ip_mroute.c revision 164033
1/*-
2 * Copyright (c) 1989 Stephen Deering
3 * Copyright (c) 1992, 1993
4 *      The Regents of the University of California.  All rights reserved.
5 *
6 * This code is derived from software contributed to Berkeley by
7 * Stephen Deering of Stanford University.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in the
16 *    documentation and/or other materials provided with the distribution.
17 * 4. Neither the name of the University nor the names of its contributors
18 *    may be used to endorse or promote products derived from this software
19 *    without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 *
33 *      @(#)ip_mroute.c 8.2 (Berkeley) 11/15/93
34 */
35
36/*
37 * IP multicast forwarding procedures
38 *
39 * Written by David Waitzman, BBN Labs, August 1988.
40 * Modified by Steve Deering, Stanford, February 1989.
41 * Modified by Mark J. Steiglitz, Stanford, May, 1991
42 * Modified by Van Jacobson, LBL, January 1993
43 * Modified by Ajit Thyagarajan, PARC, August 1993
44 * Modified by Bill Fenner, PARC, April 1995
45 * Modified by Ahmed Helmy, SGI, June 1996
46 * Modified by George Edmond Eddy (Rusty), ISI, February 1998
47 * Modified by Pavlin Radoslavov, USC/ISI, May 1998, August 1999, October 2000
48 * Modified by Hitoshi Asaeda, WIDE, August 2000
49 * Modified by Pavlin Radoslavov, ICSI, October 2002
50 *
51 * MROUTING Revision: 3.5
52 * and PIM-SMv2 and PIM-DM support, advanced API support,
53 * bandwidth metering and signaling
54 *
55 * $FreeBSD: head/sys/netinet/ip_mroute.c 164033 2006-11-06 13:42:10Z rwatson $
56 */
57
58#include "opt_mac.h"
59#include "opt_mrouting.h"
60
61#ifdef PIM
62#define _PIM_VT 1
63#endif
64
65#include <sys/param.h>
66#include <sys/kernel.h>
67#include <sys/lock.h>
68#include <sys/malloc.h>
69#include <sys/mbuf.h>
70#include <sys/module.h>
71#include <sys/priv.h>
72#include <sys/protosw.h>
73#include <sys/signalvar.h>
74#include <sys/socket.h>
75#include <sys/socketvar.h>
76#include <sys/sockio.h>
77#include <sys/sx.h>
78#include <sys/sysctl.h>
79#include <sys/syslog.h>
80#include <sys/systm.h>
81#include <sys/time.h>
82#include <net/if.h>
83#include <net/netisr.h>
84#include <net/route.h>
85#include <netinet/in.h>
86#include <netinet/igmp.h>
87#include <netinet/in_systm.h>
88#include <netinet/in_var.h>
89#include <netinet/ip.h>
90#include <netinet/ip_encap.h>
91#include <netinet/ip_mroute.h>
92#include <netinet/ip_var.h>
93#include <netinet/ip_options.h>
94#ifdef PIM
95#include <netinet/pim.h>
96#include <netinet/pim_var.h>
97#endif
98#include <netinet/udp.h>
99#include <machine/in_cksum.h>
100
101#include <security/mac/mac_framework.h>
102
103/*
104 * Control debugging code for rsvp and multicast routing code.
105 * Can only set them with the debugger.
106 */
107static u_int    rsvpdebug;		/* non-zero enables debugging	*/
108
109static u_int	mrtdebug;		/* any set of the flags below	*/
110#define		DEBUG_MFC	0x02
111#define		DEBUG_FORWARD	0x04
112#define		DEBUG_EXPIRE	0x08
113#define		DEBUG_XMIT	0x10
114#define		DEBUG_PIM	0x20
115
116#define		VIFI_INVALID	((vifi_t) -1)
117
118#define M_HASCL(m)	((m)->m_flags & M_EXT)
119
120static MALLOC_DEFINE(M_MRTABLE, "mroutetbl", "multicast routing tables");
121
122/*
123 * Locking.  We use two locks: one for the virtual interface table and
124 * one for the forwarding table.  These locks may be nested in which case
125 * the VIF lock must always be taken first.  Note that each lock is used
126 * to cover not only the specific data structure but also related data
127 * structures.  It may be better to add more fine-grained locking later;
128 * it's not clear how performance-critical this code is.
129 *
130 * XXX: This module could particularly benefit from being cleaned
131 *      up to use the <sys/queue.h> macros.
132 *
133 */
134
135static struct mrtstat	mrtstat;
136SYSCTL_STRUCT(_net_inet_ip, OID_AUTO, mrtstat, CTLFLAG_RW,
137    &mrtstat, mrtstat,
138    "Multicast Routing Statistics (struct mrtstat, netinet/ip_mroute.h)");
139
140static struct mfc	*mfctable[MFCTBLSIZ];
141SYSCTL_OPAQUE(_net_inet_ip, OID_AUTO, mfctable, CTLFLAG_RD,
142    &mfctable, sizeof(mfctable), "S,*mfc[MFCTBLSIZ]",
143    "Multicast Forwarding Table (struct *mfc[MFCTBLSIZ], netinet/ip_mroute.h)");
144
145static struct mtx mfc_mtx;
146#define	MFC_LOCK()	mtx_lock(&mfc_mtx)
147#define	MFC_UNLOCK()	mtx_unlock(&mfc_mtx)
148#define	MFC_LOCK_ASSERT()	do {					\
149	mtx_assert(&mfc_mtx, MA_OWNED);					\
150	NET_ASSERT_GIANT();						\
151} while (0)
152#define	MFC_LOCK_INIT()	mtx_init(&mfc_mtx, "mroute mfc table", NULL, MTX_DEF)
153#define	MFC_LOCK_DESTROY()	mtx_destroy(&mfc_mtx)
154
155static struct vif	viftable[MAXVIFS];
156SYSCTL_OPAQUE(_net_inet_ip, OID_AUTO, viftable, CTLFLAG_RD,
157    &viftable, sizeof(viftable), "S,vif[MAXVIFS]",
158    "Multicast Virtual Interfaces (struct vif[MAXVIFS], netinet/ip_mroute.h)");
159
160static struct mtx vif_mtx;
161#define	VIF_LOCK()	mtx_lock(&vif_mtx)
162#define	VIF_UNLOCK()	mtx_unlock(&vif_mtx)
163#define	VIF_LOCK_ASSERT()	mtx_assert(&vif_mtx, MA_OWNED)
164#define	VIF_LOCK_INIT()	mtx_init(&vif_mtx, "mroute vif table", NULL, MTX_DEF)
165#define	VIF_LOCK_DESTROY()	mtx_destroy(&vif_mtx)
166
167static u_char		nexpire[MFCTBLSIZ];
168
169static eventhandler_tag if_detach_event_tag = NULL;
170
171static struct callout expire_upcalls_ch;
172
173#define		EXPIRE_TIMEOUT	(hz / 4)	/* 4x / second		*/
174#define		UPCALL_EXPIRE	6		/* number of timeouts	*/
175
176/*
177 * Define the token bucket filter structures
178 * tbftable -> each vif has one of these for storing info
179 */
180
181static struct tbf tbftable[MAXVIFS];
182#define		TBF_REPROCESS	(hz / 100)	/* 100x / second */
183
184/*
185 * 'Interfaces' associated with decapsulator (so we can tell
186 * packets that went through it from ones that get reflected
187 * by a broken gateway).  These interfaces are never linked into
188 * the system ifnet list & no routes point to them.  I.e., packets
189 * can't be sent this way.  They only exist as a placeholder for
190 * multicast source verification.
191 */
192static struct ifnet multicast_decap_if[MAXVIFS];
193
194#define ENCAP_TTL 64
195#define ENCAP_PROTO IPPROTO_IPIP	/* 4 */
196
197/* prototype IP hdr for encapsulated packets */
198static struct ip multicast_encap_iphdr = {
199#if BYTE_ORDER == LITTLE_ENDIAN
200	sizeof(struct ip) >> 2, IPVERSION,
201#else
202	IPVERSION, sizeof(struct ip) >> 2,
203#endif
204	0,				/* tos */
205	sizeof(struct ip),		/* total length */
206	0,				/* id */
207	0,				/* frag offset */
208	ENCAP_TTL, ENCAP_PROTO,
209	0,				/* checksum */
210};
211
212/*
213 * Bandwidth meter variables and constants
214 */
215static MALLOC_DEFINE(M_BWMETER, "bwmeter", "multicast upcall bw meters");
216/*
217 * Pending timeouts are stored in a hash table, the key being the
218 * expiration time. Periodically, the entries are analysed and processed.
219 */
220#define BW_METER_BUCKETS	1024
221static struct bw_meter *bw_meter_timers[BW_METER_BUCKETS];
222static struct callout bw_meter_ch;
223#define BW_METER_PERIOD (hz)		/* periodical handling of bw meters */
224
225/*
226 * Pending upcalls are stored in a vector which is flushed when
227 * full, or periodically
228 */
229static struct bw_upcall	bw_upcalls[BW_UPCALLS_MAX];
230static u_int	bw_upcalls_n; /* # of pending upcalls */
231static struct callout bw_upcalls_ch;
232#define BW_UPCALLS_PERIOD (hz)		/* periodical flush of bw upcalls */
233
234#ifdef PIM
235static struct pimstat pimstat;
236SYSCTL_STRUCT(_net_inet_pim, PIMCTL_STATS, stats, CTLFLAG_RD,
237    &pimstat, pimstat,
238    "PIM Statistics (struct pimstat, netinet/pim_var.h)");
239
240/*
241 * Note: the PIM Register encapsulation adds the following in front of a
242 * data packet:
243 *
244 * struct pim_encap_hdr {
245 *    struct ip ip;
246 *    struct pim_encap_pimhdr  pim;
247 * }
248 *
249 */
250
251struct pim_encap_pimhdr {
252	struct pim pim;
253	uint32_t   flags;
254};
255
256static struct ip pim_encap_iphdr = {
257#if BYTE_ORDER == LITTLE_ENDIAN
258	sizeof(struct ip) >> 2,
259	IPVERSION,
260#else
261	IPVERSION,
262	sizeof(struct ip) >> 2,
263#endif
264	0,			/* tos */
265	sizeof(struct ip),	/* total length */
266	0,			/* id */
267	0,			/* frag offset */
268	ENCAP_TTL,
269	IPPROTO_PIM,
270	0,			/* checksum */
271};
272
273static struct pim_encap_pimhdr pim_encap_pimhdr = {
274    {
275	PIM_MAKE_VT(PIM_VERSION, PIM_REGISTER), /* PIM vers and message type */
276	0,			/* reserved */
277	0,			/* checksum */
278    },
279    0				/* flags */
280};
281
282static struct ifnet multicast_register_if;
283static vifi_t reg_vif_num = VIFI_INVALID;
284#endif /* PIM */
285
286/*
287 * Private variables.
288 */
289static vifi_t	   numvifs;
290static const struct encaptab *encap_cookie;
291
292/*
293 * one-back cache used by mroute_encapcheck to locate a tunnel's vif
294 * given a datagram's src ip address.
295 */
296static u_long last_encap_src;
297static struct vif *last_encap_vif;
298
299/*
300 * Callout for queue processing.
301 */
302static struct callout tbf_reprocess_ch;
303
304static u_long	X_ip_mcast_src(int vifi);
305static int	X_ip_mforward(struct ip *ip, struct ifnet *ifp,
306			struct mbuf *m, struct ip_moptions *imo);
307static int	X_ip_mrouter_done(void);
308static int	X_ip_mrouter_get(struct socket *so, struct sockopt *m);
309static int	X_ip_mrouter_set(struct socket *so, struct sockopt *m);
310static int	X_legal_vif_num(int vif);
311static int	X_mrt_ioctl(int cmd, caddr_t data);
312
313static int get_sg_cnt(struct sioc_sg_req *);
314static int get_vif_cnt(struct sioc_vif_req *);
315static void if_detached_event(void *arg __unused, struct ifnet *);
316static int ip_mrouter_init(struct socket *, int);
317static int add_vif(struct vifctl *);
318static int del_vif_locked(vifi_t);
319static int del_vif(vifi_t);
320static int add_mfc(struct mfcctl2 *);
321static int del_mfc(struct mfcctl2 *);
322static int set_api_config(uint32_t *); /* chose API capabilities */
323static int socket_send(struct socket *, struct mbuf *, struct sockaddr_in *);
324static int set_assert(int);
325static void expire_upcalls(void *);
326static int ip_mdq(struct mbuf *, struct ifnet *, struct mfc *, vifi_t);
327static void phyint_send(struct ip *, struct vif *, struct mbuf *);
328static void encap_send(struct ip *, struct vif *, struct mbuf *);
329static void tbf_control(struct vif *, struct mbuf *, struct ip *, u_long);
330static void tbf_queue(struct vif *, struct mbuf *);
331static void tbf_process_q(struct vif *);
332static void tbf_reprocess_q(void *);
333static int tbf_dq_sel(struct vif *, struct ip *);
334static void tbf_send_packet(struct vif *, struct mbuf *);
335static void tbf_update_tokens(struct vif *);
336static int priority(struct vif *, struct ip *);
337
338/*
339 * Bandwidth monitoring
340 */
341static void free_bw_list(struct bw_meter *list);
342static int add_bw_upcall(struct bw_upcall *);
343static int del_bw_upcall(struct bw_upcall *);
344static void bw_meter_receive_packet(struct bw_meter *x, int plen,
345		struct timeval *nowp);
346static void bw_meter_prepare_upcall(struct bw_meter *x, struct timeval *nowp);
347static void bw_upcalls_send(void);
348static void schedule_bw_meter(struct bw_meter *x, struct timeval *nowp);
349static void unschedule_bw_meter(struct bw_meter *x);
350static void bw_meter_process(void);
351static void expire_bw_upcalls_send(void *);
352static void expire_bw_meter_process(void *);
353
354#ifdef PIM
355static int pim_register_send(struct ip *, struct vif *,
356		struct mbuf *, struct mfc *);
357static int pim_register_send_rp(struct ip *, struct vif *,
358		struct mbuf *, struct mfc *);
359static int pim_register_send_upcall(struct ip *, struct vif *,
360		struct mbuf *, struct mfc *);
361static struct mbuf *pim_register_prepare(struct ip *, struct mbuf *);
362#endif
363
364/*
365 * whether or not special PIM assert processing is enabled.
366 */
367static int pim_assert;
368/*
369 * Rate limit for assert notification messages, in usec
370 */
371#define ASSERT_MSG_TIME		3000000
372
373/*
374 * Kernel multicast routing API capabilities and setup.
375 * If more API capabilities are added to the kernel, they should be
376 * recorded in `mrt_api_support'.
377 */
378static const uint32_t mrt_api_support = (MRT_MFC_FLAGS_DISABLE_WRONGVIF |
379					 MRT_MFC_FLAGS_BORDER_VIF |
380					 MRT_MFC_RP |
381					 MRT_MFC_BW_UPCALL);
382static uint32_t mrt_api_config = 0;
383
384/*
385 * Hash function for a source, group entry
386 */
387#define MFCHASH(a, g) MFCHASHMOD(((a) >> 20) ^ ((a) >> 10) ^ (a) ^ \
388			((g) >> 20) ^ ((g) >> 10) ^ (g))
389
390/*
391 * Find a route for a given origin IP address and Multicast group address
392 * Type of service parameter to be added in the future!!!
393 * Statistics are updated by the caller if needed
394 * (mrtstat.mrts_mfc_lookups and mrtstat.mrts_mfc_misses)
395 */
396static struct mfc *
397mfc_find(in_addr_t o, in_addr_t g)
398{
399    struct mfc *rt;
400
401    MFC_LOCK_ASSERT();
402
403    for (rt = mfctable[MFCHASH(o,g)]; rt; rt = rt->mfc_next)
404	if ((rt->mfc_origin.s_addr == o) &&
405		(rt->mfc_mcastgrp.s_addr == g) && (rt->mfc_stall == NULL))
406	    break;
407    return rt;
408}
409
410/*
411 * Macros to compute elapsed time efficiently
412 * Borrowed from Van Jacobson's scheduling code
413 */
414#define TV_DELTA(a, b, delta) {					\
415	int xxs;						\
416	delta = (a).tv_usec - (b).tv_usec;			\
417	if ((xxs = (a).tv_sec - (b).tv_sec)) {			\
418		switch (xxs) {					\
419		case 2:						\
420		      delta += 1000000;				\
421		      /* FALLTHROUGH */				\
422		case 1:						\
423		      delta += 1000000;				\
424		      break;					\
425		default:					\
426		      delta += (1000000 * xxs);			\
427		}						\
428	}							\
429}
430
431#define TV_LT(a, b) (((a).tv_usec < (b).tv_usec && \
432	      (a).tv_sec <= (b).tv_sec) || (a).tv_sec < (b).tv_sec)
433
434/*
435 * Handle MRT setsockopt commands to modify the multicast routing tables.
436 */
437static int
438X_ip_mrouter_set(struct socket *so, struct sockopt *sopt)
439{
440    int	error, optval;
441    vifi_t	vifi;
442    struct	vifctl vifc;
443    struct	mfcctl2 mfc;
444    struct	bw_upcall bw_upcall;
445    uint32_t	i;
446
447    if (so != ip_mrouter && sopt->sopt_name != MRT_INIT)
448	return EPERM;
449
450    error = 0;
451    switch (sopt->sopt_name) {
452    case MRT_INIT:
453	error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval);
454	if (error)
455	    break;
456	error = ip_mrouter_init(so, optval);
457	break;
458
459    case MRT_DONE:
460	error = ip_mrouter_done();
461	break;
462
463    case MRT_ADD_VIF:
464	error = sooptcopyin(sopt, &vifc, sizeof vifc, sizeof vifc);
465	if (error)
466	    break;
467	error = add_vif(&vifc);
468	break;
469
470    case MRT_DEL_VIF:
471	error = sooptcopyin(sopt, &vifi, sizeof vifi, sizeof vifi);
472	if (error)
473	    break;
474	error = del_vif(vifi);
475	break;
476
477    case MRT_ADD_MFC:
478    case MRT_DEL_MFC:
479	/*
480	 * select data size depending on API version.
481	 */
482	if (sopt->sopt_name == MRT_ADD_MFC &&
483		mrt_api_config & MRT_API_FLAGS_ALL) {
484	    error = sooptcopyin(sopt, &mfc, sizeof(struct mfcctl2),
485				sizeof(struct mfcctl2));
486	} else {
487	    error = sooptcopyin(sopt, &mfc, sizeof(struct mfcctl),
488				sizeof(struct mfcctl));
489	    bzero((caddr_t)&mfc + sizeof(struct mfcctl),
490			sizeof(mfc) - sizeof(struct mfcctl));
491	}
492	if (error)
493	    break;
494	if (sopt->sopt_name == MRT_ADD_MFC)
495	    error = add_mfc(&mfc);
496	else
497	    error = del_mfc(&mfc);
498	break;
499
500    case MRT_ASSERT:
501	error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval);
502	if (error)
503	    break;
504	set_assert(optval);
505	break;
506
507    case MRT_API_CONFIG:
508	error = sooptcopyin(sopt, &i, sizeof i, sizeof i);
509	if (!error)
510	    error = set_api_config(&i);
511	if (!error)
512	    error = sooptcopyout(sopt, &i, sizeof i);
513	break;
514
515    case MRT_ADD_BW_UPCALL:
516    case MRT_DEL_BW_UPCALL:
517	error = sooptcopyin(sopt, &bw_upcall, sizeof bw_upcall,
518				sizeof bw_upcall);
519	if (error)
520	    break;
521	if (sopt->sopt_name == MRT_ADD_BW_UPCALL)
522	    error = add_bw_upcall(&bw_upcall);
523	else
524	    error = del_bw_upcall(&bw_upcall);
525	break;
526
527    default:
528	error = EOPNOTSUPP;
529	break;
530    }
531    return error;
532}
533
534/*
535 * Handle MRT getsockopt commands
536 */
537static int
538X_ip_mrouter_get(struct socket *so, struct sockopt *sopt)
539{
540    int error;
541    static int version = 0x0305; /* !!! why is this here? XXX */
542
543    switch (sopt->sopt_name) {
544    case MRT_VERSION:
545	error = sooptcopyout(sopt, &version, sizeof version);
546	break;
547
548    case MRT_ASSERT:
549	error = sooptcopyout(sopt, &pim_assert, sizeof pim_assert);
550	break;
551
552    case MRT_API_SUPPORT:
553	error = sooptcopyout(sopt, &mrt_api_support, sizeof mrt_api_support);
554	break;
555
556    case MRT_API_CONFIG:
557	error = sooptcopyout(sopt, &mrt_api_config, sizeof mrt_api_config);
558	break;
559
560    default:
561	error = EOPNOTSUPP;
562	break;
563    }
564    return error;
565}
566
567/*
568 * Handle ioctl commands to obtain information from the cache
569 */
570static int
571X_mrt_ioctl(int cmd, caddr_t data)
572{
573    int error = 0;
574
575    /*
576     * Currently the only function calling this ioctl routine is rtioctl().
577     * Typically, only root can create the raw socket in order to execute
578     * this ioctl method, however the request might be coming from a prison
579     */
580    error = priv_check(curthread, PRIV_NETINET_MROUTE);
581    if (error)
582	return (error);
583    switch (cmd) {
584    case (SIOCGETVIFCNT):
585	error = get_vif_cnt((struct sioc_vif_req *)data);
586	break;
587
588    case (SIOCGETSGCNT):
589	error = get_sg_cnt((struct sioc_sg_req *)data);
590	break;
591
592    default:
593	error = EINVAL;
594	break;
595    }
596    return error;
597}
598
599/*
600 * returns the packet, byte, rpf-failure count for the source group provided
601 */
602static int
603get_sg_cnt(struct sioc_sg_req *req)
604{
605    struct mfc *rt;
606
607    MFC_LOCK();
608    rt = mfc_find(req->src.s_addr, req->grp.s_addr);
609    if (rt == NULL) {
610	MFC_UNLOCK();
611	req->pktcnt = req->bytecnt = req->wrong_if = 0xffffffff;
612	return EADDRNOTAVAIL;
613    }
614    req->pktcnt = rt->mfc_pkt_cnt;
615    req->bytecnt = rt->mfc_byte_cnt;
616    req->wrong_if = rt->mfc_wrong_if;
617    MFC_UNLOCK();
618    return 0;
619}
620
621/*
622 * returns the input and output packet and byte counts on the vif provided
623 */
624static int
625get_vif_cnt(struct sioc_vif_req *req)
626{
627    vifi_t vifi = req->vifi;
628
629    VIF_LOCK();
630    if (vifi >= numvifs) {
631	VIF_UNLOCK();
632	return EINVAL;
633    }
634
635    req->icount = viftable[vifi].v_pkt_in;
636    req->ocount = viftable[vifi].v_pkt_out;
637    req->ibytes = viftable[vifi].v_bytes_in;
638    req->obytes = viftable[vifi].v_bytes_out;
639    VIF_UNLOCK();
640
641    return 0;
642}
643
644static void
645ip_mrouter_reset(void)
646{
647    bzero((caddr_t)mfctable, sizeof(mfctable));
648    bzero((caddr_t)nexpire, sizeof(nexpire));
649
650    pim_assert = 0;
651    mrt_api_config = 0;
652
653    callout_init(&expire_upcalls_ch, NET_CALLOUT_MPSAFE);
654
655    bw_upcalls_n = 0;
656    bzero((caddr_t)bw_meter_timers, sizeof(bw_meter_timers));
657    callout_init(&bw_upcalls_ch, NET_CALLOUT_MPSAFE);
658    callout_init(&bw_meter_ch, NET_CALLOUT_MPSAFE);
659
660    callout_init(&tbf_reprocess_ch, NET_CALLOUT_MPSAFE);
661}
662
663static struct mtx mrouter_mtx;		/* used to synch init/done work */
664
665static void
666if_detached_event(void *arg __unused, struct ifnet *ifp)
667{
668    vifi_t vifi;
669    int i;
670    struct mfc *mfc;
671    struct mfc *nmfc;
672    struct mfc **ppmfc;	/* Pointer to previous node's next-pointer */
673    struct rtdetq *pq;
674    struct rtdetq *npq;
675
676    mtx_lock(&mrouter_mtx);
677    if (ip_mrouter == NULL) {
678	mtx_unlock(&mrouter_mtx);
679    }
680
681    /*
682     * Tear down multicast forwarder state associated with this ifnet.
683     * 1. Walk the vif list, matching vifs against this ifnet.
684     * 2. Walk the multicast forwarding cache (mfc) looking for
685     *    inner matches with this vif's index.
686     * 3. Free any pending mbufs for this mfc.
687     * 4. Free the associated mfc entry and state associated with this vif.
688     *    Be very careful about unlinking from a singly-linked list whose
689     *    "head node" is a pointer in a simple array.
690     * 5. Free vif state. This should disable ALLMULTI on the interface.
691     */
692    VIF_LOCK();
693    MFC_LOCK();
694    for (vifi = 0; vifi < numvifs; vifi++) {
695	if (viftable[vifi].v_ifp != ifp)
696		continue;
697	for (i = 0; i < MFCTBLSIZ; i++) {
698	    ppmfc = &mfctable[i];
699	    for (mfc = mfctable[i]; mfc != NULL; ) {
700		nmfc = mfc->mfc_next;
701		if (mfc->mfc_parent == vifi) {
702		    for (pq = mfc->mfc_stall; pq != NULL; ) {
703			npq = pq->next;
704			m_freem(pq->m);
705			free(pq, M_MRTABLE);
706			pq = npq;
707		    }
708		    free_bw_list(mfc->mfc_bw_meter);
709		    free(mfc, M_MRTABLE);
710		    *ppmfc = nmfc;
711		} else {
712		    ppmfc = &mfc->mfc_next;
713		}
714		mfc = nmfc;
715	    }
716	}
717	del_vif_locked(vifi);
718    }
719    MFC_UNLOCK();
720    VIF_UNLOCK();
721
722    mtx_unlock(&mrouter_mtx);
723}
724
725/*
726 * Enable multicast routing
727 */
728static int
729ip_mrouter_init(struct socket *so, int version)
730{
731    if (mrtdebug)
732	log(LOG_DEBUG, "ip_mrouter_init: so_type = %d, pr_protocol = %d\n",
733	    so->so_type, so->so_proto->pr_protocol);
734
735    if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_IGMP)
736	return EOPNOTSUPP;
737
738    if (version != 1)
739	return ENOPROTOOPT;
740
741    mtx_lock(&mrouter_mtx);
742
743    if (ip_mrouter != NULL) {
744	mtx_unlock(&mrouter_mtx);
745	return EADDRINUSE;
746    }
747
748    if_detach_event_tag = EVENTHANDLER_REGISTER(ifnet_departure_event,
749        if_detached_event, NULL, EVENTHANDLER_PRI_ANY);
750    if (if_detach_event_tag == NULL)
751	return (ENOMEM);
752
753    callout_reset(&expire_upcalls_ch, EXPIRE_TIMEOUT, expire_upcalls, NULL);
754
755    callout_reset(&bw_upcalls_ch, BW_UPCALLS_PERIOD,
756	expire_bw_upcalls_send, NULL);
757    callout_reset(&bw_meter_ch, BW_METER_PERIOD, expire_bw_meter_process, NULL);
758
759    ip_mrouter = so;
760
761    mtx_unlock(&mrouter_mtx);
762
763    if (mrtdebug)
764	log(LOG_DEBUG, "ip_mrouter_init\n");
765
766    return 0;
767}
768
769/*
770 * Disable multicast routing
771 */
772static int
773X_ip_mrouter_done(void)
774{
775    vifi_t vifi;
776    int i;
777    struct ifnet *ifp;
778    struct ifreq ifr;
779    struct mfc *rt;
780    struct rtdetq *rte;
781
782    mtx_lock(&mrouter_mtx);
783
784    if (ip_mrouter == NULL) {
785	mtx_unlock(&mrouter_mtx);
786	return EINVAL;
787    }
788
789    /*
790     * Detach/disable hooks to the reset of the system.
791     */
792    ip_mrouter = NULL;
793    mrt_api_config = 0;
794
795    VIF_LOCK();
796    if (encap_cookie) {
797	const struct encaptab *c = encap_cookie;
798	encap_cookie = NULL;
799	encap_detach(c);
800    }
801    VIF_UNLOCK();
802
803    callout_stop(&tbf_reprocess_ch);
804
805    VIF_LOCK();
806    /*
807     * For each phyint in use, disable promiscuous reception of all IP
808     * multicasts.
809     */
810    for (vifi = 0; vifi < numvifs; vifi++) {
811	if (viftable[vifi].v_lcl_addr.s_addr != 0 &&
812		!(viftable[vifi].v_flags & (VIFF_TUNNEL | VIFF_REGISTER))) {
813	    struct sockaddr_in *so = (struct sockaddr_in *)&(ifr.ifr_addr);
814
815	    so->sin_len = sizeof(struct sockaddr_in);
816	    so->sin_family = AF_INET;
817	    so->sin_addr.s_addr = INADDR_ANY;
818	    ifp = viftable[vifi].v_ifp;
819	    if_allmulti(ifp, 0);
820	}
821    }
822    bzero((caddr_t)tbftable, sizeof(tbftable));
823    bzero((caddr_t)viftable, sizeof(viftable));
824    numvifs = 0;
825    pim_assert = 0;
826    VIF_UNLOCK();
827    EVENTHANDLER_DEREGISTER(ifnet_departure_event, if_detach_event_tag);
828
829    /*
830     * Free all multicast forwarding cache entries.
831     */
832    callout_stop(&expire_upcalls_ch);
833    callout_stop(&bw_upcalls_ch);
834    callout_stop(&bw_meter_ch);
835
836    MFC_LOCK();
837    for (i = 0; i < MFCTBLSIZ; i++) {
838	for (rt = mfctable[i]; rt != NULL; ) {
839	    struct mfc *nr = rt->mfc_next;
840
841	    for (rte = rt->mfc_stall; rte != NULL; ) {
842		struct rtdetq *n = rte->next;
843
844		m_freem(rte->m);
845		free(rte, M_MRTABLE);
846		rte = n;
847	    }
848	    free_bw_list(rt->mfc_bw_meter);
849	    free(rt, M_MRTABLE);
850	    rt = nr;
851	}
852    }
853    bzero((caddr_t)mfctable, sizeof(mfctable));
854    bzero((caddr_t)nexpire, sizeof(nexpire));
855    bw_upcalls_n = 0;
856    bzero(bw_meter_timers, sizeof(bw_meter_timers));
857    MFC_UNLOCK();
858
859    /*
860     * Reset de-encapsulation cache
861     */
862    last_encap_src = INADDR_ANY;
863    last_encap_vif = NULL;
864#ifdef PIM
865    reg_vif_num = VIFI_INVALID;
866#endif
867
868    mtx_unlock(&mrouter_mtx);
869
870    if (mrtdebug)
871	log(LOG_DEBUG, "ip_mrouter_done\n");
872
873    return 0;
874}
875
876/*
877 * Set PIM assert processing global
878 */
879static int
880set_assert(int i)
881{
882    if ((i != 1) && (i != 0))
883	return EINVAL;
884
885    pim_assert = i;
886
887    return 0;
888}
889
890/*
891 * Configure API capabilities
892 */
893int
894set_api_config(uint32_t *apival)
895{
896    int i;
897
898    /*
899     * We can set the API capabilities only if it is the first operation
900     * after MRT_INIT. I.e.:
901     *  - there are no vifs installed
902     *  - pim_assert is not enabled
903     *  - the MFC table is empty
904     */
905    if (numvifs > 0) {
906	*apival = 0;
907	return EPERM;
908    }
909    if (pim_assert) {
910	*apival = 0;
911	return EPERM;
912    }
913    for (i = 0; i < MFCTBLSIZ; i++) {
914	if (mfctable[i] != NULL) {
915	    *apival = 0;
916	    return EPERM;
917	}
918    }
919
920    mrt_api_config = *apival & mrt_api_support;
921    *apival = mrt_api_config;
922
923    return 0;
924}
925
926/*
927 * Decide if a packet is from a tunnelled peer.
928 * Return 0 if not, 64 if so.  XXX yuck.. 64 ???
929 */
930static int
931mroute_encapcheck(const struct mbuf *m, int off, int proto, void *arg)
932{
933    struct ip *ip = mtod(m, struct ip *);
934    int hlen = ip->ip_hl << 2;
935
936    /*
937     * don't claim the packet if it's not to a multicast destination or if
938     * we don't have an encapsulating tunnel with the source.
939     * Note:  This code assumes that the remote site IP address
940     * uniquely identifies the tunnel (i.e., that this site has
941     * at most one tunnel with the remote site).
942     */
943    if (!IN_MULTICAST(ntohl(((struct ip *)((char *)ip+hlen))->ip_dst.s_addr)))
944	return 0;
945    if (ip->ip_src.s_addr != last_encap_src) {
946	struct vif *vifp = viftable;
947	struct vif *vife = vifp + numvifs;
948
949	last_encap_src = ip->ip_src.s_addr;
950	last_encap_vif = NULL;
951	for ( ; vifp < vife; ++vifp)
952	    if (vifp->v_rmt_addr.s_addr == ip->ip_src.s_addr) {
953		if ((vifp->v_flags & (VIFF_TUNNEL|VIFF_SRCRT)) == VIFF_TUNNEL)
954		    last_encap_vif = vifp;
955		break;
956	    }
957    }
958    if (last_encap_vif == NULL) {
959	last_encap_src = INADDR_ANY;
960	return 0;
961    }
962    return 64;
963}
964
965/*
966 * De-encapsulate a packet and feed it back through ip input (this
967 * routine is called whenever IP gets a packet that mroute_encap_func()
968 * claimed).
969 */
970static void
971mroute_encap_input(struct mbuf *m, int off)
972{
973    struct ip *ip = mtod(m, struct ip *);
974    int hlen = ip->ip_hl << 2;
975
976    if (hlen > sizeof(struct ip))
977	ip_stripoptions(m, (struct mbuf *) 0);
978    m->m_data += sizeof(struct ip);
979    m->m_len -= sizeof(struct ip);
980    m->m_pkthdr.len -= sizeof(struct ip);
981
982    m->m_pkthdr.rcvif = last_encap_vif->v_ifp;
983
984    netisr_queue(NETISR_IP, m);		/* mbuf is free'd on failure. */
985    /*
986     * normally we would need a "schednetisr(NETISR_IP)"
987     * here but we were called by ip_input and it is going
988     * to loop back & try to dequeue the packet we just
989     * queued as soon as we return so we avoid the
990     * unnecessary software interrrupt.
991     *
992     * XXX
993     * This no longer holds - we may have direct-dispatched the packet,
994     * or there may be a queue processing limit.
995     */
996}
997
998extern struct domain inetdomain;
999static struct protosw mroute_encap_protosw =
1000{
1001	.pr_type =		SOCK_RAW,
1002	.pr_domain =		&inetdomain,
1003	.pr_protocol =		IPPROTO_IPV4,
1004	.pr_flags =		PR_ATOMIC|PR_ADDR,
1005	.pr_input =		mroute_encap_input,
1006	.pr_ctloutput =		rip_ctloutput,
1007	.pr_usrreqs =		&rip_usrreqs
1008};
1009
1010/*
1011 * Add a vif to the vif table
1012 */
1013static int
1014add_vif(struct vifctl *vifcp)
1015{
1016    struct vif *vifp = viftable + vifcp->vifc_vifi;
1017    struct sockaddr_in sin = {sizeof sin, AF_INET};
1018    struct ifaddr *ifa;
1019    struct ifnet *ifp;
1020    int error;
1021    struct tbf *v_tbf = tbftable + vifcp->vifc_vifi;
1022
1023    VIF_LOCK();
1024    if (vifcp->vifc_vifi >= MAXVIFS) {
1025	VIF_UNLOCK();
1026	return EINVAL;
1027    }
1028    if (vifp->v_lcl_addr.s_addr != INADDR_ANY) {
1029	VIF_UNLOCK();
1030	return EADDRINUSE;
1031    }
1032    if (vifcp->vifc_lcl_addr.s_addr == INADDR_ANY) {
1033	VIF_UNLOCK();
1034	return EADDRNOTAVAIL;
1035    }
1036
1037    /* Find the interface with an address in AF_INET family */
1038#ifdef PIM
1039    if (vifcp->vifc_flags & VIFF_REGISTER) {
1040	/*
1041	 * XXX: Because VIFF_REGISTER does not really need a valid
1042	 * local interface (e.g. it could be 127.0.0.2), we don't
1043	 * check its address.
1044	 */
1045	ifp = NULL;
1046    } else
1047#endif
1048    {
1049	sin.sin_addr = vifcp->vifc_lcl_addr;
1050	ifa = ifa_ifwithaddr((struct sockaddr *)&sin);
1051	if (ifa == NULL) {
1052	    VIF_UNLOCK();
1053	    return EADDRNOTAVAIL;
1054	}
1055	ifp = ifa->ifa_ifp;
1056    }
1057
1058    if (vifcp->vifc_flags & VIFF_TUNNEL) {
1059	if ((vifcp->vifc_flags & VIFF_SRCRT) == 0) {
1060	    /*
1061	     * An encapsulating tunnel is wanted.  Tell
1062	     * mroute_encap_input() to start paying attention
1063	     * to encapsulated packets.
1064	     */
1065	    if (encap_cookie == NULL) {
1066		int i;
1067
1068		encap_cookie = encap_attach_func(AF_INET, IPPROTO_IPV4,
1069				mroute_encapcheck,
1070				(struct protosw *)&mroute_encap_protosw, NULL);
1071
1072		if (encap_cookie == NULL) {
1073		    printf("ip_mroute: unable to attach encap\n");
1074		    VIF_UNLOCK();
1075		    return EIO;	/* XXX */
1076		}
1077		for (i = 0; i < MAXVIFS; ++i) {
1078		    if_initname(&multicast_decap_if[i], "mdecap", i);
1079		}
1080	    }
1081	    /*
1082	     * Set interface to fake encapsulator interface
1083	     */
1084	    ifp = &multicast_decap_if[vifcp->vifc_vifi];
1085	    /*
1086	     * Prepare cached route entry
1087	     */
1088	    bzero(&vifp->v_route, sizeof(vifp->v_route));
1089	} else {
1090	    log(LOG_ERR, "source routed tunnels not supported\n");
1091	    VIF_UNLOCK();
1092	    return EOPNOTSUPP;
1093	}
1094#ifdef PIM
1095    } else if (vifcp->vifc_flags & VIFF_REGISTER) {
1096	ifp = &multicast_register_if;
1097	if (mrtdebug)
1098	    log(LOG_DEBUG, "Adding a register vif, ifp: %p\n",
1099		    (void *)&multicast_register_if);
1100	if (reg_vif_num == VIFI_INVALID) {
1101	    if_initname(&multicast_register_if, "register_vif", 0);
1102	    multicast_register_if.if_flags = IFF_LOOPBACK;
1103	    bzero(&vifp->v_route, sizeof(vifp->v_route));
1104	    reg_vif_num = vifcp->vifc_vifi;
1105	}
1106#endif
1107    } else {		/* Make sure the interface supports multicast */
1108	if ((ifp->if_flags & IFF_MULTICAST) == 0) {
1109	    VIF_UNLOCK();
1110	    return EOPNOTSUPP;
1111	}
1112
1113	/* Enable promiscuous reception of all IP multicasts from the if */
1114	error = if_allmulti(ifp, 1);
1115	if (error) {
1116	    VIF_UNLOCK();
1117	    return error;
1118	}
1119    }
1120
1121    /* define parameters for the tbf structure */
1122    vifp->v_tbf = v_tbf;
1123    GET_TIME(vifp->v_tbf->tbf_last_pkt_t);
1124    vifp->v_tbf->tbf_n_tok = 0;
1125    vifp->v_tbf->tbf_q_len = 0;
1126    vifp->v_tbf->tbf_max_q_len = MAXQSIZE;
1127    vifp->v_tbf->tbf_q = vifp->v_tbf->tbf_t = NULL;
1128
1129    vifp->v_flags     = vifcp->vifc_flags;
1130    vifp->v_threshold = vifcp->vifc_threshold;
1131    vifp->v_lcl_addr  = vifcp->vifc_lcl_addr;
1132    vifp->v_rmt_addr  = vifcp->vifc_rmt_addr;
1133    vifp->v_ifp       = ifp;
1134    /* scaling up here allows division by 1024 in critical code */
1135    vifp->v_rate_limit= vifcp->vifc_rate_limit * 1024 / 1000;
1136    vifp->v_rsvp_on   = 0;
1137    vifp->v_rsvpd     = NULL;
1138    /* initialize per vif pkt counters */
1139    vifp->v_pkt_in    = 0;
1140    vifp->v_pkt_out   = 0;
1141    vifp->v_bytes_in  = 0;
1142    vifp->v_bytes_out = 0;
1143
1144    /* Adjust numvifs up if the vifi is higher than numvifs */
1145    if (numvifs <= vifcp->vifc_vifi) numvifs = vifcp->vifc_vifi + 1;
1146
1147    VIF_UNLOCK();
1148
1149    if (mrtdebug)
1150	log(LOG_DEBUG, "add_vif #%d, lcladdr %lx, %s %lx, thresh %x, rate %d\n",
1151	    vifcp->vifc_vifi,
1152	    (u_long)ntohl(vifcp->vifc_lcl_addr.s_addr),
1153	    (vifcp->vifc_flags & VIFF_TUNNEL) ? "rmtaddr" : "mask",
1154	    (u_long)ntohl(vifcp->vifc_rmt_addr.s_addr),
1155	    vifcp->vifc_threshold,
1156	    vifcp->vifc_rate_limit);
1157
1158    return 0;
1159}
1160
1161/*
1162 * Delete a vif from the vif table
1163 */
1164static int
1165del_vif_locked(vifi_t vifi)
1166{
1167    struct vif *vifp;
1168
1169    VIF_LOCK_ASSERT();
1170
1171    if (vifi >= numvifs) {
1172	return EINVAL;
1173    }
1174    vifp = &viftable[vifi];
1175    if (vifp->v_lcl_addr.s_addr == INADDR_ANY) {
1176	return EADDRNOTAVAIL;
1177    }
1178
1179    if (!(vifp->v_flags & (VIFF_TUNNEL | VIFF_REGISTER)))
1180	if_allmulti(vifp->v_ifp, 0);
1181
1182    if (vifp == last_encap_vif) {
1183	last_encap_vif = NULL;
1184	last_encap_src = INADDR_ANY;
1185    }
1186
1187    /*
1188     * Free packets queued at the interface
1189     */
1190    while (vifp->v_tbf->tbf_q) {
1191	struct mbuf *m = vifp->v_tbf->tbf_q;
1192
1193	vifp->v_tbf->tbf_q = m->m_act;
1194	m_freem(m);
1195    }
1196
1197#ifdef PIM
1198    if (vifp->v_flags & VIFF_REGISTER)
1199	reg_vif_num = VIFI_INVALID;
1200#endif
1201
1202    bzero((caddr_t)vifp->v_tbf, sizeof(*(vifp->v_tbf)));
1203    bzero((caddr_t)vifp, sizeof (*vifp));
1204
1205    if (mrtdebug)
1206	log(LOG_DEBUG, "del_vif %d, numvifs %d\n", vifi, numvifs);
1207
1208    /* Adjust numvifs down */
1209    for (vifi = numvifs; vifi > 0; vifi--)
1210	if (viftable[vifi-1].v_lcl_addr.s_addr != INADDR_ANY)
1211	    break;
1212    numvifs = vifi;
1213
1214    return 0;
1215}
1216
1217static int
1218del_vif(vifi_t vifi)
1219{
1220    int cc;
1221
1222    VIF_LOCK();
1223    cc = del_vif_locked(vifi);
1224    VIF_UNLOCK();
1225
1226    return cc;
1227}
1228
1229/*
1230 * update an mfc entry without resetting counters and S,G addresses.
1231 */
1232static void
1233update_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp)
1234{
1235    int i;
1236
1237    rt->mfc_parent = mfccp->mfcc_parent;
1238    for (i = 0; i < numvifs; i++) {
1239	rt->mfc_ttls[i] = mfccp->mfcc_ttls[i];
1240	rt->mfc_flags[i] = mfccp->mfcc_flags[i] & mrt_api_config &
1241	    MRT_MFC_FLAGS_ALL;
1242    }
1243    /* set the RP address */
1244    if (mrt_api_config & MRT_MFC_RP)
1245	rt->mfc_rp = mfccp->mfcc_rp;
1246    else
1247	rt->mfc_rp.s_addr = INADDR_ANY;
1248}
1249
1250/*
1251 * fully initialize an mfc entry from the parameter.
1252 */
1253static void
1254init_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp)
1255{
1256    rt->mfc_origin     = mfccp->mfcc_origin;
1257    rt->mfc_mcastgrp   = mfccp->mfcc_mcastgrp;
1258
1259    update_mfc_params(rt, mfccp);
1260
1261    /* initialize pkt counters per src-grp */
1262    rt->mfc_pkt_cnt    = 0;
1263    rt->mfc_byte_cnt   = 0;
1264    rt->mfc_wrong_if   = 0;
1265    rt->mfc_last_assert.tv_sec = rt->mfc_last_assert.tv_usec = 0;
1266}
1267
1268
1269/*
1270 * Add an mfc entry
1271 */
1272static int
1273add_mfc(struct mfcctl2 *mfccp)
1274{
1275    struct mfc *rt;
1276    u_long hash;
1277    struct rtdetq *rte;
1278    u_short nstl;
1279
1280    VIF_LOCK();
1281    MFC_LOCK();
1282
1283    rt = mfc_find(mfccp->mfcc_origin.s_addr, mfccp->mfcc_mcastgrp.s_addr);
1284
1285    /* If an entry already exists, just update the fields */
1286    if (rt) {
1287	if (mrtdebug & DEBUG_MFC)
1288	    log(LOG_DEBUG,"add_mfc update o %lx g %lx p %x\n",
1289		(u_long)ntohl(mfccp->mfcc_origin.s_addr),
1290		(u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr),
1291		mfccp->mfcc_parent);
1292
1293	update_mfc_params(rt, mfccp);
1294	MFC_UNLOCK();
1295	VIF_UNLOCK();
1296	return 0;
1297    }
1298
1299    /*
1300     * Find the entry for which the upcall was made and update
1301     */
1302    hash = MFCHASH(mfccp->mfcc_origin.s_addr, mfccp->mfcc_mcastgrp.s_addr);
1303    for (rt = mfctable[hash], nstl = 0; rt; rt = rt->mfc_next) {
1304
1305	if ((rt->mfc_origin.s_addr == mfccp->mfcc_origin.s_addr) &&
1306		(rt->mfc_mcastgrp.s_addr == mfccp->mfcc_mcastgrp.s_addr) &&
1307		(rt->mfc_stall != NULL)) {
1308
1309	    if (nstl++)
1310		log(LOG_ERR, "add_mfc %s o %lx g %lx p %x dbx %p\n",
1311		    "multiple kernel entries",
1312		    (u_long)ntohl(mfccp->mfcc_origin.s_addr),
1313		    (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr),
1314		    mfccp->mfcc_parent, (void *)rt->mfc_stall);
1315
1316	    if (mrtdebug & DEBUG_MFC)
1317		log(LOG_DEBUG,"add_mfc o %lx g %lx p %x dbg %p\n",
1318		    (u_long)ntohl(mfccp->mfcc_origin.s_addr),
1319		    (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr),
1320		    mfccp->mfcc_parent, (void *)rt->mfc_stall);
1321
1322	    init_mfc_params(rt, mfccp);
1323
1324	    rt->mfc_expire = 0;	/* Don't clean this guy up */
1325	    nexpire[hash]--;
1326
1327	    /* free packets Qed at the end of this entry */
1328	    for (rte = rt->mfc_stall; rte != NULL; ) {
1329		struct rtdetq *n = rte->next;
1330
1331		ip_mdq(rte->m, rte->ifp, rt, -1);
1332		m_freem(rte->m);
1333		free(rte, M_MRTABLE);
1334		rte = n;
1335	    }
1336	    rt->mfc_stall = NULL;
1337	}
1338    }
1339
1340    /*
1341     * It is possible that an entry is being inserted without an upcall
1342     */
1343    if (nstl == 0) {
1344	if (mrtdebug & DEBUG_MFC)
1345	    log(LOG_DEBUG,"add_mfc no upcall h %lu o %lx g %lx p %x\n",
1346		hash, (u_long)ntohl(mfccp->mfcc_origin.s_addr),
1347		(u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr),
1348		mfccp->mfcc_parent);
1349
1350	for (rt = mfctable[hash]; rt != NULL; rt = rt->mfc_next) {
1351	    if ((rt->mfc_origin.s_addr == mfccp->mfcc_origin.s_addr) &&
1352		    (rt->mfc_mcastgrp.s_addr == mfccp->mfcc_mcastgrp.s_addr)) {
1353		init_mfc_params(rt, mfccp);
1354		if (rt->mfc_expire)
1355		    nexpire[hash]--;
1356		rt->mfc_expire = 0;
1357		break; /* XXX */
1358	    }
1359	}
1360	if (rt == NULL) {		/* no upcall, so make a new entry */
1361	    rt = (struct mfc *)malloc(sizeof(*rt), M_MRTABLE, M_NOWAIT);
1362	    if (rt == NULL) {
1363		MFC_UNLOCK();
1364		VIF_UNLOCK();
1365		return ENOBUFS;
1366	    }
1367
1368	    init_mfc_params(rt, mfccp);
1369	    rt->mfc_expire     = 0;
1370	    rt->mfc_stall      = NULL;
1371
1372	    rt->mfc_bw_meter = NULL;
1373	    /* insert new entry at head of hash chain */
1374	    rt->mfc_next = mfctable[hash];
1375	    mfctable[hash] = rt;
1376	}
1377    }
1378    MFC_UNLOCK();
1379    VIF_UNLOCK();
1380    return 0;
1381}
1382
1383/*
1384 * Delete an mfc entry
1385 */
1386static int
1387del_mfc(struct mfcctl2 *mfccp)
1388{
1389    struct in_addr	origin;
1390    struct in_addr	mcastgrp;
1391    struct mfc		*rt;
1392    struct mfc		**nptr;
1393    u_long		hash;
1394    struct bw_meter	*list;
1395
1396    origin = mfccp->mfcc_origin;
1397    mcastgrp = mfccp->mfcc_mcastgrp;
1398
1399    if (mrtdebug & DEBUG_MFC)
1400	log(LOG_DEBUG,"del_mfc orig %lx mcastgrp %lx\n",
1401	    (u_long)ntohl(origin.s_addr), (u_long)ntohl(mcastgrp.s_addr));
1402
1403    MFC_LOCK();
1404
1405    hash = MFCHASH(origin.s_addr, mcastgrp.s_addr);
1406    for (nptr = &mfctable[hash]; (rt = *nptr) != NULL; nptr = &rt->mfc_next)
1407	if (origin.s_addr == rt->mfc_origin.s_addr &&
1408		mcastgrp.s_addr == rt->mfc_mcastgrp.s_addr &&
1409		rt->mfc_stall == NULL)
1410	    break;
1411    if (rt == NULL) {
1412	MFC_UNLOCK();
1413	return EADDRNOTAVAIL;
1414    }
1415
1416    *nptr = rt->mfc_next;
1417
1418    /*
1419     * free the bw_meter entries
1420     */
1421    list = rt->mfc_bw_meter;
1422    rt->mfc_bw_meter = NULL;
1423
1424    free(rt, M_MRTABLE);
1425
1426    free_bw_list(list);
1427
1428    MFC_UNLOCK();
1429
1430    return 0;
1431}
1432
1433/*
1434 * Send a message to the routing daemon on the multicast routing socket
1435 */
1436static int
1437socket_send(struct socket *s, struct mbuf *mm, struct sockaddr_in *src)
1438{
1439    if (s) {
1440	SOCKBUF_LOCK(&s->so_rcv);
1441	if (sbappendaddr_locked(&s->so_rcv, (struct sockaddr *)src, mm,
1442	    NULL) != 0) {
1443	    sorwakeup_locked(s);
1444	    return 0;
1445	}
1446	SOCKBUF_UNLOCK(&s->so_rcv);
1447    }
1448    m_freem(mm);
1449    return -1;
1450}
1451
1452/*
1453 * IP multicast forwarding function. This function assumes that the packet
1454 * pointed to by "ip" has arrived on (or is about to be sent to) the interface
1455 * pointed to by "ifp", and the packet is to be relayed to other networks
1456 * that have members of the packet's destination IP multicast group.
1457 *
1458 * The packet is returned unscathed to the caller, unless it is
1459 * erroneous, in which case a non-zero return value tells the caller to
1460 * discard it.
1461 */
1462
1463#define TUNNEL_LEN  12  /* # bytes of IP option for tunnel encapsulation  */
1464
1465static int
1466X_ip_mforward(struct ip *ip, struct ifnet *ifp, struct mbuf *m,
1467    struct ip_moptions *imo)
1468{
1469    struct mfc *rt;
1470    int error;
1471    vifi_t vifi;
1472
1473    if (mrtdebug & DEBUG_FORWARD)
1474	log(LOG_DEBUG, "ip_mforward: src %lx, dst %lx, ifp %p\n",
1475	    (u_long)ntohl(ip->ip_src.s_addr), (u_long)ntohl(ip->ip_dst.s_addr),
1476	    (void *)ifp);
1477
1478    if (ip->ip_hl < (sizeof(struct ip) + TUNNEL_LEN) >> 2 ||
1479		((u_char *)(ip + 1))[1] != IPOPT_LSRR ) {
1480	/*
1481	 * Packet arrived via a physical interface or
1482	 * an encapsulated tunnel or a register_vif.
1483	 */
1484    } else {
1485	/*
1486	 * Packet arrived through a source-route tunnel.
1487	 * Source-route tunnels are no longer supported.
1488	 */
1489	static int last_log;
1490	if (last_log != time_uptime) {
1491	    last_log = time_uptime;
1492	    log(LOG_ERR,
1493		"ip_mforward: received source-routed packet from %lx\n",
1494		(u_long)ntohl(ip->ip_src.s_addr));
1495	}
1496	return 1;
1497    }
1498
1499    VIF_LOCK();
1500    MFC_LOCK();
1501    if (imo && ((vifi = imo->imo_multicast_vif) < numvifs)) {
1502	if (ip->ip_ttl < 255)
1503	    ip->ip_ttl++;	/* compensate for -1 in *_send routines */
1504	if (rsvpdebug && ip->ip_p == IPPROTO_RSVP) {
1505	    struct vif *vifp = viftable + vifi;
1506
1507	    printf("Sending IPPROTO_RSVP from %lx to %lx on vif %d (%s%s)\n",
1508		(long)ntohl(ip->ip_src.s_addr), (long)ntohl(ip->ip_dst.s_addr),
1509		vifi,
1510		(vifp->v_flags & VIFF_TUNNEL) ? "tunnel on " : "",
1511		vifp->v_ifp->if_xname);
1512	}
1513	error = ip_mdq(m, ifp, NULL, vifi);
1514	MFC_UNLOCK();
1515	VIF_UNLOCK();
1516	return error;
1517    }
1518    if (rsvpdebug && ip->ip_p == IPPROTO_RSVP) {
1519	printf("Warning: IPPROTO_RSVP from %lx to %lx without vif option\n",
1520	    (long)ntohl(ip->ip_src.s_addr), (long)ntohl(ip->ip_dst.s_addr));
1521	if (!imo)
1522	    printf("In fact, no options were specified at all\n");
1523    }
1524
1525    /*
1526     * Don't forward a packet with time-to-live of zero or one,
1527     * or a packet destined to a local-only group.
1528     */
1529    if (ip->ip_ttl <= 1 || ntohl(ip->ip_dst.s_addr) <= INADDR_MAX_LOCAL_GROUP) {
1530	MFC_UNLOCK();
1531	VIF_UNLOCK();
1532	return 0;
1533    }
1534
1535    /*
1536     * Determine forwarding vifs from the forwarding cache table
1537     */
1538    ++mrtstat.mrts_mfc_lookups;
1539    rt = mfc_find(ip->ip_src.s_addr, ip->ip_dst.s_addr);
1540
1541    /* Entry exists, so forward if necessary */
1542    if (rt != NULL) {
1543	error = ip_mdq(m, ifp, rt, -1);
1544	MFC_UNLOCK();
1545	VIF_UNLOCK();
1546	return error;
1547    } else {
1548	/*
1549	 * If we don't have a route for packet's origin,
1550	 * Make a copy of the packet & send message to routing daemon
1551	 */
1552
1553	struct mbuf *mb0;
1554	struct rtdetq *rte;
1555	u_long hash;
1556	int hlen = ip->ip_hl << 2;
1557
1558	++mrtstat.mrts_mfc_misses;
1559
1560	mrtstat.mrts_no_route++;
1561	if (mrtdebug & (DEBUG_FORWARD | DEBUG_MFC))
1562	    log(LOG_DEBUG, "ip_mforward: no rte s %lx g %lx\n",
1563		(u_long)ntohl(ip->ip_src.s_addr),
1564		(u_long)ntohl(ip->ip_dst.s_addr));
1565
1566	/*
1567	 * Allocate mbufs early so that we don't do extra work if we are
1568	 * just going to fail anyway.  Make sure to pullup the header so
1569	 * that other people can't step on it.
1570	 */
1571	rte = (struct rtdetq *)malloc((sizeof *rte), M_MRTABLE, M_NOWAIT);
1572	if (rte == NULL) {
1573	    MFC_UNLOCK();
1574	    VIF_UNLOCK();
1575	    return ENOBUFS;
1576	}
1577	mb0 = m_copypacket(m, M_DONTWAIT);
1578	if (mb0 && (M_HASCL(mb0) || mb0->m_len < hlen))
1579	    mb0 = m_pullup(mb0, hlen);
1580	if (mb0 == NULL) {
1581	    free(rte, M_MRTABLE);
1582	    MFC_UNLOCK();
1583	    VIF_UNLOCK();
1584	    return ENOBUFS;
1585	}
1586
1587	/* is there an upcall waiting for this flow ? */
1588	hash = MFCHASH(ip->ip_src.s_addr, ip->ip_dst.s_addr);
1589	for (rt = mfctable[hash]; rt; rt = rt->mfc_next) {
1590	    if ((ip->ip_src.s_addr == rt->mfc_origin.s_addr) &&
1591		    (ip->ip_dst.s_addr == rt->mfc_mcastgrp.s_addr) &&
1592		    (rt->mfc_stall != NULL))
1593		break;
1594	}
1595
1596	if (rt == NULL) {
1597	    int i;
1598	    struct igmpmsg *im;
1599	    struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
1600	    struct mbuf *mm;
1601
1602	    /*
1603	     * Locate the vifi for the incoming interface for this packet.
1604	     * If none found, drop packet.
1605	     */
1606	    for (vifi=0; vifi < numvifs && viftable[vifi].v_ifp != ifp; vifi++)
1607		;
1608	    if (vifi >= numvifs)	/* vif not found, drop packet */
1609		goto non_fatal;
1610
1611	    /* no upcall, so make a new entry */
1612	    rt = (struct mfc *)malloc(sizeof(*rt), M_MRTABLE, M_NOWAIT);
1613	    if (rt == NULL)
1614		goto fail;
1615	    /* Make a copy of the header to send to the user level process */
1616	    mm = m_copy(mb0, 0, hlen);
1617	    if (mm == NULL)
1618		goto fail1;
1619
1620	    /*
1621	     * Send message to routing daemon to install
1622	     * a route into the kernel table
1623	     */
1624
1625	    im = mtod(mm, struct igmpmsg *);
1626	    im->im_msgtype = IGMPMSG_NOCACHE;
1627	    im->im_mbz = 0;
1628	    im->im_vif = vifi;
1629
1630	    mrtstat.mrts_upcalls++;
1631
1632	    k_igmpsrc.sin_addr = ip->ip_src;
1633	    if (socket_send(ip_mrouter, mm, &k_igmpsrc) < 0) {
1634		log(LOG_WARNING, "ip_mforward: ip_mrouter socket queue full\n");
1635		++mrtstat.mrts_upq_sockfull;
1636fail1:
1637		free(rt, M_MRTABLE);
1638fail:
1639		free(rte, M_MRTABLE);
1640		m_freem(mb0);
1641		MFC_UNLOCK();
1642		VIF_UNLOCK();
1643		return ENOBUFS;
1644	    }
1645
1646	    /* insert new entry at head of hash chain */
1647	    rt->mfc_origin.s_addr     = ip->ip_src.s_addr;
1648	    rt->mfc_mcastgrp.s_addr   = ip->ip_dst.s_addr;
1649	    rt->mfc_expire	      = UPCALL_EXPIRE;
1650	    nexpire[hash]++;
1651	    for (i = 0; i < numvifs; i++) {
1652		rt->mfc_ttls[i] = 0;
1653		rt->mfc_flags[i] = 0;
1654	    }
1655	    rt->mfc_parent = -1;
1656
1657	    rt->mfc_rp.s_addr = INADDR_ANY; /* clear the RP address */
1658
1659	    rt->mfc_bw_meter = NULL;
1660
1661	    /* link into table */
1662	    rt->mfc_next   = mfctable[hash];
1663	    mfctable[hash] = rt;
1664	    rt->mfc_stall = rte;
1665
1666	} else {
1667	    /* determine if q has overflowed */
1668	    int npkts = 0;
1669	    struct rtdetq **p;
1670
1671	    /*
1672	     * XXX ouch! we need to append to the list, but we
1673	     * only have a pointer to the front, so we have to
1674	     * scan the entire list every time.
1675	     */
1676	    for (p = &rt->mfc_stall; *p != NULL; p = &(*p)->next)
1677		npkts++;
1678
1679	    if (npkts > MAX_UPQ) {
1680		mrtstat.mrts_upq_ovflw++;
1681non_fatal:
1682		free(rte, M_MRTABLE);
1683		m_freem(mb0);
1684		MFC_UNLOCK();
1685		VIF_UNLOCK();
1686		return 0;
1687	    }
1688
1689	    /* Add this entry to the end of the queue */
1690	    *p = rte;
1691	}
1692
1693	rte->m			= mb0;
1694	rte->ifp		= ifp;
1695	rte->next		= NULL;
1696
1697	MFC_UNLOCK();
1698	VIF_UNLOCK();
1699
1700	return 0;
1701    }
1702}
1703
1704/*
1705 * Clean up the cache entry if upcall is not serviced
1706 */
1707static void
1708expire_upcalls(void *unused)
1709{
1710    struct rtdetq *rte;
1711    struct mfc *mfc, **nptr;
1712    int i;
1713
1714    MFC_LOCK();
1715    for (i = 0; i < MFCTBLSIZ; i++) {
1716	if (nexpire[i] == 0)
1717	    continue;
1718	nptr = &mfctable[i];
1719	for (mfc = *nptr; mfc != NULL; mfc = *nptr) {
1720	    /*
1721	     * Skip real cache entries
1722	     * Make sure it wasn't marked to not expire (shouldn't happen)
1723	     * If it expires now
1724	     */
1725	    if (mfc->mfc_stall != NULL && mfc->mfc_expire != 0 &&
1726		    --mfc->mfc_expire == 0) {
1727		if (mrtdebug & DEBUG_EXPIRE)
1728		    log(LOG_DEBUG, "expire_upcalls: expiring (%lx %lx)\n",
1729			(u_long)ntohl(mfc->mfc_origin.s_addr),
1730			(u_long)ntohl(mfc->mfc_mcastgrp.s_addr));
1731		/*
1732		 * drop all the packets
1733		 * free the mbuf with the pkt, if, timing info
1734		 */
1735		for (rte = mfc->mfc_stall; rte; ) {
1736		    struct rtdetq *n = rte->next;
1737
1738		    m_freem(rte->m);
1739		    free(rte, M_MRTABLE);
1740		    rte = n;
1741		}
1742		++mrtstat.mrts_cache_cleanups;
1743		nexpire[i]--;
1744
1745		/*
1746		 * free the bw_meter entries
1747		 */
1748		while (mfc->mfc_bw_meter != NULL) {
1749		    struct bw_meter *x = mfc->mfc_bw_meter;
1750
1751		    mfc->mfc_bw_meter = x->bm_mfc_next;
1752		    free(x, M_BWMETER);
1753		}
1754
1755		*nptr = mfc->mfc_next;
1756		free(mfc, M_MRTABLE);
1757	    } else {
1758		nptr = &mfc->mfc_next;
1759	    }
1760	}
1761    }
1762    MFC_UNLOCK();
1763
1764    callout_reset(&expire_upcalls_ch, EXPIRE_TIMEOUT, expire_upcalls, NULL);
1765}
1766
1767/*
1768 * Packet forwarding routine once entry in the cache is made
1769 */
1770static int
1771ip_mdq(struct mbuf *m, struct ifnet *ifp, struct mfc *rt, vifi_t xmt_vif)
1772{
1773    struct ip  *ip = mtod(m, struct ip *);
1774    vifi_t vifi;
1775    int plen = ip->ip_len;
1776
1777    VIF_LOCK_ASSERT();
1778/*
1779 * Macro to send packet on vif.  Since RSVP packets don't get counted on
1780 * input, they shouldn't get counted on output, so statistics keeping is
1781 * separate.
1782 */
1783#define MC_SEND(ip,vifp,m) {				\
1784		if ((vifp)->v_flags & VIFF_TUNNEL)	\
1785		    encap_send((ip), (vifp), (m));	\
1786		else					\
1787		    phyint_send((ip), (vifp), (m));	\
1788}
1789
1790    /*
1791     * If xmt_vif is not -1, send on only the requested vif.
1792     *
1793     * (since vifi_t is u_short, -1 becomes MAXUSHORT, which > numvifs.)
1794     */
1795    if (xmt_vif < numvifs) {
1796#ifdef PIM
1797	if (viftable[xmt_vif].v_flags & VIFF_REGISTER)
1798	    pim_register_send(ip, viftable + xmt_vif, m, rt);
1799	else
1800#endif
1801	MC_SEND(ip, viftable + xmt_vif, m);
1802	return 1;
1803    }
1804
1805    /*
1806     * Don't forward if it didn't arrive from the parent vif for its origin.
1807     */
1808    vifi = rt->mfc_parent;
1809    if ((vifi >= numvifs) || (viftable[vifi].v_ifp != ifp)) {
1810	/* came in the wrong interface */
1811	if (mrtdebug & DEBUG_FORWARD)
1812	    log(LOG_DEBUG, "wrong if: ifp %p vifi %d vififp %p\n",
1813		(void *)ifp, vifi, (void *)viftable[vifi].v_ifp);
1814	++mrtstat.mrts_wrong_if;
1815	++rt->mfc_wrong_if;
1816	/*
1817	 * If we are doing PIM assert processing, send a message
1818	 * to the routing daemon.
1819	 *
1820	 * XXX: A PIM-SM router needs the WRONGVIF detection so it
1821	 * can complete the SPT switch, regardless of the type
1822	 * of the iif (broadcast media, GRE tunnel, etc).
1823	 */
1824	if (pim_assert && (vifi < numvifs) && viftable[vifi].v_ifp) {
1825	    struct timeval now;
1826	    u_long delta;
1827
1828#ifdef PIM
1829	    if (ifp == &multicast_register_if)
1830		pimstat.pims_rcv_registers_wrongiif++;
1831#endif
1832
1833	    /* Get vifi for the incoming packet */
1834	    for (vifi=0; vifi < numvifs && viftable[vifi].v_ifp != ifp; vifi++)
1835		;
1836	    if (vifi >= numvifs)
1837		return 0;	/* The iif is not found: ignore the packet. */
1838
1839	    if (rt->mfc_flags[vifi] & MRT_MFC_FLAGS_DISABLE_WRONGVIF)
1840		return 0;	/* WRONGVIF disabled: ignore the packet */
1841
1842	    GET_TIME(now);
1843
1844	    TV_DELTA(now, rt->mfc_last_assert, delta);
1845
1846	    if (delta > ASSERT_MSG_TIME) {
1847		struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
1848		struct igmpmsg *im;
1849		int hlen = ip->ip_hl << 2;
1850		struct mbuf *mm = m_copy(m, 0, hlen);
1851
1852		if (mm && (M_HASCL(mm) || mm->m_len < hlen))
1853		    mm = m_pullup(mm, hlen);
1854		if (mm == NULL)
1855		    return ENOBUFS;
1856
1857		rt->mfc_last_assert = now;
1858
1859		im = mtod(mm, struct igmpmsg *);
1860		im->im_msgtype	= IGMPMSG_WRONGVIF;
1861		im->im_mbz		= 0;
1862		im->im_vif		= vifi;
1863
1864		mrtstat.mrts_upcalls++;
1865
1866		k_igmpsrc.sin_addr = im->im_src;
1867		if (socket_send(ip_mrouter, mm, &k_igmpsrc) < 0) {
1868		    log(LOG_WARNING,
1869			"ip_mforward: ip_mrouter socket queue full\n");
1870		    ++mrtstat.mrts_upq_sockfull;
1871		    return ENOBUFS;
1872		}
1873	    }
1874	}
1875	return 0;
1876    }
1877
1878    /* If I sourced this packet, it counts as output, else it was input. */
1879    if (ip->ip_src.s_addr == viftable[vifi].v_lcl_addr.s_addr) {
1880	viftable[vifi].v_pkt_out++;
1881	viftable[vifi].v_bytes_out += plen;
1882    } else {
1883	viftable[vifi].v_pkt_in++;
1884	viftable[vifi].v_bytes_in += plen;
1885    }
1886    rt->mfc_pkt_cnt++;
1887    rt->mfc_byte_cnt += plen;
1888
1889    /*
1890     * For each vif, decide if a copy of the packet should be forwarded.
1891     * Forward if:
1892     *		- the ttl exceeds the vif's threshold
1893     *		- there are group members downstream on interface
1894     */
1895    for (vifi = 0; vifi < numvifs; vifi++)
1896	if ((rt->mfc_ttls[vifi] > 0) && (ip->ip_ttl > rt->mfc_ttls[vifi])) {
1897	    viftable[vifi].v_pkt_out++;
1898	    viftable[vifi].v_bytes_out += plen;
1899#ifdef PIM
1900	    if (viftable[vifi].v_flags & VIFF_REGISTER)
1901		pim_register_send(ip, viftable + vifi, m, rt);
1902	    else
1903#endif
1904	    MC_SEND(ip, viftable+vifi, m);
1905	}
1906
1907    /*
1908     * Perform upcall-related bw measuring.
1909     */
1910    if (rt->mfc_bw_meter != NULL) {
1911	struct bw_meter *x;
1912	struct timeval now;
1913
1914	GET_TIME(now);
1915	MFC_LOCK_ASSERT();
1916	for (x = rt->mfc_bw_meter; x != NULL; x = x->bm_mfc_next)
1917	    bw_meter_receive_packet(x, plen, &now);
1918    }
1919
1920    return 0;
1921}
1922
1923/*
1924 * check if a vif number is legal/ok. This is used by ip_output.
1925 */
1926static int
1927X_legal_vif_num(int vif)
1928{
1929    /* XXX unlocked, matter? */
1930    return (vif >= 0 && vif < numvifs);
1931}
1932
1933/*
1934 * Return the local address used by this vif
1935 */
1936static u_long
1937X_ip_mcast_src(int vifi)
1938{
1939    /* XXX unlocked, matter? */
1940    if (vifi >= 0 && vifi < numvifs)
1941	return viftable[vifi].v_lcl_addr.s_addr;
1942    else
1943	return INADDR_ANY;
1944}
1945
1946static void
1947phyint_send(struct ip *ip, struct vif *vifp, struct mbuf *m)
1948{
1949    struct mbuf *mb_copy;
1950    int hlen = ip->ip_hl << 2;
1951
1952    VIF_LOCK_ASSERT();
1953
1954    /*
1955     * Make a new reference to the packet; make sure that
1956     * the IP header is actually copied, not just referenced,
1957     * so that ip_output() only scribbles on the copy.
1958     */
1959    mb_copy = m_copypacket(m, M_DONTWAIT);
1960    if (mb_copy && (M_HASCL(mb_copy) || mb_copy->m_len < hlen))
1961	mb_copy = m_pullup(mb_copy, hlen);
1962    if (mb_copy == NULL)
1963	return;
1964
1965    if (vifp->v_rate_limit == 0)
1966	tbf_send_packet(vifp, mb_copy);
1967    else
1968	tbf_control(vifp, mb_copy, mtod(mb_copy, struct ip *), ip->ip_len);
1969}
1970
1971static void
1972encap_send(struct ip *ip, struct vif *vifp, struct mbuf *m)
1973{
1974    struct mbuf *mb_copy;
1975    struct ip *ip_copy;
1976    int i, len = ip->ip_len;
1977
1978    VIF_LOCK_ASSERT();
1979
1980    /* Take care of delayed checksums */
1981    if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
1982	in_delayed_cksum(m);
1983	m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
1984    }
1985
1986    /*
1987     * copy the old packet & pullup its IP header into the
1988     * new mbuf so we can modify it.  Try to fill the new
1989     * mbuf since if we don't the ethernet driver will.
1990     */
1991    MGETHDR(mb_copy, M_DONTWAIT, MT_DATA);
1992    if (mb_copy == NULL)
1993	return;
1994#ifdef MAC
1995    mac_create_mbuf_multicast_encap(m, vifp->v_ifp, mb_copy);
1996#endif
1997    mb_copy->m_data += max_linkhdr;
1998    mb_copy->m_len = sizeof(multicast_encap_iphdr);
1999
2000    if ((mb_copy->m_next = m_copypacket(m, M_DONTWAIT)) == NULL) {
2001	m_freem(mb_copy);
2002	return;
2003    }
2004    i = MHLEN - M_LEADINGSPACE(mb_copy);
2005    if (i > len)
2006	i = len;
2007    mb_copy = m_pullup(mb_copy, i);
2008    if (mb_copy == NULL)
2009	return;
2010    mb_copy->m_pkthdr.len = len + sizeof(multicast_encap_iphdr);
2011
2012    /*
2013     * fill in the encapsulating IP header.
2014     */
2015    ip_copy = mtod(mb_copy, struct ip *);
2016    *ip_copy = multicast_encap_iphdr;
2017    ip_copy->ip_id = ip_newid();
2018    ip_copy->ip_len += len;
2019    ip_copy->ip_src = vifp->v_lcl_addr;
2020    ip_copy->ip_dst = vifp->v_rmt_addr;
2021
2022    /*
2023     * turn the encapsulated IP header back into a valid one.
2024     */
2025    ip = (struct ip *)((caddr_t)ip_copy + sizeof(multicast_encap_iphdr));
2026    --ip->ip_ttl;
2027    ip->ip_len = htons(ip->ip_len);
2028    ip->ip_off = htons(ip->ip_off);
2029    ip->ip_sum = 0;
2030    mb_copy->m_data += sizeof(multicast_encap_iphdr);
2031    ip->ip_sum = in_cksum(mb_copy, ip->ip_hl << 2);
2032    mb_copy->m_data -= sizeof(multicast_encap_iphdr);
2033
2034    if (vifp->v_rate_limit == 0)
2035	tbf_send_packet(vifp, mb_copy);
2036    else
2037	tbf_control(vifp, mb_copy, ip, ip_copy->ip_len);
2038}
2039
2040/*
2041 * Token bucket filter module
2042 */
2043
2044static void
2045tbf_control(struct vif *vifp, struct mbuf *m, struct ip *ip, u_long p_len)
2046{
2047    struct tbf *t = vifp->v_tbf;
2048
2049    VIF_LOCK_ASSERT();
2050
2051    if (p_len > MAX_BKT_SIZE) {		/* drop if packet is too large */
2052	mrtstat.mrts_pkt2large++;
2053	m_freem(m);
2054	return;
2055    }
2056
2057    tbf_update_tokens(vifp);
2058
2059    if (t->tbf_q_len == 0) {		/* queue empty...		*/
2060	if (p_len <= t->tbf_n_tok) {	/* send packet if enough tokens */
2061	    t->tbf_n_tok -= p_len;
2062	    tbf_send_packet(vifp, m);
2063	} else {			/* no, queue packet and try later */
2064	    tbf_queue(vifp, m);
2065	    callout_reset(&tbf_reprocess_ch, TBF_REPROCESS,
2066		tbf_reprocess_q, vifp);
2067	}
2068    } else if (t->tbf_q_len < t->tbf_max_q_len) {
2069	/* finite queue length, so queue pkts and process queue */
2070	tbf_queue(vifp, m);
2071	tbf_process_q(vifp);
2072    } else {
2073	/* queue full, try to dq and queue and process */
2074	if (!tbf_dq_sel(vifp, ip)) {
2075	    mrtstat.mrts_q_overflow++;
2076	    m_freem(m);
2077	} else {
2078	    tbf_queue(vifp, m);
2079	    tbf_process_q(vifp);
2080	}
2081    }
2082}
2083
2084/*
2085 * adds a packet to the queue at the interface
2086 */
2087static void
2088tbf_queue(struct vif *vifp, struct mbuf *m)
2089{
2090    struct tbf *t = vifp->v_tbf;
2091
2092    VIF_LOCK_ASSERT();
2093
2094    if (t->tbf_t == NULL)	/* Queue was empty */
2095	t->tbf_q = m;
2096    else			/* Insert at tail */
2097	t->tbf_t->m_act = m;
2098
2099    t->tbf_t = m;		/* Set new tail pointer */
2100
2101#ifdef DIAGNOSTIC
2102    /* Make sure we didn't get fed a bogus mbuf */
2103    if (m->m_act)
2104	panic("tbf_queue: m_act");
2105#endif
2106    m->m_act = NULL;
2107
2108    t->tbf_q_len++;
2109}
2110
2111/*
2112 * processes the queue at the interface
2113 */
2114static void
2115tbf_process_q(struct vif *vifp)
2116{
2117    struct tbf *t = vifp->v_tbf;
2118
2119    VIF_LOCK_ASSERT();
2120
2121    /* loop through the queue at the interface and send as many packets
2122     * as possible
2123     */
2124    while (t->tbf_q_len > 0) {
2125	struct mbuf *m = t->tbf_q;
2126	int len = mtod(m, struct ip *)->ip_len;
2127
2128	/* determine if the packet can be sent */
2129	if (len > t->tbf_n_tok)	/* not enough tokens, we are done */
2130	    break;
2131	/* ok, reduce no of tokens, dequeue and send the packet. */
2132	t->tbf_n_tok -= len;
2133
2134	t->tbf_q = m->m_act;
2135	if (--t->tbf_q_len == 0)
2136	    t->tbf_t = NULL;
2137
2138	m->m_act = NULL;
2139	tbf_send_packet(vifp, m);
2140    }
2141}
2142
2143static void
2144tbf_reprocess_q(void *xvifp)
2145{
2146    struct vif *vifp = xvifp;
2147
2148    if (ip_mrouter == NULL)
2149	return;
2150    VIF_LOCK();
2151    tbf_update_tokens(vifp);
2152    tbf_process_q(vifp);
2153    if (vifp->v_tbf->tbf_q_len)
2154	callout_reset(&tbf_reprocess_ch, TBF_REPROCESS, tbf_reprocess_q, vifp);
2155    VIF_UNLOCK();
2156}
2157
2158/* function that will selectively discard a member of the queue
2159 * based on the precedence value and the priority
2160 */
2161static int
2162tbf_dq_sel(struct vif *vifp, struct ip *ip)
2163{
2164    u_int p;
2165    struct mbuf *m, *last;
2166    struct mbuf **np;
2167    struct tbf *t = vifp->v_tbf;
2168
2169    VIF_LOCK_ASSERT();
2170
2171    p = priority(vifp, ip);
2172
2173    np = &t->tbf_q;
2174    last = NULL;
2175    while ((m = *np) != NULL) {
2176	if (p > priority(vifp, mtod(m, struct ip *))) {
2177	    *np = m->m_act;
2178	    /* If we're removing the last packet, fix the tail pointer */
2179	    if (m == t->tbf_t)
2180		t->tbf_t = last;
2181	    m_freem(m);
2182	    /* It's impossible for the queue to be empty, but check anyways. */
2183	    if (--t->tbf_q_len == 0)
2184		t->tbf_t = NULL;
2185	    mrtstat.mrts_drop_sel++;
2186	    return 1;
2187	}
2188	np = &m->m_act;
2189	last = m;
2190    }
2191    return 0;
2192}
2193
2194static void
2195tbf_send_packet(struct vif *vifp, struct mbuf *m)
2196{
2197    VIF_LOCK_ASSERT();
2198
2199    if (vifp->v_flags & VIFF_TUNNEL)	/* If tunnel options */
2200	ip_output(m, NULL, &vifp->v_route, IP_FORWARDING, NULL, NULL);
2201    else {
2202	struct ip_moptions imo;
2203	struct in_multi *imm[2];
2204	int error;
2205	static struct route ro; /* XXX check this */
2206
2207	imo.imo_multicast_ifp  = vifp->v_ifp;
2208	imo.imo_multicast_ttl  = mtod(m, struct ip *)->ip_ttl - 1;
2209	imo.imo_multicast_loop = 1;
2210	imo.imo_multicast_vif  = -1;
2211	imo.imo_num_memberships = 0;
2212	imo.imo_max_memberships = 2;
2213	imo.imo_membership  = &imm[0];
2214
2215	/*
2216	 * Re-entrancy should not be a problem here, because
2217	 * the packets that we send out and are looped back at us
2218	 * should get rejected because they appear to come from
2219	 * the loopback interface, thus preventing looping.
2220	 */
2221	error = ip_output(m, NULL, &ro, IP_FORWARDING, &imo, NULL);
2222
2223	if (mrtdebug & DEBUG_XMIT)
2224	    log(LOG_DEBUG, "phyint_send on vif %td err %d\n",
2225		vifp - viftable, error);
2226    }
2227}
2228
2229/* determine the current time and then
2230 * the elapsed time (between the last time and time now)
2231 * in milliseconds & update the no. of tokens in the bucket
2232 */
2233static void
2234tbf_update_tokens(struct vif *vifp)
2235{
2236    struct timeval tp;
2237    u_long tm;
2238    struct tbf *t = vifp->v_tbf;
2239
2240    VIF_LOCK_ASSERT();
2241
2242    GET_TIME(tp);
2243
2244    TV_DELTA(tp, t->tbf_last_pkt_t, tm);
2245
2246    /*
2247     * This formula is actually
2248     * "time in seconds" * "bytes/second".
2249     *
2250     * (tm / 1000000) * (v_rate_limit * 1000 * (1000/1024) / 8)
2251     *
2252     * The (1000/1024) was introduced in add_vif to optimize
2253     * this divide into a shift.
2254     */
2255    t->tbf_n_tok += tm * vifp->v_rate_limit / 1024 / 8;
2256    t->tbf_last_pkt_t = tp;
2257
2258    if (t->tbf_n_tok > MAX_BKT_SIZE)
2259	t->tbf_n_tok = MAX_BKT_SIZE;
2260}
2261
2262static int
2263priority(struct vif *vifp, struct ip *ip)
2264{
2265    int prio = 50; /* the lowest priority -- default case */
2266
2267    /* temporary hack; may add general packet classifier some day */
2268
2269    /*
2270     * The UDP port space is divided up into four priority ranges:
2271     * [0, 16384)     : unclassified - lowest priority
2272     * [16384, 32768) : audio - highest priority
2273     * [32768, 49152) : whiteboard - medium priority
2274     * [49152, 65536) : video - low priority
2275     *
2276     * Everything else gets lowest priority.
2277     */
2278    if (ip->ip_p == IPPROTO_UDP) {
2279	struct udphdr *udp = (struct udphdr *)(((char *)ip) + (ip->ip_hl << 2));
2280	switch (ntohs(udp->uh_dport) & 0xc000) {
2281	case 0x4000:
2282	    prio = 70;
2283	    break;
2284	case 0x8000:
2285	    prio = 60;
2286	    break;
2287	case 0xc000:
2288	    prio = 55;
2289	    break;
2290	}
2291    }
2292    return prio;
2293}
2294
2295/*
2296 * End of token bucket filter modifications
2297 */
2298
2299static int
2300X_ip_rsvp_vif(struct socket *so, struct sockopt *sopt)
2301{
2302    int error, vifi;
2303
2304    if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_RSVP)
2305	return EOPNOTSUPP;
2306
2307    error = sooptcopyin(sopt, &vifi, sizeof vifi, sizeof vifi);
2308    if (error)
2309	return error;
2310
2311    VIF_LOCK();
2312
2313    if (vifi < 0 || vifi >= numvifs) {	/* Error if vif is invalid */
2314	VIF_UNLOCK();
2315	return EADDRNOTAVAIL;
2316    }
2317
2318    if (sopt->sopt_name == IP_RSVP_VIF_ON) {
2319	/* Check if socket is available. */
2320	if (viftable[vifi].v_rsvpd != NULL) {
2321	    VIF_UNLOCK();
2322	    return EADDRINUSE;
2323	}
2324
2325	viftable[vifi].v_rsvpd = so;
2326	/* This may seem silly, but we need to be sure we don't over-increment
2327	 * the RSVP counter, in case something slips up.
2328	 */
2329	if (!viftable[vifi].v_rsvp_on) {
2330	    viftable[vifi].v_rsvp_on = 1;
2331	    rsvp_on++;
2332	}
2333    } else { /* must be VIF_OFF */
2334	/*
2335	 * XXX as an additional consistency check, one could make sure
2336	 * that viftable[vifi].v_rsvpd == so, otherwise passing so as
2337	 * first parameter is pretty useless.
2338	 */
2339	viftable[vifi].v_rsvpd = NULL;
2340	/*
2341	 * This may seem silly, but we need to be sure we don't over-decrement
2342	 * the RSVP counter, in case something slips up.
2343	 */
2344	if (viftable[vifi].v_rsvp_on) {
2345	    viftable[vifi].v_rsvp_on = 0;
2346	    rsvp_on--;
2347	}
2348    }
2349    VIF_UNLOCK();
2350    return 0;
2351}
2352
2353static void
2354X_ip_rsvp_force_done(struct socket *so)
2355{
2356    int vifi;
2357
2358    /* Don't bother if it is not the right type of socket. */
2359    if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_RSVP)
2360	return;
2361
2362    VIF_LOCK();
2363
2364    /* The socket may be attached to more than one vif...this
2365     * is perfectly legal.
2366     */
2367    for (vifi = 0; vifi < numvifs; vifi++) {
2368	if (viftable[vifi].v_rsvpd == so) {
2369	    viftable[vifi].v_rsvpd = NULL;
2370	    /* This may seem silly, but we need to be sure we don't
2371	     * over-decrement the RSVP counter, in case something slips up.
2372	     */
2373	    if (viftable[vifi].v_rsvp_on) {
2374		viftable[vifi].v_rsvp_on = 0;
2375		rsvp_on--;
2376	    }
2377	}
2378    }
2379
2380    VIF_UNLOCK();
2381}
2382
2383static void
2384X_rsvp_input(struct mbuf *m, int off)
2385{
2386    int vifi;
2387    struct ip *ip = mtod(m, struct ip *);
2388    struct sockaddr_in rsvp_src = { sizeof rsvp_src, AF_INET };
2389    struct ifnet *ifp;
2390
2391    if (rsvpdebug)
2392	printf("rsvp_input: rsvp_on %d\n",rsvp_on);
2393
2394    /* Can still get packets with rsvp_on = 0 if there is a local member
2395     * of the group to which the RSVP packet is addressed.  But in this
2396     * case we want to throw the packet away.
2397     */
2398    if (!rsvp_on) {
2399	m_freem(m);
2400	return;
2401    }
2402
2403    if (rsvpdebug)
2404	printf("rsvp_input: check vifs\n");
2405
2406#ifdef DIAGNOSTIC
2407    M_ASSERTPKTHDR(m);
2408#endif
2409
2410    ifp = m->m_pkthdr.rcvif;
2411
2412    VIF_LOCK();
2413    /* Find which vif the packet arrived on. */
2414    for (vifi = 0; vifi < numvifs; vifi++)
2415	if (viftable[vifi].v_ifp == ifp)
2416	    break;
2417
2418    if (vifi == numvifs || viftable[vifi].v_rsvpd == NULL) {
2419	/*
2420	 * Drop the lock here to avoid holding it across rip_input.
2421	 * This could make rsvpdebug printfs wrong.  If you care,
2422	 * record the state of stuff before dropping the lock.
2423	 */
2424	VIF_UNLOCK();
2425	/*
2426	 * If the old-style non-vif-associated socket is set,
2427	 * then use it.  Otherwise, drop packet since there
2428	 * is no specific socket for this vif.
2429	 */
2430	if (ip_rsvpd != NULL) {
2431	    if (rsvpdebug)
2432		printf("rsvp_input: Sending packet up old-style socket\n");
2433	    rip_input(m, off);  /* xxx */
2434	} else {
2435	    if (rsvpdebug && vifi == numvifs)
2436		printf("rsvp_input: Can't find vif for packet.\n");
2437	    else if (rsvpdebug && viftable[vifi].v_rsvpd == NULL)
2438		printf("rsvp_input: No socket defined for vif %d\n",vifi);
2439	    m_freem(m);
2440	}
2441	return;
2442    }
2443    rsvp_src.sin_addr = ip->ip_src;
2444
2445    if (rsvpdebug && m)
2446	printf("rsvp_input: m->m_len = %d, sbspace() = %ld\n",
2447	       m->m_len,sbspace(&(viftable[vifi].v_rsvpd->so_rcv)));
2448
2449    if (socket_send(viftable[vifi].v_rsvpd, m, &rsvp_src) < 0) {
2450	if (rsvpdebug)
2451	    printf("rsvp_input: Failed to append to socket\n");
2452    } else {
2453	if (rsvpdebug)
2454	    printf("rsvp_input: send packet up\n");
2455    }
2456    VIF_UNLOCK();
2457}
2458
2459/*
2460 * Code for bandwidth monitors
2461 */
2462
2463/*
2464 * Define common interface for timeval-related methods
2465 */
2466#define	BW_TIMEVALCMP(tvp, uvp, cmp) timevalcmp((tvp), (uvp), cmp)
2467#define	BW_TIMEVALDECR(vvp, uvp) timevalsub((vvp), (uvp))
2468#define	BW_TIMEVALADD(vvp, uvp) timevaladd((vvp), (uvp))
2469
2470static uint32_t
2471compute_bw_meter_flags(struct bw_upcall *req)
2472{
2473    uint32_t flags = 0;
2474
2475    if (req->bu_flags & BW_UPCALL_UNIT_PACKETS)
2476	flags |= BW_METER_UNIT_PACKETS;
2477    if (req->bu_flags & BW_UPCALL_UNIT_BYTES)
2478	flags |= BW_METER_UNIT_BYTES;
2479    if (req->bu_flags & BW_UPCALL_GEQ)
2480	flags |= BW_METER_GEQ;
2481    if (req->bu_flags & BW_UPCALL_LEQ)
2482	flags |= BW_METER_LEQ;
2483
2484    return flags;
2485}
2486
2487/*
2488 * Add a bw_meter entry
2489 */
2490static int
2491add_bw_upcall(struct bw_upcall *req)
2492{
2493    struct mfc *mfc;
2494    struct timeval delta = { BW_UPCALL_THRESHOLD_INTERVAL_MIN_SEC,
2495		BW_UPCALL_THRESHOLD_INTERVAL_MIN_USEC };
2496    struct timeval now;
2497    struct bw_meter *x;
2498    uint32_t flags;
2499
2500    if (!(mrt_api_config & MRT_MFC_BW_UPCALL))
2501	return EOPNOTSUPP;
2502
2503    /* Test if the flags are valid */
2504    if (!(req->bu_flags & (BW_UPCALL_UNIT_PACKETS | BW_UPCALL_UNIT_BYTES)))
2505	return EINVAL;
2506    if (!(req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ)))
2507	return EINVAL;
2508    if ((req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ))
2509	    == (BW_UPCALL_GEQ | BW_UPCALL_LEQ))
2510	return EINVAL;
2511
2512    /* Test if the threshold time interval is valid */
2513    if (BW_TIMEVALCMP(&req->bu_threshold.b_time, &delta, <))
2514	return EINVAL;
2515
2516    flags = compute_bw_meter_flags(req);
2517
2518    /*
2519     * Find if we have already same bw_meter entry
2520     */
2521    MFC_LOCK();
2522    mfc = mfc_find(req->bu_src.s_addr, req->bu_dst.s_addr);
2523    if (mfc == NULL) {
2524	MFC_UNLOCK();
2525	return EADDRNOTAVAIL;
2526    }
2527    for (x = mfc->mfc_bw_meter; x != NULL; x = x->bm_mfc_next) {
2528	if ((BW_TIMEVALCMP(&x->bm_threshold.b_time,
2529			   &req->bu_threshold.b_time, ==)) &&
2530	    (x->bm_threshold.b_packets == req->bu_threshold.b_packets) &&
2531	    (x->bm_threshold.b_bytes == req->bu_threshold.b_bytes) &&
2532	    (x->bm_flags & BW_METER_USER_FLAGS) == flags)  {
2533	    MFC_UNLOCK();
2534	    return 0;		/* XXX Already installed */
2535	}
2536    }
2537
2538    /* Allocate the new bw_meter entry */
2539    x = (struct bw_meter *)malloc(sizeof(*x), M_BWMETER, M_NOWAIT);
2540    if (x == NULL) {
2541	MFC_UNLOCK();
2542	return ENOBUFS;
2543    }
2544
2545    /* Set the new bw_meter entry */
2546    x->bm_threshold.b_time = req->bu_threshold.b_time;
2547    GET_TIME(now);
2548    x->bm_start_time = now;
2549    x->bm_threshold.b_packets = req->bu_threshold.b_packets;
2550    x->bm_threshold.b_bytes = req->bu_threshold.b_bytes;
2551    x->bm_measured.b_packets = 0;
2552    x->bm_measured.b_bytes = 0;
2553    x->bm_flags = flags;
2554    x->bm_time_next = NULL;
2555    x->bm_time_hash = BW_METER_BUCKETS;
2556
2557    /* Add the new bw_meter entry to the front of entries for this MFC */
2558    x->bm_mfc = mfc;
2559    x->bm_mfc_next = mfc->mfc_bw_meter;
2560    mfc->mfc_bw_meter = x;
2561    schedule_bw_meter(x, &now);
2562    MFC_UNLOCK();
2563
2564    return 0;
2565}
2566
2567static void
2568free_bw_list(struct bw_meter *list)
2569{
2570    while (list != NULL) {
2571	struct bw_meter *x = list;
2572
2573	list = list->bm_mfc_next;
2574	unschedule_bw_meter(x);
2575	free(x, M_BWMETER);
2576    }
2577}
2578
2579/*
2580 * Delete one or multiple bw_meter entries
2581 */
2582static int
2583del_bw_upcall(struct bw_upcall *req)
2584{
2585    struct mfc *mfc;
2586    struct bw_meter *x;
2587
2588    if (!(mrt_api_config & MRT_MFC_BW_UPCALL))
2589	return EOPNOTSUPP;
2590
2591    MFC_LOCK();
2592    /* Find the corresponding MFC entry */
2593    mfc = mfc_find(req->bu_src.s_addr, req->bu_dst.s_addr);
2594    if (mfc == NULL) {
2595	MFC_UNLOCK();
2596	return EADDRNOTAVAIL;
2597    } else if (req->bu_flags & BW_UPCALL_DELETE_ALL) {
2598	/*
2599	 * Delete all bw_meter entries for this mfc
2600	 */
2601	struct bw_meter *list;
2602
2603	list = mfc->mfc_bw_meter;
2604	mfc->mfc_bw_meter = NULL;
2605	free_bw_list(list);
2606	MFC_UNLOCK();
2607	return 0;
2608    } else {			/* Delete a single bw_meter entry */
2609	struct bw_meter *prev;
2610	uint32_t flags = 0;
2611
2612	flags = compute_bw_meter_flags(req);
2613
2614	/* Find the bw_meter entry to delete */
2615	for (prev = NULL, x = mfc->mfc_bw_meter; x != NULL;
2616	     prev = x, x = x->bm_mfc_next) {
2617	    if ((BW_TIMEVALCMP(&x->bm_threshold.b_time,
2618			       &req->bu_threshold.b_time, ==)) &&
2619		(x->bm_threshold.b_packets == req->bu_threshold.b_packets) &&
2620		(x->bm_threshold.b_bytes == req->bu_threshold.b_bytes) &&
2621		(x->bm_flags & BW_METER_USER_FLAGS) == flags)
2622		break;
2623	}
2624	if (x != NULL) { /* Delete entry from the list for this MFC */
2625	    if (prev != NULL)
2626		prev->bm_mfc_next = x->bm_mfc_next;	/* remove from middle*/
2627	    else
2628		x->bm_mfc->mfc_bw_meter = x->bm_mfc_next;/* new head of list */
2629
2630	    unschedule_bw_meter(x);
2631	    MFC_UNLOCK();
2632	    /* Free the bw_meter entry */
2633	    free(x, M_BWMETER);
2634	    return 0;
2635	} else {
2636	    MFC_UNLOCK();
2637	    return EINVAL;
2638	}
2639    }
2640    /* NOTREACHED */
2641}
2642
2643/*
2644 * Perform bandwidth measurement processing that may result in an upcall
2645 */
2646static void
2647bw_meter_receive_packet(struct bw_meter *x, int plen, struct timeval *nowp)
2648{
2649    struct timeval delta;
2650
2651    MFC_LOCK_ASSERT();
2652
2653    delta = *nowp;
2654    BW_TIMEVALDECR(&delta, &x->bm_start_time);
2655
2656    if (x->bm_flags & BW_METER_GEQ) {
2657	/*
2658	 * Processing for ">=" type of bw_meter entry
2659	 */
2660	if (BW_TIMEVALCMP(&delta, &x->bm_threshold.b_time, >)) {
2661	    /* Reset the bw_meter entry */
2662	    x->bm_start_time = *nowp;
2663	    x->bm_measured.b_packets = 0;
2664	    x->bm_measured.b_bytes = 0;
2665	    x->bm_flags &= ~BW_METER_UPCALL_DELIVERED;
2666	}
2667
2668	/* Record that a packet is received */
2669	x->bm_measured.b_packets++;
2670	x->bm_measured.b_bytes += plen;
2671
2672	/*
2673	 * Test if we should deliver an upcall
2674	 */
2675	if (!(x->bm_flags & BW_METER_UPCALL_DELIVERED)) {
2676	    if (((x->bm_flags & BW_METER_UNIT_PACKETS) &&
2677		 (x->bm_measured.b_packets >= x->bm_threshold.b_packets)) ||
2678		((x->bm_flags & BW_METER_UNIT_BYTES) &&
2679		 (x->bm_measured.b_bytes >= x->bm_threshold.b_bytes))) {
2680		/* Prepare an upcall for delivery */
2681		bw_meter_prepare_upcall(x, nowp);
2682		x->bm_flags |= BW_METER_UPCALL_DELIVERED;
2683	    }
2684	}
2685    } else if (x->bm_flags & BW_METER_LEQ) {
2686	/*
2687	 * Processing for "<=" type of bw_meter entry
2688	 */
2689	if (BW_TIMEVALCMP(&delta, &x->bm_threshold.b_time, >)) {
2690	    /*
2691	     * We are behind time with the multicast forwarding table
2692	     * scanning for "<=" type of bw_meter entries, so test now
2693	     * if we should deliver an upcall.
2694	     */
2695	    if (((x->bm_flags & BW_METER_UNIT_PACKETS) &&
2696		 (x->bm_measured.b_packets <= x->bm_threshold.b_packets)) ||
2697		((x->bm_flags & BW_METER_UNIT_BYTES) &&
2698		 (x->bm_measured.b_bytes <= x->bm_threshold.b_bytes))) {
2699		/* Prepare an upcall for delivery */
2700		bw_meter_prepare_upcall(x, nowp);
2701	    }
2702	    /* Reschedule the bw_meter entry */
2703	    unschedule_bw_meter(x);
2704	    schedule_bw_meter(x, nowp);
2705	}
2706
2707	/* Record that a packet is received */
2708	x->bm_measured.b_packets++;
2709	x->bm_measured.b_bytes += plen;
2710
2711	/*
2712	 * Test if we should restart the measuring interval
2713	 */
2714	if ((x->bm_flags & BW_METER_UNIT_PACKETS &&
2715	     x->bm_measured.b_packets <= x->bm_threshold.b_packets) ||
2716	    (x->bm_flags & BW_METER_UNIT_BYTES &&
2717	     x->bm_measured.b_bytes <= x->bm_threshold.b_bytes)) {
2718	    /* Don't restart the measuring interval */
2719	} else {
2720	    /* Do restart the measuring interval */
2721	    /*
2722	     * XXX: note that we don't unschedule and schedule, because this
2723	     * might be too much overhead per packet. Instead, when we process
2724	     * all entries for a given timer hash bin, we check whether it is
2725	     * really a timeout. If not, we reschedule at that time.
2726	     */
2727	    x->bm_start_time = *nowp;
2728	    x->bm_measured.b_packets = 0;
2729	    x->bm_measured.b_bytes = 0;
2730	    x->bm_flags &= ~BW_METER_UPCALL_DELIVERED;
2731	}
2732    }
2733}
2734
2735/*
2736 * Prepare a bandwidth-related upcall
2737 */
2738static void
2739bw_meter_prepare_upcall(struct bw_meter *x, struct timeval *nowp)
2740{
2741    struct timeval delta;
2742    struct bw_upcall *u;
2743
2744    MFC_LOCK_ASSERT();
2745
2746    /*
2747     * Compute the measured time interval
2748     */
2749    delta = *nowp;
2750    BW_TIMEVALDECR(&delta, &x->bm_start_time);
2751
2752    /*
2753     * If there are too many pending upcalls, deliver them now
2754     */
2755    if (bw_upcalls_n >= BW_UPCALLS_MAX)
2756	bw_upcalls_send();
2757
2758    /*
2759     * Set the bw_upcall entry
2760     */
2761    u = &bw_upcalls[bw_upcalls_n++];
2762    u->bu_src = x->bm_mfc->mfc_origin;
2763    u->bu_dst = x->bm_mfc->mfc_mcastgrp;
2764    u->bu_threshold.b_time = x->bm_threshold.b_time;
2765    u->bu_threshold.b_packets = x->bm_threshold.b_packets;
2766    u->bu_threshold.b_bytes = x->bm_threshold.b_bytes;
2767    u->bu_measured.b_time = delta;
2768    u->bu_measured.b_packets = x->bm_measured.b_packets;
2769    u->bu_measured.b_bytes = x->bm_measured.b_bytes;
2770    u->bu_flags = 0;
2771    if (x->bm_flags & BW_METER_UNIT_PACKETS)
2772	u->bu_flags |= BW_UPCALL_UNIT_PACKETS;
2773    if (x->bm_flags & BW_METER_UNIT_BYTES)
2774	u->bu_flags |= BW_UPCALL_UNIT_BYTES;
2775    if (x->bm_flags & BW_METER_GEQ)
2776	u->bu_flags |= BW_UPCALL_GEQ;
2777    if (x->bm_flags & BW_METER_LEQ)
2778	u->bu_flags |= BW_UPCALL_LEQ;
2779}
2780
2781/*
2782 * Send the pending bandwidth-related upcalls
2783 */
2784static void
2785bw_upcalls_send(void)
2786{
2787    struct mbuf *m;
2788    int len = bw_upcalls_n * sizeof(bw_upcalls[0]);
2789    struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
2790    static struct igmpmsg igmpmsg = { 0,		/* unused1 */
2791				      0,		/* unused2 */
2792				      IGMPMSG_BW_UPCALL,/* im_msgtype */
2793				      0,		/* im_mbz  */
2794				      0,		/* im_vif  */
2795				      0,		/* unused3 */
2796				      { 0 },		/* im_src  */
2797				      { 0 } };		/* im_dst  */
2798
2799    MFC_LOCK_ASSERT();
2800
2801    if (bw_upcalls_n == 0)
2802	return;			/* No pending upcalls */
2803
2804    bw_upcalls_n = 0;
2805
2806    /*
2807     * Allocate a new mbuf, initialize it with the header and
2808     * the payload for the pending calls.
2809     */
2810    MGETHDR(m, M_DONTWAIT, MT_DATA);
2811    if (m == NULL) {
2812	log(LOG_WARNING, "bw_upcalls_send: cannot allocate mbuf\n");
2813	return;
2814    }
2815
2816    m->m_len = m->m_pkthdr.len = 0;
2817    m_copyback(m, 0, sizeof(struct igmpmsg), (caddr_t)&igmpmsg);
2818    m_copyback(m, sizeof(struct igmpmsg), len, (caddr_t)&bw_upcalls[0]);
2819
2820    /*
2821     * Send the upcalls
2822     * XXX do we need to set the address in k_igmpsrc ?
2823     */
2824    mrtstat.mrts_upcalls++;
2825    if (socket_send(ip_mrouter, m, &k_igmpsrc) < 0) {
2826	log(LOG_WARNING, "bw_upcalls_send: ip_mrouter socket queue full\n");
2827	++mrtstat.mrts_upq_sockfull;
2828    }
2829}
2830
2831/*
2832 * Compute the timeout hash value for the bw_meter entries
2833 */
2834#define	BW_METER_TIMEHASH(bw_meter, hash)				\
2835    do {								\
2836	struct timeval next_timeval = (bw_meter)->bm_start_time;	\
2837									\
2838	BW_TIMEVALADD(&next_timeval, &(bw_meter)->bm_threshold.b_time); \
2839	(hash) = next_timeval.tv_sec;					\
2840	if (next_timeval.tv_usec)					\
2841	    (hash)++; /* XXX: make sure we don't timeout early */	\
2842	(hash) %= BW_METER_BUCKETS;					\
2843    } while (0)
2844
2845/*
2846 * Schedule a timer to process periodically bw_meter entry of type "<="
2847 * by linking the entry in the proper hash bucket.
2848 */
2849static void
2850schedule_bw_meter(struct bw_meter *x, struct timeval *nowp)
2851{
2852    int time_hash;
2853
2854    MFC_LOCK_ASSERT();
2855
2856    if (!(x->bm_flags & BW_METER_LEQ))
2857	return;		/* XXX: we schedule timers only for "<=" entries */
2858
2859    /*
2860     * Reset the bw_meter entry
2861     */
2862    x->bm_start_time = *nowp;
2863    x->bm_measured.b_packets = 0;
2864    x->bm_measured.b_bytes = 0;
2865    x->bm_flags &= ~BW_METER_UPCALL_DELIVERED;
2866
2867    /*
2868     * Compute the timeout hash value and insert the entry
2869     */
2870    BW_METER_TIMEHASH(x, time_hash);
2871    x->bm_time_next = bw_meter_timers[time_hash];
2872    bw_meter_timers[time_hash] = x;
2873    x->bm_time_hash = time_hash;
2874}
2875
2876/*
2877 * Unschedule the periodic timer that processes bw_meter entry of type "<="
2878 * by removing the entry from the proper hash bucket.
2879 */
2880static void
2881unschedule_bw_meter(struct bw_meter *x)
2882{
2883    int time_hash;
2884    struct bw_meter *prev, *tmp;
2885
2886    MFC_LOCK_ASSERT();
2887
2888    if (!(x->bm_flags & BW_METER_LEQ))
2889	return;		/* XXX: we schedule timers only for "<=" entries */
2890
2891    /*
2892     * Compute the timeout hash value and delete the entry
2893     */
2894    time_hash = x->bm_time_hash;
2895    if (time_hash >= BW_METER_BUCKETS)
2896	return;		/* Entry was not scheduled */
2897
2898    for (prev = NULL, tmp = bw_meter_timers[time_hash];
2899	     tmp != NULL; prev = tmp, tmp = tmp->bm_time_next)
2900	if (tmp == x)
2901	    break;
2902
2903    if (tmp == NULL)
2904	panic("unschedule_bw_meter: bw_meter entry not found");
2905
2906    if (prev != NULL)
2907	prev->bm_time_next = x->bm_time_next;
2908    else
2909	bw_meter_timers[time_hash] = x->bm_time_next;
2910
2911    x->bm_time_next = NULL;
2912    x->bm_time_hash = BW_METER_BUCKETS;
2913}
2914
2915
2916/*
2917 * Process all "<=" type of bw_meter that should be processed now,
2918 * and for each entry prepare an upcall if necessary. Each processed
2919 * entry is rescheduled again for the (periodic) processing.
2920 *
2921 * This is run periodically (once per second normally). On each round,
2922 * all the potentially matching entries are in the hash slot that we are
2923 * looking at.
2924 */
2925static void
2926bw_meter_process()
2927{
2928    static uint32_t last_tv_sec;	/* last time we processed this */
2929
2930    uint32_t loops;
2931    int i;
2932    struct timeval now, process_endtime;
2933
2934    GET_TIME(now);
2935    if (last_tv_sec == now.tv_sec)
2936	return;		/* nothing to do */
2937
2938    loops = now.tv_sec - last_tv_sec;
2939    last_tv_sec = now.tv_sec;
2940    if (loops > BW_METER_BUCKETS)
2941	loops = BW_METER_BUCKETS;
2942
2943    MFC_LOCK();
2944    /*
2945     * Process all bins of bw_meter entries from the one after the last
2946     * processed to the current one. On entry, i points to the last bucket
2947     * visited, so we need to increment i at the beginning of the loop.
2948     */
2949    for (i = (now.tv_sec - loops) % BW_METER_BUCKETS; loops > 0; loops--) {
2950	struct bw_meter *x, *tmp_list;
2951
2952	if (++i >= BW_METER_BUCKETS)
2953	    i = 0;
2954
2955	/* Disconnect the list of bw_meter entries from the bin */
2956	tmp_list = bw_meter_timers[i];
2957	bw_meter_timers[i] = NULL;
2958
2959	/* Process the list of bw_meter entries */
2960	while (tmp_list != NULL) {
2961	    x = tmp_list;
2962	    tmp_list = tmp_list->bm_time_next;
2963
2964	    /* Test if the time interval is over */
2965	    process_endtime = x->bm_start_time;
2966	    BW_TIMEVALADD(&process_endtime, &x->bm_threshold.b_time);
2967	    if (BW_TIMEVALCMP(&process_endtime, &now, >)) {
2968		/* Not yet: reschedule, but don't reset */
2969		int time_hash;
2970
2971		BW_METER_TIMEHASH(x, time_hash);
2972		if (time_hash == i && process_endtime.tv_sec == now.tv_sec) {
2973		    /*
2974		     * XXX: somehow the bin processing is a bit ahead of time.
2975		     * Put the entry in the next bin.
2976		     */
2977		    if (++time_hash >= BW_METER_BUCKETS)
2978			time_hash = 0;
2979		}
2980		x->bm_time_next = bw_meter_timers[time_hash];
2981		bw_meter_timers[time_hash] = x;
2982		x->bm_time_hash = time_hash;
2983
2984		continue;
2985	    }
2986
2987	    /*
2988	     * Test if we should deliver an upcall
2989	     */
2990	    if (((x->bm_flags & BW_METER_UNIT_PACKETS) &&
2991		 (x->bm_measured.b_packets <= x->bm_threshold.b_packets)) ||
2992		((x->bm_flags & BW_METER_UNIT_BYTES) &&
2993		 (x->bm_measured.b_bytes <= x->bm_threshold.b_bytes))) {
2994		/* Prepare an upcall for delivery */
2995		bw_meter_prepare_upcall(x, &now);
2996	    }
2997
2998	    /*
2999	     * Reschedule for next processing
3000	     */
3001	    schedule_bw_meter(x, &now);
3002	}
3003    }
3004
3005    /* Send all upcalls that are pending delivery */
3006    bw_upcalls_send();
3007
3008    MFC_UNLOCK();
3009}
3010
3011/*
3012 * A periodic function for sending all upcalls that are pending delivery
3013 */
3014static void
3015expire_bw_upcalls_send(void *unused)
3016{
3017    MFC_LOCK();
3018    bw_upcalls_send();
3019    MFC_UNLOCK();
3020
3021    callout_reset(&bw_upcalls_ch, BW_UPCALLS_PERIOD,
3022	expire_bw_upcalls_send, NULL);
3023}
3024
3025/*
3026 * A periodic function for periodic scanning of the multicast forwarding
3027 * table for processing all "<=" bw_meter entries.
3028 */
3029static void
3030expire_bw_meter_process(void *unused)
3031{
3032    if (mrt_api_config & MRT_MFC_BW_UPCALL)
3033	bw_meter_process();
3034
3035    callout_reset(&bw_meter_ch, BW_METER_PERIOD, expire_bw_meter_process, NULL);
3036}
3037
3038/*
3039 * End of bandwidth monitoring code
3040 */
3041
3042#ifdef PIM
3043/*
3044 * Send the packet up to the user daemon, or eventually do kernel encapsulation
3045 *
3046 */
3047static int
3048pim_register_send(struct ip *ip, struct vif *vifp,
3049	struct mbuf *m, struct mfc *rt)
3050{
3051    struct mbuf *mb_copy, *mm;
3052
3053    if (mrtdebug & DEBUG_PIM)
3054	log(LOG_DEBUG, "pim_register_send: ");
3055
3056    mb_copy = pim_register_prepare(ip, m);
3057    if (mb_copy == NULL)
3058	return ENOBUFS;
3059
3060    /*
3061     * Send all the fragments. Note that the mbuf for each fragment
3062     * is freed by the sending machinery.
3063     */
3064    for (mm = mb_copy; mm; mm = mb_copy) {
3065	mb_copy = mm->m_nextpkt;
3066	mm->m_nextpkt = 0;
3067	mm = m_pullup(mm, sizeof(struct ip));
3068	if (mm != NULL) {
3069	    ip = mtod(mm, struct ip *);
3070	    if ((mrt_api_config & MRT_MFC_RP) &&
3071		(rt->mfc_rp.s_addr != INADDR_ANY)) {
3072		pim_register_send_rp(ip, vifp, mm, rt);
3073	    } else {
3074		pim_register_send_upcall(ip, vifp, mm, rt);
3075	    }
3076	}
3077    }
3078
3079    return 0;
3080}
3081
3082/*
3083 * Return a copy of the data packet that is ready for PIM Register
3084 * encapsulation.
3085 * XXX: Note that in the returned copy the IP header is a valid one.
3086 */
3087static struct mbuf *
3088pim_register_prepare(struct ip *ip, struct mbuf *m)
3089{
3090    struct mbuf *mb_copy = NULL;
3091    int mtu;
3092
3093    /* Take care of delayed checksums */
3094    if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
3095	in_delayed_cksum(m);
3096	m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
3097    }
3098
3099    /*
3100     * Copy the old packet & pullup its IP header into the
3101     * new mbuf so we can modify it.
3102     */
3103    mb_copy = m_copypacket(m, M_DONTWAIT);
3104    if (mb_copy == NULL)
3105	return NULL;
3106    mb_copy = m_pullup(mb_copy, ip->ip_hl << 2);
3107    if (mb_copy == NULL)
3108	return NULL;
3109
3110    /* take care of the TTL */
3111    ip = mtod(mb_copy, struct ip *);
3112    --ip->ip_ttl;
3113
3114    /* Compute the MTU after the PIM Register encapsulation */
3115    mtu = 0xffff - sizeof(pim_encap_iphdr) - sizeof(pim_encap_pimhdr);
3116
3117    if (ip->ip_len <= mtu) {
3118	/* Turn the IP header into a valid one */
3119	ip->ip_len = htons(ip->ip_len);
3120	ip->ip_off = htons(ip->ip_off);
3121	ip->ip_sum = 0;
3122	ip->ip_sum = in_cksum(mb_copy, ip->ip_hl << 2);
3123    } else {
3124	/* Fragment the packet */
3125	if (ip_fragment(ip, &mb_copy, mtu, 0, CSUM_DELAY_IP) != 0) {
3126	    m_freem(mb_copy);
3127	    return NULL;
3128	}
3129    }
3130    return mb_copy;
3131}
3132
3133/*
3134 * Send an upcall with the data packet to the user-level process.
3135 */
3136static int
3137pim_register_send_upcall(struct ip *ip, struct vif *vifp,
3138	struct mbuf *mb_copy, struct mfc *rt)
3139{
3140    struct mbuf *mb_first;
3141    int len = ntohs(ip->ip_len);
3142    struct igmpmsg *im;
3143    struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
3144
3145    VIF_LOCK_ASSERT();
3146
3147    /*
3148     * Add a new mbuf with an upcall header
3149     */
3150    MGETHDR(mb_first, M_DONTWAIT, MT_DATA);
3151    if (mb_first == NULL) {
3152	m_freem(mb_copy);
3153	return ENOBUFS;
3154    }
3155    mb_first->m_data += max_linkhdr;
3156    mb_first->m_pkthdr.len = len + sizeof(struct igmpmsg);
3157    mb_first->m_len = sizeof(struct igmpmsg);
3158    mb_first->m_next = mb_copy;
3159
3160    /* Send message to routing daemon */
3161    im = mtod(mb_first, struct igmpmsg *);
3162    im->im_msgtype	= IGMPMSG_WHOLEPKT;
3163    im->im_mbz		= 0;
3164    im->im_vif		= vifp - viftable;
3165    im->im_src		= ip->ip_src;
3166    im->im_dst		= ip->ip_dst;
3167
3168    k_igmpsrc.sin_addr	= ip->ip_src;
3169
3170    mrtstat.mrts_upcalls++;
3171
3172    if (socket_send(ip_mrouter, mb_first, &k_igmpsrc) < 0) {
3173	if (mrtdebug & DEBUG_PIM)
3174	    log(LOG_WARNING,
3175		"mcast: pim_register_send_upcall: ip_mrouter socket queue full");
3176	++mrtstat.mrts_upq_sockfull;
3177	return ENOBUFS;
3178    }
3179
3180    /* Keep statistics */
3181    pimstat.pims_snd_registers_msgs++;
3182    pimstat.pims_snd_registers_bytes += len;
3183
3184    return 0;
3185}
3186
3187/*
3188 * Encapsulate the data packet in PIM Register message and send it to the RP.
3189 */
3190static int
3191pim_register_send_rp(struct ip *ip, struct vif *vifp,
3192	struct mbuf *mb_copy, struct mfc *rt)
3193{
3194    struct mbuf *mb_first;
3195    struct ip *ip_outer;
3196    struct pim_encap_pimhdr *pimhdr;
3197    int len = ntohs(ip->ip_len);
3198    vifi_t vifi = rt->mfc_parent;
3199
3200    VIF_LOCK_ASSERT();
3201
3202    if ((vifi >= numvifs) || (viftable[vifi].v_lcl_addr.s_addr == 0)) {
3203	m_freem(mb_copy);
3204	return EADDRNOTAVAIL;		/* The iif vif is invalid */
3205    }
3206
3207    /*
3208     * Add a new mbuf with the encapsulating header
3209     */
3210    MGETHDR(mb_first, M_DONTWAIT, MT_DATA);
3211    if (mb_first == NULL) {
3212	m_freem(mb_copy);
3213	return ENOBUFS;
3214    }
3215    mb_first->m_data += max_linkhdr;
3216    mb_first->m_len = sizeof(pim_encap_iphdr) + sizeof(pim_encap_pimhdr);
3217    mb_first->m_next = mb_copy;
3218
3219    mb_first->m_pkthdr.len = len + mb_first->m_len;
3220
3221    /*
3222     * Fill in the encapsulating IP and PIM header
3223     */
3224    ip_outer = mtod(mb_first, struct ip *);
3225    *ip_outer = pim_encap_iphdr;
3226    ip_outer->ip_id = ip_newid();
3227    ip_outer->ip_len = len + sizeof(pim_encap_iphdr) + sizeof(pim_encap_pimhdr);
3228    ip_outer->ip_src = viftable[vifi].v_lcl_addr;
3229    ip_outer->ip_dst = rt->mfc_rp;
3230    /*
3231     * Copy the inner header TOS to the outer header, and take care of the
3232     * IP_DF bit.
3233     */
3234    ip_outer->ip_tos = ip->ip_tos;
3235    if (ntohs(ip->ip_off) & IP_DF)
3236	ip_outer->ip_off |= IP_DF;
3237    pimhdr = (struct pim_encap_pimhdr *)((caddr_t)ip_outer
3238					 + sizeof(pim_encap_iphdr));
3239    *pimhdr = pim_encap_pimhdr;
3240    /* If the iif crosses a border, set the Border-bit */
3241    if (rt->mfc_flags[vifi] & MRT_MFC_FLAGS_BORDER_VIF & mrt_api_config)
3242	pimhdr->flags |= htonl(PIM_BORDER_REGISTER);
3243
3244    mb_first->m_data += sizeof(pim_encap_iphdr);
3245    pimhdr->pim.pim_cksum = in_cksum(mb_first, sizeof(pim_encap_pimhdr));
3246    mb_first->m_data -= sizeof(pim_encap_iphdr);
3247
3248    if (vifp->v_rate_limit == 0)
3249	tbf_send_packet(vifp, mb_first);
3250    else
3251	tbf_control(vifp, mb_first, ip, ip_outer->ip_len);
3252
3253    /* Keep statistics */
3254    pimstat.pims_snd_registers_msgs++;
3255    pimstat.pims_snd_registers_bytes += len;
3256
3257    return 0;
3258}
3259
3260/*
3261 * PIM-SMv2 and PIM-DM messages processing.
3262 * Receives and verifies the PIM control messages, and passes them
3263 * up to the listening socket, using rip_input().
3264 * The only message with special processing is the PIM_REGISTER message
3265 * (used by PIM-SM): the PIM header is stripped off, and the inner packet
3266 * is passed to if_simloop().
3267 */
3268void
3269pim_input(struct mbuf *m, int off)
3270{
3271    struct ip *ip = mtod(m, struct ip *);
3272    struct pim *pim;
3273    int minlen;
3274    int datalen = ip->ip_len;
3275    int ip_tos;
3276    int iphlen = off;
3277
3278    /* Keep statistics */
3279    pimstat.pims_rcv_total_msgs++;
3280    pimstat.pims_rcv_total_bytes += datalen;
3281
3282    /*
3283     * Validate lengths
3284     */
3285    if (datalen < PIM_MINLEN) {
3286	pimstat.pims_rcv_tooshort++;
3287	log(LOG_ERR, "pim_input: packet size too small %d from %lx\n",
3288	    datalen, (u_long)ip->ip_src.s_addr);
3289	m_freem(m);
3290	return;
3291    }
3292
3293    /*
3294     * If the packet is at least as big as a REGISTER, go agead
3295     * and grab the PIM REGISTER header size, to avoid another
3296     * possible m_pullup() later.
3297     *
3298     * PIM_MINLEN       == pimhdr + u_int32_t == 4 + 4 = 8
3299     * PIM_REG_MINLEN   == pimhdr + reghdr + encap_iphdr == 4 + 4 + 20 = 28
3300     */
3301    minlen = iphlen + (datalen >= PIM_REG_MINLEN ? PIM_REG_MINLEN : PIM_MINLEN);
3302    /*
3303     * Get the IP and PIM headers in contiguous memory, and
3304     * possibly the PIM REGISTER header.
3305     */
3306    if ((m->m_flags & M_EXT || m->m_len < minlen) &&
3307	(m = m_pullup(m, minlen)) == 0) {
3308	log(LOG_ERR, "pim_input: m_pullup failure\n");
3309	return;
3310    }
3311    /* m_pullup() may have given us a new mbuf so reset ip. */
3312    ip = mtod(m, struct ip *);
3313    ip_tos = ip->ip_tos;
3314
3315    /* adjust mbuf to point to the PIM header */
3316    m->m_data += iphlen;
3317    m->m_len  -= iphlen;
3318    pim = mtod(m, struct pim *);
3319
3320    /*
3321     * Validate checksum. If PIM REGISTER, exclude the data packet.
3322     *
3323     * XXX: some older PIMv2 implementations don't make this distinction,
3324     * so for compatibility reason perform the checksum over part of the
3325     * message, and if error, then over the whole message.
3326     */
3327    if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER && in_cksum(m, PIM_MINLEN) == 0) {
3328	/* do nothing, checksum okay */
3329    } else if (in_cksum(m, datalen)) {
3330	pimstat.pims_rcv_badsum++;
3331	if (mrtdebug & DEBUG_PIM)
3332	    log(LOG_DEBUG, "pim_input: invalid checksum");
3333	m_freem(m);
3334	return;
3335    }
3336
3337    /* PIM version check */
3338    if (PIM_VT_V(pim->pim_vt) < PIM_VERSION) {
3339	pimstat.pims_rcv_badversion++;
3340	log(LOG_ERR, "pim_input: incorrect version %d, expecting %d\n",
3341	    PIM_VT_V(pim->pim_vt), PIM_VERSION);
3342	m_freem(m);
3343	return;
3344    }
3345
3346    /* restore mbuf back to the outer IP */
3347    m->m_data -= iphlen;
3348    m->m_len  += iphlen;
3349
3350    if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER) {
3351	/*
3352	 * Since this is a REGISTER, we'll make a copy of the register
3353	 * headers ip + pim + u_int32 + encap_ip, to be passed up to the
3354	 * routing daemon.
3355	 */
3356	struct sockaddr_in dst = { sizeof(dst), AF_INET };
3357	struct mbuf *mcp;
3358	struct ip *encap_ip;
3359	u_int32_t *reghdr;
3360	struct ifnet *vifp;
3361
3362	VIF_LOCK();
3363	if ((reg_vif_num >= numvifs) || (reg_vif_num == VIFI_INVALID)) {
3364	    VIF_UNLOCK();
3365	    if (mrtdebug & DEBUG_PIM)
3366		log(LOG_DEBUG,
3367		    "pim_input: register vif not set: %d\n", reg_vif_num);
3368	    m_freem(m);
3369	    return;
3370	}
3371	/* XXX need refcnt? */
3372	vifp = viftable[reg_vif_num].v_ifp;
3373	VIF_UNLOCK();
3374
3375	/*
3376	 * Validate length
3377	 */
3378	if (datalen < PIM_REG_MINLEN) {
3379	    pimstat.pims_rcv_tooshort++;
3380	    pimstat.pims_rcv_badregisters++;
3381	    log(LOG_ERR,
3382		"pim_input: register packet size too small %d from %lx\n",
3383		datalen, (u_long)ip->ip_src.s_addr);
3384	    m_freem(m);
3385	    return;
3386	}
3387
3388	reghdr = (u_int32_t *)(pim + 1);
3389	encap_ip = (struct ip *)(reghdr + 1);
3390
3391	if (mrtdebug & DEBUG_PIM) {
3392	    log(LOG_DEBUG,
3393		"pim_input[register], encap_ip: %lx -> %lx, encap_ip len %d\n",
3394		(u_long)ntohl(encap_ip->ip_src.s_addr),
3395		(u_long)ntohl(encap_ip->ip_dst.s_addr),
3396		ntohs(encap_ip->ip_len));
3397	}
3398
3399	/* verify the version number of the inner packet */
3400	if (encap_ip->ip_v != IPVERSION) {
3401	    pimstat.pims_rcv_badregisters++;
3402	    if (mrtdebug & DEBUG_PIM) {
3403		log(LOG_DEBUG, "pim_input: invalid IP version (%d) "
3404		    "of the inner packet\n", encap_ip->ip_v);
3405	    }
3406	    m_freem(m);
3407	    return;
3408	}
3409
3410	/* verify the inner packet is destined to a mcast group */
3411	if (!IN_MULTICAST(ntohl(encap_ip->ip_dst.s_addr))) {
3412	    pimstat.pims_rcv_badregisters++;
3413	    if (mrtdebug & DEBUG_PIM)
3414		log(LOG_DEBUG,
3415		    "pim_input: inner packet of register is not "
3416		    "multicast %lx\n",
3417		    (u_long)ntohl(encap_ip->ip_dst.s_addr));
3418	    m_freem(m);
3419	    return;
3420	}
3421
3422	/* If a NULL_REGISTER, pass it to the daemon */
3423	if ((ntohl(*reghdr) & PIM_NULL_REGISTER))
3424	    goto pim_input_to_daemon;
3425
3426	/*
3427	 * Copy the TOS from the outer IP header to the inner IP header.
3428	 */
3429	if (encap_ip->ip_tos != ip_tos) {
3430	    /* Outer TOS -> inner TOS */
3431	    encap_ip->ip_tos = ip_tos;
3432	    /* Recompute the inner header checksum. Sigh... */
3433
3434	    /* adjust mbuf to point to the inner IP header */
3435	    m->m_data += (iphlen + PIM_MINLEN);
3436	    m->m_len  -= (iphlen + PIM_MINLEN);
3437
3438	    encap_ip->ip_sum = 0;
3439	    encap_ip->ip_sum = in_cksum(m, encap_ip->ip_hl << 2);
3440
3441	    /* restore mbuf to point back to the outer IP header */
3442	    m->m_data -= (iphlen + PIM_MINLEN);
3443	    m->m_len  += (iphlen + PIM_MINLEN);
3444	}
3445
3446	/*
3447	 * Decapsulate the inner IP packet and loopback to forward it
3448	 * as a normal multicast packet. Also, make a copy of the
3449	 *     outer_iphdr + pimhdr + reghdr + encap_iphdr
3450	 * to pass to the daemon later, so it can take the appropriate
3451	 * actions (e.g., send back PIM_REGISTER_STOP).
3452	 * XXX: here m->m_data points to the outer IP header.
3453	 */
3454	mcp = m_copy(m, 0, iphlen + PIM_REG_MINLEN);
3455	if (mcp == NULL) {
3456	    log(LOG_ERR,
3457		"pim_input: pim register: could not copy register head\n");
3458	    m_freem(m);
3459	    return;
3460	}
3461
3462	/* Keep statistics */
3463	/* XXX: registers_bytes include only the encap. mcast pkt */
3464	pimstat.pims_rcv_registers_msgs++;
3465	pimstat.pims_rcv_registers_bytes += ntohs(encap_ip->ip_len);
3466
3467	/*
3468	 * forward the inner ip packet; point m_data at the inner ip.
3469	 */
3470	m_adj(m, iphlen + PIM_MINLEN);
3471
3472	if (mrtdebug & DEBUG_PIM) {
3473	    log(LOG_DEBUG,
3474		"pim_input: forwarding decapsulated register: "
3475		"src %lx, dst %lx, vif %d\n",
3476		(u_long)ntohl(encap_ip->ip_src.s_addr),
3477		(u_long)ntohl(encap_ip->ip_dst.s_addr),
3478		reg_vif_num);
3479	}
3480	/* NB: vifp was collected above; can it change on us? */
3481	if_simloop(vifp, m, dst.sin_family, 0);
3482
3483	/* prepare the register head to send to the mrouting daemon */
3484	m = mcp;
3485    }
3486
3487pim_input_to_daemon:
3488    /*
3489     * Pass the PIM message up to the daemon; if it is a Register message,
3490     * pass the 'head' only up to the daemon. This includes the
3491     * outer IP header, PIM header, PIM-Register header and the
3492     * inner IP header.
3493     * XXX: the outer IP header pkt size of a Register is not adjust to
3494     * reflect the fact that the inner multicast data is truncated.
3495     */
3496    rip_input(m, iphlen);
3497
3498    return;
3499}
3500#endif /* PIM */
3501
3502static int
3503ip_mroute_modevent(module_t mod, int type, void *unused)
3504{
3505    switch (type) {
3506    case MOD_LOAD:
3507	mtx_init(&mrouter_mtx, "mrouter initialization", NULL, MTX_DEF);
3508	MFC_LOCK_INIT();
3509	VIF_LOCK_INIT();
3510	ip_mrouter_reset();
3511	ip_mcast_src = X_ip_mcast_src;
3512	ip_mforward = X_ip_mforward;
3513	ip_mrouter_done = X_ip_mrouter_done;
3514	ip_mrouter_get = X_ip_mrouter_get;
3515	ip_mrouter_set = X_ip_mrouter_set;
3516	ip_rsvp_force_done = X_ip_rsvp_force_done;
3517	ip_rsvp_vif = X_ip_rsvp_vif;
3518	legal_vif_num = X_legal_vif_num;
3519	mrt_ioctl = X_mrt_ioctl;
3520	rsvp_input_p = X_rsvp_input;
3521	break;
3522
3523    case MOD_UNLOAD:
3524	/*
3525	 * Typically module unload happens after the user-level
3526	 * process has shutdown the kernel services (the check
3527	 * below insures someone can't just yank the module out
3528	 * from under a running process).  But if the module is
3529	 * just loaded and then unloaded w/o starting up a user
3530	 * process we still need to cleanup.
3531	 */
3532	if (ip_mrouter)
3533	    return EINVAL;
3534
3535	X_ip_mrouter_done();
3536	ip_mcast_src = NULL;
3537	ip_mforward = NULL;
3538	ip_mrouter_done = NULL;
3539	ip_mrouter_get = NULL;
3540	ip_mrouter_set = NULL;
3541	ip_rsvp_force_done = NULL;
3542	ip_rsvp_vif = NULL;
3543	legal_vif_num = NULL;
3544	mrt_ioctl = NULL;
3545	rsvp_input_p = NULL;
3546	VIF_LOCK_DESTROY();
3547	MFC_LOCK_DESTROY();
3548	mtx_destroy(&mrouter_mtx);
3549	break;
3550    default:
3551	return EOPNOTSUPP;
3552    }
3553    return 0;
3554}
3555
3556static moduledata_t ip_mroutemod = {
3557    "ip_mroute",
3558    ip_mroute_modevent,
3559    0
3560};
3561DECLARE_MODULE(ip_mroute, ip_mroutemod, SI_SUB_PSEUDO, SI_ORDER_ANY);
3562