ((a) >> 10) ^ (a) ^ \
378			((g) >> 20) ^ ((g) >> 10) ^ (g))
379
380/*
381 * Find a route for a given origin IP address and Multicast group address
382 * Statistics are updated by the caller if needed
383 * (mrtstat.mrts_mfc_lookups and mrtstat.mrts_mfc_misses)
384 */
385static struct mfc *
386mfc_find(in_addr_t o, in_addr_t g)
387{
388    struct mfc *rt;
389
390    MFC_LOCK_ASSERT();
391
392    for (rt = mfctable[MFCHASH(o,g)]; rt; rt = rt->mfc_next)
393	if ((rt->mfc_origin.s_addr == o) &&
394		(rt->mfc_mcastgrp.s_addr == g) && (rt->mfc_stall == NULL))
395	    break;
396    return rt;
397}
398
399/*
400 * Macros to compute elapsed time efficiently
401 * Borrowed from Van Jacobson's scheduling code
402 */
403#define TV_DELTA(a, b, delta) {					\
404	int xxs;						\
405	delta = (a).tv_usec - (b).tv_usec;			\
406	if ((xxs = (a).tv_sec - (b).tv_sec)) {			\
407		switch (xxs) {					\
408		case 2:						\
409		      delta += 1000000;				\
410		      /* FALLTHROUGH */				\
411		case 1:						\
412		      delta += 1000000;				\
413		      break;					\
414		default:					\
415		      delta += (1000000 * xxs);			\
416		}						\
417	}							\
418}
419
420#define TV_LT(a, b) (((a).tv_usec < (b).tv_usec && \
421	      (a).tv_sec <= (b).tv_sec) || (a).tv_sec < (b).tv_sec)
422
423/*
424 * Handle MRT setsockopt commands to modify the multicast routing tables.
425 */
426static int
427X_ip_mrouter_set(struct socket *so, struct sockopt *sopt)
428{
429    int	error, optval;
430    vifi_t	vifi;
431    struct	vifctl vifc;
432    struct	mfcctl2 mfc;
433    struct	bw_upcall bw_upcall;
434    uint32_t	i;
435
436    if (so != ip_mrouter && sopt->sopt_name != MRT_INIT)
437	return EPERM;
438
439    error = 0;
440    switch (sopt->sopt_name) {
441    case MRT_INIT:
442	error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval);
443	if (error)
444	    break;
445	error = ip_mrouter_init(so, optval);
446	break;
447
448    case MRT_DONE:
449	error = ip_mrouter_done();
450	break;
451
452    case MRT_ADD_VIF:
453	error = sooptcopyin(sopt, &vifc, sizeof vifc, sizeof vifc);
454	if (error)
455	    break;
456	error = add_vif(&vifc);
457	break;
458
459    case MRT_DEL_VIF:
460	error = sooptcopyin(sopt, &vifi, sizeof vifi, sizeof vifi);
461	if (error)
462	    break;
463	error = del_vif(vifi);
464	break;
465
466    case MRT_ADD_MFC:
467    case MRT_DEL_MFC:
468	/*
469	 * select data size depending on API version.
470	 */
471	if (sopt->sopt_name == MRT_ADD_MFC &&
472		mrt_api_config & MRT_API_FLAGS_ALL) {
473	    error = sooptcopyin(sopt, &mfc, sizeof(struct mfcctl2),
474				sizeof(struct mfcctl2));
475	} else {
476	    error = sooptcopyin(sopt, &mfc, sizeof(struct mfcctl),
477				sizeof(struct mfcctl));
478	    bzero((caddr_t)&mfc + sizeof(struct mfcctl),
479			sizeof(mfc) - sizeof(struct mfcctl));
480	}
481	if (error)
482	    break;
483	if (sopt->sopt_name == MRT_ADD_MFC)
484	    error = add_mfc(&mfc);
485	else
486	    error = del_mfc(&mfc);
487	break;
488
489    case MRT_ASSERT:
490	error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval);
491	if (error)
492	    break;
493	set_assert(optval);
494	break;
495
496    case MRT_API_CONFIG:
497	error = sooptcopyin(sopt, &i, sizeof i, sizeof i);
498	if (!error)
499	    error = set_api_config(&i);
500	if (!error)
501	    error = sooptcopyout(sopt, &i, sizeof i);
502	break;
503
504    case MRT_ADD_BW_UPCALL:
505    case MRT_DEL_BW_UPCALL:
506	error = sooptcopyin(sopt, &bw_upcall, sizeof bw_upcall,
507				sizeof bw_upcall);
508	if (error)
509	    break;
510	if (sopt->sopt_name == MRT_ADD_BW_UPCALL)
511	    error = add_bw_upcall(&bw_upcall);
512	else
513	    error = del_bw_upcall(&bw_upcall);
514	break;
515
516    default:
517	error = EOPNOTSUPP;
518	break;
519    }
520    return error;
521}
522
523/*
524 * Handle MRT getsockopt commands
525 */
526static int
527X_ip_mrouter_get(struct socket *so, struct sockopt *sopt)
528{
529    int error;
530    static int version = 0x0305; /* !!! why is this here? XXX */
531
532    switch (sopt->sopt_name) {
533    case MRT_VERSION:
534	error = sooptcopyout(sopt, &version, sizeof version);
535	break;
536
537    case MRT_ASSERT:
538	error = sooptcopyout(sopt, &pim_assert, sizeof pim_assert);
539	break;
540
541    case MRT_API_SUPPORT:
542	error = sooptcopyout(sopt, &mrt_api_support, sizeof mrt_api_support);
543	break;
544
545    case MRT_API_CONFIG:
546	error = sooptcopyout(sopt, &mrt_api_config, sizeof mrt_api_config);
547	break;
548
549    default:
550	error = EOPNOTSUPP;
551	break;
552    }
553    return error;
554}
555
556/*
557 * Handle ioctl commands to obtain information from the cache
558 */
559static int
560X_mrt_ioctl(int cmd, caddr_t data)
561{
562    int error = 0;
563
564    /*
565     * Currently the only function calling this ioctl routine is rtioctl().
566     * Typically, only root can create the raw socket in order to execute
567     * this ioctl method, however the request might be coming from a prison
568     */
569    error = priv_check(curthread, PRIV_NETINET_MROUTE);
570    if (error)
571	return (error);
572    switch (cmd) {
573    case (SIOCGETVIFCNT):
574	error = get_vif_cnt((struct sioc_vif_req *)data);
575	break;
576
577    case (SIOCGETSGCNT):
578	error = get_sg_cnt((struct sioc_sg_req *)data);
579	break;
580
581    default:
582	error = EINVAL;
583	break;
584    }
585    return error;
586}
587
588/*
589 * returns the packet, byte, rpf-failure count for the source group provided
590 */
591static int
592get_sg_cnt(struct sioc_sg_req *req)
593{
594    struct mfc *rt;
595
596    MFC_LOCK();
597    rt = mfc_find(req->src.s_addr, req->grp.s_addr);
598    if (rt == NULL) {
599	MFC_UNLOCK();
600	req->pktcnt = req->bytecnt = req->wrong_if = 0xffffffff;
601	return EADDRNOTAVAIL;
602    }
603    req->pktcnt = rt->mfc_pkt_cnt;
604    req->bytecnt = rt->mfc_byte_cnt;
605    req->wrong_if = rt->mfc_wrong_if;
606    MFC_UNLOCK();
607    return 0;
608}
609
610/*
611 * returns the input and output packet and byte counts on the vif provided
612 */
613static int
614get_vif_cnt(struct sioc_vif_req *req)
615{
616    vifi_t vifi = req->vifi;
617
618    VIF_LOCK();
619    if (vifi >= numvifs) {
620	VIF_UNLOCK();
621	return EINVAL;
622    }
623
624    req->icount = viftable[vifi].v_pkt_in;
625    req->ocount = viftable[vifi].v_pkt_out;
626    req->ibytes = viftable[vifi].v_bytes_in;
627    req->obytes = viftable[vifi].v_bytes_out;
628    VIF_UNLOCK();
629
630    return 0;
631}
632
633static void
634ip_mrouter_reset(void)
635{
636    bzero((caddr_t)mfctable, sizeof(mfctable));
637    bzero((caddr_t)nexpire, sizeof(nexpire));
638
639    pim_assert = 0;
640    mrt_api_config = 0;
641
642    callout_init(&expire_upcalls_ch, NET_CALLOUT_MPSAFE);
643
644    bw_upcalls_n = 0;
645    bzero((caddr_t)bw_meter_timers, sizeof(bw_meter_timers));
646    callout_init(&bw_upcalls_ch, NET_CALLOUT_MPSAFE);
647    callout_init(&bw_meter_ch, NET_CALLOUT_MPSAFE);
648}
649
650static void
651if_detached_event(void *arg __unused, struct ifnet *ifp)
652{
653    vifi_t vifi;
654    int i;
655    struct mfc *mfc;
656    struct mfc *nmfc;
657    struct mfc **ppmfc;	/* Pointer to previous node's next-pointer */
658    struct rtdetq *pq;
659    struct rtdetq *npq;
660
661    MROUTER_LOCK();
662    if (ip_mrouter == NULL) {
663	MROUTER_UNLOCK();
664    }
665
666    /*
667     * Tear down multicast forwarder state associated with this ifnet.
668     * 1. Walk the vif list, matching vifs against this ifnet.
669     * 2. Walk the multicast forwarding cache (mfc) looking for
670     *    inner matches with this vif's index.
671     * 3. Free any pending mbufs for this mfc.
672     * 4. Free the associated mfc entry and state associated with this vif.
673     *    Be very careful about unlinking from a singly-linked list whose
674     *    "head node" is a pointer in a simple array.
675     * 5. Free vif state. This should disable ALLMULTI on the interface.
676     */
677    VIF_LOCK();
678    MFC_LOCK();
679    for (vifi = 0; vifi < numvifs; vifi++) {
680	if (viftable[vifi].v_ifp != ifp)
681		continue;
682	for (i = 0; i < MFCTBLSIZ; i++) {
683	    ppmfc = &mfctable[i];
684	    for (mfc = mfctable[i]; mfc != NULL; ) {
685		nmfc = mfc->mfc_next;
686		if (mfc->mfc_parent == vifi) {
687		    for (pq = mfc->mfc_stall; pq != NULL; ) {
688			npq = pq->next;
689			m_freem(pq->m);
690			free(pq, M_MRTABLE);
691			pq = npq;
692		    }
693		    free_bw_list(mfc->mfc_bw_meter);
694		    free(mfc, M_MRTABLE);
695		    *ppmfc = nmfc;
696		} else {
697		    ppmfc = &mfc->mfc_next;
698		}
699		mfc = nmfc;
700	    }
701	}
702	del_vif_locked(vifi);
703    }
704    MFC_UNLOCK();
705    VIF_UNLOCK();
706
707    MROUTER_UNLOCK();
708}
709
710/*
711 * Enable multicast routing
712 */
713static int
714ip_mrouter_init(struct socket *so, int version)
715{
716    if (mrtdebug)
717	log(LOG_DEBUG, "ip_mrouter_init: so_type = %d, pr_protocol = %d\n",
718	    so->so_type, so->so_proto->pr_protocol);
719
720    if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_IGMP)
721	return EOPNOTSUPP;
722
723    if (version != 1)
724	return ENOPROTOOPT;
725
726    MROUTER_LOCK();
727
728    if (ip_mrouter != NULL) {
729	MROUTER_UNLOCK();
730	return EADDRINUSE;
731    }
732
733    if_detach_event_tag = EVENTHANDLER_REGISTER(ifnet_departure_event,
734        if_detached_event, NULL, EVENTHANDLER_PRI_ANY);
735    if (if_detach_event_tag == NULL) {
736	MROUTER_UNLOCK();
737	return (ENOMEM);
738    }
739
740    callout_reset(&expire_upcalls_ch, EXPIRE_TIMEOUT, expire_upcalls, NULL);
741
742    callout_reset(&bw_upcalls_ch, BW_UPCALLS_PERIOD,
743	expire_bw_upcalls_send, NULL);
744    callout_reset(&bw_meter_ch, BW_METER_PERIOD, expire_bw_meter_process, NULL);
745
746    ip_mrouter = so;
747
748    MROUTER_UNLOCK();
749
750    if (mrtdebug)
751	log(LOG_DEBUG, "ip_mrouter_init\n");
752
753    return 0;
754}
755
756/*
757 * Disable multicast routing
758 */
759static int
760X_ip_mrouter_done(void)
761{
762    vifi_t vifi;
763    int i;
764    struct ifnet *ifp;
765    struct ifreq ifr;
766    struct mfc *rt;
767    struct rtdetq *rte;
768
769    MROUTER_LOCK();
770
771    if (ip_mrouter == NULL) {
772	MROUTER_UNLOCK();
773	return EINVAL;
774    }
775
776    /*
777     * Detach/disable hooks to the reset of the system.
778     */
779    ip_mrouter = NULL;
780    mrt_api_config = 0;
781
782    VIF_LOCK();
783    /*
784     * For each phyint in use, disable promiscuous reception of all IP
785     * multicasts.
786     */
787    for (vifi = 0; vifi < numvifs; vifi++) {
788	if (viftable[vifi].v_lcl_addr.s_addr != 0 &&
789		!(viftable[vifi].v_flags & (VIFF_TUNNEL | VIFF_REGISTER))) {
790	    struct sockaddr_in *so = (struct sockaddr_in *)&(ifr.ifr_addr);
791
792	    so->sin_len = sizeof(struct sockaddr_in);
793	    so->sin_family = AF_INET;
794	    so->sin_addr.s_addr = INADDR_ANY;
795	    ifp = viftable[vifi].v_ifp;
796	    if_allmulti(ifp, 0);
797	}
798    }
799    bzero((caddr_t)viftable, sizeof(viftable));
800    numvifs = 0;
801    pim_assert = 0;
802    VIF_UNLOCK();
803    EVENTHANDLER_DEREGISTER(ifnet_departure_event, if_detach_event_tag);
804
805    /*
806     * Free all multicast forwarding cache entries.
807     */
808    callout_stop(&expire_upcalls_ch);
809    callout_stop(&bw_upcalls_ch);
810    callout_stop(&bw_meter_ch);
811
812    MFC_LOCK();
813    for (i = 0; i < MFCTBLSIZ; i++) {
814	for (rt = mfctable[i]; rt != NULL; ) {
815	    struct mfc *nr = rt->mfc_next;
816
817	    for (rte = rt->mfc_stall; rte != NULL; ) {
818		struct rtdetq *n = rte->next;
819
820		m_freem(rte->m);
821		free(rte, M_MRTABLE);
822		rte = n;
823	    }
824	    free_bw_list(rt->mfc_bw_meter);
825	    free(rt, M_MRTABLE);
826	    rt = nr;
827	}
828    }
829    bzero((caddr_t)mfctable, sizeof(mfctable));
830    bzero((caddr_t)nexpire, sizeof(nexpire));
831    bw_upcalls_n = 0;
832    bzero(bw_meter_timers, sizeof(bw_meter_timers));
833    MFC_UNLOCK();
834
835    reg_vif_num = VIFI_INVALID;
836
837    MROUTER_UNLOCK();
838
839    if (mrtdebug)
840	log(LOG_DEBUG, "ip_mrouter_done\n");
841
842    return 0;
843}
844
845/*
846 * Set PIM assert processing global
847 */
848static int
849set_assert(int i)
850{
851    if ((i != 1) && (i != 0))
852	return EINVAL;
853
854    pim_assert = i;
855
856    return 0;
857}
858
859/*
860 * Configure API capabilities
861 */
862int
863set_api_config(uint32_t *apival)
864{
865    int i;
866
867    /*
868     * We can set the API capabilities only if it is the first operation
869     * after MRT_INIT. I.e.:
870     *  - there are no vifs installed
871     *  - pim_assert is not enabled
872     *  - the MFC table is empty
873     */
874    if (numvifs > 0) {
875	*apival = 0;
876	return EPERM;
877    }
878    if (pim_assert) {
879	*apival = 0;
880	return EPERM;
881    }
882    for (i = 0; i < MFCTBLSIZ; i++) {
883	if (mfctable[i] != NULL) {
884	    *apival = 0;
885	    return EPERM;
886	}
887    }
888
889    mrt_api_config = *apival & mrt_api_support;
890    *apival = mrt_api_config;
891
892    return 0;
893}
894
895/*
896 * Add a vif to the vif table
897 */
898static int
899add_vif(struct vifctl *vifcp)
900{
901    struct vif *vifp = viftable + vifcp->vifc_vifi;
902    struct sockaddr_in sin = {sizeof sin, AF_INET};
903    struct ifaddr *ifa;
904    struct ifnet *ifp;
905    int error;
906
907    VIF_LOCK();
908    if (vifcp->vifc_vifi >= MAXVIFS) {
909	VIF_UNLOCK();
910	return EINVAL;
911    }
912    /* rate limiting is no longer supported by this code */
913    if (vifcp->vifc_rate_limit != 0) {
914	log(LOG_ERR, "rate limiting is no longer supported\n");
915	VIF_UNLOCK();
916	return EINVAL;
917    }
918    if (vifp->v_lcl_addr.s_addr != INADDR_ANY) {
919	VIF_UNLOCK();
920	return EADDRINUSE;
921    }
922    if (vifcp->vifc_lcl_addr.s_addr == INADDR_ANY) {
923	VIF_UNLOCK();
924	return EADDRNOTAVAIL;
925    }
926
927    /* Find the interface with an address in AF_INET family */
928    if (vifcp->vifc_flags & VIFF_REGISTER) {
929	/*
930	 * XXX: Because VIFF_REGISTER does not really need a valid
931	 * local interface (e.g. it could be 127.0.0.2), we don't
932	 * check its address.
933	 */
934	ifp = NULL;
935    } else {
936	sin.sin_addr = vifcp->vifc_lcl_addr;
937	ifa = ifa_ifwithaddr((struct sockaddr *)&sin);
938	if (ifa == NULL) {
939	    VIF_UNLOCK();
940	    return EADDRNOTAVAIL;
941	}
942	ifp = ifa->ifa_ifp;
943    }
944
945    if ((vifcp->vifc_flags & VIFF_TUNNEL) != 0) {
946	log(LOG_ERR, "tunnels are no longer supported\n");
947	VIF_UNLOCK();
948	return EOPNOTSUPP;
949    } else if (vifcp->vifc_flags & VIFF_REGISTER) {
950	ifp = &multicast_register_if;
951	if (mrtdebug)
952	    log(LOG_DEBUG, "Adding a register vif, ifp: %p\n",
953		    (void *)&multicast_register_if);
954	if (reg_vif_num == VIFI_INVALID) {
955	    if_initname(&multicast_register_if, "register_vif", 0);
956	    multicast_register_if.if_flags = IFF_LOOPBACK;
957	    reg_vif_num = vifcp->vifc_vifi;
958	}
959    } else {		/* Make sure the interface supports multicast */
960	if ((ifp->if_flags & IFF_MULTICAST) == 0) {
961	    VIF_UNLOCK();
962	    return EOPNOTSUPP;
963	}
964
965	/* Enable promiscuous reception of all IP multicasts from the if */
966	error = if_allmulti(ifp, 1);
967	if (error) {
968	    VIF_UNLOCK();
969	    return error;
970	}
971    }
972
973    vifp->v_flags     = vifcp->vifc_flags;
974    vifp->v_threshold = vifcp->vifc_threshold;
975    vifp->v_lcl_addr  = vifcp->vifc_lcl_addr;
976    vifp->v_rmt_addr  = vifcp->vifc_rmt_addr;
977    vifp->v_ifp       = ifp;
978    vifp->v_rsvp_on   = 0;
979    vifp->v_rsvpd     = NULL;
980    /* initialize per vif pkt counters */
981    vifp->v_pkt_in    = 0;
982    vifp->v_pkt_out   = 0;
983    vifp->v_bytes_in  = 0;
984    vifp->v_bytes_out = 0;
985    bzero(&vifp->v_route, sizeof(vifp->v_route));
986
987    /* Adjust numvifs up if the vifi is higher than numvifs */
988    if (numvifs <= vifcp->vifc_vifi) numvifs = vifcp->vifc_vifi + 1;
989
990    VIF_UNLOCK();
991
992    if (mrtdebug)
993	log(LOG_DEBUG, "add_vif #%d, lcladdr %lx, %s %lx, thresh %x\n",
994	    vifcp->vifc_vifi,
995	    (u_long)ntohl(vifcp->vifc_lcl_addr.s_addr),
996	    (vifcp->vifc_flags & VIFF_TUNNEL) ? "rmtaddr" : "mask",
997	    (u_long)ntohl(vifcp->vifc_rmt_addr.s_addr),
998	    vifcp->vifc_threshold);
999
1000    return 0;
1001}
1002
1003/*
1004 * Delete a vif from the vif table
1005 */
1006static int
1007del_vif_locked(vifi_t vifi)
1008{
1009    struct vif *vifp;
1010
1011    VIF_LOCK_ASSERT();
1012
1013    if (vifi >= numvifs) {
1014	return EINVAL;
1015    }
1016    vifp = &viftable[vifi];
1017    if (vifp->v_lcl_addr.s_addr == INADDR_ANY) {
1018	return EADDRNOTAVAIL;
1019    }
1020
1021    if (!(vifp->v_flags & (VIFF_TUNNEL | VIFF_REGISTER)))
1022	if_allmulti(vifp->v_ifp, 0);
1023
1024    if (vifp->v_flags & VIFF_REGISTER)
1025	reg_vif_num = VIFI_INVALID;
1026
1027    bzero((caddr_t)vifp, sizeof (*vifp));
1028
1029    if (mrtdebug)
1030	log(LOG_DEBUG, "del_vif %d, numvifs %d\n", vifi, numvifs);
1031
1032    /* Adjust numvifs down */
1033    for (vifi = numvifs; vifi > 0; vifi--)
1034	if (viftable[vifi-1].v_lcl_addr.s_addr != INADDR_ANY)
1035	    break;
1036    numvifs = vifi;
1037
1038    return 0;
1039}
1040
1041static int
1042del_vif(vifi_t vifi)
1043{
1044    int cc;
1045
1046    VIF_LOCK();
1047    cc = del_vif_locked(vifi);
1048    VIF_UNLOCK();
1049
1050    return cc;
1051}
1052
1053/*
1054 * update an mfc entry without resetting counters and S,G addresses.
1055 */
1056static void
1057update_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp)
1058{
1059    int i;
1060
1061    rt->mfc_parent = mfccp->mfcc_parent;
1062    for (i = 0; i < numvifs; i++) {
1063	rt->mfc_ttls[i] = mfccp->mfcc_ttls[i];
1064	rt->mfc_flags[i] = mfccp->mfcc_flags[i] & mrt_api_config &
1065	    MRT_MFC_FLAGS_ALL;
1066    }
1067    /* set the RP address */
1068    if (mrt_api_config & MRT_MFC_RP)
1069	rt->mfc_rp = mfccp->mfcc_rp;
1070    else
1071	rt->mfc_rp.s_addr = INADDR_ANY;
1072}
1073
1074/*
1075 * fully initialize an mfc entry from the parameter.
1076 */
1077static void
1078init_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp)
1079{
1080    rt->mfc_origin     = mfccp->mfcc_origin;
1081    rt->mfc_mcastgrp   = mfccp->mfcc_mcastgrp;
1082
1083    update_mfc_params(rt, mfccp);
1084
1085    /* initialize pkt counters per src-grp */
1086    rt->mfc_pkt_cnt    = 0;
1087    rt->mfc_byte_cnt   = 0;
1088    rt->mfc_wrong_if   = 0;
1089    rt->mfc_last_assert.tv_sec = rt->mfc_last_assert.tv_usec = 0;
1090}
1091
1092
1093/*
1094 * Add an mfc entry
1095 */
1096static int
1097add_mfc(struct mfcctl2 *mfccp)
1098{
1099    struct mfc *rt;
1100    u_long hash;
1101    struct rtdetq *rte;
1102    u_short nstl;
1103
1104    VIF_LOCK();
1105    MFC_LOCK();
1106
1107    rt = mfc_find(mfccp->mfcc_origin.s_addr, mfccp->mfcc_mcastgrp.s_addr);
1108
1109    /* If an entry already exists, just update the fields */
1110    if (rt) {
1111	if (mrtdebug & DEBUG_MFC)
1112	    log(LOG_DEBUG,"add_mfc update o %lx g %lx p %x\n",
1113		(u_long)ntohl(mfccp->mfcc_origin.s_addr),
1114		(u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr),
1115		mfccp->mfcc_parent);
1116
1117	update_mfc_params(rt, mfccp);
1118	MFC_UNLOCK();
1119	VIF_UNLOCK();
1120	return 0;
1121    }
1122
1123    /*
1124     * Find the entry for which the upcall was made and update
1125     */
1126    hash = MFCHASH(mfccp->mfcc_origin.s_addr, mfccp->mfcc_mcastgrp.s_addr);
1127    for (rt = mfctable[hash], nstl = 0; rt; rt = rt->mfc_next) {
1128
1129	if ((rt->mfc_origin.s_addr == mfccp->mfcc_origin.s_addr) &&
1130		(rt->mfc_mcastgrp.s_addr == mfccp->mfcc_mcastgrp.s_addr) &&
1131		(rt->mfc_stall != NULL)) {
1132
1133	    if (nstl++)
1134		log(LOG_ERR, "add_mfc %s o %lx g %lx p %x dbx %p\n",
1135		    "multiple kernel entries",
1136		    (u_long)ntohl(mfccp->mfcc_origin.s_addr),
1137		    (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr),
1138		    mfccp->mfcc_parent, (void *)rt->mfc_stall);
1139
1140	    if (mrtdebug & DEBUG_MFC)
1141		log(LOG_DEBUG,"add_mfc o %lx g %lx p %x dbg %p\n",
1142		    (u_long)ntohl(mfccp->mfcc_origin.s_addr),
1143		    (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr),
1144		    mfccp->mfcc_parent, (void *)rt->mfc_stall);
1145
1146	    init_mfc_params(rt, mfccp);
1147
1148	    rt->mfc_expire = 0;	/* Don't clean this guy up */
1149	    nexpire[hash]--;
1150
1151	    /* free packets Qed at the end of this entry */
1152	    for (rte = rt->mfc_stall; rte != NULL; ) {
1153		struct rtdetq *n = rte->next;
1154
1155		ip_mdq(rte->m, rte->ifp, rt, -1);
1156		m_freem(rte->m);
1157		free(rte, M_MRTABLE);
1158		rte = n;
1159	    }
1160	    rt->mfc_stall = NULL;
1161	}
1162    }
1163
1164    /*
1165     * It is possible that an entry is being inserted without an upcall
1166     */
1167    if (nstl == 0) {
1168	if (mrtdebug & DEBUG_MFC)
1169	    log(LOG_DEBUG,"add_mfc no upcall h %lu o %lx g %lx p %x\n",
1170		hash, (u_long)ntohl(mfccp->mfcc_origin.s_addr),
1171		(u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr),
1172		mfccp->mfcc_parent);
1173
1174	for (rt = mfctable[hash]; rt != NULL; rt = rt->mfc_next) {
1175	    if ((rt->mfc_origin.s_addr == mfccp->mfcc_origin.s_addr) &&
1176		    (rt->mfc_mcastgrp.s_addr == mfccp->mfcc_mcastgrp.s_addr)) {
1177		init_mfc_params(rt, mfccp);
1178		if (rt->mfc_expire)
1179		    nexpire[hash]--;
1180		rt->mfc_expire = 0;
1181		break; /* XXX */
1182	    }
1183	}
1184	if (rt == NULL) {		/* no upcall, so make a new entry */
1185	    rt = (struct mfc *)malloc(sizeof(*rt), M_MRTABLE, M_NOWAIT);
1186	    if (rt == NULL) {
1187		MFC_UNLOCK();
1188		VIF_UNLOCK();
1189		return ENOBUFS;
1190	    }
1191
1192	    init_mfc_params(rt, mfccp);
1193	    rt->mfc_expire     = 0;
1194	    rt->mfc_stall      = NULL;
1195
1196	    rt->mfc_bw_meter = NULL;
1197	    /* insert new entry at head of hash chain */
1198	    rt->mfc_next = mfctable[hash];
1199	    mfctable[hash] = rt;
1200	}
1201    }
1202    MFC_UNLOCK();
1203    VIF_UNLOCK();
1204    return 0;
1205}
1206
1207/*
1208 * Delete an mfc entry
1209 */
1210static int
1211del_mfc(struct mfcctl2 *mfccp)
1212{
1213    struct in_addr	origin;
1214    struct in_addr	mcastgrp;
1215    struct mfc		*rt;
1216    struct mfc		**nptr;
1217    u_long		hash;
1218    struct bw_meter	*list;
1219
1220    origin = mfccp->mfcc_origin;
1221    mcastgrp = mfccp->mfcc_mcastgrp;
1222
1223    if (mrtdebug & DEBUG_MFC)
1224	log(LOG_DEBUG,"del_mfc orig %lx mcastgrp %lx\n",
1225	    (u_long)ntohl(origin.s_addr), (u_long)ntohl(mcastgrp.s_addr));
1226
1227    MFC_LOCK();
1228
1229    hash = MFCHASH(origin.s_addr, mcastgrp.s_addr);
1230    for (nptr = &mfctable[hash]; (rt = *nptr) != NULL; nptr = &rt->mfc_next)
1231	if (origin.s_addr == rt->mfc_origin.s_addr &&
1232		mcastgrp.s_addr == rt->mfc_mcastgrp.s_addr &&
1233		rt->mfc_stall == NULL)
1234	    break;
1235    if (rt == NULL) {
1236	MFC_UNLOCK();
1237	return EADDRNOTAVAIL;
1238    }
1239
1240    *nptr = rt->mfc_next;
1241
1242    /*
1243     * free the bw_meter entries
1244     */
1245    list = rt->mfc_bw_meter;
1246    rt->mfc_bw_meter = NULL;
1247
1248    free(rt, M_MRTABLE);
1249
1250    free_bw_list(list);
1251
1252    MFC_UNLOCK();
1253
1254    return 0;
1255}
1256
1257/*
1258 * Send a message to the routing daemon on the multicast routing socket
1259 */
1260static int
1261socket_send(struct socket *s, struct mbuf *mm, struct sockaddr_in *src)
1262{
1263    if (s) {
1264	SOCKBUF_LOCK(&s->so_rcv);
1265	if (sbappendaddr_locked(&s->so_rcv, (struct sockaddr *)src, mm,
1266	    NULL) != 0) {
1267	    sorwakeup_locked(s);
1268	    return 0;
1269	}
1270	SOCKBUF_UNLOCK(&s->so_rcv);
1271    }
1272    m_freem(mm);
1273    return -1;
1274}
1275
1276/*
1277 * IP multicast forwarding function. This function assumes that the packet
1278 * pointed to by "ip" has arrived on (or is about to be sent to) the interface
1279 * pointed to by "ifp", and the packet is to be relayed to other networks
1280 * that have members of the packet's destination IP multicast group.
1281 *
1282 * The packet is returned unscathed to the caller, unless it is
1283 * erroneous, in which case a non-zero return value tells the caller to
1284 * discard it.
1285 */
1286
1287#define TUNNEL_LEN  12  /* # bytes of IP option for tunnel encapsulation  */
1288
1289static int
1290X_ip_mforward(struct ip *ip, struct ifnet *ifp, struct mbuf *m,
1291    struct ip_moptions *imo)
1292{
1293    struct mfc *rt;
1294    int error;
1295    vifi_t vifi;
1296
1297    if (mrtdebug & DEBUG_FORWARD)
1298	log(LOG_DEBUG, "ip_mforward: src %lx, dst %lx, ifp %p\n",
1299	    (u_long)ntohl(ip->ip_src.s_addr), (u_long)ntohl(ip->ip_dst.s_addr),
1300	    (void *)ifp);
1301
1302    if (ip->ip_hl < (sizeof(struct ip) + TUNNEL_LEN) >> 2 ||
1303		((u_char *)(ip + 1))[1] != IPOPT_LSRR ) {
1304	/*
1305	 * Packet arrived via a physical interface or
1306	 * an encapsulated tunnel or a register_vif.
1307	 */
1308    } else {
1309	/*
1310	 * Packet arrived through a source-route tunnel.
1311	 * Source-route tunnels are no longer supported.
1312	 */
1313	static int last_log;
1314	if (last_log != time_uptime) {
1315	    last_log = time_uptime;
1316	    log(LOG_ERR,
1317		"ip_mforward: received source-routed packet from %lx\n",
1318		(u_long)ntohl(ip->ip_src.s_addr));
1319	}
1320	return 1;
1321    }
1322
1323    VIF_LOCK();
1324    MFC_LOCK();
1325    if (imo && ((vifi = imo->imo_multicast_vif) < numvifs)) {
1326	if (ip->ip_ttl < MAXTTL)
1327	    ip->ip_ttl++;	/* compensate for -1 in *_send routines */
1328	if (rsvpdebug && ip->ip_p == IPPROTO_RSVP) {
1329	    struct vif *vifp = viftable + vifi;
1330
1331	    printf("Sending IPPROTO_RSVP from %lx to %lx on vif %d (%s%s)\n",
1332		(long)ntohl(ip->ip_src.s_addr), (long)ntohl(ip->ip_dst.s_addr),
1333		vifi,
1334		(vifp->v_flags & VIFF_TUNNEL) ? "tunnel on " : "",
1335		vifp->v_ifp->if_xname);
1336	}
1337	error = ip_mdq(m, ifp, NULL, vifi);
1338	MFC_UNLOCK();
1339	VIF_UNLOCK();
1340	return error;
1341    }
1342    if (rsvpdebug && ip->ip_p == IPPROTO_RSVP) {
1343	printf("Warning: IPPROTO_RSVP from %lx to %lx without vif option\n",
1344	    (long)ntohl(ip->ip_src.s_addr), (long)ntohl(ip->ip_dst.s_addr));
1345	if (!imo)
1346	    printf("In fact, no options were specified at all\n");
1347    }
1348
1349    /*
1350     * Don't forward a packet with time-to-live of zero or one,
1351     * or a packet destined to a local-only group.
1352     */
1353    if (ip->ip_ttl <= 1 || IN_LOCAL_GROUP(ntohl(ip->ip_dst.s_addr))) {
1354	MFC_UNLOCK();
1355	VIF_UNLOCK();
1356	return 0;
1357    }
1358
1359    /*
1360     * Determine forwarding vifs from the forwarding cache table
1361     */
1362    ++mrtstat.mrts_mfc_lookups;
1363    rt = mfc_find(ip->ip_src.s_addr, ip->ip_dst.s_addr);
1364
1365    /* Entry exists, so forward if necessary */
1366    if (rt != NULL) {
1367	error = ip_mdq(m, ifp, rt, -1);
1368	MFC_UNLOCK();
1369	VIF_UNLOCK();
1370	return error;
1371    } else {
1372	/*
1373	 * If we don't have a route for packet's origin,
1374	 * Make a copy of the packet & send message to routing daemon
1375	 */
1376
1377	struct mbuf *mb0;
1378	struct rtdetq *rte;
1379	u_long hash;
1380	int hlen = ip->ip_hl << 2;
1381
1382	++mrtstat.mrts_mfc_misses;
1383
1384	mrtstat.mrts_no_route++;
1385	if (mrtdebug & (DEBUG_FORWARD | DEBUG_MFC))
1386	    log(LOG_DEBUG, "ip_mforward: no rte s %lx g %lx\n",
1387		(u_long)ntohl(ip->ip_src.s_addr),
1388		(u_long)ntohl(ip->ip_dst.s_addr));
1389
1390	/*
1391	 * Allocate mbufs early so that we don't do extra work if we are
1392	 * just going to fail anyway.  Make sure to pullup the header so
1393	 * that other people can't step on it.
1394	 */
1395	rte = (struct rtdetq *)malloc((sizeof *rte), M_MRTABLE, M_NOWAIT);
1396	if (rte == NULL) {
1397	    MFC_UNLOCK();
1398	    VIF_UNLOCK();
1399	    return ENOBUFS;
1400	}
1401	mb0 = m_copypacket(m, M_DONTWAIT);
1402	if (mb0 && (M_HASCL(mb0) || mb0->m_len < hlen))
1403	    mb0 = m_pullup(mb0, hlen);
1404	if (mb0 == NULL) {
1405	    free(rte, M_MRTABLE);
1406	    MFC_UNLOCK();
1407	    VIF_UNLOCK();
1408	    return ENOBUFS;
1409	}
1410
1411	/* is there an upcall waiting for this flow ? */
1412	hash = MFCHASH(ip->ip_src.s_addr, ip->ip_dst.s_addr);
1413	for (rt = mfctable[hash]; rt; rt = rt->mfc_next) {
1414	    if ((ip->ip_src.s_addr == rt->mfc_origin.s_addr) &&
1415		    (ip->ip_dst.s_addr == rt->mfc_mcastgrp.s_addr) &&
1416		    (rt->mfc_stall != NULL))
1417		break;
1418	}
1419
1420	if (rt == NULL) {
1421	    int i;
1422	    struct igmpmsg *im;
1423	    struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
1424	    struct mbuf *mm;
1425
1426	    /*
1427	     * Locate the vifi for the incoming interface for this packet.
1428	     * If none found, drop packet.
1429	     */
1430	    for (vifi=0; vifi < numvifs && viftable[vifi].v_ifp != ifp; vifi++)
1431		;
1432	    if (vifi >= numvifs)	/* vif not found, drop packet */
1433		goto non_fatal;
1434
1435	    /* no upcall, so make a new entry */
1436	    rt = (struct mfc *)malloc(sizeof(*rt), M_MRTABLE, M_NOWAIT);
1437	    if (rt == NULL)
1438		goto fail;
1439	    /* Make a copy of the header to send to the user level process */
1440	    mm = m_copy(mb0, 0, hlen);
1441	    if (mm == NULL)
1442		goto fail1;
1443
1444	    /*
1445	     * Send message to routing daemon to install
1446	     * a route into the kernel table
1447	     */
1448
1449	    im = mtod(mm, struct igmpmsg *);
1450	    im->im_msgtype = IGMPMSG_NOCACHE;
1451	    im->im_mbz = 0;
1452	    im->im_vif = vifi;
1453
1454	    mrtstat.mrts_upcalls++;
1455
1456	    k_igmpsrc.sin_addr = ip->ip_src;
1457	    if (socket_send(ip_mrouter, mm, &k_igmpsrc) < 0) {
1458		log(LOG_WARNING, "ip_mforward: ip_mrouter socket queue full\n");
1459		++mrtstat.mrts_upq_sockfull;
1460fail1:
1461		free(rt, M_MRTABLE);
1462fail:
1463		free(rte, M_MRTABLE);
1464		m_freem(mb0);
1465		MFC_UNLOCK();
1466		VIF_UNLOCK();
1467		return ENOBUFS;
1468	    }
1469
1470	    /* insert new entry at head of hash chain */
1471	    rt->mfc_origin.s_addr     = ip->ip_src.s_addr;
1472	    rt->mfc_mcastgrp.s_addr   = ip->ip_dst.s_addr;
1473	    rt->mfc_expire	      = UPCALL_EXPIRE;
1474	    nexpire[hash]++;
1475	    for (i = 0; i < numvifs; i++) {
1476		rt->mfc_ttls[i] = 0;
1477		rt->mfc_flags[i] = 0;
1478	    }
1479	    rt->mfc_parent = -1;
1480
1481	    rt->mfc_rp.s_addr = INADDR_ANY; /* clear the RP address */
1482
1483	    rt->mfc_bw_meter = NULL;
1484
1485	    /* link into table */
1486	    rt->mfc_next   = mfctable[hash];
1487	    mfctable[hash] = rt;
1488	    rt->mfc_stall = rte;
1489
1490	} else {
1491	    /* determine if q has overflowed */
1492	    int npkts = 0;
1493	    struct rtdetq **p;
1494
1495	    /*
1496	     * XXX ouch! we need to append to the list, but we
1497	     * only have a pointer to the front, so we have to
1498	     * scan the entire list every time.
1499	     */
1500	    for (p = &rt->mfc_stall; *p != NULL; p = &(*p)->next)
1501		npkts++;
1502
1503	    if (npkts > MAX_UPQ) {
1504		mrtstat.mrts_upq_ovflw++;
1505non_fatal:
1506		free(rte, M_MRTABLE);
1507		m_freem(mb0);
1508		MFC_UNLOCK();
1509		VIF_UNLOCK();
1510		return 0;
1511	    }
1512
1513	    /* Add this entry to the end of the queue */
1514	    *p = rte;
1515	}
1516
1517	rte->m			= mb0;
1518	rte->ifp		= ifp;
1519	rte->next		= NULL;
1520
1521	MFC_UNLOCK();
1522	VIF_UNLOCK();
1523
1524	return 0;
1525    }
1526}
1527
1528/*
1529 * Clean up the cache entry if upcall is not serviced
1530 */
1531static void
1532expire_upcalls(void *unused)
1533{
1534    struct rtdetq *rte;
1535    struct mfc *mfc, **nptr;
1536    int i;
1537
1538    MFC_LOCK();
1539    for (i = 0; i < MFCTBLSIZ; i++) {
1540	if (nexpire[i] == 0)
1541	    continue;
1542	nptr = &mfctable[i];
1543	for (mfc = *nptr; mfc != NULL; mfc = *nptr) {
1544	    /*
1545	     * Skip real cache entries
1546	     * Make sure it wasn't marked to not expire (shouldn't happen)
1547	     * If it expires now
1548	     */
1549	    if (mfc->mfc_stall != NULL && mfc->mfc_expire != 0 &&
1550		    --mfc->mfc_expire == 0) {
1551		if (mrtdebug & DEBUG_EXPIRE)
1552		    log(LOG_DEBUG, "expire_upcalls: expiring (%lx %lx)\n",
1553			(u_long)ntohl(mfc->mfc_origin.s_addr),
1554			(u_long)ntohl(mfc->mfc_mcastgrp.s_addr));
1555		/*
1556		 * drop all the packets
1557		 * free the mbuf with the pkt, if, timing info
1558		 */
1559		for (rte = mfc->mfc_stall; rte; ) {
1560		    struct rtdetq *n = rte->next;
1561
1562		    m_freem(rte->m);
1563		    free(rte, M_MRTABLE);
1564		    rte = n;
1565		}
1566		++mrtstat.mrts_cache_cleanups;
1567		nexpire[i]--;
1568
1569		/*
1570		 * free the bw_meter entries
1571		 */
1572		while (mfc->mfc_bw_meter != NULL) {
1573		    struct bw_meter *x = mfc->mfc_bw_meter;
1574
1575		    mfc->mfc_bw_meter = x->bm_mfc_next;
1576		    free(x, M_BWMETER);
1577		}
1578
1579		*nptr = mfc->mfc_next;
1580		free(mfc, M_MRTABLE);
1581	    } else {
1582		nptr = &mfc->mfc_next;
1583	    }
1584	}
1585    }
1586    MFC_UNLOCK();
1587
1588    callout_reset(&expire_upcalls_ch, EXPIRE_TIMEOUT, expire_upcalls, NULL);
1589}
1590
1591/*
1592 * Packet forwarding routine once entry in the cache is made
1593 */
1594static int
1595ip_mdq(struct mbuf *m, struct ifnet *ifp, struct mfc *rt, vifi_t xmt_vif)
1596{
1597    struct ip  *ip = mtod(m, struct ip *);
1598    vifi_t vifi;
1599    int plen = ip->ip_len;
1600
1601    VIF_LOCK_ASSERT();
1602
1603    /*
1604     * If xmt_vif is not -1, send on only the requested vif.
1605     *
1606     * (since vifi_t is u_short, -1 becomes MAXUSHORT, which > numvifs.)
1607     */
1608    if (xmt_vif < numvifs) {
1609	if (viftable[xmt_vif].v_flags & VIFF_REGISTER)
1610		pim_register_send(ip, viftable + xmt_vif, m, rt);
1611	else
1612		phyint_send(ip, viftable + xmt_vif, m);
1613	return 1;
1614    }
1615
1616    /*
1617     * Don't forward if it didn't arrive from the parent vif for its origin.
1618     */
1619    vifi = rt->mfc_parent;
1620    if ((vifi >= numvifs) || (viftable[vifi].v_ifp != ifp)) {
1621	/* came in the wrong interface */
1622	if (mrtdebug & DEBUG_FORWARD)
1623	    log(LOG_DEBUG, "wrong if: ifp %p vifi %d vififp %p\n",
1624		(void *)ifp, vifi, (void *)viftable[vifi].v_ifp);
1625	++mrtstat.mrts_wrong_if;
1626	++rt->mfc_wrong_if;
1627	/*
1628	 * If we are doing PIM assert processing, send a message
1629	 * to the routing daemon.
1630	 *
1631	 * XXX: A PIM-SM router needs the WRONGVIF detection so it
1632	 * can complete the SPT switch, regardless of the type
1633	 * of the iif (broadcast media, GRE tunnel, etc).
1634	 */
1635	if (pim_assert && (vifi < numvifs) && viftable[vifi].v_ifp) {
1636	    struct timeval now;
1637	    u_long delta;
1638
1639	    if (ifp == &multicast_register_if)
1640		pimstat.pims_rcv_registers_wrongiif++;
1641
1642	    /* Get vifi for the incoming packet */
1643	    for (vifi=0; vifi < numvifs && viftable[vifi].v_ifp != ifp; vifi++)
1644		;
1645	    if (vifi >= numvifs)
1646		return 0;	/* The iif is not found: ignore the packet. */
1647
1648	    if (rt->mfc_flags[vifi] & MRT_MFC_FLAGS_DISABLE_WRONGVIF)
1649		return 0;	/* WRONGVIF disabled: ignore the packet */
1650
1651	    GET_TIME(now);
1652
1653	    TV_DELTA(now, rt->mfc_last_assert, delta);
1654
1655	    if (delta > ASSERT_MSG_TIME) {
1656		struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
1657		struct igmpmsg *im;
1658		int hlen = ip->ip_hl << 2;
1659		struct mbuf *mm = m_copy(m, 0, hlen);
1660
1661		if (mm && (M_HASCL(mm) || mm->m_len < hlen))
1662		    mm = m_pullup(mm, hlen);
1663		if (mm == NULL)
1664		    return ENOBUFS;
1665
1666		rt->mfc_last_assert = now;
1667
1668		im = mtod(mm, struct igmpmsg *);
1669		im->im_msgtype	= IGMPMSG_WRONGVIF;
1670		im->im_mbz		= 0;
1671		im->im_vif		= vifi;
1672
1673		mrtstat.mrts_upcalls++;
1674
1675		k_igmpsrc.sin_addr = im->im_src;
1676		if (socket_send(ip_mrouter, mm, &k_igmpsrc) < 0) {
1677		    log(LOG_WARNING,
1678			"ip_mforward: ip_mrouter socket queue full\n");
1679		    ++mrtstat.mrts_upq_sockfull;
1680		    return ENOBUFS;
1681		}
1682	    }
1683	}
1684	return 0;
1685    }
1686
1687    /* If I sourced this packet, it counts as output, else it was input. */
1688    if (ip->ip_src.s_addr == viftable[vifi].v_lcl_addr.s_addr) {
1689	viftable[vifi].v_pkt_out++;
1690	viftable[vifi].v_bytes_out += plen;
1691    } else {
1692	viftable[vifi].v_pkt_in++;
1693	viftable[vifi].v_bytes_in += plen;
1694    }
1695    rt->mfc_pkt_cnt++;
1696    rt->mfc_byte_cnt += plen;
1697
1698    /*
1699     * For each vif, decide if a copy of the packet should be forwarded.
1700     * Forward if:
1701     *		- the ttl exceeds the vif's threshold
1702     *		- there are group members downstream on interface
1703     */
1704    for (vifi = 0; vifi < numvifs; vifi++)
1705	if ((rt->mfc_ttls[vifi] > 0) && (ip->ip_ttl > rt->mfc_ttls[vifi])) {
1706	    viftable[vifi].v_pkt_out++;
1707	    viftable[vifi].v_bytes_out += plen;
1708	    if (viftable[vifi].v_flags & VIFF_REGISTER)
1709		pim_register_send(ip, viftable + vifi, m, rt);
1710	    else
1711		phyint_send(ip, viftable + vifi, m);
1712	}
1713
1714    /*
1715     * Perform upcall-related bw measuring.
1716     */
1717    if (rt->mfc_bw_meter != NULL) {
1718	struct bw_meter *x;
1719	struct timeval now;
1720
1721	GET_TIME(now);
1722	MFC_LOCK_ASSERT();
1723	for (x = rt->mfc_bw_meter; x != NULL; x = x->bm_mfc_next)
1724	    bw_meter_receive_packet(x, plen, &now);
1725    }
1726
1727    return 0;
1728}
1729
1730/*
1731 * check if a vif number is legal/ok. This is used by ip_output.
1732 */
1733static int
1734X_legal_vif_num(int vif)
1735{
1736    /* XXX unlocked, matter? */
1737    return (vif >= 0 && vif < numvifs);
1738}
1739
1740/*
1741 * Return the local address used by this vif
1742 */
1743static u_long
1744X_ip_mcast_src(int vifi)
1745{
1746    /* XXX unlocked, matter? */
1747    if (vifi >= 0 && vifi < numvifs)
1748	return viftable[vifi].v_lcl_addr.s_addr;
1749    else
1750	return INADDR_ANY;
1751}
1752
1753static void
1754phyint_send(struct ip *ip, struct vif *vifp, struct mbuf *m)
1755{
1756    struct mbuf *mb_copy;
1757    int hlen = ip->ip_hl << 2;
1758
1759    VIF_LOCK_ASSERT();
1760
1761    /*
1762     * Make a new reference to the packet; make sure that
1763     * the IP header is actually copied, not just referenced,
1764     * so that ip_output() only scribbles on the copy.
1765     */
1766    mb_copy = m_copypacket(m, M_DONTWAIT);
1767    if (mb_copy && (M_HASCL(mb_copy) || mb_copy->m_len < hlen))
1768	mb_copy = m_pullup(mb_copy, hlen);
1769    if (mb_copy == NULL)
1770	return;
1771
1772    send_packet(vifp, mb_copy);
1773}
1774
1775static void
1776send_packet(struct vif *vifp, struct mbuf *m)
1777{
1778	struct ip_moptions imo;
1779	struct in_multi *imm[2];
1780	int error;
1781
1782	VIF_LOCK_ASSERT();
1783
1784	imo.imo_multicast_ifp  = vifp->v_ifp;
1785	imo.imo_multicast_ttl  = mtod(m, struct ip *)->ip_ttl - 1;
1786	imo.imo_multicast_loop = 1;
1787	imo.imo_multicast_vif  = -1;
1788	imo.imo_num_memberships = 0;
1789	imo.imo_max_memberships = 2;
1790	imo.imo_membership  = &imm[0];
1791
1792	/*
1793	 * Re-entrancy should not be a problem here, because
1794	 * the packets that we send out and are looped back at us
1795	 * should get rejected because they appear to come from
1796	 * the loopback interface, thus preventing looping.
1797	 */
1798	error = ip_output(m, NULL, &vifp->v_route, IP_FORWARDING, &imo, NULL);
1799	if (mrtdebug & DEBUG_XMIT) {
1800	    log(LOG_DEBUG, "phyint_send on vif %td err %d\n",
1801		vifp - viftable, error);
1802	}
1803}
1804
1805static int
1806X_ip_rsvp_vif(struct socket *so, struct sockopt *sopt)
1807{
1808    int error, vifi;
1809
1810    if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_RSVP)
1811	return EOPNOTSUPP;
1812
1813    error = sooptcopyin(sopt, &vifi, sizeof vifi, sizeof vifi);
1814    if (error)
1815	return error;
1816
1817    VIF_LOCK();
1818
1819    if (vifi < 0 || vifi >= numvifs) {	/* Error if vif is invalid */
1820	VIF_UNLOCK();
1821	return EADDRNOTAVAIL;
1822    }
1823
1824    if (sopt->sopt_name == IP_RSVP_VIF_ON) {
1825	/* Check if socket is available. */
1826	if (viftable[vifi].v_rsvpd != NULL) {
1827	    VIF_UNLOCK();
1828	    return EADDRINUSE;
1829	}
1830
1831	viftable[vifi].v_rsvpd = so;
1832	/* This may seem silly, but we need to be sure we don't over-increment
1833	 * the RSVP counter, in case something slips up.
1834	 */
1835	if (!viftable[vifi].v_rsvp_on) {
1836	    viftable[vifi].v_rsvp_on = 1;
1837	    rsvp_on++;
1838	}
1839    } else { /* must be VIF_OFF */
1840	/*
1841	 * XXX as an additional consistency check, one could make sure
1842	 * that viftable[vifi].v_rsvpd == so, otherwise passing so as
1843	 * first parameter is pretty useless.
1844	 */
1845	viftable[vifi].v_rsvpd = NULL;
1846	/*
1847	 * This may seem silly, but we need to be sure we don't over-decrement
1848	 * the RSVP counter, in case something slips up.
1849	 */
1850	if (viftable[vifi].v_rsvp_on) {
1851	    viftable[vifi].v_rsvp_on = 0;
1852	    rsvp_on--;
1853	}
1854    }
1855    VIF_UNLOCK();
1856    return 0;
1857}
1858
1859static void
1860X_ip_rsvp_force_done(struct socket *so)
1861{
1862    int vifi;
1863
1864    /* Don't bother if it is not the right type of socket. */
1865    if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_RSVP)
1866	return;
1867
1868    VIF_LOCK();
1869
1870    /* The socket may be attached to more than one vif...this
1871     * is perfectly legal.
1872     */
1873    for (vifi = 0; vifi < numvifs; vifi++) {
1874	if (viftable[vifi].v_rsvpd == so) {
1875	    viftable[vifi].v_rsvpd = NULL;
1876	    /* This may seem silly, but we need to be sure we don't
1877	     * over-decrement the RSVP counter, in case something slips up.
1878	     */
1879	    if (viftable[vifi].v_rsvp_on) {
1880		viftable[vifi].v_rsvp_on = 0;
1881		rsvp_on--;
1882	    }
1883	}
1884    }
1885
1886    VIF_UNLOCK();
1887}
1888
1889static void
1890X_rsvp_input(struct mbuf *m, int off)
1891{
1892    int vifi;
1893    struct ip *ip = mtod(m, struct ip *);
1894    struct sockaddr_in rsvp_src = { sizeof rsvp_src, AF_INET };
1895    struct ifnet *ifp;
1896
1897    if (rsvpdebug)
1898	printf("rsvp_input: rsvp_on %d\n",rsvp_on);
1899
1900    /* Can still get packets with rsvp_on = 0 if there is a local member
1901     * of the group to which the RSVP packet is addressed.  But in this
1902     * case we want to throw the packet away.
1903     */
1904    if (!rsvp_on) {
1905	m_freem(m);
1906	return;
1907    }
1908
1909    if (rsvpdebug)
1910	printf("rsvp_input: check vifs\n");
1911
1912#ifdef DIAGNOSTIC
1913    M_ASSERTPKTHDR(m);
1914#endif
1915
1916    ifp = m->m_pkthdr.rcvif;
1917
1918    VIF_LOCK();
1919    /* Find which vif the packet arrived on. */
1920    for (vifi = 0; vifi < numvifs; vifi++)
1921	if (viftable[vifi].v_ifp == ifp)
1922	    break;
1923
1924    if (vifi == numvifs || viftable[vifi].v_rsvpd == NULL) {
1925	/*
1926	 * Drop the lock here to avoid holding it across rip_input.
1927	 * This could make rsvpdebug printfs wrong.  If you care,
1928	 * record the state of stuff before dropping the lock.
1929	 */
1930	VIF_UNLOCK();
1931	/*
1932	 * If the old-style non-vif-associated socket is set,
1933	 * then use it.  Otherwise, drop packet since there
1934	 * is no specific socket for this vif.
1935	 */
1936	if (ip_rsvpd != NULL) {
1937	    if (rsvpdebug)
1938		printf("rsvp_input: Sending packet up old-style socket\n");
1939	    rip_input(m, off);  /* xxx */
1940	} else {
1941	    if (rsvpdebug && vifi == numvifs)
1942		printf("rsvp_input: Can't find vif for packet.\n");
1943	    else if (rsvpdebug && viftable[vifi].v_rsvpd == NULL)
1944		printf("rsvp_input: No socket defined for vif %d\n",vifi);
1945	    m_freem(m);
1946	}
1947	return;
1948    }
1949    rsvp_src.sin_addr = ip->ip_src;
1950
1951    if (rsvpdebug && m)
1952	printf("rsvp_input: m->m_len = %d, sbspace() = %ld\n",
1953	       m->m_len,sbspace(&(viftable[vifi].v_rsvpd->so_rcv)));
1954
1955    if (socket_send(viftable[vifi].v_rsvpd, m, &rsvp_src) < 0) {
1956	if (rsvpdebug)
1957	    printf("rsvp_input: Failed to append to socket\n");
1958    } else {
1959	if (rsvpdebug)
1960	    printf("rsvp_input: send packet up\n");
1961    }
1962    VIF_UNLOCK();
1963}
1964
1965/*
1966 * Code for bandwidth monitors
1967 */
1968
1969/*
1970 * Define common interface for timeval-related methods
1971 */
1972#define	BW_TIMEVALCMP(tvp, uvp, cmp) timevalcmp((tvp), (uvp), cmp)
1973#define	BW_TIMEVALDECR(vvp, uvp) timevalsub((vvp), (uvp))
1974#define	BW_TIMEVALADD(vvp, uvp) timevaladd((vvp), (uvp))
1975
1976static uint32_t
1977compute_bw_meter_flags(struct bw_upcall *req)
1978{
1979    uint32_t flags = 0;
1980
1981    if (req->bu_flags & BW_UPCALL_UNIT_PACKETS)
1982	flags |= BW_METER_UNIT_PACKETS;
1983    if (req->bu_flags & BW_UPCALL_UNIT_BYTES)
1984	flags |= BW_METER_UNIT_BYTES;
1985    if (req->bu_flags & BW_UPCALL_GEQ)
1986	flags |= BW_METER_GEQ;
1987    if (req->bu_flags & BW_UPCALL_LEQ)
1988	flags |= BW_METER_LEQ;
1989
1990    return flags;
1991}
1992
1993/*
1994 * Add a bw_meter entry
1995 */
1996static int
1997add_bw_upcall(struct bw_upcall *req)
1998{
1999    struct mfc *mfc;
2000    struct timeval delta = { BW_UPCALL_THRESHOLD_INTERVAL_MIN_SEC,
2001		BW_UPCALL_THRESHOLD_INTERVAL_MIN_USEC };
2002    struct timeval now;
2003    struct bw_meter *x;
2004    uint32_t flags;
2005
2006    if (!(mrt_api_config & MRT_MFC_BW_UPCALL))
2007	return EOPNOTSUPP;
2008
2009    /* Test if the flags are valid */
2010    if (!(req->bu_flags & (BW_UPCALL_UNIT_PACKETS | BW_UPCALL_UNIT_BYTES)))
2011	return EINVAL;
2012    if (!(req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ)))
2013	return EINVAL;
2014    if ((req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ))
2015	    == (BW_UPCALL_GEQ | BW_UPCALL_LEQ))
2016	return EINVAL;
2017
2018    /* Test if the threshold time interval is valid */
2019    if (BW_TIMEVALCMP(&req->bu_threshold.b_time, &delta, <))
2020	return EINVAL;
2021
2022    flags = compute_bw_meter_flags(req);
2023
2024    /*
2025     * Find if we have already same bw_meter entry
2026     */
2027    MFC_LOCK();
2028    mfc = mfc_find(req->bu_src.s_addr, req->bu_dst.s_addr);
2029    if (mfc == NULL) {
2030	MFC_UNLOCK();
2031	return EADDRNOTAVAIL;
2032    }
2033    for (x = mfc->mfc_bw_meter; x != NULL; x = x->bm_mfc_next) {
2034	if ((BW_TIMEVALCMP(&x->bm_threshold.b_time,
2035			   &req->bu_threshold.b_time, ==)) &&
2036	    (x->bm_threshold.b_packets == req->bu_threshold.b_packets) &&
2037	    (x->bm_threshold.b_bytes == req->bu_threshold.b_bytes) &&
2038	    (x->bm_flags & BW_METER_USER_FLAGS) == flags)  {
2039	    MFC_UNLOCK();
2040	    return 0;		/* XXX Already installed */
2041	}
2042    }
2043
2044    /* Allocate the new bw_meter entry */
2045    x = (struct bw_meter *)malloc(sizeof(*x), M_BWMETER, M_NOWAIT);
2046    if (x == NULL) {
2047	MFC_UNLOCK();
2048	return ENOBUFS;
2049    }
2050
2051    /* Set the new bw_meter entry */
2052    x->bm_threshold.b_time = req->bu_threshold.b_time;
2053    GET_TIME(now);
2054    x->bm_start_time = now;
2055    x->bm_threshold.b_packets = req->bu_threshold.b_packets;
2056    x->bm_threshold.b_bytes = req->bu_threshold.b_bytes;
2057    x->bm_measured.b_packets = 0;
2058    x->bm_measured.b_bytes = 0;
2059    x->bm_flags = flags;
2060    x->bm_time_next = NULL;
2061    x->bm_time_hash = BW_METER_BUCKETS;
2062
2063    /* Add the new bw_meter entry to the front of entries for this MFC */
2064    x->bm_mfc = mfc;
2065    x->bm_mfc_next = mfc->mfc_bw_meter;
2066    mfc->mfc_bw_meter = x;
2067    schedule_bw_meter(x, &now);
2068    MFC_UNLOCK();
2069
2070    return 0;
2071}
2072
2073static void
2074free_bw_list(struct bw_meter *list)
2075{
2076    while (list != NULL) {
2077	struct bw_meter *x = list;
2078
2079	list = list->bm_mfc_next;
2080	unschedule_bw_meter(x);
2081	free(x, M_BWMETER);
2082    }
2083}
2084
2085/*
2086 * Delete one or multiple bw_meter entries
2087 */
2088static int
2089del_bw_upcall(struct bw_upcall *req)
2090{
2091    struct mfc *mfc;
2092    struct bw_meter *x;
2093
2094    if (!(mrt_api_config & MRT_MFC_BW_UPCALL))
2095	return EOPNOTSUPP;
2096
2097    MFC_LOCK();
2098    /* Find the corresponding MFC entry */
2099    mfc = mfc_find(req->bu_src.s_addr, req->bu_dst.s_addr);
2100    if (mfc == NULL) {
2101	MFC_UNLOCK();
2102	return EADDRNOTAVAIL;
2103    } else if (req->bu_flags & BW_UPCALL_DELETE_ALL) {
2104	/*
2105	 * Delete all bw_meter entries for this mfc
2106	 */
2107	struct bw_meter *list;
2108
2109	list = mfc->mfc_bw_meter;
2110	mfc->mfc_bw_meter = NULL;
2111	free_bw_list(list);
2112	MFC_UNLOCK();
2113	return 0;
2114    } else {			/* Delete a single bw_meter entry */
2115	struct bw_meter *prev;
2116	uint32_t flags = 0;
2117
2118	flags = compute_bw_meter_flags(req);
2119
2120	/* Find the bw_meter entry to delete */
2121	for (prev = NULL, x = mfc->mfc_bw_meter; x != NULL;
2122	     prev = x, x = x->bm_mfc_next) {
2123	    if ((BW_TIMEVALCMP(&x->bm_threshold.b_time,
2124			       &req->bu_threshold.b_time, ==)) &&
2125		(x->bm_threshold.b_packets == req->bu_threshold.b_packets) &&
2126		(x->bm_threshold.b_bytes == req->bu_threshold.b_bytes) &&
2127		(x->bm_flags & BW_METER_USER_FLAGS) == flags)
2128		break;
2129	}
2130	if (x != NULL) { /* Delete entry from the list for this MFC */
2131	    if (prev != NULL)
2132		prev->bm_mfc_next = x->bm_mfc_next;	/* remove from middle*/
2133	    else
2134		x->bm_mfc->mfc_bw_meter = x->bm_mfc_next;/* new head of list */
2135
2136	    unschedule_bw_meter(x);
2137	    MFC_UNLOCK();
2138	    /* Free the bw_meter entry */
2139	    free(x, M_BWMETER);
2140	    return 0;
2141	} else {
2142	    MFC_UNLOCK();
2143	    return EINVAL;
2144	}
2145    }
2146    /* NOTREACHED */
2147}
2148
2149/*
2150 * Perform bandwidth measurement processing that may result in an upcall
2151 */
2152static void
2153bw_meter_receive_packet(struct bw_meter *x, int plen, struct timeval *nowp)
2154{
2155    struct timeval delta;
2156
2157    MFC_LOCK_ASSERT();
2158
2159    delta = *nowp;
2160    BW_TIMEVALDECR(&delta, &x->bm_start_time);
2161
2162    if (x->bm_flags & BW_METER_GEQ) {
2163	/*
2164	 * Processing for ">=" type of bw_meter entry
2165	 */
2166	if (BW_TIMEVALCMP(&delta, &x->bm_threshold.b_time, >)) {
2167	    /* Reset the bw_meter entry */
2168	    x->bm_start_time = *nowp;
2169	    x->bm_measured.b_packets = 0;
2170	    x->bm_measured.b_bytes = 0;
2171	    x->bm_flags &= ~BW_METER_UPCALL_DELIVERED;
2172	}
2173
2174	/* Record that a packet is received */
2175	x->bm_measured.b_packets++;
2176	x->bm_measured.b_bytes += plen;
2177
2178	/*
2179	 * Test if we should deliver an upcall
2180	 */
2181	if (!(x->bm_flags & BW_METER_UPCALL_DELIVERED)) {
2182	    if (((x->bm_flags & BW_METER_UNIT_PACKETS) &&
2183		 (x->bm_measured.b_packets >= x->bm_threshold.b_packets)) ||
2184		((x->bm_flags & BW_METER_UNIT_BYTES) &&
2185		 (x->bm_measured.b_bytes >= x->bm_threshold.b_bytes))) {
2186		/* Prepare an upcall for delivery */
2187		bw_meter_prepare_upcall(x, nowp);
2188		x->bm_flags |= BW_METER_UPCALL_DELIVERED;
2189	    }
2190	}
2191    } else if (x->bm_flags & BW_METER_LEQ) {
2192	/*
2193	 * Processing for "<=" type of bw_meter entry
2194	 */
2195	if (BW_TIMEVALCMP(&delta, &x->bm_threshold.b_time, >)) {
2196	    /*
2197	     * We are behind time with the multicast forwarding table
2198	     * scanning for "<=" type of bw_meter entries, so test now
2199	     * if we should deliver an upcall.
2200	     */
2201	    if (((x->bm_flags & BW_METER_UNIT_PACKETS) &&
2202		 (x->bm_measured.b_packets <= x->bm_threshold.b_packets)) ||
2203		((x->bm_flags & BW_METER_UNIT_BYTES) &&
2204		 (x->bm_measured.b_bytes <= x->bm_threshold.b_bytes))) {
2205		/* Prepare an upcall for delivery */
2206		bw_meter_prepare_upcall(x, nowp);
2207	    }
2208	    /* Reschedule the bw_meter entry */
2209	    unschedule_bw_meter(x);
2210	    schedule_bw_meter(x, nowp);
2211	}
2212
2213	/* Record that a packet is received */
2214	x->bm_measured.b_packets++;
2215	x->bm_measured.b_bytes += plen;
2216
2217	/*
2218	 * Test if we should restart the measuring interval
2219	 */
2220	if ((x->bm_flags & BW_METER_UNIT_PACKETS &&
2221	     x->bm_measured.b_packets <= x->bm_threshold.b_packets) ||
2222	    (x->bm_flags & BW_METER_UNIT_BYTES &&
2223	     x->bm_measured.b_bytes <= x->bm_threshold.b_bytes)) {
2224	    /* Don't restart the measuring interval */
2225	} else {
2226	    /* Do restart the measuring interval */
2227	    /*
2228	     * XXX: note that we don't unschedule and schedule, because this
2229	     * might be too much overhead per packet. Instead, when we process
2230	     * all entries for a given timer hash bin, we check whether it is
2231	     * really a timeout. If not, we reschedule at that time.
2232	     */
2233	    x->bm_start_time = *nowp;
2234	    x->bm_measured.b_packets = 0;
2235	    x->bm_measured.b_bytes = 0;
2236	    x->bm_flags &= ~BW_METER_UPCALL_DELIVERED;
2237	}
2238    }
2239}
2240
2241/*
2242 * Prepare a bandwidth-related upcall
2243 */
2244static void
2245bw_meter_prepare_upcall(struct bw_meter *x, struct timeval *nowp)
2246{
2247    struct timeval delta;
2248    struct bw_upcall *u;
2249
2250    MFC_LOCK_ASSERT();
2251
2252    /*
2253     * Compute the measured time interval
2254     */
2255    delta = *nowp;
2256    BW_TIMEVALDECR(&delta, &x->bm_start_time);
2257
2258    /*
2259     * If there are too many pending upcalls, deliver them now
2260     */
2261    if (bw_upcalls_n >= BW_UPCALLS_MAX)
2262	bw_upcalls_send();
2263
2264    /*
2265     * Set the bw_upcall entry
2266     */
2267    u = &bw_upcalls[bw_upcalls_n++];
2268    u->bu_src = x->bm_mfc->mfc_origin;
2269    u->bu_dst = x->bm_mfc->mfc_mcastgrp;
2270    u->bu_threshold.b_time = x->bm_threshold.b_time;
2271    u->bu_threshold.b_packets = x->bm_threshold.b_packets;
2272    u->bu_threshold.b_bytes = x->bm_threshold.b_bytes;
2273    u->bu_measured.b_time = delta;
2274    u->bu_measured.b_packets = x->bm_measured.b_packets;
2275    u->bu_measured.b_bytes = x->bm_measured.b_bytes;
2276    u->bu_flags = 0;
2277    if (x->bm_flags & BW_METER_UNIT_PACKETS)
2278	u->bu_flags |= BW_UPCALL_UNIT_PACKETS;
2279    if (x->bm_flags & BW_METER_UNIT_BYTES)
2280	u->bu_flags |= BW_UPCALL_UNIT_BYTES;
2281    if (x->bm_flags & BW_METER_GEQ)
2282	u->bu_flags |= BW_UPCALL_GEQ;
2283    if (x->bm_flags & BW_METER_LEQ)
2284	u->bu_flags |= BW_UPCALL_LEQ;
2285}
2286
2287/*
2288 * Send the pending bandwidth-related upcalls
2289 */
2290static void
2291bw_upcalls_send(void)
2292{
2293    struct mbuf *m;
2294    int len = bw_upcalls_n * sizeof(bw_upcalls[0]);
2295    struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
2296    static struct igmpmsg igmpmsg = { 0,		/* unused1 */
2297				      0,		/* unused2 */
2298				      IGMPMSG_BW_UPCALL,/* im_msgtype */
2299				      0,		/* im_mbz  */
2300				      0,		/* im_vif  */
2301				      0,		/* unused3 */
2302				      { 0 },		/* im_src  */
2303				      { 0 } };		/* im_dst  */
2304
2305    MFC_LOCK_ASSERT();
2306
2307    if (bw_upcalls_n == 0)
2308	return;			/* No pending upcalls */
2309
2310    bw_upcalls_n = 0;
2311
2312    /*
2313     * Allocate a new mbuf, initialize it with the header and
2314     * the payload for the pending calls.
2315     */
2316    MGETHDR(m, M_DONTWAIT, MT_DATA);
2317    if (m == NULL) {
2318	log(LOG_WARNING, "bw_upcalls_send: cannot allocate mbuf\n");
2319	return;
2320    }
2321
2322    m->m_len = m->m_pkthdr.len = 0;
2323    m_copyback(m, 0, sizeof(struct igmpmsg), (caddr_t)&igmpmsg);
2324    m_copyback(m, sizeof(struct igmpmsg), len, (caddr_t)&bw_upcalls[0]);
2325
2326    /*
2327     * Send the upcalls
2328     * XXX do we need to set the address in k_igmpsrc ?
2329     */
2330    mrtstat.mrts_upcalls++;
2331    if (socket_send(ip_mrouter, m, &k_igmpsrc) < 0) {
2332	log(LOG_WARNING, "bw_upcalls_send: ip_mrouter socket queue full\n");
2333	++mrtstat.mrts_upq_sockfull;
2334    }
2335}
2336
2337/*
2338 * Compute the timeout hash value for the bw_meter entries
2339 */
2340#define	BW_METER_TIMEHASH(bw_meter, hash)				\
2341    do {								\
2342	struct timeval next_timeval = (bw_meter)->bm_start_time;	\
2343									\
2344	BW_TIMEVALADD(&next_timeval, &(bw_meter)->bm_threshold.b_time); \
2345	(hash) = next_timeval.tv_sec;					\
2346	if (next_timeval.tv_usec)					\
2347	    (hash)++; /* XXX: make sure we don't timeout early */	\
2348	(hash) %= BW_METER_BUCKETS;					\
2349    } while (0)
2350
2351/*
2352 * Schedule a timer to process periodically bw_meter entry of type "<="
2353 * by linking the entry in the proper hash bucket.
2354 */
2355static void
2356schedule_bw_meter(struct bw_meter *x, struct timeval *nowp)
2357{
2358    int time_hash;
2359
2360    MFC_LOCK_ASSERT();
2361
2362    if (!(x->bm_flags & BW_METER_LEQ))
2363	return;		/* XXX: we schedule timers only for "<=" entries */
2364
2365    /*
2366     * Reset the bw_meter entry
2367     */
2368    x->bm_start_time = *nowp;
2369    x->bm_measured.b_packets = 0;
2370    x->bm_measured.b_bytes = 0;
2371    x->bm_flags &= ~BW_METER_UPCALL_DELIVERED;
2372
2373    /*
2374     * Compute the timeout hash value and insert the entry
2375     */
2376    BW_METER_TIMEHASH(x, time_hash);
2377    x->bm_time_next = bw_meter_timers[time_hash];
2378    bw_meter_timers[time_hash] = x;
2379    x->bm_time_hash = time_hash;
2380}
2381
2382/*
2383 * Unschedule the periodic timer that processes bw_meter entry of type "<="
2384 * by removing the entry from the proper hash bucket.
2385 */
2386static void
2387unschedule_bw_meter(struct bw_meter *x)
2388{
2389    int time_hash;
2390    struct bw_meter *prev, *tmp;
2391
2392    MFC_LOCK_ASSERT();
2393
2394    if (!(x->bm_flags & BW_METER_LEQ))
2395	return;		/* XXX: we schedule timers only for "<=" entries */
2396
2397    /*
2398     * Compute the timeout hash value and delete the entry
2399     */
2400    time_hash = x->bm_time_hash;
2401    if (time_hash >= BW_METER_BUCKETS)
2402	return;		/* Entry was not scheduled */
2403
2404    for (prev = NULL, tmp = bw_meter_timers[time_hash];
2405	     tmp != NULL; prev = tmp, tmp = tmp->bm_time_next)
2406	if (tmp == x)
2407	    break;
2408
2409    if (tmp == NULL)
2410	panic("unschedule_bw_meter: bw_meter entry not found");
2411
2412    if (prev != NULL)
2413	prev->bm_time_next = x->bm_time_next;
2414    else
2415	bw_meter_timers[time_hash] = x->bm_time_next;
2416
2417    x->bm_time_next = NULL;
2418    x->bm_time_hash = BW_METER_BUCKETS;
2419}
2420
2421
2422/*
2423 * Process all "<=" type of bw_meter that should be processed now,
2424 * and for each entry prepare an upcall if necessary. Each processed
2425 * entry is rescheduled again for the (periodic) processing.
2426 *
2427 * This is run periodically (once per second normally). On each round,
2428 * all the potentially matching entries are in the hash slot that we are
2429 * looking at.
2430 */
2431static void
2432bw_meter_process()
2433{
2434    static uint32_t last_tv_sec;	/* last time we processed this */
2435
2436    uint32_t loops;
2437    int i;
2438    struct timeval now, process_endtime;
2439
2440    GET_TIME(now);
2441    if (last_tv_sec == now.tv_sec)
2442	return;		/* nothing to do */
2443
2444    loops = now.tv_sec - last_tv_sec;
2445    last_tv_sec = now.tv_sec;
2446    if (loops > BW_METER_BUCKETS)
2447	loops = BW_METER_BUCKETS;
2448
2449    MFC_LOCK();
2450    /*
2451     * Process all bins of bw_meter entries from the one after the last
2452     * processed to the current one. On entry, i points to the last bucket
2453     * visited, so we need to increment i at the beginning of the loop.
2454     */
2455    for (i = (now.tv_sec - loops) % BW_METER_BUCKETS; loops > 0; loops--) {
2456	struct bw_meter *x, *tmp_list;
2457
2458	if (++i >= BW_METER_BUCKETS)
2459	    i = 0;
2460
2461	/* Disconnect the list of bw_meter entries from the bin */
2462	tmp_list = bw_meter_timers[i];
2463	bw_meter_timers[i] = NULL;
2464
2465	/* Process the list of bw_meter entries */
2466	while (tmp_list != NULL) {
2467	    x = tmp_list;
2468	    tmp_list = tmp_list->bm_time_next;
2469
2470	    /* Test if the time interval is over */
2471	    process_endtime = x->bm_start_time;
2472	    BW_TIMEVALADD(&process_endtime, &x->bm_threshold.b_time);
2473	    if (BW_TIMEVALCMP(&process_endtime, &now, >)) {
2474		/* Not yet: reschedule, but don't reset */
2475		int time_hash;
2476
2477		BW_METER_TIMEHASH(x, time_hash);
2478		if (time_hash == i && process_endtime.tv_sec == now.tv_sec) {
2479		    /*
2480		     * XXX: somehow the bin processing is a bit ahead of time.
2481		     * Put the entry in the next bin.
2482		     */
2483		    if (++time_hash >= BW_METER_BUCKETS)
2484			time_hash = 0;
2485		}
2486		x->bm_time_next = bw_meter_timers[time_hash];
2487		bw_meter_timers[time_hash] = x;
2488		x->bm_time_hash = time_hash;
2489
2490		continue;
2491	    }
2492
2493	    /*
2494	     * Test if we should deliver an upcall
2495	     */
2496	    if (((x->bm_flags & BW_METER_UNIT_PACKETS) &&
2497		 (x->bm_measured.b_packets <= x->bm_threshold.b_packets)) ||
2498		((x->bm_flags & BW_METER_UNIT_BYTES) &&
2499		 (x->bm_measured.b_bytes <= x->bm_threshold.b_bytes))) {
2500		/* Prepare an upcall for delivery */
2501		bw_meter_prepare_upcall(x, &now);
2502	    }
2503
2504	    /*
2505	     * Reschedule for next processing
2506	     */
2507	    schedule_bw_meter(x, &now);
2508	}
2509    }
2510
2511    /* Send all upcalls that are pending delivery */
2512    bw_upcalls_send();
2513
2514    MFC_UNLOCK();
2515}
2516
2517/*
2518 * A periodic function for sending all upcalls that are pending delivery
2519 */
2520static void
2521expire_bw_upcalls_send(void *unused)
2522{
2523    MFC_LOCK();
2524    bw_upcalls_send();
2525    MFC_UNLOCK();
2526
2527    callout_reset(&bw_upcalls_ch, BW_UPCALLS_PERIOD,
2528	expire_bw_upcalls_send, NULL);
2529}
2530
2531/*
2532 * A periodic function for periodic scanning of the multicast forwarding
2533 * table for processing all "<=" bw_meter entries.
2534 */
2535static void
2536expire_bw_meter_process(void *unused)
2537{
2538    if (mrt_api_config & MRT_MFC_BW_UPCALL)
2539	bw_meter_process();
2540
2541    callout_reset(&bw_meter_ch, BW_METER_PERIOD, expire_bw_meter_process, NULL);
2542}
2543
2544/*
2545 * End of bandwidth monitoring code
2546 */
2547
2548/*
2549 * Send the packet up to the user daemon, or eventually do kernel encapsulation
2550 *
2551 */
2552static int
2553pim_register_send(struct ip *ip, struct vif *vifp, struct mbuf *m,
2554    struct mfc *rt)
2555{
2556    struct mbuf *mb_copy, *mm;
2557
2558    if (mrtdebug & DEBUG_PIM)
2559	log(LOG_DEBUG, "pim_register_send: ");
2560
2561    /*
2562     * Do not send IGMP_WHOLEPKT notifications to userland, if the
2563     * rendezvous point was unspecified, and we were told not to.
2564     */
2565    if (pim_squelch_wholepkt != 0 && (mrt_api_config & MRT_MFC_RP) &&
2566	(rt->mfc_rp.s_addr == INADDR_ANY))
2567	return 0;
2568
2569    mb_copy = pim_register_prepare(ip, m);
2570    if (mb_copy == NULL)
2571	return ENOBUFS;
2572
2573    /*
2574     * Send all the fragments. Note that the mbuf for each fragment
2575     * is freed by the sending machinery.
2576     */
2577    for (mm = mb_copy; mm; mm = mb_copy) {
2578	mb_copy = mm->m_nextpkt;
2579	mm->m_nextpkt = 0;
2580	mm = m_pullup(mm, sizeof(struct ip));
2581	if (mm != NULL) {
2582	    ip = mtod(mm, struct ip *);
2583	    if ((mrt_api_config & MRT_MFC_RP) &&
2584		(rt->mfc_rp.s_addr != INADDR_ANY)) {
2585		pim_register_send_rp(ip, vifp, mm, rt);
2586	    } else {
2587		pim_register_send_upcall(ip, vifp, mm, rt);
2588	    }
2589	}
2590    }
2591
2592    return 0;
2593}
2594
2595/*
2596 * Return a copy of the data packet that is ready for PIM Register
2597 * encapsulation.
2598 * XXX: Note that in the returned copy the IP header is a valid one.
2599 */
2600static struct mbuf *
2601pim_register_prepare(struct ip *ip, struct mbuf *m)
2602{
2603    struct mbuf *mb_copy = NULL;
2604    int mtu;
2605
2606    /* Take care of delayed checksums */
2607    if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
2608	in_delayed_cksum(m);
2609	m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
2610    }
2611
2612    /*
2613     * Copy the old packet & pullup its IP header into the
2614     * new mbuf so we can modify it.
2615     */
2616    mb_copy = m_copypacket(m, M_DONTWAIT);
2617    if (mb_copy == NULL)
2618	return NULL;
2619    mb_copy = m_pullup(mb_copy, ip->ip_hl << 2);
2620    if (mb_copy == NULL)
2621	return NULL;
2622
2623    /* take care of the TTL */
2624    ip = mtod(mb_copy, struct ip *);
2625    --ip->ip_ttl;
2626
2627    /* Compute the MTU after the PIM Register encapsulation */
2628    mtu = 0xffff - sizeof(pim_encap_iphdr) - sizeof(pim_encap_pimhdr);
2629
2630    if (ip->ip_len <= mtu) {
2631	/* Turn the IP header into a valid one */
2632	ip->ip_len = htons(ip->ip_len);
2633	ip->ip_off = htons(ip->ip_off);
2634	ip->ip_sum = 0;
2635	ip->ip_sum = in_cksum(mb_copy, ip->ip_hl << 2);
2636    } else {
2637	/* Fragment the packet */
2638	if (ip_fragment(ip, &mb_copy, mtu, 0, CSUM_DELAY_IP) != 0) {
2639	    m_freem(mb_copy);
2640	    return NULL;
2641	}
2642    }
2643    return mb_copy;
2644}
2645
2646/*
2647 * Send an upcall with the data packet to the user-level process.
2648 */
2649static int
2650pim_register_send_upcall(struct ip *ip, struct vif *vifp,
2651    struct mbuf *mb_copy, struct mfc *rt)
2652{
2653    struct mbuf *mb_first;
2654    int len = ntohs(ip->ip_len);
2655    struct igmpmsg *im;
2656    struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
2657
2658    VIF_LOCK_ASSERT();
2659
2660    /*
2661     * Add a new mbuf with an upcall header
2662     */
2663    MGETHDR(mb_first, M_DONTWAIT, MT_DATA);
2664    if (mb_first == NULL) {
2665	m_freem(mb_copy);
2666	return ENOBUFS;
2667    }
2668    mb_first->m_data += max_linkhdr;
2669    mb_first->m_pkthdr.len = len + sizeof(struct igmpmsg);
2670    mb_first->m_len = sizeof(struct igmpmsg);
2671    mb_first->m_next = mb_copy;
2672
2673    /* Send message to routing daemon */
2674    im = mtod(mb_first, struct igmpmsg *);
2675    im->im_msgtype	= IGMPMSG_WHOLEPKT;
2676    im->im_mbz		= 0;
2677    im->im_vif		= vifp - viftable;
2678    im->im_src		= ip->ip_src;
2679    im->im_dst		= ip->ip_dst;
2680
2681    k_igmpsrc.sin_addr	= ip->ip_src;
2682
2683    mrtstat.mrts_upcalls++;
2684
2685    if (socket_send(ip_mrouter, mb_first, &k_igmpsrc) < 0) {
2686	if (mrtdebug & DEBUG_PIM)
2687	    log(LOG_WARNING,
2688		"mcast: pim_register_send_upcall: ip_mrouter socket queue full");
2689	++mrtstat.mrts_upq_sockfull;
2690	return ENOBUFS;
2691    }
2692
2693    /* Keep statistics */
2694    pimstat.pims_snd_registers_msgs++;
2695    pimstat.pims_snd_registers_bytes += len;
2696
2697    return 0;
2698}
2699
2700/*
2701 * Encapsulate the data packet in PIM Register message and send it to the RP.
2702 */
2703static int
2704pim_register_send_rp(struct ip *ip, struct vif *vifp, struct mbuf *mb_copy,
2705    struct mfc *rt)
2706{
2707    struct mbuf *mb_first;
2708    struct ip *ip_outer;
2709    struct pim_encap_pimhdr *pimhdr;
2710    int len = ntohs(ip->ip_len);
2711    vifi_t vifi = rt->mfc_parent;
2712
2713    VIF_LOCK_ASSERT();
2714
2715    if ((vifi >= numvifs) || (viftable[vifi].v_lcl_addr.s_addr == 0)) {
2716	m_freem(mb_copy);
2717	return EADDRNOTAVAIL;		/* The iif vif is invalid */
2718    }
2719
2720    /*
2721     * Add a new mbuf with the encapsulating header
2722     */
2723    MGETHDR(mb_first, M_DONTWAIT, MT_DATA);
2724    if (mb_first == NULL) {
2725	m_freem(mb_copy);
2726	return ENOBUFS;
2727    }
2728    mb_first->m_data += max_linkhdr;
2729    mb_first->m_len = sizeof(pim_encap_iphdr) + sizeof(pim_encap_pimhdr);
2730    mb_first->m_next = mb_copy;
2731
2732    mb_first->m_pkthdr.len = len + mb_first->m_len;
2733
2734    /*
2735     * Fill in the encapsulating IP and PIM header
2736     */
2737    ip_outer = mtod(mb_first, struct ip *);
2738    *ip_outer = pim_encap_iphdr;
2739    ip_outer->ip_id = ip_newid();
2740    ip_outer->ip_len = len + sizeof(pim_encap_iphdr) + sizeof(pim_encap_pimhdr);
2741    ip_outer->ip_src = viftable[vifi].v_lcl_addr;
2742    ip_outer->ip_dst = rt->mfc_rp;
2743    /*
2744     * Copy the inner header TOS to the outer header, and take care of the
2745     * IP_DF bit.
2746     */
2747    ip_outer->ip_tos = ip->ip_tos;
2748    if (ntohs(ip->ip_off) & IP_DF)
2749	ip_outer->ip_off |= IP_DF;
2750    pimhdr = (struct pim_encap_pimhdr *)((caddr_t)ip_outer
2751					 + sizeof(pim_encap_iphdr));
2752    *pimhdr = pim_encap_pimhdr;
2753    /* If the iif crosses a border, set the Border-bit */
2754    if (rt->mfc_flags[vifi] & MRT_MFC_FLAGS_BORDER_VIF & mrt_api_config)
2755	pimhdr->flags |= htonl(PIM_BORDER_REGISTER);
2756
2757    mb_first->m_data += sizeof(pim_encap_iphdr);
2758    pimhdr->pim.pim_cksum = in_cksum(mb_first, sizeof(pim_encap_pimhdr));
2759    mb_first->m_data -= sizeof(pim_encap_iphdr);
2760
2761    send_packet(vifp, mb_first);
2762
2763    /* Keep statistics */
2764    pimstat.pims_snd_registers_msgs++;
2765    pimstat.pims_snd_registers_bytes += len;
2766
2767    return 0;
2768}
2769
2770/*
2771 * pim_encapcheck() is called by the encap[46]_input() path at runtime to
2772 * determine if a packet is for PIM; allowing PIM to be dynamically loaded
2773 * into the kernel.
2774 */
2775static int
2776pim_encapcheck(const struct mbuf *m, int off, int proto, void *arg)
2777{
2778
2779#ifdef DIAGNOSTIC
2780    KASSERT(proto == IPPROTO_PIM, ("not for IPPROTO_PIM"));
2781#endif
2782    if (proto != IPPROTO_PIM)
2783	return 0;	/* not for us; reject the datagram. */
2784
2785    return 64;		/* claim the datagram. */
2786}
2787
2788/*
2789 * PIM-SMv2 and PIM-DM messages processing.
2790 * Receives and verifies the PIM control messages, and passes them
2791 * up to the listening socket, using rip_input().
2792 * The only message with special processing is the PIM_REGISTER message
2793 * (used by PIM-SM): the PIM header is stripped off, and the inner packet
2794 * is passed to if_simloop().
2795 */
2796void
2797pim_input(struct mbuf *m, int off)
2798{
2799    struct ip *ip = mtod(m, struct ip *);
2800    struct pim *pim;
2801    int minlen;
2802    int datalen = ip->ip_len;
2803    int ip_tos;
2804    int iphlen = off;
2805
2806    /* Keep statistics */
2807    pimstat.pims_rcv_total_msgs++;
2808    pimstat.pims_rcv_total_bytes += datalen;
2809
2810    /*
2811     * Validate lengths
2812     */
2813    if (datalen < PIM_MINLEN) {
2814	pimstat.pims_rcv_tooshort++;
2815	log(LOG_ERR, "pim_input: packet size too small %d from %lx\n",
2816	    datalen, (u_long)ip->ip_src.s_addr);
2817	m_freem(m);
2818	return;
2819    }
2820
2821    /*
2822     * If the packet is at least as big as a REGISTER, go agead
2823     * and grab the PIM REGISTER header size, to avoid another
2824     * possible m_pullup() later.
2825     *
2826     * PIM_MINLEN       == pimhdr + u_int32_t == 4 + 4 = 8
2827     * PIM_REG_MINLEN   == pimhdr + reghdr + encap_iphdr == 4 + 4 + 20 = 28
2828     */
2829    minlen = iphlen + (datalen >= PIM_REG_MINLEN ? PIM_REG_MINLEN : PIM_MINLEN);
2830    /*
2831     * Get the IP and PIM headers in contiguous memory, and
2832     * possibly the PIM REGISTER header.
2833     */
2834    if ((m->m_flags & M_EXT || m->m_len < minlen) &&
2835	(m = m_pullup(m, minlen)) == 0) {
2836	log(LOG_ERR, "pim_input: m_pullup failure\n");
2837	return;
2838    }
2839    /* m_pullup() may have given us a new mbuf so reset ip. */
2840    ip = mtod(m, struct ip *);
2841    ip_tos = ip->ip_tos;
2842
2843    /* adjust mbuf to point to the PIM header */
2844    m->m_data += iphlen;
2845    m->m_len  -= iphlen;
2846    pim = mtod(m, struct pim *);
2847
2848    /*
2849     * Validate checksum. If PIM REGISTER, exclude the data packet.
2850     *
2851     * XXX: some older PIMv2 implementations don't make this distinction,
2852     * so for compatibility reason perform the checksum over part of the
2853     * message, and if error, then over the whole message.
2854     */
2855    if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER && in_cksum(m, PIM_MINLEN) == 0) {
2856	/* do nothing, checksum okay */
2857    } else if (in_cksum(m, datalen)) {
2858	pimstat.pims_rcv_badsum++;
2859	if (mrtdebug & DEBUG_PIM)
2860	    log(LOG_DEBUG, "pim_input: invalid checksum");
2861	m_freem(m);
2862	return;
2863    }
2864
2865    /* PIM version check */
2866    if (PIM_VT_V(pim->pim_vt) < PIM_VERSION) {
2867	pimstat.pims_rcv_badversion++;
2868	log(LOG_ERR, "pim_input: incorrect version %d, expecting %d\n",
2869	    PIM_VT_V(pim->pim_vt), PIM_VERSION);
2870	m_freem(m);
2871	return;
2872    }
2873
2874    /* restore mbuf back to the outer IP */
2875    m->m_data -= iphlen;
2876    m->m_len  += iphlen;
2877
2878    if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER) {
2879	/*
2880	 * Since this is a REGISTER, we'll make a copy of the register
2881	 * headers ip + pim + u_int32 + encap_ip, to be passed up to the
2882	 * routing daemon.
2883	 */
2884	struct sockaddr_in dst = { sizeof(dst), AF_INET };
2885	struct mbuf *mcp;
2886	struct ip *encap_ip;
2887	u_int32_t *reghdr;
2888	struct ifnet *vifp;
2889
2890	VIF_LOCK();
2891	if ((reg_vif_num >= numvifs) || (reg_vif_num == VIFI_INVALID)) {
2892	    VIF_UNLOCK();
2893	    if (mrtdebug & DEBUG_PIM)
2894		log(LOG_DEBUG,
2895		    "pim_input: register vif not set: %d\n", reg_vif_num);
2896	    m_freem(m);
2897	    return;
2898	}
2899	/* XXX need refcnt? */
2900	vifp = viftable[reg_vif_num].v_ifp;
2901	VIF_UNLOCK();
2902
2903	/*
2904	 * Validate length
2905	 */
2906	if (datalen < PIM_REG_MINLEN) {
2907	    pimstat.pims_rcv_tooshort++;
2908	    pimstat.pims_rcv_badregisters++;
2909	    log(LOG_ERR,
2910		"pim_input: register packet size too small %d from %lx\n",
2911		datalen, (u_long)ip->ip_src.s_addr);
2912	    m_freem(m);
2913	    return;
2914	}
2915
2916	reghdr = (u_int32_t *)(pim + 1);
2917	encap_ip = (struct ip *)(reghdr + 1);
2918
2919	if (mrtdebug & DEBUG_PIM) {
2920	    log(LOG_DEBUG,
2921		"pim_input[register], encap_ip: %lx -> %lx, encap_ip len %d\n",
2922		(u_long)ntohl(encap_ip->ip_src.s_addr),
2923		(u_long)ntohl(encap_ip->ip_dst.s_addr),
2924		ntohs(encap_ip->ip_len));
2925	}
2926
2927	/* verify the version number of the inner packet */
2928	if (encap_ip->ip_v != IPVERSION) {
2929	    pimstat.pims_rcv_badregisters++;
2930	    if (mrtdebug & DEBUG_PIM) {
2931		log(LOG_DEBUG, "pim_input: invalid IP version (%d) "
2932		    "of the inner packet\n", encap_ip->ip_v);
2933	    }
2934	    m_freem(m);
2935	    return;
2936	}
2937
2938	/* verify the inner packet is destined to a mcast group */
2939	if (!IN_MULTICAST(ntohl(encap_ip->ip_dst.s_addr))) {
2940	    pimstat.pims_rcv_badregisters++;
2941	    if (mrtdebug & DEBUG_PIM)
2942		log(LOG_DEBUG,
2943		    "pim_input: inner packet of register is not "
2944		    "multicast %lx\n",
2945		    (u_long)ntohl(encap_ip->ip_dst.s_addr));
2946	    m_freem(m);
2947	    return;
2948	}
2949
2950	/* If a NULL_REGISTER, pass it to the daemon */
2951	if ((ntohl(*reghdr) & PIM_NULL_REGISTER))
2952	    goto pim_input_to_daemon;
2953
2954	/*
2955	 * Copy the TOS from the outer IP header to the inner IP header.
2956	 */
2957	if (encap_ip->ip_tos != ip_tos) {
2958	    /* Outer TOS -> inner TOS */
2959	    encap_ip->ip_tos = ip_tos;
2960	    /* Recompute the inner header checksum. Sigh... */
2961
2962	    /* adjust mbuf to point to the inner IP header */
2963	    m->m_data += (iphlen + PIM_MINLEN);
2964	    m->m_len  -= (iphlen + PIM_MINLEN);
2965
2966	    encap_ip->ip_sum = 0;
2967	    encap_ip->ip_sum = in_cksum(m, encap_ip->ip_hl << 2);
2968
2969	    /* restore mbuf to point back to the outer IP header */
2970	    m->m_data -= (iphlen + PIM_MINLEN);
2971	    m->m_len  += (iphlen + PIM_MINLEN);
2972	}
2973
2974	/*
2975	 * Decapsulate the inner IP packet and loopback to forward it
2976	 * as a normal multicast packet. Also, make a copy of the
2977	 *     outer_iphdr + pimhdr + reghdr + encap_iphdr
2978	 * to pass to the daemon later, so it can take the appropriate
2979	 * actions (e.g., send back PIM_REGISTER_STOP).
2980	 * XXX: here m->m_data points to the outer IP header.
2981	 */
2982	mcp = m_copy(m, 0, iphlen + PIM_REG_MINLEN);
2983	if (mcp == NULL) {
2984	    log(LOG_ERR,
2985		"pim_input: pim register: could not copy register head\n");
2986	    m_freem(m);
2987	    return;
2988	}
2989
2990	/* Keep statistics */
2991	/* XXX: registers_bytes include only the encap. mcast pkt */
2992	pimstat.pims_rcv_registers_msgs++;
2993	pimstat.pims_rcv_registers_bytes += ntohs(encap_ip->ip_len);
2994
2995	/*
2996	 * forward the inner ip packet; point m_data at the inner ip.
2997	 */
2998	m_adj(m, iphlen + PIM_MINLEN);
2999
3000	if (mrtdebug & DEBUG_PIM) {
3001	    log(LOG_DEBUG,
3002		"pim_input: forwarding decapsulated register: "
3003		"src %lx, dst %lx, vif %d\n",
3004		(u_long)ntohl(encap_ip->ip_src.s_addr),
3005		(u_long)ntohl(encap_ip->ip_dst.s_addr),
3006		reg_vif_num);
3007	}
3008	/* NB: vifp was collected above; can it change on us? */
3009	if_simloop(vifp, m, dst.sin_family, 0);
3010
3011	/* prepare the register head to send to the mrouting daemon */
3012	m = mcp;
3013    }
3014
3015pim_input_to_daemon:
3016    /*
3017     * Pass the PIM message up to the daemon; if it is a Register message,
3018     * pass the 'head' only up to the daemon. This includes the
3019     * outer IP header, PIM header, PIM-Register header and the
3020     * inner IP header.
3021     * XXX: the outer IP header pkt size of a Register is not adjust to
3022     * reflect the fact that the inner multicast data is truncated.
3023     */
3024    rip_input(m, iphlen);
3025
3026    return;
3027}
3028
3029/*
3030 * XXX: This is common code for dealing with initialization for both
3031 * the IPv4 and IPv6 multicast forwarding paths. It could do with cleanup.
3032 */
3033static int
3034ip_mroute_modevent(module_t mod, int type, void *unused)
3035{
3036    switch (type) {
3037    case MOD_LOAD:
3038	MROUTER_LOCK_INIT();
3039	MFC_LOCK_INIT();
3040	VIF_LOCK_INIT();
3041	ip_mrouter_reset();
3042	TUNABLE_ULONG_FETCH("net.inet.pim.squelch_wholepkt",
3043	    &pim_squelch_wholepkt);
3044
3045	pim_encap_cookie = encap_attach_func(AF_INET, IPPROTO_PIM,
3046	    pim_encapcheck, &in_pim_protosw, NULL);
3047	if (pim_encap_cookie == NULL) {
3048		printf("ip_mroute: unable to attach pim encap\n");
3049		VIF_LOCK_DESTROY();
3050		MFC_LOCK_DESTROY();
3051		MROUTER_LOCK_DESTROY();
3052		return (EINVAL);
3053	}
3054
3055#ifdef INET6
3056	pim6_encap_cookie = encap_attach_func(AF_INET6, IPPROTO_PIM,
3057	    pim_encapcheck, (struct protosw *)&in6_pim_protosw, NULL);
3058	if (pim6_encap_cookie == NULL) {
3059		printf("ip_mroute: unable to attach pim6 encap\n");
3060		if (pim_encap_cookie) {
3061		    encap_detach(pim_encap_cookie);
3062		    pim_encap_cookie = NULL;
3063		}
3064		VIF_LOCK_DESTROY();
3065		MFC_LOCK_DESTROY();
3066		MROUTER_LOCK_DESTROY();
3067		return (EINVAL);
3068	}
3069#endif
3070
3071	ip_mcast_src = X_ip_mcast_src;
3072	ip_mforward = X_ip_mforward;
3073	ip_mrouter_done = X_ip_mrouter_done;
3074	ip_mrouter_get = X_ip_mrouter_get;
3075	ip_mrouter_set = X_ip_mrouter_set;
3076
3077#ifdef INET6
3078	ip6_mforward = X_ip6_mforward;
3079	ip6_mrouter_done = X_ip6_mrouter_done;
3080	ip6_mrouter_get = X_ip6_mrouter_get;
3081	ip6_mrouter_set = X_ip6_mrouter_set;
3082	mrt6_ioctl = X_mrt6_ioctl;
3083#endif
3084
3085	ip_rsvp_force_done = X_ip_rsvp_force_done;
3086	ip_rsvp_vif = X_ip_rsvp_vif;
3087
3088	legal_vif_num = X_legal_vif_num;
3089	mrt_ioctl = X_mrt_ioctl;
3090	rsvp_input_p = X_rsvp_input;
3091	break;
3092
3093    case MOD_UNLOAD:
3094	/*
3095	 * Typically module unload happens after the user-level
3096	 * process has shutdown the kernel services (the check
3097	 * below insures someone can't just yank the module out
3098	 * from under a running process).  But if the module is
3099	 * just loaded and then unloaded w/o starting up a user
3100	 * process we still need to cleanup.
3101	 */
3102	if (ip_mrouter
3103#ifdef INET6
3104	    || ip6_mrouter
3105#endif
3106	)
3107	    return EINVAL;
3108
3109#ifdef INET6
3110	if (pim6_encap_cookie) {
3111	    encap_detach(pim6_encap_cookie);
3112	    pim6_encap_cookie = NULL;
3113	}
3114	X_ip6_mrouter_done();
3115	ip6_mforward = NULL;
3116	ip6_mrouter_done = NULL;
3117	ip6_mrouter_get = NULL;
3118	ip6_mrouter_set = NULL;
3119	mrt6_ioctl = NULL;
3120#endif
3121
3122	if (pim_encap_cookie) {
3123	    encap_detach(pim_encap_cookie);
3124	    pim_encap_cookie = NULL;
3125	}
3126	X_ip_mrouter_done();
3127	ip_mcast_src = NULL;
3128	ip_mforward = NULL;
3129	ip_mrouter_done = NULL;
3130	ip_mrouter_get = NULL;
3131	ip_mrouter_set = NULL;
3132
3133	ip_rsvp_force_done = NULL;
3134	ip_rsvp_vif = NULL;
3135
3136	legal_vif_num = NULL;
3137	mrt_ioctl = NULL;
3138	rsvp_input_p = NULL;
3139
3140	VIF_LOCK_DESTROY();
3141	MFC_LOCK_DESTROY();
3142	MROUTER_LOCK_DESTROY();
3143	break;
3144
3145    default:
3146	return EOPNOTSUPP;
3147    }
3148    return 0;
3149}
3150
3151static moduledata_t ip_mroutemod = {
3152    "ip_mroute",
3153    ip_mroute_modevent,
3154    0
3155};
3156DECLARE_MODULE(ip_mroute, ip_mroutemod, SI_SUB_PSEUDO, SI_ORDER_ANY);
3157