ip_mroute.c revision 162794
1/*-
2 * Copyright (c) 1989 Stephen Deering
3 * Copyright (c) 1992, 1993
4 *      The Regents of the University of California.  All rights reserved.
5 *
6 * This code is derived from software contributed to Berkeley by
7 * Stephen Deering of Stanford University.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in the
16 *    documentation and/or other materials provided with the distribution.
17 * 4. Neither the name of the University nor the names of its contributors
18 *    may be used to endorse or promote products derived from this software
19 *    without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 *
33 *      @(#)ip_mroute.c 8.2 (Berkeley) 11/15/93
34 */
35
36/*
37 * IP multicast forwarding procedures
38 *
39 * Written by David Waitzman, BBN Labs, August 1988.
40 * Modified by Steve Deering, Stanford, February 1989.
41 * Modified by Mark J. Steiglitz, Stanford, May, 1991
42 * Modified by Van Jacobson, LBL, January 1993
43 * Modified by Ajit Thyagarajan, PARC, August 1993
44 * Modified by Bill Fenner, PARC, April 1995
45 * Modified by Ahmed Helmy, SGI, June 1996
46 * Modified by George Edmond Eddy (Rusty), ISI, February 1998
47 * Modified by Pavlin Radoslavov, USC/ISI, May 1998, August 1999, October 2000
48 * Modified by Hitoshi Asaeda, WIDE, August 2000
49 * Modified by Pavlin Radoslavov, ICSI, October 2002
50 *
51 * MROUTING Revision: 3.5
52 * and PIM-SMv2 and PIM-DM support, advanced API support,
53 * bandwidth metering and signaling
54 *
55 * $FreeBSD: head/sys/netinet/ip_mroute.c 162794 2006-09-29 15:45:11Z bms $
56 */
57
58#include "opt_mac.h"
59#include "opt_mrouting.h"
60
61#ifdef PIM
62#define _PIM_VT 1
63#endif
64
65#include <sys/param.h>
66#include <sys/kernel.h>
67#include <sys/lock.h>
68#include <sys/mac.h>
69#include <sys/malloc.h>
70#include <sys/mbuf.h>
71#include <sys/module.h>
72#include <sys/protosw.h>
73#include <sys/signalvar.h>
74#include <sys/socket.h>
75#include <sys/socketvar.h>
76#include <sys/sockio.h>
77#include <sys/sx.h>
78#include <sys/sysctl.h>
79#include <sys/syslog.h>
80#include <sys/systm.h>
81#include <sys/time.h>
82#include <net/if.h>
83#include <net/netisr.h>
84#include <net/route.h>
85#include <netinet/in.h>
86#include <netinet/igmp.h>
87#include <netinet/in_systm.h>
88#include <netinet/in_var.h>
89#include <netinet/ip.h>
90#include <netinet/ip_encap.h>
91#include <netinet/ip_mroute.h>
92#include <netinet/ip_var.h>
93#include <netinet/ip_options.h>
94#ifdef PIM
95#include <netinet/pim.h>
96#include <netinet/pim_var.h>
97#endif
98#include <netinet/udp.h>
99#include <machine/in_cksum.h>
100
101/*
102 * Control debugging code for rsvp and multicast routing code.
103 * Can only set them with the debugger.
104 */
105static u_int    rsvpdebug;		/* non-zero enables debugging	*/
106
107static u_int	mrtdebug;		/* any set of the flags below	*/
108#define		DEBUG_MFC	0x02
109#define		DEBUG_FORWARD	0x04
110#define		DEBUG_EXPIRE	0x08
111#define		DEBUG_XMIT	0x10
112#define		DEBUG_PIM	0x20
113
114#define		VIFI_INVALID	((vifi_t) -1)
115
116#define M_HASCL(m)	((m)->m_flags & M_EXT)
117
118static MALLOC_DEFINE(M_MRTABLE, "mroutetbl", "multicast routing tables");
119
120/*
121 * Locking.  We use two locks: one for the virtual interface table and
122 * one for the forwarding table.  These locks may be nested in which case
123 * the VIF lock must always be taken first.  Note that each lock is used
124 * to cover not only the specific data structure but also related data
125 * structures.  It may be better to add more fine-grained locking later;
126 * it's not clear how performance-critical this code is.
127 *
128 * XXX: This module could particularly benefit from being cleaned
129 *      up to use the <sys/queue.h> macros.
130 *
131 */
132
133static struct mrtstat	mrtstat;
134SYSCTL_STRUCT(_net_inet_ip, OID_AUTO, mrtstat, CTLFLAG_RW,
135    &mrtstat, mrtstat,
136    "Multicast Routing Statistics (struct mrtstat, netinet/ip_mroute.h)");
137
138static struct mfc	*mfctable[MFCTBLSIZ];
139SYSCTL_OPAQUE(_net_inet_ip, OID_AUTO, mfctable, CTLFLAG_RD,
140    &mfctable, sizeof(mfctable), "S,*mfc[MFCTBLSIZ]",
141    "Multicast Forwarding Table (struct *mfc[MFCTBLSIZ], netinet/ip_mroute.h)");
142
143static struct mtx mfc_mtx;
144#define	MFC_LOCK()	mtx_lock(&mfc_mtx)
145#define	MFC_UNLOCK()	mtx_unlock(&mfc_mtx)
146#define	MFC_LOCK_ASSERT()	do {					\
147	mtx_assert(&mfc_mtx, MA_OWNED);					\
148	NET_ASSERT_GIANT();						\
149} while (0)
150#define	MFC_LOCK_INIT()	mtx_init(&mfc_mtx, "mroute mfc table", NULL, MTX_DEF)
151#define	MFC_LOCK_DESTROY()	mtx_destroy(&mfc_mtx)
152
153static struct vif	viftable[MAXVIFS];
154SYSCTL_OPAQUE(_net_inet_ip, OID_AUTO, viftable, CTLFLAG_RD,
155    &viftable, sizeof(viftable), "S,vif[MAXVIFS]",
156    "Multicast Virtual Interfaces (struct vif[MAXVIFS], netinet/ip_mroute.h)");
157
158static struct mtx vif_mtx;
159#define	VIF_LOCK()	mtx_lock(&vif_mtx)
160#define	VIF_UNLOCK()	mtx_unlock(&vif_mtx)
161#define	VIF_LOCK_ASSERT()	mtx_assert(&vif_mtx, MA_OWNED)
162#define	VIF_LOCK_INIT()	mtx_init(&vif_mtx, "mroute vif table", NULL, MTX_DEF)
163#define	VIF_LOCK_DESTROY()	mtx_destroy(&vif_mtx)
164
165static u_char		nexpire[MFCTBLSIZ];
166
167static eventhandler_tag if_detach_event_tag = NULL;
168
169static struct callout expire_upcalls_ch;
170
171#define		EXPIRE_TIMEOUT	(hz / 4)	/* 4x / second		*/
172#define		UPCALL_EXPIRE	6		/* number of timeouts	*/
173
174/*
175 * Define the token bucket filter structures
176 * tbftable -> each vif has one of these for storing info
177 */
178
179static struct tbf tbftable[MAXVIFS];
180#define		TBF_REPROCESS	(hz / 100)	/* 100x / second */
181
182/*
183 * 'Interfaces' associated with decapsulator (so we can tell
184 * packets that went through it from ones that get reflected
185 * by a broken gateway).  These interfaces are never linked into
186 * the system ifnet list & no routes point to them.  I.e., packets
187 * can't be sent this way.  They only exist as a placeholder for
188 * multicast source verification.
189 */
190static struct ifnet multicast_decap_if[MAXVIFS];
191
192#define ENCAP_TTL 64
193#define ENCAP_PROTO IPPROTO_IPIP	/* 4 */
194
195/* prototype IP hdr for encapsulated packets */
196static struct ip multicast_encap_iphdr = {
197#if BYTE_ORDER == LITTLE_ENDIAN
198	sizeof(struct ip) >> 2, IPVERSION,
199#else
200	IPVERSION, sizeof(struct ip) >> 2,
201#endif
202	0,				/* tos */
203	sizeof(struct ip),		/* total length */
204	0,				/* id */
205	0,				/* frag offset */
206	ENCAP_TTL, ENCAP_PROTO,
207	0,				/* checksum */
208};
209
210/*
211 * Bandwidth meter variables and constants
212 */
213static MALLOC_DEFINE(M_BWMETER, "bwmeter", "multicast upcall bw meters");
214/*
215 * Pending timeouts are stored in a hash table, the key being the
216 * expiration time. Periodically, the entries are analysed and processed.
217 */
218#define BW_METER_BUCKETS	1024
219static struct bw_meter *bw_meter_timers[BW_METER_BUCKETS];
220static struct callout bw_meter_ch;
221#define BW_METER_PERIOD (hz)		/* periodical handling of bw meters */
222
223/*
224 * Pending upcalls are stored in a vector which is flushed when
225 * full, or periodically
226 */
227static struct bw_upcall	bw_upcalls[BW_UPCALLS_MAX];
228static u_int	bw_upcalls_n; /* # of pending upcalls */
229static struct callout bw_upcalls_ch;
230#define BW_UPCALLS_PERIOD (hz)		/* periodical flush of bw upcalls */
231
232#ifdef PIM
233static struct pimstat pimstat;
234SYSCTL_STRUCT(_net_inet_pim, PIMCTL_STATS, stats, CTLFLAG_RD,
235    &pimstat, pimstat,
236    "PIM Statistics (struct pimstat, netinet/pim_var.h)");
237
238/*
239 * Note: the PIM Register encapsulation adds the following in front of a
240 * data packet:
241 *
242 * struct pim_encap_hdr {
243 *    struct ip ip;
244 *    struct pim_encap_pimhdr  pim;
245 * }
246 *
247 */
248
249struct pim_encap_pimhdr {
250	struct pim pim;
251	uint32_t   flags;
252};
253
254static struct ip pim_encap_iphdr = {
255#if BYTE_ORDER == LITTLE_ENDIAN
256	sizeof(struct ip) >> 2,
257	IPVERSION,
258#else
259	IPVERSION,
260	sizeof(struct ip) >> 2,
261#endif
262	0,			/* tos */
263	sizeof(struct ip),	/* total length */
264	0,			/* id */
265	0,			/* frag offset */
266	ENCAP_TTL,
267	IPPROTO_PIM,
268	0,			/* checksum */
269};
270
271static struct pim_encap_pimhdr pim_encap_pimhdr = {
272    {
273	PIM_MAKE_VT(PIM_VERSION, PIM_REGISTER), /* PIM vers and message type */
274	0,			/* reserved */
275	0,			/* checksum */
276    },
277    0				/* flags */
278};
279
280static struct ifnet multicast_register_if;
281static vifi_t reg_vif_num = VIFI_INVALID;
282#endif /* PIM */
283
284/*
285 * Private variables.
286 */
287static vifi_t	   numvifs;
288static const struct encaptab *encap_cookie;
289
290/*
291 * one-back cache used by mroute_encapcheck to locate a tunnel's vif
292 * given a datagram's src ip address.
293 */
294static u_long last_encap_src;
295static struct vif *last_encap_vif;
296
297/*
298 * Callout for queue processing.
299 */
300static struct callout tbf_reprocess_ch;
301
302static u_long	X_ip_mcast_src(int vifi);
303static int	X_ip_mforward(struct ip *ip, struct ifnet *ifp,
304			struct mbuf *m, struct ip_moptions *imo);
305static int	X_ip_mrouter_done(void);
306static int	X_ip_mrouter_get(struct socket *so, struct sockopt *m);
307static int	X_ip_mrouter_set(struct socket *so, struct sockopt *m);
308static int	X_legal_vif_num(int vif);
309static int	X_mrt_ioctl(int cmd, caddr_t data);
310
311static int get_sg_cnt(struct sioc_sg_req *);
312static int get_vif_cnt(struct sioc_vif_req *);
313static void if_detached_event(void *arg __unused, struct ifnet *);
314static int ip_mrouter_init(struct socket *, int);
315static int add_vif(struct vifctl *);
316static int del_vif_locked(vifi_t);
317static int del_vif(vifi_t);
318static int add_mfc(struct mfcctl2 *);
319static int del_mfc(struct mfcctl2 *);
320static int set_api_config(uint32_t *); /* chose API capabilities */
321static int socket_send(struct socket *, struct mbuf *, struct sockaddr_in *);
322static int set_assert(int);
323static void expire_upcalls(void *);
324static int ip_mdq(struct mbuf *, struct ifnet *, struct mfc *, vifi_t);
325static void phyint_send(struct ip *, struct vif *, struct mbuf *);
326static void encap_send(struct ip *, struct vif *, struct mbuf *);
327static void tbf_control(struct vif *, struct mbuf *, struct ip *, u_long);
328static void tbf_queue(struct vif *, struct mbuf *);
329static void tbf_process_q(struct vif *);
330static void tbf_reprocess_q(void *);
331static int tbf_dq_sel(struct vif *, struct ip *);
332static void tbf_send_packet(struct vif *, struct mbuf *);
333static void tbf_update_tokens(struct vif *);
334static int priority(struct vif *, struct ip *);
335
336/*
337 * Bandwidth monitoring
338 */
339static void free_bw_list(struct bw_meter *list);
340static int add_bw_upcall(struct bw_upcall *);
341static int del_bw_upcall(struct bw_upcall *);
342static void bw_meter_receive_packet(struct bw_meter *x, int plen,
343		struct timeval *nowp);
344static void bw_meter_prepare_upcall(struct bw_meter *x, struct timeval *nowp);
345static void bw_upcalls_send(void);
346static void schedule_bw_meter(struct bw_meter *x, struct timeval *nowp);
347static void unschedule_bw_meter(struct bw_meter *x);
348static void bw_meter_process(void);
349static void expire_bw_upcalls_send(void *);
350static void expire_bw_meter_process(void *);
351
352#ifdef PIM
353static int pim_register_send(struct ip *, struct vif *,
354		struct mbuf *, struct mfc *);
355static int pim_register_send_rp(struct ip *, struct vif *,
356		struct mbuf *, struct mfc *);
357static int pim_register_send_upcall(struct ip *, struct vif *,
358		struct mbuf *, struct mfc *);
359static struct mbuf *pim_register_prepare(struct ip *, struct mbuf *);
360#endif
361
362/*
363 * whether or not special PIM assert processing is enabled.
364 */
365static int pim_assert;
366/*
367 * Rate limit for assert notification messages, in usec
368 */
369#define ASSERT_MSG_TIME		3000000
370
371/*
372 * Kernel multicast routing API capabilities and setup.
373 * If more API capabilities are added to the kernel, they should be
374 * recorded in `mrt_api_support'.
375 */
376static const uint32_t mrt_api_support = (MRT_MFC_FLAGS_DISABLE_WRONGVIF |
377					 MRT_MFC_FLAGS_BORDER_VIF |
378					 MRT_MFC_RP |
379					 MRT_MFC_BW_UPCALL);
380static uint32_t mrt_api_config = 0;
381
382/*
383 * Hash function for a source, group entry
384 */
385#define MFCHASH(a, g) MFCHASHMOD(((a) >> 20) ^ ((a) >> 10) ^ (a) ^ \
386			((g) >> 20) ^ ((g) >> 10) ^ (g))
387
388/*
389 * Find a route for a given origin IP address and Multicast group address
390 * Type of service parameter to be added in the future!!!
391 * Statistics are updated by the caller if needed
392 * (mrtstat.mrts_mfc_lookups and mrtstat.mrts_mfc_misses)
393 */
394static struct mfc *
395mfc_find(in_addr_t o, in_addr_t g)
396{
397    struct mfc *rt;
398
399    MFC_LOCK_ASSERT();
400
401    for (rt = mfctable[MFCHASH(o,g)]; rt; rt = rt->mfc_next)
402	if ((rt->mfc_origin.s_addr == o) &&
403		(rt->mfc_mcastgrp.s_addr == g) && (rt->mfc_stall == NULL))
404	    break;
405    return rt;
406}
407
408/*
409 * Macros to compute elapsed time efficiently
410 * Borrowed from Van Jacobson's scheduling code
411 */
412#define TV_DELTA(a, b, delta) {					\
413	int xxs;						\
414	delta = (a).tv_usec - (b).tv_usec;			\
415	if ((xxs = (a).tv_sec - (b).tv_sec)) {			\
416		switch (xxs) {					\
417		case 2:						\
418		      delta += 1000000;				\
419		      /* FALLTHROUGH */				\
420		case 1:						\
421		      delta += 1000000;				\
422		      break;					\
423		default:					\
424		      delta += (1000000 * xxs);			\
425		}						\
426	}							\
427}
428
429#define TV_LT(a, b) (((a).tv_usec < (b).tv_usec && \
430	      (a).tv_sec <= (b).tv_sec) || (a).tv_sec < (b).tv_sec)
431
432/*
433 * Handle MRT setsockopt commands to modify the multicast routing tables.
434 */
435static int
436X_ip_mrouter_set(struct socket *so, struct sockopt *sopt)
437{
438    int	error, optval;
439    vifi_t	vifi;
440    struct	vifctl vifc;
441    struct	mfcctl2 mfc;
442    struct	bw_upcall bw_upcall;
443    uint32_t	i;
444
445    if (so != ip_mrouter && sopt->sopt_name != MRT_INIT)
446	return EPERM;
447
448    error = 0;
449    switch (sopt->sopt_name) {
450    case MRT_INIT:
451	error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval);
452	if (error)
453	    break;
454	error = ip_mrouter_init(so, optval);
455	break;
456
457    case MRT_DONE:
458	error = ip_mrouter_done();
459	break;
460
461    case MRT_ADD_VIF:
462	error = sooptcopyin(sopt, &vifc, sizeof vifc, sizeof vifc);
463	if (error)
464	    break;
465	error = add_vif(&vifc);
466	break;
467
468    case MRT_DEL_VIF:
469	error = sooptcopyin(sopt, &vifi, sizeof vifi, sizeof vifi);
470	if (error)
471	    break;
472	error = del_vif(vifi);
473	break;
474
475    case MRT_ADD_MFC:
476    case MRT_DEL_MFC:
477	/*
478	 * select data size depending on API version.
479	 */
480	if (sopt->sopt_name == MRT_ADD_MFC &&
481		mrt_api_config & MRT_API_FLAGS_ALL) {
482	    error = sooptcopyin(sopt, &mfc, sizeof(struct mfcctl2),
483				sizeof(struct mfcctl2));
484	} else {
485	    error = sooptcopyin(sopt, &mfc, sizeof(struct mfcctl),
486				sizeof(struct mfcctl));
487	    bzero((caddr_t)&mfc + sizeof(struct mfcctl),
488			sizeof(mfc) - sizeof(struct mfcctl));
489	}
490	if (error)
491	    break;
492	if (sopt->sopt_name == MRT_ADD_MFC)
493	    error = add_mfc(&mfc);
494	else
495	    error = del_mfc(&mfc);
496	break;
497
498    case MRT_ASSERT:
499	error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval);
500	if (error)
501	    break;
502	set_assert(optval);
503	break;
504
505    case MRT_API_CONFIG:
506	error = sooptcopyin(sopt, &i, sizeof i, sizeof i);
507	if (!error)
508	    error = set_api_config(&i);
509	if (!error)
510	    error = sooptcopyout(sopt, &i, sizeof i);
511	break;
512
513    case MRT_ADD_BW_UPCALL:
514    case MRT_DEL_BW_UPCALL:
515	error = sooptcopyin(sopt, &bw_upcall, sizeof bw_upcall,
516				sizeof bw_upcall);
517	if (error)
518	    break;
519	if (sopt->sopt_name == MRT_ADD_BW_UPCALL)
520	    error = add_bw_upcall(&bw_upcall);
521	else
522	    error = del_bw_upcall(&bw_upcall);
523	break;
524
525    default:
526	error = EOPNOTSUPP;
527	break;
528    }
529    return error;
530}
531
532/*
533 * Handle MRT getsockopt commands
534 */
535static int
536X_ip_mrouter_get(struct socket *so, struct sockopt *sopt)
537{
538    int error;
539    static int version = 0x0305; /* !!! why is this here? XXX */
540
541    switch (sopt->sopt_name) {
542    case MRT_VERSION:
543	error = sooptcopyout(sopt, &version, sizeof version);
544	break;
545
546    case MRT_ASSERT:
547	error = sooptcopyout(sopt, &pim_assert, sizeof pim_assert);
548	break;
549
550    case MRT_API_SUPPORT:
551	error = sooptcopyout(sopt, &mrt_api_support, sizeof mrt_api_support);
552	break;
553
554    case MRT_API_CONFIG:
555	error = sooptcopyout(sopt, &mrt_api_config, sizeof mrt_api_config);
556	break;
557
558    default:
559	error = EOPNOTSUPP;
560	break;
561    }
562    return error;
563}
564
565/*
566 * Handle ioctl commands to obtain information from the cache
567 */
568static int
569X_mrt_ioctl(int cmd, caddr_t data)
570{
571    int error = 0;
572
573    /*
574     * Currently the only function calling this ioctl routine is rtioctl().
575     * Typically, only root can create the raw socket in order to execute
576     * this ioctl method, however the request might be coming from a prison
577     */
578    error = suser(curthread);
579    if (error)
580	return (error);
581    switch (cmd) {
582    case (SIOCGETVIFCNT):
583	error = get_vif_cnt((struct sioc_vif_req *)data);
584	break;
585
586    case (SIOCGETSGCNT):
587	error = get_sg_cnt((struct sioc_sg_req *)data);
588	break;
589
590    default:
591	error = EINVAL;
592	break;
593    }
594    return error;
595}
596
597/*
598 * returns the packet, byte, rpf-failure count for the source group provided
599 */
600static int
601get_sg_cnt(struct sioc_sg_req *req)
602{
603    struct mfc *rt;
604
605    MFC_LOCK();
606    rt = mfc_find(req->src.s_addr, req->grp.s_addr);
607    if (rt == NULL) {
608	MFC_UNLOCK();
609	req->pktcnt = req->bytecnt = req->wrong_if = 0xffffffff;
610	return EADDRNOTAVAIL;
611    }
612    req->pktcnt = rt->mfc_pkt_cnt;
613    req->bytecnt = rt->mfc_byte_cnt;
614    req->wrong_if = rt->mfc_wrong_if;
615    MFC_UNLOCK();
616    return 0;
617}
618
619/*
620 * returns the input and output packet and byte counts on the vif provided
621 */
622static int
623get_vif_cnt(struct sioc_vif_req *req)
624{
625    vifi_t vifi = req->vifi;
626
627    VIF_LOCK();
628    if (vifi >= numvifs) {
629	VIF_UNLOCK();
630	return EINVAL;
631    }
632
633    req->icount = viftable[vifi].v_pkt_in;
634    req->ocount = viftable[vifi].v_pkt_out;
635    req->ibytes = viftable[vifi].v_bytes_in;
636    req->obytes = viftable[vifi].v_bytes_out;
637    VIF_UNLOCK();
638
639    return 0;
640}
641
642static void
643ip_mrouter_reset(void)
644{
645    bzero((caddr_t)mfctable, sizeof(mfctable));
646    bzero((caddr_t)nexpire, sizeof(nexpire));
647
648    pim_assert = 0;
649    mrt_api_config = 0;
650
651    callout_init(&expire_upcalls_ch, NET_CALLOUT_MPSAFE);
652
653    bw_upcalls_n = 0;
654    bzero((caddr_t)bw_meter_timers, sizeof(bw_meter_timers));
655    callout_init(&bw_upcalls_ch, NET_CALLOUT_MPSAFE);
656    callout_init(&bw_meter_ch, NET_CALLOUT_MPSAFE);
657
658    callout_init(&tbf_reprocess_ch, NET_CALLOUT_MPSAFE);
659}
660
661static struct mtx mrouter_mtx;		/* used to synch init/done work */
662
663static void
664if_detached_event(void *arg __unused, struct ifnet *ifp)
665{
666    vifi_t vifi;
667    int i;
668    struct mfc *mfc;
669    struct mfc *nmfc;
670    struct mfc **ppmfc;	/* Pointer to previous node's next-pointer */
671    struct rtdetq *pq;
672    struct rtdetq *npq;
673
674    mtx_lock(&mrouter_mtx);
675    if (ip_mrouter == NULL) {
676	mtx_unlock(&mrouter_mtx);
677    }
678
679    /*
680     * Tear down multicast forwarder state associated with this ifnet.
681     * 1. Walk the vif list, matching vifs against this ifnet.
682     * 2. Walk the multicast forwarding cache (mfc) looking for
683     *    inner matches with this vif's index.
684     * 3. Free any pending mbufs for this mfc.
685     * 4. Free the associated mfc entry and state associated with this vif.
686     *    Be very careful about unlinking from a singly-linked list whose
687     *    "head node" is a pointer in a simple array.
688     * 5. Free vif state. This should disable ALLMULTI on the interface.
689     */
690    VIF_LOCK();
691    MFC_LOCK();
692    for (vifi = 0; vifi < numvifs; vifi++) {
693	if (viftable[vifi].v_ifp != ifp)
694		continue;
695	for (i = 0; i < MFCTBLSIZ; i++) {
696	    ppmfc = &mfctable[i];
697	    for (mfc = mfctable[i]; mfc != NULL; ) {
698		nmfc = mfc->mfc_next;
699		if (mfc->mfc_parent == vifi) {
700		    for (pq = mfc->mfc_stall; pq != NULL; ) {
701			npq = pq->next;
702			m_freem(pq->m);
703			free(pq, M_MRTABLE);
704			pq = npq;
705		    }
706		    free_bw_list(mfc->mfc_bw_meter);
707		    free(mfc, M_MRTABLE);
708		    *ppmfc = nmfc;
709		} else {
710		    ppmfc = &mfc->mfc_next;
711		}
712		mfc = nmfc;
713	    }
714	}
715	del_vif_locked(vifi);
716    }
717    MFC_UNLOCK();
718    VIF_UNLOCK();
719
720    mtx_unlock(&mrouter_mtx);
721}
722
723/*
724 * Enable multicast routing
725 */
726static int
727ip_mrouter_init(struct socket *so, int version)
728{
729    if (mrtdebug)
730	log(LOG_DEBUG, "ip_mrouter_init: so_type = %d, pr_protocol = %d\n",
731	    so->so_type, so->so_proto->pr_protocol);
732
733    if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_IGMP)
734	return EOPNOTSUPP;
735
736    if (version != 1)
737	return ENOPROTOOPT;
738
739    mtx_lock(&mrouter_mtx);
740
741    if (ip_mrouter != NULL) {
742	mtx_unlock(&mrouter_mtx);
743	return EADDRINUSE;
744    }
745
746    if_detach_event_tag = EVENTHANDLER_REGISTER(ifnet_departure_event,
747        if_detached_event, NULL, EVENTHANDLER_PRI_ANY);
748    if (if_detach_event_tag == NULL)
749	return (ENOMEM);
750
751    callout_reset(&expire_upcalls_ch, EXPIRE_TIMEOUT, expire_upcalls, NULL);
752
753    callout_reset(&bw_upcalls_ch, BW_UPCALLS_PERIOD,
754	expire_bw_upcalls_send, NULL);
755    callout_reset(&bw_meter_ch, BW_METER_PERIOD, expire_bw_meter_process, NULL);
756
757    ip_mrouter = so;
758
759    mtx_unlock(&mrouter_mtx);
760
761    if (mrtdebug)
762	log(LOG_DEBUG, "ip_mrouter_init\n");
763
764    return 0;
765}
766
767/*
768 * Disable multicast routing
769 */
770static int
771X_ip_mrouter_done(void)
772{
773    vifi_t vifi;
774    int i;
775    struct ifnet *ifp;
776    struct ifreq ifr;
777    struct mfc *rt;
778    struct rtdetq *rte;
779
780    mtx_lock(&mrouter_mtx);
781
782    if (ip_mrouter == NULL) {
783	mtx_unlock(&mrouter_mtx);
784	return EINVAL;
785    }
786
787    /*
788     * Detach/disable hooks to the reset of the system.
789     */
790    ip_mrouter = NULL;
791    mrt_api_config = 0;
792
793    VIF_LOCK();
794    if (encap_cookie) {
795	const struct encaptab *c = encap_cookie;
796	encap_cookie = NULL;
797	encap_detach(c);
798    }
799    VIF_UNLOCK();
800
801    callout_stop(&tbf_reprocess_ch);
802
803    VIF_LOCK();
804    /*
805     * For each phyint in use, disable promiscuous reception of all IP
806     * multicasts.
807     */
808    for (vifi = 0; vifi < numvifs; vifi++) {
809	if (viftable[vifi].v_lcl_addr.s_addr != 0 &&
810		!(viftable[vifi].v_flags & (VIFF_TUNNEL | VIFF_REGISTER))) {
811	    struct sockaddr_in *so = (struct sockaddr_in *)&(ifr.ifr_addr);
812
813	    so->sin_len = sizeof(struct sockaddr_in);
814	    so->sin_family = AF_INET;
815	    so->sin_addr.s_addr = INADDR_ANY;
816	    ifp = viftable[vifi].v_ifp;
817	    if_allmulti(ifp, 0);
818	}
819    }
820    bzero((caddr_t)tbftable, sizeof(tbftable));
821    bzero((caddr_t)viftable, sizeof(viftable));
822    numvifs = 0;
823    pim_assert = 0;
824    VIF_UNLOCK();
825    EVENTHANDLER_DEREGISTER(ifnet_departure_event, if_detach_event_tag);
826
827    /*
828     * Free all multicast forwarding cache entries.
829     */
830    callout_stop(&expire_upcalls_ch);
831    callout_stop(&bw_upcalls_ch);
832    callout_stop(&bw_meter_ch);
833
834    MFC_LOCK();
835    for (i = 0; i < MFCTBLSIZ; i++) {
836	for (rt = mfctable[i]; rt != NULL; ) {
837	    struct mfc *nr = rt->mfc_next;
838
839	    for (rte = rt->mfc_stall; rte != NULL; ) {
840		struct rtdetq *n = rte->next;
841
842		m_freem(rte->m);
843		free(rte, M_MRTABLE);
844		rte = n;
845	    }
846	    free_bw_list(rt->mfc_bw_meter);
847	    free(rt, M_MRTABLE);
848	    rt = nr;
849	}
850    }
851    bzero((caddr_t)mfctable, sizeof(mfctable));
852    bzero((caddr_t)nexpire, sizeof(nexpire));
853    bw_upcalls_n = 0;
854    bzero(bw_meter_timers, sizeof(bw_meter_timers));
855    MFC_UNLOCK();
856
857    /*
858     * Reset de-encapsulation cache
859     */
860    last_encap_src = INADDR_ANY;
861    last_encap_vif = NULL;
862#ifdef PIM
863    reg_vif_num = VIFI_INVALID;
864#endif
865
866    mtx_unlock(&mrouter_mtx);
867
868    if (mrtdebug)
869	log(LOG_DEBUG, "ip_mrouter_done\n");
870
871    return 0;
872}
873
874/*
875 * Set PIM assert processing global
876 */
877static int
878set_assert(int i)
879{
880    if ((i != 1) && (i != 0))
881	return EINVAL;
882
883    pim_assert = i;
884
885    return 0;
886}
887
888/*
889 * Configure API capabilities
890 */
891int
892set_api_config(uint32_t *apival)
893{
894    int i;
895
896    /*
897     * We can set the API capabilities only if it is the first operation
898     * after MRT_INIT. I.e.:
899     *  - there are no vifs installed
900     *  - pim_assert is not enabled
901     *  - the MFC table is empty
902     */
903    if (numvifs > 0) {
904	*apival = 0;
905	return EPERM;
906    }
907    if (pim_assert) {
908	*apival = 0;
909	return EPERM;
910    }
911    for (i = 0; i < MFCTBLSIZ; i++) {
912	if (mfctable[i] != NULL) {
913	    *apival = 0;
914	    return EPERM;
915	}
916    }
917
918    mrt_api_config = *apival & mrt_api_support;
919    *apival = mrt_api_config;
920
921    return 0;
922}
923
924/*
925 * Decide if a packet is from a tunnelled peer.
926 * Return 0 if not, 64 if so.  XXX yuck.. 64 ???
927 */
928static int
929mroute_encapcheck(const struct mbuf *m, int off, int proto, void *arg)
930{
931    struct ip *ip = mtod(m, struct ip *);
932    int hlen = ip->ip_hl << 2;
933
934    /*
935     * don't claim the packet if it's not to a multicast destination or if
936     * we don't have an encapsulating tunnel with the source.
937     * Note:  This code assumes that the remote site IP address
938     * uniquely identifies the tunnel (i.e., that this site has
939     * at most one tunnel with the remote site).
940     */
941    if (!IN_MULTICAST(ntohl(((struct ip *)((char *)ip+hlen))->ip_dst.s_addr)))
942	return 0;
943    if (ip->ip_src.s_addr != last_encap_src) {
944	struct vif *vifp = viftable;
945	struct vif *vife = vifp + numvifs;
946
947	last_encap_src = ip->ip_src.s_addr;
948	last_encap_vif = NULL;
949	for ( ; vifp < vife; ++vifp)
950	    if (vifp->v_rmt_addr.s_addr == ip->ip_src.s_addr) {
951		if ((vifp->v_flags & (VIFF_TUNNEL|VIFF_SRCRT)) == VIFF_TUNNEL)
952		    last_encap_vif = vifp;
953		break;
954	    }
955    }
956    if (last_encap_vif == NULL) {
957	last_encap_src = INADDR_ANY;
958	return 0;
959    }
960    return 64;
961}
962
963/*
964 * De-encapsulate a packet and feed it back through ip input (this
965 * routine is called whenever IP gets a packet that mroute_encap_func()
966 * claimed).
967 */
968static void
969mroute_encap_input(struct mbuf *m, int off)
970{
971    struct ip *ip = mtod(m, struct ip *);
972    int hlen = ip->ip_hl << 2;
973
974    if (hlen > sizeof(struct ip))
975	ip_stripoptions(m, (struct mbuf *) 0);
976    m->m_data += sizeof(struct ip);
977    m->m_len -= sizeof(struct ip);
978    m->m_pkthdr.len -= sizeof(struct ip);
979
980    m->m_pkthdr.rcvif = last_encap_vif->v_ifp;
981
982    netisr_queue(NETISR_IP, m);		/* mbuf is free'd on failure. */
983    /*
984     * normally we would need a "schednetisr(NETISR_IP)"
985     * here but we were called by ip_input and it is going
986     * to loop back & try to dequeue the packet we just
987     * queued as soon as we return so we avoid the
988     * unnecessary software interrrupt.
989     *
990     * XXX
991     * This no longer holds - we may have direct-dispatched the packet,
992     * or there may be a queue processing limit.
993     */
994}
995
996extern struct domain inetdomain;
997static struct protosw mroute_encap_protosw =
998{
999	.pr_type =		SOCK_RAW,
1000	.pr_domain =		&inetdomain,
1001	.pr_protocol =		IPPROTO_IPV4,
1002	.pr_flags =		PR_ATOMIC|PR_ADDR,
1003	.pr_input =		mroute_encap_input,
1004	.pr_ctloutput =		rip_ctloutput,
1005	.pr_usrreqs =		&rip_usrreqs
1006};
1007
1008/*
1009 * Add a vif to the vif table
1010 */
1011static int
1012add_vif(struct vifctl *vifcp)
1013{
1014    struct vif *vifp = viftable + vifcp->vifc_vifi;
1015    struct sockaddr_in sin = {sizeof sin, AF_INET};
1016    struct ifaddr *ifa;
1017    struct ifnet *ifp;
1018    int error;
1019    struct tbf *v_tbf = tbftable + vifcp->vifc_vifi;
1020
1021    VIF_LOCK();
1022    if (vifcp->vifc_vifi >= MAXVIFS) {
1023	VIF_UNLOCK();
1024	return EINVAL;
1025    }
1026    if (vifp->v_lcl_addr.s_addr != INADDR_ANY) {
1027	VIF_UNLOCK();
1028	return EADDRINUSE;
1029    }
1030    if (vifcp->vifc_lcl_addr.s_addr == INADDR_ANY) {
1031	VIF_UNLOCK();
1032	return EADDRNOTAVAIL;
1033    }
1034
1035    /* Find the interface with an address in AF_INET family */
1036#ifdef PIM
1037    if (vifcp->vifc_flags & VIFF_REGISTER) {
1038	/*
1039	 * XXX: Because VIFF_REGISTER does not really need a valid
1040	 * local interface (e.g. it could be 127.0.0.2), we don't
1041	 * check its address.
1042	 */
1043	ifp = NULL;
1044    } else
1045#endif
1046    {
1047	sin.sin_addr = vifcp->vifc_lcl_addr;
1048	ifa = ifa_ifwithaddr((struct sockaddr *)&sin);
1049	if (ifa == NULL) {
1050	    VIF_UNLOCK();
1051	    return EADDRNOTAVAIL;
1052	}
1053	ifp = ifa->ifa_ifp;
1054    }
1055
1056    if (vifcp->vifc_flags & VIFF_TUNNEL) {
1057	if ((vifcp->vifc_flags & VIFF_SRCRT) == 0) {
1058	    /*
1059	     * An encapsulating tunnel is wanted.  Tell
1060	     * mroute_encap_input() to start paying attention
1061	     * to encapsulated packets.
1062	     */
1063	    if (encap_cookie == NULL) {
1064		int i;
1065
1066		encap_cookie = encap_attach_func(AF_INET, IPPROTO_IPV4,
1067				mroute_encapcheck,
1068				(struct protosw *)&mroute_encap_protosw, NULL);
1069
1070		if (encap_cookie == NULL) {
1071		    printf("ip_mroute: unable to attach encap\n");
1072		    VIF_UNLOCK();
1073		    return EIO;	/* XXX */
1074		}
1075		for (i = 0; i < MAXVIFS; ++i) {
1076		    if_initname(&multicast_decap_if[i], "mdecap", i);
1077		}
1078	    }
1079	    /*
1080	     * Set interface to fake encapsulator interface
1081	     */
1082	    ifp = &multicast_decap_if[vifcp->vifc_vifi];
1083	    /*
1084	     * Prepare cached route entry
1085	     */
1086	    bzero(&vifp->v_route, sizeof(vifp->v_route));
1087	} else {
1088	    log(LOG_ERR, "source routed tunnels not supported\n");
1089	    VIF_UNLOCK();
1090	    return EOPNOTSUPP;
1091	}
1092#ifdef PIM
1093    } else if (vifcp->vifc_flags & VIFF_REGISTER) {
1094	ifp = &multicast_register_if;
1095	if (mrtdebug)
1096	    log(LOG_DEBUG, "Adding a register vif, ifp: %p\n",
1097		    (void *)&multicast_register_if);
1098	if (reg_vif_num == VIFI_INVALID) {
1099	    if_initname(&multicast_register_if, "register_vif", 0);
1100	    multicast_register_if.if_flags = IFF_LOOPBACK;
1101	    bzero(&vifp->v_route, sizeof(vifp->v_route));
1102	    reg_vif_num = vifcp->vifc_vifi;
1103	}
1104#endif
1105    } else {		/* Make sure the interface supports multicast */
1106	if ((ifp->if_flags & IFF_MULTICAST) == 0) {
1107	    VIF_UNLOCK();
1108	    return EOPNOTSUPP;
1109	}
1110
1111	/* Enable promiscuous reception of all IP multicasts from the if */
1112	error = if_allmulti(ifp, 1);
1113	if (error) {
1114	    VIF_UNLOCK();
1115	    return error;
1116	}
1117    }
1118
1119    /* define parameters for the tbf structure */
1120    vifp->v_tbf = v_tbf;
1121    GET_TIME(vifp->v_tbf->tbf_last_pkt_t);
1122    vifp->v_tbf->tbf_n_tok = 0;
1123    vifp->v_tbf->tbf_q_len = 0;
1124    vifp->v_tbf->tbf_max_q_len = MAXQSIZE;
1125    vifp->v_tbf->tbf_q = vifp->v_tbf->tbf_t = NULL;
1126
1127    vifp->v_flags     = vifcp->vifc_flags;
1128    vifp->v_threshold = vifcp->vifc_threshold;
1129    vifp->v_lcl_addr  = vifcp->vifc_lcl_addr;
1130    vifp->v_rmt_addr  = vifcp->vifc_rmt_addr;
1131    vifp->v_ifp       = ifp;
1132    /* scaling up here allows division by 1024 in critical code */
1133    vifp->v_rate_limit= vifcp->vifc_rate_limit * 1024 / 1000;
1134    vifp->v_rsvp_on   = 0;
1135    vifp->v_rsvpd     = NULL;
1136    /* initialize per vif pkt counters */
1137    vifp->v_pkt_in    = 0;
1138    vifp->v_pkt_out   = 0;
1139    vifp->v_bytes_in  = 0;
1140    vifp->v_bytes_out = 0;
1141
1142    /* Adjust numvifs up if the vifi is higher than numvifs */
1143    if (numvifs <= vifcp->vifc_vifi) numvifs = vifcp->vifc_vifi + 1;
1144
1145    VIF_UNLOCK();
1146
1147    if (mrtdebug)
1148	log(LOG_DEBUG, "add_vif #%d, lcladdr %lx, %s %lx, thresh %x, rate %d\n",
1149	    vifcp->vifc_vifi,
1150	    (u_long)ntohl(vifcp->vifc_lcl_addr.s_addr),
1151	    (vifcp->vifc_flags & VIFF_TUNNEL) ? "rmtaddr" : "mask",
1152	    (u_long)ntohl(vifcp->vifc_rmt_addr.s_addr),
1153	    vifcp->vifc_threshold,
1154	    vifcp->vifc_rate_limit);
1155
1156    return 0;
1157}
1158
1159/*
1160 * Delete a vif from the vif table
1161 */
1162static int
1163del_vif_locked(vifi_t vifi)
1164{
1165    struct vif *vifp;
1166
1167    VIF_LOCK_ASSERT();
1168
1169    if (vifi >= numvifs) {
1170	return EINVAL;
1171    }
1172    vifp = &viftable[vifi];
1173    if (vifp->v_lcl_addr.s_addr == INADDR_ANY) {
1174	return EADDRNOTAVAIL;
1175    }
1176
1177    if (!(vifp->v_flags & (VIFF_TUNNEL | VIFF_REGISTER)))
1178	if_allmulti(vifp->v_ifp, 0);
1179
1180    if (vifp == last_encap_vif) {
1181	last_encap_vif = NULL;
1182	last_encap_src = INADDR_ANY;
1183    }
1184
1185    /*
1186     * Free packets queued at the interface
1187     */
1188    while (vifp->v_tbf->tbf_q) {
1189	struct mbuf *m = vifp->v_tbf->tbf_q;
1190
1191	vifp->v_tbf->tbf_q = m->m_act;
1192	m_freem(m);
1193    }
1194
1195#ifdef PIM
1196    if (vifp->v_flags & VIFF_REGISTER)
1197	reg_vif_num = VIFI_INVALID;
1198#endif
1199
1200    bzero((caddr_t)vifp->v_tbf, sizeof(*(vifp->v_tbf)));
1201    bzero((caddr_t)vifp, sizeof (*vifp));
1202
1203    if (mrtdebug)
1204	log(LOG_DEBUG, "del_vif %d, numvifs %d\n", vifi, numvifs);
1205
1206    /* Adjust numvifs down */
1207    for (vifi = numvifs; vifi > 0; vifi--)
1208	if (viftable[vifi-1].v_lcl_addr.s_addr != INADDR_ANY)
1209	    break;
1210    numvifs = vifi;
1211
1212    return 0;
1213}
1214
1215static int
1216del_vif(vifi_t vifi)
1217{
1218    int cc;
1219
1220    VIF_LOCK();
1221    cc = del_vif_locked(vifi);
1222    VIF_UNLOCK();
1223
1224    return cc;
1225}
1226
1227/*
1228 * update an mfc entry without resetting counters and S,G addresses.
1229 */
1230static void
1231update_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp)
1232{
1233    int i;
1234
1235    rt->mfc_parent = mfccp->mfcc_parent;
1236    for (i = 0; i < numvifs; i++) {
1237	rt->mfc_ttls[i] = mfccp->mfcc_ttls[i];
1238	rt->mfc_flags[i] = mfccp->mfcc_flags[i] & mrt_api_config &
1239	    MRT_MFC_FLAGS_ALL;
1240    }
1241    /* set the RP address */
1242    if (mrt_api_config & MRT_MFC_RP)
1243	rt->mfc_rp = mfccp->mfcc_rp;
1244    else
1245	rt->mfc_rp.s_addr = INADDR_ANY;
1246}
1247
1248/*
1249 * fully initialize an mfc entry from the parameter.
1250 */
1251static void
1252init_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp)
1253{
1254    rt->mfc_origin     = mfccp->mfcc_origin;
1255    rt->mfc_mcastgrp   = mfccp->mfcc_mcastgrp;
1256
1257    update_mfc_params(rt, mfccp);
1258
1259    /* initialize pkt counters per src-grp */
1260    rt->mfc_pkt_cnt    = 0;
1261    rt->mfc_byte_cnt   = 0;
1262    rt->mfc_wrong_if   = 0;
1263    rt->mfc_last_assert.tv_sec = rt->mfc_last_assert.tv_usec = 0;
1264}
1265
1266
1267/*
1268 * Add an mfc entry
1269 */
1270static int
1271add_mfc(struct mfcctl2 *mfccp)
1272{
1273    struct mfc *rt;
1274    u_long hash;
1275    struct rtdetq *rte;
1276    u_short nstl;
1277
1278    VIF_LOCK();
1279    MFC_LOCK();
1280
1281    rt = mfc_find(mfccp->mfcc_origin.s_addr, mfccp->mfcc_mcastgrp.s_addr);
1282
1283    /* If an entry already exists, just update the fields */
1284    if (rt) {
1285	if (mrtdebug & DEBUG_MFC)
1286	    log(LOG_DEBUG,"add_mfc update o %lx g %lx p %x\n",
1287		(u_long)ntohl(mfccp->mfcc_origin.s_addr),
1288		(u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr),
1289		mfccp->mfcc_parent);
1290
1291	update_mfc_params(rt, mfccp);
1292	MFC_UNLOCK();
1293	VIF_UNLOCK();
1294	return 0;
1295    }
1296
1297    /*
1298     * Find the entry for which the upcall was made and update
1299     */
1300    hash = MFCHASH(mfccp->mfcc_origin.s_addr, mfccp->mfcc_mcastgrp.s_addr);
1301    for (rt = mfctable[hash], nstl = 0; rt; rt = rt->mfc_next) {
1302
1303	if ((rt->mfc_origin.s_addr == mfccp->mfcc_origin.s_addr) &&
1304		(rt->mfc_mcastgrp.s_addr == mfccp->mfcc_mcastgrp.s_addr) &&
1305		(rt->mfc_stall != NULL)) {
1306
1307	    if (nstl++)
1308		log(LOG_ERR, "add_mfc %s o %lx g %lx p %x dbx %p\n",
1309		    "multiple kernel entries",
1310		    (u_long)ntohl(mfccp->mfcc_origin.s_addr),
1311		    (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr),
1312		    mfccp->mfcc_parent, (void *)rt->mfc_stall);
1313
1314	    if (mrtdebug & DEBUG_MFC)
1315		log(LOG_DEBUG,"add_mfc o %lx g %lx p %x dbg %p\n",
1316		    (u_long)ntohl(mfccp->mfcc_origin.s_addr),
1317		    (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr),
1318		    mfccp->mfcc_parent, (void *)rt->mfc_stall);
1319
1320	    init_mfc_params(rt, mfccp);
1321
1322	    rt->mfc_expire = 0;	/* Don't clean this guy up */
1323	    nexpire[hash]--;
1324
1325	    /* free packets Qed at the end of this entry */
1326	    for (rte = rt->mfc_stall; rte != NULL; ) {
1327		struct rtdetq *n = rte->next;
1328
1329		ip_mdq(rte->m, rte->ifp, rt, -1);
1330		m_freem(rte->m);
1331		free(rte, M_MRTABLE);
1332		rte = n;
1333	    }
1334	    rt->mfc_stall = NULL;
1335	}
1336    }
1337
1338    /*
1339     * It is possible that an entry is being inserted without an upcall
1340     */
1341    if (nstl == 0) {
1342	if (mrtdebug & DEBUG_MFC)
1343	    log(LOG_DEBUG,"add_mfc no upcall h %lu o %lx g %lx p %x\n",
1344		hash, (u_long)ntohl(mfccp->mfcc_origin.s_addr),
1345		(u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr),
1346		mfccp->mfcc_parent);
1347
1348	for (rt = mfctable[hash]; rt != NULL; rt = rt->mfc_next) {
1349	    if ((rt->mfc_origin.s_addr == mfccp->mfcc_origin.s_addr) &&
1350		    (rt->mfc_mcastgrp.s_addr == mfccp->mfcc_mcastgrp.s_addr)) {
1351		init_mfc_params(rt, mfccp);
1352		if (rt->mfc_expire)
1353		    nexpire[hash]--;
1354		rt->mfc_expire = 0;
1355		break; /* XXX */
1356	    }
1357	}
1358	if (rt == NULL) {		/* no upcall, so make a new entry */
1359	    rt = (struct mfc *)malloc(sizeof(*rt), M_MRTABLE, M_NOWAIT);
1360	    if (rt == NULL) {
1361		MFC_UNLOCK();
1362		VIF_UNLOCK();
1363		return ENOBUFS;
1364	    }
1365
1366	    init_mfc_params(rt, mfccp);
1367	    rt->mfc_expire     = 0;
1368	    rt->mfc_stall      = NULL;
1369
1370	    rt->mfc_bw_meter = NULL;
1371	    /* insert new entry at head of hash chain */
1372	    rt->mfc_next = mfctable[hash];
1373	    mfctable[hash] = rt;
1374	}
1375    }
1376    MFC_UNLOCK();
1377    VIF_UNLOCK();
1378    return 0;
1379}
1380
1381/*
1382 * Delete an mfc entry
1383 */
1384static int
1385del_mfc(struct mfcctl2 *mfccp)
1386{
1387    struct in_addr	origin;
1388    struct in_addr	mcastgrp;
1389    struct mfc		*rt;
1390    struct mfc		**nptr;
1391    u_long		hash;
1392    struct bw_meter	*list;
1393
1394    origin = mfccp->mfcc_origin;
1395    mcastgrp = mfccp->mfcc_mcastgrp;
1396
1397    if (mrtdebug & DEBUG_MFC)
1398	log(LOG_DEBUG,"del_mfc orig %lx mcastgrp %lx\n",
1399	    (u_long)ntohl(origin.s_addr), (u_long)ntohl(mcastgrp.s_addr));
1400
1401    MFC_LOCK();
1402
1403    hash = MFCHASH(origin.s_addr, mcastgrp.s_addr);
1404    for (nptr = &mfctable[hash]; (rt = *nptr) != NULL; nptr = &rt->mfc_next)
1405	if (origin.s_addr == rt->mfc_origin.s_addr &&
1406		mcastgrp.s_addr == rt->mfc_mcastgrp.s_addr &&
1407		rt->mfc_stall == NULL)
1408	    break;
1409    if (rt == NULL) {
1410	MFC_UNLOCK();
1411	return EADDRNOTAVAIL;
1412    }
1413
1414    *nptr = rt->mfc_next;
1415
1416    /*
1417     * free the bw_meter entries
1418     */
1419    list = rt->mfc_bw_meter;
1420    rt->mfc_bw_meter = NULL;
1421
1422    free(rt, M_MRTABLE);
1423
1424    free_bw_list(list);
1425
1426    MFC_UNLOCK();
1427
1428    return 0;
1429}
1430
1431/*
1432 * Send a message to the routing daemon on the multicast routing socket
1433 */
1434static int
1435socket_send(struct socket *s, struct mbuf *mm, struct sockaddr_in *src)
1436{
1437    if (s) {
1438	SOCKBUF_LOCK(&s->so_rcv);
1439	if (sbappendaddr_locked(&s->so_rcv, (struct sockaddr *)src, mm,
1440	    NULL) != 0) {
1441	    sorwakeup_locked(s);
1442	    return 0;
1443	}
1444	SOCKBUF_UNLOCK(&s->so_rcv);
1445    }
1446    m_freem(mm);
1447    return -1;
1448}
1449
1450/*
1451 * IP multicast forwarding function. This function assumes that the packet
1452 * pointed to by "ip" has arrived on (or is about to be sent to) the interface
1453 * pointed to by "ifp", and the packet is to be relayed to other networks
1454 * that have members of the packet's destination IP multicast group.
1455 *
1456 * The packet is returned unscathed to the caller, unless it is
1457 * erroneous, in which case a non-zero return value tells the caller to
1458 * discard it.
1459 */
1460
1461#define TUNNEL_LEN  12  /* # bytes of IP option for tunnel encapsulation  */
1462
1463static int
1464X_ip_mforward(struct ip *ip, struct ifnet *ifp, struct mbuf *m,
1465    struct ip_moptions *imo)
1466{
1467    struct mfc *rt;
1468    int error;
1469    vifi_t vifi;
1470
1471    if (mrtdebug & DEBUG_FORWARD)
1472	log(LOG_DEBUG, "ip_mforward: src %lx, dst %lx, ifp %p\n",
1473	    (u_long)ntohl(ip->ip_src.s_addr), (u_long)ntohl(ip->ip_dst.s_addr),
1474	    (void *)ifp);
1475
1476    if (ip->ip_hl < (sizeof(struct ip) + TUNNEL_LEN) >> 2 ||
1477		((u_char *)(ip + 1))[1] != IPOPT_LSRR ) {
1478	/*
1479	 * Packet arrived via a physical interface or
1480	 * an encapsulated tunnel or a register_vif.
1481	 */
1482    } else {
1483	/*
1484	 * Packet arrived through a source-route tunnel.
1485	 * Source-route tunnels are no longer supported.
1486	 */
1487	static int last_log;
1488	if (last_log != time_uptime) {
1489	    last_log = time_uptime;
1490	    log(LOG_ERR,
1491		"ip_mforward: received source-routed packet from %lx\n",
1492		(u_long)ntohl(ip->ip_src.s_addr));
1493	}
1494	return 1;
1495    }
1496
1497    VIF_LOCK();
1498    MFC_LOCK();
1499    if (imo && ((vifi = imo->imo_multicast_vif) < numvifs)) {
1500	if (ip->ip_ttl < 255)
1501	    ip->ip_ttl++;	/* compensate for -1 in *_send routines */
1502	if (rsvpdebug && ip->ip_p == IPPROTO_RSVP) {
1503	    struct vif *vifp = viftable + vifi;
1504
1505	    printf("Sending IPPROTO_RSVP from %lx to %lx on vif %d (%s%s)\n",
1506		(long)ntohl(ip->ip_src.s_addr), (long)ntohl(ip->ip_dst.s_addr),
1507		vifi,
1508		(vifp->v_flags & VIFF_TUNNEL) ? "tunnel on " : "",
1509		vifp->v_ifp->if_xname);
1510	}
1511	error = ip_mdq(m, ifp, NULL, vifi);
1512	MFC_UNLOCK();
1513	VIF_UNLOCK();
1514	return error;
1515    }
1516    if (rsvpdebug && ip->ip_p == IPPROTO_RSVP) {
1517	printf("Warning: IPPROTO_RSVP from %lx to %lx without vif option\n",
1518	    (long)ntohl(ip->ip_src.s_addr), (long)ntohl(ip->ip_dst.s_addr));
1519	if (!imo)
1520	    printf("In fact, no options were specified at all\n");
1521    }
1522
1523    /*
1524     * Don't forward a packet with time-to-live of zero or one,
1525     * or a packet destined to a local-only group.
1526     */
1527    if (ip->ip_ttl <= 1 || ntohl(ip->ip_dst.s_addr) <= INADDR_MAX_LOCAL_GROUP) {
1528	MFC_UNLOCK();
1529	VIF_UNLOCK();
1530	return 0;
1531    }
1532
1533    /*
1534     * Determine forwarding vifs from the forwarding cache table
1535     */
1536    ++mrtstat.mrts_mfc_lookups;
1537    rt = mfc_find(ip->ip_src.s_addr, ip->ip_dst.s_addr);
1538
1539    /* Entry exists, so forward if necessary */
1540    if (rt != NULL) {
1541	error = ip_mdq(m, ifp, rt, -1);
1542	MFC_UNLOCK();
1543	VIF_UNLOCK();
1544	return error;
1545    } else {
1546	/*
1547	 * If we don't have a route for packet's origin,
1548	 * Make a copy of the packet & send message to routing daemon
1549	 */
1550
1551	struct mbuf *mb0;
1552	struct rtdetq *rte;
1553	u_long hash;
1554	int hlen = ip->ip_hl << 2;
1555
1556	++mrtstat.mrts_mfc_misses;
1557
1558	mrtstat.mrts_no_route++;
1559	if (mrtdebug & (DEBUG_FORWARD | DEBUG_MFC))
1560	    log(LOG_DEBUG, "ip_mforward: no rte s %lx g %lx\n",
1561		(u_long)ntohl(ip->ip_src.s_addr),
1562		(u_long)ntohl(ip->ip_dst.s_addr));
1563
1564	/*
1565	 * Allocate mbufs early so that we don't do extra work if we are
1566	 * just going to fail anyway.  Make sure to pullup the header so
1567	 * that other people can't step on it.
1568	 */
1569	rte = (struct rtdetq *)malloc((sizeof *rte), M_MRTABLE, M_NOWAIT);
1570	if (rte == NULL) {
1571	    MFC_UNLOCK();
1572	    VIF_UNLOCK();
1573	    return ENOBUFS;
1574	}
1575	mb0 = m_copypacket(m, M_DONTWAIT);
1576	if (mb0 && (M_HASCL(mb0) || mb0->m_len < hlen))
1577	    mb0 = m_pullup(mb0, hlen);
1578	if (mb0 == NULL) {
1579	    free(rte, M_MRTABLE);
1580	    MFC_UNLOCK();
1581	    VIF_UNLOCK();
1582	    return ENOBUFS;
1583	}
1584
1585	/* is there an upcall waiting for this flow ? */
1586	hash = MFCHASH(ip->ip_src.s_addr, ip->ip_dst.s_addr);
1587	for (rt = mfctable[hash]; rt; rt = rt->mfc_next) {
1588	    if ((ip->ip_src.s_addr == rt->mfc_origin.s_addr) &&
1589		    (ip->ip_dst.s_addr == rt->mfc_mcastgrp.s_addr) &&
1590		    (rt->mfc_stall != NULL))
1591		break;
1592	}
1593
1594	if (rt == NULL) {
1595	    int i;
1596	    struct igmpmsg *im;
1597	    struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
1598	    struct mbuf *mm;
1599
1600	    /*
1601	     * Locate the vifi for the incoming interface for this packet.
1602	     * If none found, drop packet.
1603	     */
1604	    for (vifi=0; vifi < numvifs && viftable[vifi].v_ifp != ifp; vifi++)
1605		;
1606	    if (vifi >= numvifs)	/* vif not found, drop packet */
1607		goto non_fatal;
1608
1609	    /* no upcall, so make a new entry */
1610	    rt = (struct mfc *)malloc(sizeof(*rt), M_MRTABLE, M_NOWAIT);
1611	    if (rt == NULL)
1612		goto fail;
1613	    /* Make a copy of the header to send to the user level process */
1614	    mm = m_copy(mb0, 0, hlen);
1615	    if (mm == NULL)
1616		goto fail1;
1617
1618	    /*
1619	     * Send message to routing daemon to install
1620	     * a route into the kernel table
1621	     */
1622
1623	    im = mtod(mm, struct igmpmsg *);
1624	    im->im_msgtype = IGMPMSG_NOCACHE;
1625	    im->im_mbz = 0;
1626	    im->im_vif = vifi;
1627
1628	    mrtstat.mrts_upcalls++;
1629
1630	    k_igmpsrc.sin_addr = ip->ip_src;
1631	    if (socket_send(ip_mrouter, mm, &k_igmpsrc) < 0) {
1632		log(LOG_WARNING, "ip_mforward: ip_mrouter socket queue full\n");
1633		++mrtstat.mrts_upq_sockfull;
1634fail1:
1635		free(rt, M_MRTABLE);
1636fail:
1637		free(rte, M_MRTABLE);
1638		m_freem(mb0);
1639		MFC_UNLOCK();
1640		VIF_UNLOCK();
1641		return ENOBUFS;
1642	    }
1643
1644	    /* insert new entry at head of hash chain */
1645	    rt->mfc_origin.s_addr     = ip->ip_src.s_addr;
1646	    rt->mfc_mcastgrp.s_addr   = ip->ip_dst.s_addr;
1647	    rt->mfc_expire	      = UPCALL_EXPIRE;
1648	    nexpire[hash]++;
1649	    for (i = 0; i < numvifs; i++) {
1650		rt->mfc_ttls[i] = 0;
1651		rt->mfc_flags[i] = 0;
1652	    }
1653	    rt->mfc_parent = -1;
1654
1655	    rt->mfc_rp.s_addr = INADDR_ANY; /* clear the RP address */
1656
1657	    rt->mfc_bw_meter = NULL;
1658
1659	    /* link into table */
1660	    rt->mfc_next   = mfctable[hash];
1661	    mfctable[hash] = rt;
1662	    rt->mfc_stall = rte;
1663
1664	} else {
1665	    /* determine if q has overflowed */
1666	    int npkts = 0;
1667	    struct rtdetq **p;
1668
1669	    /*
1670	     * XXX ouch! we need to append to the list, but we
1671	     * only have a pointer to the front, so we have to
1672	     * scan the entire list every time.
1673	     */
1674	    for (p = &rt->mfc_stall; *p != NULL; p = &(*p)->next)
1675		npkts++;
1676
1677	    if (npkts > MAX_UPQ) {
1678		mrtstat.mrts_upq_ovflw++;
1679non_fatal:
1680		free(rte, M_MRTABLE);
1681		m_freem(mb0);
1682		MFC_UNLOCK();
1683		VIF_UNLOCK();
1684		return 0;
1685	    }
1686
1687	    /* Add this entry to the end of the queue */
1688	    *p = rte;
1689	}
1690
1691	rte->m			= mb0;
1692	rte->ifp		= ifp;
1693	rte->next		= NULL;
1694
1695	MFC_UNLOCK();
1696	VIF_UNLOCK();
1697
1698	return 0;
1699    }
1700}
1701
1702/*
1703 * Clean up the cache entry if upcall is not serviced
1704 */
1705static void
1706expire_upcalls(void *unused)
1707{
1708    struct rtdetq *rte;
1709    struct mfc *mfc, **nptr;
1710    int i;
1711
1712    MFC_LOCK();
1713    for (i = 0; i < MFCTBLSIZ; i++) {
1714	if (nexpire[i] == 0)
1715	    continue;
1716	nptr = &mfctable[i];
1717	for (mfc = *nptr; mfc != NULL; mfc = *nptr) {
1718	    /*
1719	     * Skip real cache entries
1720	     * Make sure it wasn't marked to not expire (shouldn't happen)
1721	     * If it expires now
1722	     */
1723	    if (mfc->mfc_stall != NULL && mfc->mfc_expire != 0 &&
1724		    --mfc->mfc_expire == 0) {
1725		if (mrtdebug & DEBUG_EXPIRE)
1726		    log(LOG_DEBUG, "expire_upcalls: expiring (%lx %lx)\n",
1727			(u_long)ntohl(mfc->mfc_origin.s_addr),
1728			(u_long)ntohl(mfc->mfc_mcastgrp.s_addr));
1729		/*
1730		 * drop all the packets
1731		 * free the mbuf with the pkt, if, timing info
1732		 */
1733		for (rte = mfc->mfc_stall; rte; ) {
1734		    struct rtdetq *n = rte->next;
1735
1736		    m_freem(rte->m);
1737		    free(rte, M_MRTABLE);
1738		    rte = n;
1739		}
1740		++mrtstat.mrts_cache_cleanups;
1741		nexpire[i]--;
1742
1743		/*
1744		 * free the bw_meter entries
1745		 */
1746		while (mfc->mfc_bw_meter != NULL) {
1747		    struct bw_meter *x = mfc->mfc_bw_meter;
1748
1749		    mfc->mfc_bw_meter = x->bm_mfc_next;
1750		    free(x, M_BWMETER);
1751		}
1752
1753		*nptr = mfc->mfc_next;
1754		free(mfc, M_MRTABLE);
1755	    } else {
1756		nptr = &mfc->mfc_next;
1757	    }
1758	}
1759    }
1760    MFC_UNLOCK();
1761
1762    callout_reset(&expire_upcalls_ch, EXPIRE_TIMEOUT, expire_upcalls, NULL);
1763}
1764
1765/*
1766 * Packet forwarding routine once entry in the cache is made
1767 */
1768static int
1769ip_mdq(struct mbuf *m, struct ifnet *ifp, struct mfc *rt, vifi_t xmt_vif)
1770{
1771    struct ip  *ip = mtod(m, struct ip *);
1772    vifi_t vifi;
1773    int plen = ip->ip_len;
1774
1775    VIF_LOCK_ASSERT();
1776/*
1777 * Macro to send packet on vif.  Since RSVP packets don't get counted on
1778 * input, they shouldn't get counted on output, so statistics keeping is
1779 * separate.
1780 */
1781#define MC_SEND(ip,vifp,m) {				\
1782		if ((vifp)->v_flags & VIFF_TUNNEL)	\
1783		    encap_send((ip), (vifp), (m));	\
1784		else					\
1785		    phyint_send((ip), (vifp), (m));	\
1786}
1787
1788    /*
1789     * If xmt_vif is not -1, send on only the requested vif.
1790     *
1791     * (since vifi_t is u_short, -1 becomes MAXUSHORT, which > numvifs.)
1792     */
1793    if (xmt_vif < numvifs) {
1794#ifdef PIM
1795	if (viftable[xmt_vif].v_flags & VIFF_REGISTER)
1796	    pim_register_send(ip, viftable + xmt_vif, m, rt);
1797	else
1798#endif
1799	MC_SEND(ip, viftable + xmt_vif, m);
1800	return 1;
1801    }
1802
1803    /*
1804     * Don't forward if it didn't arrive from the parent vif for its origin.
1805     */
1806    vifi = rt->mfc_parent;
1807    if ((vifi >= numvifs) || (viftable[vifi].v_ifp != ifp)) {
1808	/* came in the wrong interface */
1809	if (mrtdebug & DEBUG_FORWARD)
1810	    log(LOG_DEBUG, "wrong if: ifp %p vifi %d vififp %p\n",
1811		(void *)ifp, vifi, (void *)viftable[vifi].v_ifp);
1812	++mrtstat.mrts_wrong_if;
1813	++rt->mfc_wrong_if;
1814	/*
1815	 * If we are doing PIM assert processing, send a message
1816	 * to the routing daemon.
1817	 *
1818	 * XXX: A PIM-SM router needs the WRONGVIF detection so it
1819	 * can complete the SPT switch, regardless of the type
1820	 * of the iif (broadcast media, GRE tunnel, etc).
1821	 */
1822	if (pim_assert && (vifi < numvifs) && viftable[vifi].v_ifp) {
1823	    struct timeval now;
1824	    u_long delta;
1825
1826#ifdef PIM
1827	    if (ifp == &multicast_register_if)
1828		pimstat.pims_rcv_registers_wrongiif++;
1829#endif
1830
1831	    /* Get vifi for the incoming packet */
1832	    for (vifi=0; vifi < numvifs && viftable[vifi].v_ifp != ifp; vifi++)
1833		;
1834	    if (vifi >= numvifs)
1835		return 0;	/* The iif is not found: ignore the packet. */
1836
1837	    if (rt->mfc_flags[vifi] & MRT_MFC_FLAGS_DISABLE_WRONGVIF)
1838		return 0;	/* WRONGVIF disabled: ignore the packet */
1839
1840	    GET_TIME(now);
1841
1842	    TV_DELTA(now, rt->mfc_last_assert, delta);
1843
1844	    if (delta > ASSERT_MSG_TIME) {
1845		struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
1846		struct igmpmsg *im;
1847		int hlen = ip->ip_hl << 2;
1848		struct mbuf *mm = m_copy(m, 0, hlen);
1849
1850		if (mm && (M_HASCL(mm) || mm->m_len < hlen))
1851		    mm = m_pullup(mm, hlen);
1852		if (mm == NULL)
1853		    return ENOBUFS;
1854
1855		rt->mfc_last_assert = now;
1856
1857		im = mtod(mm, struct igmpmsg *);
1858		im->im_msgtype	= IGMPMSG_WRONGVIF;
1859		im->im_mbz		= 0;
1860		im->im_vif		= vifi;
1861
1862		mrtstat.mrts_upcalls++;
1863
1864		k_igmpsrc.sin_addr = im->im_src;
1865		if (socket_send(ip_mrouter, mm, &k_igmpsrc) < 0) {
1866		    log(LOG_WARNING,
1867			"ip_mforward: ip_mrouter socket queue full\n");
1868		    ++mrtstat.mrts_upq_sockfull;
1869		    return ENOBUFS;
1870		}
1871	    }
1872	}
1873	return 0;
1874    }
1875
1876    /* If I sourced this packet, it counts as output, else it was input. */
1877    if (ip->ip_src.s_addr == viftable[vifi].v_lcl_addr.s_addr) {
1878	viftable[vifi].v_pkt_out++;
1879	viftable[vifi].v_bytes_out += plen;
1880    } else {
1881	viftable[vifi].v_pkt_in++;
1882	viftable[vifi].v_bytes_in += plen;
1883    }
1884    rt->mfc_pkt_cnt++;
1885    rt->mfc_byte_cnt += plen;
1886
1887    /*
1888     * For each vif, decide if a copy of the packet should be forwarded.
1889     * Forward if:
1890     *		- the ttl exceeds the vif's threshold
1891     *		- there are group members downstream on interface
1892     */
1893    for (vifi = 0; vifi < numvifs; vifi++)
1894	if ((rt->mfc_ttls[vifi] > 0) && (ip->ip_ttl > rt->mfc_ttls[vifi])) {
1895	    viftable[vifi].v_pkt_out++;
1896	    viftable[vifi].v_bytes_out += plen;
1897#ifdef PIM
1898	    if (viftable[vifi].v_flags & VIFF_REGISTER)
1899		pim_register_send(ip, viftable + vifi, m, rt);
1900	    else
1901#endif
1902	    MC_SEND(ip, viftable+vifi, m);
1903	}
1904
1905    /*
1906     * Perform upcall-related bw measuring.
1907     */
1908    if (rt->mfc_bw_meter != NULL) {
1909	struct bw_meter *x;
1910	struct timeval now;
1911
1912	GET_TIME(now);
1913	MFC_LOCK_ASSERT();
1914	for (x = rt->mfc_bw_meter; x != NULL; x = x->bm_mfc_next)
1915	    bw_meter_receive_packet(x, plen, &now);
1916    }
1917
1918    return 0;
1919}
1920
1921/*
1922 * check if a vif number is legal/ok. This is used by ip_output.
1923 */
1924static int
1925X_legal_vif_num(int vif)
1926{
1927    /* XXX unlocked, matter? */
1928    return (vif >= 0 && vif < numvifs);
1929}
1930
1931/*
1932 * Return the local address used by this vif
1933 */
1934static u_long
1935X_ip_mcast_src(int vifi)
1936{
1937    /* XXX unlocked, matter? */
1938    if (vifi >= 0 && vifi < numvifs)
1939	return viftable[vifi].v_lcl_addr.s_addr;
1940    else
1941	return INADDR_ANY;
1942}
1943
1944static void
1945phyint_send(struct ip *ip, struct vif *vifp, struct mbuf *m)
1946{
1947    struct mbuf *mb_copy;
1948    int hlen = ip->ip_hl << 2;
1949
1950    VIF_LOCK_ASSERT();
1951
1952    /*
1953     * Make a new reference to the packet; make sure that
1954     * the IP header is actually copied, not just referenced,
1955     * so that ip_output() only scribbles on the copy.
1956     */
1957    mb_copy = m_copypacket(m, M_DONTWAIT);
1958    if (mb_copy && (M_HASCL(mb_copy) || mb_copy->m_len < hlen))
1959	mb_copy = m_pullup(mb_copy, hlen);
1960    if (mb_copy == NULL)
1961	return;
1962
1963    if (vifp->v_rate_limit == 0)
1964	tbf_send_packet(vifp, mb_copy);
1965    else
1966	tbf_control(vifp, mb_copy, mtod(mb_copy, struct ip *), ip->ip_len);
1967}
1968
1969static void
1970encap_send(struct ip *ip, struct vif *vifp, struct mbuf *m)
1971{
1972    struct mbuf *mb_copy;
1973    struct ip *ip_copy;
1974    int i, len = ip->ip_len;
1975
1976    VIF_LOCK_ASSERT();
1977
1978    /* Take care of delayed checksums */
1979    if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
1980	in_delayed_cksum(m);
1981	m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
1982    }
1983
1984    /*
1985     * copy the old packet & pullup its IP header into the
1986     * new mbuf so we can modify it.  Try to fill the new
1987     * mbuf since if we don't the ethernet driver will.
1988     */
1989    MGETHDR(mb_copy, M_DONTWAIT, MT_DATA);
1990    if (mb_copy == NULL)
1991	return;
1992#ifdef MAC
1993    mac_create_mbuf_multicast_encap(m, vifp->v_ifp, mb_copy);
1994#endif
1995    mb_copy->m_data += max_linkhdr;
1996    mb_copy->m_len = sizeof(multicast_encap_iphdr);
1997
1998    if ((mb_copy->m_next = m_copypacket(m, M_DONTWAIT)) == NULL) {
1999	m_freem(mb_copy);
2000	return;
2001    }
2002    i = MHLEN - M_LEADINGSPACE(mb_copy);
2003    if (i > len)
2004	i = len;
2005    mb_copy = m_pullup(mb_copy, i);
2006    if (mb_copy == NULL)
2007	return;
2008    mb_copy->m_pkthdr.len = len + sizeof(multicast_encap_iphdr);
2009
2010    /*
2011     * fill in the encapsulating IP header.
2012     */
2013    ip_copy = mtod(mb_copy, struct ip *);
2014    *ip_copy = multicast_encap_iphdr;
2015    ip_copy->ip_id = ip_newid();
2016    ip_copy->ip_len += len;
2017    ip_copy->ip_src = vifp->v_lcl_addr;
2018    ip_copy->ip_dst = vifp->v_rmt_addr;
2019
2020    /*
2021     * turn the encapsulated IP header back into a valid one.
2022     */
2023    ip = (struct ip *)((caddr_t)ip_copy + sizeof(multicast_encap_iphdr));
2024    --ip->ip_ttl;
2025    ip->ip_len = htons(ip->ip_len);
2026    ip->ip_off = htons(ip->ip_off);
2027    ip->ip_sum = 0;
2028    mb_copy->m_data += sizeof(multicast_encap_iphdr);
2029    ip->ip_sum = in_cksum(mb_copy, ip->ip_hl << 2);
2030    mb_copy->m_data -= sizeof(multicast_encap_iphdr);
2031
2032    if (vifp->v_rate_limit == 0)
2033	tbf_send_packet(vifp, mb_copy);
2034    else
2035	tbf_control(vifp, mb_copy, ip, ip_copy->ip_len);
2036}
2037
2038/*
2039 * Token bucket filter module
2040 */
2041
2042static void
2043tbf_control(struct vif *vifp, struct mbuf *m, struct ip *ip, u_long p_len)
2044{
2045    struct tbf *t = vifp->v_tbf;
2046
2047    VIF_LOCK_ASSERT();
2048
2049    if (p_len > MAX_BKT_SIZE) {		/* drop if packet is too large */
2050	mrtstat.mrts_pkt2large++;
2051	m_freem(m);
2052	return;
2053    }
2054
2055    tbf_update_tokens(vifp);
2056
2057    if (t->tbf_q_len == 0) {		/* queue empty...		*/
2058	if (p_len <= t->tbf_n_tok) {	/* send packet if enough tokens */
2059	    t->tbf_n_tok -= p_len;
2060	    tbf_send_packet(vifp, m);
2061	} else {			/* no, queue packet and try later */
2062	    tbf_queue(vifp, m);
2063	    callout_reset(&tbf_reprocess_ch, TBF_REPROCESS,
2064		tbf_reprocess_q, vifp);
2065	}
2066    } else if (t->tbf_q_len < t->tbf_max_q_len) {
2067	/* finite queue length, so queue pkts and process queue */
2068	tbf_queue(vifp, m);
2069	tbf_process_q(vifp);
2070    } else {
2071	/* queue full, try to dq and queue and process */
2072	if (!tbf_dq_sel(vifp, ip)) {
2073	    mrtstat.mrts_q_overflow++;
2074	    m_freem(m);
2075	} else {
2076	    tbf_queue(vifp, m);
2077	    tbf_process_q(vifp);
2078	}
2079    }
2080}
2081
2082/*
2083 * adds a packet to the queue at the interface
2084 */
2085static void
2086tbf_queue(struct vif *vifp, struct mbuf *m)
2087{
2088    struct tbf *t = vifp->v_tbf;
2089
2090    VIF_LOCK_ASSERT();
2091
2092    if (t->tbf_t == NULL)	/* Queue was empty */
2093	t->tbf_q = m;
2094    else			/* Insert at tail */
2095	t->tbf_t->m_act = m;
2096
2097    t->tbf_t = m;		/* Set new tail pointer */
2098
2099#ifdef DIAGNOSTIC
2100    /* Make sure we didn't get fed a bogus mbuf */
2101    if (m->m_act)
2102	panic("tbf_queue: m_act");
2103#endif
2104    m->m_act = NULL;
2105
2106    t->tbf_q_len++;
2107}
2108
2109/*
2110 * processes the queue at the interface
2111 */
2112static void
2113tbf_process_q(struct vif *vifp)
2114{
2115    struct tbf *t = vifp->v_tbf;
2116
2117    VIF_LOCK_ASSERT();
2118
2119    /* loop through the queue at the interface and send as many packets
2120     * as possible
2121     */
2122    while (t->tbf_q_len > 0) {
2123	struct mbuf *m = t->tbf_q;
2124	int len = mtod(m, struct ip *)->ip_len;
2125
2126	/* determine if the packet can be sent */
2127	if (len > t->tbf_n_tok)	/* not enough tokens, we are done */
2128	    break;
2129	/* ok, reduce no of tokens, dequeue and send the packet. */
2130	t->tbf_n_tok -= len;
2131
2132	t->tbf_q = m->m_act;
2133	if (--t->tbf_q_len == 0)
2134	    t->tbf_t = NULL;
2135
2136	m->m_act = NULL;
2137	tbf_send_packet(vifp, m);
2138    }
2139}
2140
2141static void
2142tbf_reprocess_q(void *xvifp)
2143{
2144    struct vif *vifp = xvifp;
2145
2146    if (ip_mrouter == NULL)
2147	return;
2148    VIF_LOCK();
2149    tbf_update_tokens(vifp);
2150    tbf_process_q(vifp);
2151    if (vifp->v_tbf->tbf_q_len)
2152	callout_reset(&tbf_reprocess_ch, TBF_REPROCESS, tbf_reprocess_q, vifp);
2153    VIF_UNLOCK();
2154}
2155
2156/* function that will selectively discard a member of the queue
2157 * based on the precedence value and the priority
2158 */
2159static int
2160tbf_dq_sel(struct vif *vifp, struct ip *ip)
2161{
2162    u_int p;
2163    struct mbuf *m, *last;
2164    struct mbuf **np;
2165    struct tbf *t = vifp->v_tbf;
2166
2167    VIF_LOCK_ASSERT();
2168
2169    p = priority(vifp, ip);
2170
2171    np = &t->tbf_q;
2172    last = NULL;
2173    while ((m = *np) != NULL) {
2174	if (p > priority(vifp, mtod(m, struct ip *))) {
2175	    *np = m->m_act;
2176	    /* If we're removing the last packet, fix the tail pointer */
2177	    if (m == t->tbf_t)
2178		t->tbf_t = last;
2179	    m_freem(m);
2180	    /* It's impossible for the queue to be empty, but check anyways. */
2181	    if (--t->tbf_q_len == 0)
2182		t->tbf_t = NULL;
2183	    mrtstat.mrts_drop_sel++;
2184	    return 1;
2185	}
2186	np = &m->m_act;
2187	last = m;
2188    }
2189    return 0;
2190}
2191
2192static void
2193tbf_send_packet(struct vif *vifp, struct mbuf *m)
2194{
2195    VIF_LOCK_ASSERT();
2196
2197    if (vifp->v_flags & VIFF_TUNNEL)	/* If tunnel options */
2198	ip_output(m, NULL, &vifp->v_route, IP_FORWARDING, NULL, NULL);
2199    else {
2200	struct ip_moptions imo;
2201	struct in_multi *imm[2];
2202	int error;
2203	static struct route ro; /* XXX check this */
2204
2205	imo.imo_multicast_ifp  = vifp->v_ifp;
2206	imo.imo_multicast_ttl  = mtod(m, struct ip *)->ip_ttl - 1;
2207	imo.imo_multicast_loop = 1;
2208	imo.imo_multicast_vif  = -1;
2209	imo.imo_num_memberships = 0;
2210	imo.imo_max_memberships = 2;
2211	imo.imo_membership  = &imm[0];
2212
2213	/*
2214	 * Re-entrancy should not be a problem here, because
2215	 * the packets that we send out and are looped back at us
2216	 * should get rejected because they appear to come from
2217	 * the loopback interface, thus preventing looping.
2218	 */
2219	error = ip_output(m, NULL, &ro, IP_FORWARDING, &imo, NULL);
2220
2221	if (mrtdebug & DEBUG_XMIT)
2222	    log(LOG_DEBUG, "phyint_send on vif %td err %d\n",
2223		vifp - viftable, error);
2224    }
2225}
2226
2227/* determine the current time and then
2228 * the elapsed time (between the last time and time now)
2229 * in milliseconds & update the no. of tokens in the bucket
2230 */
2231static void
2232tbf_update_tokens(struct vif *vifp)
2233{
2234    struct timeval tp;
2235    u_long tm;
2236    struct tbf *t = vifp->v_tbf;
2237
2238    VIF_LOCK_ASSERT();
2239
2240    GET_TIME(tp);
2241
2242    TV_DELTA(tp, t->tbf_last_pkt_t, tm);
2243
2244    /*
2245     * This formula is actually
2246     * "time in seconds" * "bytes/second".
2247     *
2248     * (tm / 1000000) * (v_rate_limit * 1000 * (1000/1024) / 8)
2249     *
2250     * The (1000/1024) was introduced in add_vif to optimize
2251     * this divide into a shift.
2252     */
2253    t->tbf_n_tok += tm * vifp->v_rate_limit / 1024 / 8;
2254    t->tbf_last_pkt_t = tp;
2255
2256    if (t->tbf_n_tok > MAX_BKT_SIZE)
2257	t->tbf_n_tok = MAX_BKT_SIZE;
2258}
2259
2260static int
2261priority(struct vif *vifp, struct ip *ip)
2262{
2263    int prio = 50; /* the lowest priority -- default case */
2264
2265    /* temporary hack; may add general packet classifier some day */
2266
2267    /*
2268     * The UDP port space is divided up into four priority ranges:
2269     * [0, 16384)     : unclassified - lowest priority
2270     * [16384, 32768) : audio - highest priority
2271     * [32768, 49152) : whiteboard - medium priority
2272     * [49152, 65536) : video - low priority
2273     *
2274     * Everything else gets lowest priority.
2275     */
2276    if (ip->ip_p == IPPROTO_UDP) {
2277	struct udphdr *udp = (struct udphdr *)(((char *)ip) + (ip->ip_hl << 2));
2278	switch (ntohs(udp->uh_dport) & 0xc000) {
2279	case 0x4000:
2280	    prio = 70;
2281	    break;
2282	case 0x8000:
2283	    prio = 60;
2284	    break;
2285	case 0xc000:
2286	    prio = 55;
2287	    break;
2288	}
2289    }
2290    return prio;
2291}
2292
2293/*
2294 * End of token bucket filter modifications
2295 */
2296
2297static int
2298X_ip_rsvp_vif(struct socket *so, struct sockopt *sopt)
2299{
2300    int error, vifi;
2301
2302    if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_RSVP)
2303	return EOPNOTSUPP;
2304
2305    error = sooptcopyin(sopt, &vifi, sizeof vifi, sizeof vifi);
2306    if (error)
2307	return error;
2308
2309    VIF_LOCK();
2310
2311    if (vifi < 0 || vifi >= numvifs) {	/* Error if vif is invalid */
2312	VIF_UNLOCK();
2313	return EADDRNOTAVAIL;
2314    }
2315
2316    if (sopt->sopt_name == IP_RSVP_VIF_ON) {
2317	/* Check if socket is available. */
2318	if (viftable[vifi].v_rsvpd != NULL) {
2319	    VIF_UNLOCK();
2320	    return EADDRINUSE;
2321	}
2322
2323	viftable[vifi].v_rsvpd = so;
2324	/* This may seem silly, but we need to be sure we don't over-increment
2325	 * the RSVP counter, in case something slips up.
2326	 */
2327	if (!viftable[vifi].v_rsvp_on) {
2328	    viftable[vifi].v_rsvp_on = 1;
2329	    rsvp_on++;
2330	}
2331    } else { /* must be VIF_OFF */
2332	/*
2333	 * XXX as an additional consistency check, one could make sure
2334	 * that viftable[vifi].v_rsvpd == so, otherwise passing so as
2335	 * first parameter is pretty useless.
2336	 */
2337	viftable[vifi].v_rsvpd = NULL;
2338	/*
2339	 * This may seem silly, but we need to be sure we don't over-decrement
2340	 * the RSVP counter, in case something slips up.
2341	 */
2342	if (viftable[vifi].v_rsvp_on) {
2343	    viftable[vifi].v_rsvp_on = 0;
2344	    rsvp_on--;
2345	}
2346    }
2347    VIF_UNLOCK();
2348    return 0;
2349}
2350
2351static void
2352X_ip_rsvp_force_done(struct socket *so)
2353{
2354    int vifi;
2355
2356    /* Don't bother if it is not the right type of socket. */
2357    if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_RSVP)
2358	return;
2359
2360    VIF_LOCK();
2361
2362    /* The socket may be attached to more than one vif...this
2363     * is perfectly legal.
2364     */
2365    for (vifi = 0; vifi < numvifs; vifi++) {
2366	if (viftable[vifi].v_rsvpd == so) {
2367	    viftable[vifi].v_rsvpd = NULL;
2368	    /* This may seem silly, but we need to be sure we don't
2369	     * over-decrement the RSVP counter, in case something slips up.
2370	     */
2371	    if (viftable[vifi].v_rsvp_on) {
2372		viftable[vifi].v_rsvp_on = 0;
2373		rsvp_on--;
2374	    }
2375	}
2376    }
2377
2378    VIF_UNLOCK();
2379}
2380
2381static void
2382X_rsvp_input(struct mbuf *m, int off)
2383{
2384    int vifi;
2385    struct ip *ip = mtod(m, struct ip *);
2386    struct sockaddr_in rsvp_src = { sizeof rsvp_src, AF_INET };
2387    struct ifnet *ifp;
2388
2389    if (rsvpdebug)
2390	printf("rsvp_input: rsvp_on %d\n",rsvp_on);
2391
2392    /* Can still get packets with rsvp_on = 0 if there is a local member
2393     * of the group to which the RSVP packet is addressed.  But in this
2394     * case we want to throw the packet away.
2395     */
2396    if (!rsvp_on) {
2397	m_freem(m);
2398	return;
2399    }
2400
2401    if (rsvpdebug)
2402	printf("rsvp_input: check vifs\n");
2403
2404#ifdef DIAGNOSTIC
2405    M_ASSERTPKTHDR(m);
2406#endif
2407
2408    ifp = m->m_pkthdr.rcvif;
2409
2410    VIF_LOCK();
2411    /* Find which vif the packet arrived on. */
2412    for (vifi = 0; vifi < numvifs; vifi++)
2413	if (viftable[vifi].v_ifp == ifp)
2414	    break;
2415
2416    if (vifi == numvifs || viftable[vifi].v_rsvpd == NULL) {
2417	/*
2418	 * Drop the lock here to avoid holding it across rip_input.
2419	 * This could make rsvpdebug printfs wrong.  If you care,
2420	 * record the state of stuff before dropping the lock.
2421	 */
2422	VIF_UNLOCK();
2423	/*
2424	 * If the old-style non-vif-associated socket is set,
2425	 * then use it.  Otherwise, drop packet since there
2426	 * is no specific socket for this vif.
2427	 */
2428	if (ip_rsvpd != NULL) {
2429	    if (rsvpdebug)
2430		printf("rsvp_input: Sending packet up old-style socket\n");
2431	    rip_input(m, off);  /* xxx */
2432	} else {
2433	    if (rsvpdebug && vifi == numvifs)
2434		printf("rsvp_input: Can't find vif for packet.\n");
2435	    else if (rsvpdebug && viftable[vifi].v_rsvpd == NULL)
2436		printf("rsvp_input: No socket defined for vif %d\n",vifi);
2437	    m_freem(m);
2438	}
2439	return;
2440    }
2441    rsvp_src.sin_addr = ip->ip_src;
2442
2443    if (rsvpdebug && m)
2444	printf("rsvp_input: m->m_len = %d, sbspace() = %ld\n",
2445	       m->m_len,sbspace(&(viftable[vifi].v_rsvpd->so_rcv)));
2446
2447    if (socket_send(viftable[vifi].v_rsvpd, m, &rsvp_src) < 0) {
2448	if (rsvpdebug)
2449	    printf("rsvp_input: Failed to append to socket\n");
2450    } else {
2451	if (rsvpdebug)
2452	    printf("rsvp_input: send packet up\n");
2453    }
2454    VIF_UNLOCK();
2455}
2456
2457/*
2458 * Code for bandwidth monitors
2459 */
2460
2461/*
2462 * Define common interface for timeval-related methods
2463 */
2464#define	BW_TIMEVALCMP(tvp, uvp, cmp) timevalcmp((tvp), (uvp), cmp)
2465#define	BW_TIMEVALDECR(vvp, uvp) timevalsub((vvp), (uvp))
2466#define	BW_TIMEVALADD(vvp, uvp) timevaladd((vvp), (uvp))
2467
2468static uint32_t
2469compute_bw_meter_flags(struct bw_upcall *req)
2470{
2471    uint32_t flags = 0;
2472
2473    if (req->bu_flags & BW_UPCALL_UNIT_PACKETS)
2474	flags |= BW_METER_UNIT_PACKETS;
2475    if (req->bu_flags & BW_UPCALL_UNIT_BYTES)
2476	flags |= BW_METER_UNIT_BYTES;
2477    if (req->bu_flags & BW_UPCALL_GEQ)
2478	flags |= BW_METER_GEQ;
2479    if (req->bu_flags & BW_UPCALL_LEQ)
2480	flags |= BW_METER_LEQ;
2481
2482    return flags;
2483}
2484
2485/*
2486 * Add a bw_meter entry
2487 */
2488static int
2489add_bw_upcall(struct bw_upcall *req)
2490{
2491    struct mfc *mfc;
2492    struct timeval delta = { BW_UPCALL_THRESHOLD_INTERVAL_MIN_SEC,
2493		BW_UPCALL_THRESHOLD_INTERVAL_MIN_USEC };
2494    struct timeval now;
2495    struct bw_meter *x;
2496    uint32_t flags;
2497
2498    if (!(mrt_api_config & MRT_MFC_BW_UPCALL))
2499	return EOPNOTSUPP;
2500
2501    /* Test if the flags are valid */
2502    if (!(req->bu_flags & (BW_UPCALL_UNIT_PACKETS | BW_UPCALL_UNIT_BYTES)))
2503	return EINVAL;
2504    if (!(req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ)))
2505	return EINVAL;
2506    if ((req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ))
2507	    == (BW_UPCALL_GEQ | BW_UPCALL_LEQ))
2508	return EINVAL;
2509
2510    /* Test if the threshold time interval is valid */
2511    if (BW_TIMEVALCMP(&req->bu_threshold.b_time, &delta, <))
2512	return EINVAL;
2513
2514    flags = compute_bw_meter_flags(req);
2515
2516    /*
2517     * Find if we have already same bw_meter entry
2518     */
2519    MFC_LOCK();
2520    mfc = mfc_find(req->bu_src.s_addr, req->bu_dst.s_addr);
2521    if (mfc == NULL) {
2522	MFC_UNLOCK();
2523	return EADDRNOTAVAIL;
2524    }
2525    for (x = mfc->mfc_bw_meter; x != NULL; x = x->bm_mfc_next) {
2526	if ((BW_TIMEVALCMP(&x->bm_threshold.b_time,
2527			   &req->bu_threshold.b_time, ==)) &&
2528	    (x->bm_threshold.b_packets == req->bu_threshold.b_packets) &&
2529	    (x->bm_threshold.b_bytes == req->bu_threshold.b_bytes) &&
2530	    (x->bm_flags & BW_METER_USER_FLAGS) == flags)  {
2531	    MFC_UNLOCK();
2532	    return 0;		/* XXX Already installed */
2533	}
2534    }
2535
2536    /* Allocate the new bw_meter entry */
2537    x = (struct bw_meter *)malloc(sizeof(*x), M_BWMETER, M_NOWAIT);
2538    if (x == NULL) {
2539	MFC_UNLOCK();
2540	return ENOBUFS;
2541    }
2542
2543    /* Set the new bw_meter entry */
2544    x->bm_threshold.b_time = req->bu_threshold.b_time;
2545    GET_TIME(now);
2546    x->bm_start_time = now;
2547    x->bm_threshold.b_packets = req->bu_threshold.b_packets;
2548    x->bm_threshold.b_bytes = req->bu_threshold.b_bytes;
2549    x->bm_measured.b_packets = 0;
2550    x->bm_measured.b_bytes = 0;
2551    x->bm_flags = flags;
2552    x->bm_time_next = NULL;
2553    x->bm_time_hash = BW_METER_BUCKETS;
2554
2555    /* Add the new bw_meter entry to the front of entries for this MFC */
2556    x->bm_mfc = mfc;
2557    x->bm_mfc_next = mfc->mfc_bw_meter;
2558    mfc->mfc_bw_meter = x;
2559    schedule_bw_meter(x, &now);
2560    MFC_UNLOCK();
2561
2562    return 0;
2563}
2564
2565static void
2566free_bw_list(struct bw_meter *list)
2567{
2568    while (list != NULL) {
2569	struct bw_meter *x = list;
2570
2571	list = list->bm_mfc_next;
2572	unschedule_bw_meter(x);
2573	free(x, M_BWMETER);
2574    }
2575}
2576
2577/*
2578 * Delete one or multiple bw_meter entries
2579 */
2580static int
2581del_bw_upcall(struct bw_upcall *req)
2582{
2583    struct mfc *mfc;
2584    struct bw_meter *x;
2585
2586    if (!(mrt_api_config & MRT_MFC_BW_UPCALL))
2587	return EOPNOTSUPP;
2588
2589    MFC_LOCK();
2590    /* Find the corresponding MFC entry */
2591    mfc = mfc_find(req->bu_src.s_addr, req->bu_dst.s_addr);
2592    if (mfc == NULL) {
2593	MFC_UNLOCK();
2594	return EADDRNOTAVAIL;
2595    } else if (req->bu_flags & BW_UPCALL_DELETE_ALL) {
2596	/*
2597	 * Delete all bw_meter entries for this mfc
2598	 */
2599	struct bw_meter *list;
2600
2601	list = mfc->mfc_bw_meter;
2602	mfc->mfc_bw_meter = NULL;
2603	free_bw_list(list);
2604	MFC_UNLOCK();
2605	return 0;
2606    } else {			/* Delete a single bw_meter entry */
2607	struct bw_meter *prev;
2608	uint32_t flags = 0;
2609
2610	flags = compute_bw_meter_flags(req);
2611
2612	/* Find the bw_meter entry to delete */
2613	for (prev = NULL, x = mfc->mfc_bw_meter; x != NULL;
2614	     prev = x, x = x->bm_mfc_next) {
2615	    if ((BW_TIMEVALCMP(&x->bm_threshold.b_time,
2616			       &req->bu_threshold.b_time, ==)) &&
2617		(x->bm_threshold.b_packets == req->bu_threshold.b_packets) &&
2618		(x->bm_threshold.b_bytes == req->bu_threshold.b_bytes) &&
2619		(x->bm_flags & BW_METER_USER_FLAGS) == flags)
2620		break;
2621	}
2622	if (x != NULL) { /* Delete entry from the list for this MFC */
2623	    if (prev != NULL)
2624		prev->bm_mfc_next = x->bm_mfc_next;	/* remove from middle*/
2625	    else
2626		x->bm_mfc->mfc_bw_meter = x->bm_mfc_next;/* new head of list */
2627
2628	    unschedule_bw_meter(x);
2629	    MFC_UNLOCK();
2630	    /* Free the bw_meter entry */
2631	    free(x, M_BWMETER);
2632	    return 0;
2633	} else {
2634	    MFC_UNLOCK();
2635	    return EINVAL;
2636	}
2637    }
2638    /* NOTREACHED */
2639}
2640
2641/*
2642 * Perform bandwidth measurement processing that may result in an upcall
2643 */
2644static void
2645bw_meter_receive_packet(struct bw_meter *x, int plen, struct timeval *nowp)
2646{
2647    struct timeval delta;
2648
2649    MFC_LOCK_ASSERT();
2650
2651    delta = *nowp;
2652    BW_TIMEVALDECR(&delta, &x->bm_start_time);
2653
2654    if (x->bm_flags & BW_METER_GEQ) {
2655	/*
2656	 * Processing for ">=" type of bw_meter entry
2657	 */
2658	if (BW_TIMEVALCMP(&delta, &x->bm_threshold.b_time, >)) {
2659	    /* Reset the bw_meter entry */
2660	    x->bm_start_time = *nowp;
2661	    x->bm_measured.b_packets = 0;
2662	    x->bm_measured.b_bytes = 0;
2663	    x->bm_flags &= ~BW_METER_UPCALL_DELIVERED;
2664	}
2665
2666	/* Record that a packet is received */
2667	x->bm_measured.b_packets++;
2668	x->bm_measured.b_bytes += plen;
2669
2670	/*
2671	 * Test if we should deliver an upcall
2672	 */
2673	if (!(x->bm_flags & BW_METER_UPCALL_DELIVERED)) {
2674	    if (((x->bm_flags & BW_METER_UNIT_PACKETS) &&
2675		 (x->bm_measured.b_packets >= x->bm_threshold.b_packets)) ||
2676		((x->bm_flags & BW_METER_UNIT_BYTES) &&
2677		 (x->bm_measured.b_bytes >= x->bm_threshold.b_bytes))) {
2678		/* Prepare an upcall for delivery */
2679		bw_meter_prepare_upcall(x, nowp);
2680		x->bm_flags |= BW_METER_UPCALL_DELIVERED;
2681	    }
2682	}
2683    } else if (x->bm_flags & BW_METER_LEQ) {
2684	/*
2685	 * Processing for "<=" type of bw_meter entry
2686	 */
2687	if (BW_TIMEVALCMP(&delta, &x->bm_threshold.b_time, >)) {
2688	    /*
2689	     * We are behind time with the multicast forwarding table
2690	     * scanning for "<=" type of bw_meter entries, so test now
2691	     * if we should deliver an upcall.
2692	     */
2693	    if (((x->bm_flags & BW_METER_UNIT_PACKETS) &&
2694		 (x->bm_measured.b_packets <= x->bm_threshold.b_packets)) ||
2695		((x->bm_flags & BW_METER_UNIT_BYTES) &&
2696		 (x->bm_measured.b_bytes <= x->bm_threshold.b_bytes))) {
2697		/* Prepare an upcall for delivery */
2698		bw_meter_prepare_upcall(x, nowp);
2699	    }
2700	    /* Reschedule the bw_meter entry */
2701	    unschedule_bw_meter(x);
2702	    schedule_bw_meter(x, nowp);
2703	}
2704
2705	/* Record that a packet is received */
2706	x->bm_measured.b_packets++;
2707	x->bm_measured.b_bytes += plen;
2708
2709	/*
2710	 * Test if we should restart the measuring interval
2711	 */
2712	if ((x->bm_flags & BW_METER_UNIT_PACKETS &&
2713	     x->bm_measured.b_packets <= x->bm_threshold.b_packets) ||
2714	    (x->bm_flags & BW_METER_UNIT_BYTES &&
2715	     x->bm_measured.b_bytes <= x->bm_threshold.b_bytes)) {
2716	    /* Don't restart the measuring interval */
2717	} else {
2718	    /* Do restart the measuring interval */
2719	    /*
2720	     * XXX: note that we don't unschedule and schedule, because this
2721	     * might be too much overhead per packet. Instead, when we process
2722	     * all entries for a given timer hash bin, we check whether it is
2723	     * really a timeout. If not, we reschedule at that time.
2724	     */
2725	    x->bm_start_time = *nowp;
2726	    x->bm_measured.b_packets = 0;
2727	    x->bm_measured.b_bytes = 0;
2728	    x->bm_flags &= ~BW_METER_UPCALL_DELIVERED;
2729	}
2730    }
2731}
2732
2733/*
2734 * Prepare a bandwidth-related upcall
2735 */
2736static void
2737bw_meter_prepare_upcall(struct bw_meter *x, struct timeval *nowp)
2738{
2739    struct timeval delta;
2740    struct bw_upcall *u;
2741
2742    MFC_LOCK_ASSERT();
2743
2744    /*
2745     * Compute the measured time interval
2746     */
2747    delta = *nowp;
2748    BW_TIMEVALDECR(&delta, &x->bm_start_time);
2749
2750    /*
2751     * If there are too many pending upcalls, deliver them now
2752     */
2753    if (bw_upcalls_n >= BW_UPCALLS_MAX)
2754	bw_upcalls_send();
2755
2756    /*
2757     * Set the bw_upcall entry
2758     */
2759    u = &bw_upcalls[bw_upcalls_n++];
2760    u->bu_src = x->bm_mfc->mfc_origin;
2761    u->bu_dst = x->bm_mfc->mfc_mcastgrp;
2762    u->bu_threshold.b_time = x->bm_threshold.b_time;
2763    u->bu_threshold.b_packets = x->bm_threshold.b_packets;
2764    u->bu_threshold.b_bytes = x->bm_threshold.b_bytes;
2765    u->bu_measured.b_time = delta;
2766    u->bu_measured.b_packets = x->bm_measured.b_packets;
2767    u->bu_measured.b_bytes = x->bm_measured.b_bytes;
2768    u->bu_flags = 0;
2769    if (x->bm_flags & BW_METER_UNIT_PACKETS)
2770	u->bu_flags |= BW_UPCALL_UNIT_PACKETS;
2771    if (x->bm_flags & BW_METER_UNIT_BYTES)
2772	u->bu_flags |= BW_UPCALL_UNIT_BYTES;
2773    if (x->bm_flags & BW_METER_GEQ)
2774	u->bu_flags |= BW_UPCALL_GEQ;
2775    if (x->bm_flags & BW_METER_LEQ)
2776	u->bu_flags |= BW_UPCALL_LEQ;
2777}
2778
2779/*
2780 * Send the pending bandwidth-related upcalls
2781 */
2782static void
2783bw_upcalls_send(void)
2784{
2785    struct mbuf *m;
2786    int len = bw_upcalls_n * sizeof(bw_upcalls[0]);
2787    struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
2788    static struct igmpmsg igmpmsg = { 0,		/* unused1 */
2789				      0,		/* unused2 */
2790				      IGMPMSG_BW_UPCALL,/* im_msgtype */
2791				      0,		/* im_mbz  */
2792				      0,		/* im_vif  */
2793				      0,		/* unused3 */
2794				      { 0 },		/* im_src  */
2795				      { 0 } };		/* im_dst  */
2796
2797    MFC_LOCK_ASSERT();
2798
2799    if (bw_upcalls_n == 0)
2800	return;			/* No pending upcalls */
2801
2802    bw_upcalls_n = 0;
2803
2804    /*
2805     * Allocate a new mbuf, initialize it with the header and
2806     * the payload for the pending calls.
2807     */
2808    MGETHDR(m, M_DONTWAIT, MT_DATA);
2809    if (m == NULL) {
2810	log(LOG_WARNING, "bw_upcalls_send: cannot allocate mbuf\n");
2811	return;
2812    }
2813
2814    m->m_len = m->m_pkthdr.len = 0;
2815    m_copyback(m, 0, sizeof(struct igmpmsg), (caddr_t)&igmpmsg);
2816    m_copyback(m, sizeof(struct igmpmsg), len, (caddr_t)&bw_upcalls[0]);
2817
2818    /*
2819     * Send the upcalls
2820     * XXX do we need to set the address in k_igmpsrc ?
2821     */
2822    mrtstat.mrts_upcalls++;
2823    if (socket_send(ip_mrouter, m, &k_igmpsrc) < 0) {
2824	log(LOG_WARNING, "bw_upcalls_send: ip_mrouter socket queue full\n");
2825	++mrtstat.mrts_upq_sockfull;
2826    }
2827}
2828
2829/*
2830 * Compute the timeout hash value for the bw_meter entries
2831 */
2832#define	BW_METER_TIMEHASH(bw_meter, hash)				\
2833    do {								\
2834	struct timeval next_timeval = (bw_meter)->bm_start_time;	\
2835									\
2836	BW_TIMEVALADD(&next_timeval, &(bw_meter)->bm_threshold.b_time); \
2837	(hash) = next_timeval.tv_sec;					\
2838	if (next_timeval.tv_usec)					\
2839	    (hash)++; /* XXX: make sure we don't timeout early */	\
2840	(hash) %= BW_METER_BUCKETS;					\
2841    } while (0)
2842
2843/*
2844 * Schedule a timer to process periodically bw_meter entry of type "<="
2845 * by linking the entry in the proper hash bucket.
2846 */
2847static void
2848schedule_bw_meter(struct bw_meter *x, struct timeval *nowp)
2849{
2850    int time_hash;
2851
2852    MFC_LOCK_ASSERT();
2853
2854    if (!(x->bm_flags & BW_METER_LEQ))
2855	return;		/* XXX: we schedule timers only for "<=" entries */
2856
2857    /*
2858     * Reset the bw_meter entry
2859     */
2860    x->bm_start_time = *nowp;
2861    x->bm_measured.b_packets = 0;
2862    x->bm_measured.b_bytes = 0;
2863    x->bm_flags &= ~BW_METER_UPCALL_DELIVERED;
2864
2865    /*
2866     * Compute the timeout hash value and insert the entry
2867     */
2868    BW_METER_TIMEHASH(x, time_hash);
2869    x->bm_time_next = bw_meter_timers[time_hash];
2870    bw_meter_timers[time_hash] = x;
2871    x->bm_time_hash = time_hash;
2872}
2873
2874/*
2875 * Unschedule the periodic timer that processes bw_meter entry of type "<="
2876 * by removing the entry from the proper hash bucket.
2877 */
2878static void
2879unschedule_bw_meter(struct bw_meter *x)
2880{
2881    int time_hash;
2882    struct bw_meter *prev, *tmp;
2883
2884    MFC_LOCK_ASSERT();
2885
2886    if (!(x->bm_flags & BW_METER_LEQ))
2887	return;		/* XXX: we schedule timers only for "<=" entries */
2888
2889    /*
2890     * Compute the timeout hash value and delete the entry
2891     */
2892    time_hash = x->bm_time_hash;
2893    if (time_hash >= BW_METER_BUCKETS)
2894	return;		/* Entry was not scheduled */
2895
2896    for (prev = NULL, tmp = bw_meter_timers[time_hash];
2897	     tmp != NULL; prev = tmp, tmp = tmp->bm_time_next)
2898	if (tmp == x)
2899	    break;
2900
2901    if (tmp == NULL)
2902	panic("unschedule_bw_meter: bw_meter entry not found");
2903
2904    if (prev != NULL)
2905	prev->bm_time_next = x->bm_time_next;
2906    else
2907	bw_meter_timers[time_hash] = x->bm_time_next;
2908
2909    x->bm_time_next = NULL;
2910    x->bm_time_hash = BW_METER_BUCKETS;
2911}
2912
2913
2914/*
2915 * Process all "<=" type of bw_meter that should be processed now,
2916 * and for each entry prepare an upcall if necessary. Each processed
2917 * entry is rescheduled again for the (periodic) processing.
2918 *
2919 * This is run periodically (once per second normally). On each round,
2920 * all the potentially matching entries are in the hash slot that we are
2921 * looking at.
2922 */
2923static void
2924bw_meter_process()
2925{
2926    static uint32_t last_tv_sec;	/* last time we processed this */
2927
2928    uint32_t loops;
2929    int i;
2930    struct timeval now, process_endtime;
2931
2932    GET_TIME(now);
2933    if (last_tv_sec == now.tv_sec)
2934	return;		/* nothing to do */
2935
2936    loops = now.tv_sec - last_tv_sec;
2937    last_tv_sec = now.tv_sec;
2938    if (loops > BW_METER_BUCKETS)
2939	loops = BW_METER_BUCKETS;
2940
2941    MFC_LOCK();
2942    /*
2943     * Process all bins of bw_meter entries from the one after the last
2944     * processed to the current one. On entry, i points to the last bucket
2945     * visited, so we need to increment i at the beginning of the loop.
2946     */
2947    for (i = (now.tv_sec - loops) % BW_METER_BUCKETS; loops > 0; loops--) {
2948	struct bw_meter *x, *tmp_list;
2949
2950	if (++i >= BW_METER_BUCKETS)
2951	    i = 0;
2952
2953	/* Disconnect the list of bw_meter entries from the bin */
2954	tmp_list = bw_meter_timers[i];
2955	bw_meter_timers[i] = NULL;
2956
2957	/* Process the list of bw_meter entries */
2958	while (tmp_list != NULL) {
2959	    x = tmp_list;
2960	    tmp_list = tmp_list->bm_time_next;
2961
2962	    /* Test if the time interval is over */
2963	    process_endtime = x->bm_start_time;
2964	    BW_TIMEVALADD(&process_endtime, &x->bm_threshold.b_time);
2965	    if (BW_TIMEVALCMP(&process_endtime, &now, >)) {
2966		/* Not yet: reschedule, but don't reset */
2967		int time_hash;
2968
2969		BW_METER_TIMEHASH(x, time_hash);
2970		if (time_hash == i && process_endtime.tv_sec == now.tv_sec) {
2971		    /*
2972		     * XXX: somehow the bin processing is a bit ahead of time.
2973		     * Put the entry in the next bin.
2974		     */
2975		    if (++time_hash >= BW_METER_BUCKETS)
2976			time_hash = 0;
2977		}
2978		x->bm_time_next = bw_meter_timers[time_hash];
2979		bw_meter_timers[time_hash] = x;
2980		x->bm_time_hash = time_hash;
2981
2982		continue;
2983	    }
2984
2985	    /*
2986	     * Test if we should deliver an upcall
2987	     */
2988	    if (((x->bm_flags & BW_METER_UNIT_PACKETS) &&
2989		 (x->bm_measured.b_packets <= x->bm_threshold.b_packets)) ||
2990		((x->bm_flags & BW_METER_UNIT_BYTES) &&
2991		 (x->bm_measured.b_bytes <= x->bm_threshold.b_bytes))) {
2992		/* Prepare an upcall for delivery */
2993		bw_meter_prepare_upcall(x, &now);
2994	    }
2995
2996	    /*
2997	     * Reschedule for next processing
2998	     */
2999	    schedule_bw_meter(x, &now);
3000	}
3001    }
3002
3003    /* Send all upcalls that are pending delivery */
3004    bw_upcalls_send();
3005
3006    MFC_UNLOCK();
3007}
3008
3009/*
3010 * A periodic function for sending all upcalls that are pending delivery
3011 */
3012static void
3013expire_bw_upcalls_send(void *unused)
3014{
3015    MFC_LOCK();
3016    bw_upcalls_send();
3017    MFC_UNLOCK();
3018
3019    callout_reset(&bw_upcalls_ch, BW_UPCALLS_PERIOD,
3020	expire_bw_upcalls_send, NULL);
3021}
3022
3023/*
3024 * A periodic function for periodic scanning of the multicast forwarding
3025 * table for processing all "<=" bw_meter entries.
3026 */
3027static void
3028expire_bw_meter_process(void *unused)
3029{
3030    if (mrt_api_config & MRT_MFC_BW_UPCALL)
3031	bw_meter_process();
3032
3033    callout_reset(&bw_meter_ch, BW_METER_PERIOD, expire_bw_meter_process, NULL);
3034}
3035
3036/*
3037 * End of bandwidth monitoring code
3038 */
3039
3040#ifdef PIM
3041/*
3042 * Send the packet up to the user daemon, or eventually do kernel encapsulation
3043 *
3044 */
3045static int
3046pim_register_send(struct ip *ip, struct vif *vifp,
3047	struct mbuf *m, struct mfc *rt)
3048{
3049    struct mbuf *mb_copy, *mm;
3050
3051    if (mrtdebug & DEBUG_PIM)
3052	log(LOG_DEBUG, "pim_register_send: ");
3053
3054    mb_copy = pim_register_prepare(ip, m);
3055    if (mb_copy == NULL)
3056	return ENOBUFS;
3057
3058    /*
3059     * Send all the fragments. Note that the mbuf for each fragment
3060     * is freed by the sending machinery.
3061     */
3062    for (mm = mb_copy; mm; mm = mb_copy) {
3063	mb_copy = mm->m_nextpkt;
3064	mm->m_nextpkt = 0;
3065	mm = m_pullup(mm, sizeof(struct ip));
3066	if (mm != NULL) {
3067	    ip = mtod(mm, struct ip *);
3068	    if ((mrt_api_config & MRT_MFC_RP) &&
3069		(rt->mfc_rp.s_addr != INADDR_ANY)) {
3070		pim_register_send_rp(ip, vifp, mm, rt);
3071	    } else {
3072		pim_register_send_upcall(ip, vifp, mm, rt);
3073	    }
3074	}
3075    }
3076
3077    return 0;
3078}
3079
3080/*
3081 * Return a copy of the data packet that is ready for PIM Register
3082 * encapsulation.
3083 * XXX: Note that in the returned copy the IP header is a valid one.
3084 */
3085static struct mbuf *
3086pim_register_prepare(struct ip *ip, struct mbuf *m)
3087{
3088    struct mbuf *mb_copy = NULL;
3089    int mtu;
3090
3091    /* Take care of delayed checksums */
3092    if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
3093	in_delayed_cksum(m);
3094	m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
3095    }
3096
3097    /*
3098     * Copy the old packet & pullup its IP header into the
3099     * new mbuf so we can modify it.
3100     */
3101    mb_copy = m_copypacket(m, M_DONTWAIT);
3102    if (mb_copy == NULL)
3103	return NULL;
3104    mb_copy = m_pullup(mb_copy, ip->ip_hl << 2);
3105    if (mb_copy == NULL)
3106	return NULL;
3107
3108    /* take care of the TTL */
3109    ip = mtod(mb_copy, struct ip *);
3110    --ip->ip_ttl;
3111
3112    /* Compute the MTU after the PIM Register encapsulation */
3113    mtu = 0xffff - sizeof(pim_encap_iphdr) - sizeof(pim_encap_pimhdr);
3114
3115    if (ip->ip_len <= mtu) {
3116	/* Turn the IP header into a valid one */
3117	ip->ip_len = htons(ip->ip_len);
3118	ip->ip_off = htons(ip->ip_off);
3119	ip->ip_sum = 0;
3120	ip->ip_sum = in_cksum(mb_copy, ip->ip_hl << 2);
3121    } else {
3122	/* Fragment the packet */
3123	if (ip_fragment(ip, &mb_copy, mtu, 0, CSUM_DELAY_IP) != 0) {
3124	    m_freem(mb_copy);
3125	    return NULL;
3126	}
3127    }
3128    return mb_copy;
3129}
3130
3131/*
3132 * Send an upcall with the data packet to the user-level process.
3133 */
3134static int
3135pim_register_send_upcall(struct ip *ip, struct vif *vifp,
3136	struct mbuf *mb_copy, struct mfc *rt)
3137{
3138    struct mbuf *mb_first;
3139    int len = ntohs(ip->ip_len);
3140    struct igmpmsg *im;
3141    struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
3142
3143    VIF_LOCK_ASSERT();
3144
3145    /*
3146     * Add a new mbuf with an upcall header
3147     */
3148    MGETHDR(mb_first, M_DONTWAIT, MT_DATA);
3149    if (mb_first == NULL) {
3150	m_freem(mb_copy);
3151	return ENOBUFS;
3152    }
3153    mb_first->m_data += max_linkhdr;
3154    mb_first->m_pkthdr.len = len + sizeof(struct igmpmsg);
3155    mb_first->m_len = sizeof(struct igmpmsg);
3156    mb_first->m_next = mb_copy;
3157
3158    /* Send message to routing daemon */
3159    im = mtod(mb_first, struct igmpmsg *);
3160    im->im_msgtype	= IGMPMSG_WHOLEPKT;
3161    im->im_mbz		= 0;
3162    im->im_vif		= vifp - viftable;
3163    im->im_src		= ip->ip_src;
3164    im->im_dst		= ip->ip_dst;
3165
3166    k_igmpsrc.sin_addr	= ip->ip_src;
3167
3168    mrtstat.mrts_upcalls++;
3169
3170    if (socket_send(ip_mrouter, mb_first, &k_igmpsrc) < 0) {
3171	if (mrtdebug & DEBUG_PIM)
3172	    log(LOG_WARNING,
3173		"mcast: pim_register_send_upcall: ip_mrouter socket queue full");
3174	++mrtstat.mrts_upq_sockfull;
3175	return ENOBUFS;
3176    }
3177
3178    /* Keep statistics */
3179    pimstat.pims_snd_registers_msgs++;
3180    pimstat.pims_snd_registers_bytes += len;
3181
3182    return 0;
3183}
3184
3185/*
3186 * Encapsulate the data packet in PIM Register message and send it to the RP.
3187 */
3188static int
3189pim_register_send_rp(struct ip *ip, struct vif *vifp,
3190	struct mbuf *mb_copy, struct mfc *rt)
3191{
3192    struct mbuf *mb_first;
3193    struct ip *ip_outer;
3194    struct pim_encap_pimhdr *pimhdr;
3195    int len = ntohs(ip->ip_len);
3196    vifi_t vifi = rt->mfc_parent;
3197
3198    VIF_LOCK_ASSERT();
3199
3200    if ((vifi >= numvifs) || (viftable[vifi].v_lcl_addr.s_addr == 0)) {
3201	m_freem(mb_copy);
3202	return EADDRNOTAVAIL;		/* The iif vif is invalid */
3203    }
3204
3205    /*
3206     * Add a new mbuf with the encapsulating header
3207     */
3208    MGETHDR(mb_first, M_DONTWAIT, MT_DATA);
3209    if (mb_first == NULL) {
3210	m_freem(mb_copy);
3211	return ENOBUFS;
3212    }
3213    mb_first->m_data += max_linkhdr;
3214    mb_first->m_len = sizeof(pim_encap_iphdr) + sizeof(pim_encap_pimhdr);
3215    mb_first->m_next = mb_copy;
3216
3217    mb_first->m_pkthdr.len = len + mb_first->m_len;
3218
3219    /*
3220     * Fill in the encapsulating IP and PIM header
3221     */
3222    ip_outer = mtod(mb_first, struct ip *);
3223    *ip_outer = pim_encap_iphdr;
3224    ip_outer->ip_id = ip_newid();
3225    ip_outer->ip_len = len + sizeof(pim_encap_iphdr) + sizeof(pim_encap_pimhdr);
3226    ip_outer->ip_src = viftable[vifi].v_lcl_addr;
3227    ip_outer->ip_dst = rt->mfc_rp;
3228    /*
3229     * Copy the inner header TOS to the outer header, and take care of the
3230     * IP_DF bit.
3231     */
3232    ip_outer->ip_tos = ip->ip_tos;
3233    if (ntohs(ip->ip_off) & IP_DF)
3234	ip_outer->ip_off |= IP_DF;
3235    pimhdr = (struct pim_encap_pimhdr *)((caddr_t)ip_outer
3236					 + sizeof(pim_encap_iphdr));
3237    *pimhdr = pim_encap_pimhdr;
3238    /* If the iif crosses a border, set the Border-bit */
3239    if (rt->mfc_flags[vifi] & MRT_MFC_FLAGS_BORDER_VIF & mrt_api_config)
3240	pimhdr->flags |= htonl(PIM_BORDER_REGISTER);
3241
3242    mb_first->m_data += sizeof(pim_encap_iphdr);
3243    pimhdr->pim.pim_cksum = in_cksum(mb_first, sizeof(pim_encap_pimhdr));
3244    mb_first->m_data -= sizeof(pim_encap_iphdr);
3245
3246    if (vifp->v_rate_limit == 0)
3247	tbf_send_packet(vifp, mb_first);
3248    else
3249	tbf_control(vifp, mb_first, ip, ip_outer->ip_len);
3250
3251    /* Keep statistics */
3252    pimstat.pims_snd_registers_msgs++;
3253    pimstat.pims_snd_registers_bytes += len;
3254
3255    return 0;
3256}
3257
3258/*
3259 * PIM-SMv2 and PIM-DM messages processing.
3260 * Receives and verifies the PIM control messages, and passes them
3261 * up to the listening socket, using rip_input().
3262 * The only message with special processing is the PIM_REGISTER message
3263 * (used by PIM-SM): the PIM header is stripped off, and the inner packet
3264 * is passed to if_simloop().
3265 */
3266void
3267pim_input(struct mbuf *m, int off)
3268{
3269    struct ip *ip = mtod(m, struct ip *);
3270    struct pim *pim;
3271    int minlen;
3272    int datalen = ip->ip_len;
3273    int ip_tos;
3274    int iphlen = off;
3275
3276    /* Keep statistics */
3277    pimstat.pims_rcv_total_msgs++;
3278    pimstat.pims_rcv_total_bytes += datalen;
3279
3280    /*
3281     * Validate lengths
3282     */
3283    if (datalen < PIM_MINLEN) {
3284	pimstat.pims_rcv_tooshort++;
3285	log(LOG_ERR, "pim_input: packet size too small %d from %lx\n",
3286	    datalen, (u_long)ip->ip_src.s_addr);
3287	m_freem(m);
3288	return;
3289    }
3290
3291    /*
3292     * If the packet is at least as big as a REGISTER, go agead
3293     * and grab the PIM REGISTER header size, to avoid another
3294     * possible m_pullup() later.
3295     *
3296     * PIM_MINLEN       == pimhdr + u_int32_t == 4 + 4 = 8
3297     * PIM_REG_MINLEN   == pimhdr + reghdr + encap_iphdr == 4 + 4 + 20 = 28
3298     */
3299    minlen = iphlen + (datalen >= PIM_REG_MINLEN ? PIM_REG_MINLEN : PIM_MINLEN);
3300    /*
3301     * Get the IP and PIM headers in contiguous memory, and
3302     * possibly the PIM REGISTER header.
3303     */
3304    if ((m->m_flags & M_EXT || m->m_len < minlen) &&
3305	(m = m_pullup(m, minlen)) == 0) {
3306	log(LOG_ERR, "pim_input: m_pullup failure\n");
3307	return;
3308    }
3309    /* m_pullup() may have given us a new mbuf so reset ip. */
3310    ip = mtod(m, struct ip *);
3311    ip_tos = ip->ip_tos;
3312
3313    /* adjust mbuf to point to the PIM header */
3314    m->m_data += iphlen;
3315    m->m_len  -= iphlen;
3316    pim = mtod(m, struct pim *);
3317
3318    /*
3319     * Validate checksum. If PIM REGISTER, exclude the data packet.
3320     *
3321     * XXX: some older PIMv2 implementations don't make this distinction,
3322     * so for compatibility reason perform the checksum over part of the
3323     * message, and if error, then over the whole message.
3324     */
3325    if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER && in_cksum(m, PIM_MINLEN) == 0) {
3326	/* do nothing, checksum okay */
3327    } else if (in_cksum(m, datalen)) {
3328	pimstat.pims_rcv_badsum++;
3329	if (mrtdebug & DEBUG_PIM)
3330	    log(LOG_DEBUG, "pim_input: invalid checksum");
3331	m_freem(m);
3332	return;
3333    }
3334
3335    /* PIM version check */
3336    if (PIM_VT_V(pim->pim_vt) < PIM_VERSION) {
3337	pimstat.pims_rcv_badversion++;
3338	log(LOG_ERR, "pim_input: incorrect version %d, expecting %d\n",
3339	    PIM_VT_V(pim->pim_vt), PIM_VERSION);
3340	m_freem(m);
3341	return;
3342    }
3343
3344    /* restore mbuf back to the outer IP */
3345    m->m_data -= iphlen;
3346    m->m_len  += iphlen;
3347
3348    if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER) {
3349	/*
3350	 * Since this is a REGISTER, we'll make a copy of the register
3351	 * headers ip + pim + u_int32 + encap_ip, to be passed up to the
3352	 * routing daemon.
3353	 */
3354	struct sockaddr_in dst = { sizeof(dst), AF_INET };
3355	struct mbuf *mcp;
3356	struct ip *encap_ip;
3357	u_int32_t *reghdr;
3358	struct ifnet *vifp;
3359
3360	VIF_LOCK();
3361	if ((reg_vif_num >= numvifs) || (reg_vif_num == VIFI_INVALID)) {
3362	    VIF_UNLOCK();
3363	    if (mrtdebug & DEBUG_PIM)
3364		log(LOG_DEBUG,
3365		    "pim_input: register vif not set: %d\n", reg_vif_num);
3366	    m_freem(m);
3367	    return;
3368	}
3369	/* XXX need refcnt? */
3370	vifp = viftable[reg_vif_num].v_ifp;
3371	VIF_UNLOCK();
3372
3373	/*
3374	 * Validate length
3375	 */
3376	if (datalen < PIM_REG_MINLEN) {
3377	    pimstat.pims_rcv_tooshort++;
3378	    pimstat.pims_rcv_badregisters++;
3379	    log(LOG_ERR,
3380		"pim_input: register packet size too small %d from %lx\n",
3381		datalen, (u_long)ip->ip_src.s_addr);
3382	    m_freem(m);
3383	    return;
3384	}
3385
3386	reghdr = (u_int32_t *)(pim + 1);
3387	encap_ip = (struct ip *)(reghdr + 1);
3388
3389	if (mrtdebug & DEBUG_PIM) {
3390	    log(LOG_DEBUG,
3391		"pim_input[register], encap_ip: %lx -> %lx, encap_ip len %d\n",
3392		(u_long)ntohl(encap_ip->ip_src.s_addr),
3393		(u_long)ntohl(encap_ip->ip_dst.s_addr),
3394		ntohs(encap_ip->ip_len));
3395	}
3396
3397	/* verify the version number of the inner packet */
3398	if (encap_ip->ip_v != IPVERSION) {
3399	    pimstat.pims_rcv_badregisters++;
3400	    if (mrtdebug & DEBUG_PIM) {
3401		log(LOG_DEBUG, "pim_input: invalid IP version (%d) "
3402		    "of the inner packet\n", encap_ip->ip_v);
3403	    }
3404	    m_freem(m);
3405	    return;
3406	}
3407
3408	/* verify the inner packet is destined to a mcast group */
3409	if (!IN_MULTICAST(ntohl(encap_ip->ip_dst.s_addr))) {
3410	    pimstat.pims_rcv_badregisters++;
3411	    if (mrtdebug & DEBUG_PIM)
3412		log(LOG_DEBUG,
3413		    "pim_input: inner packet of register is not "
3414		    "multicast %lx\n",
3415		    (u_long)ntohl(encap_ip->ip_dst.s_addr));
3416	    m_freem(m);
3417	    return;
3418	}
3419
3420	/* If a NULL_REGISTER, pass it to the daemon */
3421	if ((ntohl(*reghdr) & PIM_NULL_REGISTER))
3422	    goto pim_input_to_daemon;
3423
3424	/*
3425	 * Copy the TOS from the outer IP header to the inner IP header.
3426	 */
3427	if (encap_ip->ip_tos != ip_tos) {
3428	    /* Outer TOS -> inner TOS */
3429	    encap_ip->ip_tos = ip_tos;
3430	    /* Recompute the inner header checksum. Sigh... */
3431
3432	    /* adjust mbuf to point to the inner IP header */
3433	    m->m_data += (iphlen + PIM_MINLEN);
3434	    m->m_len  -= (iphlen + PIM_MINLEN);
3435
3436	    encap_ip->ip_sum = 0;
3437	    encap_ip->ip_sum = in_cksum(m, encap_ip->ip_hl << 2);
3438
3439	    /* restore mbuf to point back to the outer IP header */
3440	    m->m_data -= (iphlen + PIM_MINLEN);
3441	    m->m_len  += (iphlen + PIM_MINLEN);
3442	}
3443
3444	/*
3445	 * Decapsulate the inner IP packet and loopback to forward it
3446	 * as a normal multicast packet. Also, make a copy of the
3447	 *     outer_iphdr + pimhdr + reghdr + encap_iphdr
3448	 * to pass to the daemon later, so it can take the appropriate
3449	 * actions (e.g., send back PIM_REGISTER_STOP).
3450	 * XXX: here m->m_data points to the outer IP header.
3451	 */
3452	mcp = m_copy(m, 0, iphlen + PIM_REG_MINLEN);
3453	if (mcp == NULL) {
3454	    log(LOG_ERR,
3455		"pim_input: pim register: could not copy register head\n");
3456	    m_freem(m);
3457	    return;
3458	}
3459
3460	/* Keep statistics */
3461	/* XXX: registers_bytes include only the encap. mcast pkt */
3462	pimstat.pims_rcv_registers_msgs++;
3463	pimstat.pims_rcv_registers_bytes += ntohs(encap_ip->ip_len);
3464
3465	/*
3466	 * forward the inner ip packet; point m_data at the inner ip.
3467	 */
3468	m_adj(m, iphlen + PIM_MINLEN);
3469
3470	if (mrtdebug & DEBUG_PIM) {
3471	    log(LOG_DEBUG,
3472		"pim_input: forwarding decapsulated register: "
3473		"src %lx, dst %lx, vif %d\n",
3474		(u_long)ntohl(encap_ip->ip_src.s_addr),
3475		(u_long)ntohl(encap_ip->ip_dst.s_addr),
3476		reg_vif_num);
3477	}
3478	/* NB: vifp was collected above; can it change on us? */
3479	if_simloop(vifp, m, dst.sin_family, 0);
3480
3481	/* prepare the register head to send to the mrouting daemon */
3482	m = mcp;
3483    }
3484
3485pim_input_to_daemon:
3486    /*
3487     * Pass the PIM message up to the daemon; if it is a Register message,
3488     * pass the 'head' only up to the daemon. This includes the
3489     * outer IP header, PIM header, PIM-Register header and the
3490     * inner IP header.
3491     * XXX: the outer IP header pkt size of a Register is not adjust to
3492     * reflect the fact that the inner multicast data is truncated.
3493     */
3494    rip_input(m, iphlen);
3495
3496    return;
3497}
3498#endif /* PIM */
3499
3500static int
3501ip_mroute_modevent(module_t mod, int type, void *unused)
3502{
3503    switch (type) {
3504    case MOD_LOAD:
3505	mtx_init(&mrouter_mtx, "mrouter initialization", NULL, MTX_DEF);
3506	MFC_LOCK_INIT();
3507	VIF_LOCK_INIT();
3508	ip_mrouter_reset();
3509	ip_mcast_src = X_ip_mcast_src;
3510	ip_mforward = X_ip_mforward;
3511	ip_mrouter_done = X_ip_mrouter_done;
3512	ip_mrouter_get = X_ip_mrouter_get;
3513	ip_mrouter_set = X_ip_mrouter_set;
3514	ip_rsvp_force_done = X_ip_rsvp_force_done;
3515	ip_rsvp_vif = X_ip_rsvp_vif;
3516	legal_vif_num = X_legal_vif_num;
3517	mrt_ioctl = X_mrt_ioctl;
3518	rsvp_input_p = X_rsvp_input;
3519	break;
3520
3521    case MOD_UNLOAD:
3522	/*
3523	 * Typically module unload happens after the user-level
3524	 * process has shutdown the kernel services (the check
3525	 * below insures someone can't just yank the module out
3526	 * from under a running process).  But if the module is
3527	 * just loaded and then unloaded w/o starting up a user
3528	 * process we still need to cleanup.
3529	 */
3530	if (ip_mrouter)
3531	    return EINVAL;
3532
3533	X_ip_mrouter_done();
3534	ip_mcast_src = NULL;
3535	ip_mforward = NULL;
3536	ip_mrouter_done = NULL;
3537	ip_mrouter_get = NULL;
3538	ip_mrouter_set = NULL;
3539	ip_rsvp_force_done = NULL;
3540	ip_rsvp_vif = NULL;
3541	legal_vif_num = NULL;
3542	mrt_ioctl = NULL;
3543	rsvp_input_p = NULL;
3544	VIF_LOCK_DESTROY();
3545	MFC_LOCK_DESTROY();
3546	mtx_destroy(&mrouter_mtx);
3547	break;
3548    default:
3549	return EOPNOTSUPP;
3550    }
3551    return 0;
3552}
3553
3554static moduledata_t ip_mroutemod = {
3555    "ip_mroute",
3556    ip_mroute_modevent,
3557    0
3558};
3559DECLARE_MODULE(ip_mroute, ip_mroutemod, SI_SUB_PSEUDO, SI_ORDER_ANY);
3560