ip_mroute.c revision 166623
1/*-
2 * Copyright (c) 1989 Stephen Deering
3 * Copyright (c) 1992, 1993
4 *      The Regents of the University of California.  All rights reserved.
5 *
6 * This code is derived from software contributed to Berkeley by
7 * Stephen Deering of Stanford University.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in the
16 *    documentation and/or other materials provided with the distribution.
17 * 4. Neither the name of the University nor the names of its contributors
18 *    may be used to endorse or promote products derived from this software
19 *    without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 *
33 *      @(#)ip_mroute.c 8.2 (Berkeley) 11/15/93
34 */
35
36/*
37 * IP multicast forwarding procedures
38 *
39 * Written by David Waitzman, BBN Labs, August 1988.
40 * Modified by Steve Deering, Stanford, February 1989.
41 * Modified by Mark J. Steiglitz, Stanford, May, 1991
42 * Modified by Van Jacobson, LBL, January 1993
43 * Modified by Ajit Thyagarajan, PARC, August 1993
44 * Modified by Bill Fenner, PARC, April 1995
45 * Modified by Ahmed Helmy, SGI, June 1996
46 * Modified by George Edmond Eddy (Rusty), ISI, February 1998
47 * Modified by Pavlin Radoslavov, USC/ISI, May 1998, August 1999, October 2000
48 * Modified by Hitoshi Asaeda, WIDE, August 2000
49 * Modified by Pavlin Radoslavov, ICSI, October 2002
50 *
51 * MROUTING Revision: 3.5
52 * and PIM-SMv2 and PIM-DM support, advanced API support,
53 * bandwidth metering and signaling
54 *
55 * $FreeBSD: head/sys/netinet/ip_mroute.c 166623 2007-02-10 14:48:42Z bms $
56 */
57
58#include "opt_mac.h"
59#include "opt_mrouting.h"
60
61#define _PIM_VT 1
62
63#include <sys/param.h>
64#include <sys/kernel.h>
65#include <sys/lock.h>
66#include <sys/malloc.h>
67#include <sys/mbuf.h>
68#include <sys/module.h>
69#include <sys/priv.h>
70#include <sys/protosw.h>
71#include <sys/signalvar.h>
72#include <sys/socket.h>
73#include <sys/socketvar.h>
74#include <sys/sockio.h>
75#include <sys/sx.h>
76#include <sys/sysctl.h>
77#include <sys/syslog.h>
78#include <sys/systm.h>
79#include <sys/time.h>
80#include <net/if.h>
81#include <net/netisr.h>
82#include <net/route.h>
83#include <netinet/in.h>
84#include <netinet/igmp.h>
85#include <netinet/in_systm.h>
86#include <netinet/in_var.h>
87#include <netinet/ip.h>
88#include <netinet/ip_encap.h>
89#include <netinet/ip_mroute.h>
90#include <netinet/ip_var.h>
91#include <netinet/ip_options.h>
92#include <netinet/pim.h>
93#include <netinet/pim_var.h>
94#include <netinet/udp.h>
95#include <machine/in_cksum.h>
96
97#include <security/mac/mac_framework.h>
98
99/*
100 * Control debugging code for rsvp and multicast routing code.
101 * Can only set them with the debugger.
102 */
103static u_int    rsvpdebug;		/* non-zero enables debugging	*/
104
105static u_int	mrtdebug;		/* any set of the flags below	*/
106#define		DEBUG_MFC	0x02
107#define		DEBUG_FORWARD	0x04
108#define		DEBUG_EXPIRE	0x08
109#define		DEBUG_XMIT	0x10
110#define		DEBUG_PIM	0x20
111
112#define		VIFI_INVALID	((vifi_t) -1)
113
114#define M_HASCL(m)	((m)->m_flags & M_EXT)
115
116static MALLOC_DEFINE(M_MRTABLE, "mroutetbl", "multicast routing tables");
117
118/*
119 * Locking.  We use two locks: one for the virtual interface table and
120 * one for the forwarding table.  These locks may be nested in which case
121 * the VIF lock must always be taken first.  Note that each lock is used
122 * to cover not only the specific data structure but also related data
123 * structures.  It may be better to add more fine-grained locking later;
124 * it's not clear how performance-critical this code is.
125 *
126 * XXX: This module could particularly benefit from being cleaned
127 *      up to use the <sys/queue.h> macros.
128 *
129 */
130
131static struct mrtstat	mrtstat;
132SYSCTL_STRUCT(_net_inet_ip, OID_AUTO, mrtstat, CTLFLAG_RW,
133    &mrtstat, mrtstat,
134    "Multicast Routing Statistics (struct mrtstat, netinet/ip_mroute.h)");
135
136static struct mfc	*mfctable[MFCTBLSIZ];
137SYSCTL_OPAQUE(_net_inet_ip, OID_AUTO, mfctable, CTLFLAG_RD,
138    &mfctable, sizeof(mfctable), "S,*mfc[MFCTBLSIZ]",
139    "Multicast Forwarding Table (struct *mfc[MFCTBLSIZ], netinet/ip_mroute.h)");
140
141static struct mtx mfc_mtx;
142#define	MFC_LOCK()	mtx_lock(&mfc_mtx)
143#define	MFC_UNLOCK()	mtx_unlock(&mfc_mtx)
144#define	MFC_LOCK_ASSERT()	do {					\
145	mtx_assert(&mfc_mtx, MA_OWNED);					\
146	NET_ASSERT_GIANT();						\
147} while (0)
148#define	MFC_LOCK_INIT()	mtx_init(&mfc_mtx, "mroute mfc table", NULL, MTX_DEF)
149#define	MFC_LOCK_DESTROY()	mtx_destroy(&mfc_mtx)
150
151static struct vif	viftable[MAXVIFS];
152SYSCTL_OPAQUE(_net_inet_ip, OID_AUTO, viftable, CTLFLAG_RD,
153    &viftable, sizeof(viftable), "S,vif[MAXVIFS]",
154    "Multicast Virtual Interfaces (struct vif[MAXVIFS], netinet/ip_mroute.h)");
155
156static struct mtx vif_mtx;
157#define	VIF_LOCK()	mtx_lock(&vif_mtx)
158#define	VIF_UNLOCK()	mtx_unlock(&vif_mtx)
159#define	VIF_LOCK_ASSERT()	mtx_assert(&vif_mtx, MA_OWNED)
160#define	VIF_LOCK_INIT()	mtx_init(&vif_mtx, "mroute vif table", NULL, MTX_DEF)
161#define	VIF_LOCK_DESTROY()	mtx_destroy(&vif_mtx)
162
163static u_char		nexpire[MFCTBLSIZ];
164
165static eventhandler_tag if_detach_event_tag = NULL;
166
167static struct callout expire_upcalls_ch;
168
169#define		EXPIRE_TIMEOUT	(hz / 4)	/* 4x / second		*/
170#define		UPCALL_EXPIRE	6		/* number of timeouts	*/
171
172#define ENCAP_TTL 64
173
174/*
175 * Bandwidth meter variables and constants
176 */
177static MALLOC_DEFINE(M_BWMETER, "bwmeter", "multicast upcall bw meters");
178/*
179 * Pending timeouts are stored in a hash table, the key being the
180 * expiration time. Periodically, the entries are analysed and processed.
181 */
182#define BW_METER_BUCKETS	1024
183static struct bw_meter *bw_meter_timers[BW_METER_BUCKETS];
184static struct callout bw_meter_ch;
185#define BW_METER_PERIOD (hz)		/* periodical handling of bw meters */
186
187/*
188 * Pending upcalls are stored in a vector which is flushed when
189 * full, or periodically
190 */
191static struct bw_upcall	bw_upcalls[BW_UPCALLS_MAX];
192static u_int	bw_upcalls_n; /* # of pending upcalls */
193static struct callout bw_upcalls_ch;
194#define BW_UPCALLS_PERIOD (hz)		/* periodical flush of bw upcalls */
195
196static struct pimstat pimstat;
197
198SYSCTL_NODE(_net_inet, IPPROTO_PIM, pim, CTLFLAG_RW, 0, "PIM");
199SYSCTL_STRUCT(_net_inet_pim, PIMCTL_STATS, stats, CTLFLAG_RD,
200    &pimstat, pimstat,
201    "PIM Statistics (struct pimstat, netinet/pim_var.h)");
202
203static u_long	pim_squelch_wholepkt = 0;
204SYSCTL_ULONG(_net_inet_pim, OID_AUTO, squelch_wholepkt, CTLFLAG_RW,
205    &pim_squelch_wholepkt, 0,
206    "Disable IGMP_WHOLEPKT notifications if rendezvous point is unspecified");
207
208extern  struct domain inetdomain;
209struct protosw in_pim_protosw = {
210	.pr_type =		SOCK_RAW,
211	.pr_domain =		&inetdomain,
212	.pr_protocol =		IPPROTO_PIM,
213	.pr_flags =		PR_ATOMIC|PR_ADDR|PR_LASTHDR,
214	.pr_input =		pim_input,
215	.pr_output =		(pr_output_t*)rip_output,
216	.pr_ctloutput =		rip_ctloutput,
217	.pr_usrreqs =		&rip_usrreqs
218};
219static const struct encaptab *pim_encap_cookie;
220static int pim_encapcheck(const struct mbuf *, int, int, void *);
221
222/*
223 * Note: the PIM Register encapsulation adds the following in front of a
224 * data packet:
225 *
226 * struct pim_encap_hdr {
227 *    struct ip ip;
228 *    struct pim_encap_pimhdr  pim;
229 * }
230 *
231 */
232
233struct pim_encap_pimhdr {
234	struct pim pim;
235	uint32_t   flags;
236};
237
238static struct ip pim_encap_iphdr = {
239#if BYTE_ORDER == LITTLE_ENDIAN
240	sizeof(struct ip) >> 2,
241	IPVERSION,
242#else
243	IPVERSION,
244	sizeof(struct ip) >> 2,
245#endif
246	0,			/* tos */
247	sizeof(struct ip),	/* total length */
248	0,			/* id */
249	0,			/* frag offset */
250	ENCAP_TTL,
251	IPPROTO_PIM,
252	0,			/* checksum */
253};
254
255static struct pim_encap_pimhdr pim_encap_pimhdr = {
256    {
257	PIM_MAKE_VT(PIM_VERSION, PIM_REGISTER), /* PIM vers and message type */
258	0,			/* reserved */
259	0,			/* checksum */
260    },
261    0				/* flags */
262};
263
264static struct ifnet multicast_register_if;
265static vifi_t reg_vif_num = VIFI_INVALID;
266
267/*
268 * Private variables.
269 */
270static vifi_t	   numvifs;
271
272static u_long	X_ip_mcast_src(int vifi);
273static int	X_ip_mforward(struct ip *ip, struct ifnet *ifp,
274			struct mbuf *m, struct ip_moptions *imo);
275static int	X_ip_mrouter_done(void);
276static int	X_ip_mrouter_get(struct socket *so, struct sockopt *m);
277static int	X_ip_mrouter_set(struct socket *so, struct sockopt *m);
278static int	X_legal_vif_num(int vif);
279static int	X_mrt_ioctl(int cmd, caddr_t data);
280
281static int get_sg_cnt(struct sioc_sg_req *);
282static int get_vif_cnt(struct sioc_vif_req *);
283static void if_detached_event(void *arg __unused, struct ifnet *);
284static int ip_mrouter_init(struct socket *, int);
285static int add_vif(struct vifctl *);
286static int del_vif_locked(vifi_t);
287static int del_vif(vifi_t);
288static int add_mfc(struct mfcctl2 *);
289static int del_mfc(struct mfcctl2 *);
290static int set_api_config(uint32_t *); /* chose API capabilities */
291static int socket_send(struct socket *, struct mbuf *, struct sockaddr_in *);
292static int set_assert(int);
293static void expire_upcalls(void *);
294static int ip_mdq(struct mbuf *, struct ifnet *, struct mfc *, vifi_t);
295static void phyint_send(struct ip *, struct vif *, struct mbuf *);
296static void send_packet(struct vif *, struct mbuf *);
297
298/*
299 * Bandwidth monitoring
300 */
301static void free_bw_list(struct bw_meter *list);
302static int add_bw_upcall(struct bw_upcall *);
303static int del_bw_upcall(struct bw_upcall *);
304static void bw_meter_receive_packet(struct bw_meter *x, int plen,
305		struct timeval *nowp);
306static void bw_meter_prepare_upcall(struct bw_meter *x, struct timeval *nowp);
307static void bw_upcalls_send(void);
308static void schedule_bw_meter(struct bw_meter *x, struct timeval *nowp);
309static void unschedule_bw_meter(struct bw_meter *x);
310static void bw_meter_process(void);
311static void expire_bw_upcalls_send(void *);
312static void expire_bw_meter_process(void *);
313
314static int pim_register_send(struct ip *, struct vif *,
315		struct mbuf *, struct mfc *);
316static int pim_register_send_rp(struct ip *, struct vif *,
317		struct mbuf *, struct mfc *);
318static int pim_register_send_upcall(struct ip *, struct vif *,
319		struct mbuf *, struct mfc *);
320static struct mbuf *pim_register_prepare(struct ip *, struct mbuf *);
321
322/*
323 * whether or not special PIM assert processing is enabled.
324 */
325static int pim_assert;
326/*
327 * Rate limit for assert notification messages, in usec
328 */
329#define ASSERT_MSG_TIME		3000000
330
331/*
332 * Kernel multicast routing API capabilities and setup.
333 * If more API capabilities are added to the kernel, they should be
334 * recorded in `mrt_api_support'.
335 */
336static const uint32_t mrt_api_support = (MRT_MFC_FLAGS_DISABLE_WRONGVIF |
337					 MRT_MFC_FLAGS_BORDER_VIF |
338					 MRT_MFC_RP |
339					 MRT_MFC_BW_UPCALL);
340static uint32_t mrt_api_config = 0;
341
342/*
343 * Hash function for a source, group entry
344 */
345#define MFCHASH(a, g) MFCHASHMOD(((a) >> 20) ^ ((a) >> 10) ^ (a) ^ \
346			((g) >> 20) ^ ((g) >> 10) ^ (g))
347
348/*
349 * Find a route for a given origin IP address and Multicast group address
350 * Type of service parameter to be added in the future!!!
351 * Statistics are updated by the caller if needed
352 * (mrtstat.mrts_mfc_lookups and mrtstat.mrts_mfc_misses)
353 */
354static struct mfc *
355mfc_find(in_addr_t o, in_addr_t g)
356{
357    struct mfc *rt;
358
359    MFC_LOCK_ASSERT();
360
361    for (rt = mfctable[MFCHASH(o,g)]; rt; rt = rt->mfc_next)
362	if ((rt->mfc_origin.s_addr == o) &&
363		(rt->mfc_mcastgrp.s_addr == g) && (rt->mfc_stall == NULL))
364	    break;
365    return rt;
366}
367
368/*
369 * Macros to compute elapsed time efficiently
370 * Borrowed from Van Jacobson's scheduling code
371 */
372#define TV_DELTA(a, b, delta) {					\
373	int xxs;						\
374	delta = (a).tv_usec - (b).tv_usec;			\
375	if ((xxs = (a).tv_sec - (b).tv_sec)) {			\
376		switch (xxs) {					\
377		case 2:						\
378		      delta += 1000000;				\
379		      /* FALLTHROUGH */				\
380		case 1:						\
381		      delta += 1000000;				\
382		      break;					\
383		default:					\
384		      delta += (1000000 * xxs);			\
385		}						\
386	}							\
387}
388
389#define TV_LT(a, b) (((a).tv_usec < (b).tv_usec && \
390	      (a).tv_sec <= (b).tv_sec) || (a).tv_sec < (b).tv_sec)
391
392/*
393 * Handle MRT setsockopt commands to modify the multicast routing tables.
394 */
395static int
396X_ip_mrouter_set(struct socket *so, struct sockopt *sopt)
397{
398    int	error, optval;
399    vifi_t	vifi;
400    struct	vifctl vifc;
401    struct	mfcctl2 mfc;
402    struct	bw_upcall bw_upcall;
403    uint32_t	i;
404
405    if (so != ip_mrouter && sopt->sopt_name != MRT_INIT)
406	return EPERM;
407
408    error = 0;
409    switch (sopt->sopt_name) {
410    case MRT_INIT:
411	error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval);
412	if (error)
413	    break;
414	error = ip_mrouter_init(so, optval);
415	break;
416
417    case MRT_DONE:
418	error = ip_mrouter_done();
419	break;
420
421    case MRT_ADD_VIF:
422	error = sooptcopyin(sopt, &vifc, sizeof vifc, sizeof vifc);
423	if (error)
424	    break;
425	error = add_vif(&vifc);
426	break;
427
428    case MRT_DEL_VIF:
429	error = sooptcopyin(sopt, &vifi, sizeof vifi, sizeof vifi);
430	if (error)
431	    break;
432	error = del_vif(vifi);
433	break;
434
435    case MRT_ADD_MFC:
436    case MRT_DEL_MFC:
437	/*
438	 * select data size depending on API version.
439	 */
440	if (sopt->sopt_name == MRT_ADD_MFC &&
441		mrt_api_config & MRT_API_FLAGS_ALL) {
442	    error = sooptcopyin(sopt, &mfc, sizeof(struct mfcctl2),
443				sizeof(struct mfcctl2));
444	} else {
445	    error = sooptcopyin(sopt, &mfc, sizeof(struct mfcctl),
446				sizeof(struct mfcctl));
447	    bzero((caddr_t)&mfc + sizeof(struct mfcctl),
448			sizeof(mfc) - sizeof(struct mfcctl));
449	}
450	if (error)
451	    break;
452	if (sopt->sopt_name == MRT_ADD_MFC)
453	    error = add_mfc(&mfc);
454	else
455	    error = del_mfc(&mfc);
456	break;
457
458    case MRT_ASSERT:
459	error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval);
460	if (error)
461	    break;
462	set_assert(optval);
463	break;
464
465    case MRT_API_CONFIG:
466	error = sooptcopyin(sopt, &i, sizeof i, sizeof i);
467	if (!error)
468	    error = set_api_config(&i);
469	if (!error)
470	    error = sooptcopyout(sopt, &i, sizeof i);
471	break;
472
473    case MRT_ADD_BW_UPCALL:
474    case MRT_DEL_BW_UPCALL:
475	error = sooptcopyin(sopt, &bw_upcall, sizeof bw_upcall,
476				sizeof bw_upcall);
477	if (error)
478	    break;
479	if (sopt->sopt_name == MRT_ADD_BW_UPCALL)
480	    error = add_bw_upcall(&bw_upcall);
481	else
482	    error = del_bw_upcall(&bw_upcall);
483	break;
484
485    default:
486	error = EOPNOTSUPP;
487	break;
488    }
489    return error;
490}
491
492/*
493 * Handle MRT getsockopt commands
494 */
495static int
496X_ip_mrouter_get(struct socket *so, struct sockopt *sopt)
497{
498    int error;
499    static int version = 0x0305; /* !!! why is this here? XXX */
500
501    switch (sopt->sopt_name) {
502    case MRT_VERSION:
503	error = sooptcopyout(sopt, &version, sizeof version);
504	break;
505
506    case MRT_ASSERT:
507	error = sooptcopyout(sopt, &pim_assert, sizeof pim_assert);
508	break;
509
510    case MRT_API_SUPPORT:
511	error = sooptcopyout(sopt, &mrt_api_support, sizeof mrt_api_support);
512	break;
513
514    case MRT_API_CONFIG:
515	error = sooptcopyout(sopt, &mrt_api_config, sizeof mrt_api_config);
516	break;
517
518    default:
519	error = EOPNOTSUPP;
520	break;
521    }
522    return error;
523}
524
525/*
526 * Handle ioctl commands to obtain information from the cache
527 */
528static int
529X_mrt_ioctl(int cmd, caddr_t data)
530{
531    int error = 0;
532
533    /*
534     * Currently the only function calling this ioctl routine is rtioctl().
535     * Typically, only root can create the raw socket in order to execute
536     * this ioctl method, however the request might be coming from a prison
537     */
538    error = priv_check(curthread, PRIV_NETINET_MROUTE);
539    if (error)
540	return (error);
541    switch (cmd) {
542    case (SIOCGETVIFCNT):
543	error = get_vif_cnt((struct sioc_vif_req *)data);
544	break;
545
546    case (SIOCGETSGCNT):
547	error = get_sg_cnt((struct sioc_sg_req *)data);
548	break;
549
550    default:
551	error = EINVAL;
552	break;
553    }
554    return error;
555}
556
557/*
558 * returns the packet, byte, rpf-failure count for the source group provided
559 */
560static int
561get_sg_cnt(struct sioc_sg_req *req)
562{
563    struct mfc *rt;
564
565    MFC_LOCK();
566    rt = mfc_find(req->src.s_addr, req->grp.s_addr);
567    if (rt == NULL) {
568	MFC_UNLOCK();
569	req->pktcnt = req->bytecnt = req->wrong_if = 0xffffffff;
570	return EADDRNOTAVAIL;
571    }
572    req->pktcnt = rt->mfc_pkt_cnt;
573    req->bytecnt = rt->mfc_byte_cnt;
574    req->wrong_if = rt->mfc_wrong_if;
575    MFC_UNLOCK();
576    return 0;
577}
578
579/*
580 * returns the input and output packet and byte counts on the vif provided
581 */
582static int
583get_vif_cnt(struct sioc_vif_req *req)
584{
585    vifi_t vifi = req->vifi;
586
587    VIF_LOCK();
588    if (vifi >= numvifs) {
589	VIF_UNLOCK();
590	return EINVAL;
591    }
592
593    req->icount = viftable[vifi].v_pkt_in;
594    req->ocount = viftable[vifi].v_pkt_out;
595    req->ibytes = viftable[vifi].v_bytes_in;
596    req->obytes = viftable[vifi].v_bytes_out;
597    VIF_UNLOCK();
598
599    return 0;
600}
601
602static void
603ip_mrouter_reset(void)
604{
605    bzero((caddr_t)mfctable, sizeof(mfctable));
606    bzero((caddr_t)nexpire, sizeof(nexpire));
607
608    pim_assert = 0;
609    mrt_api_config = 0;
610
611    callout_init(&expire_upcalls_ch, NET_CALLOUT_MPSAFE);
612
613    bw_upcalls_n = 0;
614    bzero((caddr_t)bw_meter_timers, sizeof(bw_meter_timers));
615    callout_init(&bw_upcalls_ch, NET_CALLOUT_MPSAFE);
616    callout_init(&bw_meter_ch, NET_CALLOUT_MPSAFE);
617}
618
619static struct mtx mrouter_mtx;
620
621static void
622if_detached_event(void *arg __unused, struct ifnet *ifp)
623{
624    vifi_t vifi;
625    int i;
626    struct mfc *mfc;
627    struct mfc *nmfc;
628    struct mfc **ppmfc;	/* Pointer to previous node's next-pointer */
629    struct rtdetq *pq;
630    struct rtdetq *npq;
631
632    mtx_lock(&mrouter_mtx);
633    if (ip_mrouter == NULL) {
634	mtx_unlock(&mrouter_mtx);
635    }
636
637    /*
638     * Tear down multicast forwarder state associated with this ifnet.
639     * 1. Walk the vif list, matching vifs against this ifnet.
640     * 2. Walk the multicast forwarding cache (mfc) looking for
641     *    inner matches with this vif's index.
642     * 3. Free any pending mbufs for this mfc.
643     * 4. Free the associated mfc entry and state associated with this vif.
644     *    Be very careful about unlinking from a singly-linked list whose
645     *    "head node" is a pointer in a simple array.
646     * 5. Free vif state. This should disable ALLMULTI on the interface.
647     */
648    VIF_LOCK();
649    MFC_LOCK();
650    for (vifi = 0; vifi < numvifs; vifi++) {
651	if (viftable[vifi].v_ifp != ifp)
652		continue;
653	for (i = 0; i < MFCTBLSIZ; i++) {
654	    ppmfc = &mfctable[i];
655	    for (mfc = mfctable[i]; mfc != NULL; ) {
656		nmfc = mfc->mfc_next;
657		if (mfc->mfc_parent == vifi) {
658		    for (pq = mfc->mfc_stall; pq != NULL; ) {
659			npq = pq->next;
660			m_freem(pq->m);
661			free(pq, M_MRTABLE);
662			pq = npq;
663		    }
664		    free_bw_list(mfc->mfc_bw_meter);
665		    free(mfc, M_MRTABLE);
666		    *ppmfc = nmfc;
667		} else {
668		    ppmfc = &mfc->mfc_next;
669		}
670		mfc = nmfc;
671	    }
672	}
673	del_vif_locked(vifi);
674    }
675    MFC_UNLOCK();
676    VIF_UNLOCK();
677
678    mtx_unlock(&mrouter_mtx);
679}
680
681/*
682 * Enable multicast routing
683 */
684static int
685ip_mrouter_init(struct socket *so, int version)
686{
687    if (mrtdebug)
688	log(LOG_DEBUG, "ip_mrouter_init: so_type = %d, pr_protocol = %d\n",
689	    so->so_type, so->so_proto->pr_protocol);
690
691    if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_IGMP)
692	return EOPNOTSUPP;
693
694    if (version != 1)
695	return ENOPROTOOPT;
696
697    mtx_lock(&mrouter_mtx);
698
699    if (ip_mrouter != NULL) {
700	mtx_unlock(&mrouter_mtx);
701	return EADDRINUSE;
702    }
703
704    if_detach_event_tag = EVENTHANDLER_REGISTER(ifnet_departure_event,
705        if_detached_event, NULL, EVENTHANDLER_PRI_ANY);
706    if (if_detach_event_tag == NULL)
707	return (ENOMEM);
708
709    callout_reset(&expire_upcalls_ch, EXPIRE_TIMEOUT, expire_upcalls, NULL);
710
711    callout_reset(&bw_upcalls_ch, BW_UPCALLS_PERIOD,
712	expire_bw_upcalls_send, NULL);
713    callout_reset(&bw_meter_ch, BW_METER_PERIOD, expire_bw_meter_process, NULL);
714
715    ip_mrouter = so;
716
717    mtx_unlock(&mrouter_mtx);
718
719    if (mrtdebug)
720	log(LOG_DEBUG, "ip_mrouter_init\n");
721
722    return 0;
723}
724
725/*
726 * Disable multicast routing
727 */
728static int
729X_ip_mrouter_done(void)
730{
731    vifi_t vifi;
732    int i;
733    struct ifnet *ifp;
734    struct ifreq ifr;
735    struct mfc *rt;
736    struct rtdetq *rte;
737
738    mtx_lock(&mrouter_mtx);
739
740    if (ip_mrouter == NULL) {
741	mtx_unlock(&mrouter_mtx);
742	return EINVAL;
743    }
744
745    /*
746     * Detach/disable hooks to the reset of the system.
747     */
748    ip_mrouter = NULL;
749    mrt_api_config = 0;
750
751    VIF_LOCK();
752    /*
753     * For each phyint in use, disable promiscuous reception of all IP
754     * multicasts.
755     */
756    for (vifi = 0; vifi < numvifs; vifi++) {
757	if (viftable[vifi].v_lcl_addr.s_addr != 0 &&
758		!(viftable[vifi].v_flags & (VIFF_TUNNEL | VIFF_REGISTER))) {
759	    struct sockaddr_in *so = (struct sockaddr_in *)&(ifr.ifr_addr);
760
761	    so->sin_len = sizeof(struct sockaddr_in);
762	    so->sin_family = AF_INET;
763	    so->sin_addr.s_addr = INADDR_ANY;
764	    ifp = viftable[vifi].v_ifp;
765	    if_allmulti(ifp, 0);
766	}
767    }
768    bzero((caddr_t)viftable, sizeof(viftable));
769    numvifs = 0;
770    pim_assert = 0;
771    VIF_UNLOCK();
772    EVENTHANDLER_DEREGISTER(ifnet_departure_event, if_detach_event_tag);
773
774    /*
775     * Free all multicast forwarding cache entries.
776     */
777    callout_stop(&expire_upcalls_ch);
778    callout_stop(&bw_upcalls_ch);
779    callout_stop(&bw_meter_ch);
780
781    MFC_LOCK();
782    for (i = 0; i < MFCTBLSIZ; i++) {
783	for (rt = mfctable[i]; rt != NULL; ) {
784	    struct mfc *nr = rt->mfc_next;
785
786	    for (rte = rt->mfc_stall; rte != NULL; ) {
787		struct rtdetq *n = rte->next;
788
789		m_freem(rte->m);
790		free(rte, M_MRTABLE);
791		rte = n;
792	    }
793	    free_bw_list(rt->mfc_bw_meter);
794	    free(rt, M_MRTABLE);
795	    rt = nr;
796	}
797    }
798    bzero((caddr_t)mfctable, sizeof(mfctable));
799    bzero((caddr_t)nexpire, sizeof(nexpire));
800    bw_upcalls_n = 0;
801    bzero(bw_meter_timers, sizeof(bw_meter_timers));
802    MFC_UNLOCK();
803
804    reg_vif_num = VIFI_INVALID;
805
806    mtx_unlock(&mrouter_mtx);
807
808    if (mrtdebug)
809	log(LOG_DEBUG, "ip_mrouter_done\n");
810
811    return 0;
812}
813
814/*
815 * Set PIM assert processing global
816 */
817static int
818set_assert(int i)
819{
820    if ((i != 1) && (i != 0))
821	return EINVAL;
822
823    pim_assert = i;
824
825    return 0;
826}
827
828/*
829 * Configure API capabilities
830 */
831int
832set_api_config(uint32_t *apival)
833{
834    int i;
835
836    /*
837     * We can set the API capabilities only if it is the first operation
838     * after MRT_INIT. I.e.:
839     *  - there are no vifs installed
840     *  - pim_assert is not enabled
841     *  - the MFC table is empty
842     */
843    if (numvifs > 0) {
844	*apival = 0;
845	return EPERM;
846    }
847    if (pim_assert) {
848	*apival = 0;
849	return EPERM;
850    }
851    for (i = 0; i < MFCTBLSIZ; i++) {
852	if (mfctable[i] != NULL) {
853	    *apival = 0;
854	    return EPERM;
855	}
856    }
857
858    mrt_api_config = *apival & mrt_api_support;
859    *apival = mrt_api_config;
860
861    return 0;
862}
863
864/*
865 * Add a vif to the vif table
866 */
867static int
868add_vif(struct vifctl *vifcp)
869{
870    struct vif *vifp = viftable + vifcp->vifc_vifi;
871    struct sockaddr_in sin = {sizeof sin, AF_INET};
872    struct ifaddr *ifa;
873    struct ifnet *ifp;
874    int error;
875
876    VIF_LOCK();
877    if (vifcp->vifc_vifi >= MAXVIFS) {
878	VIF_UNLOCK();
879	return EINVAL;
880    }
881    /* rate limiting is no longer supported by this code */
882    if (vifcp->vifc_rate_limit != 0) {
883	log(LOG_ERR, "rate limiting is no longer supported\n");
884	VIF_UNLOCK();
885	return EINVAL;
886    }
887    if (vifp->v_lcl_addr.s_addr != INADDR_ANY) {
888	VIF_UNLOCK();
889	return EADDRINUSE;
890    }
891    if (vifcp->vifc_lcl_addr.s_addr == INADDR_ANY) {
892	VIF_UNLOCK();
893	return EADDRNOTAVAIL;
894    }
895
896    /* Find the interface with an address in AF_INET family */
897    if (vifcp->vifc_flags & VIFF_REGISTER) {
898	/*
899	 * XXX: Because VIFF_REGISTER does not really need a valid
900	 * local interface (e.g. it could be 127.0.0.2), we don't
901	 * check its address.
902	 */
903	ifp = NULL;
904    } else {
905	sin.sin_addr = vifcp->vifc_lcl_addr;
906	ifa = ifa_ifwithaddr((struct sockaddr *)&sin);
907	if (ifa == NULL) {
908	    VIF_UNLOCK();
909	    return EADDRNOTAVAIL;
910	}
911	ifp = ifa->ifa_ifp;
912    }
913
914    if ((vifcp->vifc_flags & VIFF_TUNNEL) != 0) {
915	log(LOG_ERR, "tunnels are no longer supported\n");
916	VIF_UNLOCK();
917	return EOPNOTSUPP;
918    } else if (vifcp->vifc_flags & VIFF_REGISTER) {
919	ifp = &multicast_register_if;
920	if (mrtdebug)
921	    log(LOG_DEBUG, "Adding a register vif, ifp: %p\n",
922		    (void *)&multicast_register_if);
923	if (reg_vif_num == VIFI_INVALID) {
924	    if_initname(&multicast_register_if, "register_vif", 0);
925	    multicast_register_if.if_flags = IFF_LOOPBACK;
926	    reg_vif_num = vifcp->vifc_vifi;
927	}
928    } else {		/* Make sure the interface supports multicast */
929	if ((ifp->if_flags & IFF_MULTICAST) == 0) {
930	    VIF_UNLOCK();
931	    return EOPNOTSUPP;
932	}
933
934	/* Enable promiscuous reception of all IP multicasts from the if */
935	error = if_allmulti(ifp, 1);
936	if (error) {
937	    VIF_UNLOCK();
938	    return error;
939	}
940    }
941
942    vifp->v_flags     = vifcp->vifc_flags;
943    vifp->v_threshold = vifcp->vifc_threshold;
944    vifp->v_lcl_addr  = vifcp->vifc_lcl_addr;
945    vifp->v_rmt_addr  = vifcp->vifc_rmt_addr;
946    vifp->v_ifp       = ifp;
947    vifp->v_rsvp_on   = 0;
948    vifp->v_rsvpd     = NULL;
949    /* initialize per vif pkt counters */
950    vifp->v_pkt_in    = 0;
951    vifp->v_pkt_out   = 0;
952    vifp->v_bytes_in  = 0;
953    vifp->v_bytes_out = 0;
954    bzero(&vifp->v_route, sizeof(vifp->v_route));
955
956    /* Adjust numvifs up if the vifi is higher than numvifs */
957    if (numvifs <= vifcp->vifc_vifi) numvifs = vifcp->vifc_vifi + 1;
958
959    VIF_UNLOCK();
960
961    if (mrtdebug)
962	log(LOG_DEBUG, "add_vif #%d, lcladdr %lx, %s %lx, thresh %x\n",
963	    vifcp->vifc_vifi,
964	    (u_long)ntohl(vifcp->vifc_lcl_addr.s_addr),
965	    (vifcp->vifc_flags & VIFF_TUNNEL) ? "rmtaddr" : "mask",
966	    (u_long)ntohl(vifcp->vifc_rmt_addr.s_addr),
967	    vifcp->vifc_threshold);
968
969    return 0;
970}
971
972/*
973 * Delete a vif from the vif table
974 */
975static int
976del_vif_locked(vifi_t vifi)
977{
978    struct vif *vifp;
979
980    VIF_LOCK_ASSERT();
981
982    if (vifi >= numvifs) {
983	return EINVAL;
984    }
985    vifp = &viftable[vifi];
986    if (vifp->v_lcl_addr.s_addr == INADDR_ANY) {
987	return EADDRNOTAVAIL;
988    }
989
990    if (!(vifp->v_flags & (VIFF_TUNNEL | VIFF_REGISTER)))
991	if_allmulti(vifp->v_ifp, 0);
992
993    if (vifp->v_flags & VIFF_REGISTER)
994	reg_vif_num = VIFI_INVALID;
995
996    bzero((caddr_t)vifp, sizeof (*vifp));
997
998    if (mrtdebug)
999	log(LOG_DEBUG, "del_vif %d, numvifs %d\n", vifi, numvifs);
1000
1001    /* Adjust numvifs down */
1002    for (vifi = numvifs; vifi > 0; vifi--)
1003	if (viftable[vifi-1].v_lcl_addr.s_addr != INADDR_ANY)
1004	    break;
1005    numvifs = vifi;
1006
1007    return 0;
1008}
1009
1010static int
1011del_vif(vifi_t vifi)
1012{
1013    int cc;
1014
1015    VIF_LOCK();
1016    cc = del_vif_locked(vifi);
1017    VIF_UNLOCK();
1018
1019    return cc;
1020}
1021
1022/*
1023 * update an mfc entry without resetting counters and S,G addresses.
1024 */
1025static void
1026update_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp)
1027{
1028    int i;
1029
1030    rt->mfc_parent = mfccp->mfcc_parent;
1031    for (i = 0; i < numvifs; i++) {
1032	rt->mfc_ttls[i] = mfccp->mfcc_ttls[i];
1033	rt->mfc_flags[i] = mfccp->mfcc_flags[i] & mrt_api_config &
1034	    MRT_MFC_FLAGS_ALL;
1035    }
1036    /* set the RP address */
1037    if (mrt_api_config & MRT_MFC_RP)
1038	rt->mfc_rp = mfccp->mfcc_rp;
1039    else
1040	rt->mfc_rp.s_addr = INADDR_ANY;
1041}
1042
1043/*
1044 * fully initialize an mfc entry from the parameter.
1045 */
1046static void
1047init_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp)
1048{
1049    rt->mfc_origin     = mfccp->mfcc_origin;
1050    rt->mfc_mcastgrp   = mfccp->mfcc_mcastgrp;
1051
1052    update_mfc_params(rt, mfccp);
1053
1054    /* initialize pkt counters per src-grp */
1055    rt->mfc_pkt_cnt    = 0;
1056    rt->mfc_byte_cnt   = 0;
1057    rt->mfc_wrong_if   = 0;
1058    rt->mfc_last_assert.tv_sec = rt->mfc_last_assert.tv_usec = 0;
1059}
1060
1061
1062/*
1063 * Add an mfc entry
1064 */
1065static int
1066add_mfc(struct mfcctl2 *mfccp)
1067{
1068    struct mfc *rt;
1069    u_long hash;
1070    struct rtdetq *rte;
1071    u_short nstl;
1072
1073    VIF_LOCK();
1074    MFC_LOCK();
1075
1076    rt = mfc_find(mfccp->mfcc_origin.s_addr, mfccp->mfcc_mcastgrp.s_addr);
1077
1078    /* If an entry already exists, just update the fields */
1079    if (rt) {
1080	if (mrtdebug & DEBUG_MFC)
1081	    log(LOG_DEBUG,"add_mfc update o %lx g %lx p %x\n",
1082		(u_long)ntohl(mfccp->mfcc_origin.s_addr),
1083		(u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr),
1084		mfccp->mfcc_parent);
1085
1086	update_mfc_params(rt, mfccp);
1087	MFC_UNLOCK();
1088	VIF_UNLOCK();
1089	return 0;
1090    }
1091
1092    /*
1093     * Find the entry for which the upcall was made and update
1094     */
1095    hash = MFCHASH(mfccp->mfcc_origin.s_addr, mfccp->mfcc_mcastgrp.s_addr);
1096    for (rt = mfctable[hash], nstl = 0; rt; rt = rt->mfc_next) {
1097
1098	if ((rt->mfc_origin.s_addr == mfccp->mfcc_origin.s_addr) &&
1099		(rt->mfc_mcastgrp.s_addr == mfccp->mfcc_mcastgrp.s_addr) &&
1100		(rt->mfc_stall != NULL)) {
1101
1102	    if (nstl++)
1103		log(LOG_ERR, "add_mfc %s o %lx g %lx p %x dbx %p\n",
1104		    "multiple kernel entries",
1105		    (u_long)ntohl(mfccp->mfcc_origin.s_addr),
1106		    (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr),
1107		    mfccp->mfcc_parent, (void *)rt->mfc_stall);
1108
1109	    if (mrtdebug & DEBUG_MFC)
1110		log(LOG_DEBUG,"add_mfc o %lx g %lx p %x dbg %p\n",
1111		    (u_long)ntohl(mfccp->mfcc_origin.s_addr),
1112		    (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr),
1113		    mfccp->mfcc_parent, (void *)rt->mfc_stall);
1114
1115	    init_mfc_params(rt, mfccp);
1116
1117	    rt->mfc_expire = 0;	/* Don't clean this guy up */
1118	    nexpire[hash]--;
1119
1120	    /* free packets Qed at the end of this entry */
1121	    for (rte = rt->mfc_stall; rte != NULL; ) {
1122		struct rtdetq *n = rte->next;
1123
1124		ip_mdq(rte->m, rte->ifp, rt, -1);
1125		m_freem(rte->m);
1126		free(rte, M_MRTABLE);
1127		rte = n;
1128	    }
1129	    rt->mfc_stall = NULL;
1130	}
1131    }
1132
1133    /*
1134     * It is possible that an entry is being inserted without an upcall
1135     */
1136    if (nstl == 0) {
1137	if (mrtdebug & DEBUG_MFC)
1138	    log(LOG_DEBUG,"add_mfc no upcall h %lu o %lx g %lx p %x\n",
1139		hash, (u_long)ntohl(mfccp->mfcc_origin.s_addr),
1140		(u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr),
1141		mfccp->mfcc_parent);
1142
1143	for (rt = mfctable[hash]; rt != NULL; rt = rt->mfc_next) {
1144	    if ((rt->mfc_origin.s_addr == mfccp->mfcc_origin.s_addr) &&
1145		    (rt->mfc_mcastgrp.s_addr == mfccp->mfcc_mcastgrp.s_addr)) {
1146		init_mfc_params(rt, mfccp);
1147		if (rt->mfc_expire)
1148		    nexpire[hash]--;
1149		rt->mfc_expire = 0;
1150		break; /* XXX */
1151	    }
1152	}
1153	if (rt == NULL) {		/* no upcall, so make a new entry */
1154	    rt = (struct mfc *)malloc(sizeof(*rt), M_MRTABLE, M_NOWAIT);
1155	    if (rt == NULL) {
1156		MFC_UNLOCK();
1157		VIF_UNLOCK();
1158		return ENOBUFS;
1159	    }
1160
1161	    init_mfc_params(rt, mfccp);
1162	    rt->mfc_expire     = 0;
1163	    rt->mfc_stall      = NULL;
1164
1165	    rt->mfc_bw_meter = NULL;
1166	    /* insert new entry at head of hash chain */
1167	    rt->mfc_next = mfctable[hash];
1168	    mfctable[hash] = rt;
1169	}
1170    }
1171    MFC_UNLOCK();
1172    VIF_UNLOCK();
1173    return 0;
1174}
1175
1176/*
1177 * Delete an mfc entry
1178 */
1179static int
1180del_mfc(struct mfcctl2 *mfccp)
1181{
1182    struct in_addr	origin;
1183    struct in_addr	mcastgrp;
1184    struct mfc		*rt;
1185    struct mfc		**nptr;
1186    u_long		hash;
1187    struct bw_meter	*list;
1188
1189    origin = mfccp->mfcc_origin;
1190    mcastgrp = mfccp->mfcc_mcastgrp;
1191
1192    if (mrtdebug & DEBUG_MFC)
1193	log(LOG_DEBUG,"del_mfc orig %lx mcastgrp %lx\n",
1194	    (u_long)ntohl(origin.s_addr), (u_long)ntohl(mcastgrp.s_addr));
1195
1196    MFC_LOCK();
1197
1198    hash = MFCHASH(origin.s_addr, mcastgrp.s_addr);
1199    for (nptr = &mfctable[hash]; (rt = *nptr) != NULL; nptr = &rt->mfc_next)
1200	if (origin.s_addr == rt->mfc_origin.s_addr &&
1201		mcastgrp.s_addr == rt->mfc_mcastgrp.s_addr &&
1202		rt->mfc_stall == NULL)
1203	    break;
1204    if (rt == NULL) {
1205	MFC_UNLOCK();
1206	return EADDRNOTAVAIL;
1207    }
1208
1209    *nptr = rt->mfc_next;
1210
1211    /*
1212     * free the bw_meter entries
1213     */
1214    list = rt->mfc_bw_meter;
1215    rt->mfc_bw_meter = NULL;
1216
1217    free(rt, M_MRTABLE);
1218
1219    free_bw_list(list);
1220
1221    MFC_UNLOCK();
1222
1223    return 0;
1224}
1225
1226/*
1227 * Send a message to the routing daemon on the multicast routing socket
1228 */
1229static int
1230socket_send(struct socket *s, struct mbuf *mm, struct sockaddr_in *src)
1231{
1232    if (s) {
1233	SOCKBUF_LOCK(&s->so_rcv);
1234	if (sbappendaddr_locked(&s->so_rcv, (struct sockaddr *)src, mm,
1235	    NULL) != 0) {
1236	    sorwakeup_locked(s);
1237	    return 0;
1238	}
1239	SOCKBUF_UNLOCK(&s->so_rcv);
1240    }
1241    m_freem(mm);
1242    return -1;
1243}
1244
1245/*
1246 * IP multicast forwarding function. This function assumes that the packet
1247 * pointed to by "ip" has arrived on (or is about to be sent to) the interface
1248 * pointed to by "ifp", and the packet is to be relayed to other networks
1249 * that have members of the packet's destination IP multicast group.
1250 *
1251 * The packet is returned unscathed to the caller, unless it is
1252 * erroneous, in which case a non-zero return value tells the caller to
1253 * discard it.
1254 */
1255
1256#define TUNNEL_LEN  12  /* # bytes of IP option for tunnel encapsulation  */
1257
1258static int
1259X_ip_mforward(struct ip *ip, struct ifnet *ifp, struct mbuf *m,
1260    struct ip_moptions *imo)
1261{
1262    struct mfc *rt;
1263    int error;
1264    vifi_t vifi;
1265
1266    if (mrtdebug & DEBUG_FORWARD)
1267	log(LOG_DEBUG, "ip_mforward: src %lx, dst %lx, ifp %p\n",
1268	    (u_long)ntohl(ip->ip_src.s_addr), (u_long)ntohl(ip->ip_dst.s_addr),
1269	    (void *)ifp);
1270
1271    if (ip->ip_hl < (sizeof(struct ip) + TUNNEL_LEN) >> 2 ||
1272		((u_char *)(ip + 1))[1] != IPOPT_LSRR ) {
1273	/*
1274	 * Packet arrived via a physical interface or
1275	 * an encapsulated tunnel or a register_vif.
1276	 */
1277    } else {
1278	/*
1279	 * Packet arrived through a source-route tunnel.
1280	 * Source-route tunnels are no longer supported.
1281	 */
1282	static int last_log;
1283	if (last_log != time_uptime) {
1284	    last_log = time_uptime;
1285	    log(LOG_ERR,
1286		"ip_mforward: received source-routed packet from %lx\n",
1287		(u_long)ntohl(ip->ip_src.s_addr));
1288	}
1289	return 1;
1290    }
1291
1292    VIF_LOCK();
1293    MFC_LOCK();
1294    if (imo && ((vifi = imo->imo_multicast_vif) < numvifs)) {
1295	if (ip->ip_ttl < 255)
1296	    ip->ip_ttl++;	/* compensate for -1 in *_send routines */
1297	if (rsvpdebug && ip->ip_p == IPPROTO_RSVP) {
1298	    struct vif *vifp = viftable + vifi;
1299
1300	    printf("Sending IPPROTO_RSVP from %lx to %lx on vif %d (%s%s)\n",
1301		(long)ntohl(ip->ip_src.s_addr), (long)ntohl(ip->ip_dst.s_addr),
1302		vifi,
1303		(vifp->v_flags & VIFF_TUNNEL) ? "tunnel on " : "",
1304		vifp->v_ifp->if_xname);
1305	}
1306	error = ip_mdq(m, ifp, NULL, vifi);
1307	MFC_UNLOCK();
1308	VIF_UNLOCK();
1309	return error;
1310    }
1311    if (rsvpdebug && ip->ip_p == IPPROTO_RSVP) {
1312	printf("Warning: IPPROTO_RSVP from %lx to %lx without vif option\n",
1313	    (long)ntohl(ip->ip_src.s_addr), (long)ntohl(ip->ip_dst.s_addr));
1314	if (!imo)
1315	    printf("In fact, no options were specified at all\n");
1316    }
1317
1318    /*
1319     * Don't forward a packet with time-to-live of zero or one,
1320     * or a packet destined to a local-only group.
1321     */
1322    if (ip->ip_ttl <= 1 || ntohl(ip->ip_dst.s_addr) <= INADDR_MAX_LOCAL_GROUP) {
1323	MFC_UNLOCK();
1324	VIF_UNLOCK();
1325	return 0;
1326    }
1327
1328    /*
1329     * Determine forwarding vifs from the forwarding cache table
1330     */
1331    ++mrtstat.mrts_mfc_lookups;
1332    rt = mfc_find(ip->ip_src.s_addr, ip->ip_dst.s_addr);
1333
1334    /* Entry exists, so forward if necessary */
1335    if (rt != NULL) {
1336	error = ip_mdq(m, ifp, rt, -1);
1337	MFC_UNLOCK();
1338	VIF_UNLOCK();
1339	return error;
1340    } else {
1341	/*
1342	 * If we don't have a route for packet's origin,
1343	 * Make a copy of the packet & send message to routing daemon
1344	 */
1345
1346	struct mbuf *mb0;
1347	struct rtdetq *rte;
1348	u_long hash;
1349	int hlen = ip->ip_hl << 2;
1350
1351	++mrtstat.mrts_mfc_misses;
1352
1353	mrtstat.mrts_no_route++;
1354	if (mrtdebug & (DEBUG_FORWARD | DEBUG_MFC))
1355	    log(LOG_DEBUG, "ip_mforward: no rte s %lx g %lx\n",
1356		(u_long)ntohl(ip->ip_src.s_addr),
1357		(u_long)ntohl(ip->ip_dst.s_addr));
1358
1359	/*
1360	 * Allocate mbufs early so that we don't do extra work if we are
1361	 * just going to fail anyway.  Make sure to pullup the header so
1362	 * that other people can't step on it.
1363	 */
1364	rte = (struct rtdetq *)malloc((sizeof *rte), M_MRTABLE, M_NOWAIT);
1365	if (rte == NULL) {
1366	    MFC_UNLOCK();
1367	    VIF_UNLOCK();
1368	    return ENOBUFS;
1369	}
1370	mb0 = m_copypacket(m, M_DONTWAIT);
1371	if (mb0 && (M_HASCL(mb0) || mb0->m_len < hlen))
1372	    mb0 = m_pullup(mb0, hlen);
1373	if (mb0 == NULL) {
1374	    free(rte, M_MRTABLE);
1375	    MFC_UNLOCK();
1376	    VIF_UNLOCK();
1377	    return ENOBUFS;
1378	}
1379
1380	/* is there an upcall waiting for this flow ? */
1381	hash = MFCHASH(ip->ip_src.s_addr, ip->ip_dst.s_addr);
1382	for (rt = mfctable[hash]; rt; rt = rt->mfc_next) {
1383	    if ((ip->ip_src.s_addr == rt->mfc_origin.s_addr) &&
1384		    (ip->ip_dst.s_addr == rt->mfc_mcastgrp.s_addr) &&
1385		    (rt->mfc_stall != NULL))
1386		break;
1387	}
1388
1389	if (rt == NULL) {
1390	    int i;
1391	    struct igmpmsg *im;
1392	    struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
1393	    struct mbuf *mm;
1394
1395	    /*
1396	     * Locate the vifi for the incoming interface for this packet.
1397	     * If none found, drop packet.
1398	     */
1399	    for (vifi=0; vifi < numvifs && viftable[vifi].v_ifp != ifp; vifi++)
1400		;
1401	    if (vifi >= numvifs)	/* vif not found, drop packet */
1402		goto non_fatal;
1403
1404	    /* no upcall, so make a new entry */
1405	    rt = (struct mfc *)malloc(sizeof(*rt), M_MRTABLE, M_NOWAIT);
1406	    if (rt == NULL)
1407		goto fail;
1408	    /* Make a copy of the header to send to the user level process */
1409	    mm = m_copy(mb0, 0, hlen);
1410	    if (mm == NULL)
1411		goto fail1;
1412
1413	    /*
1414	     * Send message to routing daemon to install
1415	     * a route into the kernel table
1416	     */
1417
1418	    im = mtod(mm, struct igmpmsg *);
1419	    im->im_msgtype = IGMPMSG_NOCACHE;
1420	    im->im_mbz = 0;
1421	    im->im_vif = vifi;
1422
1423	    mrtstat.mrts_upcalls++;
1424
1425	    k_igmpsrc.sin_addr = ip->ip_src;
1426	    if (socket_send(ip_mrouter, mm, &k_igmpsrc) < 0) {
1427		log(LOG_WARNING, "ip_mforward: ip_mrouter socket queue full\n");
1428		++mrtstat.mrts_upq_sockfull;
1429fail1:
1430		free(rt, M_MRTABLE);
1431fail:
1432		free(rte, M_MRTABLE);
1433		m_freem(mb0);
1434		MFC_UNLOCK();
1435		VIF_UNLOCK();
1436		return ENOBUFS;
1437	    }
1438
1439	    /* insert new entry at head of hash chain */
1440	    rt->mfc_origin.s_addr     = ip->ip_src.s_addr;
1441	    rt->mfc_mcastgrp.s_addr   = ip->ip_dst.s_addr;
1442	    rt->mfc_expire	      = UPCALL_EXPIRE;
1443	    nexpire[hash]++;
1444	    for (i = 0; i < numvifs; i++) {
1445		rt->mfc_ttls[i] = 0;
1446		rt->mfc_flags[i] = 0;
1447	    }
1448	    rt->mfc_parent = -1;
1449
1450	    rt->mfc_rp.s_addr = INADDR_ANY; /* clear the RP address */
1451
1452	    rt->mfc_bw_meter = NULL;
1453
1454	    /* link into table */
1455	    rt->mfc_next   = mfctable[hash];
1456	    mfctable[hash] = rt;
1457	    rt->mfc_stall = rte;
1458
1459	} else {
1460	    /* determine if q has overflowed */
1461	    int npkts = 0;
1462	    struct rtdetq **p;
1463
1464	    /*
1465	     * XXX ouch! we need to append to the list, but we
1466	     * only have a pointer to the front, so we have to
1467	     * scan the entire list every time.
1468	     */
1469	    for (p = &rt->mfc_stall; *p != NULL; p = &(*p)->next)
1470		npkts++;
1471
1472	    if (npkts > MAX_UPQ) {
1473		mrtstat.mrts_upq_ovflw++;
1474non_fatal:
1475		free(rte, M_MRTABLE);
1476		m_freem(mb0);
1477		MFC_UNLOCK();
1478		VIF_UNLOCK();
1479		return 0;
1480	    }
1481
1482	    /* Add this entry to the end of the queue */
1483	    *p = rte;
1484	}
1485
1486	rte->m			= mb0;
1487	rte->ifp		= ifp;
1488	rte->next		= NULL;
1489
1490	MFC_UNLOCK();
1491	VIF_UNLOCK();
1492
1493	return 0;
1494    }
1495}
1496
1497/*
1498 * Clean up the cache entry if upcall is not serviced
1499 */
1500static void
1501expire_upcalls(void *unused)
1502{
1503    struct rtdetq *rte;
1504    struct mfc *mfc, **nptr;
1505    int i;
1506
1507    MFC_LOCK();
1508    for (i = 0; i < MFCTBLSIZ; i++) {
1509	if (nexpire[i] == 0)
1510	    continue;
1511	nptr = &mfctable[i];
1512	for (mfc = *nptr; mfc != NULL; mfc = *nptr) {
1513	    /*
1514	     * Skip real cache entries
1515	     * Make sure it wasn't marked to not expire (shouldn't happen)
1516	     * If it expires now
1517	     */
1518	    if (mfc->mfc_stall != NULL && mfc->mfc_expire != 0 &&
1519		    --mfc->mfc_expire == 0) {
1520		if (mrtdebug & DEBUG_EXPIRE)
1521		    log(LOG_DEBUG, "expire_upcalls: expiring (%lx %lx)\n",
1522			(u_long)ntohl(mfc->mfc_origin.s_addr),
1523			(u_long)ntohl(mfc->mfc_mcastgrp.s_addr));
1524		/*
1525		 * drop all the packets
1526		 * free the mbuf with the pkt, if, timing info
1527		 */
1528		for (rte = mfc->mfc_stall; rte; ) {
1529		    struct rtdetq *n = rte->next;
1530
1531		    m_freem(rte->m);
1532		    free(rte, M_MRTABLE);
1533		    rte = n;
1534		}
1535		++mrtstat.mrts_cache_cleanups;
1536		nexpire[i]--;
1537
1538		/*
1539		 * free the bw_meter entries
1540		 */
1541		while (mfc->mfc_bw_meter != NULL) {
1542		    struct bw_meter *x = mfc->mfc_bw_meter;
1543
1544		    mfc->mfc_bw_meter = x->bm_mfc_next;
1545		    free(x, M_BWMETER);
1546		}
1547
1548		*nptr = mfc->mfc_next;
1549		free(mfc, M_MRTABLE);
1550	    } else {
1551		nptr = &mfc->mfc_next;
1552	    }
1553	}
1554    }
1555    MFC_UNLOCK();
1556
1557    callout_reset(&expire_upcalls_ch, EXPIRE_TIMEOUT, expire_upcalls, NULL);
1558}
1559
1560/*
1561 * Packet forwarding routine once entry in the cache is made
1562 */
1563static int
1564ip_mdq(struct mbuf *m, struct ifnet *ifp, struct mfc *rt, vifi_t xmt_vif)
1565{
1566    struct ip  *ip = mtod(m, struct ip *);
1567    vifi_t vifi;
1568    int plen = ip->ip_len;
1569
1570    VIF_LOCK_ASSERT();
1571
1572    /*
1573     * If xmt_vif is not -1, send on only the requested vif.
1574     *
1575     * (since vifi_t is u_short, -1 becomes MAXUSHORT, which > numvifs.)
1576     */
1577    if (xmt_vif < numvifs) {
1578	if (viftable[xmt_vif].v_flags & VIFF_REGISTER)
1579		pim_register_send(ip, viftable + xmt_vif, m, rt);
1580	else
1581		phyint_send(ip, viftable + xmt_vif, m);
1582	return 1;
1583    }
1584
1585    /*
1586     * Don't forward if it didn't arrive from the parent vif for its origin.
1587     */
1588    vifi = rt->mfc_parent;
1589    if ((vifi >= numvifs) || (viftable[vifi].v_ifp != ifp)) {
1590	/* came in the wrong interface */
1591	if (mrtdebug & DEBUG_FORWARD)
1592	    log(LOG_DEBUG, "wrong if: ifp %p vifi %d vififp %p\n",
1593		(void *)ifp, vifi, (void *)viftable[vifi].v_ifp);
1594	++mrtstat.mrts_wrong_if;
1595	++rt->mfc_wrong_if;
1596	/*
1597	 * If we are doing PIM assert processing, send a message
1598	 * to the routing daemon.
1599	 *
1600	 * XXX: A PIM-SM router needs the WRONGVIF detection so it
1601	 * can complete the SPT switch, regardless of the type
1602	 * of the iif (broadcast media, GRE tunnel, etc).
1603	 */
1604	if (pim_assert && (vifi < numvifs) && viftable[vifi].v_ifp) {
1605	    struct timeval now;
1606	    u_long delta;
1607
1608	    if (ifp == &multicast_register_if)
1609		pimstat.pims_rcv_registers_wrongiif++;
1610
1611	    /* Get vifi for the incoming packet */
1612	    for (vifi=0; vifi < numvifs && viftable[vifi].v_ifp != ifp; vifi++)
1613		;
1614	    if (vifi >= numvifs)
1615		return 0;	/* The iif is not found: ignore the packet. */
1616
1617	    if (rt->mfc_flags[vifi] & MRT_MFC_FLAGS_DISABLE_WRONGVIF)
1618		return 0;	/* WRONGVIF disabled: ignore the packet */
1619
1620	    GET_TIME(now);
1621
1622	    TV_DELTA(now, rt->mfc_last_assert, delta);
1623
1624	    if (delta > ASSERT_MSG_TIME) {
1625		struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
1626		struct igmpmsg *im;
1627		int hlen = ip->ip_hl << 2;
1628		struct mbuf *mm = m_copy(m, 0, hlen);
1629
1630		if (mm && (M_HASCL(mm) || mm->m_len < hlen))
1631		    mm = m_pullup(mm, hlen);
1632		if (mm == NULL)
1633		    return ENOBUFS;
1634
1635		rt->mfc_last_assert = now;
1636
1637		im = mtod(mm, struct igmpmsg *);
1638		im->im_msgtype	= IGMPMSG_WRONGVIF;
1639		im->im_mbz		= 0;
1640		im->im_vif		= vifi;
1641
1642		mrtstat.mrts_upcalls++;
1643
1644		k_igmpsrc.sin_addr = im->im_src;
1645		if (socket_send(ip_mrouter, mm, &k_igmpsrc) < 0) {
1646		    log(LOG_WARNING,
1647			"ip_mforward: ip_mrouter socket queue full\n");
1648		    ++mrtstat.mrts_upq_sockfull;
1649		    return ENOBUFS;
1650		}
1651	    }
1652	}
1653	return 0;
1654    }
1655
1656    /* If I sourced this packet, it counts as output, else it was input. */
1657    if (ip->ip_src.s_addr == viftable[vifi].v_lcl_addr.s_addr) {
1658	viftable[vifi].v_pkt_out++;
1659	viftable[vifi].v_bytes_out += plen;
1660    } else {
1661	viftable[vifi].v_pkt_in++;
1662	viftable[vifi].v_bytes_in += plen;
1663    }
1664    rt->mfc_pkt_cnt++;
1665    rt->mfc_byte_cnt += plen;
1666
1667    /*
1668     * For each vif, decide if a copy of the packet should be forwarded.
1669     * Forward if:
1670     *		- the ttl exceeds the vif's threshold
1671     *		- there are group members downstream on interface
1672     */
1673    for (vifi = 0; vifi < numvifs; vifi++)
1674	if ((rt->mfc_ttls[vifi] > 0) && (ip->ip_ttl > rt->mfc_ttls[vifi])) {
1675	    viftable[vifi].v_pkt_out++;
1676	    viftable[vifi].v_bytes_out += plen;
1677	    if (viftable[vifi].v_flags & VIFF_REGISTER)
1678		pim_register_send(ip, viftable + vifi, m, rt);
1679	    else
1680		phyint_send(ip, viftable + vifi, m);
1681	}
1682
1683    /*
1684     * Perform upcall-related bw measuring.
1685     */
1686    if (rt->mfc_bw_meter != NULL) {
1687	struct bw_meter *x;
1688	struct timeval now;
1689
1690	GET_TIME(now);
1691	MFC_LOCK_ASSERT();
1692	for (x = rt->mfc_bw_meter; x != NULL; x = x->bm_mfc_next)
1693	    bw_meter_receive_packet(x, plen, &now);
1694    }
1695
1696    return 0;
1697}
1698
1699/*
1700 * check if a vif number is legal/ok. This is used by ip_output.
1701 */
1702static int
1703X_legal_vif_num(int vif)
1704{
1705    /* XXX unlocked, matter? */
1706    return (vif >= 0 && vif < numvifs);
1707}
1708
1709/*
1710 * Return the local address used by this vif
1711 */
1712static u_long
1713X_ip_mcast_src(int vifi)
1714{
1715    /* XXX unlocked, matter? */
1716    if (vifi >= 0 && vifi < numvifs)
1717	return viftable[vifi].v_lcl_addr.s_addr;
1718    else
1719	return INADDR_ANY;
1720}
1721
1722static void
1723phyint_send(struct ip *ip, struct vif *vifp, struct mbuf *m)
1724{
1725    struct mbuf *mb_copy;
1726    int hlen = ip->ip_hl << 2;
1727
1728    VIF_LOCK_ASSERT();
1729
1730    /*
1731     * Make a new reference to the packet; make sure that
1732     * the IP header is actually copied, not just referenced,
1733     * so that ip_output() only scribbles on the copy.
1734     */
1735    mb_copy = m_copypacket(m, M_DONTWAIT);
1736    if (mb_copy && (M_HASCL(mb_copy) || mb_copy->m_len < hlen))
1737	mb_copy = m_pullup(mb_copy, hlen);
1738    if (mb_copy == NULL)
1739	return;
1740
1741    send_packet(vifp, mb_copy);
1742}
1743
1744static void
1745send_packet(struct vif *vifp, struct mbuf *m)
1746{
1747	struct ip_moptions imo;
1748	struct in_multi *imm[2];
1749	int error;
1750
1751	VIF_LOCK_ASSERT();
1752
1753	imo.imo_multicast_ifp  = vifp->v_ifp;
1754	imo.imo_multicast_ttl  = mtod(m, struct ip *)->ip_ttl - 1;
1755	imo.imo_multicast_loop = 1;
1756	imo.imo_multicast_vif  = -1;
1757	imo.imo_num_memberships = 0;
1758	imo.imo_max_memberships = 2;
1759	imo.imo_membership  = &imm[0];
1760
1761	/*
1762	 * Re-entrancy should not be a problem here, because
1763	 * the packets that we send out and are looped back at us
1764	 * should get rejected because they appear to come from
1765	 * the loopback interface, thus preventing looping.
1766	 */
1767	error = ip_output(m, NULL, &vifp->v_route, IP_FORWARDING, &imo, NULL);
1768	if (mrtdebug & DEBUG_XMIT) {
1769	    log(LOG_DEBUG, "phyint_send on vif %td err %d\n",
1770		vifp - viftable, error);
1771	}
1772}
1773
1774static int
1775X_ip_rsvp_vif(struct socket *so, struct sockopt *sopt)
1776{
1777    int error, vifi;
1778
1779    if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_RSVP)
1780	return EOPNOTSUPP;
1781
1782    error = sooptcopyin(sopt, &vifi, sizeof vifi, sizeof vifi);
1783    if (error)
1784	return error;
1785
1786    VIF_LOCK();
1787
1788    if (vifi < 0 || vifi >= numvifs) {	/* Error if vif is invalid */
1789	VIF_UNLOCK();
1790	return EADDRNOTAVAIL;
1791    }
1792
1793    if (sopt->sopt_name == IP_RSVP_VIF_ON) {
1794	/* Check if socket is available. */
1795	if (viftable[vifi].v_rsvpd != NULL) {
1796	    VIF_UNLOCK();
1797	    return EADDRINUSE;
1798	}
1799
1800	viftable[vifi].v_rsvpd = so;
1801	/* This may seem silly, but we need to be sure we don't over-increment
1802	 * the RSVP counter, in case something slips up.
1803	 */
1804	if (!viftable[vifi].v_rsvp_on) {
1805	    viftable[vifi].v_rsvp_on = 1;
1806	    rsvp_on++;
1807	}
1808    } else { /* must be VIF_OFF */
1809	/*
1810	 * XXX as an additional consistency check, one could make sure
1811	 * that viftable[vifi].v_rsvpd == so, otherwise passing so as
1812	 * first parameter is pretty useless.
1813	 */
1814	viftable[vifi].v_rsvpd = NULL;
1815	/*
1816	 * This may seem silly, but we need to be sure we don't over-decrement
1817	 * the RSVP counter, in case something slips up.
1818	 */
1819	if (viftable[vifi].v_rsvp_on) {
1820	    viftable[vifi].v_rsvp_on = 0;
1821	    rsvp_on--;
1822	}
1823    }
1824    VIF_UNLOCK();
1825    return 0;
1826}
1827
1828static void
1829X_ip_rsvp_force_done(struct socket *so)
1830{
1831    int vifi;
1832
1833    /* Don't bother if it is not the right type of socket. */
1834    if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_RSVP)
1835	return;
1836
1837    VIF_LOCK();
1838
1839    /* The socket may be attached to more than one vif...this
1840     * is perfectly legal.
1841     */
1842    for (vifi = 0; vifi < numvifs; vifi++) {
1843	if (viftable[vifi].v_rsvpd == so) {
1844	    viftable[vifi].v_rsvpd = NULL;
1845	    /* This may seem silly, but we need to be sure we don't
1846	     * over-decrement the RSVP counter, in case something slips up.
1847	     */
1848	    if (viftable[vifi].v_rsvp_on) {
1849		viftable[vifi].v_rsvp_on = 0;
1850		rsvp_on--;
1851	    }
1852	}
1853    }
1854
1855    VIF_UNLOCK();
1856}
1857
1858static void
1859X_rsvp_input(struct mbuf *m, int off)
1860{
1861    int vifi;
1862    struct ip *ip = mtod(m, struct ip *);
1863    struct sockaddr_in rsvp_src = { sizeof rsvp_src, AF_INET };
1864    struct ifnet *ifp;
1865
1866    if (rsvpdebug)
1867	printf("rsvp_input: rsvp_on %d\n",rsvp_on);
1868
1869    /* Can still get packets with rsvp_on = 0 if there is a local member
1870     * of the group to which the RSVP packet is addressed.  But in this
1871     * case we want to throw the packet away.
1872     */
1873    if (!rsvp_on) {
1874	m_freem(m);
1875	return;
1876    }
1877
1878    if (rsvpdebug)
1879	printf("rsvp_input: check vifs\n");
1880
1881#ifdef DIAGNOSTIC
1882    M_ASSERTPKTHDR(m);
1883#endif
1884
1885    ifp = m->m_pkthdr.rcvif;
1886
1887    VIF_LOCK();
1888    /* Find which vif the packet arrived on. */
1889    for (vifi = 0; vifi < numvifs; vifi++)
1890	if (viftable[vifi].v_ifp == ifp)
1891	    break;
1892
1893    if (vifi == numvifs || viftable[vifi].v_rsvpd == NULL) {
1894	/*
1895	 * Drop the lock here to avoid holding it across rip_input.
1896	 * This could make rsvpdebug printfs wrong.  If you care,
1897	 * record the state of stuff before dropping the lock.
1898	 */
1899	VIF_UNLOCK();
1900	/*
1901	 * If the old-style non-vif-associated socket is set,
1902	 * then use it.  Otherwise, drop packet since there
1903	 * is no specific socket for this vif.
1904	 */
1905	if (ip_rsvpd != NULL) {
1906	    if (rsvpdebug)
1907		printf("rsvp_input: Sending packet up old-style socket\n");
1908	    rip_input(m, off);  /* xxx */
1909	} else {
1910	    if (rsvpdebug && vifi == numvifs)
1911		printf("rsvp_input: Can't find vif for packet.\n");
1912	    else if (rsvpdebug && viftable[vifi].v_rsvpd == NULL)
1913		printf("rsvp_input: No socket defined for vif %d\n",vifi);
1914	    m_freem(m);
1915	}
1916	return;
1917    }
1918    rsvp_src.sin_addr = ip->ip_src;
1919
1920    if (rsvpdebug && m)
1921	printf("rsvp_input: m->m_len = %d, sbspace() = %ld\n",
1922	       m->m_len,sbspace(&(viftable[vifi].v_rsvpd->so_rcv)));
1923
1924    if (socket_send(viftable[vifi].v_rsvpd, m, &rsvp_src) < 0) {
1925	if (rsvpdebug)
1926	    printf("rsvp_input: Failed to append to socket\n");
1927    } else {
1928	if (rsvpdebug)
1929	    printf("rsvp_input: send packet up\n");
1930    }
1931    VIF_UNLOCK();
1932}
1933
1934/*
1935 * Code for bandwidth monitors
1936 */
1937
1938/*
1939 * Define common interface for timeval-related methods
1940 */
1941#define	BW_TIMEVALCMP(tvp, uvp, cmp) timevalcmp((tvp), (uvp), cmp)
1942#define	BW_TIMEVALDECR(vvp, uvp) timevalsub((vvp), (uvp))
1943#define	BW_TIMEVALADD(vvp, uvp) timevaladd((vvp), (uvp))
1944
1945static uint32_t
1946compute_bw_meter_flags(struct bw_upcall *req)
1947{
1948    uint32_t flags = 0;
1949
1950    if (req->bu_flags & BW_UPCALL_UNIT_PACKETS)
1951	flags |= BW_METER_UNIT_PACKETS;
1952    if (req->bu_flags & BW_UPCALL_UNIT_BYTES)
1953	flags |= BW_METER_UNIT_BYTES;
1954    if (req->bu_flags & BW_UPCALL_GEQ)
1955	flags |= BW_METER_GEQ;
1956    if (req->bu_flags & BW_UPCALL_LEQ)
1957	flags |= BW_METER_LEQ;
1958
1959    return flags;
1960}
1961
1962/*
1963 * Add a bw_meter entry
1964 */
1965static int
1966add_bw_upcall(struct bw_upcall *req)
1967{
1968    struct mfc *mfc;
1969    struct timeval delta = { BW_UPCALL_THRESHOLD_INTERVAL_MIN_SEC,
1970		BW_UPCALL_THRESHOLD_INTERVAL_MIN_USEC };
1971    struct timeval now;
1972    struct bw_meter *x;
1973    uint32_t flags;
1974
1975    if (!(mrt_api_config & MRT_MFC_BW_UPCALL))
1976	return EOPNOTSUPP;
1977
1978    /* Test if the flags are valid */
1979    if (!(req->bu_flags & (BW_UPCALL_UNIT_PACKETS | BW_UPCALL_UNIT_BYTES)))
1980	return EINVAL;
1981    if (!(req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ)))
1982	return EINVAL;
1983    if ((req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ))
1984	    == (BW_UPCALL_GEQ | BW_UPCALL_LEQ))
1985	return EINVAL;
1986
1987    /* Test if the threshold time interval is valid */
1988    if (BW_TIMEVALCMP(&req->bu_threshold.b_time, &delta, <))
1989	return EINVAL;
1990
1991    flags = compute_bw_meter_flags(req);
1992
1993    /*
1994     * Find if we have already same bw_meter entry
1995     */
1996    MFC_LOCK();
1997    mfc = mfc_find(req->bu_src.s_addr, req->bu_dst.s_addr);
1998    if (mfc == NULL) {
1999	MFC_UNLOCK();
2000	return EADDRNOTAVAIL;
2001    }
2002    for (x = mfc->mfc_bw_meter; x != NULL; x = x->bm_mfc_next) {
2003	if ((BW_TIMEVALCMP(&x->bm_threshold.b_time,
2004			   &req->bu_threshold.b_time, ==)) &&
2005	    (x->bm_threshold.b_packets == req->bu_threshold.b_packets) &&
2006	    (x->bm_threshold.b_bytes == req->bu_threshold.b_bytes) &&
2007	    (x->bm_flags & BW_METER_USER_FLAGS) == flags)  {
2008	    MFC_UNLOCK();
2009	    return 0;		/* XXX Already installed */
2010	}
2011    }
2012
2013    /* Allocate the new bw_meter entry */
2014    x = (struct bw_meter *)malloc(sizeof(*x), M_BWMETER, M_NOWAIT);
2015    if (x == NULL) {
2016	MFC_UNLOCK();
2017	return ENOBUFS;
2018    }
2019
2020    /* Set the new bw_meter entry */
2021    x->bm_threshold.b_time = req->bu_threshold.b_time;
2022    GET_TIME(now);
2023    x->bm_start_time = now;
2024    x->bm_threshold.b_packets = req->bu_threshold.b_packets;
2025    x->bm_threshold.b_bytes = req->bu_threshold.b_bytes;
2026    x->bm_measured.b_packets = 0;
2027    x->bm_measured.b_bytes = 0;
2028    x->bm_flags = flags;
2029    x->bm_time_next = NULL;
2030    x->bm_time_hash = BW_METER_BUCKETS;
2031
2032    /* Add the new bw_meter entry to the front of entries for this MFC */
2033    x->bm_mfc = mfc;
2034    x->bm_mfc_next = mfc->mfc_bw_meter;
2035    mfc->mfc_bw_meter = x;
2036    schedule_bw_meter(x, &now);
2037    MFC_UNLOCK();
2038
2039    return 0;
2040}
2041
2042static void
2043free_bw_list(struct bw_meter *list)
2044{
2045    while (list != NULL) {
2046	struct bw_meter *x = list;
2047
2048	list = list->bm_mfc_next;
2049	unschedule_bw_meter(x);
2050	free(x, M_BWMETER);
2051    }
2052}
2053
2054/*
2055 * Delete one or multiple bw_meter entries
2056 */
2057static int
2058del_bw_upcall(struct bw_upcall *req)
2059{
2060    struct mfc *mfc;
2061    struct bw_meter *x;
2062
2063    if (!(mrt_api_config & MRT_MFC_BW_UPCALL))
2064	return EOPNOTSUPP;
2065
2066    MFC_LOCK();
2067    /* Find the corresponding MFC entry */
2068    mfc = mfc_find(req->bu_src.s_addr, req->bu_dst.s_addr);
2069    if (mfc == NULL) {
2070	MFC_UNLOCK();
2071	return EADDRNOTAVAIL;
2072    } else if (req->bu_flags & BW_UPCALL_DELETE_ALL) {
2073	/*
2074	 * Delete all bw_meter entries for this mfc
2075	 */
2076	struct bw_meter *list;
2077
2078	list = mfc->mfc_bw_meter;
2079	mfc->mfc_bw_meter = NULL;
2080	free_bw_list(list);
2081	MFC_UNLOCK();
2082	return 0;
2083    } else {			/* Delete a single bw_meter entry */
2084	struct bw_meter *prev;
2085	uint32_t flags = 0;
2086
2087	flags = compute_bw_meter_flags(req);
2088
2089	/* Find the bw_meter entry to delete */
2090	for (prev = NULL, x = mfc->mfc_bw_meter; x != NULL;
2091	     prev = x, x = x->bm_mfc_next) {
2092	    if ((BW_TIMEVALCMP(&x->bm_threshold.b_time,
2093			       &req->bu_threshold.b_time, ==)) &&
2094		(x->bm_threshold.b_packets == req->bu_threshold.b_packets) &&
2095		(x->bm_threshold.b_bytes == req->bu_threshold.b_bytes) &&
2096		(x->bm_flags & BW_METER_USER_FLAGS) == flags)
2097		break;
2098	}
2099	if (x != NULL) { /* Delete entry from the list for this MFC */
2100	    if (prev != NULL)
2101		prev->bm_mfc_next = x->bm_mfc_next;	/* remove from middle*/
2102	    else
2103		x->bm_mfc->mfc_bw_meter = x->bm_mfc_next;/* new head of list */
2104
2105	    unschedule_bw_meter(x);
2106	    MFC_UNLOCK();
2107	    /* Free the bw_meter entry */
2108	    free(x, M_BWMETER);
2109	    return 0;
2110	} else {
2111	    MFC_UNLOCK();
2112	    return EINVAL;
2113	}
2114    }
2115    /* NOTREACHED */
2116}
2117
2118/*
2119 * Perform bandwidth measurement processing that may result in an upcall
2120 */
2121static void
2122bw_meter_receive_packet(struct bw_meter *x, int plen, struct timeval *nowp)
2123{
2124    struct timeval delta;
2125
2126    MFC_LOCK_ASSERT();
2127
2128    delta = *nowp;
2129    BW_TIMEVALDECR(&delta, &x->bm_start_time);
2130
2131    if (x->bm_flags & BW_METER_GEQ) {
2132	/*
2133	 * Processing for ">=" type of bw_meter entry
2134	 */
2135	if (BW_TIMEVALCMP(&delta, &x->bm_threshold.b_time, >)) {
2136	    /* Reset the bw_meter entry */
2137	    x->bm_start_time = *nowp;
2138	    x->bm_measured.b_packets = 0;
2139	    x->bm_measured.b_bytes = 0;
2140	    x->bm_flags &= ~BW_METER_UPCALL_DELIVERED;
2141	}
2142
2143	/* Record that a packet is received */
2144	x->bm_measured.b_packets++;
2145	x->bm_measured.b_bytes += plen;
2146
2147	/*
2148	 * Test if we should deliver an upcall
2149	 */
2150	if (!(x->bm_flags & BW_METER_UPCALL_DELIVERED)) {
2151	    if (((x->bm_flags & BW_METER_UNIT_PACKETS) &&
2152		 (x->bm_measured.b_packets >= x->bm_threshold.b_packets)) ||
2153		((x->bm_flags & BW_METER_UNIT_BYTES) &&
2154		 (x->bm_measured.b_bytes >= x->bm_threshold.b_bytes))) {
2155		/* Prepare an upcall for delivery */
2156		bw_meter_prepare_upcall(x, nowp);
2157		x->bm_flags |= BW_METER_UPCALL_DELIVERED;
2158	    }
2159	}
2160    } else if (x->bm_flags & BW_METER_LEQ) {
2161	/*
2162	 * Processing for "<=" type of bw_meter entry
2163	 */
2164	if (BW_TIMEVALCMP(&delta, &x->bm_threshold.b_time, >)) {
2165	    /*
2166	     * We are behind time with the multicast forwarding table
2167	     * scanning for "<=" type of bw_meter entries, so test now
2168	     * if we should deliver an upcall.
2169	     */
2170	    if (((x->bm_flags & BW_METER_UNIT_PACKETS) &&
2171		 (x->bm_measured.b_packets <= x->bm_threshold.b_packets)) ||
2172		((x->bm_flags & BW_METER_UNIT_BYTES) &&
2173		 (x->bm_measured.b_bytes <= x->bm_threshold.b_bytes))) {
2174		/* Prepare an upcall for delivery */
2175		bw_meter_prepare_upcall(x, nowp);
2176	    }
2177	    /* Reschedule the bw_meter entry */
2178	    unschedule_bw_meter(x);
2179	    schedule_bw_meter(x, nowp);
2180	}
2181
2182	/* Record that a packet is received */
2183	x->bm_measured.b_packets++;
2184	x->bm_measured.b_bytes += plen;
2185
2186	/*
2187	 * Test if we should restart the measuring interval
2188	 */
2189	if ((x->bm_flags & BW_METER_UNIT_PACKETS &&
2190	     x->bm_measured.b_packets <= x->bm_threshold.b_packets) ||
2191	    (x->bm_flags & BW_METER_UNIT_BYTES &&
2192	     x->bm_measured.b_bytes <= x->bm_threshold.b_bytes)) {
2193	    /* Don't restart the measuring interval */
2194	} else {
2195	    /* Do restart the measuring interval */
2196	    /*
2197	     * XXX: note that we don't unschedule and schedule, because this
2198	     * might be too much overhead per packet. Instead, when we process
2199	     * all entries for a given timer hash bin, we check whether it is
2200	     * really a timeout. If not, we reschedule at that time.
2201	     */
2202	    x->bm_start_time = *nowp;
2203	    x->bm_measured.b_packets = 0;
2204	    x->bm_measured.b_bytes = 0;
2205	    x->bm_flags &= ~BW_METER_UPCALL_DELIVERED;
2206	}
2207    }
2208}
2209
2210/*
2211 * Prepare a bandwidth-related upcall
2212 */
2213static void
2214bw_meter_prepare_upcall(struct bw_meter *x, struct timeval *nowp)
2215{
2216    struct timeval delta;
2217    struct bw_upcall *u;
2218
2219    MFC_LOCK_ASSERT();
2220
2221    /*
2222     * Compute the measured time interval
2223     */
2224    delta = *nowp;
2225    BW_TIMEVALDECR(&delta, &x->bm_start_time);
2226
2227    /*
2228     * If there are too many pending upcalls, deliver them now
2229     */
2230    if (bw_upcalls_n >= BW_UPCALLS_MAX)
2231	bw_upcalls_send();
2232
2233    /*
2234     * Set the bw_upcall entry
2235     */
2236    u = &bw_upcalls[bw_upcalls_n++];
2237    u->bu_src = x->bm_mfc->mfc_origin;
2238    u->bu_dst = x->bm_mfc->mfc_mcastgrp;
2239    u->bu_threshold.b_time = x->bm_threshold.b_time;
2240    u->bu_threshold.b_packets = x->bm_threshold.b_packets;
2241    u->bu_threshold.b_bytes = x->bm_threshold.b_bytes;
2242    u->bu_measured.b_time = delta;
2243    u->bu_measured.b_packets = x->bm_measured.b_packets;
2244    u->bu_measured.b_bytes = x->bm_measured.b_bytes;
2245    u->bu_flags = 0;
2246    if (x->bm_flags & BW_METER_UNIT_PACKETS)
2247	u->bu_flags |= BW_UPCALL_UNIT_PACKETS;
2248    if (x->bm_flags & BW_METER_UNIT_BYTES)
2249	u->bu_flags |= BW_UPCALL_UNIT_BYTES;
2250    if (x->bm_flags & BW_METER_GEQ)
2251	u->bu_flags |= BW_UPCALL_GEQ;
2252    if (x->bm_flags & BW_METER_LEQ)
2253	u->bu_flags |= BW_UPCALL_LEQ;
2254}
2255
2256/*
2257 * Send the pending bandwidth-related upcalls
2258 */
2259static void
2260bw_upcalls_send(void)
2261{
2262    struct mbuf *m;
2263    int len = bw_upcalls_n * sizeof(bw_upcalls[0]);
2264    struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
2265    static struct igmpmsg igmpmsg = { 0,		/* unused1 */
2266				      0,		/* unused2 */
2267				      IGMPMSG_BW_UPCALL,/* im_msgtype */
2268				      0,		/* im_mbz  */
2269				      0,		/* im_vif  */
2270				      0,		/* unused3 */
2271				      { 0 },		/* im_src  */
2272				      { 0 } };		/* im_dst  */
2273
2274    MFC_LOCK_ASSERT();
2275
2276    if (bw_upcalls_n == 0)
2277	return;			/* No pending upcalls */
2278
2279    bw_upcalls_n = 0;
2280
2281    /*
2282     * Allocate a new mbuf, initialize it with the header and
2283     * the payload for the pending calls.
2284     */
2285    MGETHDR(m, M_DONTWAIT, MT_DATA);
2286    if (m == NULL) {
2287	log(LOG_WARNING, "bw_upcalls_send: cannot allocate mbuf\n");
2288	return;
2289    }
2290
2291    m->m_len = m->m_pkthdr.len = 0;
2292    m_copyback(m, 0, sizeof(struct igmpmsg), (caddr_t)&igmpmsg);
2293    m_copyback(m, sizeof(struct igmpmsg), len, (caddr_t)&bw_upcalls[0]);
2294
2295    /*
2296     * Send the upcalls
2297     * XXX do we need to set the address in k_igmpsrc ?
2298     */
2299    mrtstat.mrts_upcalls++;
2300    if (socket_send(ip_mrouter, m, &k_igmpsrc) < 0) {
2301	log(LOG_WARNING, "bw_upcalls_send: ip_mrouter socket queue full\n");
2302	++mrtstat.mrts_upq_sockfull;
2303    }
2304}
2305
2306/*
2307 * Compute the timeout hash value for the bw_meter entries
2308 */
2309#define	BW_METER_TIMEHASH(bw_meter, hash)				\
2310    do {								\
2311	struct timeval next_timeval = (bw_meter)->bm_start_time;	\
2312									\
2313	BW_TIMEVALADD(&next_timeval, &(bw_meter)->bm_threshold.b_time); \
2314	(hash) = next_timeval.tv_sec;					\
2315	if (next_timeval.tv_usec)					\
2316	    (hash)++; /* XXX: make sure we don't timeout early */	\
2317	(hash) %= BW_METER_BUCKETS;					\
2318    } while (0)
2319
2320/*
2321 * Schedule a timer to process periodically bw_meter entry of type "<="
2322 * by linking the entry in the proper hash bucket.
2323 */
2324static void
2325schedule_bw_meter(struct bw_meter *x, struct timeval *nowp)
2326{
2327    int time_hash;
2328
2329    MFC_LOCK_ASSERT();
2330
2331    if (!(x->bm_flags & BW_METER_LEQ))
2332	return;		/* XXX: we schedule timers only for "<=" entries */
2333
2334    /*
2335     * Reset the bw_meter entry
2336     */
2337    x->bm_start_time = *nowp;
2338    x->bm_measured.b_packets = 0;
2339    x->bm_measured.b_bytes = 0;
2340    x->bm_flags &= ~BW_METER_UPCALL_DELIVERED;
2341
2342    /*
2343     * Compute the timeout hash value and insert the entry
2344     */
2345    BW_METER_TIMEHASH(x, time_hash);
2346    x->bm_time_next = bw_meter_timers[time_hash];
2347    bw_meter_timers[time_hash] = x;
2348    x->bm_time_hash = time_hash;
2349}
2350
2351/*
2352 * Unschedule the periodic timer that processes bw_meter entry of type "<="
2353 * by removing the entry from the proper hash bucket.
2354 */
2355static void
2356unschedule_bw_meter(struct bw_meter *x)
2357{
2358    int time_hash;
2359    struct bw_meter *prev, *tmp;
2360
2361    MFC_LOCK_ASSERT();
2362
2363    if (!(x->bm_flags & BW_METER_LEQ))
2364	return;		/* XXX: we schedule timers only for "<=" entries */
2365
2366    /*
2367     * Compute the timeout hash value and delete the entry
2368     */
2369    time_hash = x->bm_time_hash;
2370    if (time_hash >= BW_METER_BUCKETS)
2371	return;		/* Entry was not scheduled */
2372
2373    for (prev = NULL, tmp = bw_meter_timers[time_hash];
2374	     tmp != NULL; prev = tmp, tmp = tmp->bm_time_next)
2375	if (tmp == x)
2376	    break;
2377
2378    if (tmp == NULL)
2379	panic("unschedule_bw_meter: bw_meter entry not found");
2380
2381    if (prev != NULL)
2382	prev->bm_time_next = x->bm_time_next;
2383    else
2384	bw_meter_timers[time_hash] = x->bm_time_next;
2385
2386    x->bm_time_next = NULL;
2387    x->bm_time_hash = BW_METER_BUCKETS;
2388}
2389
2390
2391/*
2392 * Process all "<=" type of bw_meter that should be processed now,
2393 * and for each entry prepare an upcall if necessary. Each processed
2394 * entry is rescheduled again for the (periodic) processing.
2395 *
2396 * This is run periodically (once per second normally). On each round,
2397 * all the potentially matching entries are in the hash slot that we are
2398 * looking at.
2399 */
2400static void
2401bw_meter_process()
2402{
2403    static uint32_t last_tv_sec;	/* last time we processed this */
2404
2405    uint32_t loops;
2406    int i;
2407    struct timeval now, process_endtime;
2408
2409    GET_TIME(now);
2410    if (last_tv_sec == now.tv_sec)
2411	return;		/* nothing to do */
2412
2413    loops = now.tv_sec - last_tv_sec;
2414    last_tv_sec = now.tv_sec;
2415    if (loops > BW_METER_BUCKETS)
2416	loops = BW_METER_BUCKETS;
2417
2418    MFC_LOCK();
2419    /*
2420     * Process all bins of bw_meter entries from the one after the last
2421     * processed to the current one. On entry, i points to the last bucket
2422     * visited, so we need to increment i at the beginning of the loop.
2423     */
2424    for (i = (now.tv_sec - loops) % BW_METER_BUCKETS; loops > 0; loops--) {
2425	struct bw_meter *x, *tmp_list;
2426
2427	if (++i >= BW_METER_BUCKETS)
2428	    i = 0;
2429
2430	/* Disconnect the list of bw_meter entries from the bin */
2431	tmp_list = bw_meter_timers[i];
2432	bw_meter_timers[i] = NULL;
2433
2434	/* Process the list of bw_meter entries */
2435	while (tmp_list != NULL) {
2436	    x = tmp_list;
2437	    tmp_list = tmp_list->bm_time_next;
2438
2439	    /* Test if the time interval is over */
2440	    process_endtime = x->bm_start_time;
2441	    BW_TIMEVALADD(&process_endtime, &x->bm_threshold.b_time);
2442	    if (BW_TIMEVALCMP(&process_endtime, &now, >)) {
2443		/* Not yet: reschedule, but don't reset */
2444		int time_hash;
2445
2446		BW_METER_TIMEHASH(x, time_hash);
2447		if (time_hash == i && process_endtime.tv_sec == now.tv_sec) {
2448		    /*
2449		     * XXX: somehow the bin processing is a bit ahead of time.
2450		     * Put the entry in the next bin.
2451		     */
2452		    if (++time_hash >= BW_METER_BUCKETS)
2453			time_hash = 0;
2454		}
2455		x->bm_time_next = bw_meter_timers[time_hash];
2456		bw_meter_timers[time_hash] = x;
2457		x->bm_time_hash = time_hash;
2458
2459		continue;
2460	    }
2461
2462	    /*
2463	     * Test if we should deliver an upcall
2464	     */
2465	    if (((x->bm_flags & BW_METER_UNIT_PACKETS) &&
2466		 (x->bm_measured.b_packets <= x->bm_threshold.b_packets)) ||
2467		((x->bm_flags & BW_METER_UNIT_BYTES) &&
2468		 (x->bm_measured.b_bytes <= x->bm_threshold.b_bytes))) {
2469		/* Prepare an upcall for delivery */
2470		bw_meter_prepare_upcall(x, &now);
2471	    }
2472
2473	    /*
2474	     * Reschedule for next processing
2475	     */
2476	    schedule_bw_meter(x, &now);
2477	}
2478    }
2479
2480    /* Send all upcalls that are pending delivery */
2481    bw_upcalls_send();
2482
2483    MFC_UNLOCK();
2484}
2485
2486/*
2487 * A periodic function for sending all upcalls that are pending delivery
2488 */
2489static void
2490expire_bw_upcalls_send(void *unused)
2491{
2492    MFC_LOCK();
2493    bw_upcalls_send();
2494    MFC_UNLOCK();
2495
2496    callout_reset(&bw_upcalls_ch, BW_UPCALLS_PERIOD,
2497	expire_bw_upcalls_send, NULL);
2498}
2499
2500/*
2501 * A periodic function for periodic scanning of the multicast forwarding
2502 * table for processing all "<=" bw_meter entries.
2503 */
2504static void
2505expire_bw_meter_process(void *unused)
2506{
2507    if (mrt_api_config & MRT_MFC_BW_UPCALL)
2508	bw_meter_process();
2509
2510    callout_reset(&bw_meter_ch, BW_METER_PERIOD, expire_bw_meter_process, NULL);
2511}
2512
2513/*
2514 * End of bandwidth monitoring code
2515 */
2516
2517/*
2518 * Send the packet up to the user daemon, or eventually do kernel encapsulation
2519 *
2520 */
2521static int
2522pim_register_send(struct ip *ip, struct vif *vifp,
2523	struct mbuf *m, struct mfc *rt)
2524{
2525    struct mbuf *mb_copy, *mm;
2526
2527    if (mrtdebug & DEBUG_PIM)
2528	log(LOG_DEBUG, "pim_register_send: ");
2529
2530    /*
2531     * Do not send IGMP_WHOLEPKT notifications to userland, if the
2532     * rendezvous point was unspecified, and we were told not to.
2533     */
2534    if (pim_squelch_wholepkt != 0 && (mrt_api_config & MRT_MFC_RP) &&
2535	(rt->mfc_rp.s_addr == INADDR_ANY))
2536	return 0;
2537
2538    mb_copy = pim_register_prepare(ip, m);
2539    if (mb_copy == NULL)
2540	return ENOBUFS;
2541
2542    /*
2543     * Send all the fragments. Note that the mbuf for each fragment
2544     * is freed by the sending machinery.
2545     */
2546    for (mm = mb_copy; mm; mm = mb_copy) {
2547	mb_copy = mm->m_nextpkt;
2548	mm->m_nextpkt = 0;
2549	mm = m_pullup(mm, sizeof(struct ip));
2550	if (mm != NULL) {
2551	    ip = mtod(mm, struct ip *);
2552	    if ((mrt_api_config & MRT_MFC_RP) &&
2553		(rt->mfc_rp.s_addr != INADDR_ANY)) {
2554		pim_register_send_rp(ip, vifp, mm, rt);
2555	    } else {
2556		pim_register_send_upcall(ip, vifp, mm, rt);
2557	    }
2558	}
2559    }
2560
2561    return 0;
2562}
2563
2564/*
2565 * Return a copy of the data packet that is ready for PIM Register
2566 * encapsulation.
2567 * XXX: Note that in the returned copy the IP header is a valid one.
2568 */
2569static struct mbuf *
2570pim_register_prepare(struct ip *ip, struct mbuf *m)
2571{
2572    struct mbuf *mb_copy = NULL;
2573    int mtu;
2574
2575    /* Take care of delayed checksums */
2576    if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
2577	in_delayed_cksum(m);
2578	m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
2579    }
2580
2581    /*
2582     * Copy the old packet & pullup its IP header into the
2583     * new mbuf so we can modify it.
2584     */
2585    mb_copy = m_copypacket(m, M_DONTWAIT);
2586    if (mb_copy == NULL)
2587	return NULL;
2588    mb_copy = m_pullup(mb_copy, ip->ip_hl << 2);
2589    if (mb_copy == NULL)
2590	return NULL;
2591
2592    /* take care of the TTL */
2593    ip = mtod(mb_copy, struct ip *);
2594    --ip->ip_ttl;
2595
2596    /* Compute the MTU after the PIM Register encapsulation */
2597    mtu = 0xffff - sizeof(pim_encap_iphdr) - sizeof(pim_encap_pimhdr);
2598
2599    if (ip->ip_len <= mtu) {
2600	/* Turn the IP header into a valid one */
2601	ip->ip_len = htons(ip->ip_len);
2602	ip->ip_off = htons(ip->ip_off);
2603	ip->ip_sum = 0;
2604	ip->ip_sum = in_cksum(mb_copy, ip->ip_hl << 2);
2605    } else {
2606	/* Fragment the packet */
2607	if (ip_fragment(ip, &mb_copy, mtu, 0, CSUM_DELAY_IP) != 0) {
2608	    m_freem(mb_copy);
2609	    return NULL;
2610	}
2611    }
2612    return mb_copy;
2613}
2614
2615/*
2616 * Send an upcall with the data packet to the user-level process.
2617 */
2618static int
2619pim_register_send_upcall(struct ip *ip, struct vif *vifp,
2620	struct mbuf *mb_copy, struct mfc *rt)
2621{
2622    struct mbuf *mb_first;
2623    int len = ntohs(ip->ip_len);
2624    struct igmpmsg *im;
2625    struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
2626
2627    VIF_LOCK_ASSERT();
2628
2629    /*
2630     * Add a new mbuf with an upcall header
2631     */
2632    MGETHDR(mb_first, M_DONTWAIT, MT_DATA);
2633    if (mb_first == NULL) {
2634	m_freem(mb_copy);
2635	return ENOBUFS;
2636    }
2637    mb_first->m_data += max_linkhdr;
2638    mb_first->m_pkthdr.len = len + sizeof(struct igmpmsg);
2639    mb_first->m_len = sizeof(struct igmpmsg);
2640    mb_first->m_next = mb_copy;
2641
2642    /* Send message to routing daemon */
2643    im = mtod(mb_first, struct igmpmsg *);
2644    im->im_msgtype	= IGMPMSG_WHOLEPKT;
2645    im->im_mbz		= 0;
2646    im->im_vif		= vifp - viftable;
2647    im->im_src		= ip->ip_src;
2648    im->im_dst		= ip->ip_dst;
2649
2650    k_igmpsrc.sin_addr	= ip->ip_src;
2651
2652    mrtstat.mrts_upcalls++;
2653
2654    if (socket_send(ip_mrouter, mb_first, &k_igmpsrc) < 0) {
2655	if (mrtdebug & DEBUG_PIM)
2656	    log(LOG_WARNING,
2657		"mcast: pim_register_send_upcall: ip_mrouter socket queue full");
2658	++mrtstat.mrts_upq_sockfull;
2659	return ENOBUFS;
2660    }
2661
2662    /* Keep statistics */
2663    pimstat.pims_snd_registers_msgs++;
2664    pimstat.pims_snd_registers_bytes += len;
2665
2666    return 0;
2667}
2668
2669/*
2670 * Encapsulate the data packet in PIM Register message and send it to the RP.
2671 */
2672static int
2673pim_register_send_rp(struct ip *ip, struct vif *vifp,
2674	struct mbuf *mb_copy, struct mfc *rt)
2675{
2676    struct mbuf *mb_first;
2677    struct ip *ip_outer;
2678    struct pim_encap_pimhdr *pimhdr;
2679    int len = ntohs(ip->ip_len);
2680    vifi_t vifi = rt->mfc_parent;
2681
2682    VIF_LOCK_ASSERT();
2683
2684    if ((vifi >= numvifs) || (viftable[vifi].v_lcl_addr.s_addr == 0)) {
2685	m_freem(mb_copy);
2686	return EADDRNOTAVAIL;		/* The iif vif is invalid */
2687    }
2688
2689    /*
2690     * Add a new mbuf with the encapsulating header
2691     */
2692    MGETHDR(mb_first, M_DONTWAIT, MT_DATA);
2693    if (mb_first == NULL) {
2694	m_freem(mb_copy);
2695	return ENOBUFS;
2696    }
2697    mb_first->m_data += max_linkhdr;
2698    mb_first->m_len = sizeof(pim_encap_iphdr) + sizeof(pim_encap_pimhdr);
2699    mb_first->m_next = mb_copy;
2700
2701    mb_first->m_pkthdr.len = len + mb_first->m_len;
2702
2703    /*
2704     * Fill in the encapsulating IP and PIM header
2705     */
2706    ip_outer = mtod(mb_first, struct ip *);
2707    *ip_outer = pim_encap_iphdr;
2708    ip_outer->ip_id = ip_newid();
2709    ip_outer->ip_len = len + sizeof(pim_encap_iphdr) + sizeof(pim_encap_pimhdr);
2710    ip_outer->ip_src = viftable[vifi].v_lcl_addr;
2711    ip_outer->ip_dst = rt->mfc_rp;
2712    /*
2713     * Copy the inner header TOS to the outer header, and take care of the
2714     * IP_DF bit.
2715     */
2716    ip_outer->ip_tos = ip->ip_tos;
2717    if (ntohs(ip->ip_off) & IP_DF)
2718	ip_outer->ip_off |= IP_DF;
2719    pimhdr = (struct pim_encap_pimhdr *)((caddr_t)ip_outer
2720					 + sizeof(pim_encap_iphdr));
2721    *pimhdr = pim_encap_pimhdr;
2722    /* If the iif crosses a border, set the Border-bit */
2723    if (rt->mfc_flags[vifi] & MRT_MFC_FLAGS_BORDER_VIF & mrt_api_config)
2724	pimhdr->flags |= htonl(PIM_BORDER_REGISTER);
2725
2726    mb_first->m_data += sizeof(pim_encap_iphdr);
2727    pimhdr->pim.pim_cksum = in_cksum(mb_first, sizeof(pim_encap_pimhdr));
2728    mb_first->m_data -= sizeof(pim_encap_iphdr);
2729
2730    send_packet(vifp, mb_first);
2731
2732    /* Keep statistics */
2733    pimstat.pims_snd_registers_msgs++;
2734    pimstat.pims_snd_registers_bytes += len;
2735
2736    return 0;
2737}
2738
2739/*
2740 * pim_encapcheck() is called by the encap4_input() path at runtime to
2741 * determine if a packet is for PIM; allowing PIM to be dynamically loaded
2742 * into the kernel.
2743 */
2744static int
2745pim_encapcheck(const struct mbuf *m, int off, int proto, void *arg)
2746{
2747
2748#ifdef DIAGNOSTIC
2749    KASSERT(proto == IPPROTO_PIM, ("not for IPPROTO_PIM"));
2750#endif
2751    if (proto != IPPROTO_PIM)
2752	return 0;	/* not for us; reject the datagram. */
2753
2754    return 64;		/* claim the datagram. */
2755}
2756
2757/*
2758 * PIM-SMv2 and PIM-DM messages processing.
2759 * Receives and verifies the PIM control messages, and passes them
2760 * up to the listening socket, using rip_input().
2761 * The only message with special processing is the PIM_REGISTER message
2762 * (used by PIM-SM): the PIM header is stripped off, and the inner packet
2763 * is passed to if_simloop().
2764 */
2765void
2766pim_input(struct mbuf *m, int off)
2767{
2768    struct ip *ip = mtod(m, struct ip *);
2769    struct pim *pim;
2770    int minlen;
2771    int datalen = ip->ip_len;
2772    int ip_tos;
2773    int iphlen = off;
2774
2775    /* Keep statistics */
2776    pimstat.pims_rcv_total_msgs++;
2777    pimstat.pims_rcv_total_bytes += datalen;
2778
2779    /*
2780     * Validate lengths
2781     */
2782    if (datalen < PIM_MINLEN) {
2783	pimstat.pims_rcv_tooshort++;
2784	log(LOG_ERR, "pim_input: packet size too small %d from %lx\n",
2785	    datalen, (u_long)ip->ip_src.s_addr);
2786	m_freem(m);
2787	return;
2788    }
2789
2790    /*
2791     * If the packet is at least as big as a REGISTER, go agead
2792     * and grab the PIM REGISTER header size, to avoid another
2793     * possible m_pullup() later.
2794     *
2795     * PIM_MINLEN       == pimhdr + u_int32_t == 4 + 4 = 8
2796     * PIM_REG_MINLEN   == pimhdr + reghdr + encap_iphdr == 4 + 4 + 20 = 28
2797     */
2798    minlen = iphlen + (datalen >= PIM_REG_MINLEN ? PIM_REG_MINLEN : PIM_MINLEN);
2799    /*
2800     * Get the IP and PIM headers in contiguous memory, and
2801     * possibly the PIM REGISTER header.
2802     */
2803    if ((m->m_flags & M_EXT || m->m_len < minlen) &&
2804	(m = m_pullup(m, minlen)) == 0) {
2805	log(LOG_ERR, "pim_input: m_pullup failure\n");
2806	return;
2807    }
2808    /* m_pullup() may have given us a new mbuf so reset ip. */
2809    ip = mtod(m, struct ip *);
2810    ip_tos = ip->ip_tos;
2811
2812    /* adjust mbuf to point to the PIM header */
2813    m->m_data += iphlen;
2814    m->m_len  -= iphlen;
2815    pim = mtod(m, struct pim *);
2816
2817    /*
2818     * Validate checksum. If PIM REGISTER, exclude the data packet.
2819     *
2820     * XXX: some older PIMv2 implementations don't make this distinction,
2821     * so for compatibility reason perform the checksum over part of the
2822     * message, and if error, then over the whole message.
2823     */
2824    if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER && in_cksum(m, PIM_MINLEN) == 0) {
2825	/* do nothing, checksum okay */
2826    } else if (in_cksum(m, datalen)) {
2827	pimstat.pims_rcv_badsum++;
2828	if (mrtdebug & DEBUG_PIM)
2829	    log(LOG_DEBUG, "pim_input: invalid checksum");
2830	m_freem(m);
2831	return;
2832    }
2833
2834    /* PIM version check */
2835    if (PIM_VT_V(pim->pim_vt) < PIM_VERSION) {
2836	pimstat.pims_rcv_badversion++;
2837	log(LOG_ERR, "pim_input: incorrect version %d, expecting %d\n",
2838	    PIM_VT_V(pim->pim_vt), PIM_VERSION);
2839	m_freem(m);
2840	return;
2841    }
2842
2843    /* restore mbuf back to the outer IP */
2844    m->m_data -= iphlen;
2845    m->m_len  += iphlen;
2846
2847    if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER) {
2848	/*
2849	 * Since this is a REGISTER, we'll make a copy of the register
2850	 * headers ip + pim + u_int32 + encap_ip, to be passed up to the
2851	 * routing daemon.
2852	 */
2853	struct sockaddr_in dst = { sizeof(dst), AF_INET };
2854	struct mbuf *mcp;
2855	struct ip *encap_ip;
2856	u_int32_t *reghdr;
2857	struct ifnet *vifp;
2858
2859	VIF_LOCK();
2860	if ((reg_vif_num >= numvifs) || (reg_vif_num == VIFI_INVALID)) {
2861	    VIF_UNLOCK();
2862	    if (mrtdebug & DEBUG_PIM)
2863		log(LOG_DEBUG,
2864		    "pim_input: register vif not set: %d\n", reg_vif_num);
2865	    m_freem(m);
2866	    return;
2867	}
2868	/* XXX need refcnt? */
2869	vifp = viftable[reg_vif_num].v_ifp;
2870	VIF_UNLOCK();
2871
2872	/*
2873	 * Validate length
2874	 */
2875	if (datalen < PIM_REG_MINLEN) {
2876	    pimstat.pims_rcv_tooshort++;
2877	    pimstat.pims_rcv_badregisters++;
2878	    log(LOG_ERR,
2879		"pim_input: register packet size too small %d from %lx\n",
2880		datalen, (u_long)ip->ip_src.s_addr);
2881	    m_freem(m);
2882	    return;
2883	}
2884
2885	reghdr = (u_int32_t *)(pim + 1);
2886	encap_ip = (struct ip *)(reghdr + 1);
2887
2888	if (mrtdebug & DEBUG_PIM) {
2889	    log(LOG_DEBUG,
2890		"pim_input[register], encap_ip: %lx -> %lx, encap_ip len %d\n",
2891		(u_long)ntohl(encap_ip->ip_src.s_addr),
2892		(u_long)ntohl(encap_ip->ip_dst.s_addr),
2893		ntohs(encap_ip->ip_len));
2894	}
2895
2896	/* verify the version number of the inner packet */
2897	if (encap_ip->ip_v != IPVERSION) {
2898	    pimstat.pims_rcv_badregisters++;
2899	    if (mrtdebug & DEBUG_PIM) {
2900		log(LOG_DEBUG, "pim_input: invalid IP version (%d) "
2901		    "of the inner packet\n", encap_ip->ip_v);
2902	    }
2903	    m_freem(m);
2904	    return;
2905	}
2906
2907	/* verify the inner packet is destined to a mcast group */
2908	if (!IN_MULTICAST(ntohl(encap_ip->ip_dst.s_addr))) {
2909	    pimstat.pims_rcv_badregisters++;
2910	    if (mrtdebug & DEBUG_PIM)
2911		log(LOG_DEBUG,
2912		    "pim_input: inner packet of register is not "
2913		    "multicast %lx\n",
2914		    (u_long)ntohl(encap_ip->ip_dst.s_addr));
2915	    m_freem(m);
2916	    return;
2917	}
2918
2919	/* If a NULL_REGISTER, pass it to the daemon */
2920	if ((ntohl(*reghdr) & PIM_NULL_REGISTER))
2921	    goto pim_input_to_daemon;
2922
2923	/*
2924	 * Copy the TOS from the outer IP header to the inner IP header.
2925	 */
2926	if (encap_ip->ip_tos != ip_tos) {
2927	    /* Outer TOS -> inner TOS */
2928	    encap_ip->ip_tos = ip_tos;
2929	    /* Recompute the inner header checksum. Sigh... */
2930
2931	    /* adjust mbuf to point to the inner IP header */
2932	    m->m_data += (iphlen + PIM_MINLEN);
2933	    m->m_len  -= (iphlen + PIM_MINLEN);
2934
2935	    encap_ip->ip_sum = 0;
2936	    encap_ip->ip_sum = in_cksum(m, encap_ip->ip_hl << 2);
2937
2938	    /* restore mbuf to point back to the outer IP header */
2939	    m->m_data -= (iphlen + PIM_MINLEN);
2940	    m->m_len  += (iphlen + PIM_MINLEN);
2941	}
2942
2943	/*
2944	 * Decapsulate the inner IP packet and loopback to forward it
2945	 * as a normal multicast packet. Also, make a copy of the
2946	 *     outer_iphdr + pimhdr + reghdr + encap_iphdr
2947	 * to pass to the daemon later, so it can take the appropriate
2948	 * actions (e.g., send back PIM_REGISTER_STOP).
2949	 * XXX: here m->m_data points to the outer IP header.
2950	 */
2951	mcp = m_copy(m, 0, iphlen + PIM_REG_MINLEN);
2952	if (mcp == NULL) {
2953	    log(LOG_ERR,
2954		"pim_input: pim register: could not copy register head\n");
2955	    m_freem(m);
2956	    return;
2957	}
2958
2959	/* Keep statistics */
2960	/* XXX: registers_bytes include only the encap. mcast pkt */
2961	pimstat.pims_rcv_registers_msgs++;
2962	pimstat.pims_rcv_registers_bytes += ntohs(encap_ip->ip_len);
2963
2964	/*
2965	 * forward the inner ip packet; point m_data at the inner ip.
2966	 */
2967	m_adj(m, iphlen + PIM_MINLEN);
2968
2969	if (mrtdebug & DEBUG_PIM) {
2970	    log(LOG_DEBUG,
2971		"pim_input: forwarding decapsulated register: "
2972		"src %lx, dst %lx, vif %d\n",
2973		(u_long)ntohl(encap_ip->ip_src.s_addr),
2974		(u_long)ntohl(encap_ip->ip_dst.s_addr),
2975		reg_vif_num);
2976	}
2977	/* NB: vifp was collected above; can it change on us? */
2978	if_simloop(vifp, m, dst.sin_family, 0);
2979
2980	/* prepare the register head to send to the mrouting daemon */
2981	m = mcp;
2982    }
2983
2984pim_input_to_daemon:
2985    /*
2986     * Pass the PIM message up to the daemon; if it is a Register message,
2987     * pass the 'head' only up to the daemon. This includes the
2988     * outer IP header, PIM header, PIM-Register header and the
2989     * inner IP header.
2990     * XXX: the outer IP header pkt size of a Register is not adjust to
2991     * reflect the fact that the inner multicast data is truncated.
2992     */
2993    rip_input(m, iphlen);
2994
2995    return;
2996}
2997
2998static int
2999ip_mroute_modevent(module_t mod, int type, void *unused)
3000{
3001    switch (type) {
3002    case MOD_LOAD:
3003	mtx_init(&mrouter_mtx, "mrouter initialization", NULL, MTX_DEF);
3004	MFC_LOCK_INIT();
3005	VIF_LOCK_INIT();
3006	ip_mrouter_reset();
3007	TUNABLE_ULONG_FETCH("net.inet.pim.squelch_wholepkt",
3008	    &pim_squelch_wholepkt);
3009	pim_encap_cookie = encap_attach_func(AF_INET, IPPROTO_PIM,
3010	    pim_encapcheck, &in_pim_protosw, NULL);
3011	if (pim_encap_cookie == NULL) {
3012		printf("ip_mroute: unable to attach pim encap\n");
3013		VIF_LOCK_DESTROY();
3014		MFC_LOCK_DESTROY();
3015		mtx_destroy(&mrouter_mtx);
3016		return (EINVAL);
3017	}
3018	ip_mcast_src = X_ip_mcast_src;
3019	ip_mforward = X_ip_mforward;
3020	ip_mrouter_done = X_ip_mrouter_done;
3021	ip_mrouter_get = X_ip_mrouter_get;
3022	ip_mrouter_set = X_ip_mrouter_set;
3023	ip_rsvp_force_done = X_ip_rsvp_force_done;
3024	ip_rsvp_vif = X_ip_rsvp_vif;
3025	legal_vif_num = X_legal_vif_num;
3026	mrt_ioctl = X_mrt_ioctl;
3027	rsvp_input_p = X_rsvp_input;
3028	break;
3029
3030    case MOD_UNLOAD:
3031	/*
3032	 * Typically module unload happens after the user-level
3033	 * process has shutdown the kernel services (the check
3034	 * below insures someone can't just yank the module out
3035	 * from under a running process).  But if the module is
3036	 * just loaded and then unloaded w/o starting up a user
3037	 * process we still need to cleanup.
3038	 */
3039	if (ip_mrouter)
3040	    return EINVAL;
3041
3042	if (pim_encap_cookie) {
3043	    encap_detach(pim_encap_cookie);
3044	    pim_encap_cookie = NULL;
3045	}
3046
3047	X_ip_mrouter_done();
3048	ip_mcast_src = NULL;
3049	ip_mforward = NULL;
3050	ip_mrouter_done = NULL;
3051	ip_mrouter_get = NULL;
3052	ip_mrouter_set = NULL;
3053	ip_rsvp_force_done = NULL;
3054	ip_rsvp_vif = NULL;
3055	legal_vif_num = NULL;
3056	mrt_ioctl = NULL;
3057	rsvp_input_p = NULL;
3058	VIF_LOCK_DESTROY();
3059	MFC_LOCK_DESTROY();
3060	mtx_destroy(&mrouter_mtx);
3061	break;
3062    default:
3063	return EOPNOTSUPP;
3064    }
3065    return 0;
3066}
3067
3068static moduledata_t ip_mroutemod = {
3069    "ip_mroute",
3070    ip_mroute_modevent,
3071    0
3072};
3073DECLARE_MODULE(ip_mroute, ip_mroutemod, SI_SUB_PSEUDO, SI_ORDER_ANY);
3074