ip_mroute.c revision 166555
1/*-
2 * Copyright (c) 1989 Stephen Deering
3 * Copyright (c) 1992, 1993
4 *      The Regents of the University of California.  All rights reserved.
5 *
6 * This code is derived from software contributed to Berkeley by
7 * Stephen Deering of Stanford University.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in the
16 *    documentation and/or other materials provided with the distribution.
17 * 4. Neither the name of the University nor the names of its contributors
18 *    may be used to endorse or promote products derived from this software
19 *    without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 *
33 *      @(#)ip_mroute.c 8.2 (Berkeley) 11/15/93
34 */
35
36/*
37 * IP multicast forwarding procedures
38 *
39 * Written by David Waitzman, BBN Labs, August 1988.
40 * Modified by Steve Deering, Stanford, February 1989.
41 * Modified by Mark J. Steiglitz, Stanford, May, 1991
42 * Modified by Van Jacobson, LBL, January 1993
43 * Modified by Ajit Thyagarajan, PARC, August 1993
44 * Modified by Bill Fenner, PARC, April 1995
45 * Modified by Ahmed Helmy, SGI, June 1996
46 * Modified by George Edmond Eddy (Rusty), ISI, February 1998
47 * Modified by Pavlin Radoslavov, USC/ISI, May 1998, August 1999, October 2000
48 * Modified by Hitoshi Asaeda, WIDE, August 2000
49 * Modified by Pavlin Radoslavov, ICSI, October 2002
50 *
51 * MROUTING Revision: 3.5
52 * and PIM-SMv2 and PIM-DM support, advanced API support,
53 * bandwidth metering and signaling
54 *
55 * $FreeBSD: head/sys/netinet/ip_mroute.c 166555 2007-02-07 20:36:33Z bms $
56 */
57
58#include "opt_mac.h"
59#include "opt_mrouting.h"
60
61#ifdef PIM
62#define _PIM_VT 1
63#endif
64
65#include <sys/param.h>
66#include <sys/kernel.h>
67#include <sys/lock.h>
68#include <sys/malloc.h>
69#include <sys/mbuf.h>
70#include <sys/module.h>
71#include <sys/priv.h>
72#include <sys/protosw.h>
73#include <sys/signalvar.h>
74#include <sys/socket.h>
75#include <sys/socketvar.h>
76#include <sys/sockio.h>
77#include <sys/sx.h>
78#include <sys/sysctl.h>
79#include <sys/syslog.h>
80#include <sys/systm.h>
81#include <sys/time.h>
82#include <net/if.h>
83#include <net/netisr.h>
84#include <net/route.h>
85#include <netinet/in.h>
86#include <netinet/igmp.h>
87#include <netinet/in_systm.h>
88#include <netinet/in_var.h>
89#include <netinet/ip.h>
90#include <netinet/ip_encap.h>
91#include <netinet/ip_mroute.h>
92#include <netinet/ip_var.h>
93#include <netinet/ip_options.h>
94#ifdef PIM
95#include <netinet/pim.h>
96#include <netinet/pim_var.h>
97#endif
98#include <netinet/udp.h>
99#include <machine/in_cksum.h>
100
101#include <security/mac/mac_framework.h>
102
103/*
104 * Control debugging code for rsvp and multicast routing code.
105 * Can only set them with the debugger.
106 */
107static u_int    rsvpdebug;		/* non-zero enables debugging	*/
108
109static u_int	mrtdebug;		/* any set of the flags below	*/
110#define		DEBUG_MFC	0x02
111#define		DEBUG_FORWARD	0x04
112#define		DEBUG_EXPIRE	0x08
113#define		DEBUG_XMIT	0x10
114#define		DEBUG_PIM	0x20
115
116#define		VIFI_INVALID	((vifi_t) -1)
117
118#define M_HASCL(m)	((m)->m_flags & M_EXT)
119
120static MALLOC_DEFINE(M_MRTABLE, "mroutetbl", "multicast routing tables");
121
122/*
123 * Locking.  We use two locks: one for the virtual interface table and
124 * one for the forwarding table.  These locks may be nested in which case
125 * the VIF lock must always be taken first.  Note that each lock is used
126 * to cover not only the specific data structure but also related data
127 * structures.  It may be better to add more fine-grained locking later;
128 * it's not clear how performance-critical this code is.
129 *
130 * XXX: This module could particularly benefit from being cleaned
131 *      up to use the <sys/queue.h> macros.
132 *
133 */
134
135static struct mrtstat	mrtstat;
136SYSCTL_STRUCT(_net_inet_ip, OID_AUTO, mrtstat, CTLFLAG_RW,
137    &mrtstat, mrtstat,
138    "Multicast Routing Statistics (struct mrtstat, netinet/ip_mroute.h)");
139
140static struct mfc	*mfctable[MFCTBLSIZ];
141SYSCTL_OPAQUE(_net_inet_ip, OID_AUTO, mfctable, CTLFLAG_RD,
142    &mfctable, sizeof(mfctable), "S,*mfc[MFCTBLSIZ]",
143    "Multicast Forwarding Table (struct *mfc[MFCTBLSIZ], netinet/ip_mroute.h)");
144
145static struct mtx mfc_mtx;
146#define	MFC_LOCK()	mtx_lock(&mfc_mtx)
147#define	MFC_UNLOCK()	mtx_unlock(&mfc_mtx)
148#define	MFC_LOCK_ASSERT()	do {					\
149	mtx_assert(&mfc_mtx, MA_OWNED);					\
150	NET_ASSERT_GIANT();						\
151} while (0)
152#define	MFC_LOCK_INIT()	mtx_init(&mfc_mtx, "mroute mfc table", NULL, MTX_DEF)
153#define	MFC_LOCK_DESTROY()	mtx_destroy(&mfc_mtx)
154
155static struct vif	viftable[MAXVIFS];
156SYSCTL_OPAQUE(_net_inet_ip, OID_AUTO, viftable, CTLFLAG_RD,
157    &viftable, sizeof(viftable), "S,vif[MAXVIFS]",
158    "Multicast Virtual Interfaces (struct vif[MAXVIFS], netinet/ip_mroute.h)");
159
160static struct mtx vif_mtx;
161#define	VIF_LOCK()	mtx_lock(&vif_mtx)
162#define	VIF_UNLOCK()	mtx_unlock(&vif_mtx)
163#define	VIF_LOCK_ASSERT()	mtx_assert(&vif_mtx, MA_OWNED)
164#define	VIF_LOCK_INIT()	mtx_init(&vif_mtx, "mroute vif table", NULL, MTX_DEF)
165#define	VIF_LOCK_DESTROY()	mtx_destroy(&vif_mtx)
166
167static u_char		nexpire[MFCTBLSIZ];
168
169static eventhandler_tag if_detach_event_tag = NULL;
170
171static struct callout expire_upcalls_ch;
172
173#define		EXPIRE_TIMEOUT	(hz / 4)	/* 4x / second		*/
174#define		UPCALL_EXPIRE	6		/* number of timeouts	*/
175
176/*
177 * Define the token bucket filter structures
178 * tbftable -> each vif has one of these for storing info
179 */
180
181static struct tbf tbftable[MAXVIFS];
182#define		TBF_REPROCESS	(hz / 100)	/* 100x / second */
183
184#define ENCAP_TTL 64
185
186/*
187 * Bandwidth meter variables and constants
188 */
189static MALLOC_DEFINE(M_BWMETER, "bwmeter", "multicast upcall bw meters");
190/*
191 * Pending timeouts are stored in a hash table, the key being the
192 * expiration time. Periodically, the entries are analysed and processed.
193 */
194#define BW_METER_BUCKETS	1024
195static struct bw_meter *bw_meter_timers[BW_METER_BUCKETS];
196static struct callout bw_meter_ch;
197#define BW_METER_PERIOD (hz)		/* periodical handling of bw meters */
198
199/*
200 * Pending upcalls are stored in a vector which is flushed when
201 * full, or periodically
202 */
203static struct bw_upcall	bw_upcalls[BW_UPCALLS_MAX];
204static u_int	bw_upcalls_n; /* # of pending upcalls */
205static struct callout bw_upcalls_ch;
206#define BW_UPCALLS_PERIOD (hz)		/* periodical flush of bw upcalls */
207
208#ifdef PIM
209static struct pimstat pimstat;
210SYSCTL_STRUCT(_net_inet_pim, PIMCTL_STATS, stats, CTLFLAG_RD,
211    &pimstat, pimstat,
212    "PIM Statistics (struct pimstat, netinet/pim_var.h)");
213
214/*
215 * Note: the PIM Register encapsulation adds the following in front of a
216 * data packet:
217 *
218 * struct pim_encap_hdr {
219 *    struct ip ip;
220 *    struct pim_encap_pimhdr  pim;
221 * }
222 *
223 */
224
225struct pim_encap_pimhdr {
226	struct pim pim;
227	uint32_t   flags;
228};
229
230static struct ip pim_encap_iphdr = {
231#if BYTE_ORDER == LITTLE_ENDIAN
232	sizeof(struct ip) >> 2,
233	IPVERSION,
234#else
235	IPVERSION,
236	sizeof(struct ip) >> 2,
237#endif
238	0,			/* tos */
239	sizeof(struct ip),	/* total length */
240	0,			/* id */
241	0,			/* frag offset */
242	ENCAP_TTL,
243	IPPROTO_PIM,
244	0,			/* checksum */
245};
246
247static struct pim_encap_pimhdr pim_encap_pimhdr = {
248    {
249	PIM_MAKE_VT(PIM_VERSION, PIM_REGISTER), /* PIM vers and message type */
250	0,			/* reserved */
251	0,			/* checksum */
252    },
253    0				/* flags */
254};
255
256static struct ifnet multicast_register_if;
257static vifi_t reg_vif_num = VIFI_INVALID;
258#endif /* PIM */
259
260/*
261 * Private variables.
262 */
263static vifi_t	   numvifs;
264
265/*
266 * Callout for queue processing.
267 */
268static struct callout tbf_reprocess_ch;
269
270static u_long	X_ip_mcast_src(int vifi);
271static int	X_ip_mforward(struct ip *ip, struct ifnet *ifp,
272			struct mbuf *m, struct ip_moptions *imo);
273static int	X_ip_mrouter_done(void);
274static int	X_ip_mrouter_get(struct socket *so, struct sockopt *m);
275static int	X_ip_mrouter_set(struct socket *so, struct sockopt *m);
276static int	X_legal_vif_num(int vif);
277static int	X_mrt_ioctl(int cmd, caddr_t data);
278
279static int get_sg_cnt(struct sioc_sg_req *);
280static int get_vif_cnt(struct sioc_vif_req *);
281static void if_detached_event(void *arg __unused, struct ifnet *);
282static int ip_mrouter_init(struct socket *, int);
283static int add_vif(struct vifctl *);
284static int del_vif_locked(vifi_t);
285static int del_vif(vifi_t);
286static int add_mfc(struct mfcctl2 *);
287static int del_mfc(struct mfcctl2 *);
288static int set_api_config(uint32_t *); /* chose API capabilities */
289static int socket_send(struct socket *, struct mbuf *, struct sockaddr_in *);
290static int set_assert(int);
291static void expire_upcalls(void *);
292static int ip_mdq(struct mbuf *, struct ifnet *, struct mfc *, vifi_t);
293static void phyint_send(struct ip *, struct vif *, struct mbuf *);
294static void tbf_control(struct vif *, struct mbuf *, struct ip *, u_long);
295static void tbf_queue(struct vif *, struct mbuf *);
296static void tbf_process_q(struct vif *);
297static void tbf_reprocess_q(void *);
298static int tbf_dq_sel(struct vif *, struct ip *);
299static void tbf_send_packet(struct vif *, struct mbuf *);
300static void tbf_update_tokens(struct vif *);
301static int priority(struct vif *, struct ip *);
302
303/*
304 * Bandwidth monitoring
305 */
306static void free_bw_list(struct bw_meter *list);
307static int add_bw_upcall(struct bw_upcall *);
308static int del_bw_upcall(struct bw_upcall *);
309static void bw_meter_receive_packet(struct bw_meter *x, int plen,
310		struct timeval *nowp);
311static void bw_meter_prepare_upcall(struct bw_meter *x, struct timeval *nowp);
312static void bw_upcalls_send(void);
313static void schedule_bw_meter(struct bw_meter *x, struct timeval *nowp);
314static void unschedule_bw_meter(struct bw_meter *x);
315static void bw_meter_process(void);
316static void expire_bw_upcalls_send(void *);
317static void expire_bw_meter_process(void *);
318
319#ifdef PIM
320static int pim_register_send(struct ip *, struct vif *,
321		struct mbuf *, struct mfc *);
322static int pim_register_send_rp(struct ip *, struct vif *,
323		struct mbuf *, struct mfc *);
324static int pim_register_send_upcall(struct ip *, struct vif *,
325		struct mbuf *, struct mfc *);
326static struct mbuf *pim_register_prepare(struct ip *, struct mbuf *);
327#endif
328
329/*
330 * whether or not special PIM assert processing is enabled.
331 */
332static int pim_assert;
333/*
334 * Rate limit for assert notification messages, in usec
335 */
336#define ASSERT_MSG_TIME		3000000
337
338/*
339 * Kernel multicast routing API capabilities and setup.
340 * If more API capabilities are added to the kernel, they should be
341 * recorded in `mrt_api_support'.
342 */
343static const uint32_t mrt_api_support = (MRT_MFC_FLAGS_DISABLE_WRONGVIF |
344					 MRT_MFC_FLAGS_BORDER_VIF |
345					 MRT_MFC_RP |
346					 MRT_MFC_BW_UPCALL);
347static uint32_t mrt_api_config = 0;
348
349/*
350 * Hash function for a source, group entry
351 */
352#define MFCHASH(a, g) MFCHASHMOD(((a) >> 20) ^ ((a) >> 10) ^ (a) ^ \
353			((g) >> 20) ^ ((g) >> 10) ^ (g))
354
355/*
356 * Find a route for a given origin IP address and Multicast group address
357 * Type of service parameter to be added in the future!!!
358 * Statistics are updated by the caller if needed
359 * (mrtstat.mrts_mfc_lookups and mrtstat.mrts_mfc_misses)
360 */
361static struct mfc *
362mfc_find(in_addr_t o, in_addr_t g)
363{
364    struct mfc *rt;
365
366    MFC_LOCK_ASSERT();
367
368    for (rt = mfctable[MFCHASH(o,g)]; rt; rt = rt->mfc_next)
369	if ((rt->mfc_origin.s_addr == o) &&
370		(rt->mfc_mcastgrp.s_addr == g) && (rt->mfc_stall == NULL))
371	    break;
372    return rt;
373}
374
375/*
376 * Macros to compute elapsed time efficiently
377 * Borrowed from Van Jacobson's scheduling code
378 */
379#define TV_DELTA(a, b, delta) {					\
380	int xxs;						\
381	delta = (a).tv_usec - (b).tv_usec;			\
382	if ((xxs = (a).tv_sec - (b).tv_sec)) {			\
383		switch (xxs) {					\
384		case 2:						\
385		      delta += 1000000;				\
386		      /* FALLTHROUGH */				\
387		case 1:						\
388		      delta += 1000000;				\
389		      break;					\
390		default:					\
391		      delta += (1000000 * xxs);			\
392		}						\
393	}							\
394}
395
396#define TV_LT(a, b) (((a).tv_usec < (b).tv_usec && \
397	      (a).tv_sec <= (b).tv_sec) || (a).tv_sec < (b).tv_sec)
398
399/*
400 * Handle MRT setsockopt commands to modify the multicast routing tables.
401 */
402static int
403X_ip_mrouter_set(struct socket *so, struct sockopt *sopt)
404{
405    int	error, optval;
406    vifi_t	vifi;
407    struct	vifctl vifc;
408    struct	mfcctl2 mfc;
409    struct	bw_upcall bw_upcall;
410    uint32_t	i;
411
412    if (so != ip_mrouter && sopt->sopt_name != MRT_INIT)
413	return EPERM;
414
415    error = 0;
416    switch (sopt->sopt_name) {
417    case MRT_INIT:
418	error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval);
419	if (error)
420	    break;
421	error = ip_mrouter_init(so, optval);
422	break;
423
424    case MRT_DONE:
425	error = ip_mrouter_done();
426	break;
427
428    case MRT_ADD_VIF:
429	error = sooptcopyin(sopt, &vifc, sizeof vifc, sizeof vifc);
430	if (error)
431	    break;
432	error = add_vif(&vifc);
433	break;
434
435    case MRT_DEL_VIF:
436	error = sooptcopyin(sopt, &vifi, sizeof vifi, sizeof vifi);
437	if (error)
438	    break;
439	error = del_vif(vifi);
440	break;
441
442    case MRT_ADD_MFC:
443    case MRT_DEL_MFC:
444	/*
445	 * select data size depending on API version.
446	 */
447	if (sopt->sopt_name == MRT_ADD_MFC &&
448		mrt_api_config & MRT_API_FLAGS_ALL) {
449	    error = sooptcopyin(sopt, &mfc, sizeof(struct mfcctl2),
450				sizeof(struct mfcctl2));
451	} else {
452	    error = sooptcopyin(sopt, &mfc, sizeof(struct mfcctl),
453				sizeof(struct mfcctl));
454	    bzero((caddr_t)&mfc + sizeof(struct mfcctl),
455			sizeof(mfc) - sizeof(struct mfcctl));
456	}
457	if (error)
458	    break;
459	if (sopt->sopt_name == MRT_ADD_MFC)
460	    error = add_mfc(&mfc);
461	else
462	    error = del_mfc(&mfc);
463	break;
464
465    case MRT_ASSERT:
466	error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval);
467	if (error)
468	    break;
469	set_assert(optval);
470	break;
471
472    case MRT_API_CONFIG:
473	error = sooptcopyin(sopt, &i, sizeof i, sizeof i);
474	if (!error)
475	    error = set_api_config(&i);
476	if (!error)
477	    error = sooptcopyout(sopt, &i, sizeof i);
478	break;
479
480    case MRT_ADD_BW_UPCALL:
481    case MRT_DEL_BW_UPCALL:
482	error = sooptcopyin(sopt, &bw_upcall, sizeof bw_upcall,
483				sizeof bw_upcall);
484	if (error)
485	    break;
486	if (sopt->sopt_name == MRT_ADD_BW_UPCALL)
487	    error = add_bw_upcall(&bw_upcall);
488	else
489	    error = del_bw_upcall(&bw_upcall);
490	break;
491
492    default:
493	error = EOPNOTSUPP;
494	break;
495    }
496    return error;
497}
498
499/*
500 * Handle MRT getsockopt commands
501 */
502static int
503X_ip_mrouter_get(struct socket *so, struct sockopt *sopt)
504{
505    int error;
506    static int version = 0x0305; /* !!! why is this here? XXX */
507
508    switch (sopt->sopt_name) {
509    case MRT_VERSION:
510	error = sooptcopyout(sopt, &version, sizeof version);
511	break;
512
513    case MRT_ASSERT:
514	error = sooptcopyout(sopt, &pim_assert, sizeof pim_assert);
515	break;
516
517    case MRT_API_SUPPORT:
518	error = sooptcopyout(sopt, &mrt_api_support, sizeof mrt_api_support);
519	break;
520
521    case MRT_API_CONFIG:
522	error = sooptcopyout(sopt, &mrt_api_config, sizeof mrt_api_config);
523	break;
524
525    default:
526	error = EOPNOTSUPP;
527	break;
528    }
529    return error;
530}
531
532/*
533 * Handle ioctl commands to obtain information from the cache
534 */
535static int
536X_mrt_ioctl(int cmd, caddr_t data)
537{
538    int error = 0;
539
540    /*
541     * Currently the only function calling this ioctl routine is rtioctl().
542     * Typically, only root can create the raw socket in order to execute
543     * this ioctl method, however the request might be coming from a prison
544     */
545    error = priv_check(curthread, PRIV_NETINET_MROUTE);
546    if (error)
547	return (error);
548    switch (cmd) {
549    case (SIOCGETVIFCNT):
550	error = get_vif_cnt((struct sioc_vif_req *)data);
551	break;
552
553    case (SIOCGETSGCNT):
554	error = get_sg_cnt((struct sioc_sg_req *)data);
555	break;
556
557    default:
558	error = EINVAL;
559	break;
560    }
561    return error;
562}
563
564/*
565 * returns the packet, byte, rpf-failure count for the source group provided
566 */
567static int
568get_sg_cnt(struct sioc_sg_req *req)
569{
570    struct mfc *rt;
571
572    MFC_LOCK();
573    rt = mfc_find(req->src.s_addr, req->grp.s_addr);
574    if (rt == NULL) {
575	MFC_UNLOCK();
576	req->pktcnt = req->bytecnt = req->wrong_if = 0xffffffff;
577	return EADDRNOTAVAIL;
578    }
579    req->pktcnt = rt->mfc_pkt_cnt;
580    req->bytecnt = rt->mfc_byte_cnt;
581    req->wrong_if = rt->mfc_wrong_if;
582    MFC_UNLOCK();
583    return 0;
584}
585
586/*
587 * returns the input and output packet and byte counts on the vif provided
588 */
589static int
590get_vif_cnt(struct sioc_vif_req *req)
591{
592    vifi_t vifi = req->vifi;
593
594    VIF_LOCK();
595    if (vifi >= numvifs) {
596	VIF_UNLOCK();
597	return EINVAL;
598    }
599
600    req->icount = viftable[vifi].v_pkt_in;
601    req->ocount = viftable[vifi].v_pkt_out;
602    req->ibytes = viftable[vifi].v_bytes_in;
603    req->obytes = viftable[vifi].v_bytes_out;
604    VIF_UNLOCK();
605
606    return 0;
607}
608
609static void
610ip_mrouter_reset(void)
611{
612    bzero((caddr_t)mfctable, sizeof(mfctable));
613    bzero((caddr_t)nexpire, sizeof(nexpire));
614
615    pim_assert = 0;
616    mrt_api_config = 0;
617
618    callout_init(&expire_upcalls_ch, NET_CALLOUT_MPSAFE);
619
620    bw_upcalls_n = 0;
621    bzero((caddr_t)bw_meter_timers, sizeof(bw_meter_timers));
622    callout_init(&bw_upcalls_ch, NET_CALLOUT_MPSAFE);
623    callout_init(&bw_meter_ch, NET_CALLOUT_MPSAFE);
624
625    callout_init(&tbf_reprocess_ch, NET_CALLOUT_MPSAFE);
626}
627
628static struct mtx mrouter_mtx;		/* used to synch init/done work */
629
630static void
631if_detached_event(void *arg __unused, struct ifnet *ifp)
632{
633    vifi_t vifi;
634    int i;
635    struct mfc *mfc;
636    struct mfc *nmfc;
637    struct mfc **ppmfc;	/* Pointer to previous node's next-pointer */
638    struct rtdetq *pq;
639    struct rtdetq *npq;
640
641    mtx_lock(&mrouter_mtx);
642    if (ip_mrouter == NULL) {
643	mtx_unlock(&mrouter_mtx);
644    }
645
646    /*
647     * Tear down multicast forwarder state associated with this ifnet.
648     * 1. Walk the vif list, matching vifs against this ifnet.
649     * 2. Walk the multicast forwarding cache (mfc) looking for
650     *    inner matches with this vif's index.
651     * 3. Free any pending mbufs for this mfc.
652     * 4. Free the associated mfc entry and state associated with this vif.
653     *    Be very careful about unlinking from a singly-linked list whose
654     *    "head node" is a pointer in a simple array.
655     * 5. Free vif state. This should disable ALLMULTI on the interface.
656     */
657    VIF_LOCK();
658    MFC_LOCK();
659    for (vifi = 0; vifi < numvifs; vifi++) {
660	if (viftable[vifi].v_ifp != ifp)
661		continue;
662	for (i = 0; i < MFCTBLSIZ; i++) {
663	    ppmfc = &mfctable[i];
664	    for (mfc = mfctable[i]; mfc != NULL; ) {
665		nmfc = mfc->mfc_next;
666		if (mfc->mfc_parent == vifi) {
667		    for (pq = mfc->mfc_stall; pq != NULL; ) {
668			npq = pq->next;
669			m_freem(pq->m);
670			free(pq, M_MRTABLE);
671			pq = npq;
672		    }
673		    free_bw_list(mfc->mfc_bw_meter);
674		    free(mfc, M_MRTABLE);
675		    *ppmfc = nmfc;
676		} else {
677		    ppmfc = &mfc->mfc_next;
678		}
679		mfc = nmfc;
680	    }
681	}
682	del_vif_locked(vifi);
683    }
684    MFC_UNLOCK();
685    VIF_UNLOCK();
686
687    mtx_unlock(&mrouter_mtx);
688}
689
690/*
691 * Enable multicast routing
692 */
693static int
694ip_mrouter_init(struct socket *so, int version)
695{
696    if (mrtdebug)
697	log(LOG_DEBUG, "ip_mrouter_init: so_type = %d, pr_protocol = %d\n",
698	    so->so_type, so->so_proto->pr_protocol);
699
700    if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_IGMP)
701	return EOPNOTSUPP;
702
703    if (version != 1)
704	return ENOPROTOOPT;
705
706    mtx_lock(&mrouter_mtx);
707
708    if (ip_mrouter != NULL) {
709	mtx_unlock(&mrouter_mtx);
710	return EADDRINUSE;
711    }
712
713    if_detach_event_tag = EVENTHANDLER_REGISTER(ifnet_departure_event,
714        if_detached_event, NULL, EVENTHANDLER_PRI_ANY);
715    if (if_detach_event_tag == NULL)
716	return (ENOMEM);
717
718    callout_reset(&expire_upcalls_ch, EXPIRE_TIMEOUT, expire_upcalls, NULL);
719
720    callout_reset(&bw_upcalls_ch, BW_UPCALLS_PERIOD,
721	expire_bw_upcalls_send, NULL);
722    callout_reset(&bw_meter_ch, BW_METER_PERIOD, expire_bw_meter_process, NULL);
723
724    ip_mrouter = so;
725
726    mtx_unlock(&mrouter_mtx);
727
728    if (mrtdebug)
729	log(LOG_DEBUG, "ip_mrouter_init\n");
730
731    return 0;
732}
733
734/*
735 * Disable multicast routing
736 */
737static int
738X_ip_mrouter_done(void)
739{
740    vifi_t vifi;
741    int i;
742    struct ifnet *ifp;
743    struct ifreq ifr;
744    struct mfc *rt;
745    struct rtdetq *rte;
746
747    mtx_lock(&mrouter_mtx);
748
749    if (ip_mrouter == NULL) {
750	mtx_unlock(&mrouter_mtx);
751	return EINVAL;
752    }
753
754    /*
755     * Detach/disable hooks to the reset of the system.
756     */
757    ip_mrouter = NULL;
758    mrt_api_config = 0;
759
760    callout_stop(&tbf_reprocess_ch);
761
762    VIF_LOCK();
763    /*
764     * For each phyint in use, disable promiscuous reception of all IP
765     * multicasts.
766     */
767    for (vifi = 0; vifi < numvifs; vifi++) {
768	if (viftable[vifi].v_lcl_addr.s_addr != 0 &&
769		!(viftable[vifi].v_flags & (VIFF_TUNNEL | VIFF_REGISTER))) {
770	    struct sockaddr_in *so = (struct sockaddr_in *)&(ifr.ifr_addr);
771
772	    so->sin_len = sizeof(struct sockaddr_in);
773	    so->sin_family = AF_INET;
774	    so->sin_addr.s_addr = INADDR_ANY;
775	    ifp = viftable[vifi].v_ifp;
776	    if_allmulti(ifp, 0);
777	}
778    }
779    bzero((caddr_t)tbftable, sizeof(tbftable));
780    bzero((caddr_t)viftable, sizeof(viftable));
781    numvifs = 0;
782    pim_assert = 0;
783    VIF_UNLOCK();
784    EVENTHANDLER_DEREGISTER(ifnet_departure_event, if_detach_event_tag);
785
786    /*
787     * Free all multicast forwarding cache entries.
788     */
789    callout_stop(&expire_upcalls_ch);
790    callout_stop(&bw_upcalls_ch);
791    callout_stop(&bw_meter_ch);
792
793    MFC_LOCK();
794    for (i = 0; i < MFCTBLSIZ; i++) {
795	for (rt = mfctable[i]; rt != NULL; ) {
796	    struct mfc *nr = rt->mfc_next;
797
798	    for (rte = rt->mfc_stall; rte != NULL; ) {
799		struct rtdetq *n = rte->next;
800
801		m_freem(rte->m);
802		free(rte, M_MRTABLE);
803		rte = n;
804	    }
805	    free_bw_list(rt->mfc_bw_meter);
806	    free(rt, M_MRTABLE);
807	    rt = nr;
808	}
809    }
810    bzero((caddr_t)mfctable, sizeof(mfctable));
811    bzero((caddr_t)nexpire, sizeof(nexpire));
812    bw_upcalls_n = 0;
813    bzero(bw_meter_timers, sizeof(bw_meter_timers));
814    MFC_UNLOCK();
815
816#ifdef PIM
817    reg_vif_num = VIFI_INVALID;
818#endif
819
820    mtx_unlock(&mrouter_mtx);
821
822    if (mrtdebug)
823	log(LOG_DEBUG, "ip_mrouter_done\n");
824
825    return 0;
826}
827
828/*
829 * Set PIM assert processing global
830 */
831static int
832set_assert(int i)
833{
834    if ((i != 1) && (i != 0))
835	return EINVAL;
836
837    pim_assert = i;
838
839    return 0;
840}
841
842/*
843 * Configure API capabilities
844 */
845int
846set_api_config(uint32_t *apival)
847{
848    int i;
849
850    /*
851     * We can set the API capabilities only if it is the first operation
852     * after MRT_INIT. I.e.:
853     *  - there are no vifs installed
854     *  - pim_assert is not enabled
855     *  - the MFC table is empty
856     */
857    if (numvifs > 0) {
858	*apival = 0;
859	return EPERM;
860    }
861    if (pim_assert) {
862	*apival = 0;
863	return EPERM;
864    }
865    for (i = 0; i < MFCTBLSIZ; i++) {
866	if (mfctable[i] != NULL) {
867	    *apival = 0;
868	    return EPERM;
869	}
870    }
871
872    mrt_api_config = *apival & mrt_api_support;
873    *apival = mrt_api_config;
874
875    return 0;
876}
877
878/*
879 * Add a vif to the vif table
880 */
881static int
882add_vif(struct vifctl *vifcp)
883{
884    struct vif *vifp = viftable + vifcp->vifc_vifi;
885    struct sockaddr_in sin = {sizeof sin, AF_INET};
886    struct ifaddr *ifa;
887    struct ifnet *ifp;
888    int error;
889    struct tbf *v_tbf = tbftable + vifcp->vifc_vifi;
890
891    VIF_LOCK();
892    if (vifcp->vifc_vifi >= MAXVIFS) {
893	VIF_UNLOCK();
894	return EINVAL;
895    }
896    if (vifp->v_lcl_addr.s_addr != INADDR_ANY) {
897	VIF_UNLOCK();
898	return EADDRINUSE;
899    }
900    if (vifcp->vifc_lcl_addr.s_addr == INADDR_ANY) {
901	VIF_UNLOCK();
902	return EADDRNOTAVAIL;
903    }
904
905    /* Find the interface with an address in AF_INET family */
906#ifdef PIM
907    if (vifcp->vifc_flags & VIFF_REGISTER) {
908	/*
909	 * XXX: Because VIFF_REGISTER does not really need a valid
910	 * local interface (e.g. it could be 127.0.0.2), we don't
911	 * check its address.
912	 */
913	ifp = NULL;
914    } else
915#endif
916    {
917	sin.sin_addr = vifcp->vifc_lcl_addr;
918	ifa = ifa_ifwithaddr((struct sockaddr *)&sin);
919	if (ifa == NULL) {
920	    VIF_UNLOCK();
921	    return EADDRNOTAVAIL;
922	}
923	ifp = ifa->ifa_ifp;
924    }
925
926    if ((vifcp->vifc_flags & VIFF_TUNNEL) != 0) {
927	log(LOG_ERR, "tunnels are no longer supported\n");
928	VIF_UNLOCK();
929	return EOPNOTSUPP;
930#ifdef PIM
931    } else if (vifcp->vifc_flags & VIFF_REGISTER) {
932	ifp = &multicast_register_if;
933	if (mrtdebug)
934	    log(LOG_DEBUG, "Adding a register vif, ifp: %p\n",
935		    (void *)&multicast_register_if);
936	if (reg_vif_num == VIFI_INVALID) {
937	    if_initname(&multicast_register_if, "register_vif", 0);
938	    multicast_register_if.if_flags = IFF_LOOPBACK;
939	    bzero(&vifp->v_route, sizeof(vifp->v_route));
940	    reg_vif_num = vifcp->vifc_vifi;
941	}
942#endif
943    } else {		/* Make sure the interface supports multicast */
944	if ((ifp->if_flags & IFF_MULTICAST) == 0) {
945	    VIF_UNLOCK();
946	    return EOPNOTSUPP;
947	}
948
949	/* Enable promiscuous reception of all IP multicasts from the if */
950	error = if_allmulti(ifp, 1);
951	if (error) {
952	    VIF_UNLOCK();
953	    return error;
954	}
955    }
956
957    /* define parameters for the tbf structure */
958    vifp->v_tbf = v_tbf;
959    GET_TIME(vifp->v_tbf->tbf_last_pkt_t);
960    vifp->v_tbf->tbf_n_tok = 0;
961    vifp->v_tbf->tbf_q_len = 0;
962    vifp->v_tbf->tbf_max_q_len = MAXQSIZE;
963    vifp->v_tbf->tbf_q = vifp->v_tbf->tbf_t = NULL;
964
965    vifp->v_flags     = vifcp->vifc_flags;
966    vifp->v_threshold = vifcp->vifc_threshold;
967    vifp->v_lcl_addr  = vifcp->vifc_lcl_addr;
968    vifp->v_rmt_addr  = vifcp->vifc_rmt_addr;
969    vifp->v_ifp       = ifp;
970    /* scaling up here allows division by 1024 in critical code */
971    vifp->v_rate_limit= vifcp->vifc_rate_limit * 1024 / 1000;
972    vifp->v_rsvp_on   = 0;
973    vifp->v_rsvpd     = NULL;
974    /* initialize per vif pkt counters */
975    vifp->v_pkt_in    = 0;
976    vifp->v_pkt_out   = 0;
977    vifp->v_bytes_in  = 0;
978    vifp->v_bytes_out = 0;
979
980    /* Adjust numvifs up if the vifi is higher than numvifs */
981    if (numvifs <= vifcp->vifc_vifi) numvifs = vifcp->vifc_vifi + 1;
982
983    VIF_UNLOCK();
984
985    if (mrtdebug)
986	log(LOG_DEBUG, "add_vif #%d, lcladdr %lx, %s %lx, thresh %x, rate %d\n",
987	    vifcp->vifc_vifi,
988	    (u_long)ntohl(vifcp->vifc_lcl_addr.s_addr),
989	    (vifcp->vifc_flags & VIFF_TUNNEL) ? "rmtaddr" : "mask",
990	    (u_long)ntohl(vifcp->vifc_rmt_addr.s_addr),
991	    vifcp->vifc_threshold,
992	    vifcp->vifc_rate_limit);
993
994    return 0;
995}
996
997/*
998 * Delete a vif from the vif table
999 */
1000static int
1001del_vif_locked(vifi_t vifi)
1002{
1003    struct vif *vifp;
1004
1005    VIF_LOCK_ASSERT();
1006
1007    if (vifi >= numvifs) {
1008	return EINVAL;
1009    }
1010    vifp = &viftable[vifi];
1011    if (vifp->v_lcl_addr.s_addr == INADDR_ANY) {
1012	return EADDRNOTAVAIL;
1013    }
1014
1015    if (!(vifp->v_flags & (VIFF_TUNNEL | VIFF_REGISTER)))
1016	if_allmulti(vifp->v_ifp, 0);
1017
1018    /*
1019     * Free packets queued at the interface
1020     */
1021    while (vifp->v_tbf->tbf_q) {
1022	struct mbuf *m = vifp->v_tbf->tbf_q;
1023
1024	vifp->v_tbf->tbf_q = m->m_act;
1025	m_freem(m);
1026    }
1027
1028#ifdef PIM
1029    if (vifp->v_flags & VIFF_REGISTER)
1030	reg_vif_num = VIFI_INVALID;
1031#endif
1032
1033    bzero((caddr_t)vifp->v_tbf, sizeof(*(vifp->v_tbf)));
1034    bzero((caddr_t)vifp, sizeof (*vifp));
1035
1036    if (mrtdebug)
1037	log(LOG_DEBUG, "del_vif %d, numvifs %d\n", vifi, numvifs);
1038
1039    /* Adjust numvifs down */
1040    for (vifi = numvifs; vifi > 0; vifi--)
1041	if (viftable[vifi-1].v_lcl_addr.s_addr != INADDR_ANY)
1042	    break;
1043    numvifs = vifi;
1044
1045    return 0;
1046}
1047
1048static int
1049del_vif(vifi_t vifi)
1050{
1051    int cc;
1052
1053    VIF_LOCK();
1054    cc = del_vif_locked(vifi);
1055    VIF_UNLOCK();
1056
1057    return cc;
1058}
1059
1060/*
1061 * update an mfc entry without resetting counters and S,G addresses.
1062 */
1063static void
1064update_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp)
1065{
1066    int i;
1067
1068    rt->mfc_parent = mfccp->mfcc_parent;
1069    for (i = 0; i < numvifs; i++) {
1070	rt->mfc_ttls[i] = mfccp->mfcc_ttls[i];
1071	rt->mfc_flags[i] = mfccp->mfcc_flags[i] & mrt_api_config &
1072	    MRT_MFC_FLAGS_ALL;
1073    }
1074    /* set the RP address */
1075    if (mrt_api_config & MRT_MFC_RP)
1076	rt->mfc_rp = mfccp->mfcc_rp;
1077    else
1078	rt->mfc_rp.s_addr = INADDR_ANY;
1079}
1080
1081/*
1082 * fully initialize an mfc entry from the parameter.
1083 */
1084static void
1085init_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp)
1086{
1087    rt->mfc_origin     = mfccp->mfcc_origin;
1088    rt->mfc_mcastgrp   = mfccp->mfcc_mcastgrp;
1089
1090    update_mfc_params(rt, mfccp);
1091
1092    /* initialize pkt counters per src-grp */
1093    rt->mfc_pkt_cnt    = 0;
1094    rt->mfc_byte_cnt   = 0;
1095    rt->mfc_wrong_if   = 0;
1096    rt->mfc_last_assert.tv_sec = rt->mfc_last_assert.tv_usec = 0;
1097}
1098
1099
1100/*
1101 * Add an mfc entry
1102 */
1103static int
1104add_mfc(struct mfcctl2 *mfccp)
1105{
1106    struct mfc *rt;
1107    u_long hash;
1108    struct rtdetq *rte;
1109    u_short nstl;
1110
1111    VIF_LOCK();
1112    MFC_LOCK();
1113
1114    rt = mfc_find(mfccp->mfcc_origin.s_addr, mfccp->mfcc_mcastgrp.s_addr);
1115
1116    /* If an entry already exists, just update the fields */
1117    if (rt) {
1118	if (mrtdebug & DEBUG_MFC)
1119	    log(LOG_DEBUG,"add_mfc update o %lx g %lx p %x\n",
1120		(u_long)ntohl(mfccp->mfcc_origin.s_addr),
1121		(u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr),
1122		mfccp->mfcc_parent);
1123
1124	update_mfc_params(rt, mfccp);
1125	MFC_UNLOCK();
1126	VIF_UNLOCK();
1127	return 0;
1128    }
1129
1130    /*
1131     * Find the entry for which the upcall was made and update
1132     */
1133    hash = MFCHASH(mfccp->mfcc_origin.s_addr, mfccp->mfcc_mcastgrp.s_addr);
1134    for (rt = mfctable[hash], nstl = 0; rt; rt = rt->mfc_next) {
1135
1136	if ((rt->mfc_origin.s_addr == mfccp->mfcc_origin.s_addr) &&
1137		(rt->mfc_mcastgrp.s_addr == mfccp->mfcc_mcastgrp.s_addr) &&
1138		(rt->mfc_stall != NULL)) {
1139
1140	    if (nstl++)
1141		log(LOG_ERR, "add_mfc %s o %lx g %lx p %x dbx %p\n",
1142		    "multiple kernel entries",
1143		    (u_long)ntohl(mfccp->mfcc_origin.s_addr),
1144		    (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr),
1145		    mfccp->mfcc_parent, (void *)rt->mfc_stall);
1146
1147	    if (mrtdebug & DEBUG_MFC)
1148		log(LOG_DEBUG,"add_mfc o %lx g %lx p %x dbg %p\n",
1149		    (u_long)ntohl(mfccp->mfcc_origin.s_addr),
1150		    (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr),
1151		    mfccp->mfcc_parent, (void *)rt->mfc_stall);
1152
1153	    init_mfc_params(rt, mfccp);
1154
1155	    rt->mfc_expire = 0;	/* Don't clean this guy up */
1156	    nexpire[hash]--;
1157
1158	    /* free packets Qed at the end of this entry */
1159	    for (rte = rt->mfc_stall; rte != NULL; ) {
1160		struct rtdetq *n = rte->next;
1161
1162		ip_mdq(rte->m, rte->ifp, rt, -1);
1163		m_freem(rte->m);
1164		free(rte, M_MRTABLE);
1165		rte = n;
1166	    }
1167	    rt->mfc_stall = NULL;
1168	}
1169    }
1170
1171    /*
1172     * It is possible that an entry is being inserted without an upcall
1173     */
1174    if (nstl == 0) {
1175	if (mrtdebug & DEBUG_MFC)
1176	    log(LOG_DEBUG,"add_mfc no upcall h %lu o %lx g %lx p %x\n",
1177		hash, (u_long)ntohl(mfccp->mfcc_origin.s_addr),
1178		(u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr),
1179		mfccp->mfcc_parent);
1180
1181	for (rt = mfctable[hash]; rt != NULL; rt = rt->mfc_next) {
1182	    if ((rt->mfc_origin.s_addr == mfccp->mfcc_origin.s_addr) &&
1183		    (rt->mfc_mcastgrp.s_addr == mfccp->mfcc_mcastgrp.s_addr)) {
1184		init_mfc_params(rt, mfccp);
1185		if (rt->mfc_expire)
1186		    nexpire[hash]--;
1187		rt->mfc_expire = 0;
1188		break; /* XXX */
1189	    }
1190	}
1191	if (rt == NULL) {		/* no upcall, so make a new entry */
1192	    rt = (struct mfc *)malloc(sizeof(*rt), M_MRTABLE, M_NOWAIT);
1193	    if (rt == NULL) {
1194		MFC_UNLOCK();
1195		VIF_UNLOCK();
1196		return ENOBUFS;
1197	    }
1198
1199	    init_mfc_params(rt, mfccp);
1200	    rt->mfc_expire     = 0;
1201	    rt->mfc_stall      = NULL;
1202
1203	    rt->mfc_bw_meter = NULL;
1204	    /* insert new entry at head of hash chain */
1205	    rt->mfc_next = mfctable[hash];
1206	    mfctable[hash] = rt;
1207	}
1208    }
1209    MFC_UNLOCK();
1210    VIF_UNLOCK();
1211    return 0;
1212}
1213
1214/*
1215 * Delete an mfc entry
1216 */
1217static int
1218del_mfc(struct mfcctl2 *mfccp)
1219{
1220    struct in_addr	origin;
1221    struct in_addr	mcastgrp;
1222    struct mfc		*rt;
1223    struct mfc		**nptr;
1224    u_long		hash;
1225    struct bw_meter	*list;
1226
1227    origin = mfccp->mfcc_origin;
1228    mcastgrp = mfccp->mfcc_mcastgrp;
1229
1230    if (mrtdebug & DEBUG_MFC)
1231	log(LOG_DEBUG,"del_mfc orig %lx mcastgrp %lx\n",
1232	    (u_long)ntohl(origin.s_addr), (u_long)ntohl(mcastgrp.s_addr));
1233
1234    MFC_LOCK();
1235
1236    hash = MFCHASH(origin.s_addr, mcastgrp.s_addr);
1237    for (nptr = &mfctable[hash]; (rt = *nptr) != NULL; nptr = &rt->mfc_next)
1238	if (origin.s_addr == rt->mfc_origin.s_addr &&
1239		mcastgrp.s_addr == rt->mfc_mcastgrp.s_addr &&
1240		rt->mfc_stall == NULL)
1241	    break;
1242    if (rt == NULL) {
1243	MFC_UNLOCK();
1244	return EADDRNOTAVAIL;
1245    }
1246
1247    *nptr = rt->mfc_next;
1248
1249    /*
1250     * free the bw_meter entries
1251     */
1252    list = rt->mfc_bw_meter;
1253    rt->mfc_bw_meter = NULL;
1254
1255    free(rt, M_MRTABLE);
1256
1257    free_bw_list(list);
1258
1259    MFC_UNLOCK();
1260
1261    return 0;
1262}
1263
1264/*
1265 * Send a message to the routing daemon on the multicast routing socket
1266 */
1267static int
1268socket_send(struct socket *s, struct mbuf *mm, struct sockaddr_in *src)
1269{
1270    if (s) {
1271	SOCKBUF_LOCK(&s->so_rcv);
1272	if (sbappendaddr_locked(&s->so_rcv, (struct sockaddr *)src, mm,
1273	    NULL) != 0) {
1274	    sorwakeup_locked(s);
1275	    return 0;
1276	}
1277	SOCKBUF_UNLOCK(&s->so_rcv);
1278    }
1279    m_freem(mm);
1280    return -1;
1281}
1282
1283/*
1284 * IP multicast forwarding function. This function assumes that the packet
1285 * pointed to by "ip" has arrived on (or is about to be sent to) the interface
1286 * pointed to by "ifp", and the packet is to be relayed to other networks
1287 * that have members of the packet's destination IP multicast group.
1288 *
1289 * The packet is returned unscathed to the caller, unless it is
1290 * erroneous, in which case a non-zero return value tells the caller to
1291 * discard it.
1292 */
1293
1294#define TUNNEL_LEN  12  /* # bytes of IP option for tunnel encapsulation  */
1295
1296static int
1297X_ip_mforward(struct ip *ip, struct ifnet *ifp, struct mbuf *m,
1298    struct ip_moptions *imo)
1299{
1300    struct mfc *rt;
1301    int error;
1302    vifi_t vifi;
1303
1304    if (mrtdebug & DEBUG_FORWARD)
1305	log(LOG_DEBUG, "ip_mforward: src %lx, dst %lx, ifp %p\n",
1306	    (u_long)ntohl(ip->ip_src.s_addr), (u_long)ntohl(ip->ip_dst.s_addr),
1307	    (void *)ifp);
1308
1309    if (ip->ip_hl < (sizeof(struct ip) + TUNNEL_LEN) >> 2 ||
1310		((u_char *)(ip + 1))[1] != IPOPT_LSRR ) {
1311	/*
1312	 * Packet arrived via a physical interface or
1313	 * an encapsulated tunnel or a register_vif.
1314	 */
1315    } else {
1316	/*
1317	 * Packet arrived through a source-route tunnel.
1318	 * Source-route tunnels are no longer supported.
1319	 */
1320	static int last_log;
1321	if (last_log != time_uptime) {
1322	    last_log = time_uptime;
1323	    log(LOG_ERR,
1324		"ip_mforward: received source-routed packet from %lx\n",
1325		(u_long)ntohl(ip->ip_src.s_addr));
1326	}
1327	return 1;
1328    }
1329
1330    VIF_LOCK();
1331    MFC_LOCK();
1332    if (imo && ((vifi = imo->imo_multicast_vif) < numvifs)) {
1333	if (ip->ip_ttl < 255)
1334	    ip->ip_ttl++;	/* compensate for -1 in *_send routines */
1335	if (rsvpdebug && ip->ip_p == IPPROTO_RSVP) {
1336	    struct vif *vifp = viftable + vifi;
1337
1338	    printf("Sending IPPROTO_RSVP from %lx to %lx on vif %d (%s%s)\n",
1339		(long)ntohl(ip->ip_src.s_addr), (long)ntohl(ip->ip_dst.s_addr),
1340		vifi,
1341		(vifp->v_flags & VIFF_TUNNEL) ? "tunnel on " : "",
1342		vifp->v_ifp->if_xname);
1343	}
1344	error = ip_mdq(m, ifp, NULL, vifi);
1345	MFC_UNLOCK();
1346	VIF_UNLOCK();
1347	return error;
1348    }
1349    if (rsvpdebug && ip->ip_p == IPPROTO_RSVP) {
1350	printf("Warning: IPPROTO_RSVP from %lx to %lx without vif option\n",
1351	    (long)ntohl(ip->ip_src.s_addr), (long)ntohl(ip->ip_dst.s_addr));
1352	if (!imo)
1353	    printf("In fact, no options were specified at all\n");
1354    }
1355
1356    /*
1357     * Don't forward a packet with time-to-live of zero or one,
1358     * or a packet destined to a local-only group.
1359     */
1360    if (ip->ip_ttl <= 1 || ntohl(ip->ip_dst.s_addr) <= INADDR_MAX_LOCAL_GROUP) {
1361	MFC_UNLOCK();
1362	VIF_UNLOCK();
1363	return 0;
1364    }
1365
1366    /*
1367     * Determine forwarding vifs from the forwarding cache table
1368     */
1369    ++mrtstat.mrts_mfc_lookups;
1370    rt = mfc_find(ip->ip_src.s_addr, ip->ip_dst.s_addr);
1371
1372    /* Entry exists, so forward if necessary */
1373    if (rt != NULL) {
1374	error = ip_mdq(m, ifp, rt, -1);
1375	MFC_UNLOCK();
1376	VIF_UNLOCK();
1377	return error;
1378    } else {
1379	/*
1380	 * If we don't have a route for packet's origin,
1381	 * Make a copy of the packet & send message to routing daemon
1382	 */
1383
1384	struct mbuf *mb0;
1385	struct rtdetq *rte;
1386	u_long hash;
1387	int hlen = ip->ip_hl << 2;
1388
1389	++mrtstat.mrts_mfc_misses;
1390
1391	mrtstat.mrts_no_route++;
1392	if (mrtdebug & (DEBUG_FORWARD | DEBUG_MFC))
1393	    log(LOG_DEBUG, "ip_mforward: no rte s %lx g %lx\n",
1394		(u_long)ntohl(ip->ip_src.s_addr),
1395		(u_long)ntohl(ip->ip_dst.s_addr));
1396
1397	/*
1398	 * Allocate mbufs early so that we don't do extra work if we are
1399	 * just going to fail anyway.  Make sure to pullup the header so
1400	 * that other people can't step on it.
1401	 */
1402	rte = (struct rtdetq *)malloc((sizeof *rte), M_MRTABLE, M_NOWAIT);
1403	if (rte == NULL) {
1404	    MFC_UNLOCK();
1405	    VIF_UNLOCK();
1406	    return ENOBUFS;
1407	}
1408	mb0 = m_copypacket(m, M_DONTWAIT);
1409	if (mb0 && (M_HASCL(mb0) || mb0->m_len < hlen))
1410	    mb0 = m_pullup(mb0, hlen);
1411	if (mb0 == NULL) {
1412	    free(rte, M_MRTABLE);
1413	    MFC_UNLOCK();
1414	    VIF_UNLOCK();
1415	    return ENOBUFS;
1416	}
1417
1418	/* is there an upcall waiting for this flow ? */
1419	hash = MFCHASH(ip->ip_src.s_addr, ip->ip_dst.s_addr);
1420	for (rt = mfctable[hash]; rt; rt = rt->mfc_next) {
1421	    if ((ip->ip_src.s_addr == rt->mfc_origin.s_addr) &&
1422		    (ip->ip_dst.s_addr == rt->mfc_mcastgrp.s_addr) &&
1423		    (rt->mfc_stall != NULL))
1424		break;
1425	}
1426
1427	if (rt == NULL) {
1428	    int i;
1429	    struct igmpmsg *im;
1430	    struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
1431	    struct mbuf *mm;
1432
1433	    /*
1434	     * Locate the vifi for the incoming interface for this packet.
1435	     * If none found, drop packet.
1436	     */
1437	    for (vifi=0; vifi < numvifs && viftable[vifi].v_ifp != ifp; vifi++)
1438		;
1439	    if (vifi >= numvifs)	/* vif not found, drop packet */
1440		goto non_fatal;
1441
1442	    /* no upcall, so make a new entry */
1443	    rt = (struct mfc *)malloc(sizeof(*rt), M_MRTABLE, M_NOWAIT);
1444	    if (rt == NULL)
1445		goto fail;
1446	    /* Make a copy of the header to send to the user level process */
1447	    mm = m_copy(mb0, 0, hlen);
1448	    if (mm == NULL)
1449		goto fail1;
1450
1451	    /*
1452	     * Send message to routing daemon to install
1453	     * a route into the kernel table
1454	     */
1455
1456	    im = mtod(mm, struct igmpmsg *);
1457	    im->im_msgtype = IGMPMSG_NOCACHE;
1458	    im->im_mbz = 0;
1459	    im->im_vif = vifi;
1460
1461	    mrtstat.mrts_upcalls++;
1462
1463	    k_igmpsrc.sin_addr = ip->ip_src;
1464	    if (socket_send(ip_mrouter, mm, &k_igmpsrc) < 0) {
1465		log(LOG_WARNING, "ip_mforward: ip_mrouter socket queue full\n");
1466		++mrtstat.mrts_upq_sockfull;
1467fail1:
1468		free(rt, M_MRTABLE);
1469fail:
1470		free(rte, M_MRTABLE);
1471		m_freem(mb0);
1472		MFC_UNLOCK();
1473		VIF_UNLOCK();
1474		return ENOBUFS;
1475	    }
1476
1477	    /* insert new entry at head of hash chain */
1478	    rt->mfc_origin.s_addr     = ip->ip_src.s_addr;
1479	    rt->mfc_mcastgrp.s_addr   = ip->ip_dst.s_addr;
1480	    rt->mfc_expire	      = UPCALL_EXPIRE;
1481	    nexpire[hash]++;
1482	    for (i = 0; i < numvifs; i++) {
1483		rt->mfc_ttls[i] = 0;
1484		rt->mfc_flags[i] = 0;
1485	    }
1486	    rt->mfc_parent = -1;
1487
1488	    rt->mfc_rp.s_addr = INADDR_ANY; /* clear the RP address */
1489
1490	    rt->mfc_bw_meter = NULL;
1491
1492	    /* link into table */
1493	    rt->mfc_next   = mfctable[hash];
1494	    mfctable[hash] = rt;
1495	    rt->mfc_stall = rte;
1496
1497	} else {
1498	    /* determine if q has overflowed */
1499	    int npkts = 0;
1500	    struct rtdetq **p;
1501
1502	    /*
1503	     * XXX ouch! we need to append to the list, but we
1504	     * only have a pointer to the front, so we have to
1505	     * scan the entire list every time.
1506	     */
1507	    for (p = &rt->mfc_stall; *p != NULL; p = &(*p)->next)
1508		npkts++;
1509
1510	    if (npkts > MAX_UPQ) {
1511		mrtstat.mrts_upq_ovflw++;
1512non_fatal:
1513		free(rte, M_MRTABLE);
1514		m_freem(mb0);
1515		MFC_UNLOCK();
1516		VIF_UNLOCK();
1517		return 0;
1518	    }
1519
1520	    /* Add this entry to the end of the queue */
1521	    *p = rte;
1522	}
1523
1524	rte->m			= mb0;
1525	rte->ifp		= ifp;
1526	rte->next		= NULL;
1527
1528	MFC_UNLOCK();
1529	VIF_UNLOCK();
1530
1531	return 0;
1532    }
1533}
1534
1535/*
1536 * Clean up the cache entry if upcall is not serviced
1537 */
1538static void
1539expire_upcalls(void *unused)
1540{
1541    struct rtdetq *rte;
1542    struct mfc *mfc, **nptr;
1543    int i;
1544
1545    MFC_LOCK();
1546    for (i = 0; i < MFCTBLSIZ; i++) {
1547	if (nexpire[i] == 0)
1548	    continue;
1549	nptr = &mfctable[i];
1550	for (mfc = *nptr; mfc != NULL; mfc = *nptr) {
1551	    /*
1552	     * Skip real cache entries
1553	     * Make sure it wasn't marked to not expire (shouldn't happen)
1554	     * If it expires now
1555	     */
1556	    if (mfc->mfc_stall != NULL && mfc->mfc_expire != 0 &&
1557		    --mfc->mfc_expire == 0) {
1558		if (mrtdebug & DEBUG_EXPIRE)
1559		    log(LOG_DEBUG, "expire_upcalls: expiring (%lx %lx)\n",
1560			(u_long)ntohl(mfc->mfc_origin.s_addr),
1561			(u_long)ntohl(mfc->mfc_mcastgrp.s_addr));
1562		/*
1563		 * drop all the packets
1564		 * free the mbuf with the pkt, if, timing info
1565		 */
1566		for (rte = mfc->mfc_stall; rte; ) {
1567		    struct rtdetq *n = rte->next;
1568
1569		    m_freem(rte->m);
1570		    free(rte, M_MRTABLE);
1571		    rte = n;
1572		}
1573		++mrtstat.mrts_cache_cleanups;
1574		nexpire[i]--;
1575
1576		/*
1577		 * free the bw_meter entries
1578		 */
1579		while (mfc->mfc_bw_meter != NULL) {
1580		    struct bw_meter *x = mfc->mfc_bw_meter;
1581
1582		    mfc->mfc_bw_meter = x->bm_mfc_next;
1583		    free(x, M_BWMETER);
1584		}
1585
1586		*nptr = mfc->mfc_next;
1587		free(mfc, M_MRTABLE);
1588	    } else {
1589		nptr = &mfc->mfc_next;
1590	    }
1591	}
1592    }
1593    MFC_UNLOCK();
1594
1595    callout_reset(&expire_upcalls_ch, EXPIRE_TIMEOUT, expire_upcalls, NULL);
1596}
1597
1598/*
1599 * Packet forwarding routine once entry in the cache is made
1600 */
1601static int
1602ip_mdq(struct mbuf *m, struct ifnet *ifp, struct mfc *rt, vifi_t xmt_vif)
1603{
1604    struct ip  *ip = mtod(m, struct ip *);
1605    vifi_t vifi;
1606    int plen = ip->ip_len;
1607
1608    VIF_LOCK_ASSERT();
1609
1610    /*
1611     * If xmt_vif is not -1, send on only the requested vif.
1612     *
1613     * (since vifi_t is u_short, -1 becomes MAXUSHORT, which > numvifs.)
1614     */
1615    if (xmt_vif < numvifs) {
1616#ifdef PIM
1617	if (viftable[xmt_vif].v_flags & VIFF_REGISTER)
1618	    pim_register_send(ip, viftable + xmt_vif, m, rt);
1619	else
1620#endif
1621	phyint_send(ip, viftable + xmt_vif, m);
1622	return 1;
1623    }
1624
1625    /*
1626     * Don't forward if it didn't arrive from the parent vif for its origin.
1627     */
1628    vifi = rt->mfc_parent;
1629    if ((vifi >= numvifs) || (viftable[vifi].v_ifp != ifp)) {
1630	/* came in the wrong interface */
1631	if (mrtdebug & DEBUG_FORWARD)
1632	    log(LOG_DEBUG, "wrong if: ifp %p vifi %d vififp %p\n",
1633		(void *)ifp, vifi, (void *)viftable[vifi].v_ifp);
1634	++mrtstat.mrts_wrong_if;
1635	++rt->mfc_wrong_if;
1636	/*
1637	 * If we are doing PIM assert processing, send a message
1638	 * to the routing daemon.
1639	 *
1640	 * XXX: A PIM-SM router needs the WRONGVIF detection so it
1641	 * can complete the SPT switch, regardless of the type
1642	 * of the iif (broadcast media, GRE tunnel, etc).
1643	 */
1644	if (pim_assert && (vifi < numvifs) && viftable[vifi].v_ifp) {
1645	    struct timeval now;
1646	    u_long delta;
1647
1648#ifdef PIM
1649	    if (ifp == &multicast_register_if)
1650		pimstat.pims_rcv_registers_wrongiif++;
1651#endif
1652
1653	    /* Get vifi for the incoming packet */
1654	    for (vifi=0; vifi < numvifs && viftable[vifi].v_ifp != ifp; vifi++)
1655		;
1656	    if (vifi >= numvifs)
1657		return 0;	/* The iif is not found: ignore the packet. */
1658
1659	    if (rt->mfc_flags[vifi] & MRT_MFC_FLAGS_DISABLE_WRONGVIF)
1660		return 0;	/* WRONGVIF disabled: ignore the packet */
1661
1662	    GET_TIME(now);
1663
1664	    TV_DELTA(now, rt->mfc_last_assert, delta);
1665
1666	    if (delta > ASSERT_MSG_TIME) {
1667		struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
1668		struct igmpmsg *im;
1669		int hlen = ip->ip_hl << 2;
1670		struct mbuf *mm = m_copy(m, 0, hlen);
1671
1672		if (mm && (M_HASCL(mm) || mm->m_len < hlen))
1673		    mm = m_pullup(mm, hlen);
1674		if (mm == NULL)
1675		    return ENOBUFS;
1676
1677		rt->mfc_last_assert = now;
1678
1679		im = mtod(mm, struct igmpmsg *);
1680		im->im_msgtype	= IGMPMSG_WRONGVIF;
1681		im->im_mbz		= 0;
1682		im->im_vif		= vifi;
1683
1684		mrtstat.mrts_upcalls++;
1685
1686		k_igmpsrc.sin_addr = im->im_src;
1687		if (socket_send(ip_mrouter, mm, &k_igmpsrc) < 0) {
1688		    log(LOG_WARNING,
1689			"ip_mforward: ip_mrouter socket queue full\n");
1690		    ++mrtstat.mrts_upq_sockfull;
1691		    return ENOBUFS;
1692		}
1693	    }
1694	}
1695	return 0;
1696    }
1697
1698    /* If I sourced this packet, it counts as output, else it was input. */
1699    if (ip->ip_src.s_addr == viftable[vifi].v_lcl_addr.s_addr) {
1700	viftable[vifi].v_pkt_out++;
1701	viftable[vifi].v_bytes_out += plen;
1702    } else {
1703	viftable[vifi].v_pkt_in++;
1704	viftable[vifi].v_bytes_in += plen;
1705    }
1706    rt->mfc_pkt_cnt++;
1707    rt->mfc_byte_cnt += plen;
1708
1709    /*
1710     * For each vif, decide if a copy of the packet should be forwarded.
1711     * Forward if:
1712     *		- the ttl exceeds the vif's threshold
1713     *		- there are group members downstream on interface
1714     */
1715    for (vifi = 0; vifi < numvifs; vifi++)
1716	if ((rt->mfc_ttls[vifi] > 0) && (ip->ip_ttl > rt->mfc_ttls[vifi])) {
1717	    viftable[vifi].v_pkt_out++;
1718	    viftable[vifi].v_bytes_out += plen;
1719#ifdef PIM
1720	    if (viftable[vifi].v_flags & VIFF_REGISTER)
1721		pim_register_send(ip, viftable + vifi, m, rt);
1722	    else
1723#endif
1724	    phyint_send(ip, viftable + vifi, m);
1725	}
1726
1727    /*
1728     * Perform upcall-related bw measuring.
1729     */
1730    if (rt->mfc_bw_meter != NULL) {
1731	struct bw_meter *x;
1732	struct timeval now;
1733
1734	GET_TIME(now);
1735	MFC_LOCK_ASSERT();
1736	for (x = rt->mfc_bw_meter; x != NULL; x = x->bm_mfc_next)
1737	    bw_meter_receive_packet(x, plen, &now);
1738    }
1739
1740    return 0;
1741}
1742
1743/*
1744 * check if a vif number is legal/ok. This is used by ip_output.
1745 */
1746static int
1747X_legal_vif_num(int vif)
1748{
1749    /* XXX unlocked, matter? */
1750    return (vif >= 0 && vif < numvifs);
1751}
1752
1753/*
1754 * Return the local address used by this vif
1755 */
1756static u_long
1757X_ip_mcast_src(int vifi)
1758{
1759    /* XXX unlocked, matter? */
1760    if (vifi >= 0 && vifi < numvifs)
1761	return viftable[vifi].v_lcl_addr.s_addr;
1762    else
1763	return INADDR_ANY;
1764}
1765
1766static void
1767phyint_send(struct ip *ip, struct vif *vifp, struct mbuf *m)
1768{
1769    struct mbuf *mb_copy;
1770    int hlen = ip->ip_hl << 2;
1771
1772    VIF_LOCK_ASSERT();
1773
1774    /*
1775     * Make a new reference to the packet; make sure that
1776     * the IP header is actually copied, not just referenced,
1777     * so that ip_output() only scribbles on the copy.
1778     */
1779    mb_copy = m_copypacket(m, M_DONTWAIT);
1780    if (mb_copy && (M_HASCL(mb_copy) || mb_copy->m_len < hlen))
1781	mb_copy = m_pullup(mb_copy, hlen);
1782    if (mb_copy == NULL)
1783	return;
1784
1785    if (vifp->v_rate_limit == 0)
1786	tbf_send_packet(vifp, mb_copy);
1787    else
1788	tbf_control(vifp, mb_copy, mtod(mb_copy, struct ip *), ip->ip_len);
1789}
1790
1791/*
1792 * Token bucket filter module
1793 */
1794
1795static void
1796tbf_control(struct vif *vifp, struct mbuf *m, struct ip *ip, u_long p_len)
1797{
1798    struct tbf *t = vifp->v_tbf;
1799
1800    VIF_LOCK_ASSERT();
1801
1802    if (p_len > MAX_BKT_SIZE) {		/* drop if packet is too large */
1803	mrtstat.mrts_pkt2large++;
1804	m_freem(m);
1805	return;
1806    }
1807
1808    tbf_update_tokens(vifp);
1809
1810    if (t->tbf_q_len == 0) {		/* queue empty...		*/
1811	if (p_len <= t->tbf_n_tok) {	/* send packet if enough tokens */
1812	    t->tbf_n_tok -= p_len;
1813	    tbf_send_packet(vifp, m);
1814	} else {			/* no, queue packet and try later */
1815	    tbf_queue(vifp, m);
1816	    callout_reset(&tbf_reprocess_ch, TBF_REPROCESS,
1817		tbf_reprocess_q, vifp);
1818	}
1819    } else if (t->tbf_q_len < t->tbf_max_q_len) {
1820	/* finite queue length, so queue pkts and process queue */
1821	tbf_queue(vifp, m);
1822	tbf_process_q(vifp);
1823    } else {
1824	/* queue full, try to dq and queue and process */
1825	if (!tbf_dq_sel(vifp, ip)) {
1826	    mrtstat.mrts_q_overflow++;
1827	    m_freem(m);
1828	} else {
1829	    tbf_queue(vifp, m);
1830	    tbf_process_q(vifp);
1831	}
1832    }
1833}
1834
1835/*
1836 * adds a packet to the queue at the interface
1837 */
1838static void
1839tbf_queue(struct vif *vifp, struct mbuf *m)
1840{
1841    struct tbf *t = vifp->v_tbf;
1842
1843    VIF_LOCK_ASSERT();
1844
1845    if (t->tbf_t == NULL)	/* Queue was empty */
1846	t->tbf_q = m;
1847    else			/* Insert at tail */
1848	t->tbf_t->m_act = m;
1849
1850    t->tbf_t = m;		/* Set new tail pointer */
1851
1852#ifdef DIAGNOSTIC
1853    /* Make sure we didn't get fed a bogus mbuf */
1854    if (m->m_act)
1855	panic("tbf_queue: m_act");
1856#endif
1857    m->m_act = NULL;
1858
1859    t->tbf_q_len++;
1860}
1861
1862/*
1863 * processes the queue at the interface
1864 */
1865static void
1866tbf_process_q(struct vif *vifp)
1867{
1868    struct tbf *t = vifp->v_tbf;
1869
1870    VIF_LOCK_ASSERT();
1871
1872    /* loop through the queue at the interface and send as many packets
1873     * as possible
1874     */
1875    while (t->tbf_q_len > 0) {
1876	struct mbuf *m = t->tbf_q;
1877	int len = mtod(m, struct ip *)->ip_len;
1878
1879	/* determine if the packet can be sent */
1880	if (len > t->tbf_n_tok)	/* not enough tokens, we are done */
1881	    break;
1882	/* ok, reduce no of tokens, dequeue and send the packet. */
1883	t->tbf_n_tok -= len;
1884
1885	t->tbf_q = m->m_act;
1886	if (--t->tbf_q_len == 0)
1887	    t->tbf_t = NULL;
1888
1889	m->m_act = NULL;
1890	tbf_send_packet(vifp, m);
1891    }
1892}
1893
1894static void
1895tbf_reprocess_q(void *xvifp)
1896{
1897    struct vif *vifp = xvifp;
1898
1899    if (ip_mrouter == NULL)
1900	return;
1901    VIF_LOCK();
1902    tbf_update_tokens(vifp);
1903    tbf_process_q(vifp);
1904    if (vifp->v_tbf->tbf_q_len)
1905	callout_reset(&tbf_reprocess_ch, TBF_REPROCESS, tbf_reprocess_q, vifp);
1906    VIF_UNLOCK();
1907}
1908
1909/* function that will selectively discard a member of the queue
1910 * based on the precedence value and the priority
1911 */
1912static int
1913tbf_dq_sel(struct vif *vifp, struct ip *ip)
1914{
1915    u_int p;
1916    struct mbuf *m, *last;
1917    struct mbuf **np;
1918    struct tbf *t = vifp->v_tbf;
1919
1920    VIF_LOCK_ASSERT();
1921
1922    p = priority(vifp, ip);
1923
1924    np = &t->tbf_q;
1925    last = NULL;
1926    while ((m = *np) != NULL) {
1927	if (p > priority(vifp, mtod(m, struct ip *))) {
1928	    *np = m->m_act;
1929	    /* If we're removing the last packet, fix the tail pointer */
1930	    if (m == t->tbf_t)
1931		t->tbf_t = last;
1932	    m_freem(m);
1933	    /* It's impossible for the queue to be empty, but check anyways. */
1934	    if (--t->tbf_q_len == 0)
1935		t->tbf_t = NULL;
1936	    mrtstat.mrts_drop_sel++;
1937	    return 1;
1938	}
1939	np = &m->m_act;
1940	last = m;
1941    }
1942    return 0;
1943}
1944
1945static void
1946tbf_send_packet(struct vif *vifp, struct mbuf *m)
1947{
1948    VIF_LOCK_ASSERT();
1949
1950    if ((vifp->v_flags & VIFF_TUNNEL) == 0) {
1951	struct ip_moptions imo;
1952	struct in_multi *imm[2];
1953	int error;
1954	static struct route ro; /* XXX check this */
1955
1956	imo.imo_multicast_ifp  = vifp->v_ifp;
1957	imo.imo_multicast_ttl  = mtod(m, struct ip *)->ip_ttl - 1;
1958	imo.imo_multicast_loop = 1;
1959	imo.imo_multicast_vif  = -1;
1960	imo.imo_num_memberships = 0;
1961	imo.imo_max_memberships = 2;
1962	imo.imo_membership  = &imm[0];
1963
1964	/*
1965	 * Re-entrancy should not be a problem here, because
1966	 * the packets that we send out and are looped back at us
1967	 * should get rejected because they appear to come from
1968	 * the loopback interface, thus preventing looping.
1969	 */
1970	error = ip_output(m, NULL, &ro, IP_FORWARDING, &imo, NULL);
1971
1972	if (mrtdebug & DEBUG_XMIT)
1973	    log(LOG_DEBUG, "phyint_send on vif %td err %d\n",
1974		vifp - viftable, error);
1975    }
1976}
1977
1978/* determine the current time and then
1979 * the elapsed time (between the last time and time now)
1980 * in milliseconds & update the no. of tokens in the bucket
1981 */
1982static void
1983tbf_update_tokens(struct vif *vifp)
1984{
1985    struct timeval tp;
1986    u_long tm;
1987    struct tbf *t = vifp->v_tbf;
1988
1989    VIF_LOCK_ASSERT();
1990
1991    GET_TIME(tp);
1992
1993    TV_DELTA(tp, t->tbf_last_pkt_t, tm);
1994
1995    /*
1996     * This formula is actually
1997     * "time in seconds" * "bytes/second".
1998     *
1999     * (tm / 1000000) * (v_rate_limit * 1000 * (1000/1024) / 8)
2000     *
2001     * The (1000/1024) was introduced in add_vif to optimize
2002     * this divide into a shift.
2003     */
2004    t->tbf_n_tok += tm * vifp->v_rate_limit / 1024 / 8;
2005    t->tbf_last_pkt_t = tp;
2006
2007    if (t->tbf_n_tok > MAX_BKT_SIZE)
2008	t->tbf_n_tok = MAX_BKT_SIZE;
2009}
2010
2011static int
2012priority(struct vif *vifp, struct ip *ip)
2013{
2014    int prio = 50; /* the lowest priority -- default case */
2015
2016    /* temporary hack; may add general packet classifier some day */
2017
2018    /*
2019     * The UDP port space is divided up into four priority ranges:
2020     * [0, 16384)     : unclassified - lowest priority
2021     * [16384, 32768) : audio - highest priority
2022     * [32768, 49152) : whiteboard - medium priority
2023     * [49152, 65536) : video - low priority
2024     *
2025     * Everything else gets lowest priority.
2026     */
2027    if (ip->ip_p == IPPROTO_UDP) {
2028	struct udphdr *udp = (struct udphdr *)(((char *)ip) + (ip->ip_hl << 2));
2029	switch (ntohs(udp->uh_dport) & 0xc000) {
2030	case 0x4000:
2031	    prio = 70;
2032	    break;
2033	case 0x8000:
2034	    prio = 60;
2035	    break;
2036	case 0xc000:
2037	    prio = 55;
2038	    break;
2039	}
2040    }
2041    return prio;
2042}
2043
2044/*
2045 * End of token bucket filter modifications
2046 */
2047
2048static int
2049X_ip_rsvp_vif(struct socket *so, struct sockopt *sopt)
2050{
2051    int error, vifi;
2052
2053    if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_RSVP)
2054	return EOPNOTSUPP;
2055
2056    error = sooptcopyin(sopt, &vifi, sizeof vifi, sizeof vifi);
2057    if (error)
2058	return error;
2059
2060    VIF_LOCK();
2061
2062    if (vifi < 0 || vifi >= numvifs) {	/* Error if vif is invalid */
2063	VIF_UNLOCK();
2064	return EADDRNOTAVAIL;
2065    }
2066
2067    if (sopt->sopt_name == IP_RSVP_VIF_ON) {
2068	/* Check if socket is available. */
2069	if (viftable[vifi].v_rsvpd != NULL) {
2070	    VIF_UNLOCK();
2071	    return EADDRINUSE;
2072	}
2073
2074	viftable[vifi].v_rsvpd = so;
2075	/* This may seem silly, but we need to be sure we don't over-increment
2076	 * the RSVP counter, in case something slips up.
2077	 */
2078	if (!viftable[vifi].v_rsvp_on) {
2079	    viftable[vifi].v_rsvp_on = 1;
2080	    rsvp_on++;
2081	}
2082    } else { /* must be VIF_OFF */
2083	/*
2084	 * XXX as an additional consistency check, one could make sure
2085	 * that viftable[vifi].v_rsvpd == so, otherwise passing so as
2086	 * first parameter is pretty useless.
2087	 */
2088	viftable[vifi].v_rsvpd = NULL;
2089	/*
2090	 * This may seem silly, but we need to be sure we don't over-decrement
2091	 * the RSVP counter, in case something slips up.
2092	 */
2093	if (viftable[vifi].v_rsvp_on) {
2094	    viftable[vifi].v_rsvp_on = 0;
2095	    rsvp_on--;
2096	}
2097    }
2098    VIF_UNLOCK();
2099    return 0;
2100}
2101
2102static void
2103X_ip_rsvp_force_done(struct socket *so)
2104{
2105    int vifi;
2106
2107    /* Don't bother if it is not the right type of socket. */
2108    if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_RSVP)
2109	return;
2110
2111    VIF_LOCK();
2112
2113    /* The socket may be attached to more than one vif...this
2114     * is perfectly legal.
2115     */
2116    for (vifi = 0; vifi < numvifs; vifi++) {
2117	if (viftable[vifi].v_rsvpd == so) {
2118	    viftable[vifi].v_rsvpd = NULL;
2119	    /* This may seem silly, but we need to be sure we don't
2120	     * over-decrement the RSVP counter, in case something slips up.
2121	     */
2122	    if (viftable[vifi].v_rsvp_on) {
2123		viftable[vifi].v_rsvp_on = 0;
2124		rsvp_on--;
2125	    }
2126	}
2127    }
2128
2129    VIF_UNLOCK();
2130}
2131
2132static void
2133X_rsvp_input(struct mbuf *m, int off)
2134{
2135    int vifi;
2136    struct ip *ip = mtod(m, struct ip *);
2137    struct sockaddr_in rsvp_src = { sizeof rsvp_src, AF_INET };
2138    struct ifnet *ifp;
2139
2140    if (rsvpdebug)
2141	printf("rsvp_input: rsvp_on %d\n",rsvp_on);
2142
2143    /* Can still get packets with rsvp_on = 0 if there is a local member
2144     * of the group to which the RSVP packet is addressed.  But in this
2145     * case we want to throw the packet away.
2146     */
2147    if (!rsvp_on) {
2148	m_freem(m);
2149	return;
2150    }
2151
2152    if (rsvpdebug)
2153	printf("rsvp_input: check vifs\n");
2154
2155#ifdef DIAGNOSTIC
2156    M_ASSERTPKTHDR(m);
2157#endif
2158
2159    ifp = m->m_pkthdr.rcvif;
2160
2161    VIF_LOCK();
2162    /* Find which vif the packet arrived on. */
2163    for (vifi = 0; vifi < numvifs; vifi++)
2164	if (viftable[vifi].v_ifp == ifp)
2165	    break;
2166
2167    if (vifi == numvifs || viftable[vifi].v_rsvpd == NULL) {
2168	/*
2169	 * Drop the lock here to avoid holding it across rip_input.
2170	 * This could make rsvpdebug printfs wrong.  If you care,
2171	 * record the state of stuff before dropping the lock.
2172	 */
2173	VIF_UNLOCK();
2174	/*
2175	 * If the old-style non-vif-associated socket is set,
2176	 * then use it.  Otherwise, drop packet since there
2177	 * is no specific socket for this vif.
2178	 */
2179	if (ip_rsvpd != NULL) {
2180	    if (rsvpdebug)
2181		printf("rsvp_input: Sending packet up old-style socket\n");
2182	    rip_input(m, off);  /* xxx */
2183	} else {
2184	    if (rsvpdebug && vifi == numvifs)
2185		printf("rsvp_input: Can't find vif for packet.\n");
2186	    else if (rsvpdebug && viftable[vifi].v_rsvpd == NULL)
2187		printf("rsvp_input: No socket defined for vif %d\n",vifi);
2188	    m_freem(m);
2189	}
2190	return;
2191    }
2192    rsvp_src.sin_addr = ip->ip_src;
2193
2194    if (rsvpdebug && m)
2195	printf("rsvp_input: m->m_len = %d, sbspace() = %ld\n",
2196	       m->m_len,sbspace(&(viftable[vifi].v_rsvpd->so_rcv)));
2197
2198    if (socket_send(viftable[vifi].v_rsvpd, m, &rsvp_src) < 0) {
2199	if (rsvpdebug)
2200	    printf("rsvp_input: Failed to append to socket\n");
2201    } else {
2202	if (rsvpdebug)
2203	    printf("rsvp_input: send packet up\n");
2204    }
2205    VIF_UNLOCK();
2206}
2207
2208/*
2209 * Code for bandwidth monitors
2210 */
2211
2212/*
2213 * Define common interface for timeval-related methods
2214 */
2215#define	BW_TIMEVALCMP(tvp, uvp, cmp) timevalcmp((tvp), (uvp), cmp)
2216#define	BW_TIMEVALDECR(vvp, uvp) timevalsub((vvp), (uvp))
2217#define	BW_TIMEVALADD(vvp, uvp) timevaladd((vvp), (uvp))
2218
2219static uint32_t
2220compute_bw_meter_flags(struct bw_upcall *req)
2221{
2222    uint32_t flags = 0;
2223
2224    if (req->bu_flags & BW_UPCALL_UNIT_PACKETS)
2225	flags |= BW_METER_UNIT_PACKETS;
2226    if (req->bu_flags & BW_UPCALL_UNIT_BYTES)
2227	flags |= BW_METER_UNIT_BYTES;
2228    if (req->bu_flags & BW_UPCALL_GEQ)
2229	flags |= BW_METER_GEQ;
2230    if (req->bu_flags & BW_UPCALL_LEQ)
2231	flags |= BW_METER_LEQ;
2232
2233    return flags;
2234}
2235
2236/*
2237 * Add a bw_meter entry
2238 */
2239static int
2240add_bw_upcall(struct bw_upcall *req)
2241{
2242    struct mfc *mfc;
2243    struct timeval delta = { BW_UPCALL_THRESHOLD_INTERVAL_MIN_SEC,
2244		BW_UPCALL_THRESHOLD_INTERVAL_MIN_USEC };
2245    struct timeval now;
2246    struct bw_meter *x;
2247    uint32_t flags;
2248
2249    if (!(mrt_api_config & MRT_MFC_BW_UPCALL))
2250	return EOPNOTSUPP;
2251
2252    /* Test if the flags are valid */
2253    if (!(req->bu_flags & (BW_UPCALL_UNIT_PACKETS | BW_UPCALL_UNIT_BYTES)))
2254	return EINVAL;
2255    if (!(req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ)))
2256	return EINVAL;
2257    if ((req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ))
2258	    == (BW_UPCALL_GEQ | BW_UPCALL_LEQ))
2259	return EINVAL;
2260
2261    /* Test if the threshold time interval is valid */
2262    if (BW_TIMEVALCMP(&req->bu_threshold.b_time, &delta, <))
2263	return EINVAL;
2264
2265    flags = compute_bw_meter_flags(req);
2266
2267    /*
2268     * Find if we have already same bw_meter entry
2269     */
2270    MFC_LOCK();
2271    mfc = mfc_find(req->bu_src.s_addr, req->bu_dst.s_addr);
2272    if (mfc == NULL) {
2273	MFC_UNLOCK();
2274	return EADDRNOTAVAIL;
2275    }
2276    for (x = mfc->mfc_bw_meter; x != NULL; x = x->bm_mfc_next) {
2277	if ((BW_TIMEVALCMP(&x->bm_threshold.b_time,
2278			   &req->bu_threshold.b_time, ==)) &&
2279	    (x->bm_threshold.b_packets == req->bu_threshold.b_packets) &&
2280	    (x->bm_threshold.b_bytes == req->bu_threshold.b_bytes) &&
2281	    (x->bm_flags & BW_METER_USER_FLAGS) == flags)  {
2282	    MFC_UNLOCK();
2283	    return 0;		/* XXX Already installed */
2284	}
2285    }
2286
2287    /* Allocate the new bw_meter entry */
2288    x = (struct bw_meter *)malloc(sizeof(*x), M_BWMETER, M_NOWAIT);
2289    if (x == NULL) {
2290	MFC_UNLOCK();
2291	return ENOBUFS;
2292    }
2293
2294    /* Set the new bw_meter entry */
2295    x->bm_threshold.b_time = req->bu_threshold.b_time;
2296    GET_TIME(now);
2297    x->bm_start_time = now;
2298    x->bm_threshold.b_packets = req->bu_threshold.b_packets;
2299    x->bm_threshold.b_bytes = req->bu_threshold.b_bytes;
2300    x->bm_measured.b_packets = 0;
2301    x->bm_measured.b_bytes = 0;
2302    x->bm_flags = flags;
2303    x->bm_time_next = NULL;
2304    x->bm_time_hash = BW_METER_BUCKETS;
2305
2306    /* Add the new bw_meter entry to the front of entries for this MFC */
2307    x->bm_mfc = mfc;
2308    x->bm_mfc_next = mfc->mfc_bw_meter;
2309    mfc->mfc_bw_meter = x;
2310    schedule_bw_meter(x, &now);
2311    MFC_UNLOCK();
2312
2313    return 0;
2314}
2315
2316static void
2317free_bw_list(struct bw_meter *list)
2318{
2319    while (list != NULL) {
2320	struct bw_meter *x = list;
2321
2322	list = list->bm_mfc_next;
2323	unschedule_bw_meter(x);
2324	free(x, M_BWMETER);
2325    }
2326}
2327
2328/*
2329 * Delete one or multiple bw_meter entries
2330 */
2331static int
2332del_bw_upcall(struct bw_upcall *req)
2333{
2334    struct mfc *mfc;
2335    struct bw_meter *x;
2336
2337    if (!(mrt_api_config & MRT_MFC_BW_UPCALL))
2338	return EOPNOTSUPP;
2339
2340    MFC_LOCK();
2341    /* Find the corresponding MFC entry */
2342    mfc = mfc_find(req->bu_src.s_addr, req->bu_dst.s_addr);
2343    if (mfc == NULL) {
2344	MFC_UNLOCK();
2345	return EADDRNOTAVAIL;
2346    } else if (req->bu_flags & BW_UPCALL_DELETE_ALL) {
2347	/*
2348	 * Delete all bw_meter entries for this mfc
2349	 */
2350	struct bw_meter *list;
2351
2352	list = mfc->mfc_bw_meter;
2353	mfc->mfc_bw_meter = NULL;
2354	free_bw_list(list);
2355	MFC_UNLOCK();
2356	return 0;
2357    } else {			/* Delete a single bw_meter entry */
2358	struct bw_meter *prev;
2359	uint32_t flags = 0;
2360
2361	flags = compute_bw_meter_flags(req);
2362
2363	/* Find the bw_meter entry to delete */
2364	for (prev = NULL, x = mfc->mfc_bw_meter; x != NULL;
2365	     prev = x, x = x->bm_mfc_next) {
2366	    if ((BW_TIMEVALCMP(&x->bm_threshold.b_time,
2367			       &req->bu_threshold.b_time, ==)) &&
2368		(x->bm_threshold.b_packets == req->bu_threshold.b_packets) &&
2369		(x->bm_threshold.b_bytes == req->bu_threshold.b_bytes) &&
2370		(x->bm_flags & BW_METER_USER_FLAGS) == flags)
2371		break;
2372	}
2373	if (x != NULL) { /* Delete entry from the list for this MFC */
2374	    if (prev != NULL)
2375		prev->bm_mfc_next = x->bm_mfc_next;	/* remove from middle*/
2376	    else
2377		x->bm_mfc->mfc_bw_meter = x->bm_mfc_next;/* new head of list */
2378
2379	    unschedule_bw_meter(x);
2380	    MFC_UNLOCK();
2381	    /* Free the bw_meter entry */
2382	    free(x, M_BWMETER);
2383	    return 0;
2384	} else {
2385	    MFC_UNLOCK();
2386	    return EINVAL;
2387	}
2388    }
2389    /* NOTREACHED */
2390}
2391
2392/*
2393 * Perform bandwidth measurement processing that may result in an upcall
2394 */
2395static void
2396bw_meter_receive_packet(struct bw_meter *x, int plen, struct timeval *nowp)
2397{
2398    struct timeval delta;
2399
2400    MFC_LOCK_ASSERT();
2401
2402    delta = *nowp;
2403    BW_TIMEVALDECR(&delta, &x->bm_start_time);
2404
2405    if (x->bm_flags & BW_METER_GEQ) {
2406	/*
2407	 * Processing for ">=" type of bw_meter entry
2408	 */
2409	if (BW_TIMEVALCMP(&delta, &x->bm_threshold.b_time, >)) {
2410	    /* Reset the bw_meter entry */
2411	    x->bm_start_time = *nowp;
2412	    x->bm_measured.b_packets = 0;
2413	    x->bm_measured.b_bytes = 0;
2414	    x->bm_flags &= ~BW_METER_UPCALL_DELIVERED;
2415	}
2416
2417	/* Record that a packet is received */
2418	x->bm_measured.b_packets++;
2419	x->bm_measured.b_bytes += plen;
2420
2421	/*
2422	 * Test if we should deliver an upcall
2423	 */
2424	if (!(x->bm_flags & BW_METER_UPCALL_DELIVERED)) {
2425	    if (((x->bm_flags & BW_METER_UNIT_PACKETS) &&
2426		 (x->bm_measured.b_packets >= x->bm_threshold.b_packets)) ||
2427		((x->bm_flags & BW_METER_UNIT_BYTES) &&
2428		 (x->bm_measured.b_bytes >= x->bm_threshold.b_bytes))) {
2429		/* Prepare an upcall for delivery */
2430		bw_meter_prepare_upcall(x, nowp);
2431		x->bm_flags |= BW_METER_UPCALL_DELIVERED;
2432	    }
2433	}
2434    } else if (x->bm_flags & BW_METER_LEQ) {
2435	/*
2436	 * Processing for "<=" type of bw_meter entry
2437	 */
2438	if (BW_TIMEVALCMP(&delta, &x->bm_threshold.b_time, >)) {
2439	    /*
2440	     * We are behind time with the multicast forwarding table
2441	     * scanning for "<=" type of bw_meter entries, so test now
2442	     * if we should deliver an upcall.
2443	     */
2444	    if (((x->bm_flags & BW_METER_UNIT_PACKETS) &&
2445		 (x->bm_measured.b_packets <= x->bm_threshold.b_packets)) ||
2446		((x->bm_flags & BW_METER_UNIT_BYTES) &&
2447		 (x->bm_measured.b_bytes <= x->bm_threshold.b_bytes))) {
2448		/* Prepare an upcall for delivery */
2449		bw_meter_prepare_upcall(x, nowp);
2450	    }
2451	    /* Reschedule the bw_meter entry */
2452	    unschedule_bw_meter(x);
2453	    schedule_bw_meter(x, nowp);
2454	}
2455
2456	/* Record that a packet is received */
2457	x->bm_measured.b_packets++;
2458	x->bm_measured.b_bytes += plen;
2459
2460	/*
2461	 * Test if we should restart the measuring interval
2462	 */
2463	if ((x->bm_flags & BW_METER_UNIT_PACKETS &&
2464	     x->bm_measured.b_packets <= x->bm_threshold.b_packets) ||
2465	    (x->bm_flags & BW_METER_UNIT_BYTES &&
2466	     x->bm_measured.b_bytes <= x->bm_threshold.b_bytes)) {
2467	    /* Don't restart the measuring interval */
2468	} else {
2469	    /* Do restart the measuring interval */
2470	    /*
2471	     * XXX: note that we don't unschedule and schedule, because this
2472	     * might be too much overhead per packet. Instead, when we process
2473	     * all entries for a given timer hash bin, we check whether it is
2474	     * really a timeout. If not, we reschedule at that time.
2475	     */
2476	    x->bm_start_time = *nowp;
2477	    x->bm_measured.b_packets = 0;
2478	    x->bm_measured.b_bytes = 0;
2479	    x->bm_flags &= ~BW_METER_UPCALL_DELIVERED;
2480	}
2481    }
2482}
2483
2484/*
2485 * Prepare a bandwidth-related upcall
2486 */
2487static void
2488bw_meter_prepare_upcall(struct bw_meter *x, struct timeval *nowp)
2489{
2490    struct timeval delta;
2491    struct bw_upcall *u;
2492
2493    MFC_LOCK_ASSERT();
2494
2495    /*
2496     * Compute the measured time interval
2497     */
2498    delta = *nowp;
2499    BW_TIMEVALDECR(&delta, &x->bm_start_time);
2500
2501    /*
2502     * If there are too many pending upcalls, deliver them now
2503     */
2504    if (bw_upcalls_n >= BW_UPCALLS_MAX)
2505	bw_upcalls_send();
2506
2507    /*
2508     * Set the bw_upcall entry
2509     */
2510    u = &bw_upcalls[bw_upcalls_n++];
2511    u->bu_src = x->bm_mfc->mfc_origin;
2512    u->bu_dst = x->bm_mfc->mfc_mcastgrp;
2513    u->bu_threshold.b_time = x->bm_threshold.b_time;
2514    u->bu_threshold.b_packets = x->bm_threshold.b_packets;
2515    u->bu_threshold.b_bytes = x->bm_threshold.b_bytes;
2516    u->bu_measured.b_time = delta;
2517    u->bu_measured.b_packets = x->bm_measured.b_packets;
2518    u->bu_measured.b_bytes = x->bm_measured.b_bytes;
2519    u->bu_flags = 0;
2520    if (x->bm_flags & BW_METER_UNIT_PACKETS)
2521	u->bu_flags |= BW_UPCALL_UNIT_PACKETS;
2522    if (x->bm_flags & BW_METER_UNIT_BYTES)
2523	u->bu_flags |= BW_UPCALL_UNIT_BYTES;
2524    if (x->bm_flags & BW_METER_GEQ)
2525	u->bu_flags |= BW_UPCALL_GEQ;
2526    if (x->bm_flags & BW_METER_LEQ)
2527	u->bu_flags |= BW_UPCALL_LEQ;
2528}
2529
2530/*
2531 * Send the pending bandwidth-related upcalls
2532 */
2533static void
2534bw_upcalls_send(void)
2535{
2536    struct mbuf *m;
2537    int len = bw_upcalls_n * sizeof(bw_upcalls[0]);
2538    struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
2539    static struct igmpmsg igmpmsg = { 0,		/* unused1 */
2540				      0,		/* unused2 */
2541				      IGMPMSG_BW_UPCALL,/* im_msgtype */
2542				      0,		/* im_mbz  */
2543				      0,		/* im_vif  */
2544				      0,		/* unused3 */
2545				      { 0 },		/* im_src  */
2546				      { 0 } };		/* im_dst  */
2547
2548    MFC_LOCK_ASSERT();
2549
2550    if (bw_upcalls_n == 0)
2551	return;			/* No pending upcalls */
2552
2553    bw_upcalls_n = 0;
2554
2555    /*
2556     * Allocate a new mbuf, initialize it with the header and
2557     * the payload for the pending calls.
2558     */
2559    MGETHDR(m, M_DONTWAIT, MT_DATA);
2560    if (m == NULL) {
2561	log(LOG_WARNING, "bw_upcalls_send: cannot allocate mbuf\n");
2562	return;
2563    }
2564
2565    m->m_len = m->m_pkthdr.len = 0;
2566    m_copyback(m, 0, sizeof(struct igmpmsg), (caddr_t)&igmpmsg);
2567    m_copyback(m, sizeof(struct igmpmsg), len, (caddr_t)&bw_upcalls[0]);
2568
2569    /*
2570     * Send the upcalls
2571     * XXX do we need to set the address in k_igmpsrc ?
2572     */
2573    mrtstat.mrts_upcalls++;
2574    if (socket_send(ip_mrouter, m, &k_igmpsrc) < 0) {
2575	log(LOG_WARNING, "bw_upcalls_send: ip_mrouter socket queue full\n");
2576	++mrtstat.mrts_upq_sockfull;
2577    }
2578}
2579
2580/*
2581 * Compute the timeout hash value for the bw_meter entries
2582 */
2583#define	BW_METER_TIMEHASH(bw_meter, hash)				\
2584    do {								\
2585	struct timeval next_timeval = (bw_meter)->bm_start_time;	\
2586									\
2587	BW_TIMEVALADD(&next_timeval, &(bw_meter)->bm_threshold.b_time); \
2588	(hash) = next_timeval.tv_sec;					\
2589	if (next_timeval.tv_usec)					\
2590	    (hash)++; /* XXX: make sure we don't timeout early */	\
2591	(hash) %= BW_METER_BUCKETS;					\
2592    } while (0)
2593
2594/*
2595 * Schedule a timer to process periodically bw_meter entry of type "<="
2596 * by linking the entry in the proper hash bucket.
2597 */
2598static void
2599schedule_bw_meter(struct bw_meter *x, struct timeval *nowp)
2600{
2601    int time_hash;
2602
2603    MFC_LOCK_ASSERT();
2604
2605    if (!(x->bm_flags & BW_METER_LEQ))
2606	return;		/* XXX: we schedule timers only for "<=" entries */
2607
2608    /*
2609     * Reset the bw_meter entry
2610     */
2611    x->bm_start_time = *nowp;
2612    x->bm_measured.b_packets = 0;
2613    x->bm_measured.b_bytes = 0;
2614    x->bm_flags &= ~BW_METER_UPCALL_DELIVERED;
2615
2616    /*
2617     * Compute the timeout hash value and insert the entry
2618     */
2619    BW_METER_TIMEHASH(x, time_hash);
2620    x->bm_time_next = bw_meter_timers[time_hash];
2621    bw_meter_timers[time_hash] = x;
2622    x->bm_time_hash = time_hash;
2623}
2624
2625/*
2626 * Unschedule the periodic timer that processes bw_meter entry of type "<="
2627 * by removing the entry from the proper hash bucket.
2628 */
2629static void
2630unschedule_bw_meter(struct bw_meter *x)
2631{
2632    int time_hash;
2633    struct bw_meter *prev, *tmp;
2634
2635    MFC_LOCK_ASSERT();
2636
2637    if (!(x->bm_flags & BW_METER_LEQ))
2638	return;		/* XXX: we schedule timers only for "<=" entries */
2639
2640    /*
2641     * Compute the timeout hash value and delete the entry
2642     */
2643    time_hash = x->bm_time_hash;
2644    if (time_hash >= BW_METER_BUCKETS)
2645	return;		/* Entry was not scheduled */
2646
2647    for (prev = NULL, tmp = bw_meter_timers[time_hash];
2648	     tmp != NULL; prev = tmp, tmp = tmp->bm_time_next)
2649	if (tmp == x)
2650	    break;
2651
2652    if (tmp == NULL)
2653	panic("unschedule_bw_meter: bw_meter entry not found");
2654
2655    if (prev != NULL)
2656	prev->bm_time_next = x->bm_time_next;
2657    else
2658	bw_meter_timers[time_hash] = x->bm_time_next;
2659
2660    x->bm_time_next = NULL;
2661    x->bm_time_hash = BW_METER_BUCKETS;
2662}
2663
2664
2665/*
2666 * Process all "<=" type of bw_meter that should be processed now,
2667 * and for each entry prepare an upcall if necessary. Each processed
2668 * entry is rescheduled again for the (periodic) processing.
2669 *
2670 * This is run periodically (once per second normally). On each round,
2671 * all the potentially matching entries are in the hash slot that we are
2672 * looking at.
2673 */
2674static void
2675bw_meter_process()
2676{
2677    static uint32_t last_tv_sec;	/* last time we processed this */
2678
2679    uint32_t loops;
2680    int i;
2681    struct timeval now, process_endtime;
2682
2683    GET_TIME(now);
2684    if (last_tv_sec == now.tv_sec)
2685	return;		/* nothing to do */
2686
2687    loops = now.tv_sec - last_tv_sec;
2688    last_tv_sec = now.tv_sec;
2689    if (loops > BW_METER_BUCKETS)
2690	loops = BW_METER_BUCKETS;
2691
2692    MFC_LOCK();
2693    /*
2694     * Process all bins of bw_meter entries from the one after the last
2695     * processed to the current one. On entry, i points to the last bucket
2696     * visited, so we need to increment i at the beginning of the loop.
2697     */
2698    for (i = (now.tv_sec - loops) % BW_METER_BUCKETS; loops > 0; loops--) {
2699	struct bw_meter *x, *tmp_list;
2700
2701	if (++i >= BW_METER_BUCKETS)
2702	    i = 0;
2703
2704	/* Disconnect the list of bw_meter entries from the bin */
2705	tmp_list = bw_meter_timers[i];
2706	bw_meter_timers[i] = NULL;
2707
2708	/* Process the list of bw_meter entries */
2709	while (tmp_list != NULL) {
2710	    x = tmp_list;
2711	    tmp_list = tmp_list->bm_time_next;
2712
2713	    /* Test if the time interval is over */
2714	    process_endtime = x->bm_start_time;
2715	    BW_TIMEVALADD(&process_endtime, &x->bm_threshold.b_time);
2716	    if (BW_TIMEVALCMP(&process_endtime, &now, >)) {
2717		/* Not yet: reschedule, but don't reset */
2718		int time_hash;
2719
2720		BW_METER_TIMEHASH(x, time_hash);
2721		if (time_hash == i && process_endtime.tv_sec == now.tv_sec) {
2722		    /*
2723		     * XXX: somehow the bin processing is a bit ahead of time.
2724		     * Put the entry in the next bin.
2725		     */
2726		    if (++time_hash >= BW_METER_BUCKETS)
2727			time_hash = 0;
2728		}
2729		x->bm_time_next = bw_meter_timers[time_hash];
2730		bw_meter_timers[time_hash] = x;
2731		x->bm_time_hash = time_hash;
2732
2733		continue;
2734	    }
2735
2736	    /*
2737	     * Test if we should deliver an upcall
2738	     */
2739	    if (((x->bm_flags & BW_METER_UNIT_PACKETS) &&
2740		 (x->bm_measured.b_packets <= x->bm_threshold.b_packets)) ||
2741		((x->bm_flags & BW_METER_UNIT_BYTES) &&
2742		 (x->bm_measured.b_bytes <= x->bm_threshold.b_bytes))) {
2743		/* Prepare an upcall for delivery */
2744		bw_meter_prepare_upcall(x, &now);
2745	    }
2746
2747	    /*
2748	     * Reschedule for next processing
2749	     */
2750	    schedule_bw_meter(x, &now);
2751	}
2752    }
2753
2754    /* Send all upcalls that are pending delivery */
2755    bw_upcalls_send();
2756
2757    MFC_UNLOCK();
2758}
2759
2760/*
2761 * A periodic function for sending all upcalls that are pending delivery
2762 */
2763static void
2764expire_bw_upcalls_send(void *unused)
2765{
2766    MFC_LOCK();
2767    bw_upcalls_send();
2768    MFC_UNLOCK();
2769
2770    callout_reset(&bw_upcalls_ch, BW_UPCALLS_PERIOD,
2771	expire_bw_upcalls_send, NULL);
2772}
2773
2774/*
2775 * A periodic function for periodic scanning of the multicast forwarding
2776 * table for processing all "<=" bw_meter entries.
2777 */
2778static void
2779expire_bw_meter_process(void *unused)
2780{
2781    if (mrt_api_config & MRT_MFC_BW_UPCALL)
2782	bw_meter_process();
2783
2784    callout_reset(&bw_meter_ch, BW_METER_PERIOD, expire_bw_meter_process, NULL);
2785}
2786
2787/*
2788 * End of bandwidth monitoring code
2789 */
2790
2791#ifdef PIM
2792/*
2793 * Send the packet up to the user daemon, or eventually do kernel encapsulation
2794 *
2795 */
2796static int
2797pim_register_send(struct ip *ip, struct vif *vifp,
2798	struct mbuf *m, struct mfc *rt)
2799{
2800    struct mbuf *mb_copy, *mm;
2801
2802    if (mrtdebug & DEBUG_PIM)
2803	log(LOG_DEBUG, "pim_register_send: ");
2804
2805    mb_copy = pim_register_prepare(ip, m);
2806    if (mb_copy == NULL)
2807	return ENOBUFS;
2808
2809    /*
2810     * Send all the fragments. Note that the mbuf for each fragment
2811     * is freed by the sending machinery.
2812     */
2813    for (mm = mb_copy; mm; mm = mb_copy) {
2814	mb_copy = mm->m_nextpkt;
2815	mm->m_nextpkt = 0;
2816	mm = m_pullup(mm, sizeof(struct ip));
2817	if (mm != NULL) {
2818	    ip = mtod(mm, struct ip *);
2819	    if ((mrt_api_config & MRT_MFC_RP) &&
2820		(rt->mfc_rp.s_addr != INADDR_ANY)) {
2821		pim_register_send_rp(ip, vifp, mm, rt);
2822	    } else {
2823		pim_register_send_upcall(ip, vifp, mm, rt);
2824	    }
2825	}
2826    }
2827
2828    return 0;
2829}
2830
2831/*
2832 * Return a copy of the data packet that is ready for PIM Register
2833 * encapsulation.
2834 * XXX: Note that in the returned copy the IP header is a valid one.
2835 */
2836static struct mbuf *
2837pim_register_prepare(struct ip *ip, struct mbuf *m)
2838{
2839    struct mbuf *mb_copy = NULL;
2840    int mtu;
2841
2842    /* Take care of delayed checksums */
2843    if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
2844	in_delayed_cksum(m);
2845	m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
2846    }
2847
2848    /*
2849     * Copy the old packet & pullup its IP header into the
2850     * new mbuf so we can modify it.
2851     */
2852    mb_copy = m_copypacket(m, M_DONTWAIT);
2853    if (mb_copy == NULL)
2854	return NULL;
2855    mb_copy = m_pullup(mb_copy, ip->ip_hl << 2);
2856    if (mb_copy == NULL)
2857	return NULL;
2858
2859    /* take care of the TTL */
2860    ip = mtod(mb_copy, struct ip *);
2861    --ip->ip_ttl;
2862
2863    /* Compute the MTU after the PIM Register encapsulation */
2864    mtu = 0xffff - sizeof(pim_encap_iphdr) - sizeof(pim_encap_pimhdr);
2865
2866    if (ip->ip_len <= mtu) {
2867	/* Turn the IP header into a valid one */
2868	ip->ip_len = htons(ip->ip_len);
2869	ip->ip_off = htons(ip->ip_off);
2870	ip->ip_sum = 0;
2871	ip->ip_sum = in_cksum(mb_copy, ip->ip_hl << 2);
2872    } else {
2873	/* Fragment the packet */
2874	if (ip_fragment(ip, &mb_copy, mtu, 0, CSUM_DELAY_IP) != 0) {
2875	    m_freem(mb_copy);
2876	    return NULL;
2877	}
2878    }
2879    return mb_copy;
2880}
2881
2882/*
2883 * Send an upcall with the data packet to the user-level process.
2884 */
2885static int
2886pim_register_send_upcall(struct ip *ip, struct vif *vifp,
2887	struct mbuf *mb_copy, struct mfc *rt)
2888{
2889    struct mbuf *mb_first;
2890    int len = ntohs(ip->ip_len);
2891    struct igmpmsg *im;
2892    struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
2893
2894    VIF_LOCK_ASSERT();
2895
2896    /*
2897     * Add a new mbuf with an upcall header
2898     */
2899    MGETHDR(mb_first, M_DONTWAIT, MT_DATA);
2900    if (mb_first == NULL) {
2901	m_freem(mb_copy);
2902	return ENOBUFS;
2903    }
2904    mb_first->m_data += max_linkhdr;
2905    mb_first->m_pkthdr.len = len + sizeof(struct igmpmsg);
2906    mb_first->m_len = sizeof(struct igmpmsg);
2907    mb_first->m_next = mb_copy;
2908
2909    /* Send message to routing daemon */
2910    im = mtod(mb_first, struct igmpmsg *);
2911    im->im_msgtype	= IGMPMSG_WHOLEPKT;
2912    im->im_mbz		= 0;
2913    im->im_vif		= vifp - viftable;
2914    im->im_src		= ip->ip_src;
2915    im->im_dst		= ip->ip_dst;
2916
2917    k_igmpsrc.sin_addr	= ip->ip_src;
2918
2919    mrtstat.mrts_upcalls++;
2920
2921    if (socket_send(ip_mrouter, mb_first, &k_igmpsrc) < 0) {
2922	if (mrtdebug & DEBUG_PIM)
2923	    log(LOG_WARNING,
2924		"mcast: pim_register_send_upcall: ip_mrouter socket queue full");
2925	++mrtstat.mrts_upq_sockfull;
2926	return ENOBUFS;
2927    }
2928
2929    /* Keep statistics */
2930    pimstat.pims_snd_registers_msgs++;
2931    pimstat.pims_snd_registers_bytes += len;
2932
2933    return 0;
2934}
2935
2936/*
2937 * Encapsulate the data packet in PIM Register message and send it to the RP.
2938 */
2939static int
2940pim_register_send_rp(struct ip *ip, struct vif *vifp,
2941	struct mbuf *mb_copy, struct mfc *rt)
2942{
2943    struct mbuf *mb_first;
2944    struct ip *ip_outer;
2945    struct pim_encap_pimhdr *pimhdr;
2946    int len = ntohs(ip->ip_len);
2947    vifi_t vifi = rt->mfc_parent;
2948
2949    VIF_LOCK_ASSERT();
2950
2951    if ((vifi >= numvifs) || (viftable[vifi].v_lcl_addr.s_addr == 0)) {
2952	m_freem(mb_copy);
2953	return EADDRNOTAVAIL;		/* The iif vif is invalid */
2954    }
2955
2956    /*
2957     * Add a new mbuf with the encapsulating header
2958     */
2959    MGETHDR(mb_first, M_DONTWAIT, MT_DATA);
2960    if (mb_first == NULL) {
2961	m_freem(mb_copy);
2962	return ENOBUFS;
2963    }
2964    mb_first->m_data += max_linkhdr;
2965    mb_first->m_len = sizeof(pim_encap_iphdr) + sizeof(pim_encap_pimhdr);
2966    mb_first->m_next = mb_copy;
2967
2968    mb_first->m_pkthdr.len = len + mb_first->m_len;
2969
2970    /*
2971     * Fill in the encapsulating IP and PIM header
2972     */
2973    ip_outer = mtod(mb_first, struct ip *);
2974    *ip_outer = pim_encap_iphdr;
2975    ip_outer->ip_id = ip_newid();
2976    ip_outer->ip_len = len + sizeof(pim_encap_iphdr) + sizeof(pim_encap_pimhdr);
2977    ip_outer->ip_src = viftable[vifi].v_lcl_addr;
2978    ip_outer->ip_dst = rt->mfc_rp;
2979    /*
2980     * Copy the inner header TOS to the outer header, and take care of the
2981     * IP_DF bit.
2982     */
2983    ip_outer->ip_tos = ip->ip_tos;
2984    if (ntohs(ip->ip_off) & IP_DF)
2985	ip_outer->ip_off |= IP_DF;
2986    pimhdr = (struct pim_encap_pimhdr *)((caddr_t)ip_outer
2987					 + sizeof(pim_encap_iphdr));
2988    *pimhdr = pim_encap_pimhdr;
2989    /* If the iif crosses a border, set the Border-bit */
2990    if (rt->mfc_flags[vifi] & MRT_MFC_FLAGS_BORDER_VIF & mrt_api_config)
2991	pimhdr->flags |= htonl(PIM_BORDER_REGISTER);
2992
2993    mb_first->m_data += sizeof(pim_encap_iphdr);
2994    pimhdr->pim.pim_cksum = in_cksum(mb_first, sizeof(pim_encap_pimhdr));
2995    mb_first->m_data -= sizeof(pim_encap_iphdr);
2996
2997    if (vifp->v_rate_limit == 0)
2998	tbf_send_packet(vifp, mb_first);
2999    else
3000	tbf_control(vifp, mb_first, ip, ip_outer->ip_len);
3001
3002    /* Keep statistics */
3003    pimstat.pims_snd_registers_msgs++;
3004    pimstat.pims_snd_registers_bytes += len;
3005
3006    return 0;
3007}
3008
3009/*
3010 * PIM-SMv2 and PIM-DM messages processing.
3011 * Receives and verifies the PIM control messages, and passes them
3012 * up to the listening socket, using rip_input().
3013 * The only message with special processing is the PIM_REGISTER message
3014 * (used by PIM-SM): the PIM header is stripped off, and the inner packet
3015 * is passed to if_simloop().
3016 */
3017void
3018pim_input(struct mbuf *m, int off)
3019{
3020    struct ip *ip = mtod(m, struct ip *);
3021    struct pim *pim;
3022    int minlen;
3023    int datalen = ip->ip_len;
3024    int ip_tos;
3025    int iphlen = off;
3026
3027    /* Keep statistics */
3028    pimstat.pims_rcv_total_msgs++;
3029    pimstat.pims_rcv_total_bytes += datalen;
3030
3031    /*
3032     * Validate lengths
3033     */
3034    if (datalen < PIM_MINLEN) {
3035	pimstat.pims_rcv_tooshort++;
3036	log(LOG_ERR, "pim_input: packet size too small %d from %lx\n",
3037	    datalen, (u_long)ip->ip_src.s_addr);
3038	m_freem(m);
3039	return;
3040    }
3041
3042    /*
3043     * If the packet is at least as big as a REGISTER, go agead
3044     * and grab the PIM REGISTER header size, to avoid another
3045     * possible m_pullup() later.
3046     *
3047     * PIM_MINLEN       == pimhdr + u_int32_t == 4 + 4 = 8
3048     * PIM_REG_MINLEN   == pimhdr + reghdr + encap_iphdr == 4 + 4 + 20 = 28
3049     */
3050    minlen = iphlen + (datalen >= PIM_REG_MINLEN ? PIM_REG_MINLEN : PIM_MINLEN);
3051    /*
3052     * Get the IP and PIM headers in contiguous memory, and
3053     * possibly the PIM REGISTER header.
3054     */
3055    if ((m->m_flags & M_EXT || m->m_len < minlen) &&
3056	(m = m_pullup(m, minlen)) == 0) {
3057	log(LOG_ERR, "pim_input: m_pullup failure\n");
3058	return;
3059    }
3060    /* m_pullup() may have given us a new mbuf so reset ip. */
3061    ip = mtod(m, struct ip *);
3062    ip_tos = ip->ip_tos;
3063
3064    /* adjust mbuf to point to the PIM header */
3065    m->m_data += iphlen;
3066    m->m_len  -= iphlen;
3067    pim = mtod(m, struct pim *);
3068
3069    /*
3070     * Validate checksum. If PIM REGISTER, exclude the data packet.
3071     *
3072     * XXX: some older PIMv2 implementations don't make this distinction,
3073     * so for compatibility reason perform the checksum over part of the
3074     * message, and if error, then over the whole message.
3075     */
3076    if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER && in_cksum(m, PIM_MINLEN) == 0) {
3077	/* do nothing, checksum okay */
3078    } else if (in_cksum(m, datalen)) {
3079	pimstat.pims_rcv_badsum++;
3080	if (mrtdebug & DEBUG_PIM)
3081	    log(LOG_DEBUG, "pim_input: invalid checksum");
3082	m_freem(m);
3083	return;
3084    }
3085
3086    /* PIM version check */
3087    if (PIM_VT_V(pim->pim_vt) < PIM_VERSION) {
3088	pimstat.pims_rcv_badversion++;
3089	log(LOG_ERR, "pim_input: incorrect version %d, expecting %d\n",
3090	    PIM_VT_V(pim->pim_vt), PIM_VERSION);
3091	m_freem(m);
3092	return;
3093    }
3094
3095    /* restore mbuf back to the outer IP */
3096    m->m_data -= iphlen;
3097    m->m_len  += iphlen;
3098
3099    if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER) {
3100	/*
3101	 * Since this is a REGISTER, we'll make a copy of the register
3102	 * headers ip + pim + u_int32 + encap_ip, to be passed up to the
3103	 * routing daemon.
3104	 */
3105	struct sockaddr_in dst = { sizeof(dst), AF_INET };
3106	struct mbuf *mcp;
3107	struct ip *encap_ip;
3108	u_int32_t *reghdr;
3109	struct ifnet *vifp;
3110
3111	VIF_LOCK();
3112	if ((reg_vif_num >= numvifs) || (reg_vif_num == VIFI_INVALID)) {
3113	    VIF_UNLOCK();
3114	    if (mrtdebug & DEBUG_PIM)
3115		log(LOG_DEBUG,
3116		    "pim_input: register vif not set: %d\n", reg_vif_num);
3117	    m_freem(m);
3118	    return;
3119	}
3120	/* XXX need refcnt? */
3121	vifp = viftable[reg_vif_num].v_ifp;
3122	VIF_UNLOCK();
3123
3124	/*
3125	 * Validate length
3126	 */
3127	if (datalen < PIM_REG_MINLEN) {
3128	    pimstat.pims_rcv_tooshort++;
3129	    pimstat.pims_rcv_badregisters++;
3130	    log(LOG_ERR,
3131		"pim_input: register packet size too small %d from %lx\n",
3132		datalen, (u_long)ip->ip_src.s_addr);
3133	    m_freem(m);
3134	    return;
3135	}
3136
3137	reghdr = (u_int32_t *)(pim + 1);
3138	encap_ip = (struct ip *)(reghdr + 1);
3139
3140	if (mrtdebug & DEBUG_PIM) {
3141	    log(LOG_DEBUG,
3142		"pim_input[register], encap_ip: %lx -> %lx, encap_ip len %d\n",
3143		(u_long)ntohl(encap_ip->ip_src.s_addr),
3144		(u_long)ntohl(encap_ip->ip_dst.s_addr),
3145		ntohs(encap_ip->ip_len));
3146	}
3147
3148	/* verify the version number of the inner packet */
3149	if (encap_ip->ip_v != IPVERSION) {
3150	    pimstat.pims_rcv_badregisters++;
3151	    if (mrtdebug & DEBUG_PIM) {
3152		log(LOG_DEBUG, "pim_input: invalid IP version (%d) "
3153		    "of the inner packet\n", encap_ip->ip_v);
3154	    }
3155	    m_freem(m);
3156	    return;
3157	}
3158
3159	/* verify the inner packet is destined to a mcast group */
3160	if (!IN_MULTICAST(ntohl(encap_ip->ip_dst.s_addr))) {
3161	    pimstat.pims_rcv_badregisters++;
3162	    if (mrtdebug & DEBUG_PIM)
3163		log(LOG_DEBUG,
3164		    "pim_input: inner packet of register is not "
3165		    "multicast %lx\n",
3166		    (u_long)ntohl(encap_ip->ip_dst.s_addr));
3167	    m_freem(m);
3168	    return;
3169	}
3170
3171	/* If a NULL_REGISTER, pass it to the daemon */
3172	if ((ntohl(*reghdr) & PIM_NULL_REGISTER))
3173	    goto pim_input_to_daemon;
3174
3175	/*
3176	 * Copy the TOS from the outer IP header to the inner IP header.
3177	 */
3178	if (encap_ip->ip_tos != ip_tos) {
3179	    /* Outer TOS -> inner TOS */
3180	    encap_ip->ip_tos = ip_tos;
3181	    /* Recompute the inner header checksum. Sigh... */
3182
3183	    /* adjust mbuf to point to the inner IP header */
3184	    m->m_data += (iphlen + PIM_MINLEN);
3185	    m->m_len  -= (iphlen + PIM_MINLEN);
3186
3187	    encap_ip->ip_sum = 0;
3188	    encap_ip->ip_sum = in_cksum(m, encap_ip->ip_hl << 2);
3189
3190	    /* restore mbuf to point back to the outer IP header */
3191	    m->m_data -= (iphlen + PIM_MINLEN);
3192	    m->m_len  += (iphlen + PIM_MINLEN);
3193	}
3194
3195	/*
3196	 * Decapsulate the inner IP packet and loopback to forward it
3197	 * as a normal multicast packet. Also, make a copy of the
3198	 *     outer_iphdr + pimhdr + reghdr + encap_iphdr
3199	 * to pass to the daemon later, so it can take the appropriate
3200	 * actions (e.g., send back PIM_REGISTER_STOP).
3201	 * XXX: here m->m_data points to the outer IP header.
3202	 */
3203	mcp = m_copy(m, 0, iphlen + PIM_REG_MINLEN);
3204	if (mcp == NULL) {
3205	    log(LOG_ERR,
3206		"pim_input: pim register: could not copy register head\n");
3207	    m_freem(m);
3208	    return;
3209	}
3210
3211	/* Keep statistics */
3212	/* XXX: registers_bytes include only the encap. mcast pkt */
3213	pimstat.pims_rcv_registers_msgs++;
3214	pimstat.pims_rcv_registers_bytes += ntohs(encap_ip->ip_len);
3215
3216	/*
3217	 * forward the inner ip packet; point m_data at the inner ip.
3218	 */
3219	m_adj(m, iphlen + PIM_MINLEN);
3220
3221	if (mrtdebug & DEBUG_PIM) {
3222	    log(LOG_DEBUG,
3223		"pim_input: forwarding decapsulated register: "
3224		"src %lx, dst %lx, vif %d\n",
3225		(u_long)ntohl(encap_ip->ip_src.s_addr),
3226		(u_long)ntohl(encap_ip->ip_dst.s_addr),
3227		reg_vif_num);
3228	}
3229	/* NB: vifp was collected above; can it change on us? */
3230	if_simloop(vifp, m, dst.sin_family, 0);
3231
3232	/* prepare the register head to send to the mrouting daemon */
3233	m = mcp;
3234    }
3235
3236pim_input_to_daemon:
3237    /*
3238     * Pass the PIM message up to the daemon; if it is a Register message,
3239     * pass the 'head' only up to the daemon. This includes the
3240     * outer IP header, PIM header, PIM-Register header and the
3241     * inner IP header.
3242     * XXX: the outer IP header pkt size of a Register is not adjust to
3243     * reflect the fact that the inner multicast data is truncated.
3244     */
3245    rip_input(m, iphlen);
3246
3247    return;
3248}
3249#endif /* PIM */
3250
3251static int
3252ip_mroute_modevent(module_t mod, int type, void *unused)
3253{
3254    switch (type) {
3255    case MOD_LOAD:
3256	mtx_init(&mrouter_mtx, "mrouter initialization", NULL, MTX_DEF);
3257	MFC_LOCK_INIT();
3258	VIF_LOCK_INIT();
3259	ip_mrouter_reset();
3260	ip_mcast_src = X_ip_mcast_src;
3261	ip_mforward = X_ip_mforward;
3262	ip_mrouter_done = X_ip_mrouter_done;
3263	ip_mrouter_get = X_ip_mrouter_get;
3264	ip_mrouter_set = X_ip_mrouter_set;
3265	ip_rsvp_force_done = X_ip_rsvp_force_done;
3266	ip_rsvp_vif = X_ip_rsvp_vif;
3267	legal_vif_num = X_legal_vif_num;
3268	mrt_ioctl = X_mrt_ioctl;
3269	rsvp_input_p = X_rsvp_input;
3270	break;
3271
3272    case MOD_UNLOAD:
3273	/*
3274	 * Typically module unload happens after the user-level
3275	 * process has shutdown the kernel services (the check
3276	 * below insures someone can't just yank the module out
3277	 * from under a running process).  But if the module is
3278	 * just loaded and then unloaded w/o starting up a user
3279	 * process we still need to cleanup.
3280	 */
3281	if (ip_mrouter)
3282	    return EINVAL;
3283
3284	X_ip_mrouter_done();
3285	ip_mcast_src = NULL;
3286	ip_mforward = NULL;
3287	ip_mrouter_done = NULL;
3288	ip_mrouter_get = NULL;
3289	ip_mrouter_set = NULL;
3290	ip_rsvp_force_done = NULL;
3291	ip_rsvp_vif = NULL;
3292	legal_vif_num = NULL;
3293	mrt_ioctl = NULL;
3294	rsvp_input_p = NULL;
3295	VIF_LOCK_DESTROY();
3296	MFC_LOCK_DESTROY();
3297	mtx_destroy(&mrouter_mtx);
3298	break;
3299    default:
3300	return EOPNOTSUPP;
3301    }
3302    return 0;
3303}
3304
3305static moduledata_t ip_mroutemod = {
3306    "ip_mroute",
3307    ip_mroute_modevent,
3308    0
3309};
3310DECLARE_MODULE(ip_mroute, ip_mroutemod, SI_SUB_PSEUDO, SI_ORDER_ANY);
3311