ip_mroute.c revision 166938
1/*-
2 * Copyright (c) 1989 Stephen Deering
3 * Copyright (c) 1992, 1993
4 *      The Regents of the University of California.  All rights reserved.
5 *
6 * This code is derived from software contributed to Berkeley by
7 * Stephen Deering of Stanford University.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in the
16 *    documentation and/or other materials provided with the distribution.
17 * 4. Neither the name of the University nor the names of its contributors
18 *    may be used to endorse or promote products derived from this software
19 *    without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 *
33 *      @(#)ip_mroute.c 8.2 (Berkeley) 11/15/93
34 */
35
36/*
37 * IP multicast forwarding procedures
38 *
39 * Written by David Waitzman, BBN Labs, August 1988.
40 * Modified by Steve Deering, Stanford, February 1989.
41 * Modified by Mark J. Steiglitz, Stanford, May, 1991
42 * Modified by Van Jacobson, LBL, January 1993
43 * Modified by Ajit Thyagarajan, PARC, August 1993
44 * Modified by Bill Fenner, PARC, April 1995
45 * Modified by Ahmed Helmy, SGI, June 1996
46 * Modified by George Edmond Eddy (Rusty), ISI, February 1998
47 * Modified by Pavlin Radoslavov, USC/ISI, May 1998, August 1999, October 2000
48 * Modified by Hitoshi Asaeda, WIDE, August 2000
49 * Modified by Pavlin Radoslavov, ICSI, October 2002
50 *
51 * MROUTING Revision: 3.5
52 * and PIM-SMv2 and PIM-DM support, advanced API support,
53 * bandwidth metering and signaling
54 *
55 * $FreeBSD: head/sys/netinet/ip_mroute.c 166938 2007-02-24 11:38:47Z bms $
56 */
57
58#include "opt_inet.h"
59#include "opt_inet6.h"
60#include "opt_mac.h"
61#include "opt_mrouting.h"
62
63#define _PIM_VT 1
64
65#include <sys/param.h>
66#include <sys/kernel.h>
67#include <sys/lock.h>
68#include <sys/malloc.h>
69#include <sys/mbuf.h>
70#include <sys/module.h>
71#include <sys/priv.h>
72#include <sys/protosw.h>
73#include <sys/signalvar.h>
74#include <sys/socket.h>
75#include <sys/socketvar.h>
76#include <sys/sockio.h>
77#include <sys/sx.h>
78#include <sys/sysctl.h>
79#include <sys/syslog.h>
80#include <sys/systm.h>
81#include <sys/time.h>
82#include <net/if.h>
83#include <net/netisr.h>
84#include <net/route.h>
85#include <netinet/in.h>
86#include <netinet/igmp.h>
87#include <netinet/in_systm.h>
88#include <netinet/in_var.h>
89#include <netinet/ip.h>
90#include <netinet/ip_encap.h>
91#include <netinet/ip_mroute.h>
92#include <netinet/ip_var.h>
93#include <netinet/ip_options.h>
94#include <netinet/pim.h>
95#include <netinet/pim_var.h>
96#include <netinet/udp.h>
97#ifdef INET6
98#include <netinet/ip6.h>
99#include <netinet6/in6_var.h>
100#include <netinet6/ip6_mroute.h>
101#include <netinet6/ip6_var.h>
102#endif
103#include <machine/in_cksum.h>
104
105#include <security/mac/mac_framework.h>
106
107/*
108 * Control debugging code for rsvp and multicast routing code.
109 * Can only set them with the debugger.
110 */
111static u_int    rsvpdebug;		/* non-zero enables debugging	*/
112
113static u_int	mrtdebug;		/* any set of the flags below	*/
114#define		DEBUG_MFC	0x02
115#define		DEBUG_FORWARD	0x04
116#define		DEBUG_EXPIRE	0x08
117#define		DEBUG_XMIT	0x10
118#define		DEBUG_PIM	0x20
119
120#define		VIFI_INVALID	((vifi_t) -1)
121
122#define M_HASCL(m)	((m)->m_flags & M_EXT)
123
124static MALLOC_DEFINE(M_MRTABLE, "mroutetbl", "multicast routing tables");
125
126/*
127 * Locking.  We use two locks: one for the virtual interface table and
128 * one for the forwarding table.  These locks may be nested in which case
129 * the VIF lock must always be taken first.  Note that each lock is used
130 * to cover not only the specific data structure but also related data
131 * structures.  It may be better to add more fine-grained locking later;
132 * it's not clear how performance-critical this code is.
133 *
134 * XXX: This module could particularly benefit from being cleaned
135 *      up to use the <sys/queue.h> macros.
136 *
137 */
138
139static struct mrtstat	mrtstat;
140SYSCTL_STRUCT(_net_inet_ip, OID_AUTO, mrtstat, CTLFLAG_RW,
141    &mrtstat, mrtstat,
142    "Multicast Routing Statistics (struct mrtstat, netinet/ip_mroute.h)");
143
144static struct mfc	*mfctable[MFCTBLSIZ];
145SYSCTL_OPAQUE(_net_inet_ip, OID_AUTO, mfctable, CTLFLAG_RD,
146    &mfctable, sizeof(mfctable), "S,*mfc[MFCTBLSIZ]",
147    "Multicast Forwarding Table (struct *mfc[MFCTBLSIZ], netinet/ip_mroute.h)");
148
149static struct mtx mfc_mtx;
150#define	MFC_LOCK()	mtx_lock(&mfc_mtx)
151#define	MFC_UNLOCK()	mtx_unlock(&mfc_mtx)
152#define	MFC_LOCK_ASSERT()	do {					\
153	mtx_assert(&mfc_mtx, MA_OWNED);					\
154	NET_ASSERT_GIANT();						\
155} while (0)
156#define	MFC_LOCK_INIT()	mtx_init(&mfc_mtx, "mroute mfc table", NULL, MTX_DEF)
157#define	MFC_LOCK_DESTROY()	mtx_destroy(&mfc_mtx)
158
159static struct vif	viftable[MAXVIFS];
160SYSCTL_OPAQUE(_net_inet_ip, OID_AUTO, viftable, CTLFLAG_RD,
161    &viftable, sizeof(viftable), "S,vif[MAXVIFS]",
162    "Multicast Virtual Interfaces (struct vif[MAXVIFS], netinet/ip_mroute.h)");
163
164static struct mtx vif_mtx;
165#define	VIF_LOCK()	mtx_lock(&vif_mtx)
166#define	VIF_UNLOCK()	mtx_unlock(&vif_mtx)
167#define	VIF_LOCK_ASSERT()	mtx_assert(&vif_mtx, MA_OWNED)
168#define	VIF_LOCK_INIT()	mtx_init(&vif_mtx, "mroute vif table", NULL, MTX_DEF)
169#define	VIF_LOCK_DESTROY()	mtx_destroy(&vif_mtx)
170
171static u_char		nexpire[MFCTBLSIZ];
172
173static eventhandler_tag if_detach_event_tag = NULL;
174
175static struct callout expire_upcalls_ch;
176
177#define		EXPIRE_TIMEOUT	(hz / 4)	/* 4x / second		*/
178#define		UPCALL_EXPIRE	6		/* number of timeouts	*/
179
180#define ENCAP_TTL 64
181
182/*
183 * Bandwidth meter variables and constants
184 */
185static MALLOC_DEFINE(M_BWMETER, "bwmeter", "multicast upcall bw meters");
186/*
187 * Pending timeouts are stored in a hash table, the key being the
188 * expiration time. Periodically, the entries are analysed and processed.
189 */
190#define BW_METER_BUCKETS	1024
191static struct bw_meter *bw_meter_timers[BW_METER_BUCKETS];
192static struct callout bw_meter_ch;
193#define BW_METER_PERIOD (hz)		/* periodical handling of bw meters */
194
195/*
196 * Pending upcalls are stored in a vector which is flushed when
197 * full, or periodically
198 */
199static struct bw_upcall	bw_upcalls[BW_UPCALLS_MAX];
200static u_int	bw_upcalls_n; /* # of pending upcalls */
201static struct callout bw_upcalls_ch;
202#define BW_UPCALLS_PERIOD (hz)		/* periodical flush of bw upcalls */
203
204static struct pimstat pimstat;
205
206SYSCTL_NODE(_net_inet, IPPROTO_PIM, pim, CTLFLAG_RW, 0, "PIM");
207SYSCTL_STRUCT(_net_inet_pim, PIMCTL_STATS, stats, CTLFLAG_RD,
208    &pimstat, pimstat,
209    "PIM Statistics (struct pimstat, netinet/pim_var.h)");
210
211static u_long	pim_squelch_wholepkt = 0;
212SYSCTL_ULONG(_net_inet_pim, OID_AUTO, squelch_wholepkt, CTLFLAG_RW,
213    &pim_squelch_wholepkt, 0,
214    "Disable IGMP_WHOLEPKT notifications if rendezvous point is unspecified");
215
216extern  struct domain inetdomain;
217struct protosw in_pim_protosw = {
218	.pr_type =		SOCK_RAW,
219	.pr_domain =		&inetdomain,
220	.pr_protocol =		IPPROTO_PIM,
221	.pr_flags =		PR_ATOMIC|PR_ADDR|PR_LASTHDR,
222	.pr_input =		pim_input,
223	.pr_output =		(pr_output_t*)rip_output,
224	.pr_ctloutput =		rip_ctloutput,
225	.pr_usrreqs =		&rip_usrreqs
226};
227static const struct encaptab *pim_encap_cookie;
228
229#ifdef INET6
230/* ip6_mroute.c glue */
231extern struct in6_protosw in6_pim_protosw;
232static const struct encaptab *pim6_encap_cookie;
233
234extern int X_ip6_mrouter_set(struct socket *, struct sockopt *);
235extern int X_ip6_mrouter_get(struct socket *, struct sockopt *);
236extern int X_ip6_mrouter_done(void);
237extern int X_ip6_mforward(struct ip6_hdr *, struct ifnet *, struct mbuf *);
238extern int X_mrt6_ioctl(int, caddr_t);
239#endif
240
241static int pim_encapcheck(const struct mbuf *, int, int, void *);
242
243/*
244 * Note: the PIM Register encapsulation adds the following in front of a
245 * data packet:
246 *
247 * struct pim_encap_hdr {
248 *    struct ip ip;
249 *    struct pim_encap_pimhdr  pim;
250 * }
251 *
252 */
253
254struct pim_encap_pimhdr {
255	struct pim pim;
256	uint32_t   flags;
257};
258
259static struct ip pim_encap_iphdr = {
260#if BYTE_ORDER == LITTLE_ENDIAN
261	sizeof(struct ip) >> 2,
262	IPVERSION,
263#else
264	IPVERSION,
265	sizeof(struct ip) >> 2,
266#endif
267	0,			/* tos */
268	sizeof(struct ip),	/* total length */
269	0,			/* id */
270	0,			/* frag offset */
271	ENCAP_TTL,
272	IPPROTO_PIM,
273	0,			/* checksum */
274};
275
276static struct pim_encap_pimhdr pim_encap_pimhdr = {
277    {
278	PIM_MAKE_VT(PIM_VERSION, PIM_REGISTER), /* PIM vers and message type */
279	0,			/* reserved */
280	0,			/* checksum */
281    },
282    0				/* flags */
283};
284
285static struct ifnet multicast_register_if;
286static vifi_t reg_vif_num = VIFI_INVALID;
287
288/*
289 * Private variables.
290 */
291static vifi_t	   numvifs;
292
293static u_long	X_ip_mcast_src(int vifi);
294static int	X_ip_mforward(struct ip *ip, struct ifnet *ifp,
295			struct mbuf *m, struct ip_moptions *imo);
296static int	X_ip_mrouter_done(void);
297static int	X_ip_mrouter_get(struct socket *so, struct sockopt *m);
298static int	X_ip_mrouter_set(struct socket *so, struct sockopt *m);
299static int	X_legal_vif_num(int vif);
300static int	X_mrt_ioctl(int cmd, caddr_t data);
301
302static int get_sg_cnt(struct sioc_sg_req *);
303static int get_vif_cnt(struct sioc_vif_req *);
304static void if_detached_event(void *arg __unused, struct ifnet *);
305static int ip_mrouter_init(struct socket *, int);
306static int add_vif(struct vifctl *);
307static int del_vif_locked(vifi_t);
308static int del_vif(vifi_t);
309static int add_mfc(struct mfcctl2 *);
310static int del_mfc(struct mfcctl2 *);
311static int set_api_config(uint32_t *); /* chose API capabilities */
312static int socket_send(struct socket *, struct mbuf *, struct sockaddr_in *);
313static int set_assert(int);
314static void expire_upcalls(void *);
315static int ip_mdq(struct mbuf *, struct ifnet *, struct mfc *, vifi_t);
316static void phyint_send(struct ip *, struct vif *, struct mbuf *);
317static void send_packet(struct vif *, struct mbuf *);
318
319/*
320 * Bandwidth monitoring
321 */
322static void free_bw_list(struct bw_meter *list);
323static int add_bw_upcall(struct bw_upcall *);
324static int del_bw_upcall(struct bw_upcall *);
325static void bw_meter_receive_packet(struct bw_meter *x, int plen,
326		struct timeval *nowp);
327static void bw_meter_prepare_upcall(struct bw_meter *x, struct timeval *nowp);
328static void bw_upcalls_send(void);
329static void schedule_bw_meter(struct bw_meter *x, struct timeval *nowp);
330static void unschedule_bw_meter(struct bw_meter *x);
331static void bw_meter_process(void);
332static void expire_bw_upcalls_send(void *);
333static void expire_bw_meter_process(void *);
334
335static int pim_register_send(struct ip *, struct vif *,
336		struct mbuf *, struct mfc *);
337static int pim_register_send_rp(struct ip *, struct vif *,
338		struct mbuf *, struct mfc *);
339static int pim_register_send_upcall(struct ip *, struct vif *,
340		struct mbuf *, struct mfc *);
341static struct mbuf *pim_register_prepare(struct ip *, struct mbuf *);
342
343/*
344 * whether or not special PIM assert processing is enabled.
345 */
346static int pim_assert;
347/*
348 * Rate limit for assert notification messages, in usec
349 */
350#define ASSERT_MSG_TIME		3000000
351
352/*
353 * Kernel multicast routing API capabilities and setup.
354 * If more API capabilities are added to the kernel, they should be
355 * recorded in `mrt_api_support'.
356 */
357static const uint32_t mrt_api_support = (MRT_MFC_FLAGS_DISABLE_WRONGVIF |
358					 MRT_MFC_FLAGS_BORDER_VIF |
359					 MRT_MFC_RP |
360					 MRT_MFC_BW_UPCALL);
361static uint32_t mrt_api_config = 0;
362
363/*
364 * Hash function for a source, group entry
365 */
366#define MFCHASH(a, g) MFCHASHMOD(((a) >> 20) ^ ((a) >> 10) ^ (a) ^ \
367			((g) >> 20) ^ ((g) >> 10) ^ (g))
368
369/*
370 * Find a route for a given origin IP address and Multicast group address
371 * Type of service parameter to be added in the future!!!
372 * Statistics are updated by the caller if needed
373 * (mrtstat.mrts_mfc_lookups and mrtstat.mrts_mfc_misses)
374 */
375static struct mfc *
376mfc_find(in_addr_t o, in_addr_t g)
377{
378    struct mfc *rt;
379
380    MFC_LOCK_ASSERT();
381
382    for (rt = mfctable[MFCHASH(o,g)]; rt; rt = rt->mfc_next)
383	if ((rt->mfc_origin.s_addr == o) &&
384		(rt->mfc_mcastgrp.s_addr == g) && (rt->mfc_stall == NULL))
385	    break;
386    return rt;
387}
388
389/*
390 * Macros to compute elapsed time efficiently
391 * Borrowed from Van Jacobson's scheduling code
392 */
393#define TV_DELTA(a, b, delta) {					\
394	int xxs;						\
395	delta = (a).tv_usec - (b).tv_usec;			\
396	if ((xxs = (a).tv_sec - (b).tv_sec)) {			\
397		switch (xxs) {					\
398		case 2:						\
399		      delta += 1000000;				\
400		      /* FALLTHROUGH */				\
401		case 1:						\
402		      delta += 1000000;				\
403		      break;					\
404		default:					\
405		      delta += (1000000 * xxs);			\
406		}						\
407	}							\
408}
409
410#define TV_LT(a, b) (((a).tv_usec < (b).tv_usec && \
411	      (a).tv_sec <= (b).tv_sec) || (a).tv_sec < (b).tv_sec)
412
413/*
414 * Handle MRT setsockopt commands to modify the multicast routing tables.
415 */
416static int
417X_ip_mrouter_set(struct socket *so, struct sockopt *sopt)
418{
419    int	error, optval;
420    vifi_t	vifi;
421    struct	vifctl vifc;
422    struct	mfcctl2 mfc;
423    struct	bw_upcall bw_upcall;
424    uint32_t	i;
425
426    if (so != ip_mrouter && sopt->sopt_name != MRT_INIT)
427	return EPERM;
428
429    error = 0;
430    switch (sopt->sopt_name) {
431    case MRT_INIT:
432	error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval);
433	if (error)
434	    break;
435	error = ip_mrouter_init(so, optval);
436	break;
437
438    case MRT_DONE:
439	error = ip_mrouter_done();
440	break;
441
442    case MRT_ADD_VIF:
443	error = sooptcopyin(sopt, &vifc, sizeof vifc, sizeof vifc);
444	if (error)
445	    break;
446	error = add_vif(&vifc);
447	break;
448
449    case MRT_DEL_VIF:
450	error = sooptcopyin(sopt, &vifi, sizeof vifi, sizeof vifi);
451	if (error)
452	    break;
453	error = del_vif(vifi);
454	break;
455
456    case MRT_ADD_MFC:
457    case MRT_DEL_MFC:
458	/*
459	 * select data size depending on API version.
460	 */
461	if (sopt->sopt_name == MRT_ADD_MFC &&
462		mrt_api_config & MRT_API_FLAGS_ALL) {
463	    error = sooptcopyin(sopt, &mfc, sizeof(struct mfcctl2),
464				sizeof(struct mfcctl2));
465	} else {
466	    error = sooptcopyin(sopt, &mfc, sizeof(struct mfcctl),
467				sizeof(struct mfcctl));
468	    bzero((caddr_t)&mfc + sizeof(struct mfcctl),
469			sizeof(mfc) - sizeof(struct mfcctl));
470	}
471	if (error)
472	    break;
473	if (sopt->sopt_name == MRT_ADD_MFC)
474	    error = add_mfc(&mfc);
475	else
476	    error = del_mfc(&mfc);
477	break;
478
479    case MRT_ASSERT:
480	error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval);
481	if (error)
482	    break;
483	set_assert(optval);
484	break;
485
486    case MRT_API_CONFIG:
487	error = sooptcopyin(sopt, &i, sizeof i, sizeof i);
488	if (!error)
489	    error = set_api_config(&i);
490	if (!error)
491	    error = sooptcopyout(sopt, &i, sizeof i);
492	break;
493
494    case MRT_ADD_BW_UPCALL:
495    case MRT_DEL_BW_UPCALL:
496	error = sooptcopyin(sopt, &bw_upcall, sizeof bw_upcall,
497				sizeof bw_upcall);
498	if (error)
499	    break;
500	if (sopt->sopt_name == MRT_ADD_BW_UPCALL)
501	    error = add_bw_upcall(&bw_upcall);
502	else
503	    error = del_bw_upcall(&bw_upcall);
504	break;
505
506    default:
507	error = EOPNOTSUPP;
508	break;
509    }
510    return error;
511}
512
513/*
514 * Handle MRT getsockopt commands
515 */
516static int
517X_ip_mrouter_get(struct socket *so, struct sockopt *sopt)
518{
519    int error;
520    static int version = 0x0305; /* !!! why is this here? XXX */
521
522    switch (sopt->sopt_name) {
523    case MRT_VERSION:
524	error = sooptcopyout(sopt, &version, sizeof version);
525	break;
526
527    case MRT_ASSERT:
528	error = sooptcopyout(sopt, &pim_assert, sizeof pim_assert);
529	break;
530
531    case MRT_API_SUPPORT:
532	error = sooptcopyout(sopt, &mrt_api_support, sizeof mrt_api_support);
533	break;
534
535    case MRT_API_CONFIG:
536	error = sooptcopyout(sopt, &mrt_api_config, sizeof mrt_api_config);
537	break;
538
539    default:
540	error = EOPNOTSUPP;
541	break;
542    }
543    return error;
544}
545
546/*
547 * Handle ioctl commands to obtain information from the cache
548 */
549static int
550X_mrt_ioctl(int cmd, caddr_t data)
551{
552    int error = 0;
553
554    /*
555     * Currently the only function calling this ioctl routine is rtioctl().
556     * Typically, only root can create the raw socket in order to execute
557     * this ioctl method, however the request might be coming from a prison
558     */
559    error = priv_check(curthread, PRIV_NETINET_MROUTE);
560    if (error)
561	return (error);
562    switch (cmd) {
563    case (SIOCGETVIFCNT):
564	error = get_vif_cnt((struct sioc_vif_req *)data);
565	break;
566
567    case (SIOCGETSGCNT):
568	error = get_sg_cnt((struct sioc_sg_req *)data);
569	break;
570
571    default:
572	error = EINVAL;
573	break;
574    }
575    return error;
576}
577
578/*
579 * returns the packet, byte, rpf-failure count for the source group provided
580 */
581static int
582get_sg_cnt(struct sioc_sg_req *req)
583{
584    struct mfc *rt;
585
586    MFC_LOCK();
587    rt = mfc_find(req->src.s_addr, req->grp.s_addr);
588    if (rt == NULL) {
589	MFC_UNLOCK();
590	req->pktcnt = req->bytecnt = req->wrong_if = 0xffffffff;
591	return EADDRNOTAVAIL;
592    }
593    req->pktcnt = rt->mfc_pkt_cnt;
594    req->bytecnt = rt->mfc_byte_cnt;
595    req->wrong_if = rt->mfc_wrong_if;
596    MFC_UNLOCK();
597    return 0;
598}
599
600/*
601 * returns the input and output packet and byte counts on the vif provided
602 */
603static int
604get_vif_cnt(struct sioc_vif_req *req)
605{
606    vifi_t vifi = req->vifi;
607
608    VIF_LOCK();
609    if (vifi >= numvifs) {
610	VIF_UNLOCK();
611	return EINVAL;
612    }
613
614    req->icount = viftable[vifi].v_pkt_in;
615    req->ocount = viftable[vifi].v_pkt_out;
616    req->ibytes = viftable[vifi].v_bytes_in;
617    req->obytes = viftable[vifi].v_bytes_out;
618    VIF_UNLOCK();
619
620    return 0;
621}
622
623static void
624ip_mrouter_reset(void)
625{
626    bzero((caddr_t)mfctable, sizeof(mfctable));
627    bzero((caddr_t)nexpire, sizeof(nexpire));
628
629    pim_assert = 0;
630    mrt_api_config = 0;
631
632    callout_init(&expire_upcalls_ch, NET_CALLOUT_MPSAFE);
633
634    bw_upcalls_n = 0;
635    bzero((caddr_t)bw_meter_timers, sizeof(bw_meter_timers));
636    callout_init(&bw_upcalls_ch, NET_CALLOUT_MPSAFE);
637    callout_init(&bw_meter_ch, NET_CALLOUT_MPSAFE);
638}
639
640static struct mtx mrouter_mtx;
641
642static void
643if_detached_event(void *arg __unused, struct ifnet *ifp)
644{
645    vifi_t vifi;
646    int i;
647    struct mfc *mfc;
648    struct mfc *nmfc;
649    struct mfc **ppmfc;	/* Pointer to previous node's next-pointer */
650    struct rtdetq *pq;
651    struct rtdetq *npq;
652
653    mtx_lock(&mrouter_mtx);
654    if (ip_mrouter == NULL) {
655	mtx_unlock(&mrouter_mtx);
656    }
657
658    /*
659     * Tear down multicast forwarder state associated with this ifnet.
660     * 1. Walk the vif list, matching vifs against this ifnet.
661     * 2. Walk the multicast forwarding cache (mfc) looking for
662     *    inner matches with this vif's index.
663     * 3. Free any pending mbufs for this mfc.
664     * 4. Free the associated mfc entry and state associated with this vif.
665     *    Be very careful about unlinking from a singly-linked list whose
666     *    "head node" is a pointer in a simple array.
667     * 5. Free vif state. This should disable ALLMULTI on the interface.
668     */
669    VIF_LOCK();
670    MFC_LOCK();
671    for (vifi = 0; vifi < numvifs; vifi++) {
672	if (viftable[vifi].v_ifp != ifp)
673		continue;
674	for (i = 0; i < MFCTBLSIZ; i++) {
675	    ppmfc = &mfctable[i];
676	    for (mfc = mfctable[i]; mfc != NULL; ) {
677		nmfc = mfc->mfc_next;
678		if (mfc->mfc_parent == vifi) {
679		    for (pq = mfc->mfc_stall; pq != NULL; ) {
680			npq = pq->next;
681			m_freem(pq->m);
682			free(pq, M_MRTABLE);
683			pq = npq;
684		    }
685		    free_bw_list(mfc->mfc_bw_meter);
686		    free(mfc, M_MRTABLE);
687		    *ppmfc = nmfc;
688		} else {
689		    ppmfc = &mfc->mfc_next;
690		}
691		mfc = nmfc;
692	    }
693	}
694	del_vif_locked(vifi);
695    }
696    MFC_UNLOCK();
697    VIF_UNLOCK();
698
699    mtx_unlock(&mrouter_mtx);
700}
701
702/*
703 * Enable multicast routing
704 */
705static int
706ip_mrouter_init(struct socket *so, int version)
707{
708    if (mrtdebug)
709	log(LOG_DEBUG, "ip_mrouter_init: so_type = %d, pr_protocol = %d\n",
710	    so->so_type, so->so_proto->pr_protocol);
711
712    if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_IGMP)
713	return EOPNOTSUPP;
714
715    if (version != 1)
716	return ENOPROTOOPT;
717
718    mtx_lock(&mrouter_mtx);
719
720    if (ip_mrouter != NULL) {
721	mtx_unlock(&mrouter_mtx);
722	return EADDRINUSE;
723    }
724
725    if_detach_event_tag = EVENTHANDLER_REGISTER(ifnet_departure_event,
726        if_detached_event, NULL, EVENTHANDLER_PRI_ANY);
727    if (if_detach_event_tag == NULL)
728	return (ENOMEM);
729
730    callout_reset(&expire_upcalls_ch, EXPIRE_TIMEOUT, expire_upcalls, NULL);
731
732    callout_reset(&bw_upcalls_ch, BW_UPCALLS_PERIOD,
733	expire_bw_upcalls_send, NULL);
734    callout_reset(&bw_meter_ch, BW_METER_PERIOD, expire_bw_meter_process, NULL);
735
736    ip_mrouter = so;
737
738    mtx_unlock(&mrouter_mtx);
739
740    if (mrtdebug)
741	log(LOG_DEBUG, "ip_mrouter_init\n");
742
743    return 0;
744}
745
746/*
747 * Disable multicast routing
748 */
749static int
750X_ip_mrouter_done(void)
751{
752    vifi_t vifi;
753    int i;
754    struct ifnet *ifp;
755    struct ifreq ifr;
756    struct mfc *rt;
757    struct rtdetq *rte;
758
759    mtx_lock(&mrouter_mtx);
760
761    if (ip_mrouter == NULL) {
762	mtx_unlock(&mrouter_mtx);
763	return EINVAL;
764    }
765
766    /*
767     * Detach/disable hooks to the reset of the system.
768     */
769    ip_mrouter = NULL;
770    mrt_api_config = 0;
771
772    VIF_LOCK();
773    /*
774     * For each phyint in use, disable promiscuous reception of all IP
775     * multicasts.
776     */
777    for (vifi = 0; vifi < numvifs; vifi++) {
778	if (viftable[vifi].v_lcl_addr.s_addr != 0 &&
779		!(viftable[vifi].v_flags & (VIFF_TUNNEL | VIFF_REGISTER))) {
780	    struct sockaddr_in *so = (struct sockaddr_in *)&(ifr.ifr_addr);
781
782	    so->sin_len = sizeof(struct sockaddr_in);
783	    so->sin_family = AF_INET;
784	    so->sin_addr.s_addr = INADDR_ANY;
785	    ifp = viftable[vifi].v_ifp;
786	    if_allmulti(ifp, 0);
787	}
788    }
789    bzero((caddr_t)viftable, sizeof(viftable));
790    numvifs = 0;
791    pim_assert = 0;
792    VIF_UNLOCK();
793    EVENTHANDLER_DEREGISTER(ifnet_departure_event, if_detach_event_tag);
794
795    /*
796     * Free all multicast forwarding cache entries.
797     */
798    callout_stop(&expire_upcalls_ch);
799    callout_stop(&bw_upcalls_ch);
800    callout_stop(&bw_meter_ch);
801
802    MFC_LOCK();
803    for (i = 0; i < MFCTBLSIZ; i++) {
804	for (rt = mfctable[i]; rt != NULL; ) {
805	    struct mfc *nr = rt->mfc_next;
806
807	    for (rte = rt->mfc_stall; rte != NULL; ) {
808		struct rtdetq *n = rte->next;
809
810		m_freem(rte->m);
811		free(rte, M_MRTABLE);
812		rte = n;
813	    }
814	    free_bw_list(rt->mfc_bw_meter);
815	    free(rt, M_MRTABLE);
816	    rt = nr;
817	}
818    }
819    bzero((caddr_t)mfctable, sizeof(mfctable));
820    bzero((caddr_t)nexpire, sizeof(nexpire));
821    bw_upcalls_n = 0;
822    bzero(bw_meter_timers, sizeof(bw_meter_timers));
823    MFC_UNLOCK();
824
825    reg_vif_num = VIFI_INVALID;
826
827    mtx_unlock(&mrouter_mtx);
828
829    if (mrtdebug)
830	log(LOG_DEBUG, "ip_mrouter_done\n");
831
832    return 0;
833}
834
835/*
836 * Set PIM assert processing global
837 */
838static int
839set_assert(int i)
840{
841    if ((i != 1) && (i != 0))
842	return EINVAL;
843
844    pim_assert = i;
845
846    return 0;
847}
848
849/*
850 * Configure API capabilities
851 */
852int
853set_api_config(uint32_t *apival)
854{
855    int i;
856
857    /*
858     * We can set the API capabilities only if it is the first operation
859     * after MRT_INIT. I.e.:
860     *  - there are no vifs installed
861     *  - pim_assert is not enabled
862     *  - the MFC table is empty
863     */
864    if (numvifs > 0) {
865	*apival = 0;
866	return EPERM;
867    }
868    if (pim_assert) {
869	*apival = 0;
870	return EPERM;
871    }
872    for (i = 0; i < MFCTBLSIZ; i++) {
873	if (mfctable[i] != NULL) {
874	    *apival = 0;
875	    return EPERM;
876	}
877    }
878
879    mrt_api_config = *apival & mrt_api_support;
880    *apival = mrt_api_config;
881
882    return 0;
883}
884
885/*
886 * Add a vif to the vif table
887 */
888static int
889add_vif(struct vifctl *vifcp)
890{
891    struct vif *vifp = viftable + vifcp->vifc_vifi;
892    struct sockaddr_in sin = {sizeof sin, AF_INET};
893    struct ifaddr *ifa;
894    struct ifnet *ifp;
895    int error;
896
897    VIF_LOCK();
898    if (vifcp->vifc_vifi >= MAXVIFS) {
899	VIF_UNLOCK();
900	return EINVAL;
901    }
902    /* rate limiting is no longer supported by this code */
903    if (vifcp->vifc_rate_limit != 0) {
904	log(LOG_ERR, "rate limiting is no longer supported\n");
905	VIF_UNLOCK();
906	return EINVAL;
907    }
908    if (vifp->v_lcl_addr.s_addr != INADDR_ANY) {
909	VIF_UNLOCK();
910	return EADDRINUSE;
911    }
912    if (vifcp->vifc_lcl_addr.s_addr == INADDR_ANY) {
913	VIF_UNLOCK();
914	return EADDRNOTAVAIL;
915    }
916
917    /* Find the interface with an address in AF_INET family */
918    if (vifcp->vifc_flags & VIFF_REGISTER) {
919	/*
920	 * XXX: Because VIFF_REGISTER does not really need a valid
921	 * local interface (e.g. it could be 127.0.0.2), we don't
922	 * check its address.
923	 */
924	ifp = NULL;
925    } else {
926	sin.sin_addr = vifcp->vifc_lcl_addr;
927	ifa = ifa_ifwithaddr((struct sockaddr *)&sin);
928	if (ifa == NULL) {
929	    VIF_UNLOCK();
930	    return EADDRNOTAVAIL;
931	}
932	ifp = ifa->ifa_ifp;
933    }
934
935    if ((vifcp->vifc_flags & VIFF_TUNNEL) != 0) {
936	log(LOG_ERR, "tunnels are no longer supported\n");
937	VIF_UNLOCK();
938	return EOPNOTSUPP;
939    } else if (vifcp->vifc_flags & VIFF_REGISTER) {
940	ifp = &multicast_register_if;
941	if (mrtdebug)
942	    log(LOG_DEBUG, "Adding a register vif, ifp: %p\n",
943		    (void *)&multicast_register_if);
944	if (reg_vif_num == VIFI_INVALID) {
945	    if_initname(&multicast_register_if, "register_vif", 0);
946	    multicast_register_if.if_flags = IFF_LOOPBACK;
947	    reg_vif_num = vifcp->vifc_vifi;
948	}
949    } else {		/* Make sure the interface supports multicast */
950	if ((ifp->if_flags & IFF_MULTICAST) == 0) {
951	    VIF_UNLOCK();
952	    return EOPNOTSUPP;
953	}
954
955	/* Enable promiscuous reception of all IP multicasts from the if */
956	error = if_allmulti(ifp, 1);
957	if (error) {
958	    VIF_UNLOCK();
959	    return error;
960	}
961    }
962
963    vifp->v_flags     = vifcp->vifc_flags;
964    vifp->v_threshold = vifcp->vifc_threshold;
965    vifp->v_lcl_addr  = vifcp->vifc_lcl_addr;
966    vifp->v_rmt_addr  = vifcp->vifc_rmt_addr;
967    vifp->v_ifp       = ifp;
968    vifp->v_rsvp_on   = 0;
969    vifp->v_rsvpd     = NULL;
970    /* initialize per vif pkt counters */
971    vifp->v_pkt_in    = 0;
972    vifp->v_pkt_out   = 0;
973    vifp->v_bytes_in  = 0;
974    vifp->v_bytes_out = 0;
975    bzero(&vifp->v_route, sizeof(vifp->v_route));
976
977    /* Adjust numvifs up if the vifi is higher than numvifs */
978    if (numvifs <= vifcp->vifc_vifi) numvifs = vifcp->vifc_vifi + 1;
979
980    VIF_UNLOCK();
981
982    if (mrtdebug)
983	log(LOG_DEBUG, "add_vif #%d, lcladdr %lx, %s %lx, thresh %x\n",
984	    vifcp->vifc_vifi,
985	    (u_long)ntohl(vifcp->vifc_lcl_addr.s_addr),
986	    (vifcp->vifc_flags & VIFF_TUNNEL) ? "rmtaddr" : "mask",
987	    (u_long)ntohl(vifcp->vifc_rmt_addr.s_addr),
988	    vifcp->vifc_threshold);
989
990    return 0;
991}
992
993/*
994 * Delete a vif from the vif table
995 */
996static int
997del_vif_locked(vifi_t vifi)
998{
999    struct vif *vifp;
1000
1001    VIF_LOCK_ASSERT();
1002
1003    if (vifi >= numvifs) {
1004	return EINVAL;
1005    }
1006    vifp = &viftable[vifi];
1007    if (vifp->v_lcl_addr.s_addr == INADDR_ANY) {
1008	return EADDRNOTAVAIL;
1009    }
1010
1011    if (!(vifp->v_flags & (VIFF_TUNNEL | VIFF_REGISTER)))
1012	if_allmulti(vifp->v_ifp, 0);
1013
1014    if (vifp->v_flags & VIFF_REGISTER)
1015	reg_vif_num = VIFI_INVALID;
1016
1017    bzero((caddr_t)vifp, sizeof (*vifp));
1018
1019    if (mrtdebug)
1020	log(LOG_DEBUG, "del_vif %d, numvifs %d\n", vifi, numvifs);
1021
1022    /* Adjust numvifs down */
1023    for (vifi = numvifs; vifi > 0; vifi--)
1024	if (viftable[vifi-1].v_lcl_addr.s_addr != INADDR_ANY)
1025	    break;
1026    numvifs = vifi;
1027
1028    return 0;
1029}
1030
1031static int
1032del_vif(vifi_t vifi)
1033{
1034    int cc;
1035
1036    VIF_LOCK();
1037    cc = del_vif_locked(vifi);
1038    VIF_UNLOCK();
1039
1040    return cc;
1041}
1042
1043/*
1044 * update an mfc entry without resetting counters and S,G addresses.
1045 */
1046static void
1047update_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp)
1048{
1049    int i;
1050
1051    rt->mfc_parent = mfccp->mfcc_parent;
1052    for (i = 0; i < numvifs; i++) {
1053	rt->mfc_ttls[i] = mfccp->mfcc_ttls[i];
1054	rt->mfc_flags[i] = mfccp->mfcc_flags[i] & mrt_api_config &
1055	    MRT_MFC_FLAGS_ALL;
1056    }
1057    /* set the RP address */
1058    if (mrt_api_config & MRT_MFC_RP)
1059	rt->mfc_rp = mfccp->mfcc_rp;
1060    else
1061	rt->mfc_rp.s_addr = INADDR_ANY;
1062}
1063
1064/*
1065 * fully initialize an mfc entry from the parameter.
1066 */
1067static void
1068init_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp)
1069{
1070    rt->mfc_origin     = mfccp->mfcc_origin;
1071    rt->mfc_mcastgrp   = mfccp->mfcc_mcastgrp;
1072
1073    update_mfc_params(rt, mfccp);
1074
1075    /* initialize pkt counters per src-grp */
1076    rt->mfc_pkt_cnt    = 0;
1077    rt->mfc_byte_cnt   = 0;
1078    rt->mfc_wrong_if   = 0;
1079    rt->mfc_last_assert.tv_sec = rt->mfc_last_assert.tv_usec = 0;
1080}
1081
1082
1083/*
1084 * Add an mfc entry
1085 */
1086static int
1087add_mfc(struct mfcctl2 *mfccp)
1088{
1089    struct mfc *rt;
1090    u_long hash;
1091    struct rtdetq *rte;
1092    u_short nstl;
1093
1094    VIF_LOCK();
1095    MFC_LOCK();
1096
1097    rt = mfc_find(mfccp->mfcc_origin.s_addr, mfccp->mfcc_mcastgrp.s_addr);
1098
1099    /* If an entry already exists, just update the fields */
1100    if (rt) {
1101	if (mrtdebug & DEBUG_MFC)
1102	    log(LOG_DEBUG,"add_mfc update o %lx g %lx p %x\n",
1103		(u_long)ntohl(mfccp->mfcc_origin.s_addr),
1104		(u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr),
1105		mfccp->mfcc_parent);
1106
1107	update_mfc_params(rt, mfccp);
1108	MFC_UNLOCK();
1109	VIF_UNLOCK();
1110	return 0;
1111    }
1112
1113    /*
1114     * Find the entry for which the upcall was made and update
1115     */
1116    hash = MFCHASH(mfccp->mfcc_origin.s_addr, mfccp->mfcc_mcastgrp.s_addr);
1117    for (rt = mfctable[hash], nstl = 0; rt; rt = rt->mfc_next) {
1118
1119	if ((rt->mfc_origin.s_addr == mfccp->mfcc_origin.s_addr) &&
1120		(rt->mfc_mcastgrp.s_addr == mfccp->mfcc_mcastgrp.s_addr) &&
1121		(rt->mfc_stall != NULL)) {
1122
1123	    if (nstl++)
1124		log(LOG_ERR, "add_mfc %s o %lx g %lx p %x dbx %p\n",
1125		    "multiple kernel entries",
1126		    (u_long)ntohl(mfccp->mfcc_origin.s_addr),
1127		    (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr),
1128		    mfccp->mfcc_parent, (void *)rt->mfc_stall);
1129
1130	    if (mrtdebug & DEBUG_MFC)
1131		log(LOG_DEBUG,"add_mfc o %lx g %lx p %x dbg %p\n",
1132		    (u_long)ntohl(mfccp->mfcc_origin.s_addr),
1133		    (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr),
1134		    mfccp->mfcc_parent, (void *)rt->mfc_stall);
1135
1136	    init_mfc_params(rt, mfccp);
1137
1138	    rt->mfc_expire = 0;	/* Don't clean this guy up */
1139	    nexpire[hash]--;
1140
1141	    /* free packets Qed at the end of this entry */
1142	    for (rte = rt->mfc_stall; rte != NULL; ) {
1143		struct rtdetq *n = rte->next;
1144
1145		ip_mdq(rte->m, rte->ifp, rt, -1);
1146		m_freem(rte->m);
1147		free(rte, M_MRTABLE);
1148		rte = n;
1149	    }
1150	    rt->mfc_stall = NULL;
1151	}
1152    }
1153
1154    /*
1155     * It is possible that an entry is being inserted without an upcall
1156     */
1157    if (nstl == 0) {
1158	if (mrtdebug & DEBUG_MFC)
1159	    log(LOG_DEBUG,"add_mfc no upcall h %lu o %lx g %lx p %x\n",
1160		hash, (u_long)ntohl(mfccp->mfcc_origin.s_addr),
1161		(u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr),
1162		mfccp->mfcc_parent);
1163
1164	for (rt = mfctable[hash]; rt != NULL; rt = rt->mfc_next) {
1165	    if ((rt->mfc_origin.s_addr == mfccp->mfcc_origin.s_addr) &&
1166		    (rt->mfc_mcastgrp.s_addr == mfccp->mfcc_mcastgrp.s_addr)) {
1167		init_mfc_params(rt, mfccp);
1168		if (rt->mfc_expire)
1169		    nexpire[hash]--;
1170		rt->mfc_expire = 0;
1171		break; /* XXX */
1172	    }
1173	}
1174	if (rt == NULL) {		/* no upcall, so make a new entry */
1175	    rt = (struct mfc *)malloc(sizeof(*rt), M_MRTABLE, M_NOWAIT);
1176	    if (rt == NULL) {
1177		MFC_UNLOCK();
1178		VIF_UNLOCK();
1179		return ENOBUFS;
1180	    }
1181
1182	    init_mfc_params(rt, mfccp);
1183	    rt->mfc_expire     = 0;
1184	    rt->mfc_stall      = NULL;
1185
1186	    rt->mfc_bw_meter = NULL;
1187	    /* insert new entry at head of hash chain */
1188	    rt->mfc_next = mfctable[hash];
1189	    mfctable[hash] = rt;
1190	}
1191    }
1192    MFC_UNLOCK();
1193    VIF_UNLOCK();
1194    return 0;
1195}
1196
1197/*
1198 * Delete an mfc entry
1199 */
1200static int
1201del_mfc(struct mfcctl2 *mfccp)
1202{
1203    struct in_addr	origin;
1204    struct in_addr	mcastgrp;
1205    struct mfc		*rt;
1206    struct mfc		**nptr;
1207    u_long		hash;
1208    struct bw_meter	*list;
1209
1210    origin = mfccp->mfcc_origin;
1211    mcastgrp = mfccp->mfcc_mcastgrp;
1212
1213    if (mrtdebug & DEBUG_MFC)
1214	log(LOG_DEBUG,"del_mfc orig %lx mcastgrp %lx\n",
1215	    (u_long)ntohl(origin.s_addr), (u_long)ntohl(mcastgrp.s_addr));
1216
1217    MFC_LOCK();
1218
1219    hash = MFCHASH(origin.s_addr, mcastgrp.s_addr);
1220    for (nptr = &mfctable[hash]; (rt = *nptr) != NULL; nptr = &rt->mfc_next)
1221	if (origin.s_addr == rt->mfc_origin.s_addr &&
1222		mcastgrp.s_addr == rt->mfc_mcastgrp.s_addr &&
1223		rt->mfc_stall == NULL)
1224	    break;
1225    if (rt == NULL) {
1226	MFC_UNLOCK();
1227	return EADDRNOTAVAIL;
1228    }
1229
1230    *nptr = rt->mfc_next;
1231
1232    /*
1233     * free the bw_meter entries
1234     */
1235    list = rt->mfc_bw_meter;
1236    rt->mfc_bw_meter = NULL;
1237
1238    free(rt, M_MRTABLE);
1239
1240    free_bw_list(list);
1241
1242    MFC_UNLOCK();
1243
1244    return 0;
1245}
1246
1247/*
1248 * Send a message to the routing daemon on the multicast routing socket
1249 */
1250static int
1251socket_send(struct socket *s, struct mbuf *mm, struct sockaddr_in *src)
1252{
1253    if (s) {
1254	SOCKBUF_LOCK(&s->so_rcv);
1255	if (sbappendaddr_locked(&s->so_rcv, (struct sockaddr *)src, mm,
1256	    NULL) != 0) {
1257	    sorwakeup_locked(s);
1258	    return 0;
1259	}
1260	SOCKBUF_UNLOCK(&s->so_rcv);
1261    }
1262    m_freem(mm);
1263    return -1;
1264}
1265
1266/*
1267 * IP multicast forwarding function. This function assumes that the packet
1268 * pointed to by "ip" has arrived on (or is about to be sent to) the interface
1269 * pointed to by "ifp", and the packet is to be relayed to other networks
1270 * that have members of the packet's destination IP multicast group.
1271 *
1272 * The packet is returned unscathed to the caller, unless it is
1273 * erroneous, in which case a non-zero return value tells the caller to
1274 * discard it.
1275 */
1276
1277#define TUNNEL_LEN  12  /* # bytes of IP option for tunnel encapsulation  */
1278
1279static int
1280X_ip_mforward(struct ip *ip, struct ifnet *ifp, struct mbuf *m,
1281    struct ip_moptions *imo)
1282{
1283    struct mfc *rt;
1284    int error;
1285    vifi_t vifi;
1286
1287    if (mrtdebug & DEBUG_FORWARD)
1288	log(LOG_DEBUG, "ip_mforward: src %lx, dst %lx, ifp %p\n",
1289	    (u_long)ntohl(ip->ip_src.s_addr), (u_long)ntohl(ip->ip_dst.s_addr),
1290	    (void *)ifp);
1291
1292    if (ip->ip_hl < (sizeof(struct ip) + TUNNEL_LEN) >> 2 ||
1293		((u_char *)(ip + 1))[1] != IPOPT_LSRR ) {
1294	/*
1295	 * Packet arrived via a physical interface or
1296	 * an encapsulated tunnel or a register_vif.
1297	 */
1298    } else {
1299	/*
1300	 * Packet arrived through a source-route tunnel.
1301	 * Source-route tunnels are no longer supported.
1302	 */
1303	static int last_log;
1304	if (last_log != time_uptime) {
1305	    last_log = time_uptime;
1306	    log(LOG_ERR,
1307		"ip_mforward: received source-routed packet from %lx\n",
1308		(u_long)ntohl(ip->ip_src.s_addr));
1309	}
1310	return 1;
1311    }
1312
1313    VIF_LOCK();
1314    MFC_LOCK();
1315    if (imo && ((vifi = imo->imo_multicast_vif) < numvifs)) {
1316	if (ip->ip_ttl < MAXTTL)
1317	    ip->ip_ttl++;	/* compensate for -1 in *_send routines */
1318	if (rsvpdebug && ip->ip_p == IPPROTO_RSVP) {
1319	    struct vif *vifp = viftable + vifi;
1320
1321	    printf("Sending IPPROTO_RSVP from %lx to %lx on vif %d (%s%s)\n",
1322		(long)ntohl(ip->ip_src.s_addr), (long)ntohl(ip->ip_dst.s_addr),
1323		vifi,
1324		(vifp->v_flags & VIFF_TUNNEL) ? "tunnel on " : "",
1325		vifp->v_ifp->if_xname);
1326	}
1327	error = ip_mdq(m, ifp, NULL, vifi);
1328	MFC_UNLOCK();
1329	VIF_UNLOCK();
1330	return error;
1331    }
1332    if (rsvpdebug && ip->ip_p == IPPROTO_RSVP) {
1333	printf("Warning: IPPROTO_RSVP from %lx to %lx without vif option\n",
1334	    (long)ntohl(ip->ip_src.s_addr), (long)ntohl(ip->ip_dst.s_addr));
1335	if (!imo)
1336	    printf("In fact, no options were specified at all\n");
1337    }
1338
1339    /*
1340     * Don't forward a packet with time-to-live of zero or one,
1341     * or a packet destined to a local-only group.
1342     */
1343    if (ip->ip_ttl <= 1 || ntohl(ip->ip_dst.s_addr) <= INADDR_MAX_LOCAL_GROUP) {
1344	MFC_UNLOCK();
1345	VIF_UNLOCK();
1346	return 0;
1347    }
1348
1349    /*
1350     * Determine forwarding vifs from the forwarding cache table
1351     */
1352    ++mrtstat.mrts_mfc_lookups;
1353    rt = mfc_find(ip->ip_src.s_addr, ip->ip_dst.s_addr);
1354
1355    /* Entry exists, so forward if necessary */
1356    if (rt != NULL) {
1357	error = ip_mdq(m, ifp, rt, -1);
1358	MFC_UNLOCK();
1359	VIF_UNLOCK();
1360	return error;
1361    } else {
1362	/*
1363	 * If we don't have a route for packet's origin,
1364	 * Make a copy of the packet & send message to routing daemon
1365	 */
1366
1367	struct mbuf *mb0;
1368	struct rtdetq *rte;
1369	u_long hash;
1370	int hlen = ip->ip_hl << 2;
1371
1372	++mrtstat.mrts_mfc_misses;
1373
1374	mrtstat.mrts_no_route++;
1375	if (mrtdebug & (DEBUG_FORWARD | DEBUG_MFC))
1376	    log(LOG_DEBUG, "ip_mforward: no rte s %lx g %lx\n",
1377		(u_long)ntohl(ip->ip_src.s_addr),
1378		(u_long)ntohl(ip->ip_dst.s_addr));
1379
1380	/*
1381	 * Allocate mbufs early so that we don't do extra work if we are
1382	 * just going to fail anyway.  Make sure to pullup the header so
1383	 * that other people can't step on it.
1384	 */
1385	rte = (struct rtdetq *)malloc((sizeof *rte), M_MRTABLE, M_NOWAIT);
1386	if (rte == NULL) {
1387	    MFC_UNLOCK();
1388	    VIF_UNLOCK();
1389	    return ENOBUFS;
1390	}
1391	mb0 = m_copypacket(m, M_DONTWAIT);
1392	if (mb0 && (M_HASCL(mb0) || mb0->m_len < hlen))
1393	    mb0 = m_pullup(mb0, hlen);
1394	if (mb0 == NULL) {
1395	    free(rte, M_MRTABLE);
1396	    MFC_UNLOCK();
1397	    VIF_UNLOCK();
1398	    return ENOBUFS;
1399	}
1400
1401	/* is there an upcall waiting for this flow ? */
1402	hash = MFCHASH(ip->ip_src.s_addr, ip->ip_dst.s_addr);
1403	for (rt = mfctable[hash]; rt; rt = rt->mfc_next) {
1404	    if ((ip->ip_src.s_addr == rt->mfc_origin.s_addr) &&
1405		    (ip->ip_dst.s_addr == rt->mfc_mcastgrp.s_addr) &&
1406		    (rt->mfc_stall != NULL))
1407		break;
1408	}
1409
1410	if (rt == NULL) {
1411	    int i;
1412	    struct igmpmsg *im;
1413	    struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
1414	    struct mbuf *mm;
1415
1416	    /*
1417	     * Locate the vifi for the incoming interface for this packet.
1418	     * If none found, drop packet.
1419	     */
1420	    for (vifi=0; vifi < numvifs && viftable[vifi].v_ifp != ifp; vifi++)
1421		;
1422	    if (vifi >= numvifs)	/* vif not found, drop packet */
1423		goto non_fatal;
1424
1425	    /* no upcall, so make a new entry */
1426	    rt = (struct mfc *)malloc(sizeof(*rt), M_MRTABLE, M_NOWAIT);
1427	    if (rt == NULL)
1428		goto fail;
1429	    /* Make a copy of the header to send to the user level process */
1430	    mm = m_copy(mb0, 0, hlen);
1431	    if (mm == NULL)
1432		goto fail1;
1433
1434	    /*
1435	     * Send message to routing daemon to install
1436	     * a route into the kernel table
1437	     */
1438
1439	    im = mtod(mm, struct igmpmsg *);
1440	    im->im_msgtype = IGMPMSG_NOCACHE;
1441	    im->im_mbz = 0;
1442	    im->im_vif = vifi;
1443
1444	    mrtstat.mrts_upcalls++;
1445
1446	    k_igmpsrc.sin_addr = ip->ip_src;
1447	    if (socket_send(ip_mrouter, mm, &k_igmpsrc) < 0) {
1448		log(LOG_WARNING, "ip_mforward: ip_mrouter socket queue full\n");
1449		++mrtstat.mrts_upq_sockfull;
1450fail1:
1451		free(rt, M_MRTABLE);
1452fail:
1453		free(rte, M_MRTABLE);
1454		m_freem(mb0);
1455		MFC_UNLOCK();
1456		VIF_UNLOCK();
1457		return ENOBUFS;
1458	    }
1459
1460	    /* insert new entry at head of hash chain */
1461	    rt->mfc_origin.s_addr     = ip->ip_src.s_addr;
1462	    rt->mfc_mcastgrp.s_addr   = ip->ip_dst.s_addr;
1463	    rt->mfc_expire	      = UPCALL_EXPIRE;
1464	    nexpire[hash]++;
1465	    for (i = 0; i < numvifs; i++) {
1466		rt->mfc_ttls[i] = 0;
1467		rt->mfc_flags[i] = 0;
1468	    }
1469	    rt->mfc_parent = -1;
1470
1471	    rt->mfc_rp.s_addr = INADDR_ANY; /* clear the RP address */
1472
1473	    rt->mfc_bw_meter = NULL;
1474
1475	    /* link into table */
1476	    rt->mfc_next   = mfctable[hash];
1477	    mfctable[hash] = rt;
1478	    rt->mfc_stall = rte;
1479
1480	} else {
1481	    /* determine if q has overflowed */
1482	    int npkts = 0;
1483	    struct rtdetq **p;
1484
1485	    /*
1486	     * XXX ouch! we need to append to the list, but we
1487	     * only have a pointer to the front, so we have to
1488	     * scan the entire list every time.
1489	     */
1490	    for (p = &rt->mfc_stall; *p != NULL; p = &(*p)->next)
1491		npkts++;
1492
1493	    if (npkts > MAX_UPQ) {
1494		mrtstat.mrts_upq_ovflw++;
1495non_fatal:
1496		free(rte, M_MRTABLE);
1497		m_freem(mb0);
1498		MFC_UNLOCK();
1499		VIF_UNLOCK();
1500		return 0;
1501	    }
1502
1503	    /* Add this entry to the end of the queue */
1504	    *p = rte;
1505	}
1506
1507	rte->m			= mb0;
1508	rte->ifp		= ifp;
1509	rte->next		= NULL;
1510
1511	MFC_UNLOCK();
1512	VIF_UNLOCK();
1513
1514	return 0;
1515    }
1516}
1517
1518/*
1519 * Clean up the cache entry if upcall is not serviced
1520 */
1521static void
1522expire_upcalls(void *unused)
1523{
1524    struct rtdetq *rte;
1525    struct mfc *mfc, **nptr;
1526    int i;
1527
1528    MFC_LOCK();
1529    for (i = 0; i < MFCTBLSIZ; i++) {
1530	if (nexpire[i] == 0)
1531	    continue;
1532	nptr = &mfctable[i];
1533	for (mfc = *nptr; mfc != NULL; mfc = *nptr) {
1534	    /*
1535	     * Skip real cache entries
1536	     * Make sure it wasn't marked to not expire (shouldn't happen)
1537	     * If it expires now
1538	     */
1539	    if (mfc->mfc_stall != NULL && mfc->mfc_expire != 0 &&
1540		    --mfc->mfc_expire == 0) {
1541		if (mrtdebug & DEBUG_EXPIRE)
1542		    log(LOG_DEBUG, "expire_upcalls: expiring (%lx %lx)\n",
1543			(u_long)ntohl(mfc->mfc_origin.s_addr),
1544			(u_long)ntohl(mfc->mfc_mcastgrp.s_addr));
1545		/*
1546		 * drop all the packets
1547		 * free the mbuf with the pkt, if, timing info
1548		 */
1549		for (rte = mfc->mfc_stall; rte; ) {
1550		    struct rtdetq *n = rte->next;
1551
1552		    m_freem(rte->m);
1553		    free(rte, M_MRTABLE);
1554		    rte = n;
1555		}
1556		++mrtstat.mrts_cache_cleanups;
1557		nexpire[i]--;
1558
1559		/*
1560		 * free the bw_meter entries
1561		 */
1562		while (mfc->mfc_bw_meter != NULL) {
1563		    struct bw_meter *x = mfc->mfc_bw_meter;
1564
1565		    mfc->mfc_bw_meter = x->bm_mfc_next;
1566		    free(x, M_BWMETER);
1567		}
1568
1569		*nptr = mfc->mfc_next;
1570		free(mfc, M_MRTABLE);
1571	    } else {
1572		nptr = &mfc->mfc_next;
1573	    }
1574	}
1575    }
1576    MFC_UNLOCK();
1577
1578    callout_reset(&expire_upcalls_ch, EXPIRE_TIMEOUT, expire_upcalls, NULL);
1579}
1580
1581/*
1582 * Packet forwarding routine once entry in the cache is made
1583 */
1584static int
1585ip_mdq(struct mbuf *m, struct ifnet *ifp, struct mfc *rt, vifi_t xmt_vif)
1586{
1587    struct ip  *ip = mtod(m, struct ip *);
1588    vifi_t vifi;
1589    int plen = ip->ip_len;
1590
1591    VIF_LOCK_ASSERT();
1592
1593    /*
1594     * If xmt_vif is not -1, send on only the requested vif.
1595     *
1596     * (since vifi_t is u_short, -1 becomes MAXUSHORT, which > numvifs.)
1597     */
1598    if (xmt_vif < numvifs) {
1599	if (viftable[xmt_vif].v_flags & VIFF_REGISTER)
1600		pim_register_send(ip, viftable + xmt_vif, m, rt);
1601	else
1602		phyint_send(ip, viftable + xmt_vif, m);
1603	return 1;
1604    }
1605
1606    /*
1607     * Don't forward if it didn't arrive from the parent vif for its origin.
1608     */
1609    vifi = rt->mfc_parent;
1610    if ((vifi >= numvifs) || (viftable[vifi].v_ifp != ifp)) {
1611	/* came in the wrong interface */
1612	if (mrtdebug & DEBUG_FORWARD)
1613	    log(LOG_DEBUG, "wrong if: ifp %p vifi %d vififp %p\n",
1614		(void *)ifp, vifi, (void *)viftable[vifi].v_ifp);
1615	++mrtstat.mrts_wrong_if;
1616	++rt->mfc_wrong_if;
1617	/*
1618	 * If we are doing PIM assert processing, send a message
1619	 * to the routing daemon.
1620	 *
1621	 * XXX: A PIM-SM router needs the WRONGVIF detection so it
1622	 * can complete the SPT switch, regardless of the type
1623	 * of the iif (broadcast media, GRE tunnel, etc).
1624	 */
1625	if (pim_assert && (vifi < numvifs) && viftable[vifi].v_ifp) {
1626	    struct timeval now;
1627	    u_long delta;
1628
1629	    if (ifp == &multicast_register_if)
1630		pimstat.pims_rcv_registers_wrongiif++;
1631
1632	    /* Get vifi for the incoming packet */
1633	    for (vifi=0; vifi < numvifs && viftable[vifi].v_ifp != ifp; vifi++)
1634		;
1635	    if (vifi >= numvifs)
1636		return 0;	/* The iif is not found: ignore the packet. */
1637
1638	    if (rt->mfc_flags[vifi] & MRT_MFC_FLAGS_DISABLE_WRONGVIF)
1639		return 0;	/* WRONGVIF disabled: ignore the packet */
1640
1641	    GET_TIME(now);
1642
1643	    TV_DELTA(now, rt->mfc_last_assert, delta);
1644
1645	    if (delta > ASSERT_MSG_TIME) {
1646		struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
1647		struct igmpmsg *im;
1648		int hlen = ip->ip_hl << 2;
1649		struct mbuf *mm = m_copy(m, 0, hlen);
1650
1651		if (mm && (M_HASCL(mm) || mm->m_len < hlen))
1652		    mm = m_pullup(mm, hlen);
1653		if (mm == NULL)
1654		    return ENOBUFS;
1655
1656		rt->mfc_last_assert = now;
1657
1658		im = mtod(mm, struct igmpmsg *);
1659		im->im_msgtype	= IGMPMSG_WRONGVIF;
1660		im->im_mbz		= 0;
1661		im->im_vif		= vifi;
1662
1663		mrtstat.mrts_upcalls++;
1664
1665		k_igmpsrc.sin_addr = im->im_src;
1666		if (socket_send(ip_mrouter, mm, &k_igmpsrc) < 0) {
1667		    log(LOG_WARNING,
1668			"ip_mforward: ip_mrouter socket queue full\n");
1669		    ++mrtstat.mrts_upq_sockfull;
1670		    return ENOBUFS;
1671		}
1672	    }
1673	}
1674	return 0;
1675    }
1676
1677    /* If I sourced this packet, it counts as output, else it was input. */
1678    if (ip->ip_src.s_addr == viftable[vifi].v_lcl_addr.s_addr) {
1679	viftable[vifi].v_pkt_out++;
1680	viftable[vifi].v_bytes_out += plen;
1681    } else {
1682	viftable[vifi].v_pkt_in++;
1683	viftable[vifi].v_bytes_in += plen;
1684    }
1685    rt->mfc_pkt_cnt++;
1686    rt->mfc_byte_cnt += plen;
1687
1688    /*
1689     * For each vif, decide if a copy of the packet should be forwarded.
1690     * Forward if:
1691     *		- the ttl exceeds the vif's threshold
1692     *		- there are group members downstream on interface
1693     */
1694    for (vifi = 0; vifi < numvifs; vifi++)
1695	if ((rt->mfc_ttls[vifi] > 0) && (ip->ip_ttl > rt->mfc_ttls[vifi])) {
1696	    viftable[vifi].v_pkt_out++;
1697	    viftable[vifi].v_bytes_out += plen;
1698	    if (viftable[vifi].v_flags & VIFF_REGISTER)
1699		pim_register_send(ip, viftable + vifi, m, rt);
1700	    else
1701		phyint_send(ip, viftable + vifi, m);
1702	}
1703
1704    /*
1705     * Perform upcall-related bw measuring.
1706     */
1707    if (rt->mfc_bw_meter != NULL) {
1708	struct bw_meter *x;
1709	struct timeval now;
1710
1711	GET_TIME(now);
1712	MFC_LOCK_ASSERT();
1713	for (x = rt->mfc_bw_meter; x != NULL; x = x->bm_mfc_next)
1714	    bw_meter_receive_packet(x, plen, &now);
1715    }
1716
1717    return 0;
1718}
1719
1720/*
1721 * check if a vif number is legal/ok. This is used by ip_output.
1722 */
1723static int
1724X_legal_vif_num(int vif)
1725{
1726    /* XXX unlocked, matter? */
1727    return (vif >= 0 && vif < numvifs);
1728}
1729
1730/*
1731 * Return the local address used by this vif
1732 */
1733static u_long
1734X_ip_mcast_src(int vifi)
1735{
1736    /* XXX unlocked, matter? */
1737    if (vifi >= 0 && vifi < numvifs)
1738	return viftable[vifi].v_lcl_addr.s_addr;
1739    else
1740	return INADDR_ANY;
1741}
1742
1743static void
1744phyint_send(struct ip *ip, struct vif *vifp, struct mbuf *m)
1745{
1746    struct mbuf *mb_copy;
1747    int hlen = ip->ip_hl << 2;
1748
1749    VIF_LOCK_ASSERT();
1750
1751    /*
1752     * Make a new reference to the packet; make sure that
1753     * the IP header is actually copied, not just referenced,
1754     * so that ip_output() only scribbles on the copy.
1755     */
1756    mb_copy = m_copypacket(m, M_DONTWAIT);
1757    if (mb_copy && (M_HASCL(mb_copy) || mb_copy->m_len < hlen))
1758	mb_copy = m_pullup(mb_copy, hlen);
1759    if (mb_copy == NULL)
1760	return;
1761
1762    send_packet(vifp, mb_copy);
1763}
1764
1765static void
1766send_packet(struct vif *vifp, struct mbuf *m)
1767{
1768	struct ip_moptions imo;
1769	struct in_multi *imm[2];
1770	int error;
1771
1772	VIF_LOCK_ASSERT();
1773
1774	imo.imo_multicast_ifp  = vifp->v_ifp;
1775	imo.imo_multicast_ttl  = mtod(m, struct ip *)->ip_ttl - 1;
1776	imo.imo_multicast_loop = 1;
1777	imo.imo_multicast_vif  = -1;
1778	imo.imo_num_memberships = 0;
1779	imo.imo_max_memberships = 2;
1780	imo.imo_membership  = &imm[0];
1781
1782	/*
1783	 * Re-entrancy should not be a problem here, because
1784	 * the packets that we send out and are looped back at us
1785	 * should get rejected because they appear to come from
1786	 * the loopback interface, thus preventing looping.
1787	 */
1788	error = ip_output(m, NULL, &vifp->v_route, IP_FORWARDING, &imo, NULL);
1789	if (mrtdebug & DEBUG_XMIT) {
1790	    log(LOG_DEBUG, "phyint_send on vif %td err %d\n",
1791		vifp - viftable, error);
1792	}
1793}
1794
1795static int
1796X_ip_rsvp_vif(struct socket *so, struct sockopt *sopt)
1797{
1798    int error, vifi;
1799
1800    if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_RSVP)
1801	return EOPNOTSUPP;
1802
1803    error = sooptcopyin(sopt, &vifi, sizeof vifi, sizeof vifi);
1804    if (error)
1805	return error;
1806
1807    VIF_LOCK();
1808
1809    if (vifi < 0 || vifi >= numvifs) {	/* Error if vif is invalid */
1810	VIF_UNLOCK();
1811	return EADDRNOTAVAIL;
1812    }
1813
1814    if (sopt->sopt_name == IP_RSVP_VIF_ON) {
1815	/* Check if socket is available. */
1816	if (viftable[vifi].v_rsvpd != NULL) {
1817	    VIF_UNLOCK();
1818	    return EADDRINUSE;
1819	}
1820
1821	viftable[vifi].v_rsvpd = so;
1822	/* This may seem silly, but we need to be sure we don't over-increment
1823	 * the RSVP counter, in case something slips up.
1824	 */
1825	if (!viftable[vifi].v_rsvp_on) {
1826	    viftable[vifi].v_rsvp_on = 1;
1827	    rsvp_on++;
1828	}
1829    } else { /* must be VIF_OFF */
1830	/*
1831	 * XXX as an additional consistency check, one could make sure
1832	 * that viftable[vifi].v_rsvpd == so, otherwise passing so as
1833	 * first parameter is pretty useless.
1834	 */
1835	viftable[vifi].v_rsvpd = NULL;
1836	/*
1837	 * This may seem silly, but we need to be sure we don't over-decrement
1838	 * the RSVP counter, in case something slips up.
1839	 */
1840	if (viftable[vifi].v_rsvp_on) {
1841	    viftable[vifi].v_rsvp_on = 0;
1842	    rsvp_on--;
1843	}
1844    }
1845    VIF_UNLOCK();
1846    return 0;
1847}
1848
1849static void
1850X_ip_rsvp_force_done(struct socket *so)
1851{
1852    int vifi;
1853
1854    /* Don't bother if it is not the right type of socket. */
1855    if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_RSVP)
1856	return;
1857
1858    VIF_LOCK();
1859
1860    /* The socket may be attached to more than one vif...this
1861     * is perfectly legal.
1862     */
1863    for (vifi = 0; vifi < numvifs; vifi++) {
1864	if (viftable[vifi].v_rsvpd == so) {
1865	    viftable[vifi].v_rsvpd = NULL;
1866	    /* This may seem silly, but we need to be sure we don't
1867	     * over-decrement the RSVP counter, in case something slips up.
1868	     */
1869	    if (viftable[vifi].v_rsvp_on) {
1870		viftable[vifi].v_rsvp_on = 0;
1871		rsvp_on--;
1872	    }
1873	}
1874    }
1875
1876    VIF_UNLOCK();
1877}
1878
1879static void
1880X_rsvp_input(struct mbuf *m, int off)
1881{
1882    int vifi;
1883    struct ip *ip = mtod(m, struct ip *);
1884    struct sockaddr_in rsvp_src = { sizeof rsvp_src, AF_INET };
1885    struct ifnet *ifp;
1886
1887    if (rsvpdebug)
1888	printf("rsvp_input: rsvp_on %d\n",rsvp_on);
1889
1890    /* Can still get packets with rsvp_on = 0 if there is a local member
1891     * of the group to which the RSVP packet is addressed.  But in this
1892     * case we want to throw the packet away.
1893     */
1894    if (!rsvp_on) {
1895	m_freem(m);
1896	return;
1897    }
1898
1899    if (rsvpdebug)
1900	printf("rsvp_input: check vifs\n");
1901
1902#ifdef DIAGNOSTIC
1903    M_ASSERTPKTHDR(m);
1904#endif
1905
1906    ifp = m->m_pkthdr.rcvif;
1907
1908    VIF_LOCK();
1909    /* Find which vif the packet arrived on. */
1910    for (vifi = 0; vifi < numvifs; vifi++)
1911	if (viftable[vifi].v_ifp == ifp)
1912	    break;
1913
1914    if (vifi == numvifs || viftable[vifi].v_rsvpd == NULL) {
1915	/*
1916	 * Drop the lock here to avoid holding it across rip_input.
1917	 * This could make rsvpdebug printfs wrong.  If you care,
1918	 * record the state of stuff before dropping the lock.
1919	 */
1920	VIF_UNLOCK();
1921	/*
1922	 * If the old-style non-vif-associated socket is set,
1923	 * then use it.  Otherwise, drop packet since there
1924	 * is no specific socket for this vif.
1925	 */
1926	if (ip_rsvpd != NULL) {
1927	    if (rsvpdebug)
1928		printf("rsvp_input: Sending packet up old-style socket\n");
1929	    rip_input(m, off);  /* xxx */
1930	} else {
1931	    if (rsvpdebug && vifi == numvifs)
1932		printf("rsvp_input: Can't find vif for packet.\n");
1933	    else if (rsvpdebug && viftable[vifi].v_rsvpd == NULL)
1934		printf("rsvp_input: No socket defined for vif %d\n",vifi);
1935	    m_freem(m);
1936	}
1937	return;
1938    }
1939    rsvp_src.sin_addr = ip->ip_src;
1940
1941    if (rsvpdebug && m)
1942	printf("rsvp_input: m->m_len = %d, sbspace() = %ld\n",
1943	       m->m_len,sbspace(&(viftable[vifi].v_rsvpd->so_rcv)));
1944
1945    if (socket_send(viftable[vifi].v_rsvpd, m, &rsvp_src) < 0) {
1946	if (rsvpdebug)
1947	    printf("rsvp_input: Failed to append to socket\n");
1948    } else {
1949	if (rsvpdebug)
1950	    printf("rsvp_input: send packet up\n");
1951    }
1952    VIF_UNLOCK();
1953}
1954
1955/*
1956 * Code for bandwidth monitors
1957 */
1958
1959/*
1960 * Define common interface for timeval-related methods
1961 */
1962#define	BW_TIMEVALCMP(tvp, uvp, cmp) timevalcmp((tvp), (uvp), cmp)
1963#define	BW_TIMEVALDECR(vvp, uvp) timevalsub((vvp), (uvp))
1964#define	BW_TIMEVALADD(vvp, uvp) timevaladd((vvp), (uvp))
1965
1966static uint32_t
1967compute_bw_meter_flags(struct bw_upcall *req)
1968{
1969    uint32_t flags = 0;
1970
1971    if (req->bu_flags & BW_UPCALL_UNIT_PACKETS)
1972	flags |= BW_METER_UNIT_PACKETS;
1973    if (req->bu_flags & BW_UPCALL_UNIT_BYTES)
1974	flags |= BW_METER_UNIT_BYTES;
1975    if (req->bu_flags & BW_UPCALL_GEQ)
1976	flags |= BW_METER_GEQ;
1977    if (req->bu_flags & BW_UPCALL_LEQ)
1978	flags |= BW_METER_LEQ;
1979
1980    return flags;
1981}
1982
1983/*
1984 * Add a bw_meter entry
1985 */
1986static int
1987add_bw_upcall(struct bw_upcall *req)
1988{
1989    struct mfc *mfc;
1990    struct timeval delta = { BW_UPCALL_THRESHOLD_INTERVAL_MIN_SEC,
1991		BW_UPCALL_THRESHOLD_INTERVAL_MIN_USEC };
1992    struct timeval now;
1993    struct bw_meter *x;
1994    uint32_t flags;
1995
1996    if (!(mrt_api_config & MRT_MFC_BW_UPCALL))
1997	return EOPNOTSUPP;
1998
1999    /* Test if the flags are valid */
2000    if (!(req->bu_flags & (BW_UPCALL_UNIT_PACKETS | BW_UPCALL_UNIT_BYTES)))
2001	return EINVAL;
2002    if (!(req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ)))
2003	return EINVAL;
2004    if ((req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ))
2005	    == (BW_UPCALL_GEQ | BW_UPCALL_LEQ))
2006	return EINVAL;
2007
2008    /* Test if the threshold time interval is valid */
2009    if (BW_TIMEVALCMP(&req->bu_threshold.b_time, &delta, <))
2010	return EINVAL;
2011
2012    flags = compute_bw_meter_flags(req);
2013
2014    /*
2015     * Find if we have already same bw_meter entry
2016     */
2017    MFC_LOCK();
2018    mfc = mfc_find(req->bu_src.s_addr, req->bu_dst.s_addr);
2019    if (mfc == NULL) {
2020	MFC_UNLOCK();
2021	return EADDRNOTAVAIL;
2022    }
2023    for (x = mfc->mfc_bw_meter; x != NULL; x = x->bm_mfc_next) {
2024	if ((BW_TIMEVALCMP(&x->bm_threshold.b_time,
2025			   &req->bu_threshold.b_time, ==)) &&
2026	    (x->bm_threshold.b_packets == req->bu_threshold.b_packets) &&
2027	    (x->bm_threshold.b_bytes == req->bu_threshold.b_bytes) &&
2028	    (x->bm_flags & BW_METER_USER_FLAGS) == flags)  {
2029	    MFC_UNLOCK();
2030	    return 0;		/* XXX Already installed */
2031	}
2032    }
2033
2034    /* Allocate the new bw_meter entry */
2035    x = (struct bw_meter *)malloc(sizeof(*x), M_BWMETER, M_NOWAIT);
2036    if (x == NULL) {
2037	MFC_UNLOCK();
2038	return ENOBUFS;
2039    }
2040
2041    /* Set the new bw_meter entry */
2042    x->bm_threshold.b_time = req->bu_threshold.b_time;
2043    GET_TIME(now);
2044    x->bm_start_time = now;
2045    x->bm_threshold.b_packets = req->bu_threshold.b_packets;
2046    x->bm_threshold.b_bytes = req->bu_threshold.b_bytes;
2047    x->bm_measured.b_packets = 0;
2048    x->bm_measured.b_bytes = 0;
2049    x->bm_flags = flags;
2050    x->bm_time_next = NULL;
2051    x->bm_time_hash = BW_METER_BUCKETS;
2052
2053    /* Add the new bw_meter entry to the front of entries for this MFC */
2054    x->bm_mfc = mfc;
2055    x->bm_mfc_next = mfc->mfc_bw_meter;
2056    mfc->mfc_bw_meter = x;
2057    schedule_bw_meter(x, &now);
2058    MFC_UNLOCK();
2059
2060    return 0;
2061}
2062
2063static void
2064free_bw_list(struct bw_meter *list)
2065{
2066    while (list != NULL) {
2067	struct bw_meter *x = list;
2068
2069	list = list->bm_mfc_next;
2070	unschedule_bw_meter(x);
2071	free(x, M_BWMETER);
2072    }
2073}
2074
2075/*
2076 * Delete one or multiple bw_meter entries
2077 */
2078static int
2079del_bw_upcall(struct bw_upcall *req)
2080{
2081    struct mfc *mfc;
2082    struct bw_meter *x;
2083
2084    if (!(mrt_api_config & MRT_MFC_BW_UPCALL))
2085	return EOPNOTSUPP;
2086
2087    MFC_LOCK();
2088    /* Find the corresponding MFC entry */
2089    mfc = mfc_find(req->bu_src.s_addr, req->bu_dst.s_addr);
2090    if (mfc == NULL) {
2091	MFC_UNLOCK();
2092	return EADDRNOTAVAIL;
2093    } else if (req->bu_flags & BW_UPCALL_DELETE_ALL) {
2094	/*
2095	 * Delete all bw_meter entries for this mfc
2096	 */
2097	struct bw_meter *list;
2098
2099	list = mfc->mfc_bw_meter;
2100	mfc->mfc_bw_meter = NULL;
2101	free_bw_list(list);
2102	MFC_UNLOCK();
2103	return 0;
2104    } else {			/* Delete a single bw_meter entry */
2105	struct bw_meter *prev;
2106	uint32_t flags = 0;
2107
2108	flags = compute_bw_meter_flags(req);
2109
2110	/* Find the bw_meter entry to delete */
2111	for (prev = NULL, x = mfc->mfc_bw_meter; x != NULL;
2112	     prev = x, x = x->bm_mfc_next) {
2113	    if ((BW_TIMEVALCMP(&x->bm_threshold.b_time,
2114			       &req->bu_threshold.b_time, ==)) &&
2115		(x->bm_threshold.b_packets == req->bu_threshold.b_packets) &&
2116		(x->bm_threshold.b_bytes == req->bu_threshold.b_bytes) &&
2117		(x->bm_flags & BW_METER_USER_FLAGS) == flags)
2118		break;
2119	}
2120	if (x != NULL) { /* Delete entry from the list for this MFC */
2121	    if (prev != NULL)
2122		prev->bm_mfc_next = x->bm_mfc_next;	/* remove from middle*/
2123	    else
2124		x->bm_mfc->mfc_bw_meter = x->bm_mfc_next;/* new head of list */
2125
2126	    unschedule_bw_meter(x);
2127	    MFC_UNLOCK();
2128	    /* Free the bw_meter entry */
2129	    free(x, M_BWMETER);
2130	    return 0;
2131	} else {
2132	    MFC_UNLOCK();
2133	    return EINVAL;
2134	}
2135    }
2136    /* NOTREACHED */
2137}
2138
2139/*
2140 * Perform bandwidth measurement processing that may result in an upcall
2141 */
2142static void
2143bw_meter_receive_packet(struct bw_meter *x, int plen, struct timeval *nowp)
2144{
2145    struct timeval delta;
2146
2147    MFC_LOCK_ASSERT();
2148
2149    delta = *nowp;
2150    BW_TIMEVALDECR(&delta, &x->bm_start_time);
2151
2152    if (x->bm_flags & BW_METER_GEQ) {
2153	/*
2154	 * Processing for ">=" type of bw_meter entry
2155	 */
2156	if (BW_TIMEVALCMP(&delta, &x->bm_threshold.b_time, >)) {
2157	    /* Reset the bw_meter entry */
2158	    x->bm_start_time = *nowp;
2159	    x->bm_measured.b_packets = 0;
2160	    x->bm_measured.b_bytes = 0;
2161	    x->bm_flags &= ~BW_METER_UPCALL_DELIVERED;
2162	}
2163
2164	/* Record that a packet is received */
2165	x->bm_measured.b_packets++;
2166	x->bm_measured.b_bytes += plen;
2167
2168	/*
2169	 * Test if we should deliver an upcall
2170	 */
2171	if (!(x->bm_flags & BW_METER_UPCALL_DELIVERED)) {
2172	    if (((x->bm_flags & BW_METER_UNIT_PACKETS) &&
2173		 (x->bm_measured.b_packets >= x->bm_threshold.b_packets)) ||
2174		((x->bm_flags & BW_METER_UNIT_BYTES) &&
2175		 (x->bm_measured.b_bytes >= x->bm_threshold.b_bytes))) {
2176		/* Prepare an upcall for delivery */
2177		bw_meter_prepare_upcall(x, nowp);
2178		x->bm_flags |= BW_METER_UPCALL_DELIVERED;
2179	    }
2180	}
2181    } else if (x->bm_flags & BW_METER_LEQ) {
2182	/*
2183	 * Processing for "<=" type of bw_meter entry
2184	 */
2185	if (BW_TIMEVALCMP(&delta, &x->bm_threshold.b_time, >)) {
2186	    /*
2187	     * We are behind time with the multicast forwarding table
2188	     * scanning for "<=" type of bw_meter entries, so test now
2189	     * if we should deliver an upcall.
2190	     */
2191	    if (((x->bm_flags & BW_METER_UNIT_PACKETS) &&
2192		 (x->bm_measured.b_packets <= x->bm_threshold.b_packets)) ||
2193		((x->bm_flags & BW_METER_UNIT_BYTES) &&
2194		 (x->bm_measured.b_bytes <= x->bm_threshold.b_bytes))) {
2195		/* Prepare an upcall for delivery */
2196		bw_meter_prepare_upcall(x, nowp);
2197	    }
2198	    /* Reschedule the bw_meter entry */
2199	    unschedule_bw_meter(x);
2200	    schedule_bw_meter(x, nowp);
2201	}
2202
2203	/* Record that a packet is received */
2204	x->bm_measured.b_packets++;
2205	x->bm_measured.b_bytes += plen;
2206
2207	/*
2208	 * Test if we should restart the measuring interval
2209	 */
2210	if ((x->bm_flags & BW_METER_UNIT_PACKETS &&
2211	     x->bm_measured.b_packets <= x->bm_threshold.b_packets) ||
2212	    (x->bm_flags & BW_METER_UNIT_BYTES &&
2213	     x->bm_measured.b_bytes <= x->bm_threshold.b_bytes)) {
2214	    /* Don't restart the measuring interval */
2215	} else {
2216	    /* Do restart the measuring interval */
2217	    /*
2218	     * XXX: note that we don't unschedule and schedule, because this
2219	     * might be too much overhead per packet. Instead, when we process
2220	     * all entries for a given timer hash bin, we check whether it is
2221	     * really a timeout. If not, we reschedule at that time.
2222	     */
2223	    x->bm_start_time = *nowp;
2224	    x->bm_measured.b_packets = 0;
2225	    x->bm_measured.b_bytes = 0;
2226	    x->bm_flags &= ~BW_METER_UPCALL_DELIVERED;
2227	}
2228    }
2229}
2230
2231/*
2232 * Prepare a bandwidth-related upcall
2233 */
2234static void
2235bw_meter_prepare_upcall(struct bw_meter *x, struct timeval *nowp)
2236{
2237    struct timeval delta;
2238    struct bw_upcall *u;
2239
2240    MFC_LOCK_ASSERT();
2241
2242    /*
2243     * Compute the measured time interval
2244     */
2245    delta = *nowp;
2246    BW_TIMEVALDECR(&delta, &x->bm_start_time);
2247
2248    /*
2249     * If there are too many pending upcalls, deliver them now
2250     */
2251    if (bw_upcalls_n >= BW_UPCALLS_MAX)
2252	bw_upcalls_send();
2253
2254    /*
2255     * Set the bw_upcall entry
2256     */
2257    u = &bw_upcalls[bw_upcalls_n++];
2258    u->bu_src = x->bm_mfc->mfc_origin;
2259    u->bu_dst = x->bm_mfc->mfc_mcastgrp;
2260    u->bu_threshold.b_time = x->bm_threshold.b_time;
2261    u->bu_threshold.b_packets = x->bm_threshold.b_packets;
2262    u->bu_threshold.b_bytes = x->bm_threshold.b_bytes;
2263    u->bu_measured.b_time = delta;
2264    u->bu_measured.b_packets = x->bm_measured.b_packets;
2265    u->bu_measured.b_bytes = x->bm_measured.b_bytes;
2266    u->bu_flags = 0;
2267    if (x->bm_flags & BW_METER_UNIT_PACKETS)
2268	u->bu_flags |= BW_UPCALL_UNIT_PACKETS;
2269    if (x->bm_flags & BW_METER_UNIT_BYTES)
2270	u->bu_flags |= BW_UPCALL_UNIT_BYTES;
2271    if (x->bm_flags & BW_METER_GEQ)
2272	u->bu_flags |= BW_UPCALL_GEQ;
2273    if (x->bm_flags & BW_METER_LEQ)
2274	u->bu_flags |= BW_UPCALL_LEQ;
2275}
2276
2277/*
2278 * Send the pending bandwidth-related upcalls
2279 */
2280static void
2281bw_upcalls_send(void)
2282{
2283    struct mbuf *m;
2284    int len = bw_upcalls_n * sizeof(bw_upcalls[0]);
2285    struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
2286    static struct igmpmsg igmpmsg = { 0,		/* unused1 */
2287				      0,		/* unused2 */
2288				      IGMPMSG_BW_UPCALL,/* im_msgtype */
2289				      0,		/* im_mbz  */
2290				      0,		/* im_vif  */
2291				      0,		/* unused3 */
2292				      { 0 },		/* im_src  */
2293				      { 0 } };		/* im_dst  */
2294
2295    MFC_LOCK_ASSERT();
2296
2297    if (bw_upcalls_n == 0)
2298	return;			/* No pending upcalls */
2299
2300    bw_upcalls_n = 0;
2301
2302    /*
2303     * Allocate a new mbuf, initialize it with the header and
2304     * the payload for the pending calls.
2305     */
2306    MGETHDR(m, M_DONTWAIT, MT_DATA);
2307    if (m == NULL) {
2308	log(LOG_WARNING, "bw_upcalls_send: cannot allocate mbuf\n");
2309	return;
2310    }
2311
2312    m->m_len = m->m_pkthdr.len = 0;
2313    m_copyback(m, 0, sizeof(struct igmpmsg), (caddr_t)&igmpmsg);
2314    m_copyback(m, sizeof(struct igmpmsg), len, (caddr_t)&bw_upcalls[0]);
2315
2316    /*
2317     * Send the upcalls
2318     * XXX do we need to set the address in k_igmpsrc ?
2319     */
2320    mrtstat.mrts_upcalls++;
2321    if (socket_send(ip_mrouter, m, &k_igmpsrc) < 0) {
2322	log(LOG_WARNING, "bw_upcalls_send: ip_mrouter socket queue full\n");
2323	++mrtstat.mrts_upq_sockfull;
2324    }
2325}
2326
2327/*
2328 * Compute the timeout hash value for the bw_meter entries
2329 */
2330#define	BW_METER_TIMEHASH(bw_meter, hash)				\
2331    do {								\
2332	struct timeval next_timeval = (bw_meter)->bm_start_time;	\
2333									\
2334	BW_TIMEVALADD(&next_timeval, &(bw_meter)->bm_threshold.b_time); \
2335	(hash) = next_timeval.tv_sec;					\
2336	if (next_timeval.tv_usec)					\
2337	    (hash)++; /* XXX: make sure we don't timeout early */	\
2338	(hash) %= BW_METER_BUCKETS;					\
2339    } while (0)
2340
2341/*
2342 * Schedule a timer to process periodically bw_meter entry of type "<="
2343 * by linking the entry in the proper hash bucket.
2344 */
2345static void
2346schedule_bw_meter(struct bw_meter *x, struct timeval *nowp)
2347{
2348    int time_hash;
2349
2350    MFC_LOCK_ASSERT();
2351
2352    if (!(x->bm_flags & BW_METER_LEQ))
2353	return;		/* XXX: we schedule timers only for "<=" entries */
2354
2355    /*
2356     * Reset the bw_meter entry
2357     */
2358    x->bm_start_time = *nowp;
2359    x->bm_measured.b_packets = 0;
2360    x->bm_measured.b_bytes = 0;
2361    x->bm_flags &= ~BW_METER_UPCALL_DELIVERED;
2362
2363    /*
2364     * Compute the timeout hash value and insert the entry
2365     */
2366    BW_METER_TIMEHASH(x, time_hash);
2367    x->bm_time_next = bw_meter_timers[time_hash];
2368    bw_meter_timers[time_hash] = x;
2369    x->bm_time_hash = time_hash;
2370}
2371
2372/*
2373 * Unschedule the periodic timer that processes bw_meter entry of type "<="
2374 * by removing the entry from the proper hash bucket.
2375 */
2376static void
2377unschedule_bw_meter(struct bw_meter *x)
2378{
2379    int time_hash;
2380    struct bw_meter *prev, *tmp;
2381
2382    MFC_LOCK_ASSERT();
2383
2384    if (!(x->bm_flags & BW_METER_LEQ))
2385	return;		/* XXX: we schedule timers only for "<=" entries */
2386
2387    /*
2388     * Compute the timeout hash value and delete the entry
2389     */
2390    time_hash = x->bm_time_hash;
2391    if (time_hash >= BW_METER_BUCKETS)
2392	return;		/* Entry was not scheduled */
2393
2394    for (prev = NULL, tmp = bw_meter_timers[time_hash];
2395	     tmp != NULL; prev = tmp, tmp = tmp->bm_time_next)
2396	if (tmp == x)
2397	    break;
2398
2399    if (tmp == NULL)
2400	panic("unschedule_bw_meter: bw_meter entry not found");
2401
2402    if (prev != NULL)
2403	prev->bm_time_next = x->bm_time_next;
2404    else
2405	bw_meter_timers[time_hash] = x->bm_time_next;
2406
2407    x->bm_time_next = NULL;
2408    x->bm_time_hash = BW_METER_BUCKETS;
2409}
2410
2411
2412/*
2413 * Process all "<=" type of bw_meter that should be processed now,
2414 * and for each entry prepare an upcall if necessary. Each processed
2415 * entry is rescheduled again for the (periodic) processing.
2416 *
2417 * This is run periodically (once per second normally). On each round,
2418 * all the potentially matching entries are in the hash slot that we are
2419 * looking at.
2420 */
2421static void
2422bw_meter_process()
2423{
2424    static uint32_t last_tv_sec;	/* last time we processed this */
2425
2426    uint32_t loops;
2427    int i;
2428    struct timeval now, process_endtime;
2429
2430    GET_TIME(now);
2431    if (last_tv_sec == now.tv_sec)
2432	return;		/* nothing to do */
2433
2434    loops = now.tv_sec - last_tv_sec;
2435    last_tv_sec = now.tv_sec;
2436    if (loops > BW_METER_BUCKETS)
2437	loops = BW_METER_BUCKETS;
2438
2439    MFC_LOCK();
2440    /*
2441     * Process all bins of bw_meter entries from the one after the last
2442     * processed to the current one. On entry, i points to the last bucket
2443     * visited, so we need to increment i at the beginning of the loop.
2444     */
2445    for (i = (now.tv_sec - loops) % BW_METER_BUCKETS; loops > 0; loops--) {
2446	struct bw_meter *x, *tmp_list;
2447
2448	if (++i >= BW_METER_BUCKETS)
2449	    i = 0;
2450
2451	/* Disconnect the list of bw_meter entries from the bin */
2452	tmp_list = bw_meter_timers[i];
2453	bw_meter_timers[i] = NULL;
2454
2455	/* Process the list of bw_meter entries */
2456	while (tmp_list != NULL) {
2457	    x = tmp_list;
2458	    tmp_list = tmp_list->bm_time_next;
2459
2460	    /* Test if the time interval is over */
2461	    process_endtime = x->bm_start_time;
2462	    BW_TIMEVALADD(&process_endtime, &x->bm_threshold.b_time);
2463	    if (BW_TIMEVALCMP(&process_endtime, &now, >)) {
2464		/* Not yet: reschedule, but don't reset */
2465		int time_hash;
2466
2467		BW_METER_TIMEHASH(x, time_hash);
2468		if (time_hash == i && process_endtime.tv_sec == now.tv_sec) {
2469		    /*
2470		     * XXX: somehow the bin processing is a bit ahead of time.
2471		     * Put the entry in the next bin.
2472		     */
2473		    if (++time_hash >= BW_METER_BUCKETS)
2474			time_hash = 0;
2475		}
2476		x->bm_time_next = bw_meter_timers[time_hash];
2477		bw_meter_timers[time_hash] = x;
2478		x->bm_time_hash = time_hash;
2479
2480		continue;
2481	    }
2482
2483	    /*
2484	     * Test if we should deliver an upcall
2485	     */
2486	    if (((x->bm_flags & BW_METER_UNIT_PACKETS) &&
2487		 (x->bm_measured.b_packets <= x->bm_threshold.b_packets)) ||
2488		((x->bm_flags & BW_METER_UNIT_BYTES) &&
2489		 (x->bm_measured.b_bytes <= x->bm_threshold.b_bytes))) {
2490		/* Prepare an upcall for delivery */
2491		bw_meter_prepare_upcall(x, &now);
2492	    }
2493
2494	    /*
2495	     * Reschedule for next processing
2496	     */
2497	    schedule_bw_meter(x, &now);
2498	}
2499    }
2500
2501    /* Send all upcalls that are pending delivery */
2502    bw_upcalls_send();
2503
2504    MFC_UNLOCK();
2505}
2506
2507/*
2508 * A periodic function for sending all upcalls that are pending delivery
2509 */
2510static void
2511expire_bw_upcalls_send(void *unused)
2512{
2513    MFC_LOCK();
2514    bw_upcalls_send();
2515    MFC_UNLOCK();
2516
2517    callout_reset(&bw_upcalls_ch, BW_UPCALLS_PERIOD,
2518	expire_bw_upcalls_send, NULL);
2519}
2520
2521/*
2522 * A periodic function for periodic scanning of the multicast forwarding
2523 * table for processing all "<=" bw_meter entries.
2524 */
2525static void
2526expire_bw_meter_process(void *unused)
2527{
2528    if (mrt_api_config & MRT_MFC_BW_UPCALL)
2529	bw_meter_process();
2530
2531    callout_reset(&bw_meter_ch, BW_METER_PERIOD, expire_bw_meter_process, NULL);
2532}
2533
2534/*
2535 * End of bandwidth monitoring code
2536 */
2537
2538/*
2539 * Send the packet up to the user daemon, or eventually do kernel encapsulation
2540 *
2541 */
2542static int
2543pim_register_send(struct ip *ip, struct vif *vifp,
2544	struct mbuf *m, struct mfc *rt)
2545{
2546    struct mbuf *mb_copy, *mm;
2547
2548    if (mrtdebug & DEBUG_PIM)
2549	log(LOG_DEBUG, "pim_register_send: ");
2550
2551    /*
2552     * Do not send IGMP_WHOLEPKT notifications to userland, if the
2553     * rendezvous point was unspecified, and we were told not to.
2554     */
2555    if (pim_squelch_wholepkt != 0 && (mrt_api_config & MRT_MFC_RP) &&
2556	(rt->mfc_rp.s_addr == INADDR_ANY))
2557	return 0;
2558
2559    mb_copy = pim_register_prepare(ip, m);
2560    if (mb_copy == NULL)
2561	return ENOBUFS;
2562
2563    /*
2564     * Send all the fragments. Note that the mbuf for each fragment
2565     * is freed by the sending machinery.
2566     */
2567    for (mm = mb_copy; mm; mm = mb_copy) {
2568	mb_copy = mm->m_nextpkt;
2569	mm->m_nextpkt = 0;
2570	mm = m_pullup(mm, sizeof(struct ip));
2571	if (mm != NULL) {
2572	    ip = mtod(mm, struct ip *);
2573	    if ((mrt_api_config & MRT_MFC_RP) &&
2574		(rt->mfc_rp.s_addr != INADDR_ANY)) {
2575		pim_register_send_rp(ip, vifp, mm, rt);
2576	    } else {
2577		pim_register_send_upcall(ip, vifp, mm, rt);
2578	    }
2579	}
2580    }
2581
2582    return 0;
2583}
2584
2585/*
2586 * Return a copy of the data packet that is ready for PIM Register
2587 * encapsulation.
2588 * XXX: Note that in the returned copy the IP header is a valid one.
2589 */
2590static struct mbuf *
2591pim_register_prepare(struct ip *ip, struct mbuf *m)
2592{
2593    struct mbuf *mb_copy = NULL;
2594    int mtu;
2595
2596    /* Take care of delayed checksums */
2597    if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
2598	in_delayed_cksum(m);
2599	m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
2600    }
2601
2602    /*
2603     * Copy the old packet & pullup its IP header into the
2604     * new mbuf so we can modify it.
2605     */
2606    mb_copy = m_copypacket(m, M_DONTWAIT);
2607    if (mb_copy == NULL)
2608	return NULL;
2609    mb_copy = m_pullup(mb_copy, ip->ip_hl << 2);
2610    if (mb_copy == NULL)
2611	return NULL;
2612
2613    /* take care of the TTL */
2614    ip = mtod(mb_copy, struct ip *);
2615    --ip->ip_ttl;
2616
2617    /* Compute the MTU after the PIM Register encapsulation */
2618    mtu = 0xffff - sizeof(pim_encap_iphdr) - sizeof(pim_encap_pimhdr);
2619
2620    if (ip->ip_len <= mtu) {
2621	/* Turn the IP header into a valid one */
2622	ip->ip_len = htons(ip->ip_len);
2623	ip->ip_off = htons(ip->ip_off);
2624	ip->ip_sum = 0;
2625	ip->ip_sum = in_cksum(mb_copy, ip->ip_hl << 2);
2626    } else {
2627	/* Fragment the packet */
2628	if (ip_fragment(ip, &mb_copy, mtu, 0, CSUM_DELAY_IP) != 0) {
2629	    m_freem(mb_copy);
2630	    return NULL;
2631	}
2632    }
2633    return mb_copy;
2634}
2635
2636/*
2637 * Send an upcall with the data packet to the user-level process.
2638 */
2639static int
2640pim_register_send_upcall(struct ip *ip, struct vif *vifp,
2641	struct mbuf *mb_copy, struct mfc *rt)
2642{
2643    struct mbuf *mb_first;
2644    int len = ntohs(ip->ip_len);
2645    struct igmpmsg *im;
2646    struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
2647
2648    VIF_LOCK_ASSERT();
2649
2650    /*
2651     * Add a new mbuf with an upcall header
2652     */
2653    MGETHDR(mb_first, M_DONTWAIT, MT_DATA);
2654    if (mb_first == NULL) {
2655	m_freem(mb_copy);
2656	return ENOBUFS;
2657    }
2658    mb_first->m_data += max_linkhdr;
2659    mb_first->m_pkthdr.len = len + sizeof(struct igmpmsg);
2660    mb_first->m_len = sizeof(struct igmpmsg);
2661    mb_first->m_next = mb_copy;
2662
2663    /* Send message to routing daemon */
2664    im = mtod(mb_first, struct igmpmsg *);
2665    im->im_msgtype	= IGMPMSG_WHOLEPKT;
2666    im->im_mbz		= 0;
2667    im->im_vif		= vifp - viftable;
2668    im->im_src		= ip->ip_src;
2669    im->im_dst		= ip->ip_dst;
2670
2671    k_igmpsrc.sin_addr	= ip->ip_src;
2672
2673    mrtstat.mrts_upcalls++;
2674
2675    if (socket_send(ip_mrouter, mb_first, &k_igmpsrc) < 0) {
2676	if (mrtdebug & DEBUG_PIM)
2677	    log(LOG_WARNING,
2678		"mcast: pim_register_send_upcall: ip_mrouter socket queue full");
2679	++mrtstat.mrts_upq_sockfull;
2680	return ENOBUFS;
2681    }
2682
2683    /* Keep statistics */
2684    pimstat.pims_snd_registers_msgs++;
2685    pimstat.pims_snd_registers_bytes += len;
2686
2687    return 0;
2688}
2689
2690/*
2691 * Encapsulate the data packet in PIM Register message and send it to the RP.
2692 */
2693static int
2694pim_register_send_rp(struct ip *ip, struct vif *vifp,
2695	struct mbuf *mb_copy, struct mfc *rt)
2696{
2697    struct mbuf *mb_first;
2698    struct ip *ip_outer;
2699    struct pim_encap_pimhdr *pimhdr;
2700    int len = ntohs(ip->ip_len);
2701    vifi_t vifi = rt->mfc_parent;
2702
2703    VIF_LOCK_ASSERT();
2704
2705    if ((vifi >= numvifs) || (viftable[vifi].v_lcl_addr.s_addr == 0)) {
2706	m_freem(mb_copy);
2707	return EADDRNOTAVAIL;		/* The iif vif is invalid */
2708    }
2709
2710    /*
2711     * Add a new mbuf with the encapsulating header
2712     */
2713    MGETHDR(mb_first, M_DONTWAIT, MT_DATA);
2714    if (mb_first == NULL) {
2715	m_freem(mb_copy);
2716	return ENOBUFS;
2717    }
2718    mb_first->m_data += max_linkhdr;
2719    mb_first->m_len = sizeof(pim_encap_iphdr) + sizeof(pim_encap_pimhdr);
2720    mb_first->m_next = mb_copy;
2721
2722    mb_first->m_pkthdr.len = len + mb_first->m_len;
2723
2724    /*
2725     * Fill in the encapsulating IP and PIM header
2726     */
2727    ip_outer = mtod(mb_first, struct ip *);
2728    *ip_outer = pim_encap_iphdr;
2729    ip_outer->ip_id = ip_newid();
2730    ip_outer->ip_len = len + sizeof(pim_encap_iphdr) + sizeof(pim_encap_pimhdr);
2731    ip_outer->ip_src = viftable[vifi].v_lcl_addr;
2732    ip_outer->ip_dst = rt->mfc_rp;
2733    /*
2734     * Copy the inner header TOS to the outer header, and take care of the
2735     * IP_DF bit.
2736     */
2737    ip_outer->ip_tos = ip->ip_tos;
2738    if (ntohs(ip->ip_off) & IP_DF)
2739	ip_outer->ip_off |= IP_DF;
2740    pimhdr = (struct pim_encap_pimhdr *)((caddr_t)ip_outer
2741					 + sizeof(pim_encap_iphdr));
2742    *pimhdr = pim_encap_pimhdr;
2743    /* If the iif crosses a border, set the Border-bit */
2744    if (rt->mfc_flags[vifi] & MRT_MFC_FLAGS_BORDER_VIF & mrt_api_config)
2745	pimhdr->flags |= htonl(PIM_BORDER_REGISTER);
2746
2747    mb_first->m_data += sizeof(pim_encap_iphdr);
2748    pimhdr->pim.pim_cksum = in_cksum(mb_first, sizeof(pim_encap_pimhdr));
2749    mb_first->m_data -= sizeof(pim_encap_iphdr);
2750
2751    send_packet(vifp, mb_first);
2752
2753    /* Keep statistics */
2754    pimstat.pims_snd_registers_msgs++;
2755    pimstat.pims_snd_registers_bytes += len;
2756
2757    return 0;
2758}
2759
2760/*
2761 * pim_encapcheck() is called by the encap[46]_input() path at runtime to
2762 * determine if a packet is for PIM; allowing PIM to be dynamically loaded
2763 * into the kernel.
2764 */
2765static int
2766pim_encapcheck(const struct mbuf *m, int off, int proto, void *arg)
2767{
2768
2769#ifdef DIAGNOSTIC
2770    KASSERT(proto == IPPROTO_PIM, ("not for IPPROTO_PIM"));
2771#endif
2772    if (proto != IPPROTO_PIM)
2773	return 0;	/* not for us; reject the datagram. */
2774
2775    return 64;		/* claim the datagram. */
2776}
2777
2778/*
2779 * PIM-SMv2 and PIM-DM messages processing.
2780 * Receives and verifies the PIM control messages, and passes them
2781 * up to the listening socket, using rip_input().
2782 * The only message with special processing is the PIM_REGISTER message
2783 * (used by PIM-SM): the PIM header is stripped off, and the inner packet
2784 * is passed to if_simloop().
2785 */
2786void
2787pim_input(struct mbuf *m, int off)
2788{
2789    struct ip *ip = mtod(m, struct ip *);
2790    struct pim *pim;
2791    int minlen;
2792    int datalen = ip->ip_len;
2793    int ip_tos;
2794    int iphlen = off;
2795
2796    /* Keep statistics */
2797    pimstat.pims_rcv_total_msgs++;
2798    pimstat.pims_rcv_total_bytes += datalen;
2799
2800    /*
2801     * Validate lengths
2802     */
2803    if (datalen < PIM_MINLEN) {
2804	pimstat.pims_rcv_tooshort++;
2805	log(LOG_ERR, "pim_input: packet size too small %d from %lx\n",
2806	    datalen, (u_long)ip->ip_src.s_addr);
2807	m_freem(m);
2808	return;
2809    }
2810
2811    /*
2812     * If the packet is at least as big as a REGISTER, go agead
2813     * and grab the PIM REGISTER header size, to avoid another
2814     * possible m_pullup() later.
2815     *
2816     * PIM_MINLEN       == pimhdr + u_int32_t == 4 + 4 = 8
2817     * PIM_REG_MINLEN   == pimhdr + reghdr + encap_iphdr == 4 + 4 + 20 = 28
2818     */
2819    minlen = iphlen + (datalen >= PIM_REG_MINLEN ? PIM_REG_MINLEN : PIM_MINLEN);
2820    /*
2821     * Get the IP and PIM headers in contiguous memory, and
2822     * possibly the PIM REGISTER header.
2823     */
2824    if ((m->m_flags & M_EXT || m->m_len < minlen) &&
2825	(m = m_pullup(m, minlen)) == 0) {
2826	log(LOG_ERR, "pim_input: m_pullup failure\n");
2827	return;
2828    }
2829    /* m_pullup() may have given us a new mbuf so reset ip. */
2830    ip = mtod(m, struct ip *);
2831    ip_tos = ip->ip_tos;
2832
2833    /* adjust mbuf to point to the PIM header */
2834    m->m_data += iphlen;
2835    m->m_len  -= iphlen;
2836    pim = mtod(m, struct pim *);
2837
2838    /*
2839     * Validate checksum. If PIM REGISTER, exclude the data packet.
2840     *
2841     * XXX: some older PIMv2 implementations don't make this distinction,
2842     * so for compatibility reason perform the checksum over part of the
2843     * message, and if error, then over the whole message.
2844     */
2845    if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER && in_cksum(m, PIM_MINLEN) == 0) {
2846	/* do nothing, checksum okay */
2847    } else if (in_cksum(m, datalen)) {
2848	pimstat.pims_rcv_badsum++;
2849	if (mrtdebug & DEBUG_PIM)
2850	    log(LOG_DEBUG, "pim_input: invalid checksum");
2851	m_freem(m);
2852	return;
2853    }
2854
2855    /* PIM version check */
2856    if (PIM_VT_V(pim->pim_vt) < PIM_VERSION) {
2857	pimstat.pims_rcv_badversion++;
2858	log(LOG_ERR, "pim_input: incorrect version %d, expecting %d\n",
2859	    PIM_VT_V(pim->pim_vt), PIM_VERSION);
2860	m_freem(m);
2861	return;
2862    }
2863
2864    /* restore mbuf back to the outer IP */
2865    m->m_data -= iphlen;
2866    m->m_len  += iphlen;
2867
2868    if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER) {
2869	/*
2870	 * Since this is a REGISTER, we'll make a copy of the register
2871	 * headers ip + pim + u_int32 + encap_ip, to be passed up to the
2872	 * routing daemon.
2873	 */
2874	struct sockaddr_in dst = { sizeof(dst), AF_INET };
2875	struct mbuf *mcp;
2876	struct ip *encap_ip;
2877	u_int32_t *reghdr;
2878	struct ifnet *vifp;
2879
2880	VIF_LOCK();
2881	if ((reg_vif_num >= numvifs) || (reg_vif_num == VIFI_INVALID)) {
2882	    VIF_UNLOCK();
2883	    if (mrtdebug & DEBUG_PIM)
2884		log(LOG_DEBUG,
2885		    "pim_input: register vif not set: %d\n", reg_vif_num);
2886	    m_freem(m);
2887	    return;
2888	}
2889	/* XXX need refcnt? */
2890	vifp = viftable[reg_vif_num].v_ifp;
2891	VIF_UNLOCK();
2892
2893	/*
2894	 * Validate length
2895	 */
2896	if (datalen < PIM_REG_MINLEN) {
2897	    pimstat.pims_rcv_tooshort++;
2898	    pimstat.pims_rcv_badregisters++;
2899	    log(LOG_ERR,
2900		"pim_input: register packet size too small %d from %lx\n",
2901		datalen, (u_long)ip->ip_src.s_addr);
2902	    m_freem(m);
2903	    return;
2904	}
2905
2906	reghdr = (u_int32_t *)(pim + 1);
2907	encap_ip = (struct ip *)(reghdr + 1);
2908
2909	if (mrtdebug & DEBUG_PIM) {
2910	    log(LOG_DEBUG,
2911		"pim_input[register], encap_ip: %lx -> %lx, encap_ip len %d\n",
2912		(u_long)ntohl(encap_ip->ip_src.s_addr),
2913		(u_long)ntohl(encap_ip->ip_dst.s_addr),
2914		ntohs(encap_ip->ip_len));
2915	}
2916
2917	/* verify the version number of the inner packet */
2918	if (encap_ip->ip_v != IPVERSION) {
2919	    pimstat.pims_rcv_badregisters++;
2920	    if (mrtdebug & DEBUG_PIM) {
2921		log(LOG_DEBUG, "pim_input: invalid IP version (%d) "
2922		    "of the inner packet\n", encap_ip->ip_v);
2923	    }
2924	    m_freem(m);
2925	    return;
2926	}
2927
2928	/* verify the inner packet is destined to a mcast group */
2929	if (!IN_MULTICAST(ntohl(encap_ip->ip_dst.s_addr))) {
2930	    pimstat.pims_rcv_badregisters++;
2931	    if (mrtdebug & DEBUG_PIM)
2932		log(LOG_DEBUG,
2933		    "pim_input: inner packet of register is not "
2934		    "multicast %lx\n",
2935		    (u_long)ntohl(encap_ip->ip_dst.s_addr));
2936	    m_freem(m);
2937	    return;
2938	}
2939
2940	/* If a NULL_REGISTER, pass it to the daemon */
2941	if ((ntohl(*reghdr) & PIM_NULL_REGISTER))
2942	    goto pim_input_to_daemon;
2943
2944	/*
2945	 * Copy the TOS from the outer IP header to the inner IP header.
2946	 */
2947	if (encap_ip->ip_tos != ip_tos) {
2948	    /* Outer TOS -> inner TOS */
2949	    encap_ip->ip_tos = ip_tos;
2950	    /* Recompute the inner header checksum. Sigh... */
2951
2952	    /* adjust mbuf to point to the inner IP header */
2953	    m->m_data += (iphlen + PIM_MINLEN);
2954	    m->m_len  -= (iphlen + PIM_MINLEN);
2955
2956	    encap_ip->ip_sum = 0;
2957	    encap_ip->ip_sum = in_cksum(m, encap_ip->ip_hl << 2);
2958
2959	    /* restore mbuf to point back to the outer IP header */
2960	    m->m_data -= (iphlen + PIM_MINLEN);
2961	    m->m_len  += (iphlen + PIM_MINLEN);
2962	}
2963
2964	/*
2965	 * Decapsulate the inner IP packet and loopback to forward it
2966	 * as a normal multicast packet. Also, make a copy of the
2967	 *     outer_iphdr + pimhdr + reghdr + encap_iphdr
2968	 * to pass to the daemon later, so it can take the appropriate
2969	 * actions (e.g., send back PIM_REGISTER_STOP).
2970	 * XXX: here m->m_data points to the outer IP header.
2971	 */
2972	mcp = m_copy(m, 0, iphlen + PIM_REG_MINLEN);
2973	if (mcp == NULL) {
2974	    log(LOG_ERR,
2975		"pim_input: pim register: could not copy register head\n");
2976	    m_freem(m);
2977	    return;
2978	}
2979
2980	/* Keep statistics */
2981	/* XXX: registers_bytes include only the encap. mcast pkt */
2982	pimstat.pims_rcv_registers_msgs++;
2983	pimstat.pims_rcv_registers_bytes += ntohs(encap_ip->ip_len);
2984
2985	/*
2986	 * forward the inner ip packet; point m_data at the inner ip.
2987	 */
2988	m_adj(m, iphlen + PIM_MINLEN);
2989
2990	if (mrtdebug & DEBUG_PIM) {
2991	    log(LOG_DEBUG,
2992		"pim_input: forwarding decapsulated register: "
2993		"src %lx, dst %lx, vif %d\n",
2994		(u_long)ntohl(encap_ip->ip_src.s_addr),
2995		(u_long)ntohl(encap_ip->ip_dst.s_addr),
2996		reg_vif_num);
2997	}
2998	/* NB: vifp was collected above; can it change on us? */
2999	if_simloop(vifp, m, dst.sin_family, 0);
3000
3001	/* prepare the register head to send to the mrouting daemon */
3002	m = mcp;
3003    }
3004
3005pim_input_to_daemon:
3006    /*
3007     * Pass the PIM message up to the daemon; if it is a Register message,
3008     * pass the 'head' only up to the daemon. This includes the
3009     * outer IP header, PIM header, PIM-Register header and the
3010     * inner IP header.
3011     * XXX: the outer IP header pkt size of a Register is not adjust to
3012     * reflect the fact that the inner multicast data is truncated.
3013     */
3014    rip_input(m, iphlen);
3015
3016    return;
3017}
3018
3019/*
3020 * XXX: This is common code for dealing with initialization for both
3021 * the IPv4 and IPv6 multicast forwarding paths. It could do with cleanup.
3022 */
3023static int
3024ip_mroute_modevent(module_t mod, int type, void *unused)
3025{
3026    switch (type) {
3027    case MOD_LOAD:
3028	mtx_init(&mrouter_mtx, "mrouter initialization", NULL, MTX_DEF);
3029	MFC_LOCK_INIT();
3030	VIF_LOCK_INIT();
3031	ip_mrouter_reset();
3032	TUNABLE_ULONG_FETCH("net.inet.pim.squelch_wholepkt",
3033	    &pim_squelch_wholepkt);
3034
3035	pim_encap_cookie = encap_attach_func(AF_INET, IPPROTO_PIM,
3036	    pim_encapcheck, &in_pim_protosw, NULL);
3037	if (pim_encap_cookie == NULL) {
3038		printf("ip_mroute: unable to attach pim encap\n");
3039		VIF_LOCK_DESTROY();
3040		MFC_LOCK_DESTROY();
3041		mtx_destroy(&mrouter_mtx);
3042		return (EINVAL);
3043	}
3044
3045#ifdef INET6
3046	pim6_encap_cookie = encap_attach_func(AF_INET6, IPPROTO_PIM,
3047	    pim_encapcheck, (struct protosw *)&in6_pim_protosw, NULL);
3048	if (pim6_encap_cookie == NULL) {
3049		printf("ip_mroute: unable to attach pim6 encap\n");
3050		if (pim_encap_cookie) {
3051		    encap_detach(pim_encap_cookie);
3052		    pim_encap_cookie = NULL;
3053		}
3054		VIF_LOCK_DESTROY();
3055		MFC_LOCK_DESTROY();
3056		mtx_destroy(&mrouter_mtx);
3057		return (EINVAL);
3058	}
3059#endif
3060
3061	ip_mcast_src = X_ip_mcast_src;
3062	ip_mforward = X_ip_mforward;
3063	ip_mrouter_done = X_ip_mrouter_done;
3064	ip_mrouter_get = X_ip_mrouter_get;
3065	ip_mrouter_set = X_ip_mrouter_set;
3066
3067#ifdef INET6
3068	ip6_mforward = X_ip6_mforward;
3069	ip6_mrouter_done = X_ip6_mrouter_done;
3070	ip6_mrouter_get = X_ip6_mrouter_get;
3071	ip6_mrouter_set = X_ip6_mrouter_set;
3072	mrt6_ioctl = X_mrt6_ioctl;
3073#endif
3074
3075	ip_rsvp_force_done = X_ip_rsvp_force_done;
3076	ip_rsvp_vif = X_ip_rsvp_vif;
3077
3078	legal_vif_num = X_legal_vif_num;
3079	mrt_ioctl = X_mrt_ioctl;
3080	rsvp_input_p = X_rsvp_input;
3081	break;
3082
3083    case MOD_UNLOAD:
3084	/*
3085	 * Typically module unload happens after the user-level
3086	 * process has shutdown the kernel services (the check
3087	 * below insures someone can't just yank the module out
3088	 * from under a running process).  But if the module is
3089	 * just loaded and then unloaded w/o starting up a user
3090	 * process we still need to cleanup.
3091	 */
3092	if (ip_mrouter
3093#ifdef INET6
3094	    || ip6_mrouter
3095#endif
3096	)
3097	    return EINVAL;
3098
3099#ifdef INET6
3100	if (pim6_encap_cookie) {
3101	    encap_detach(pim6_encap_cookie);
3102	    pim6_encap_cookie = NULL;
3103	}
3104	X_ip6_mrouter_done();
3105	ip6_mforward = NULL;
3106	ip6_mrouter_done = NULL;
3107	ip6_mrouter_get = NULL;
3108	ip6_mrouter_set = NULL;
3109	mrt6_ioctl = NULL;
3110#endif
3111
3112	if (pim_encap_cookie) {
3113	    encap_detach(pim_encap_cookie);
3114	    pim_encap_cookie = NULL;
3115	}
3116	X_ip_mrouter_done();
3117	ip_mcast_src = NULL;
3118	ip_mforward = NULL;
3119	ip_mrouter_done = NULL;
3120	ip_mrouter_get = NULL;
3121	ip_mrouter_set = NULL;
3122
3123	ip_rsvp_force_done = NULL;
3124	ip_rsvp_vif = NULL;
3125
3126	legal_vif_num = NULL;
3127	mrt_ioctl = NULL;
3128	rsvp_input_p = NULL;
3129
3130	VIF_LOCK_DESTROY();
3131	MFC_LOCK_DESTROY();
3132	mtx_destroy(&mrouter_mtx);
3133	break;
3134
3135    default:
3136	return EOPNOTSUPP;
3137    }
3138    return 0;
3139}
3140
3141static moduledata_t ip_mroutemod = {
3142    "ip_mroute",
3143    ip_mroute_modevent,
3144    0
3145};
3146DECLARE_MODULE(ip_mroute, ip_mroutemod, SI_SUB_PSEUDO, SI_ORDER_ANY);
3147