ip_mroute.c revision 166622
1/*-
2 * Copyright (c) 1989 Stephen Deering
3 * Copyright (c) 1992, 1993
4 *      The Regents of the University of California.  All rights reserved.
5 *
6 * This code is derived from software contributed to Berkeley by
7 * Stephen Deering of Stanford University.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in the
16 *    documentation and/or other materials provided with the distribution.
17 * 4. Neither the name of the University nor the names of its contributors
18 *    may be used to endorse or promote products derived from this software
19 *    without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 *
33 *      @(#)ip_mroute.c 8.2 (Berkeley) 11/15/93
34 */
35
36/*
37 * IP multicast forwarding procedures
38 *
39 * Written by David Waitzman, BBN Labs, August 1988.
40 * Modified by Steve Deering, Stanford, February 1989.
41 * Modified by Mark J. Steiglitz, Stanford, May, 1991
42 * Modified by Van Jacobson, LBL, January 1993
43 * Modified by Ajit Thyagarajan, PARC, August 1993
44 * Modified by Bill Fenner, PARC, April 1995
45 * Modified by Ahmed Helmy, SGI, June 1996
46 * Modified by George Edmond Eddy (Rusty), ISI, February 1998
47 * Modified by Pavlin Radoslavov, USC/ISI, May 1998, August 1999, October 2000
48 * Modified by Hitoshi Asaeda, WIDE, August 2000
49 * Modified by Pavlin Radoslavov, ICSI, October 2002
50 *
51 * MROUTING Revision: 3.5
52 * and PIM-SMv2 and PIM-DM support, advanced API support,
53 * bandwidth metering and signaling
54 *
55 * $FreeBSD: head/sys/netinet/ip_mroute.c 166622 2007-02-10 13:59:13Z bms $
56 */
57
58#include "opt_mac.h"
59#include "opt_mrouting.h"
60
61#define _PIM_VT 1
62
63#include <sys/param.h>
64#include <sys/kernel.h>
65#include <sys/lock.h>
66#include <sys/malloc.h>
67#include <sys/mbuf.h>
68#include <sys/module.h>
69#include <sys/priv.h>
70#include <sys/protosw.h>
71#include <sys/signalvar.h>
72#include <sys/socket.h>
73#include <sys/socketvar.h>
74#include <sys/sockio.h>
75#include <sys/sx.h>
76#include <sys/sysctl.h>
77#include <sys/syslog.h>
78#include <sys/systm.h>
79#include <sys/time.h>
80#include <net/if.h>
81#include <net/netisr.h>
82#include <net/route.h>
83#include <netinet/in.h>
84#include <netinet/igmp.h>
85#include <netinet/in_systm.h>
86#include <netinet/in_var.h>
87#include <netinet/ip.h>
88#include <netinet/ip_encap.h>
89#include <netinet/ip_mroute.h>
90#include <netinet/ip_var.h>
91#include <netinet/ip_options.h>
92#include <netinet/pim.h>
93#include <netinet/pim_var.h>
94#include <netinet/udp.h>
95#include <machine/in_cksum.h>
96
97#include <security/mac/mac_framework.h>
98
99/*
100 * Control debugging code for rsvp and multicast routing code.
101 * Can only set them with the debugger.
102 */
103static u_int    rsvpdebug;		/* non-zero enables debugging	*/
104
105static u_int	mrtdebug;		/* any set of the flags below	*/
106#define		DEBUG_MFC	0x02
107#define		DEBUG_FORWARD	0x04
108#define		DEBUG_EXPIRE	0x08
109#define		DEBUG_XMIT	0x10
110#define		DEBUG_PIM	0x20
111
112#define		VIFI_INVALID	((vifi_t) -1)
113
114#define M_HASCL(m)	((m)->m_flags & M_EXT)
115
116static MALLOC_DEFINE(M_MRTABLE, "mroutetbl", "multicast routing tables");
117
118/*
119 * Locking.  We use two locks: one for the virtual interface table and
120 * one for the forwarding table.  These locks may be nested in which case
121 * the VIF lock must always be taken first.  Note that each lock is used
122 * to cover not only the specific data structure but also related data
123 * structures.  It may be better to add more fine-grained locking later;
124 * it's not clear how performance-critical this code is.
125 *
126 * XXX: This module could particularly benefit from being cleaned
127 *      up to use the <sys/queue.h> macros.
128 *
129 */
130
131static struct mrtstat	mrtstat;
132SYSCTL_STRUCT(_net_inet_ip, OID_AUTO, mrtstat, CTLFLAG_RW,
133    &mrtstat, mrtstat,
134    "Multicast Routing Statistics (struct mrtstat, netinet/ip_mroute.h)");
135
136static struct mfc	*mfctable[MFCTBLSIZ];
137SYSCTL_OPAQUE(_net_inet_ip, OID_AUTO, mfctable, CTLFLAG_RD,
138    &mfctable, sizeof(mfctable), "S,*mfc[MFCTBLSIZ]",
139    "Multicast Forwarding Table (struct *mfc[MFCTBLSIZ], netinet/ip_mroute.h)");
140
141static struct mtx mfc_mtx;
142#define	MFC_LOCK()	mtx_lock(&mfc_mtx)
143#define	MFC_UNLOCK()	mtx_unlock(&mfc_mtx)
144#define	MFC_LOCK_ASSERT()	do {					\
145	mtx_assert(&mfc_mtx, MA_OWNED);					\
146	NET_ASSERT_GIANT();						\
147} while (0)
148#define	MFC_LOCK_INIT()	mtx_init(&mfc_mtx, "mroute mfc table", NULL, MTX_DEF)
149#define	MFC_LOCK_DESTROY()	mtx_destroy(&mfc_mtx)
150
151static struct vif	viftable[MAXVIFS];
152SYSCTL_OPAQUE(_net_inet_ip, OID_AUTO, viftable, CTLFLAG_RD,
153    &viftable, sizeof(viftable), "S,vif[MAXVIFS]",
154    "Multicast Virtual Interfaces (struct vif[MAXVIFS], netinet/ip_mroute.h)");
155
156static struct mtx vif_mtx;
157#define	VIF_LOCK()	mtx_lock(&vif_mtx)
158#define	VIF_UNLOCK()	mtx_unlock(&vif_mtx)
159#define	VIF_LOCK_ASSERT()	mtx_assert(&vif_mtx, MA_OWNED)
160#define	VIF_LOCK_INIT()	mtx_init(&vif_mtx, "mroute vif table", NULL, MTX_DEF)
161#define	VIF_LOCK_DESTROY()	mtx_destroy(&vif_mtx)
162
163static u_char		nexpire[MFCTBLSIZ];
164
165static eventhandler_tag if_detach_event_tag = NULL;
166
167static struct callout expire_upcalls_ch;
168
169#define		EXPIRE_TIMEOUT	(hz / 4)	/* 4x / second		*/
170#define		UPCALL_EXPIRE	6		/* number of timeouts	*/
171
172#define ENCAP_TTL 64
173
174/*
175 * Bandwidth meter variables and constants
176 */
177static MALLOC_DEFINE(M_BWMETER, "bwmeter", "multicast upcall bw meters");
178/*
179 * Pending timeouts are stored in a hash table, the key being the
180 * expiration time. Periodically, the entries are analysed and processed.
181 */
182#define BW_METER_BUCKETS	1024
183static struct bw_meter *bw_meter_timers[BW_METER_BUCKETS];
184static struct callout bw_meter_ch;
185#define BW_METER_PERIOD (hz)		/* periodical handling of bw meters */
186
187/*
188 * Pending upcalls are stored in a vector which is flushed when
189 * full, or periodically
190 */
191static struct bw_upcall	bw_upcalls[BW_UPCALLS_MAX];
192static u_int	bw_upcalls_n; /* # of pending upcalls */
193static struct callout bw_upcalls_ch;
194#define BW_UPCALLS_PERIOD (hz)		/* periodical flush of bw upcalls */
195
196static struct pimstat pimstat;
197
198SYSCTL_NODE(_net_inet, IPPROTO_PIM, pim, CTLFLAG_RW, 0, "PIM");
199SYSCTL_STRUCT(_net_inet_pim, PIMCTL_STATS, stats, CTLFLAG_RD,
200    &pimstat, pimstat,
201    "PIM Statistics (struct pimstat, netinet/pim_var.h)");
202
203extern  struct domain inetdomain;
204struct protosw in_pim_protosw = {
205	.pr_type =		SOCK_RAW,
206	.pr_domain =		&inetdomain,
207	.pr_protocol =		IPPROTO_PIM,
208	.pr_flags =		PR_ATOMIC|PR_ADDR|PR_LASTHDR,
209	.pr_input =		pim_input,
210	.pr_output =		(pr_output_t*)rip_output,
211	.pr_ctloutput =		rip_ctloutput,
212	.pr_usrreqs =		&rip_usrreqs
213};
214static const struct encaptab *pim_encap_cookie;
215static int pim_encapcheck(const struct mbuf *, int, int, void *);
216
217/*
218 * Note: the PIM Register encapsulation adds the following in front of a
219 * data packet:
220 *
221 * struct pim_encap_hdr {
222 *    struct ip ip;
223 *    struct pim_encap_pimhdr  pim;
224 * }
225 *
226 */
227
228struct pim_encap_pimhdr {
229	struct pim pim;
230	uint32_t   flags;
231};
232
233static struct ip pim_encap_iphdr = {
234#if BYTE_ORDER == LITTLE_ENDIAN
235	sizeof(struct ip) >> 2,
236	IPVERSION,
237#else
238	IPVERSION,
239	sizeof(struct ip) >> 2,
240#endif
241	0,			/* tos */
242	sizeof(struct ip),	/* total length */
243	0,			/* id */
244	0,			/* frag offset */
245	ENCAP_TTL,
246	IPPROTO_PIM,
247	0,			/* checksum */
248};
249
250static struct pim_encap_pimhdr pim_encap_pimhdr = {
251    {
252	PIM_MAKE_VT(PIM_VERSION, PIM_REGISTER), /* PIM vers and message type */
253	0,			/* reserved */
254	0,			/* checksum */
255    },
256    0				/* flags */
257};
258
259static struct ifnet multicast_register_if;
260static vifi_t reg_vif_num = VIFI_INVALID;
261
262/*
263 * Private variables.
264 */
265static vifi_t	   numvifs;
266
267static u_long	X_ip_mcast_src(int vifi);
268static int	X_ip_mforward(struct ip *ip, struct ifnet *ifp,
269			struct mbuf *m, struct ip_moptions *imo);
270static int	X_ip_mrouter_done(void);
271static int	X_ip_mrouter_get(struct socket *so, struct sockopt *m);
272static int	X_ip_mrouter_set(struct socket *so, struct sockopt *m);
273static int	X_legal_vif_num(int vif);
274static int	X_mrt_ioctl(int cmd, caddr_t data);
275
276static int get_sg_cnt(struct sioc_sg_req *);
277static int get_vif_cnt(struct sioc_vif_req *);
278static void if_detached_event(void *arg __unused, struct ifnet *);
279static int ip_mrouter_init(struct socket *, int);
280static int add_vif(struct vifctl *);
281static int del_vif_locked(vifi_t);
282static int del_vif(vifi_t);
283static int add_mfc(struct mfcctl2 *);
284static int del_mfc(struct mfcctl2 *);
285static int set_api_config(uint32_t *); /* chose API capabilities */
286static int socket_send(struct socket *, struct mbuf *, struct sockaddr_in *);
287static int set_assert(int);
288static void expire_upcalls(void *);
289static int ip_mdq(struct mbuf *, struct ifnet *, struct mfc *, vifi_t);
290static void phyint_send(struct ip *, struct vif *, struct mbuf *);
291static void send_packet(struct vif *, struct mbuf *);
292
293/*
294 * Bandwidth monitoring
295 */
296static void free_bw_list(struct bw_meter *list);
297static int add_bw_upcall(struct bw_upcall *);
298static int del_bw_upcall(struct bw_upcall *);
299static void bw_meter_receive_packet(struct bw_meter *x, int plen,
300		struct timeval *nowp);
301static void bw_meter_prepare_upcall(struct bw_meter *x, struct timeval *nowp);
302static void bw_upcalls_send(void);
303static void schedule_bw_meter(struct bw_meter *x, struct timeval *nowp);
304static void unschedule_bw_meter(struct bw_meter *x);
305static void bw_meter_process(void);
306static void expire_bw_upcalls_send(void *);
307static void expire_bw_meter_process(void *);
308
309static int pim_register_send(struct ip *, struct vif *,
310		struct mbuf *, struct mfc *);
311static int pim_register_send_rp(struct ip *, struct vif *,
312		struct mbuf *, struct mfc *);
313static int pim_register_send_upcall(struct ip *, struct vif *,
314		struct mbuf *, struct mfc *);
315static struct mbuf *pim_register_prepare(struct ip *, struct mbuf *);
316
317/*
318 * whether or not special PIM assert processing is enabled.
319 */
320static int pim_assert;
321/*
322 * Rate limit for assert notification messages, in usec
323 */
324#define ASSERT_MSG_TIME		3000000
325
326/*
327 * Kernel multicast routing API capabilities and setup.
328 * If more API capabilities are added to the kernel, they should be
329 * recorded in `mrt_api_support'.
330 */
331static const uint32_t mrt_api_support = (MRT_MFC_FLAGS_DISABLE_WRONGVIF |
332					 MRT_MFC_FLAGS_BORDER_VIF |
333					 MRT_MFC_RP |
334					 MRT_MFC_BW_UPCALL);
335static uint32_t mrt_api_config = 0;
336
337/*
338 * Hash function for a source, group entry
339 */
340#define MFCHASH(a, g) MFCHASHMOD(((a) >> 20) ^ ((a) >> 10) ^ (a) ^ \
341			((g) >> 20) ^ ((g) >> 10) ^ (g))
342
343/*
344 * Find a route for a given origin IP address and Multicast group address
345 * Type of service parameter to be added in the future!!!
346 * Statistics are updated by the caller if needed
347 * (mrtstat.mrts_mfc_lookups and mrtstat.mrts_mfc_misses)
348 */
349static struct mfc *
350mfc_find(in_addr_t o, in_addr_t g)
351{
352    struct mfc *rt;
353
354    MFC_LOCK_ASSERT();
355
356    for (rt = mfctable[MFCHASH(o,g)]; rt; rt = rt->mfc_next)
357	if ((rt->mfc_origin.s_addr == o) &&
358		(rt->mfc_mcastgrp.s_addr == g) && (rt->mfc_stall == NULL))
359	    break;
360    return rt;
361}
362
363/*
364 * Macros to compute elapsed time efficiently
365 * Borrowed from Van Jacobson's scheduling code
366 */
367#define TV_DELTA(a, b, delta) {					\
368	int xxs;						\
369	delta = (a).tv_usec - (b).tv_usec;			\
370	if ((xxs = (a).tv_sec - (b).tv_sec)) {			\
371		switch (xxs) {					\
372		case 2:						\
373		      delta += 1000000;				\
374		      /* FALLTHROUGH */				\
375		case 1:						\
376		      delta += 1000000;				\
377		      break;					\
378		default:					\
379		      delta += (1000000 * xxs);			\
380		}						\
381	}							\
382}
383
384#define TV_LT(a, b) (((a).tv_usec < (b).tv_usec && \
385	      (a).tv_sec <= (b).tv_sec) || (a).tv_sec < (b).tv_sec)
386
387/*
388 * Handle MRT setsockopt commands to modify the multicast routing tables.
389 */
390static int
391X_ip_mrouter_set(struct socket *so, struct sockopt *sopt)
392{
393    int	error, optval;
394    vifi_t	vifi;
395    struct	vifctl vifc;
396    struct	mfcctl2 mfc;
397    struct	bw_upcall bw_upcall;
398    uint32_t	i;
399
400    if (so != ip_mrouter && sopt->sopt_name != MRT_INIT)
401	return EPERM;
402
403    error = 0;
404    switch (sopt->sopt_name) {
405    case MRT_INIT:
406	error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval);
407	if (error)
408	    break;
409	error = ip_mrouter_init(so, optval);
410	break;
411
412    case MRT_DONE:
413	error = ip_mrouter_done();
414	break;
415
416    case MRT_ADD_VIF:
417	error = sooptcopyin(sopt, &vifc, sizeof vifc, sizeof vifc);
418	if (error)
419	    break;
420	error = add_vif(&vifc);
421	break;
422
423    case MRT_DEL_VIF:
424	error = sooptcopyin(sopt, &vifi, sizeof vifi, sizeof vifi);
425	if (error)
426	    break;
427	error = del_vif(vifi);
428	break;
429
430    case MRT_ADD_MFC:
431    case MRT_DEL_MFC:
432	/*
433	 * select data size depending on API version.
434	 */
435	if (sopt->sopt_name == MRT_ADD_MFC &&
436		mrt_api_config & MRT_API_FLAGS_ALL) {
437	    error = sooptcopyin(sopt, &mfc, sizeof(struct mfcctl2),
438				sizeof(struct mfcctl2));
439	} else {
440	    error = sooptcopyin(sopt, &mfc, sizeof(struct mfcctl),
441				sizeof(struct mfcctl));
442	    bzero((caddr_t)&mfc + sizeof(struct mfcctl),
443			sizeof(mfc) - sizeof(struct mfcctl));
444	}
445	if (error)
446	    break;
447	if (sopt->sopt_name == MRT_ADD_MFC)
448	    error = add_mfc(&mfc);
449	else
450	    error = del_mfc(&mfc);
451	break;
452
453    case MRT_ASSERT:
454	error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval);
455	if (error)
456	    break;
457	set_assert(optval);
458	break;
459
460    case MRT_API_CONFIG:
461	error = sooptcopyin(sopt, &i, sizeof i, sizeof i);
462	if (!error)
463	    error = set_api_config(&i);
464	if (!error)
465	    error = sooptcopyout(sopt, &i, sizeof i);
466	break;
467
468    case MRT_ADD_BW_UPCALL:
469    case MRT_DEL_BW_UPCALL:
470	error = sooptcopyin(sopt, &bw_upcall, sizeof bw_upcall,
471				sizeof bw_upcall);
472	if (error)
473	    break;
474	if (sopt->sopt_name == MRT_ADD_BW_UPCALL)
475	    error = add_bw_upcall(&bw_upcall);
476	else
477	    error = del_bw_upcall(&bw_upcall);
478	break;
479
480    default:
481	error = EOPNOTSUPP;
482	break;
483    }
484    return error;
485}
486
487/*
488 * Handle MRT getsockopt commands
489 */
490static int
491X_ip_mrouter_get(struct socket *so, struct sockopt *sopt)
492{
493    int error;
494    static int version = 0x0305; /* !!! why is this here? XXX */
495
496    switch (sopt->sopt_name) {
497    case MRT_VERSION:
498	error = sooptcopyout(sopt, &version, sizeof version);
499	break;
500
501    case MRT_ASSERT:
502	error = sooptcopyout(sopt, &pim_assert, sizeof pim_assert);
503	break;
504
505    case MRT_API_SUPPORT:
506	error = sooptcopyout(sopt, &mrt_api_support, sizeof mrt_api_support);
507	break;
508
509    case MRT_API_CONFIG:
510	error = sooptcopyout(sopt, &mrt_api_config, sizeof mrt_api_config);
511	break;
512
513    default:
514	error = EOPNOTSUPP;
515	break;
516    }
517    return error;
518}
519
520/*
521 * Handle ioctl commands to obtain information from the cache
522 */
523static int
524X_mrt_ioctl(int cmd, caddr_t data)
525{
526    int error = 0;
527
528    /*
529     * Currently the only function calling this ioctl routine is rtioctl().
530     * Typically, only root can create the raw socket in order to execute
531     * this ioctl method, however the request might be coming from a prison
532     */
533    error = priv_check(curthread, PRIV_NETINET_MROUTE);
534    if (error)
535	return (error);
536    switch (cmd) {
537    case (SIOCGETVIFCNT):
538	error = get_vif_cnt((struct sioc_vif_req *)data);
539	break;
540
541    case (SIOCGETSGCNT):
542	error = get_sg_cnt((struct sioc_sg_req *)data);
543	break;
544
545    default:
546	error = EINVAL;
547	break;
548    }
549    return error;
550}
551
552/*
553 * returns the packet, byte, rpf-failure count for the source group provided
554 */
555static int
556get_sg_cnt(struct sioc_sg_req *req)
557{
558    struct mfc *rt;
559
560    MFC_LOCK();
561    rt = mfc_find(req->src.s_addr, req->grp.s_addr);
562    if (rt == NULL) {
563	MFC_UNLOCK();
564	req->pktcnt = req->bytecnt = req->wrong_if = 0xffffffff;
565	return EADDRNOTAVAIL;
566    }
567    req->pktcnt = rt->mfc_pkt_cnt;
568    req->bytecnt = rt->mfc_byte_cnt;
569    req->wrong_if = rt->mfc_wrong_if;
570    MFC_UNLOCK();
571    return 0;
572}
573
574/*
575 * returns the input and output packet and byte counts on the vif provided
576 */
577static int
578get_vif_cnt(struct sioc_vif_req *req)
579{
580    vifi_t vifi = req->vifi;
581
582    VIF_LOCK();
583    if (vifi >= numvifs) {
584	VIF_UNLOCK();
585	return EINVAL;
586    }
587
588    req->icount = viftable[vifi].v_pkt_in;
589    req->ocount = viftable[vifi].v_pkt_out;
590    req->ibytes = viftable[vifi].v_bytes_in;
591    req->obytes = viftable[vifi].v_bytes_out;
592    VIF_UNLOCK();
593
594    return 0;
595}
596
597static void
598ip_mrouter_reset(void)
599{
600    bzero((caddr_t)mfctable, sizeof(mfctable));
601    bzero((caddr_t)nexpire, sizeof(nexpire));
602
603    pim_assert = 0;
604    mrt_api_config = 0;
605
606    callout_init(&expire_upcalls_ch, NET_CALLOUT_MPSAFE);
607
608    bw_upcalls_n = 0;
609    bzero((caddr_t)bw_meter_timers, sizeof(bw_meter_timers));
610    callout_init(&bw_upcalls_ch, NET_CALLOUT_MPSAFE);
611    callout_init(&bw_meter_ch, NET_CALLOUT_MPSAFE);
612}
613
614static struct mtx mrouter_mtx;
615
616static void
617if_detached_event(void *arg __unused, struct ifnet *ifp)
618{
619    vifi_t vifi;
620    int i;
621    struct mfc *mfc;
622    struct mfc *nmfc;
623    struct mfc **ppmfc;	/* Pointer to previous node's next-pointer */
624    struct rtdetq *pq;
625    struct rtdetq *npq;
626
627    mtx_lock(&mrouter_mtx);
628    if (ip_mrouter == NULL) {
629	mtx_unlock(&mrouter_mtx);
630    }
631
632    /*
633     * Tear down multicast forwarder state associated with this ifnet.
634     * 1. Walk the vif list, matching vifs against this ifnet.
635     * 2. Walk the multicast forwarding cache (mfc) looking for
636     *    inner matches with this vif's index.
637     * 3. Free any pending mbufs for this mfc.
638     * 4. Free the associated mfc entry and state associated with this vif.
639     *    Be very careful about unlinking from a singly-linked list whose
640     *    "head node" is a pointer in a simple array.
641     * 5. Free vif state. This should disable ALLMULTI on the interface.
642     */
643    VIF_LOCK();
644    MFC_LOCK();
645    for (vifi = 0; vifi < numvifs; vifi++) {
646	if (viftable[vifi].v_ifp != ifp)
647		continue;
648	for (i = 0; i < MFCTBLSIZ; i++) {
649	    ppmfc = &mfctable[i];
650	    for (mfc = mfctable[i]; mfc != NULL; ) {
651		nmfc = mfc->mfc_next;
652		if (mfc->mfc_parent == vifi) {
653		    for (pq = mfc->mfc_stall; pq != NULL; ) {
654			npq = pq->next;
655			m_freem(pq->m);
656			free(pq, M_MRTABLE);
657			pq = npq;
658		    }
659		    free_bw_list(mfc->mfc_bw_meter);
660		    free(mfc, M_MRTABLE);
661		    *ppmfc = nmfc;
662		} else {
663		    ppmfc = &mfc->mfc_next;
664		}
665		mfc = nmfc;
666	    }
667	}
668	del_vif_locked(vifi);
669    }
670    MFC_UNLOCK();
671    VIF_UNLOCK();
672
673    mtx_unlock(&mrouter_mtx);
674}
675
676/*
677 * Enable multicast routing
678 */
679static int
680ip_mrouter_init(struct socket *so, int version)
681{
682    if (mrtdebug)
683	log(LOG_DEBUG, "ip_mrouter_init: so_type = %d, pr_protocol = %d\n",
684	    so->so_type, so->so_proto->pr_protocol);
685
686    if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_IGMP)
687	return EOPNOTSUPP;
688
689    if (version != 1)
690	return ENOPROTOOPT;
691
692    mtx_lock(&mrouter_mtx);
693
694    if (ip_mrouter != NULL) {
695	mtx_unlock(&mrouter_mtx);
696	return EADDRINUSE;
697    }
698
699    if_detach_event_tag = EVENTHANDLER_REGISTER(ifnet_departure_event,
700        if_detached_event, NULL, EVENTHANDLER_PRI_ANY);
701    if (if_detach_event_tag == NULL)
702	return (ENOMEM);
703
704    callout_reset(&expire_upcalls_ch, EXPIRE_TIMEOUT, expire_upcalls, NULL);
705
706    callout_reset(&bw_upcalls_ch, BW_UPCALLS_PERIOD,
707	expire_bw_upcalls_send, NULL);
708    callout_reset(&bw_meter_ch, BW_METER_PERIOD, expire_bw_meter_process, NULL);
709
710    ip_mrouter = so;
711
712    mtx_unlock(&mrouter_mtx);
713
714    if (mrtdebug)
715	log(LOG_DEBUG, "ip_mrouter_init\n");
716
717    return 0;
718}
719
720/*
721 * Disable multicast routing
722 */
723static int
724X_ip_mrouter_done(void)
725{
726    vifi_t vifi;
727    int i;
728    struct ifnet *ifp;
729    struct ifreq ifr;
730    struct mfc *rt;
731    struct rtdetq *rte;
732
733    mtx_lock(&mrouter_mtx);
734
735    if (ip_mrouter == NULL) {
736	mtx_unlock(&mrouter_mtx);
737	return EINVAL;
738    }
739
740    /*
741     * Detach/disable hooks to the reset of the system.
742     */
743    ip_mrouter = NULL;
744    mrt_api_config = 0;
745
746    VIF_LOCK();
747    /*
748     * For each phyint in use, disable promiscuous reception of all IP
749     * multicasts.
750     */
751    for (vifi = 0; vifi < numvifs; vifi++) {
752	if (viftable[vifi].v_lcl_addr.s_addr != 0 &&
753		!(viftable[vifi].v_flags & (VIFF_TUNNEL | VIFF_REGISTER))) {
754	    struct sockaddr_in *so = (struct sockaddr_in *)&(ifr.ifr_addr);
755
756	    so->sin_len = sizeof(struct sockaddr_in);
757	    so->sin_family = AF_INET;
758	    so->sin_addr.s_addr = INADDR_ANY;
759	    ifp = viftable[vifi].v_ifp;
760	    if_allmulti(ifp, 0);
761	}
762    }
763    bzero((caddr_t)viftable, sizeof(viftable));
764    numvifs = 0;
765    pim_assert = 0;
766    VIF_UNLOCK();
767    EVENTHANDLER_DEREGISTER(ifnet_departure_event, if_detach_event_tag);
768
769    /*
770     * Free all multicast forwarding cache entries.
771     */
772    callout_stop(&expire_upcalls_ch);
773    callout_stop(&bw_upcalls_ch);
774    callout_stop(&bw_meter_ch);
775
776    MFC_LOCK();
777    for (i = 0; i < MFCTBLSIZ; i++) {
778	for (rt = mfctable[i]; rt != NULL; ) {
779	    struct mfc *nr = rt->mfc_next;
780
781	    for (rte = rt->mfc_stall; rte != NULL; ) {
782		struct rtdetq *n = rte->next;
783
784		m_freem(rte->m);
785		free(rte, M_MRTABLE);
786		rte = n;
787	    }
788	    free_bw_list(rt->mfc_bw_meter);
789	    free(rt, M_MRTABLE);
790	    rt = nr;
791	}
792    }
793    bzero((caddr_t)mfctable, sizeof(mfctable));
794    bzero((caddr_t)nexpire, sizeof(nexpire));
795    bw_upcalls_n = 0;
796    bzero(bw_meter_timers, sizeof(bw_meter_timers));
797    MFC_UNLOCK();
798
799    reg_vif_num = VIFI_INVALID;
800
801    mtx_unlock(&mrouter_mtx);
802
803    if (mrtdebug)
804	log(LOG_DEBUG, "ip_mrouter_done\n");
805
806    return 0;
807}
808
809/*
810 * Set PIM assert processing global
811 */
812static int
813set_assert(int i)
814{
815    if ((i != 1) && (i != 0))
816	return EINVAL;
817
818    pim_assert = i;
819
820    return 0;
821}
822
823/*
824 * Configure API capabilities
825 */
826int
827set_api_config(uint32_t *apival)
828{
829    int i;
830
831    /*
832     * We can set the API capabilities only if it is the first operation
833     * after MRT_INIT. I.e.:
834     *  - there are no vifs installed
835     *  - pim_assert is not enabled
836     *  - the MFC table is empty
837     */
838    if (numvifs > 0) {
839	*apival = 0;
840	return EPERM;
841    }
842    if (pim_assert) {
843	*apival = 0;
844	return EPERM;
845    }
846    for (i = 0; i < MFCTBLSIZ; i++) {
847	if (mfctable[i] != NULL) {
848	    *apival = 0;
849	    return EPERM;
850	}
851    }
852
853    mrt_api_config = *apival & mrt_api_support;
854    *apival = mrt_api_config;
855
856    return 0;
857}
858
859/*
860 * Add a vif to the vif table
861 */
862static int
863add_vif(struct vifctl *vifcp)
864{
865    struct vif *vifp = viftable + vifcp->vifc_vifi;
866    struct sockaddr_in sin = {sizeof sin, AF_INET};
867    struct ifaddr *ifa;
868    struct ifnet *ifp;
869    int error;
870
871    VIF_LOCK();
872    if (vifcp->vifc_vifi >= MAXVIFS) {
873	VIF_UNLOCK();
874	return EINVAL;
875    }
876    /* rate limiting is no longer supported by this code */
877    if (vifcp->vifc_rate_limit != 0) {
878	log(LOG_ERR, "rate limiting is no longer supported\n");
879	VIF_UNLOCK();
880	return EINVAL;
881    }
882    if (vifp->v_lcl_addr.s_addr != INADDR_ANY) {
883	VIF_UNLOCK();
884	return EADDRINUSE;
885    }
886    if (vifcp->vifc_lcl_addr.s_addr == INADDR_ANY) {
887	VIF_UNLOCK();
888	return EADDRNOTAVAIL;
889    }
890
891    /* Find the interface with an address in AF_INET family */
892    if (vifcp->vifc_flags & VIFF_REGISTER) {
893	/*
894	 * XXX: Because VIFF_REGISTER does not really need a valid
895	 * local interface (e.g. it could be 127.0.0.2), we don't
896	 * check its address.
897	 */
898	ifp = NULL;
899    } else {
900	sin.sin_addr = vifcp->vifc_lcl_addr;
901	ifa = ifa_ifwithaddr((struct sockaddr *)&sin);
902	if (ifa == NULL) {
903	    VIF_UNLOCK();
904	    return EADDRNOTAVAIL;
905	}
906	ifp = ifa->ifa_ifp;
907    }
908
909    if ((vifcp->vifc_flags & VIFF_TUNNEL) != 0) {
910	log(LOG_ERR, "tunnels are no longer supported\n");
911	VIF_UNLOCK();
912	return EOPNOTSUPP;
913    } else if (vifcp->vifc_flags & VIFF_REGISTER) {
914	ifp = &multicast_register_if;
915	if (mrtdebug)
916	    log(LOG_DEBUG, "Adding a register vif, ifp: %p\n",
917		    (void *)&multicast_register_if);
918	if (reg_vif_num == VIFI_INVALID) {
919	    if_initname(&multicast_register_if, "register_vif", 0);
920	    multicast_register_if.if_flags = IFF_LOOPBACK;
921	    reg_vif_num = vifcp->vifc_vifi;
922	}
923    } else {		/* Make sure the interface supports multicast */
924	if ((ifp->if_flags & IFF_MULTICAST) == 0) {
925	    VIF_UNLOCK();
926	    return EOPNOTSUPP;
927	}
928
929	/* Enable promiscuous reception of all IP multicasts from the if */
930	error = if_allmulti(ifp, 1);
931	if (error) {
932	    VIF_UNLOCK();
933	    return error;
934	}
935    }
936
937    vifp->v_flags     = vifcp->vifc_flags;
938    vifp->v_threshold = vifcp->vifc_threshold;
939    vifp->v_lcl_addr  = vifcp->vifc_lcl_addr;
940    vifp->v_rmt_addr  = vifcp->vifc_rmt_addr;
941    vifp->v_ifp       = ifp;
942    vifp->v_rsvp_on   = 0;
943    vifp->v_rsvpd     = NULL;
944    /* initialize per vif pkt counters */
945    vifp->v_pkt_in    = 0;
946    vifp->v_pkt_out   = 0;
947    vifp->v_bytes_in  = 0;
948    vifp->v_bytes_out = 0;
949    bzero(&vifp->v_route, sizeof(vifp->v_route));
950
951    /* Adjust numvifs up if the vifi is higher than numvifs */
952    if (numvifs <= vifcp->vifc_vifi) numvifs = vifcp->vifc_vifi + 1;
953
954    VIF_UNLOCK();
955
956    if (mrtdebug)
957	log(LOG_DEBUG, "add_vif #%d, lcladdr %lx, %s %lx, thresh %x\n",
958	    vifcp->vifc_vifi,
959	    (u_long)ntohl(vifcp->vifc_lcl_addr.s_addr),
960	    (vifcp->vifc_flags & VIFF_TUNNEL) ? "rmtaddr" : "mask",
961	    (u_long)ntohl(vifcp->vifc_rmt_addr.s_addr),
962	    vifcp->vifc_threshold);
963
964    return 0;
965}
966
967/*
968 * Delete a vif from the vif table
969 */
970static int
971del_vif_locked(vifi_t vifi)
972{
973    struct vif *vifp;
974
975    VIF_LOCK_ASSERT();
976
977    if (vifi >= numvifs) {
978	return EINVAL;
979    }
980    vifp = &viftable[vifi];
981    if (vifp->v_lcl_addr.s_addr == INADDR_ANY) {
982	return EADDRNOTAVAIL;
983    }
984
985    if (!(vifp->v_flags & (VIFF_TUNNEL | VIFF_REGISTER)))
986	if_allmulti(vifp->v_ifp, 0);
987
988    if (vifp->v_flags & VIFF_REGISTER)
989	reg_vif_num = VIFI_INVALID;
990
991    bzero((caddr_t)vifp, sizeof (*vifp));
992
993    if (mrtdebug)
994	log(LOG_DEBUG, "del_vif %d, numvifs %d\n", vifi, numvifs);
995
996    /* Adjust numvifs down */
997    for (vifi = numvifs; vifi > 0; vifi--)
998	if (viftable[vifi-1].v_lcl_addr.s_addr != INADDR_ANY)
999	    break;
1000    numvifs = vifi;
1001
1002    return 0;
1003}
1004
1005static int
1006del_vif(vifi_t vifi)
1007{
1008    int cc;
1009
1010    VIF_LOCK();
1011    cc = del_vif_locked(vifi);
1012    VIF_UNLOCK();
1013
1014    return cc;
1015}
1016
1017/*
1018 * update an mfc entry without resetting counters and S,G addresses.
1019 */
1020static void
1021update_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp)
1022{
1023    int i;
1024
1025    rt->mfc_parent = mfccp->mfcc_parent;
1026    for (i = 0; i < numvifs; i++) {
1027	rt->mfc_ttls[i] = mfccp->mfcc_ttls[i];
1028	rt->mfc_flags[i] = mfccp->mfcc_flags[i] & mrt_api_config &
1029	    MRT_MFC_FLAGS_ALL;
1030    }
1031    /* set the RP address */
1032    if (mrt_api_config & MRT_MFC_RP)
1033	rt->mfc_rp = mfccp->mfcc_rp;
1034    else
1035	rt->mfc_rp.s_addr = INADDR_ANY;
1036}
1037
1038/*
1039 * fully initialize an mfc entry from the parameter.
1040 */
1041static void
1042init_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp)
1043{
1044    rt->mfc_origin     = mfccp->mfcc_origin;
1045    rt->mfc_mcastgrp   = mfccp->mfcc_mcastgrp;
1046
1047    update_mfc_params(rt, mfccp);
1048
1049    /* initialize pkt counters per src-grp */
1050    rt->mfc_pkt_cnt    = 0;
1051    rt->mfc_byte_cnt   = 0;
1052    rt->mfc_wrong_if   = 0;
1053    rt->mfc_last_assert.tv_sec = rt->mfc_last_assert.tv_usec = 0;
1054}
1055
1056
1057/*
1058 * Add an mfc entry
1059 */
1060static int
1061add_mfc(struct mfcctl2 *mfccp)
1062{
1063    struct mfc *rt;
1064    u_long hash;
1065    struct rtdetq *rte;
1066    u_short nstl;
1067
1068    VIF_LOCK();
1069    MFC_LOCK();
1070
1071    rt = mfc_find(mfccp->mfcc_origin.s_addr, mfccp->mfcc_mcastgrp.s_addr);
1072
1073    /* If an entry already exists, just update the fields */
1074    if (rt) {
1075	if (mrtdebug & DEBUG_MFC)
1076	    log(LOG_DEBUG,"add_mfc update o %lx g %lx p %x\n",
1077		(u_long)ntohl(mfccp->mfcc_origin.s_addr),
1078		(u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr),
1079		mfccp->mfcc_parent);
1080
1081	update_mfc_params(rt, mfccp);
1082	MFC_UNLOCK();
1083	VIF_UNLOCK();
1084	return 0;
1085    }
1086
1087    /*
1088     * Find the entry for which the upcall was made and update
1089     */
1090    hash = MFCHASH(mfccp->mfcc_origin.s_addr, mfccp->mfcc_mcastgrp.s_addr);
1091    for (rt = mfctable[hash], nstl = 0; rt; rt = rt->mfc_next) {
1092
1093	if ((rt->mfc_origin.s_addr == mfccp->mfcc_origin.s_addr) &&
1094		(rt->mfc_mcastgrp.s_addr == mfccp->mfcc_mcastgrp.s_addr) &&
1095		(rt->mfc_stall != NULL)) {
1096
1097	    if (nstl++)
1098		log(LOG_ERR, "add_mfc %s o %lx g %lx p %x dbx %p\n",
1099		    "multiple kernel entries",
1100		    (u_long)ntohl(mfccp->mfcc_origin.s_addr),
1101		    (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr),
1102		    mfccp->mfcc_parent, (void *)rt->mfc_stall);
1103
1104	    if (mrtdebug & DEBUG_MFC)
1105		log(LOG_DEBUG,"add_mfc o %lx g %lx p %x dbg %p\n",
1106		    (u_long)ntohl(mfccp->mfcc_origin.s_addr),
1107		    (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr),
1108		    mfccp->mfcc_parent, (void *)rt->mfc_stall);
1109
1110	    init_mfc_params(rt, mfccp);
1111
1112	    rt->mfc_expire = 0;	/* Don't clean this guy up */
1113	    nexpire[hash]--;
1114
1115	    /* free packets Qed at the end of this entry */
1116	    for (rte = rt->mfc_stall; rte != NULL; ) {
1117		struct rtdetq *n = rte->next;
1118
1119		ip_mdq(rte->m, rte->ifp, rt, -1);
1120		m_freem(rte->m);
1121		free(rte, M_MRTABLE);
1122		rte = n;
1123	    }
1124	    rt->mfc_stall = NULL;
1125	}
1126    }
1127
1128    /*
1129     * It is possible that an entry is being inserted without an upcall
1130     */
1131    if (nstl == 0) {
1132	if (mrtdebug & DEBUG_MFC)
1133	    log(LOG_DEBUG,"add_mfc no upcall h %lu o %lx g %lx p %x\n",
1134		hash, (u_long)ntohl(mfccp->mfcc_origin.s_addr),
1135		(u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr),
1136		mfccp->mfcc_parent);
1137
1138	for (rt = mfctable[hash]; rt != NULL; rt = rt->mfc_next) {
1139	    if ((rt->mfc_origin.s_addr == mfccp->mfcc_origin.s_addr) &&
1140		    (rt->mfc_mcastgrp.s_addr == mfccp->mfcc_mcastgrp.s_addr)) {
1141		init_mfc_params(rt, mfccp);
1142		if (rt->mfc_expire)
1143		    nexpire[hash]--;
1144		rt->mfc_expire = 0;
1145		break; /* XXX */
1146	    }
1147	}
1148	if (rt == NULL) {		/* no upcall, so make a new entry */
1149	    rt = (struct mfc *)malloc(sizeof(*rt), M_MRTABLE, M_NOWAIT);
1150	    if (rt == NULL) {
1151		MFC_UNLOCK();
1152		VIF_UNLOCK();
1153		return ENOBUFS;
1154	    }
1155
1156	    init_mfc_params(rt, mfccp);
1157	    rt->mfc_expire     = 0;
1158	    rt->mfc_stall      = NULL;
1159
1160	    rt->mfc_bw_meter = NULL;
1161	    /* insert new entry at head of hash chain */
1162	    rt->mfc_next = mfctable[hash];
1163	    mfctable[hash] = rt;
1164	}
1165    }
1166    MFC_UNLOCK();
1167    VIF_UNLOCK();
1168    return 0;
1169}
1170
1171/*
1172 * Delete an mfc entry
1173 */
1174static int
1175del_mfc(struct mfcctl2 *mfccp)
1176{
1177    struct in_addr	origin;
1178    struct in_addr	mcastgrp;
1179    struct mfc		*rt;
1180    struct mfc		**nptr;
1181    u_long		hash;
1182    struct bw_meter	*list;
1183
1184    origin = mfccp->mfcc_origin;
1185    mcastgrp = mfccp->mfcc_mcastgrp;
1186
1187    if (mrtdebug & DEBUG_MFC)
1188	log(LOG_DEBUG,"del_mfc orig %lx mcastgrp %lx\n",
1189	    (u_long)ntohl(origin.s_addr), (u_long)ntohl(mcastgrp.s_addr));
1190
1191    MFC_LOCK();
1192
1193    hash = MFCHASH(origin.s_addr, mcastgrp.s_addr);
1194    for (nptr = &mfctable[hash]; (rt = *nptr) != NULL; nptr = &rt->mfc_next)
1195	if (origin.s_addr == rt->mfc_origin.s_addr &&
1196		mcastgrp.s_addr == rt->mfc_mcastgrp.s_addr &&
1197		rt->mfc_stall == NULL)
1198	    break;
1199    if (rt == NULL) {
1200	MFC_UNLOCK();
1201	return EADDRNOTAVAIL;
1202    }
1203
1204    *nptr = rt->mfc_next;
1205
1206    /*
1207     * free the bw_meter entries
1208     */
1209    list = rt->mfc_bw_meter;
1210    rt->mfc_bw_meter = NULL;
1211
1212    free(rt, M_MRTABLE);
1213
1214    free_bw_list(list);
1215
1216    MFC_UNLOCK();
1217
1218    return 0;
1219}
1220
1221/*
1222 * Send a message to the routing daemon on the multicast routing socket
1223 */
1224static int
1225socket_send(struct socket *s, struct mbuf *mm, struct sockaddr_in *src)
1226{
1227    if (s) {
1228	SOCKBUF_LOCK(&s->so_rcv);
1229	if (sbappendaddr_locked(&s->so_rcv, (struct sockaddr *)src, mm,
1230	    NULL) != 0) {
1231	    sorwakeup_locked(s);
1232	    return 0;
1233	}
1234	SOCKBUF_UNLOCK(&s->so_rcv);
1235    }
1236    m_freem(mm);
1237    return -1;
1238}
1239
1240/*
1241 * IP multicast forwarding function. This function assumes that the packet
1242 * pointed to by "ip" has arrived on (or is about to be sent to) the interface
1243 * pointed to by "ifp", and the packet is to be relayed to other networks
1244 * that have members of the packet's destination IP multicast group.
1245 *
1246 * The packet is returned unscathed to the caller, unless it is
1247 * erroneous, in which case a non-zero return value tells the caller to
1248 * discard it.
1249 */
1250
1251#define TUNNEL_LEN  12  /* # bytes of IP option for tunnel encapsulation  */
1252
1253static int
1254X_ip_mforward(struct ip *ip, struct ifnet *ifp, struct mbuf *m,
1255    struct ip_moptions *imo)
1256{
1257    struct mfc *rt;
1258    int error;
1259    vifi_t vifi;
1260
1261    if (mrtdebug & DEBUG_FORWARD)
1262	log(LOG_DEBUG, "ip_mforward: src %lx, dst %lx, ifp %p\n",
1263	    (u_long)ntohl(ip->ip_src.s_addr), (u_long)ntohl(ip->ip_dst.s_addr),
1264	    (void *)ifp);
1265
1266    if (ip->ip_hl < (sizeof(struct ip) + TUNNEL_LEN) >> 2 ||
1267		((u_char *)(ip + 1))[1] != IPOPT_LSRR ) {
1268	/*
1269	 * Packet arrived via a physical interface or
1270	 * an encapsulated tunnel or a register_vif.
1271	 */
1272    } else {
1273	/*
1274	 * Packet arrived through a source-route tunnel.
1275	 * Source-route tunnels are no longer supported.
1276	 */
1277	static int last_log;
1278	if (last_log != time_uptime) {
1279	    last_log = time_uptime;
1280	    log(LOG_ERR,
1281		"ip_mforward: received source-routed packet from %lx\n",
1282		(u_long)ntohl(ip->ip_src.s_addr));
1283	}
1284	return 1;
1285    }
1286
1287    VIF_LOCK();
1288    MFC_LOCK();
1289    if (imo && ((vifi = imo->imo_multicast_vif) < numvifs)) {
1290	if (ip->ip_ttl < 255)
1291	    ip->ip_ttl++;	/* compensate for -1 in *_send routines */
1292	if (rsvpdebug && ip->ip_p == IPPROTO_RSVP) {
1293	    struct vif *vifp = viftable + vifi;
1294
1295	    printf("Sending IPPROTO_RSVP from %lx to %lx on vif %d (%s%s)\n",
1296		(long)ntohl(ip->ip_src.s_addr), (long)ntohl(ip->ip_dst.s_addr),
1297		vifi,
1298		(vifp->v_flags & VIFF_TUNNEL) ? "tunnel on " : "",
1299		vifp->v_ifp->if_xname);
1300	}
1301	error = ip_mdq(m, ifp, NULL, vifi);
1302	MFC_UNLOCK();
1303	VIF_UNLOCK();
1304	return error;
1305    }
1306    if (rsvpdebug && ip->ip_p == IPPROTO_RSVP) {
1307	printf("Warning: IPPROTO_RSVP from %lx to %lx without vif option\n",
1308	    (long)ntohl(ip->ip_src.s_addr), (long)ntohl(ip->ip_dst.s_addr));
1309	if (!imo)
1310	    printf("In fact, no options were specified at all\n");
1311    }
1312
1313    /*
1314     * Don't forward a packet with time-to-live of zero or one,
1315     * or a packet destined to a local-only group.
1316     */
1317    if (ip->ip_ttl <= 1 || ntohl(ip->ip_dst.s_addr) <= INADDR_MAX_LOCAL_GROUP) {
1318	MFC_UNLOCK();
1319	VIF_UNLOCK();
1320	return 0;
1321    }
1322
1323    /*
1324     * Determine forwarding vifs from the forwarding cache table
1325     */
1326    ++mrtstat.mrts_mfc_lookups;
1327    rt = mfc_find(ip->ip_src.s_addr, ip->ip_dst.s_addr);
1328
1329    /* Entry exists, so forward if necessary */
1330    if (rt != NULL) {
1331	error = ip_mdq(m, ifp, rt, -1);
1332	MFC_UNLOCK();
1333	VIF_UNLOCK();
1334	return error;
1335    } else {
1336	/*
1337	 * If we don't have a route for packet's origin,
1338	 * Make a copy of the packet & send message to routing daemon
1339	 */
1340
1341	struct mbuf *mb0;
1342	struct rtdetq *rte;
1343	u_long hash;
1344	int hlen = ip->ip_hl << 2;
1345
1346	++mrtstat.mrts_mfc_misses;
1347
1348	mrtstat.mrts_no_route++;
1349	if (mrtdebug & (DEBUG_FORWARD | DEBUG_MFC))
1350	    log(LOG_DEBUG, "ip_mforward: no rte s %lx g %lx\n",
1351		(u_long)ntohl(ip->ip_src.s_addr),
1352		(u_long)ntohl(ip->ip_dst.s_addr));
1353
1354	/*
1355	 * Allocate mbufs early so that we don't do extra work if we are
1356	 * just going to fail anyway.  Make sure to pullup the header so
1357	 * that other people can't step on it.
1358	 */
1359	rte = (struct rtdetq *)malloc((sizeof *rte), M_MRTABLE, M_NOWAIT);
1360	if (rte == NULL) {
1361	    MFC_UNLOCK();
1362	    VIF_UNLOCK();
1363	    return ENOBUFS;
1364	}
1365	mb0 = m_copypacket(m, M_DONTWAIT);
1366	if (mb0 && (M_HASCL(mb0) || mb0->m_len < hlen))
1367	    mb0 = m_pullup(mb0, hlen);
1368	if (mb0 == NULL) {
1369	    free(rte, M_MRTABLE);
1370	    MFC_UNLOCK();
1371	    VIF_UNLOCK();
1372	    return ENOBUFS;
1373	}
1374
1375	/* is there an upcall waiting for this flow ? */
1376	hash = MFCHASH(ip->ip_src.s_addr, ip->ip_dst.s_addr);
1377	for (rt = mfctable[hash]; rt; rt = rt->mfc_next) {
1378	    if ((ip->ip_src.s_addr == rt->mfc_origin.s_addr) &&
1379		    (ip->ip_dst.s_addr == rt->mfc_mcastgrp.s_addr) &&
1380		    (rt->mfc_stall != NULL))
1381		break;
1382	}
1383
1384	if (rt == NULL) {
1385	    int i;
1386	    struct igmpmsg *im;
1387	    struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
1388	    struct mbuf *mm;
1389
1390	    /*
1391	     * Locate the vifi for the incoming interface for this packet.
1392	     * If none found, drop packet.
1393	     */
1394	    for (vifi=0; vifi < numvifs && viftable[vifi].v_ifp != ifp; vifi++)
1395		;
1396	    if (vifi >= numvifs)	/* vif not found, drop packet */
1397		goto non_fatal;
1398
1399	    /* no upcall, so make a new entry */
1400	    rt = (struct mfc *)malloc(sizeof(*rt), M_MRTABLE, M_NOWAIT);
1401	    if (rt == NULL)
1402		goto fail;
1403	    /* Make a copy of the header to send to the user level process */
1404	    mm = m_copy(mb0, 0, hlen);
1405	    if (mm == NULL)
1406		goto fail1;
1407
1408	    /*
1409	     * Send message to routing daemon to install
1410	     * a route into the kernel table
1411	     */
1412
1413	    im = mtod(mm, struct igmpmsg *);
1414	    im->im_msgtype = IGMPMSG_NOCACHE;
1415	    im->im_mbz = 0;
1416	    im->im_vif = vifi;
1417
1418	    mrtstat.mrts_upcalls++;
1419
1420	    k_igmpsrc.sin_addr = ip->ip_src;
1421	    if (socket_send(ip_mrouter, mm, &k_igmpsrc) < 0) {
1422		log(LOG_WARNING, "ip_mforward: ip_mrouter socket queue full\n");
1423		++mrtstat.mrts_upq_sockfull;
1424fail1:
1425		free(rt, M_MRTABLE);
1426fail:
1427		free(rte, M_MRTABLE);
1428		m_freem(mb0);
1429		MFC_UNLOCK();
1430		VIF_UNLOCK();
1431		return ENOBUFS;
1432	    }
1433
1434	    /* insert new entry at head of hash chain */
1435	    rt->mfc_origin.s_addr     = ip->ip_src.s_addr;
1436	    rt->mfc_mcastgrp.s_addr   = ip->ip_dst.s_addr;
1437	    rt->mfc_expire	      = UPCALL_EXPIRE;
1438	    nexpire[hash]++;
1439	    for (i = 0; i < numvifs; i++) {
1440		rt->mfc_ttls[i] = 0;
1441		rt->mfc_flags[i] = 0;
1442	    }
1443	    rt->mfc_parent = -1;
1444
1445	    rt->mfc_rp.s_addr = INADDR_ANY; /* clear the RP address */
1446
1447	    rt->mfc_bw_meter = NULL;
1448
1449	    /* link into table */
1450	    rt->mfc_next   = mfctable[hash];
1451	    mfctable[hash] = rt;
1452	    rt->mfc_stall = rte;
1453
1454	} else {
1455	    /* determine if q has overflowed */
1456	    int npkts = 0;
1457	    struct rtdetq **p;
1458
1459	    /*
1460	     * XXX ouch! we need to append to the list, but we
1461	     * only have a pointer to the front, so we have to
1462	     * scan the entire list every time.
1463	     */
1464	    for (p = &rt->mfc_stall; *p != NULL; p = &(*p)->next)
1465		npkts++;
1466
1467	    if (npkts > MAX_UPQ) {
1468		mrtstat.mrts_upq_ovflw++;
1469non_fatal:
1470		free(rte, M_MRTABLE);
1471		m_freem(mb0);
1472		MFC_UNLOCK();
1473		VIF_UNLOCK();
1474		return 0;
1475	    }
1476
1477	    /* Add this entry to the end of the queue */
1478	    *p = rte;
1479	}
1480
1481	rte->m			= mb0;
1482	rte->ifp		= ifp;
1483	rte->next		= NULL;
1484
1485	MFC_UNLOCK();
1486	VIF_UNLOCK();
1487
1488	return 0;
1489    }
1490}
1491
1492/*
1493 * Clean up the cache entry if upcall is not serviced
1494 */
1495static void
1496expire_upcalls(void *unused)
1497{
1498    struct rtdetq *rte;
1499    struct mfc *mfc, **nptr;
1500    int i;
1501
1502    MFC_LOCK();
1503    for (i = 0; i < MFCTBLSIZ; i++) {
1504	if (nexpire[i] == 0)
1505	    continue;
1506	nptr = &mfctable[i];
1507	for (mfc = *nptr; mfc != NULL; mfc = *nptr) {
1508	    /*
1509	     * Skip real cache entries
1510	     * Make sure it wasn't marked to not expire (shouldn't happen)
1511	     * If it expires now
1512	     */
1513	    if (mfc->mfc_stall != NULL && mfc->mfc_expire != 0 &&
1514		    --mfc->mfc_expire == 0) {
1515		if (mrtdebug & DEBUG_EXPIRE)
1516		    log(LOG_DEBUG, "expire_upcalls: expiring (%lx %lx)\n",
1517			(u_long)ntohl(mfc->mfc_origin.s_addr),
1518			(u_long)ntohl(mfc->mfc_mcastgrp.s_addr));
1519		/*
1520		 * drop all the packets
1521		 * free the mbuf with the pkt, if, timing info
1522		 */
1523		for (rte = mfc->mfc_stall; rte; ) {
1524		    struct rtdetq *n = rte->next;
1525
1526		    m_freem(rte->m);
1527		    free(rte, M_MRTABLE);
1528		    rte = n;
1529		}
1530		++mrtstat.mrts_cache_cleanups;
1531		nexpire[i]--;
1532
1533		/*
1534		 * free the bw_meter entries
1535		 */
1536		while (mfc->mfc_bw_meter != NULL) {
1537		    struct bw_meter *x = mfc->mfc_bw_meter;
1538
1539		    mfc->mfc_bw_meter = x->bm_mfc_next;
1540		    free(x, M_BWMETER);
1541		}
1542
1543		*nptr = mfc->mfc_next;
1544		free(mfc, M_MRTABLE);
1545	    } else {
1546		nptr = &mfc->mfc_next;
1547	    }
1548	}
1549    }
1550    MFC_UNLOCK();
1551
1552    callout_reset(&expire_upcalls_ch, EXPIRE_TIMEOUT, expire_upcalls, NULL);
1553}
1554
1555/*
1556 * Packet forwarding routine once entry in the cache is made
1557 */
1558static int
1559ip_mdq(struct mbuf *m, struct ifnet *ifp, struct mfc *rt, vifi_t xmt_vif)
1560{
1561    struct ip  *ip = mtod(m, struct ip *);
1562    vifi_t vifi;
1563    int plen = ip->ip_len;
1564
1565    VIF_LOCK_ASSERT();
1566
1567    /*
1568     * If xmt_vif is not -1, send on only the requested vif.
1569     *
1570     * (since vifi_t is u_short, -1 becomes MAXUSHORT, which > numvifs.)
1571     */
1572    if (xmt_vif < numvifs) {
1573	if (viftable[xmt_vif].v_flags & VIFF_REGISTER)
1574		pim_register_send(ip, viftable + xmt_vif, m, rt);
1575	else
1576		phyint_send(ip, viftable + xmt_vif, m);
1577	return 1;
1578    }
1579
1580    /*
1581     * Don't forward if it didn't arrive from the parent vif for its origin.
1582     */
1583    vifi = rt->mfc_parent;
1584    if ((vifi >= numvifs) || (viftable[vifi].v_ifp != ifp)) {
1585	/* came in the wrong interface */
1586	if (mrtdebug & DEBUG_FORWARD)
1587	    log(LOG_DEBUG, "wrong if: ifp %p vifi %d vififp %p\n",
1588		(void *)ifp, vifi, (void *)viftable[vifi].v_ifp);
1589	++mrtstat.mrts_wrong_if;
1590	++rt->mfc_wrong_if;
1591	/*
1592	 * If we are doing PIM assert processing, send a message
1593	 * to the routing daemon.
1594	 *
1595	 * XXX: A PIM-SM router needs the WRONGVIF detection so it
1596	 * can complete the SPT switch, regardless of the type
1597	 * of the iif (broadcast media, GRE tunnel, etc).
1598	 */
1599	if (pim_assert && (vifi < numvifs) && viftable[vifi].v_ifp) {
1600	    struct timeval now;
1601	    u_long delta;
1602
1603	    if (ifp == &multicast_register_if)
1604		pimstat.pims_rcv_registers_wrongiif++;
1605
1606	    /* Get vifi for the incoming packet */
1607	    for (vifi=0; vifi < numvifs && viftable[vifi].v_ifp != ifp; vifi++)
1608		;
1609	    if (vifi >= numvifs)
1610		return 0;	/* The iif is not found: ignore the packet. */
1611
1612	    if (rt->mfc_flags[vifi] & MRT_MFC_FLAGS_DISABLE_WRONGVIF)
1613		return 0;	/* WRONGVIF disabled: ignore the packet */
1614
1615	    GET_TIME(now);
1616
1617	    TV_DELTA(now, rt->mfc_last_assert, delta);
1618
1619	    if (delta > ASSERT_MSG_TIME) {
1620		struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
1621		struct igmpmsg *im;
1622		int hlen = ip->ip_hl << 2;
1623		struct mbuf *mm = m_copy(m, 0, hlen);
1624
1625		if (mm && (M_HASCL(mm) || mm->m_len < hlen))
1626		    mm = m_pullup(mm, hlen);
1627		if (mm == NULL)
1628		    return ENOBUFS;
1629
1630		rt->mfc_last_assert = now;
1631
1632		im = mtod(mm, struct igmpmsg *);
1633		im->im_msgtype	= IGMPMSG_WRONGVIF;
1634		im->im_mbz		= 0;
1635		im->im_vif		= vifi;
1636
1637		mrtstat.mrts_upcalls++;
1638
1639		k_igmpsrc.sin_addr = im->im_src;
1640		if (socket_send(ip_mrouter, mm, &k_igmpsrc) < 0) {
1641		    log(LOG_WARNING,
1642			"ip_mforward: ip_mrouter socket queue full\n");
1643		    ++mrtstat.mrts_upq_sockfull;
1644		    return ENOBUFS;
1645		}
1646	    }
1647	}
1648	return 0;
1649    }
1650
1651    /* If I sourced this packet, it counts as output, else it was input. */
1652    if (ip->ip_src.s_addr == viftable[vifi].v_lcl_addr.s_addr) {
1653	viftable[vifi].v_pkt_out++;
1654	viftable[vifi].v_bytes_out += plen;
1655    } else {
1656	viftable[vifi].v_pkt_in++;
1657	viftable[vifi].v_bytes_in += plen;
1658    }
1659    rt->mfc_pkt_cnt++;
1660    rt->mfc_byte_cnt += plen;
1661
1662    /*
1663     * For each vif, decide if a copy of the packet should be forwarded.
1664     * Forward if:
1665     *		- the ttl exceeds the vif's threshold
1666     *		- there are group members downstream on interface
1667     */
1668    for (vifi = 0; vifi < numvifs; vifi++)
1669	if ((rt->mfc_ttls[vifi] > 0) && (ip->ip_ttl > rt->mfc_ttls[vifi])) {
1670	    viftable[vifi].v_pkt_out++;
1671	    viftable[vifi].v_bytes_out += plen;
1672	    if (viftable[vifi].v_flags & VIFF_REGISTER)
1673		pim_register_send(ip, viftable + vifi, m, rt);
1674	    else
1675		phyint_send(ip, viftable + vifi, m);
1676	}
1677
1678    /*
1679     * Perform upcall-related bw measuring.
1680     */
1681    if (rt->mfc_bw_meter != NULL) {
1682	struct bw_meter *x;
1683	struct timeval now;
1684
1685	GET_TIME(now);
1686	MFC_LOCK_ASSERT();
1687	for (x = rt->mfc_bw_meter; x != NULL; x = x->bm_mfc_next)
1688	    bw_meter_receive_packet(x, plen, &now);
1689    }
1690
1691    return 0;
1692}
1693
1694/*
1695 * check if a vif number is legal/ok. This is used by ip_output.
1696 */
1697static int
1698X_legal_vif_num(int vif)
1699{
1700    /* XXX unlocked, matter? */
1701    return (vif >= 0 && vif < numvifs);
1702}
1703
1704/*
1705 * Return the local address used by this vif
1706 */
1707static u_long
1708X_ip_mcast_src(int vifi)
1709{
1710    /* XXX unlocked, matter? */
1711    if (vifi >= 0 && vifi < numvifs)
1712	return viftable[vifi].v_lcl_addr.s_addr;
1713    else
1714	return INADDR_ANY;
1715}
1716
1717static void
1718phyint_send(struct ip *ip, struct vif *vifp, struct mbuf *m)
1719{
1720    struct mbuf *mb_copy;
1721    int hlen = ip->ip_hl << 2;
1722
1723    VIF_LOCK_ASSERT();
1724
1725    /*
1726     * Make a new reference to the packet; make sure that
1727     * the IP header is actually copied, not just referenced,
1728     * so that ip_output() only scribbles on the copy.
1729     */
1730    mb_copy = m_copypacket(m, M_DONTWAIT);
1731    if (mb_copy && (M_HASCL(mb_copy) || mb_copy->m_len < hlen))
1732	mb_copy = m_pullup(mb_copy, hlen);
1733    if (mb_copy == NULL)
1734	return;
1735
1736    send_packet(vifp, mb_copy);
1737}
1738
1739static void
1740send_packet(struct vif *vifp, struct mbuf *m)
1741{
1742	struct ip_moptions imo;
1743	struct in_multi *imm[2];
1744	int error;
1745
1746	VIF_LOCK_ASSERT();
1747
1748	imo.imo_multicast_ifp  = vifp->v_ifp;
1749	imo.imo_multicast_ttl  = mtod(m, struct ip *)->ip_ttl - 1;
1750	imo.imo_multicast_loop = 1;
1751	imo.imo_multicast_vif  = -1;
1752	imo.imo_num_memberships = 0;
1753	imo.imo_max_memberships = 2;
1754	imo.imo_membership  = &imm[0];
1755
1756	/*
1757	 * Re-entrancy should not be a problem here, because
1758	 * the packets that we send out and are looped back at us
1759	 * should get rejected because they appear to come from
1760	 * the loopback interface, thus preventing looping.
1761	 */
1762	error = ip_output(m, NULL, &vifp->v_route, IP_FORWARDING, &imo, NULL);
1763	if (mrtdebug & DEBUG_XMIT) {
1764	    log(LOG_DEBUG, "phyint_send on vif %td err %d\n",
1765		vifp - viftable, error);
1766	}
1767}
1768
1769static int
1770X_ip_rsvp_vif(struct socket *so, struct sockopt *sopt)
1771{
1772    int error, vifi;
1773
1774    if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_RSVP)
1775	return EOPNOTSUPP;
1776
1777    error = sooptcopyin(sopt, &vifi, sizeof vifi, sizeof vifi);
1778    if (error)
1779	return error;
1780
1781    VIF_LOCK();
1782
1783    if (vifi < 0 || vifi >= numvifs) {	/* Error if vif is invalid */
1784	VIF_UNLOCK();
1785	return EADDRNOTAVAIL;
1786    }
1787
1788    if (sopt->sopt_name == IP_RSVP_VIF_ON) {
1789	/* Check if socket is available. */
1790	if (viftable[vifi].v_rsvpd != NULL) {
1791	    VIF_UNLOCK();
1792	    return EADDRINUSE;
1793	}
1794
1795	viftable[vifi].v_rsvpd = so;
1796	/* This may seem silly, but we need to be sure we don't over-increment
1797	 * the RSVP counter, in case something slips up.
1798	 */
1799	if (!viftable[vifi].v_rsvp_on) {
1800	    viftable[vifi].v_rsvp_on = 1;
1801	    rsvp_on++;
1802	}
1803    } else { /* must be VIF_OFF */
1804	/*
1805	 * XXX as an additional consistency check, one could make sure
1806	 * that viftable[vifi].v_rsvpd == so, otherwise passing so as
1807	 * first parameter is pretty useless.
1808	 */
1809	viftable[vifi].v_rsvpd = NULL;
1810	/*
1811	 * This may seem silly, but we need to be sure we don't over-decrement
1812	 * the RSVP counter, in case something slips up.
1813	 */
1814	if (viftable[vifi].v_rsvp_on) {
1815	    viftable[vifi].v_rsvp_on = 0;
1816	    rsvp_on--;
1817	}
1818    }
1819    VIF_UNLOCK();
1820    return 0;
1821}
1822
1823static void
1824X_ip_rsvp_force_done(struct socket *so)
1825{
1826    int vifi;
1827
1828    /* Don't bother if it is not the right type of socket. */
1829    if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_RSVP)
1830	return;
1831
1832    VIF_LOCK();
1833
1834    /* The socket may be attached to more than one vif...this
1835     * is perfectly legal.
1836     */
1837    for (vifi = 0; vifi < numvifs; vifi++) {
1838	if (viftable[vifi].v_rsvpd == so) {
1839	    viftable[vifi].v_rsvpd = NULL;
1840	    /* This may seem silly, but we need to be sure we don't
1841	     * over-decrement the RSVP counter, in case something slips up.
1842	     */
1843	    if (viftable[vifi].v_rsvp_on) {
1844		viftable[vifi].v_rsvp_on = 0;
1845		rsvp_on--;
1846	    }
1847	}
1848    }
1849
1850    VIF_UNLOCK();
1851}
1852
1853static void
1854X_rsvp_input(struct mbuf *m, int off)
1855{
1856    int vifi;
1857    struct ip *ip = mtod(m, struct ip *);
1858    struct sockaddr_in rsvp_src = { sizeof rsvp_src, AF_INET };
1859    struct ifnet *ifp;
1860
1861    if (rsvpdebug)
1862	printf("rsvp_input: rsvp_on %d\n",rsvp_on);
1863
1864    /* Can still get packets with rsvp_on = 0 if there is a local member
1865     * of the group to which the RSVP packet is addressed.  But in this
1866     * case we want to throw the packet away.
1867     */
1868    if (!rsvp_on) {
1869	m_freem(m);
1870	return;
1871    }
1872
1873    if (rsvpdebug)
1874	printf("rsvp_input: check vifs\n");
1875
1876#ifdef DIAGNOSTIC
1877    M_ASSERTPKTHDR(m);
1878#endif
1879
1880    ifp = m->m_pkthdr.rcvif;
1881
1882    VIF_LOCK();
1883    /* Find which vif the packet arrived on. */
1884    for (vifi = 0; vifi < numvifs; vifi++)
1885	if (viftable[vifi].v_ifp == ifp)
1886	    break;
1887
1888    if (vifi == numvifs || viftable[vifi].v_rsvpd == NULL) {
1889	/*
1890	 * Drop the lock here to avoid holding it across rip_input.
1891	 * This could make rsvpdebug printfs wrong.  If you care,
1892	 * record the state of stuff before dropping the lock.
1893	 */
1894	VIF_UNLOCK();
1895	/*
1896	 * If the old-style non-vif-associated socket is set,
1897	 * then use it.  Otherwise, drop packet since there
1898	 * is no specific socket for this vif.
1899	 */
1900	if (ip_rsvpd != NULL) {
1901	    if (rsvpdebug)
1902		printf("rsvp_input: Sending packet up old-style socket\n");
1903	    rip_input(m, off);  /* xxx */
1904	} else {
1905	    if (rsvpdebug && vifi == numvifs)
1906		printf("rsvp_input: Can't find vif for packet.\n");
1907	    else if (rsvpdebug && viftable[vifi].v_rsvpd == NULL)
1908		printf("rsvp_input: No socket defined for vif %d\n",vifi);
1909	    m_freem(m);
1910	}
1911	return;
1912    }
1913    rsvp_src.sin_addr = ip->ip_src;
1914
1915    if (rsvpdebug && m)
1916	printf("rsvp_input: m->m_len = %d, sbspace() = %ld\n",
1917	       m->m_len,sbspace(&(viftable[vifi].v_rsvpd->so_rcv)));
1918
1919    if (socket_send(viftable[vifi].v_rsvpd, m, &rsvp_src) < 0) {
1920	if (rsvpdebug)
1921	    printf("rsvp_input: Failed to append to socket\n");
1922    } else {
1923	if (rsvpdebug)
1924	    printf("rsvp_input: send packet up\n");
1925    }
1926    VIF_UNLOCK();
1927}
1928
1929/*
1930 * Code for bandwidth monitors
1931 */
1932
1933/*
1934 * Define common interface for timeval-related methods
1935 */
1936#define	BW_TIMEVALCMP(tvp, uvp, cmp) timevalcmp((tvp), (uvp), cmp)
1937#define	BW_TIMEVALDECR(vvp, uvp) timevalsub((vvp), (uvp))
1938#define	BW_TIMEVALADD(vvp, uvp) timevaladd((vvp), (uvp))
1939
1940static uint32_t
1941compute_bw_meter_flags(struct bw_upcall *req)
1942{
1943    uint32_t flags = 0;
1944
1945    if (req->bu_flags & BW_UPCALL_UNIT_PACKETS)
1946	flags |= BW_METER_UNIT_PACKETS;
1947    if (req->bu_flags & BW_UPCALL_UNIT_BYTES)
1948	flags |= BW_METER_UNIT_BYTES;
1949    if (req->bu_flags & BW_UPCALL_GEQ)
1950	flags |= BW_METER_GEQ;
1951    if (req->bu_flags & BW_UPCALL_LEQ)
1952	flags |= BW_METER_LEQ;
1953
1954    return flags;
1955}
1956
1957/*
1958 * Add a bw_meter entry
1959 */
1960static int
1961add_bw_upcall(struct bw_upcall *req)
1962{
1963    struct mfc *mfc;
1964    struct timeval delta = { BW_UPCALL_THRESHOLD_INTERVAL_MIN_SEC,
1965		BW_UPCALL_THRESHOLD_INTERVAL_MIN_USEC };
1966    struct timeval now;
1967    struct bw_meter *x;
1968    uint32_t flags;
1969
1970    if (!(mrt_api_config & MRT_MFC_BW_UPCALL))
1971	return EOPNOTSUPP;
1972
1973    /* Test if the flags are valid */
1974    if (!(req->bu_flags & (BW_UPCALL_UNIT_PACKETS | BW_UPCALL_UNIT_BYTES)))
1975	return EINVAL;
1976    if (!(req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ)))
1977	return EINVAL;
1978    if ((req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ))
1979	    == (BW_UPCALL_GEQ | BW_UPCALL_LEQ))
1980	return EINVAL;
1981
1982    /* Test if the threshold time interval is valid */
1983    if (BW_TIMEVALCMP(&req->bu_threshold.b_time, &delta, <))
1984	return EINVAL;
1985
1986    flags = compute_bw_meter_flags(req);
1987
1988    /*
1989     * Find if we have already same bw_meter entry
1990     */
1991    MFC_LOCK();
1992    mfc = mfc_find(req->bu_src.s_addr, req->bu_dst.s_addr);
1993    if (mfc == NULL) {
1994	MFC_UNLOCK();
1995	return EADDRNOTAVAIL;
1996    }
1997    for (x = mfc->mfc_bw_meter; x != NULL; x = x->bm_mfc_next) {
1998	if ((BW_TIMEVALCMP(&x->bm_threshold.b_time,
1999			   &req->bu_threshold.b_time, ==)) &&
2000	    (x->bm_threshold.b_packets == req->bu_threshold.b_packets) &&
2001	    (x->bm_threshold.b_bytes == req->bu_threshold.b_bytes) &&
2002	    (x->bm_flags & BW_METER_USER_FLAGS) == flags)  {
2003	    MFC_UNLOCK();
2004	    return 0;		/* XXX Already installed */
2005	}
2006    }
2007
2008    /* Allocate the new bw_meter entry */
2009    x = (struct bw_meter *)malloc(sizeof(*x), M_BWMETER, M_NOWAIT);
2010    if (x == NULL) {
2011	MFC_UNLOCK();
2012	return ENOBUFS;
2013    }
2014
2015    /* Set the new bw_meter entry */
2016    x->bm_threshold.b_time = req->bu_threshold.b_time;
2017    GET_TIME(now);
2018    x->bm_start_time = now;
2019    x->bm_threshold.b_packets = req->bu_threshold.b_packets;
2020    x->bm_threshold.b_bytes = req->bu_threshold.b_bytes;
2021    x->bm_measured.b_packets = 0;
2022    x->bm_measured.b_bytes = 0;
2023    x->bm_flags = flags;
2024    x->bm_time_next = NULL;
2025    x->bm_time_hash = BW_METER_BUCKETS;
2026
2027    /* Add the new bw_meter entry to the front of entries for this MFC */
2028    x->bm_mfc = mfc;
2029    x->bm_mfc_next = mfc->mfc_bw_meter;
2030    mfc->mfc_bw_meter = x;
2031    schedule_bw_meter(x, &now);
2032    MFC_UNLOCK();
2033
2034    return 0;
2035}
2036
2037static void
2038free_bw_list(struct bw_meter *list)
2039{
2040    while (list != NULL) {
2041	struct bw_meter *x = list;
2042
2043	list = list->bm_mfc_next;
2044	unschedule_bw_meter(x);
2045	free(x, M_BWMETER);
2046    }
2047}
2048
2049/*
2050 * Delete one or multiple bw_meter entries
2051 */
2052static int
2053del_bw_upcall(struct bw_upcall *req)
2054{
2055    struct mfc *mfc;
2056    struct bw_meter *x;
2057
2058    if (!(mrt_api_config & MRT_MFC_BW_UPCALL))
2059	return EOPNOTSUPP;
2060
2061    MFC_LOCK();
2062    /* Find the corresponding MFC entry */
2063    mfc = mfc_find(req->bu_src.s_addr, req->bu_dst.s_addr);
2064    if (mfc == NULL) {
2065	MFC_UNLOCK();
2066	return EADDRNOTAVAIL;
2067    } else if (req->bu_flags & BW_UPCALL_DELETE_ALL) {
2068	/*
2069	 * Delete all bw_meter entries for this mfc
2070	 */
2071	struct bw_meter *list;
2072
2073	list = mfc->mfc_bw_meter;
2074	mfc->mfc_bw_meter = NULL;
2075	free_bw_list(list);
2076	MFC_UNLOCK();
2077	return 0;
2078    } else {			/* Delete a single bw_meter entry */
2079	struct bw_meter *prev;
2080	uint32_t flags = 0;
2081
2082	flags = compute_bw_meter_flags(req);
2083
2084	/* Find the bw_meter entry to delete */
2085	for (prev = NULL, x = mfc->mfc_bw_meter; x != NULL;
2086	     prev = x, x = x->bm_mfc_next) {
2087	    if ((BW_TIMEVALCMP(&x->bm_threshold.b_time,
2088			       &req->bu_threshold.b_time, ==)) &&
2089		(x->bm_threshold.b_packets == req->bu_threshold.b_packets) &&
2090		(x->bm_threshold.b_bytes == req->bu_threshold.b_bytes) &&
2091		(x->bm_flags & BW_METER_USER_FLAGS) == flags)
2092		break;
2093	}
2094	if (x != NULL) { /* Delete entry from the list for this MFC */
2095	    if (prev != NULL)
2096		prev->bm_mfc_next = x->bm_mfc_next;	/* remove from middle*/
2097	    else
2098		x->bm_mfc->mfc_bw_meter = x->bm_mfc_next;/* new head of list */
2099
2100	    unschedule_bw_meter(x);
2101	    MFC_UNLOCK();
2102	    /* Free the bw_meter entry */
2103	    free(x, M_BWMETER);
2104	    return 0;
2105	} else {
2106	    MFC_UNLOCK();
2107	    return EINVAL;
2108	}
2109    }
2110    /* NOTREACHED */
2111}
2112
2113/*
2114 * Perform bandwidth measurement processing that may result in an upcall
2115 */
2116static void
2117bw_meter_receive_packet(struct bw_meter *x, int plen, struct timeval *nowp)
2118{
2119    struct timeval delta;
2120
2121    MFC_LOCK_ASSERT();
2122
2123    delta = *nowp;
2124    BW_TIMEVALDECR(&delta, &x->bm_start_time);
2125
2126    if (x->bm_flags & BW_METER_GEQ) {
2127	/*
2128	 * Processing for ">=" type of bw_meter entry
2129	 */
2130	if (BW_TIMEVALCMP(&delta, &x->bm_threshold.b_time, >)) {
2131	    /* Reset the bw_meter entry */
2132	    x->bm_start_time = *nowp;
2133	    x->bm_measured.b_packets = 0;
2134	    x->bm_measured.b_bytes = 0;
2135	    x->bm_flags &= ~BW_METER_UPCALL_DELIVERED;
2136	}
2137
2138	/* Record that a packet is received */
2139	x->bm_measured.b_packets++;
2140	x->bm_measured.b_bytes += plen;
2141
2142	/*
2143	 * Test if we should deliver an upcall
2144	 */
2145	if (!(x->bm_flags & BW_METER_UPCALL_DELIVERED)) {
2146	    if (((x->bm_flags & BW_METER_UNIT_PACKETS) &&
2147		 (x->bm_measured.b_packets >= x->bm_threshold.b_packets)) ||
2148		((x->bm_flags & BW_METER_UNIT_BYTES) &&
2149		 (x->bm_measured.b_bytes >= x->bm_threshold.b_bytes))) {
2150		/* Prepare an upcall for delivery */
2151		bw_meter_prepare_upcall(x, nowp);
2152		x->bm_flags |= BW_METER_UPCALL_DELIVERED;
2153	    }
2154	}
2155    } else if (x->bm_flags & BW_METER_LEQ) {
2156	/*
2157	 * Processing for "<=" type of bw_meter entry
2158	 */
2159	if (BW_TIMEVALCMP(&delta, &x->bm_threshold.b_time, >)) {
2160	    /*
2161	     * We are behind time with the multicast forwarding table
2162	     * scanning for "<=" type of bw_meter entries, so test now
2163	     * if we should deliver an upcall.
2164	     */
2165	    if (((x->bm_flags & BW_METER_UNIT_PACKETS) &&
2166		 (x->bm_measured.b_packets <= x->bm_threshold.b_packets)) ||
2167		((x->bm_flags & BW_METER_UNIT_BYTES) &&
2168		 (x->bm_measured.b_bytes <= x->bm_threshold.b_bytes))) {
2169		/* Prepare an upcall for delivery */
2170		bw_meter_prepare_upcall(x, nowp);
2171	    }
2172	    /* Reschedule the bw_meter entry */
2173	    unschedule_bw_meter(x);
2174	    schedule_bw_meter(x, nowp);
2175	}
2176
2177	/* Record that a packet is received */
2178	x->bm_measured.b_packets++;
2179	x->bm_measured.b_bytes += plen;
2180
2181	/*
2182	 * Test if we should restart the measuring interval
2183	 */
2184	if ((x->bm_flags & BW_METER_UNIT_PACKETS &&
2185	     x->bm_measured.b_packets <= x->bm_threshold.b_packets) ||
2186	    (x->bm_flags & BW_METER_UNIT_BYTES &&
2187	     x->bm_measured.b_bytes <= x->bm_threshold.b_bytes)) {
2188	    /* Don't restart the measuring interval */
2189	} else {
2190	    /* Do restart the measuring interval */
2191	    /*
2192	     * XXX: note that we don't unschedule and schedule, because this
2193	     * might be too much overhead per packet. Instead, when we process
2194	     * all entries for a given timer hash bin, we check whether it is
2195	     * really a timeout. If not, we reschedule at that time.
2196	     */
2197	    x->bm_start_time = *nowp;
2198	    x->bm_measured.b_packets = 0;
2199	    x->bm_measured.b_bytes = 0;
2200	    x->bm_flags &= ~BW_METER_UPCALL_DELIVERED;
2201	}
2202    }
2203}
2204
2205/*
2206 * Prepare a bandwidth-related upcall
2207 */
2208static void
2209bw_meter_prepare_upcall(struct bw_meter *x, struct timeval *nowp)
2210{
2211    struct timeval delta;
2212    struct bw_upcall *u;
2213
2214    MFC_LOCK_ASSERT();
2215
2216    /*
2217     * Compute the measured time interval
2218     */
2219    delta = *nowp;
2220    BW_TIMEVALDECR(&delta, &x->bm_start_time);
2221
2222    /*
2223     * If there are too many pending upcalls, deliver them now
2224     */
2225    if (bw_upcalls_n >= BW_UPCALLS_MAX)
2226	bw_upcalls_send();
2227
2228    /*
2229     * Set the bw_upcall entry
2230     */
2231    u = &bw_upcalls[bw_upcalls_n++];
2232    u->bu_src = x->bm_mfc->mfc_origin;
2233    u->bu_dst = x->bm_mfc->mfc_mcastgrp;
2234    u->bu_threshold.b_time = x->bm_threshold.b_time;
2235    u->bu_threshold.b_packets = x->bm_threshold.b_packets;
2236    u->bu_threshold.b_bytes = x->bm_threshold.b_bytes;
2237    u->bu_measured.b_time = delta;
2238    u->bu_measured.b_packets = x->bm_measured.b_packets;
2239    u->bu_measured.b_bytes = x->bm_measured.b_bytes;
2240    u->bu_flags = 0;
2241    if (x->bm_flags & BW_METER_UNIT_PACKETS)
2242	u->bu_flags |= BW_UPCALL_UNIT_PACKETS;
2243    if (x->bm_flags & BW_METER_UNIT_BYTES)
2244	u->bu_flags |= BW_UPCALL_UNIT_BYTES;
2245    if (x->bm_flags & BW_METER_GEQ)
2246	u->bu_flags |= BW_UPCALL_GEQ;
2247    if (x->bm_flags & BW_METER_LEQ)
2248	u->bu_flags |= BW_UPCALL_LEQ;
2249}
2250
2251/*
2252 * Send the pending bandwidth-related upcalls
2253 */
2254static void
2255bw_upcalls_send(void)
2256{
2257    struct mbuf *m;
2258    int len = bw_upcalls_n * sizeof(bw_upcalls[0]);
2259    struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
2260    static struct igmpmsg igmpmsg = { 0,		/* unused1 */
2261				      0,		/* unused2 */
2262				      IGMPMSG_BW_UPCALL,/* im_msgtype */
2263				      0,		/* im_mbz  */
2264				      0,		/* im_vif  */
2265				      0,		/* unused3 */
2266				      { 0 },		/* im_src  */
2267				      { 0 } };		/* im_dst  */
2268
2269    MFC_LOCK_ASSERT();
2270
2271    if (bw_upcalls_n == 0)
2272	return;			/* No pending upcalls */
2273
2274    bw_upcalls_n = 0;
2275
2276    /*
2277     * Allocate a new mbuf, initialize it with the header and
2278     * the payload for the pending calls.
2279     */
2280    MGETHDR(m, M_DONTWAIT, MT_DATA);
2281    if (m == NULL) {
2282	log(LOG_WARNING, "bw_upcalls_send: cannot allocate mbuf\n");
2283	return;
2284    }
2285
2286    m->m_len = m->m_pkthdr.len = 0;
2287    m_copyback(m, 0, sizeof(struct igmpmsg), (caddr_t)&igmpmsg);
2288    m_copyback(m, sizeof(struct igmpmsg), len, (caddr_t)&bw_upcalls[0]);
2289
2290    /*
2291     * Send the upcalls
2292     * XXX do we need to set the address in k_igmpsrc ?
2293     */
2294    mrtstat.mrts_upcalls++;
2295    if (socket_send(ip_mrouter, m, &k_igmpsrc) < 0) {
2296	log(LOG_WARNING, "bw_upcalls_send: ip_mrouter socket queue full\n");
2297	++mrtstat.mrts_upq_sockfull;
2298    }
2299}
2300
2301/*
2302 * Compute the timeout hash value for the bw_meter entries
2303 */
2304#define	BW_METER_TIMEHASH(bw_meter, hash)				\
2305    do {								\
2306	struct timeval next_timeval = (bw_meter)->bm_start_time;	\
2307									\
2308	BW_TIMEVALADD(&next_timeval, &(bw_meter)->bm_threshold.b_time); \
2309	(hash) = next_timeval.tv_sec;					\
2310	if (next_timeval.tv_usec)					\
2311	    (hash)++; /* XXX: make sure we don't timeout early */	\
2312	(hash) %= BW_METER_BUCKETS;					\
2313    } while (0)
2314
2315/*
2316 * Schedule a timer to process periodically bw_meter entry of type "<="
2317 * by linking the entry in the proper hash bucket.
2318 */
2319static void
2320schedule_bw_meter(struct bw_meter *x, struct timeval *nowp)
2321{
2322    int time_hash;
2323
2324    MFC_LOCK_ASSERT();
2325
2326    if (!(x->bm_flags & BW_METER_LEQ))
2327	return;		/* XXX: we schedule timers only for "<=" entries */
2328
2329    /*
2330     * Reset the bw_meter entry
2331     */
2332    x->bm_start_time = *nowp;
2333    x->bm_measured.b_packets = 0;
2334    x->bm_measured.b_bytes = 0;
2335    x->bm_flags &= ~BW_METER_UPCALL_DELIVERED;
2336
2337    /*
2338     * Compute the timeout hash value and insert the entry
2339     */
2340    BW_METER_TIMEHASH(x, time_hash);
2341    x->bm_time_next = bw_meter_timers[time_hash];
2342    bw_meter_timers[time_hash] = x;
2343    x->bm_time_hash = time_hash;
2344}
2345
2346/*
2347 * Unschedule the periodic timer that processes bw_meter entry of type "<="
2348 * by removing the entry from the proper hash bucket.
2349 */
2350static void
2351unschedule_bw_meter(struct bw_meter *x)
2352{
2353    int time_hash;
2354    struct bw_meter *prev, *tmp;
2355
2356    MFC_LOCK_ASSERT();
2357
2358    if (!(x->bm_flags & BW_METER_LEQ))
2359	return;		/* XXX: we schedule timers only for "<=" entries */
2360
2361    /*
2362     * Compute the timeout hash value and delete the entry
2363     */
2364    time_hash = x->bm_time_hash;
2365    if (time_hash >= BW_METER_BUCKETS)
2366	return;		/* Entry was not scheduled */
2367
2368    for (prev = NULL, tmp = bw_meter_timers[time_hash];
2369	     tmp != NULL; prev = tmp, tmp = tmp->bm_time_next)
2370	if (tmp == x)
2371	    break;
2372
2373    if (tmp == NULL)
2374	panic("unschedule_bw_meter: bw_meter entry not found");
2375
2376    if (prev != NULL)
2377	prev->bm_time_next = x->bm_time_next;
2378    else
2379	bw_meter_timers[time_hash] = x->bm_time_next;
2380
2381    x->bm_time_next = NULL;
2382    x->bm_time_hash = BW_METER_BUCKETS;
2383}
2384
2385
2386/*
2387 * Process all "<=" type of bw_meter that should be processed now,
2388 * and for each entry prepare an upcall if necessary. Each processed
2389 * entry is rescheduled again for the (periodic) processing.
2390 *
2391 * This is run periodically (once per second normally). On each round,
2392 * all the potentially matching entries are in the hash slot that we are
2393 * looking at.
2394 */
2395static void
2396bw_meter_process()
2397{
2398    static uint32_t last_tv_sec;	/* last time we processed this */
2399
2400    uint32_t loops;
2401    int i;
2402    struct timeval now, process_endtime;
2403
2404    GET_TIME(now);
2405    if (last_tv_sec == now.tv_sec)
2406	return;		/* nothing to do */
2407
2408    loops = now.tv_sec - last_tv_sec;
2409    last_tv_sec = now.tv_sec;
2410    if (loops > BW_METER_BUCKETS)
2411	loops = BW_METER_BUCKETS;
2412
2413    MFC_LOCK();
2414    /*
2415     * Process all bins of bw_meter entries from the one after the last
2416     * processed to the current one. On entry, i points to the last bucket
2417     * visited, so we need to increment i at the beginning of the loop.
2418     */
2419    for (i = (now.tv_sec - loops) % BW_METER_BUCKETS; loops > 0; loops--) {
2420	struct bw_meter *x, *tmp_list;
2421
2422	if (++i >= BW_METER_BUCKETS)
2423	    i = 0;
2424
2425	/* Disconnect the list of bw_meter entries from the bin */
2426	tmp_list = bw_meter_timers[i];
2427	bw_meter_timers[i] = NULL;
2428
2429	/* Process the list of bw_meter entries */
2430	while (tmp_list != NULL) {
2431	    x = tmp_list;
2432	    tmp_list = tmp_list->bm_time_next;
2433
2434	    /* Test if the time interval is over */
2435	    process_endtime = x->bm_start_time;
2436	    BW_TIMEVALADD(&process_endtime, &x->bm_threshold.b_time);
2437	    if (BW_TIMEVALCMP(&process_endtime, &now, >)) {
2438		/* Not yet: reschedule, but don't reset */
2439		int time_hash;
2440
2441		BW_METER_TIMEHASH(x, time_hash);
2442		if (time_hash == i && process_endtime.tv_sec == now.tv_sec) {
2443		    /*
2444		     * XXX: somehow the bin processing is a bit ahead of time.
2445		     * Put the entry in the next bin.
2446		     */
2447		    if (++time_hash >= BW_METER_BUCKETS)
2448			time_hash = 0;
2449		}
2450		x->bm_time_next = bw_meter_timers[time_hash];
2451		bw_meter_timers[time_hash] = x;
2452		x->bm_time_hash = time_hash;
2453
2454		continue;
2455	    }
2456
2457	    /*
2458	     * Test if we should deliver an upcall
2459	     */
2460	    if (((x->bm_flags & BW_METER_UNIT_PACKETS) &&
2461		 (x->bm_measured.b_packets <= x->bm_threshold.b_packets)) ||
2462		((x->bm_flags & BW_METER_UNIT_BYTES) &&
2463		 (x->bm_measured.b_bytes <= x->bm_threshold.b_bytes))) {
2464		/* Prepare an upcall for delivery */
2465		bw_meter_prepare_upcall(x, &now);
2466	    }
2467
2468	    /*
2469	     * Reschedule for next processing
2470	     */
2471	    schedule_bw_meter(x, &now);
2472	}
2473    }
2474
2475    /* Send all upcalls that are pending delivery */
2476    bw_upcalls_send();
2477
2478    MFC_UNLOCK();
2479}
2480
2481/*
2482 * A periodic function for sending all upcalls that are pending delivery
2483 */
2484static void
2485expire_bw_upcalls_send(void *unused)
2486{
2487    MFC_LOCK();
2488    bw_upcalls_send();
2489    MFC_UNLOCK();
2490
2491    callout_reset(&bw_upcalls_ch, BW_UPCALLS_PERIOD,
2492	expire_bw_upcalls_send, NULL);
2493}
2494
2495/*
2496 * A periodic function for periodic scanning of the multicast forwarding
2497 * table for processing all "<=" bw_meter entries.
2498 */
2499static void
2500expire_bw_meter_process(void *unused)
2501{
2502    if (mrt_api_config & MRT_MFC_BW_UPCALL)
2503	bw_meter_process();
2504
2505    callout_reset(&bw_meter_ch, BW_METER_PERIOD, expire_bw_meter_process, NULL);
2506}
2507
2508/*
2509 * End of bandwidth monitoring code
2510 */
2511
2512/*
2513 * Send the packet up to the user daemon, or eventually do kernel encapsulation
2514 *
2515 */
2516static int
2517pim_register_send(struct ip *ip, struct vif *vifp,
2518	struct mbuf *m, struct mfc *rt)
2519{
2520    struct mbuf *mb_copy, *mm;
2521
2522    if (mrtdebug & DEBUG_PIM)
2523	log(LOG_DEBUG, "pim_register_send: ");
2524
2525    mb_copy = pim_register_prepare(ip, m);
2526    if (mb_copy == NULL)
2527	return ENOBUFS;
2528
2529    /*
2530     * Send all the fragments. Note that the mbuf for each fragment
2531     * is freed by the sending machinery.
2532     */
2533    for (mm = mb_copy; mm; mm = mb_copy) {
2534	mb_copy = mm->m_nextpkt;
2535	mm->m_nextpkt = 0;
2536	mm = m_pullup(mm, sizeof(struct ip));
2537	if (mm != NULL) {
2538	    ip = mtod(mm, struct ip *);
2539	    if ((mrt_api_config & MRT_MFC_RP) &&
2540		(rt->mfc_rp.s_addr != INADDR_ANY)) {
2541		pim_register_send_rp(ip, vifp, mm, rt);
2542	    } else {
2543		pim_register_send_upcall(ip, vifp, mm, rt);
2544	    }
2545	}
2546    }
2547
2548    return 0;
2549}
2550
2551/*
2552 * Return a copy of the data packet that is ready for PIM Register
2553 * encapsulation.
2554 * XXX: Note that in the returned copy the IP header is a valid one.
2555 */
2556static struct mbuf *
2557pim_register_prepare(struct ip *ip, struct mbuf *m)
2558{
2559    struct mbuf *mb_copy = NULL;
2560    int mtu;
2561
2562    /* Take care of delayed checksums */
2563    if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
2564	in_delayed_cksum(m);
2565	m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
2566    }
2567
2568    /*
2569     * Copy the old packet & pullup its IP header into the
2570     * new mbuf so we can modify it.
2571     */
2572    mb_copy = m_copypacket(m, M_DONTWAIT);
2573    if (mb_copy == NULL)
2574	return NULL;
2575    mb_copy = m_pullup(mb_copy, ip->ip_hl << 2);
2576    if (mb_copy == NULL)
2577	return NULL;
2578
2579    /* take care of the TTL */
2580    ip = mtod(mb_copy, struct ip *);
2581    --ip->ip_ttl;
2582
2583    /* Compute the MTU after the PIM Register encapsulation */
2584    mtu = 0xffff - sizeof(pim_encap_iphdr) - sizeof(pim_encap_pimhdr);
2585
2586    if (ip->ip_len <= mtu) {
2587	/* Turn the IP header into a valid one */
2588	ip->ip_len = htons(ip->ip_len);
2589	ip->ip_off = htons(ip->ip_off);
2590	ip->ip_sum = 0;
2591	ip->ip_sum = in_cksum(mb_copy, ip->ip_hl << 2);
2592    } else {
2593	/* Fragment the packet */
2594	if (ip_fragment(ip, &mb_copy, mtu, 0, CSUM_DELAY_IP) != 0) {
2595	    m_freem(mb_copy);
2596	    return NULL;
2597	}
2598    }
2599    return mb_copy;
2600}
2601
2602/*
2603 * Send an upcall with the data packet to the user-level process.
2604 */
2605static int
2606pim_register_send_upcall(struct ip *ip, struct vif *vifp,
2607	struct mbuf *mb_copy, struct mfc *rt)
2608{
2609    struct mbuf *mb_first;
2610    int len = ntohs(ip->ip_len);
2611    struct igmpmsg *im;
2612    struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
2613
2614    VIF_LOCK_ASSERT();
2615
2616    /*
2617     * Add a new mbuf with an upcall header
2618     */
2619    MGETHDR(mb_first, M_DONTWAIT, MT_DATA);
2620    if (mb_first == NULL) {
2621	m_freem(mb_copy);
2622	return ENOBUFS;
2623    }
2624    mb_first->m_data += max_linkhdr;
2625    mb_first->m_pkthdr.len = len + sizeof(struct igmpmsg);
2626    mb_first->m_len = sizeof(struct igmpmsg);
2627    mb_first->m_next = mb_copy;
2628
2629    /* Send message to routing daemon */
2630    im = mtod(mb_first, struct igmpmsg *);
2631    im->im_msgtype	= IGMPMSG_WHOLEPKT;
2632    im->im_mbz		= 0;
2633    im->im_vif		= vifp - viftable;
2634    im->im_src		= ip->ip_src;
2635    im->im_dst		= ip->ip_dst;
2636
2637    k_igmpsrc.sin_addr	= ip->ip_src;
2638
2639    mrtstat.mrts_upcalls++;
2640
2641    if (socket_send(ip_mrouter, mb_first, &k_igmpsrc) < 0) {
2642	if (mrtdebug & DEBUG_PIM)
2643	    log(LOG_WARNING,
2644		"mcast: pim_register_send_upcall: ip_mrouter socket queue full");
2645	++mrtstat.mrts_upq_sockfull;
2646	return ENOBUFS;
2647    }
2648
2649    /* Keep statistics */
2650    pimstat.pims_snd_registers_msgs++;
2651    pimstat.pims_snd_registers_bytes += len;
2652
2653    return 0;
2654}
2655
2656/*
2657 * Encapsulate the data packet in PIM Register message and send it to the RP.
2658 */
2659static int
2660pim_register_send_rp(struct ip *ip, struct vif *vifp,
2661	struct mbuf *mb_copy, struct mfc *rt)
2662{
2663    struct mbuf *mb_first;
2664    struct ip *ip_outer;
2665    struct pim_encap_pimhdr *pimhdr;
2666    int len = ntohs(ip->ip_len);
2667    vifi_t vifi = rt->mfc_parent;
2668
2669    VIF_LOCK_ASSERT();
2670
2671    if ((vifi >= numvifs) || (viftable[vifi].v_lcl_addr.s_addr == 0)) {
2672	m_freem(mb_copy);
2673	return EADDRNOTAVAIL;		/* The iif vif is invalid */
2674    }
2675
2676    /*
2677     * Add a new mbuf with the encapsulating header
2678     */
2679    MGETHDR(mb_first, M_DONTWAIT, MT_DATA);
2680    if (mb_first == NULL) {
2681	m_freem(mb_copy);
2682	return ENOBUFS;
2683    }
2684    mb_first->m_data += max_linkhdr;
2685    mb_first->m_len = sizeof(pim_encap_iphdr) + sizeof(pim_encap_pimhdr);
2686    mb_first->m_next = mb_copy;
2687
2688    mb_first->m_pkthdr.len = len + mb_first->m_len;
2689
2690    /*
2691     * Fill in the encapsulating IP and PIM header
2692     */
2693    ip_outer = mtod(mb_first, struct ip *);
2694    *ip_outer = pim_encap_iphdr;
2695    ip_outer->ip_id = ip_newid();
2696    ip_outer->ip_len = len + sizeof(pim_encap_iphdr) + sizeof(pim_encap_pimhdr);
2697    ip_outer->ip_src = viftable[vifi].v_lcl_addr;
2698    ip_outer->ip_dst = rt->mfc_rp;
2699    /*
2700     * Copy the inner header TOS to the outer header, and take care of the
2701     * IP_DF bit.
2702     */
2703    ip_outer->ip_tos = ip->ip_tos;
2704    if (ntohs(ip->ip_off) & IP_DF)
2705	ip_outer->ip_off |= IP_DF;
2706    pimhdr = (struct pim_encap_pimhdr *)((caddr_t)ip_outer
2707					 + sizeof(pim_encap_iphdr));
2708    *pimhdr = pim_encap_pimhdr;
2709    /* If the iif crosses a border, set the Border-bit */
2710    if (rt->mfc_flags[vifi] & MRT_MFC_FLAGS_BORDER_VIF & mrt_api_config)
2711	pimhdr->flags |= htonl(PIM_BORDER_REGISTER);
2712
2713    mb_first->m_data += sizeof(pim_encap_iphdr);
2714    pimhdr->pim.pim_cksum = in_cksum(mb_first, sizeof(pim_encap_pimhdr));
2715    mb_first->m_data -= sizeof(pim_encap_iphdr);
2716
2717    send_packet(vifp, mb_first);
2718
2719    /* Keep statistics */
2720    pimstat.pims_snd_registers_msgs++;
2721    pimstat.pims_snd_registers_bytes += len;
2722
2723    return 0;
2724}
2725
2726/*
2727 * pim_encapcheck() is called by the encap4_input() path at runtime to
2728 * determine if a packet is for PIM; allowing PIM to be dynamically loaded
2729 * into the kernel.
2730 */
2731static int
2732pim_encapcheck(const struct mbuf *m, int off, int proto, void *arg)
2733{
2734
2735#ifdef DIAGNOSTIC
2736    KASSERT(proto == IPPROTO_PIM, ("not for IPPROTO_PIM"));
2737#endif
2738    if (proto != IPPROTO_PIM)
2739	return 0;	/* not for us; reject the datagram. */
2740
2741    return 64;		/* claim the datagram. */
2742}
2743
2744/*
2745 * PIM-SMv2 and PIM-DM messages processing.
2746 * Receives and verifies the PIM control messages, and passes them
2747 * up to the listening socket, using rip_input().
2748 * The only message with special processing is the PIM_REGISTER message
2749 * (used by PIM-SM): the PIM header is stripped off, and the inner packet
2750 * is passed to if_simloop().
2751 */
2752void
2753pim_input(struct mbuf *m, int off)
2754{
2755    struct ip *ip = mtod(m, struct ip *);
2756    struct pim *pim;
2757    int minlen;
2758    int datalen = ip->ip_len;
2759    int ip_tos;
2760    int iphlen = off;
2761
2762    /* Keep statistics */
2763    pimstat.pims_rcv_total_msgs++;
2764    pimstat.pims_rcv_total_bytes += datalen;
2765
2766    /*
2767     * Validate lengths
2768     */
2769    if (datalen < PIM_MINLEN) {
2770	pimstat.pims_rcv_tooshort++;
2771	log(LOG_ERR, "pim_input: packet size too small %d from %lx\n",
2772	    datalen, (u_long)ip->ip_src.s_addr);
2773	m_freem(m);
2774	return;
2775    }
2776
2777    /*
2778     * If the packet is at least as big as a REGISTER, go agead
2779     * and grab the PIM REGISTER header size, to avoid another
2780     * possible m_pullup() later.
2781     *
2782     * PIM_MINLEN       == pimhdr + u_int32_t == 4 + 4 = 8
2783     * PIM_REG_MINLEN   == pimhdr + reghdr + encap_iphdr == 4 + 4 + 20 = 28
2784     */
2785    minlen = iphlen + (datalen >= PIM_REG_MINLEN ? PIM_REG_MINLEN : PIM_MINLEN);
2786    /*
2787     * Get the IP and PIM headers in contiguous memory, and
2788     * possibly the PIM REGISTER header.
2789     */
2790    if ((m->m_flags & M_EXT || m->m_len < minlen) &&
2791	(m = m_pullup(m, minlen)) == 0) {
2792	log(LOG_ERR, "pim_input: m_pullup failure\n");
2793	return;
2794    }
2795    /* m_pullup() may have given us a new mbuf so reset ip. */
2796    ip = mtod(m, struct ip *);
2797    ip_tos = ip->ip_tos;
2798
2799    /* adjust mbuf to point to the PIM header */
2800    m->m_data += iphlen;
2801    m->m_len  -= iphlen;
2802    pim = mtod(m, struct pim *);
2803
2804    /*
2805     * Validate checksum. If PIM REGISTER, exclude the data packet.
2806     *
2807     * XXX: some older PIMv2 implementations don't make this distinction,
2808     * so for compatibility reason perform the checksum over part of the
2809     * message, and if error, then over the whole message.
2810     */
2811    if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER && in_cksum(m, PIM_MINLEN) == 0) {
2812	/* do nothing, checksum okay */
2813    } else if (in_cksum(m, datalen)) {
2814	pimstat.pims_rcv_badsum++;
2815	if (mrtdebug & DEBUG_PIM)
2816	    log(LOG_DEBUG, "pim_input: invalid checksum");
2817	m_freem(m);
2818	return;
2819    }
2820
2821    /* PIM version check */
2822    if (PIM_VT_V(pim->pim_vt) < PIM_VERSION) {
2823	pimstat.pims_rcv_badversion++;
2824	log(LOG_ERR, "pim_input: incorrect version %d, expecting %d\n",
2825	    PIM_VT_V(pim->pim_vt), PIM_VERSION);
2826	m_freem(m);
2827	return;
2828    }
2829
2830    /* restore mbuf back to the outer IP */
2831    m->m_data -= iphlen;
2832    m->m_len  += iphlen;
2833
2834    if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER) {
2835	/*
2836	 * Since this is a REGISTER, we'll make a copy of the register
2837	 * headers ip + pim + u_int32 + encap_ip, to be passed up to the
2838	 * routing daemon.
2839	 */
2840	struct sockaddr_in dst = { sizeof(dst), AF_INET };
2841	struct mbuf *mcp;
2842	struct ip *encap_ip;
2843	u_int32_t *reghdr;
2844	struct ifnet *vifp;
2845
2846	VIF_LOCK();
2847	if ((reg_vif_num >= numvifs) || (reg_vif_num == VIFI_INVALID)) {
2848	    VIF_UNLOCK();
2849	    if (mrtdebug & DEBUG_PIM)
2850		log(LOG_DEBUG,
2851		    "pim_input: register vif not set: %d\n", reg_vif_num);
2852	    m_freem(m);
2853	    return;
2854	}
2855	/* XXX need refcnt? */
2856	vifp = viftable[reg_vif_num].v_ifp;
2857	VIF_UNLOCK();
2858
2859	/*
2860	 * Validate length
2861	 */
2862	if (datalen < PIM_REG_MINLEN) {
2863	    pimstat.pims_rcv_tooshort++;
2864	    pimstat.pims_rcv_badregisters++;
2865	    log(LOG_ERR,
2866		"pim_input: register packet size too small %d from %lx\n",
2867		datalen, (u_long)ip->ip_src.s_addr);
2868	    m_freem(m);
2869	    return;
2870	}
2871
2872	reghdr = (u_int32_t *)(pim + 1);
2873	encap_ip = (struct ip *)(reghdr + 1);
2874
2875	if (mrtdebug & DEBUG_PIM) {
2876	    log(LOG_DEBUG,
2877		"pim_input[register], encap_ip: %lx -> %lx, encap_ip len %d\n",
2878		(u_long)ntohl(encap_ip->ip_src.s_addr),
2879		(u_long)ntohl(encap_ip->ip_dst.s_addr),
2880		ntohs(encap_ip->ip_len));
2881	}
2882
2883	/* verify the version number of the inner packet */
2884	if (encap_ip->ip_v != IPVERSION) {
2885	    pimstat.pims_rcv_badregisters++;
2886	    if (mrtdebug & DEBUG_PIM) {
2887		log(LOG_DEBUG, "pim_input: invalid IP version (%d) "
2888		    "of the inner packet\n", encap_ip->ip_v);
2889	    }
2890	    m_freem(m);
2891	    return;
2892	}
2893
2894	/* verify the inner packet is destined to a mcast group */
2895	if (!IN_MULTICAST(ntohl(encap_ip->ip_dst.s_addr))) {
2896	    pimstat.pims_rcv_badregisters++;
2897	    if (mrtdebug & DEBUG_PIM)
2898		log(LOG_DEBUG,
2899		    "pim_input: inner packet of register is not "
2900		    "multicast %lx\n",
2901		    (u_long)ntohl(encap_ip->ip_dst.s_addr));
2902	    m_freem(m);
2903	    return;
2904	}
2905
2906	/* If a NULL_REGISTER, pass it to the daemon */
2907	if ((ntohl(*reghdr) & PIM_NULL_REGISTER))
2908	    goto pim_input_to_daemon;
2909
2910	/*
2911	 * Copy the TOS from the outer IP header to the inner IP header.
2912	 */
2913	if (encap_ip->ip_tos != ip_tos) {
2914	    /* Outer TOS -> inner TOS */
2915	    encap_ip->ip_tos = ip_tos;
2916	    /* Recompute the inner header checksum. Sigh... */
2917
2918	    /* adjust mbuf to point to the inner IP header */
2919	    m->m_data += (iphlen + PIM_MINLEN);
2920	    m->m_len  -= (iphlen + PIM_MINLEN);
2921
2922	    encap_ip->ip_sum = 0;
2923	    encap_ip->ip_sum = in_cksum(m, encap_ip->ip_hl << 2);
2924
2925	    /* restore mbuf to point back to the outer IP header */
2926	    m->m_data -= (iphlen + PIM_MINLEN);
2927	    m->m_len  += (iphlen + PIM_MINLEN);
2928	}
2929
2930	/*
2931	 * Decapsulate the inner IP packet and loopback to forward it
2932	 * as a normal multicast packet. Also, make a copy of the
2933	 *     outer_iphdr + pimhdr + reghdr + encap_iphdr
2934	 * to pass to the daemon later, so it can take the appropriate
2935	 * actions (e.g., send back PIM_REGISTER_STOP).
2936	 * XXX: here m->m_data points to the outer IP header.
2937	 */
2938	mcp = m_copy(m, 0, iphlen + PIM_REG_MINLEN);
2939	if (mcp == NULL) {
2940	    log(LOG_ERR,
2941		"pim_input: pim register: could not copy register head\n");
2942	    m_freem(m);
2943	    return;
2944	}
2945
2946	/* Keep statistics */
2947	/* XXX: registers_bytes include only the encap. mcast pkt */
2948	pimstat.pims_rcv_registers_msgs++;
2949	pimstat.pims_rcv_registers_bytes += ntohs(encap_ip->ip_len);
2950
2951	/*
2952	 * forward the inner ip packet; point m_data at the inner ip.
2953	 */
2954	m_adj(m, iphlen + PIM_MINLEN);
2955
2956	if (mrtdebug & DEBUG_PIM) {
2957	    log(LOG_DEBUG,
2958		"pim_input: forwarding decapsulated register: "
2959		"src %lx, dst %lx, vif %d\n",
2960		(u_long)ntohl(encap_ip->ip_src.s_addr),
2961		(u_long)ntohl(encap_ip->ip_dst.s_addr),
2962		reg_vif_num);
2963	}
2964	/* NB: vifp was collected above; can it change on us? */
2965	if_simloop(vifp, m, dst.sin_family, 0);
2966
2967	/* prepare the register head to send to the mrouting daemon */
2968	m = mcp;
2969    }
2970
2971pim_input_to_daemon:
2972    /*
2973     * Pass the PIM message up to the daemon; if it is a Register message,
2974     * pass the 'head' only up to the daemon. This includes the
2975     * outer IP header, PIM header, PIM-Register header and the
2976     * inner IP header.
2977     * XXX: the outer IP header pkt size of a Register is not adjust to
2978     * reflect the fact that the inner multicast data is truncated.
2979     */
2980    rip_input(m, iphlen);
2981
2982    return;
2983}
2984
2985static int
2986ip_mroute_modevent(module_t mod, int type, void *unused)
2987{
2988    switch (type) {
2989    case MOD_LOAD:
2990	mtx_init(&mrouter_mtx, "mrouter initialization", NULL, MTX_DEF);
2991	MFC_LOCK_INIT();
2992	VIF_LOCK_INIT();
2993	ip_mrouter_reset();
2994	pim_encap_cookie = encap_attach_func(AF_INET, IPPROTO_PIM,
2995	    pim_encapcheck, &in_pim_protosw, NULL);
2996	if (pim_encap_cookie == NULL) {
2997		printf("ip_mroute: unable to attach pim encap\n");
2998		VIF_LOCK_DESTROY();
2999		MFC_LOCK_DESTROY();
3000		mtx_destroy(&mrouter_mtx);
3001		return (EINVAL);
3002	}
3003	ip_mcast_src = X_ip_mcast_src;
3004	ip_mforward = X_ip_mforward;
3005	ip_mrouter_done = X_ip_mrouter_done;
3006	ip_mrouter_get = X_ip_mrouter_get;
3007	ip_mrouter_set = X_ip_mrouter_set;
3008	ip_rsvp_force_done = X_ip_rsvp_force_done;
3009	ip_rsvp_vif = X_ip_rsvp_vif;
3010	legal_vif_num = X_legal_vif_num;
3011	mrt_ioctl = X_mrt_ioctl;
3012	rsvp_input_p = X_rsvp_input;
3013	break;
3014
3015    case MOD_UNLOAD:
3016	/*
3017	 * Typically module unload happens after the user-level
3018	 * process has shutdown the kernel services (the check
3019	 * below insures someone can't just yank the module out
3020	 * from under a running process).  But if the module is
3021	 * just loaded and then unloaded w/o starting up a user
3022	 * process we still need to cleanup.
3023	 */
3024	if (ip_mrouter)
3025	    return EINVAL;
3026
3027	if (pim_encap_cookie) {
3028	    encap_detach(pim_encap_cookie);
3029	    pim_encap_cookie = NULL;
3030	}
3031
3032	X_ip_mrouter_done();
3033	ip_mcast_src = NULL;
3034	ip_mforward = NULL;
3035	ip_mrouter_done = NULL;
3036	ip_mrouter_get = NULL;
3037	ip_mrouter_set = NULL;
3038	ip_rsvp_force_done = NULL;
3039	ip_rsvp_vif = NULL;
3040	legal_vif_num = NULL;
3041	mrt_ioctl = NULL;
3042	rsvp_input_p = NULL;
3043	VIF_LOCK_DESTROY();
3044	MFC_LOCK_DESTROY();
3045	mtx_destroy(&mrouter_mtx);
3046	break;
3047    default:
3048	return EOPNOTSUPP;
3049    }
3050    return 0;
3051}
3052
3053static moduledata_t ip_mroutemod = {
3054    "ip_mroute",
3055    ip_mroute_modevent,
3056    0
3057};
3058DECLARE_MODULE(ip_mroute, ip_mroutemod, SI_SUB_PSEUDO, SI_ORDER_ANY);
3059