ip_mroute.c revision 15292
1/*
2 * IP multicast forwarding procedures
3 *
4 * Written by David Waitzman, BBN Labs, August 1988.
5 * Modified by Steve Deering, Stanford, February 1989.
6 * Modified by Mark J. Steiglitz, Stanford, May, 1991
7 * Modified by Van Jacobson, LBL, January 1993
8 * Modified by Ajit Thyagarajan, PARC, August 1993
9 * Modified by Bill Fenner, PARC, April 1995
10 *
11 * MROUTING Revision: 3.5
12 * $Id: ip_mroute.c,v 1.31 1996/03/26 19:16:44 fenner Exp $
13 */
14
15#include "opt_mrouting.h"
16
17#include <sys/param.h>
18#include <sys/queue.h>
19#include <sys/systm.h>
20#include <sys/mbuf.h>
21#include <sys/socket.h>
22#include <sys/socketvar.h>
23#include <sys/protosw.h>
24#include <sys/errno.h>
25#include <sys/time.h>
26#include <sys/kernel.h>
27#include <sys/ioctl.h>
28#include <sys/syslog.h>
29#include <net/if.h>
30#include <net/route.h>
31#include <netinet/in.h>
32#include <netinet/in_systm.h>
33#include <netinet/ip.h>
34#include <netinet/ip_var.h>
35#include <netinet/in_pcb.h>
36#include <netinet/in_var.h>
37#include <netinet/igmp.h>
38#include <netinet/igmp_var.h>
39#include <netinet/ip_mroute.h>
40#include <netinet/udp.h>
41
42#ifndef NTOHL
43#if BYTE_ORDER != BIG_ENDIAN
44#define NTOHL(d) ((d) = ntohl((d)))
45#define NTOHS(d) ((d) = ntohs((u_short)(d)))
46#define HTONL(d) ((d) = htonl((d)))
47#define HTONS(d) ((d) = htons((u_short)(d)))
48#else
49#define NTOHL(d)
50#define NTOHS(d)
51#define HTONL(d)
52#define HTONS(d)
53#endif
54#endif
55
56#ifndef MROUTING
57extern u_long	_ip_mcast_src __P((int vifi));
58extern int	_ip_mforward __P((struct ip *ip, struct ifnet *ifp,
59				  struct mbuf *m, struct ip_moptions *imo));
60extern int	_ip_mrouter_done __P((void));
61extern int	_ip_mrouter_get __P((int cmd, struct socket *so,
62				     struct mbuf **m));
63extern int	_ip_mrouter_set __P((int cmd, struct socket *so,
64				     struct mbuf *m));
65extern int	_mrt_ioctl __P((int req, caddr_t data, struct proc *p));
66
67/*
68 * Dummy routines and globals used when multicast routing is not compiled in.
69 */
70
71struct socket  *ip_mrouter  = NULL;
72static u_int		ip_mrtproto = 0;
73static struct mrtstat	mrtstat;
74u_int		rsvpdebug = 0;
75
76int
77_ip_mrouter_set(cmd, so, m)
78	int cmd;
79	struct socket *so;
80	struct mbuf *m;
81{
82	return(EOPNOTSUPP);
83}
84
85int (*ip_mrouter_set)(int, struct socket *, struct mbuf *) = _ip_mrouter_set;
86
87
88int
89_ip_mrouter_get(cmd, so, m)
90	int cmd;
91	struct socket *so;
92	struct mbuf **m;
93{
94	return(EOPNOTSUPP);
95}
96
97int (*ip_mrouter_get)(int, struct socket *, struct mbuf **) = _ip_mrouter_get;
98
99int
100_ip_mrouter_done()
101{
102	return(0);
103}
104
105int (*ip_mrouter_done)(void) = _ip_mrouter_done;
106
107int
108_ip_mforward(ip, ifp, m, imo)
109	struct ip *ip;
110	struct ifnet *ifp;
111	struct mbuf *m;
112	struct ip_moptions *imo;
113{
114	return(0);
115}
116
117int (*ip_mforward)(struct ip *, struct ifnet *, struct mbuf *,
118		   struct ip_moptions *) = _ip_mforward;
119
120int
121_mrt_ioctl(int req, caddr_t data, struct proc *p)
122{
123	return EOPNOTSUPP;
124}
125
126int (*mrt_ioctl)(int, caddr_t, struct proc *) = _mrt_ioctl;
127
128void
129rsvp_input(m, iphlen)		/* XXX must fixup manually */
130	struct mbuf *m;
131	int iphlen;
132{
133    /* Can still get packets with rsvp_on = 0 if there is a local member
134     * of the group to which the RSVP packet is addressed.  But in this
135     * case we want to throw the packet away.
136     */
137    if (!rsvp_on) {
138	m_freem(m);
139	return;
140    }
141
142    if (ip_rsvpd != NULL) {
143	if (rsvpdebug)
144	    printf("rsvp_input: Sending packet up old-style socket\n");
145	rip_input(m, iphlen);
146	return;
147    }
148    /* Drop the packet */
149    m_freem(m);
150}
151
152void ipip_input(struct mbuf *m, int iphlen) { /* XXX must fixup manually */
153	rip_input(m, iphlen);
154}
155
156int (*legal_vif_num)(int) = 0;
157
158/*
159 * This should never be called, since IP_MULTICAST_VIF should fail, but
160 * just in case it does get called, the code a little lower in ip_output
161 * will assign the packet a local address.
162 */
163u_long
164_ip_mcast_src(int vifi) { return INADDR_ANY; }
165u_long (*ip_mcast_src)(int) = _ip_mcast_src;
166
167int
168ip_rsvp_vif_init(so, m)
169    struct socket *so;
170    struct mbuf *m;
171{
172    return(EINVAL);
173}
174
175int
176ip_rsvp_vif_done(so, m)
177    struct socket *so;
178    struct mbuf *m;
179{
180    return(EINVAL);
181}
182
183void
184ip_rsvp_force_done(so)
185    struct socket *so;
186{
187    return;
188}
189
190#else /* MROUTING */
191
192#define M_HASCL(m)	((m)->m_flags & M_EXT)
193
194#define INSIZ		sizeof(struct in_addr)
195#define	same(a1, a2) \
196	(bcmp((caddr_t)(a1), (caddr_t)(a2), INSIZ) == 0)
197
198#define MT_MRTABLE MT_RTABLE	/* since nothing else uses it */
199
200/*
201 * Globals.  All but ip_mrouter and ip_mrtproto could be static,
202 * except for netstat or debugging purposes.
203 */
204#ifndef MROUTE_LKM
205struct socket  *ip_mrouter  = NULL;
206struct mrtstat	mrtstat;
207
208int		ip_mrtproto = IGMP_DVMRP;    /* for netstat only */
209#else /* MROUTE_LKM */
210extern void	X_ipip_input __P((struct mbuf *m, int iphlen));
211extern struct mrtstat mrtstat;
212static int ip_mrtproto;
213#endif
214
215#define NO_RTE_FOUND 	0x1
216#define RTE_FOUND	0x2
217
218static struct mbuf    *mfctable[MFCTBLSIZ];
219static u_char		nexpire[MFCTBLSIZ];
220static struct vif	viftable[MAXVIFS];
221static u_int	mrtdebug = 0;	  /* debug level 	*/
222#define		DEBUG_MFC	0x02
223#define		DEBUG_FORWARD	0x04
224#define		DEBUG_EXPIRE	0x08
225#define		DEBUG_XMIT	0x10
226static u_int  	tbfdebug = 0;     /* tbf debug level 	*/
227static u_int	rsvpdebug = 0;	  /* rsvp debug level   */
228
229#define		EXPIRE_TIMEOUT	(hz / 4)	/* 4x / second		*/
230#define		UPCALL_EXPIRE	6		/* number of timeouts	*/
231
232/*
233 * Define the token bucket filter structures
234 * tbftable -> each vif has one of these for storing info
235 */
236
237static struct tbf tbftable[MAXVIFS];
238#define		TBF_REPROCESS	(hz / 100)	/* 100x / second */
239
240/*
241 * 'Interfaces' associated with decapsulator (so we can tell
242 * packets that went through it from ones that get reflected
243 * by a broken gateway).  These interfaces are never linked into
244 * the system ifnet list & no routes point to them.  I.e., packets
245 * can't be sent this way.  They only exist as a placeholder for
246 * multicast source verification.
247 */
248static struct ifnet multicast_decap_if[MAXVIFS];
249
250#define ENCAP_TTL 64
251#define ENCAP_PROTO IPPROTO_IPIP	/* 4 */
252
253/* prototype IP hdr for encapsulated packets */
254static struct ip multicast_encap_iphdr = {
255#if BYTE_ORDER == LITTLE_ENDIAN
256	sizeof(struct ip) >> 2, IPVERSION,
257#else
258	IPVERSION, sizeof(struct ip) >> 2,
259#endif
260	0,				/* tos */
261	sizeof(struct ip),		/* total length */
262	0,				/* id */
263	0,				/* frag offset */
264	ENCAP_TTL, ENCAP_PROTO,
265	0,				/* checksum */
266};
267
268/*
269 * Private variables.
270 */
271static vifi_t	   numvifs = 0;
272static int have_encap_tunnel = 0;
273
274/*
275 * one-back cache used by ipip_input to locate a tunnel's vif
276 * given a datagram's src ip address.
277 */
278static u_long last_encap_src;
279static struct vif *last_encap_vif;
280
281static u_long	X_ip_mcast_src __P((int vifi));
282static int	X_ip_mforward __P((struct ip *ip, struct ifnet *ifp, struct mbuf *m, struct ip_moptions *imo));
283static int	X_ip_mrouter_done __P((void));
284static int	X_ip_mrouter_get __P((int cmd, struct socket *so, struct mbuf **m));
285static int	X_ip_mrouter_set __P((int cmd, struct socket *so, struct mbuf *m));
286static int	X_legal_vif_num __P((int vif));
287static int	X_mrt_ioctl __P((int cmd, caddr_t data));
288
289static int get_sg_cnt(struct sioc_sg_req *);
290static int get_vif_cnt(struct sioc_vif_req *);
291static int ip_mrouter_init(struct socket *, struct mbuf *);
292static int add_vif(struct vifctl *);
293static int del_vif(vifi_t *);
294static int add_mfc(struct mfcctl *);
295static int del_mfc(struct mfcctl *);
296static int socket_send(struct socket *, struct mbuf *, struct sockaddr_in *);
297static int get_version(struct mbuf *);
298static int get_assert(struct mbuf *);
299static int set_assert(int *);
300static void expire_upcalls(void *);
301static int ip_mdq(struct mbuf *, struct ifnet *, struct mfc *,
302		  vifi_t);
303static void phyint_send(struct ip *, struct vif *, struct mbuf *);
304static void encap_send(struct ip *, struct vif *, struct mbuf *);
305static void tbf_control(struct vif *, struct mbuf *, struct ip *, u_long);
306static void tbf_queue(struct vif *, struct mbuf *);
307static void tbf_process_q(struct vif *);
308static void tbf_reprocess_q(void *);
309static int tbf_dq_sel(struct vif *, struct ip *);
310static void tbf_send_packet(struct vif *, struct mbuf *);
311static void tbf_update_tokens(struct vif *);
312static int priority(struct vif *, struct ip *);
313void multiencap_decap(struct mbuf *);
314
315/*
316 * whether or not special PIM assert processing is enabled.
317 */
318static int pim_assert;
319/*
320 * Rate limit for assert notification messages, in usec
321 */
322#define ASSERT_MSG_TIME		3000000
323
324/*
325 * Hash function for a source, group entry
326 */
327#define MFCHASH(a, g) MFCHASHMOD(((a) >> 20) ^ ((a) >> 10) ^ (a) ^ \
328			((g) >> 20) ^ ((g) >> 10) ^ (g))
329
330/*
331 * Find a route for a given origin IP address and Multicast group address
332 * Type of service parameter to be added in the future!!!
333 */
334
335#define MFCFIND(o, g, rt) { \
336	register struct mbuf *_mb_rt = mfctable[MFCHASH(o,g)]; \
337	register struct mfc *_rt = NULL; \
338	rt = NULL; \
339	++mrtstat.mrts_mfc_lookups; \
340	while (_mb_rt) { \
341		_rt = mtod(_mb_rt, struct mfc *); \
342		if ((_rt->mfc_origin.s_addr == o) && \
343		    (_rt->mfc_mcastgrp.s_addr == g) && \
344		    (_mb_rt->m_act == NULL)) { \
345			rt = _rt; \
346			break; \
347		} \
348		_mb_rt = _mb_rt->m_next; \
349	} \
350	if (rt == NULL) { \
351		++mrtstat.mrts_mfc_misses; \
352	} \
353}
354
355
356/*
357 * Macros to compute elapsed time efficiently
358 * Borrowed from Van Jacobson's scheduling code
359 */
360#define TV_DELTA(a, b, delta) { \
361	    register int xxs; \
362		\
363	    delta = (a).tv_usec - (b).tv_usec; \
364	    if ((xxs = (a).tv_sec - (b).tv_sec)) { \
365	       switch (xxs) { \
366		      case 2: \
367			  delta += 1000000; \
368			      /* fall through */ \
369		      case 1: \
370			  delta += 1000000; \
371			  break; \
372		      default: \
373			  delta += (1000000 * xxs); \
374	       } \
375	    } \
376}
377
378#define TV_LT(a, b) (((a).tv_usec < (b).tv_usec && \
379	      (a).tv_sec <= (b).tv_sec) || (a).tv_sec < (b).tv_sec)
380
381#ifdef UPCALL_TIMING
382u_long upcall_data[51];
383static void collate(struct timeval *);
384#endif /* UPCALL_TIMING */
385
386
387/*
388 * Handle MRT setsockopt commands to modify the multicast routing tables.
389 */
390static int
391X_ip_mrouter_set(cmd, so, m)
392    int cmd;
393    struct socket *so;
394    struct mbuf *m;
395{
396   if (cmd != MRT_INIT && so != ip_mrouter) return EACCES;
397
398    switch (cmd) {
399	case MRT_INIT:     return ip_mrouter_init(so, m);
400	case MRT_DONE:     return ip_mrouter_done();
401	case MRT_ADD_VIF:  return add_vif (mtod(m, struct vifctl *));
402	case MRT_DEL_VIF:  return del_vif (mtod(m, vifi_t *));
403	case MRT_ADD_MFC:  return add_mfc (mtod(m, struct mfcctl *));
404	case MRT_DEL_MFC:  return del_mfc (mtod(m, struct mfcctl *));
405	case MRT_ASSERT:   return set_assert(mtod(m, int *));
406	default:             return EOPNOTSUPP;
407    }
408}
409
410#ifndef MROUTE_LKM
411int (*ip_mrouter_set)(int, struct socket *, struct mbuf *) = X_ip_mrouter_set;
412#endif
413
414/*
415 * Handle MRT getsockopt commands
416 */
417static int
418X_ip_mrouter_get(cmd, so, m)
419    int cmd;
420    struct socket *so;
421    struct mbuf **m;
422{
423    struct mbuf *mb;
424
425    if (so != ip_mrouter) return EACCES;
426
427    *m = mb = m_get(M_WAIT, MT_SOOPTS);
428
429    switch (cmd) {
430	case MRT_VERSION:   return get_version(mb);
431	case MRT_ASSERT:    return get_assert(mb);
432	default:            return EOPNOTSUPP;
433    }
434}
435
436#ifndef MROUTE_LKM
437int (*ip_mrouter_get)(int, struct socket *, struct mbuf **) = X_ip_mrouter_get;
438#endif
439
440/*
441 * Handle ioctl commands to obtain information from the cache
442 */
443static int
444X_mrt_ioctl(cmd, data)
445    int cmd;
446    caddr_t data;
447{
448    int error = 0;
449
450    switch (cmd) {
451	case (SIOCGETVIFCNT):
452	    return (get_vif_cnt((struct sioc_vif_req *)data));
453	    break;
454	case (SIOCGETSGCNT):
455	    return (get_sg_cnt((struct sioc_sg_req *)data));
456	    break;
457	default:
458	    return (EINVAL);
459	    break;
460    }
461    return error;
462}
463
464#ifndef MROUTE_LKM
465int (*mrt_ioctl)(int, caddr_t) = X_mrt_ioctl;
466#endif
467
468/*
469 * returns the packet, byte, rpf-failure count for the source group provided
470 */
471static int
472get_sg_cnt(req)
473    register struct sioc_sg_req *req;
474{
475    register struct mfc *rt;
476    int s;
477
478    s = splnet();
479    MFCFIND(req->src.s_addr, req->grp.s_addr, rt);
480    splx(s);
481    if (rt != NULL) {
482	req->pktcnt = rt->mfc_pkt_cnt;
483	req->bytecnt = rt->mfc_byte_cnt;
484	req->wrong_if = rt->mfc_wrong_if;
485    } else
486	req->pktcnt = req->bytecnt = req->wrong_if = 0xffffffff;
487
488    return 0;
489}
490
491/*
492 * returns the input and output packet and byte counts on the vif provided
493 */
494static int
495get_vif_cnt(req)
496    register struct sioc_vif_req *req;
497{
498    register vifi_t vifi = req->vifi;
499
500    if (vifi >= numvifs) return EINVAL;
501
502    req->icount = viftable[vifi].v_pkt_in;
503    req->ocount = viftable[vifi].v_pkt_out;
504    req->ibytes = viftable[vifi].v_bytes_in;
505    req->obytes = viftable[vifi].v_bytes_out;
506
507    return 0;
508}
509
510/*
511 * Enable multicast routing
512 */
513static int
514ip_mrouter_init(so, m)
515	struct socket *so;
516	struct mbuf *m;
517{
518    int *v;
519
520    if (mrtdebug)
521	log(LOG_DEBUG,"ip_mrouter_init: so_type = %d, pr_protocol = %d\n",
522		so->so_type, so->so_proto->pr_protocol);
523
524    if (so->so_type != SOCK_RAW ||
525	so->so_proto->pr_protocol != IPPROTO_IGMP) return EOPNOTSUPP;
526
527    if (!m || (m->m_len != sizeof(int *)))
528	return ENOPROTOOPT;
529
530    v = mtod(m, int *);
531    if (*v != 1)
532	return ENOPROTOOPT;
533
534    if (ip_mrouter != NULL) return EADDRINUSE;
535
536    ip_mrouter = so;
537
538    bzero((caddr_t)mfctable, sizeof(mfctable));
539    bzero((caddr_t)nexpire, sizeof(nexpire));
540
541    pim_assert = 0;
542
543    timeout(expire_upcalls, (caddr_t)NULL, EXPIRE_TIMEOUT);
544
545    if (mrtdebug)
546	log(LOG_DEBUG, "ip_mrouter_init\n");
547
548    return 0;
549}
550
551/*
552 * Disable multicast routing
553 */
554static int
555X_ip_mrouter_done()
556{
557    vifi_t vifi;
558    int i;
559    struct ifnet *ifp;
560    struct ifreq ifr;
561    struct mbuf *mb_rt;
562    struct mbuf *m;
563    struct rtdetq *rte;
564    int s;
565
566    s = splnet();
567
568    /*
569     * For each phyint in use, disable promiscuous reception of all IP
570     * multicasts.
571     */
572    for (vifi = 0; vifi < numvifs; vifi++) {
573	if (viftable[vifi].v_lcl_addr.s_addr != 0 &&
574	    !(viftable[vifi].v_flags & VIFF_TUNNEL)) {
575	    ((struct sockaddr_in *)&(ifr.ifr_addr))->sin_family = AF_INET;
576	    ((struct sockaddr_in *)&(ifr.ifr_addr))->sin_addr.s_addr
577								= INADDR_ANY;
578	    ifp = viftable[vifi].v_ifp;
579	    (*ifp->if_ioctl)(ifp, SIOCDELMULTI, (caddr_t)&ifr);
580	}
581    }
582    bzero((caddr_t)tbftable, sizeof(tbftable));
583    bzero((caddr_t)viftable, sizeof(viftable));
584    numvifs = 0;
585    pim_assert = 0;
586
587    untimeout(expire_upcalls, (caddr_t)NULL);
588
589    /*
590     * Free all multicast forwarding cache entries.
591     */
592    for (i = 0; i < MFCTBLSIZ; i++) {
593	mb_rt = mfctable[i];
594	while (mb_rt) {
595	    if (mb_rt->m_act != NULL) {
596		while (mb_rt->m_act) {
597		    m = mb_rt->m_act;
598		    mb_rt->m_act = m->m_act;
599		    rte = mtod(m, struct rtdetq *);
600		    m_freem(rte->m);
601		    m_free(m);
602		}
603	    }
604	    mb_rt = m_free(mb_rt);
605	}
606    }
607
608    bzero((caddr_t)mfctable, sizeof(mfctable));
609
610    /*
611     * Reset de-encapsulation cache
612     */
613    last_encap_src = NULL;
614    last_encap_vif = NULL;
615    have_encap_tunnel = 0;
616
617    ip_mrouter = NULL;
618
619    splx(s);
620
621    if (mrtdebug)
622	log(LOG_DEBUG, "ip_mrouter_done\n");
623
624    return 0;
625}
626
627#ifndef MROUTE_LKM
628int (*ip_mrouter_done)(void) = X_ip_mrouter_done;
629#endif
630
631static int
632get_version(mb)
633    struct mbuf *mb;
634{
635    int *v;
636
637    v = mtod(mb, int *);
638
639    *v = 0x0305;	/* XXX !!!! */
640    mb->m_len = sizeof(int);
641
642    return 0;
643}
644
645/*
646 * Set PIM assert processing global
647 */
648static int
649set_assert(i)
650    int *i;
651{
652    if ((*i != 1) && (*i != 0))
653	return EINVAL;
654
655    pim_assert = *i;
656
657    return 0;
658}
659
660/*
661 * Get PIM assert processing global
662 */
663static int
664get_assert(m)
665    struct mbuf *m;
666{
667    int *i;
668
669    i = mtod(m, int *);
670
671    *i = pim_assert;
672
673    return 0;
674}
675
676/*
677 * Add a vif to the vif table
678 */
679static int
680add_vif(vifcp)
681    register struct vifctl *vifcp;
682{
683    register struct vif *vifp = viftable + vifcp->vifc_vifi;
684    static struct sockaddr_in sin = {sizeof sin, AF_INET};
685    struct ifaddr *ifa;
686    struct ifnet *ifp;
687    struct ifreq ifr;
688    int error, s;
689    struct tbf *v_tbf = tbftable + vifcp->vifc_vifi;
690
691    if (vifcp->vifc_vifi >= MAXVIFS)  return EINVAL;
692    if (vifp->v_lcl_addr.s_addr != 0) return EADDRINUSE;
693
694    /* Find the interface with an address in AF_INET family */
695    sin.sin_addr = vifcp->vifc_lcl_addr;
696    ifa = ifa_ifwithaddr((struct sockaddr *)&sin);
697    if (ifa == 0) return EADDRNOTAVAIL;
698    ifp = ifa->ifa_ifp;
699
700    if (vifcp->vifc_flags & VIFF_TUNNEL) {
701	if ((vifcp->vifc_flags & VIFF_SRCRT) == 0) {
702		/*
703		 * An encapsulating tunnel is wanted.  Tell ipip_input() to
704		 * start paying attention to encapsulated packets.
705		 */
706		if (have_encap_tunnel == 0) {
707			have_encap_tunnel = 1;
708			for (s = 0; s < MAXVIFS; ++s) {
709				multicast_decap_if[s].if_name = "mdecap";
710				multicast_decap_if[s].if_unit = s;
711			}
712		}
713		/*
714		 * Set interface to fake encapsulator interface
715		 */
716		ifp = &multicast_decap_if[vifcp->vifc_vifi];
717		/*
718		 * Prepare cached route entry
719		 */
720		bzero(&vifp->v_route, sizeof(vifp->v_route));
721	} else {
722	    log(LOG_ERR, "source routed tunnels not supported\n");
723	    return EOPNOTSUPP;
724	}
725    } else {
726	/* Make sure the interface supports multicast */
727	if ((ifp->if_flags & IFF_MULTICAST) == 0)
728	    return EOPNOTSUPP;
729
730	/* Enable promiscuous reception of all IP multicasts from the if */
731	((struct sockaddr_in *)&(ifr.ifr_addr))->sin_family = AF_INET;
732	((struct sockaddr_in *)&(ifr.ifr_addr))->sin_addr.s_addr = INADDR_ANY;
733	s = splnet();
734	error = (*ifp->if_ioctl)(ifp, SIOCADDMULTI, (caddr_t)&ifr);
735	splx(s);
736	if (error)
737	    return error;
738    }
739
740    s = splnet();
741    /* define parameters for the tbf structure */
742    vifp->v_tbf = v_tbf;
743    GET_TIME(vifp->v_tbf->tbf_last_pkt_t);
744    vifp->v_tbf->tbf_n_tok = 0;
745    vifp->v_tbf->tbf_q_len = 0;
746    vifp->v_tbf->tbf_max_q_len = MAXQSIZE;
747    vifp->v_tbf->tbf_q = vifp->v_tbf->tbf_t = NULL;
748
749    vifp->v_flags     = vifcp->vifc_flags;
750    vifp->v_threshold = vifcp->vifc_threshold;
751    vifp->v_lcl_addr  = vifcp->vifc_lcl_addr;
752    vifp->v_rmt_addr  = vifcp->vifc_rmt_addr;
753    vifp->v_ifp       = ifp;
754    /* scaling up here allows division by 1024 in critical code */
755    vifp->v_rate_limit= vifcp->vifc_rate_limit * 1024 / 1000;
756    vifp->v_rsvp_on   = 0;
757    vifp->v_rsvpd     = NULL;
758    /* initialize per vif pkt counters */
759    vifp->v_pkt_in    = 0;
760    vifp->v_pkt_out   = 0;
761    vifp->v_bytes_in  = 0;
762    vifp->v_bytes_out = 0;
763    splx(s);
764
765    /* Adjust numvifs up if the vifi is higher than numvifs */
766    if (numvifs <= vifcp->vifc_vifi) numvifs = vifcp->vifc_vifi + 1;
767
768    if (mrtdebug)
769	log(LOG_DEBUG, "add_vif #%d, lcladdr %x, %s %x, thresh %x, rate %d\n",
770	    vifcp->vifc_vifi,
771	    ntohl(vifcp->vifc_lcl_addr.s_addr),
772	    (vifcp->vifc_flags & VIFF_TUNNEL) ? "rmtaddr" : "mask",
773	    ntohl(vifcp->vifc_rmt_addr.s_addr),
774	    vifcp->vifc_threshold,
775	    vifcp->vifc_rate_limit);
776
777    return 0;
778}
779
780/*
781 * Delete a vif from the vif table
782 */
783static int
784del_vif(vifip)
785    vifi_t *vifip;
786{
787    register struct vif *vifp = viftable + *vifip;
788    register vifi_t vifi;
789    register struct mbuf *m;
790    struct ifnet *ifp;
791    struct ifreq ifr;
792    int s;
793
794    if (*vifip >= numvifs) return EINVAL;
795    if (vifp->v_lcl_addr.s_addr == 0) return EADDRNOTAVAIL;
796
797    s = splnet();
798
799    if (!(vifp->v_flags & VIFF_TUNNEL)) {
800	((struct sockaddr_in *)&(ifr.ifr_addr))->sin_family = AF_INET;
801	((struct sockaddr_in *)&(ifr.ifr_addr))->sin_addr.s_addr = INADDR_ANY;
802	ifp = vifp->v_ifp;
803	(*ifp->if_ioctl)(ifp, SIOCDELMULTI, (caddr_t)&ifr);
804    }
805
806    if (vifp == last_encap_vif) {
807	last_encap_vif = 0;
808	last_encap_src = 0;
809    }
810
811    /*
812     * Free packets queued at the interface
813     */
814    while (vifp->v_tbf->tbf_q) {
815	m = vifp->v_tbf->tbf_q;
816	vifp->v_tbf->tbf_q = m->m_act;
817	m_freem(m);
818    }
819
820    bzero((caddr_t)vifp->v_tbf, sizeof(*(vifp->v_tbf)));
821    bzero((caddr_t)vifp, sizeof (*vifp));
822
823    /* Adjust numvifs down */
824    for (vifi = numvifs; vifi > 0; vifi--)
825	if (viftable[vifi-1].v_lcl_addr.s_addr != 0) break;
826    numvifs = vifi;
827
828    splx(s);
829
830    if (mrtdebug)
831      log(LOG_DEBUG, "del_vif %d, numvifs %d\n", *vifip, numvifs);
832
833    return 0;
834}
835
836/*
837 * Add an mfc entry
838 */
839static int
840add_mfc(mfccp)
841    struct mfcctl *mfccp;
842{
843    struct mfc *rt;
844    register struct mbuf *mb_rt;
845    u_long hash;
846    struct mbuf *mb_ntry;
847    struct rtdetq *rte;
848    register u_short nstl;
849    int s;
850    int i;
851
852    MFCFIND(mfccp->mfcc_origin.s_addr, mfccp->mfcc_mcastgrp.s_addr, rt);
853
854    /* If an entry already exists, just update the fields */
855    if (rt) {
856	if (mrtdebug & DEBUG_MFC)
857	    log(LOG_DEBUG,"add_mfc update o %x g %x p %x\n",
858		ntohl(mfccp->mfcc_origin.s_addr),
859		ntohl(mfccp->mfcc_mcastgrp.s_addr),
860		mfccp->mfcc_parent);
861
862	s = splnet();
863	rt->mfc_parent = mfccp->mfcc_parent;
864	for (i = 0; i < numvifs; i++)
865	    rt->mfc_ttls[i] = mfccp->mfcc_ttls[i];
866	splx(s);
867	return 0;
868    }
869
870    /*
871     * Find the entry for which the upcall was made and update
872     */
873    s = splnet();
874    hash = MFCHASH(mfccp->mfcc_origin.s_addr, mfccp->mfcc_mcastgrp.s_addr);
875    for (mb_rt = mfctable[hash], nstl = 0; mb_rt; mb_rt = mb_rt->m_next) {
876
877	rt = mtod(mb_rt, struct mfc *);
878	if ((rt->mfc_origin.s_addr == mfccp->mfcc_origin.s_addr) &&
879	    (rt->mfc_mcastgrp.s_addr == mfccp->mfcc_mcastgrp.s_addr) &&
880	    (mb_rt->m_act != NULL)) {
881
882	    if (nstl++)
883		log(LOG_ERR, "add_mfc %s o %x g %x p %x dbx %x\n",
884		    "multiple kernel entries",
885		    ntohl(mfccp->mfcc_origin.s_addr),
886		    ntohl(mfccp->mfcc_mcastgrp.s_addr),
887		    mfccp->mfcc_parent, mb_rt->m_act);
888
889	    if (mrtdebug & DEBUG_MFC)
890		log(LOG_DEBUG,"add_mfc o %x g %x p %x dbg %x\n",
891		    ntohl(mfccp->mfcc_origin.s_addr),
892		    ntohl(mfccp->mfcc_mcastgrp.s_addr),
893		    mfccp->mfcc_parent, mb_rt->m_act);
894
895	    rt->mfc_origin     = mfccp->mfcc_origin;
896	    rt->mfc_mcastgrp   = mfccp->mfcc_mcastgrp;
897	    rt->mfc_parent     = mfccp->mfcc_parent;
898	    for (i = 0; i < numvifs; i++)
899		rt->mfc_ttls[i] = mfccp->mfcc_ttls[i];
900	    /* initialize pkt counters per src-grp */
901	    rt->mfc_pkt_cnt    = 0;
902	    rt->mfc_byte_cnt   = 0;
903	    rt->mfc_wrong_if   = 0;
904	    rt->mfc_last_assert.tv_sec = rt->mfc_last_assert.tv_usec = 0;
905
906	    rt->mfc_expire = 0;	/* Don't clean this guy up */
907	    nexpire[hash]--;
908
909	    /* free packets Qed at the end of this entry */
910	    while (mb_rt->m_act) {
911		mb_ntry = mb_rt->m_act;
912		rte = mtod(mb_ntry, struct rtdetq *);
913/* #ifdef RSVP_ISI */
914		ip_mdq(rte->m, rte->ifp, rt, -1);
915/* #endif */
916		mb_rt->m_act = mb_ntry->m_act;
917		m_freem(rte->m);
918#ifdef UPCALL_TIMING
919		collate(&(rte->t));
920#endif /* UPCALL_TIMING */
921		m_free(mb_ntry);
922	    }
923	}
924    }
925
926    /*
927     * It is possible that an entry is being inserted without an upcall
928     */
929    if (nstl == 0) {
930	if (mrtdebug & DEBUG_MFC)
931	    log(LOG_DEBUG,"add_mfc no upcall h %d o %x g %x p %x\n",
932		hash, ntohl(mfccp->mfcc_origin.s_addr),
933		ntohl(mfccp->mfcc_mcastgrp.s_addr),
934		mfccp->mfcc_parent);
935
936	for (mb_rt = mfctable[hash]; mb_rt; mb_rt = mb_rt->m_next) {
937
938	    rt = mtod(mb_rt, struct mfc *);
939	    if ((rt->mfc_origin.s_addr == mfccp->mfcc_origin.s_addr) &&
940		(rt->mfc_mcastgrp.s_addr == mfccp->mfcc_mcastgrp.s_addr)) {
941
942		rt->mfc_origin     = mfccp->mfcc_origin;
943		rt->mfc_mcastgrp   = mfccp->mfcc_mcastgrp;
944		rt->mfc_parent     = mfccp->mfcc_parent;
945		for (i = 0; i < numvifs; i++)
946		    rt->mfc_ttls[i] = mfccp->mfcc_ttls[i];
947		/* initialize pkt counters per src-grp */
948		rt->mfc_pkt_cnt    = 0;
949		rt->mfc_byte_cnt   = 0;
950		rt->mfc_wrong_if   = 0;
951		rt->mfc_last_assert.tv_sec = rt->mfc_last_assert.tv_usec = 0;
952		if (rt->mfc_expire)
953		    nexpire[hash]--;
954		rt->mfc_expire	   = 0;
955	    }
956	}
957	if (mb_rt == NULL) {
958	    /* no upcall, so make a new entry */
959	    MGET(mb_rt, M_DONTWAIT, MT_MRTABLE);
960	    if (mb_rt == NULL) {
961		splx(s);
962		return ENOBUFS;
963	    }
964
965	    rt = mtod(mb_rt, struct mfc *);
966
967	    /* insert new entry at head of hash chain */
968	    rt->mfc_origin     = mfccp->mfcc_origin;
969	    rt->mfc_mcastgrp   = mfccp->mfcc_mcastgrp;
970	    rt->mfc_parent     = mfccp->mfcc_parent;
971	    for (i = 0; i < numvifs; i++)
972		    rt->mfc_ttls[i] = mfccp->mfcc_ttls[i];
973	    /* initialize pkt counters per src-grp */
974	    rt->mfc_pkt_cnt    = 0;
975	    rt->mfc_byte_cnt   = 0;
976	    rt->mfc_wrong_if   = 0;
977	    rt->mfc_last_assert.tv_sec = rt->mfc_last_assert.tv_usec = 0;
978	    rt->mfc_expire     = 0;
979
980	    /* link into table */
981	    mb_rt->m_next  = mfctable[hash];
982	    mfctable[hash] = mb_rt;
983	    mb_rt->m_act = NULL;
984	}
985    }
986    splx(s);
987    return 0;
988}
989
990#ifdef UPCALL_TIMING
991/*
992 * collect delay statistics on the upcalls
993 */
994static void collate(t)
995register struct timeval *t;
996{
997    register u_long d;
998    register struct timeval tp;
999    register u_long delta;
1000
1001    GET_TIME(tp);
1002
1003    if (TV_LT(*t, tp))
1004    {
1005	TV_DELTA(tp, *t, delta);
1006
1007	d = delta >> 10;
1008	if (d > 50)
1009	    d = 50;
1010
1011	++upcall_data[d];
1012    }
1013}
1014#endif /* UPCALL_TIMING */
1015
1016/*
1017 * Delete an mfc entry
1018 */
1019static int
1020del_mfc(mfccp)
1021    struct mfcctl *mfccp;
1022{
1023    struct in_addr 	origin;
1024    struct in_addr 	mcastgrp;
1025    struct mfc 		*rt;
1026    struct mbuf 	*mb_rt;
1027    struct mbuf 	**nptr;
1028    u_long 		hash;
1029    int s;
1030
1031    origin = mfccp->mfcc_origin;
1032    mcastgrp = mfccp->mfcc_mcastgrp;
1033    hash = MFCHASH(origin.s_addr, mcastgrp.s_addr);
1034
1035    if (mrtdebug & DEBUG_MFC)
1036	log(LOG_DEBUG,"del_mfc orig %x mcastgrp %x\n",
1037	    ntohl(origin.s_addr), ntohl(mcastgrp.s_addr));
1038
1039    s = splnet();
1040
1041    nptr = &mfctable[hash];
1042    while ((mb_rt = *nptr) != NULL) {
1043        rt = mtod(mb_rt, struct mfc *);
1044	if (origin.s_addr == rt->mfc_origin.s_addr &&
1045	    mcastgrp.s_addr == rt->mfc_mcastgrp.s_addr &&
1046	    mb_rt->m_act == NULL)
1047	    break;
1048
1049	nptr = &mb_rt->m_next;
1050    }
1051    if (mb_rt == NULL) {
1052	splx(s);
1053	return EADDRNOTAVAIL;
1054    }
1055
1056    MFREE(mb_rt, *nptr);
1057
1058    splx(s);
1059
1060    return 0;
1061}
1062
1063/*
1064 * Send a message to mrouted on the multicast routing socket
1065 */
1066static int
1067socket_send(s, mm, src)
1068	struct socket *s;
1069	struct mbuf *mm;
1070	struct sockaddr_in *src;
1071{
1072	if (s) {
1073		if (sbappendaddr(&s->so_rcv,
1074				 (struct sockaddr *)src,
1075				 mm, (struct mbuf *)0) != 0) {
1076			sorwakeup(s);
1077			return 0;
1078		}
1079	}
1080	m_freem(mm);
1081	return -1;
1082}
1083
1084/*
1085 * IP multicast forwarding function. This function assumes that the packet
1086 * pointed to by "ip" has arrived on (or is about to be sent to) the interface
1087 * pointed to by "ifp", and the packet is to be relayed to other networks
1088 * that have members of the packet's destination IP multicast group.
1089 *
1090 * The packet is returned unscathed to the caller, unless it is
1091 * erroneous, in which case a non-zero return value tells the caller to
1092 * discard it.
1093 */
1094
1095#define IP_HDR_LEN  20	/* # bytes of fixed IP header (excluding options) */
1096#define TUNNEL_LEN  12  /* # bytes of IP option for tunnel encapsulation  */
1097
1098static int
1099X_ip_mforward(ip, ifp, m, imo)
1100    register struct ip *ip;
1101    struct ifnet *ifp;
1102    struct mbuf *m;
1103    struct ip_moptions *imo;
1104{
1105    register struct mfc *rt;
1106    register u_char *ipoptions;
1107    static struct sockaddr_in 	k_igmpsrc	= { sizeof k_igmpsrc, AF_INET };
1108    static int srctun = 0;
1109    register struct mbuf *mm;
1110    int s;
1111    vifi_t vifi;
1112    struct vif *vifp;
1113
1114    if (mrtdebug & DEBUG_FORWARD)
1115	log(LOG_DEBUG, "ip_mforward: src %x, dst %x, ifp %x\n",
1116	    ntohl(ip->ip_src.s_addr), ntohl(ip->ip_dst.s_addr), ifp);
1117
1118    if (ip->ip_hl < (IP_HDR_LEN + TUNNEL_LEN) >> 2 ||
1119	(ipoptions = (u_char *)(ip + 1))[1] != IPOPT_LSRR ) {
1120	/*
1121	 * Packet arrived via a physical interface or
1122	 * an encapsulated tunnel.
1123	 */
1124    } else {
1125	/*
1126	 * Packet arrived through a source-route tunnel.
1127	 * Source-route tunnels are no longer supported.
1128	 */
1129	if ((srctun++ % 1000) == 0)
1130	    log(LOG_ERR, "ip_mforward: received source-routed packet from %x\n",
1131		ntohl(ip->ip_src.s_addr));
1132
1133	return 1;
1134    }
1135
1136    if ((imo) && ((vifi = imo->imo_multicast_vif) < numvifs)) {
1137	if (ip->ip_ttl < 255)
1138		ip->ip_ttl++;	/* compensate for -1 in *_send routines */
1139	if (rsvpdebug && ip->ip_p == IPPROTO_RSVP) {
1140	    vifp = viftable + vifi;
1141	    printf("Sending IPPROTO_RSVP from %lx to %lx on vif %d (%s%s%d)\n",
1142		ntohl(ip->ip_src.s_addr), ntohl(ip->ip_dst.s_addr), vifi,
1143		(vifp->v_flags & VIFF_TUNNEL) ? "tunnel on " : "",
1144		vifp->v_ifp->if_name, vifp->v_ifp->if_unit);
1145	}
1146	return (ip_mdq(m, ifp, NULL, vifi));
1147    }
1148    if (rsvpdebug && ip->ip_p == IPPROTO_RSVP) {
1149	printf("Warning: IPPROTO_RSVP from %lx to %lx without vif option\n",
1150	    ntohl(ip->ip_src.s_addr), ntohl(ip->ip_dst.s_addr));
1151	if(!imo)
1152		printf("In fact, no options were specified at all\n");
1153    }
1154
1155    /*
1156     * Don't forward a packet with time-to-live of zero or one,
1157     * or a packet destined to a local-only group.
1158     */
1159    if (ip->ip_ttl <= 1 ||
1160	ntohl(ip->ip_dst.s_addr) <= INADDR_MAX_LOCAL_GROUP)
1161	return 0;
1162
1163    /*
1164     * Determine forwarding vifs from the forwarding cache table
1165     */
1166    s = splnet();
1167    MFCFIND(ip->ip_src.s_addr, ip->ip_dst.s_addr, rt);
1168
1169    /* Entry exists, so forward if necessary */
1170    if (rt != NULL) {
1171	splx(s);
1172	return (ip_mdq(m, ifp, rt, -1));
1173    } else {
1174	/*
1175	 * If we don't have a route for packet's origin,
1176	 * Make a copy of the packet &
1177	 * send message to routing daemon
1178	 */
1179
1180	register struct mbuf *mb_rt;
1181	register struct mbuf *mb_ntry;
1182	register struct mbuf *mb0;
1183	register struct rtdetq *rte;
1184	register struct mbuf *rte_m;
1185	register u_long hash;
1186	register int npkts;
1187	int hlen = ip->ip_hl << 2;
1188#ifdef UPCALL_TIMING
1189	struct timeval tp;
1190
1191	GET_TIME(tp);
1192#endif
1193
1194	mrtstat.mrts_no_route++;
1195	if (mrtdebug & (DEBUG_FORWARD | DEBUG_MFC))
1196	    log(LOG_DEBUG, "ip_mforward: no rte s %x g %x\n",
1197		ntohl(ip->ip_src.s_addr),
1198		ntohl(ip->ip_dst.s_addr));
1199
1200	/*
1201	 * Allocate mbufs early so that we don't do extra work if we are
1202	 * just going to fail anyway.  Make sure to pullup the header so
1203	 * that other people can't step on it.
1204	 */
1205	MGET(mb_ntry, M_DONTWAIT, MT_DATA);
1206	if (mb_ntry == NULL) {
1207	    splx(s);
1208	    return ENOBUFS;
1209	}
1210	mb0 = m_copy(m, 0, M_COPYALL);
1211	if (mb0 && (M_HASCL(mb0) || mb0->m_len < hlen))
1212	    mb0 = m_pullup(mb0, hlen);
1213	if (mb0 == NULL) {
1214	    m_free(mb_ntry);
1215	    splx(s);
1216	    return ENOBUFS;
1217	}
1218
1219	/* is there an upcall waiting for this packet? */
1220	hash = MFCHASH(ip->ip_src.s_addr, ip->ip_dst.s_addr);
1221	for (mb_rt = mfctable[hash]; mb_rt; mb_rt = mb_rt->m_next) {
1222	    rt = mtod(mb_rt, struct mfc *);
1223	    if ((ip->ip_src.s_addr == rt->mfc_origin.s_addr) &&
1224		(ip->ip_dst.s_addr == rt->mfc_mcastgrp.s_addr) &&
1225		(mb_rt->m_act != NULL))
1226		break;
1227	}
1228
1229	if (mb_rt == NULL) {
1230	    int i;
1231	    struct igmpmsg *im;
1232
1233	    /* no upcall, so make a new entry */
1234	    MGET(mb_rt, M_DONTWAIT, MT_MRTABLE);
1235	    if (mb_rt == NULL) {
1236		m_free(mb_ntry);
1237		m_freem(mb0);
1238		splx(s);
1239		return ENOBUFS;
1240	    }
1241	    /* Make a copy of the header to send to the user level process */
1242	    mm = m_copy(m, 0, hlen);
1243	    if (mm == NULL) {
1244		m_free(mb_ntry);
1245		m_freem(mb0);
1246		m_free(mb_rt);
1247		splx(s);
1248		return ENOBUFS;
1249	    }
1250
1251	    /*
1252	     * Send message to routing daemon to install
1253	     * a route into the kernel table
1254	     */
1255	    k_igmpsrc.sin_addr = ip->ip_src;
1256
1257	    im = mtod(mm, struct igmpmsg *);
1258	    im->im_msgtype	= IGMPMSG_NOCACHE;
1259	    im->im_mbz		= 0;
1260
1261	    mrtstat.mrts_upcalls++;
1262
1263	    if (socket_send(ip_mrouter, mm, &k_igmpsrc) < 0) {
1264		log(LOG_WARNING, "ip_mforward: ip_mrouter socket queue full\n");
1265		++mrtstat.mrts_upq_sockfull;
1266		m_free(mb_ntry);
1267		m_freem(mb0);
1268		m_free(mb_rt);
1269		splx(s);
1270		return ENOBUFS;
1271	    }
1272
1273	    rt = mtod(mb_rt, struct mfc *);
1274
1275	    /* insert new entry at head of hash chain */
1276	    rt->mfc_origin.s_addr     = ip->ip_src.s_addr;
1277	    rt->mfc_mcastgrp.s_addr   = ip->ip_dst.s_addr;
1278	    rt->mfc_expire	      = UPCALL_EXPIRE;
1279	    nexpire[hash]++;
1280	    for (i = 0; i < numvifs; i++)
1281		rt->mfc_ttls[i] = 0;
1282	    rt->mfc_parent = -1;
1283
1284	    /* link into table */
1285	    mb_rt->m_next  = mfctable[hash];
1286	    mfctable[hash] = mb_rt;
1287	    mb_rt->m_act = NULL;
1288
1289	    rte_m = mb_rt;
1290	} else {
1291	    /* determine if q has overflowed */
1292	    for (rte_m = mb_rt, npkts = 0; rte_m->m_act; rte_m = rte_m->m_act)
1293		npkts++;
1294
1295	    if (npkts > MAX_UPQ) {
1296		mrtstat.mrts_upq_ovflw++;
1297		m_free(mb_ntry);
1298		m_freem(mb0);
1299		splx(s);
1300		return 0;
1301	    }
1302	}
1303
1304	mb_ntry->m_act = NULL;
1305	rte = mtod(mb_ntry, struct rtdetq *);
1306
1307	rte->m 			= mb0;
1308	rte->ifp 		= ifp;
1309#ifdef UPCALL_TIMING
1310	rte->t			= tp;
1311#endif
1312
1313	/* Add this entry to the end of the queue */
1314	rte_m->m_act		= mb_ntry;
1315
1316	splx(s);
1317
1318	return 0;
1319    }
1320}
1321
1322#ifndef MROUTE_LKM
1323int (*ip_mforward)(struct ip *, struct ifnet *, struct mbuf *,
1324		   struct ip_moptions *) = X_ip_mforward;
1325#endif
1326
1327/*
1328 * Clean up the cache entry if upcall is not serviced
1329 */
1330static void
1331expire_upcalls(void *unused)
1332{
1333    struct mbuf *mb_rt, *m, **nptr;
1334    struct rtdetq *rte;
1335    struct mfc *mfc;
1336    int i;
1337    int s;
1338
1339    s = splnet();
1340    for (i = 0; i < MFCTBLSIZ; i++) {
1341	if (nexpire[i] == 0)
1342	    continue;
1343	nptr = &mfctable[i];
1344	for (mb_rt = *nptr; mb_rt != NULL; mb_rt = *nptr) {
1345	    mfc = mtod(mb_rt, struct mfc *);
1346
1347	    /*
1348	     * Skip real cache entries
1349	     * Make sure it wasn't marked to not expire (shouldn't happen)
1350	     * If it expires now
1351	     */
1352	    if (mb_rt->m_act != NULL &&
1353	        mfc->mfc_expire != 0 &&
1354		--mfc->mfc_expire == 0) {
1355		if (mrtdebug & DEBUG_EXPIRE)
1356		    log(LOG_DEBUG, "expire_upcalls: expiring (%x %x)\n",
1357			ntohl(mfc->mfc_origin.s_addr),
1358			ntohl(mfc->mfc_mcastgrp.s_addr));
1359		/*
1360		 * drop all the packets
1361		 * free the mbuf with the pkt, if, timing info
1362		 */
1363		while (mb_rt->m_act) {
1364		    m = mb_rt->m_act;
1365		    mb_rt->m_act = m->m_act;
1366
1367		    rte = mtod(m, struct rtdetq *);
1368		    m_freem(rte->m);
1369		    m_free(m);
1370		}
1371		++mrtstat.mrts_cache_cleanups;
1372		nexpire[i]--;
1373
1374		MFREE(mb_rt, *nptr);
1375	    } else {
1376		nptr = &mb_rt->m_next;
1377	    }
1378	}
1379    }
1380    splx(s);
1381    timeout(expire_upcalls, (caddr_t)NULL, EXPIRE_TIMEOUT);
1382}
1383
1384/*
1385 * Packet forwarding routine once entry in the cache is made
1386 */
1387static int
1388ip_mdq(m, ifp, rt, xmt_vif)
1389    register struct mbuf *m;
1390    register struct ifnet *ifp;
1391    register struct mfc *rt;
1392    register vifi_t xmt_vif;
1393{
1394    register struct ip  *ip = mtod(m, struct ip *);
1395    register vifi_t vifi;
1396    register struct vif *vifp;
1397    register int plen = ntohs(ip->ip_len);
1398
1399/*
1400 * Macro to send packet on vif.  Since RSVP packets don't get counted on
1401 * input, they shouldn't get counted on output, so statistics keeping is
1402 * seperate.
1403 */
1404#define MC_SEND(ip,vifp,m) {                             \
1405                if ((vifp)->v_flags & VIFF_TUNNEL)  	 \
1406                    encap_send((ip), (vifp), (m));       \
1407                else                                     \
1408                    phyint_send((ip), (vifp), (m));      \
1409}
1410
1411    /*
1412     * If xmt_vif is not -1, send on only the requested vif.
1413     *
1414     * (since vifi_t is u_short, -1 becomes MAXUSHORT, which > numvifs.)
1415     */
1416    if (xmt_vif < numvifs) {
1417	MC_SEND(ip, viftable + xmt_vif, m);
1418	return 1;
1419    }
1420
1421    /*
1422     * Don't forward if it didn't arrive from the parent vif for its origin.
1423     */
1424    vifi = rt->mfc_parent;
1425    if ((vifi >= numvifs) || (viftable[vifi].v_ifp != ifp)) {
1426	/* came in the wrong interface */
1427	if (mrtdebug & DEBUG_FORWARD)
1428	    log(LOG_DEBUG, "wrong if: ifp %x vifi %d vififp %x\n",
1429		ifp, vifi, viftable[vifi].v_ifp);
1430	++mrtstat.mrts_wrong_if;
1431	++rt->mfc_wrong_if;
1432	/*
1433	 * If we are doing PIM assert processing, and we are forwarding
1434	 * packets on this interface, and it is a broadcast medium
1435	 * interface (and not a tunnel), send a message to the routing daemon.
1436	 */
1437	if (pim_assert && rt->mfc_ttls[vifi] &&
1438		(ifp->if_flags & IFF_BROADCAST) &&
1439		!(viftable[vifi].v_flags & VIFF_TUNNEL)) {
1440	    struct sockaddr_in k_igmpsrc;
1441	    struct mbuf *mm;
1442	    struct igmpmsg *im;
1443	    int hlen = ip->ip_hl << 2;
1444	    struct timeval now;
1445	    register u_long delta;
1446
1447	    GET_TIME(now);
1448
1449	    TV_DELTA(rt->mfc_last_assert, now, delta);
1450
1451	    if (delta > ASSERT_MSG_TIME) {
1452		mm = m_copy(m, 0, hlen);
1453		if (mm && (M_HASCL(mm) || mm->m_len < hlen))
1454		    mm = m_pullup(mm, hlen);
1455		if (mm == NULL) {
1456		    return ENOBUFS;
1457		}
1458
1459		rt->mfc_last_assert = now;
1460
1461		im = mtod(mm, struct igmpmsg *);
1462		im->im_msgtype	= IGMPMSG_WRONGVIF;
1463		im->im_mbz		= 0;
1464		im->im_vif		= vifi;
1465
1466		k_igmpsrc.sin_addr = im->im_src;
1467
1468		socket_send(ip_mrouter, mm, &k_igmpsrc);
1469	    }
1470	}
1471	return 0;
1472    }
1473
1474    /* If I sourced this packet, it counts as output, else it was input. */
1475    if (ip->ip_src.s_addr == viftable[vifi].v_lcl_addr.s_addr) {
1476	viftable[vifi].v_pkt_out++;
1477	viftable[vifi].v_bytes_out += plen;
1478    } else {
1479	viftable[vifi].v_pkt_in++;
1480	viftable[vifi].v_bytes_in += plen;
1481    }
1482    rt->mfc_pkt_cnt++;
1483    rt->mfc_byte_cnt += plen;
1484
1485    /*
1486     * For each vif, decide if a copy of the packet should be forwarded.
1487     * Forward if:
1488     *		- the ttl exceeds the vif's threshold
1489     *		- there are group members downstream on interface
1490     */
1491    for (vifp = viftable, vifi = 0; vifi < numvifs; vifp++, vifi++)
1492	if ((rt->mfc_ttls[vifi] > 0) &&
1493	    (ip->ip_ttl > rt->mfc_ttls[vifi])) {
1494	    vifp->v_pkt_out++;
1495	    vifp->v_bytes_out += plen;
1496	    MC_SEND(ip, vifp, m);
1497	}
1498
1499    return 0;
1500}
1501
1502/*
1503 * check if a vif number is legal/ok. This is used by ip_output, to export
1504 * numvifs there,
1505 */
1506static int
1507X_legal_vif_num(vif)
1508    int vif;
1509{
1510    if (vif >= 0 && vif < numvifs)
1511       return(1);
1512    else
1513       return(0);
1514}
1515
1516#ifndef MROUTE_LKM
1517int (*legal_vif_num)(int) = X_legal_vif_num;
1518#endif
1519
1520/*
1521 * Return the local address used by this vif
1522 */
1523static u_long
1524X_ip_mcast_src(vifi)
1525    int vifi;
1526{
1527    if (vifi >= 0 && vifi < numvifs)
1528	return viftable[vifi].v_lcl_addr.s_addr;
1529    else
1530	return INADDR_ANY;
1531}
1532
1533#ifndef MROUTE_LKM
1534u_long (*ip_mcast_src)(int) = X_ip_mcast_src;
1535#endif
1536
1537static void
1538phyint_send(ip, vifp, m)
1539    struct ip *ip;
1540    struct vif *vifp;
1541    struct mbuf *m;
1542{
1543    register struct mbuf *mb_copy;
1544    register int hlen = ip->ip_hl << 2;
1545
1546    /*
1547     * Make a new reference to the packet; make sure that
1548     * the IP header is actually copied, not just referenced,
1549     * so that ip_output() only scribbles on the copy.
1550     */
1551    mb_copy = m_copy(m, 0, M_COPYALL);
1552    if (mb_copy && (M_HASCL(mb_copy) || mb_copy->m_len < hlen))
1553	mb_copy = m_pullup(mb_copy, hlen);
1554    if (mb_copy == NULL)
1555	return;
1556
1557    if (vifp->v_rate_limit <= 0)
1558	tbf_send_packet(vifp, mb_copy);
1559    else
1560	tbf_control(vifp, mb_copy, mtod(mb_copy, struct ip *), ip->ip_len);
1561}
1562
1563static void
1564encap_send(ip, vifp, m)
1565    register struct ip *ip;
1566    register struct vif *vifp;
1567    register struct mbuf *m;
1568{
1569    register struct mbuf *mb_copy;
1570    register struct ip *ip_copy;
1571    register int i, len = ip->ip_len;
1572
1573    /*
1574     * copy the old packet & pullup it's IP header into the
1575     * new mbuf so we can modify it.  Try to fill the new
1576     * mbuf since if we don't the ethernet driver will.
1577     */
1578    MGET(mb_copy, M_DONTWAIT, MT_DATA);
1579    if (mb_copy == NULL)
1580	return;
1581    mb_copy->m_data += 16;
1582    mb_copy->m_len = sizeof(multicast_encap_iphdr);
1583
1584    if ((mb_copy->m_next = m_copy(m, 0, M_COPYALL)) == NULL) {
1585	m_freem(mb_copy);
1586	return;
1587    }
1588    i = MHLEN - M_LEADINGSPACE(mb_copy);
1589    if (i > len)
1590	i = len;
1591    mb_copy = m_pullup(mb_copy, i);
1592    if (mb_copy == NULL)
1593	return;
1594    mb_copy->m_pkthdr.len = len + sizeof(multicast_encap_iphdr);
1595
1596    /*
1597     * fill in the encapsulating IP header.
1598     */
1599    ip_copy = mtod(mb_copy, struct ip *);
1600    *ip_copy = multicast_encap_iphdr;
1601    ip_copy->ip_id = htons(ip_id++);
1602    ip_copy->ip_len += len;
1603    ip_copy->ip_src = vifp->v_lcl_addr;
1604    ip_copy->ip_dst = vifp->v_rmt_addr;
1605
1606    /*
1607     * turn the encapsulated IP header back into a valid one.
1608     */
1609    ip = (struct ip *)((caddr_t)ip_copy + sizeof(multicast_encap_iphdr));
1610    --ip->ip_ttl;
1611    HTONS(ip->ip_len);
1612    HTONS(ip->ip_off);
1613    ip->ip_sum = 0;
1614#if defined(LBL) && !defined(ultrix)
1615    ip->ip_sum = ~oc_cksum((caddr_t)ip, ip->ip_hl << 2, 0);
1616#else
1617    mb_copy->m_data += sizeof(multicast_encap_iphdr);
1618    ip->ip_sum = in_cksum(mb_copy, ip->ip_hl << 2);
1619    mb_copy->m_data -= sizeof(multicast_encap_iphdr);
1620#endif
1621
1622    if (vifp->v_rate_limit <= 0)
1623	tbf_send_packet(vifp, mb_copy);
1624    else
1625	tbf_control(vifp, mb_copy, ip, ip_copy->ip_len);
1626}
1627
1628/*
1629 * De-encapsulate a packet and feed it back through ip input (this
1630 * routine is called whenever IP gets a packet with proto type
1631 * ENCAP_PROTO and a local destination address).
1632 */
1633void
1634#ifdef MROUTE_LKM
1635X_ipip_input(m, iphlen)
1636#else
1637ipip_input(m, iphlen)
1638#endif
1639	register struct mbuf *m;
1640	int iphlen;
1641{
1642    struct ifnet *ifp = m->m_pkthdr.rcvif;
1643    register struct ip *ip = mtod(m, struct ip *);
1644    register int hlen = ip->ip_hl << 2;
1645    register int s;
1646    register struct ifqueue *ifq;
1647    register struct vif *vifp;
1648
1649    if (!have_encap_tunnel) {
1650	    rip_input(m, iphlen);
1651	    return;
1652    }
1653    /*
1654     * dump the packet if it's not to a multicast destination or if
1655     * we don't have an encapsulating tunnel with the source.
1656     * Note:  This code assumes that the remote site IP address
1657     * uniquely identifies the tunnel (i.e., that this site has
1658     * at most one tunnel with the remote site).
1659     */
1660    if (! IN_MULTICAST(ntohl(((struct ip *)((char *)ip + hlen))->ip_dst.s_addr))) {
1661	++mrtstat.mrts_bad_tunnel;
1662	m_freem(m);
1663	return;
1664    }
1665    if (ip->ip_src.s_addr != last_encap_src) {
1666	register struct vif *vife;
1667
1668	vifp = viftable;
1669	vife = vifp + numvifs;
1670	last_encap_src = ip->ip_src.s_addr;
1671	last_encap_vif = 0;
1672	for ( ; vifp < vife; ++vifp)
1673	    if (vifp->v_rmt_addr.s_addr == ip->ip_src.s_addr) {
1674		if ((vifp->v_flags & (VIFF_TUNNEL|VIFF_SRCRT))
1675		    == VIFF_TUNNEL)
1676		    last_encap_vif = vifp;
1677		break;
1678	    }
1679    }
1680    if ((vifp = last_encap_vif) == 0) {
1681	last_encap_src = 0;
1682	mrtstat.mrts_cant_tunnel++; /*XXX*/
1683	m_freem(m);
1684	if (mrtdebug)
1685          log(LOG_DEBUG, "ip_mforward: no tunnel with %x\n",
1686		ntohl(ip->ip_src.s_addr));
1687	return;
1688    }
1689    ifp = vifp->v_ifp;
1690
1691    if (hlen > IP_HDR_LEN)
1692      ip_stripoptions(m, (struct mbuf *) 0);
1693    m->m_data += IP_HDR_LEN;
1694    m->m_len -= IP_HDR_LEN;
1695    m->m_pkthdr.len -= IP_HDR_LEN;
1696    m->m_pkthdr.rcvif = ifp;
1697
1698    ifq = &ipintrq;
1699    s = splimp();
1700    if (IF_QFULL(ifq)) {
1701	IF_DROP(ifq);
1702	m_freem(m);
1703    } else {
1704	IF_ENQUEUE(ifq, m);
1705	/*
1706	 * normally we would need a "schednetisr(NETISR_IP)"
1707	 * here but we were called by ip_input and it is going
1708	 * to loop back & try to dequeue the packet we just
1709	 * queued as soon as we return so we avoid the
1710	 * unnecessary software interrrupt.
1711	 */
1712    }
1713    splx(s);
1714}
1715
1716/*
1717 * Token bucket filter module
1718 */
1719
1720static void
1721tbf_control(vifp, m, ip, p_len)
1722	register struct vif *vifp;
1723	register struct mbuf *m;
1724	register struct ip *ip;
1725	register u_long p_len;
1726{
1727    register struct tbf *t = vifp->v_tbf;
1728
1729    if (p_len > MAX_BKT_SIZE) {
1730	/* drop if packet is too large */
1731	mrtstat.mrts_pkt2large++;
1732	m_freem(m);
1733	return;
1734    }
1735
1736    tbf_update_tokens(vifp);
1737
1738    /* if there are enough tokens,
1739     * and the queue is empty,
1740     * send this packet out
1741     */
1742
1743    if (t->tbf_q_len == 0) {
1744	/* queue empty, send packet if enough tokens */
1745	if (p_len <= t->tbf_n_tok) {
1746	    t->tbf_n_tok -= p_len;
1747	    tbf_send_packet(vifp, m);
1748	} else {
1749	    /* queue packet and timeout till later */
1750	    tbf_queue(vifp, m);
1751	    timeout(tbf_reprocess_q, (caddr_t)vifp, TBF_REPROCESS);
1752	}
1753    } else if (t->tbf_q_len < t->tbf_max_q_len) {
1754	/* finite queue length, so queue pkts and process queue */
1755	tbf_queue(vifp, m);
1756	tbf_process_q(vifp);
1757    } else {
1758	/* queue length too much, try to dq and queue and process */
1759	if (!tbf_dq_sel(vifp, ip)) {
1760	    mrtstat.mrts_q_overflow++;
1761	    m_freem(m);
1762	    return;
1763	} else {
1764	    tbf_queue(vifp, m);
1765	    tbf_process_q(vifp);
1766	}
1767    }
1768    return;
1769}
1770
1771/*
1772 * adds a packet to the queue at the interface
1773 */
1774static void
1775tbf_queue(vifp, m)
1776	register struct vif *vifp;
1777	register struct mbuf *m;
1778{
1779    register int s = splnet();
1780    register struct tbf *t = vifp->v_tbf;
1781
1782    if (t->tbf_t == NULL) {
1783	/* Queue was empty */
1784	t->tbf_q = m;
1785    } else {
1786	/* Insert at tail */
1787	t->tbf_t->m_act = m;
1788    }
1789
1790    /* Set new tail pointer */
1791    t->tbf_t = m;
1792
1793#ifdef DIAGNOSTIC
1794    /* Make sure we didn't get fed a bogus mbuf */
1795    if (m->m_act)
1796	panic("tbf_queue: m_act");
1797#endif
1798    m->m_act = NULL;
1799
1800    t->tbf_q_len++;
1801
1802    splx(s);
1803}
1804
1805
1806/*
1807 * processes the queue at the interface
1808 */
1809static void
1810tbf_process_q(vifp)
1811    register struct vif *vifp;
1812{
1813    register struct mbuf *m;
1814    register int len;
1815    register int s = splnet();
1816    register struct tbf *t = vifp->v_tbf;
1817
1818    /* loop through the queue at the interface and send as many packets
1819     * as possible
1820     */
1821    while (t->tbf_q_len > 0) {
1822	m = t->tbf_q;
1823
1824	len = mtod(m, struct ip *)->ip_len;
1825
1826	/* determine if the packet can be sent */
1827	if (len <= t->tbf_n_tok) {
1828	    /* if so,
1829	     * reduce no of tokens, dequeue the packet,
1830	     * send the packet.
1831	     */
1832	    t->tbf_n_tok -= len;
1833
1834	    t->tbf_q = m->m_act;
1835	    if (--t->tbf_q_len == 0)
1836		t->tbf_t = NULL;
1837
1838	    m->m_act = NULL;
1839	    tbf_send_packet(vifp, m);
1840
1841	} else break;
1842    }
1843    splx(s);
1844}
1845
1846static void
1847tbf_reprocess_q(xvifp)
1848	void *xvifp;
1849{
1850    register struct vif *vifp = xvifp;
1851    if (ip_mrouter == NULL)
1852	return;
1853
1854    tbf_update_tokens(vifp);
1855
1856    tbf_process_q(vifp);
1857
1858    if (vifp->v_tbf->tbf_q_len)
1859	timeout(tbf_reprocess_q, (caddr_t)vifp, TBF_REPROCESS);
1860}
1861
1862/* function that will selectively discard a member of the queue
1863 * based on the precedence value and the priority
1864 */
1865static int
1866tbf_dq_sel(vifp, ip)
1867    register struct vif *vifp;
1868    register struct ip *ip;
1869{
1870    register int s = splnet();
1871    register u_int p;
1872    register struct mbuf *m, *last;
1873    register struct mbuf **np;
1874    register struct tbf *t = vifp->v_tbf;
1875
1876    p = priority(vifp, ip);
1877
1878    np = &t->tbf_q;
1879    last = NULL;
1880    while ((m = *np) != NULL) {
1881	if (p > priority(vifp, mtod(m, struct ip *))) {
1882	    *np = m->m_act;
1883	    /* If we're removing the last packet, fix the tail pointer */
1884	    if (m == t->tbf_t)
1885		t->tbf_t = last;
1886	    m_freem(m);
1887	    /* it's impossible for the queue to be empty, but
1888	     * we check anyway. */
1889	    if (--t->tbf_q_len == 0)
1890		t->tbf_t = NULL;
1891	    splx(s);
1892	    mrtstat.mrts_drop_sel++;
1893	    return(1);
1894	}
1895	np = &m->m_act;
1896	last = m;
1897    }
1898    splx(s);
1899    return(0);
1900}
1901
1902static void
1903tbf_send_packet(vifp, m)
1904    register struct vif *vifp;
1905    register struct mbuf *m;
1906{
1907    struct ip_moptions imo;
1908    int error;
1909    static struct route ro;
1910    int s = splnet();
1911
1912    if (vifp->v_flags & VIFF_TUNNEL) {
1913	/* If tunnel options */
1914	ip_output(m, (struct mbuf *)0, &vifp->v_route,
1915		  IP_FORWARDING, (struct ip_moptions *)0);
1916    } else {
1917	imo.imo_multicast_ifp  = vifp->v_ifp;
1918	imo.imo_multicast_ttl  = mtod(m, struct ip *)->ip_ttl - 1;
1919	imo.imo_multicast_loop = 1;
1920	imo.imo_multicast_vif  = -1;
1921
1922	/*
1923	 * Re-entrancy should not be a problem here, because
1924	 * the packets that we send out and are looped back at us
1925	 * should get rejected because they appear to come from
1926	 * the loopback interface, thus preventing looping.
1927	 */
1928	error = ip_output(m, (struct mbuf *)0, &ro,
1929			  IP_FORWARDING, &imo);
1930
1931	if (mrtdebug & DEBUG_XMIT)
1932	    log(LOG_DEBUG, "phyint_send on vif %d err %d\n",
1933		vifp - viftable, error);
1934    }
1935    splx(s);
1936}
1937
1938/* determine the current time and then
1939 * the elapsed time (between the last time and time now)
1940 * in milliseconds & update the no. of tokens in the bucket
1941 */
1942static void
1943tbf_update_tokens(vifp)
1944    register struct vif *vifp;
1945{
1946    struct timeval tp;
1947    register u_long tm;
1948    register int s = splnet();
1949    register struct tbf *t = vifp->v_tbf;
1950
1951    GET_TIME(tp);
1952
1953    TV_DELTA(tp, t->tbf_last_pkt_t, tm);
1954
1955    /*
1956     * This formula is actually
1957     * "time in seconds" * "bytes/second".
1958     *
1959     * (tm / 1000000) * (v_rate_limit * 1000 * (1000/1024) / 8)
1960     *
1961     * The (1000/1024) was introduced in add_vif to optimize
1962     * this divide into a shift.
1963     */
1964    t->tbf_n_tok += tm * vifp->v_rate_limit / 1024 / 8;
1965    t->tbf_last_pkt_t = tp;
1966
1967    if (t->tbf_n_tok > MAX_BKT_SIZE)
1968	t->tbf_n_tok = MAX_BKT_SIZE;
1969
1970    splx(s);
1971}
1972
1973static int
1974priority(vifp, ip)
1975    register struct vif *vifp;
1976    register struct ip *ip;
1977{
1978    register int prio;
1979
1980    /* temporary hack; may add general packet classifier some day */
1981
1982    /*
1983     * The UDP port space is divided up into four priority ranges:
1984     * [0, 16384)     : unclassified - lowest priority
1985     * [16384, 32768) : audio - highest priority
1986     * [32768, 49152) : whiteboard - medium priority
1987     * [49152, 65536) : video - low priority
1988     */
1989    if (ip->ip_p == IPPROTO_UDP) {
1990	struct udphdr *udp = (struct udphdr *)(((char *)ip) + (ip->ip_hl << 2));
1991	switch (ntohs(udp->uh_dport) & 0xc000) {
1992	    case 0x4000:
1993		prio = 70;
1994		break;
1995	    case 0x8000:
1996		prio = 60;
1997		break;
1998	    case 0xc000:
1999		prio = 55;
2000		break;
2001	    default:
2002		prio = 50;
2003		break;
2004	}
2005	if (tbfdebug > 1)
2006		log(LOG_DEBUG, "port %x prio%d\n", ntohs(udp->uh_dport), prio);
2007    } else {
2008	    prio = 50;
2009    }
2010    return prio;
2011}
2012
2013/*
2014 * End of token bucket filter modifications
2015 */
2016
2017int
2018ip_rsvp_vif_init(so, m)
2019    struct socket *so;
2020    struct mbuf *m;
2021{
2022    int i;
2023    register int s;
2024
2025    if (rsvpdebug)
2026	printf("ip_rsvp_vif_init: so_type = %d, pr_protocol = %d\n",
2027	       so->so_type, so->so_proto->pr_protocol);
2028
2029    if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_RSVP)
2030	return EOPNOTSUPP;
2031
2032    /* Check mbuf. */
2033    if (m == NULL || m->m_len != sizeof(int)) {
2034	return EINVAL;
2035    }
2036    i = *(mtod(m, int *));
2037
2038    if (rsvpdebug)
2039	printf("ip_rsvp_vif_init: vif = %d rsvp_on = %d\n",i,rsvp_on);
2040
2041    s = splnet();
2042
2043    /* Check vif. */
2044    if (!legal_vif_num(i)) {
2045	splx(s);
2046	return EADDRNOTAVAIL;
2047    }
2048
2049    /* Check if socket is available. */
2050    if (viftable[i].v_rsvpd != NULL) {
2051	splx(s);
2052	return EADDRINUSE;
2053    }
2054
2055    viftable[i].v_rsvpd = so;
2056    /* This may seem silly, but we need to be sure we don't over-increment
2057     * the RSVP counter, in case something slips up.
2058     */
2059    if (!viftable[i].v_rsvp_on) {
2060	viftable[i].v_rsvp_on = 1;
2061	rsvp_on++;
2062    }
2063
2064    splx(s);
2065    return 0;
2066}
2067
2068int
2069ip_rsvp_vif_done(so, m)
2070    struct socket *so;
2071    struct mbuf *m;
2072{
2073	int i;
2074	register int s;
2075
2076    if (rsvpdebug)
2077	printf("ip_rsvp_vif_done: so_type = %d, pr_protocol = %d\n",
2078	       so->so_type, so->so_proto->pr_protocol);
2079
2080    if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_RSVP)
2081	return EOPNOTSUPP;
2082
2083    /* Check mbuf. */
2084    if (m == NULL || m->m_len != sizeof(int)) {
2085	    return EINVAL;
2086    }
2087    i = *(mtod(m, int *));
2088
2089    s = splnet();
2090
2091    /* Check vif. */
2092    if (!legal_vif_num(i)) {
2093	splx(s);
2094        return EADDRNOTAVAIL;
2095    }
2096
2097    if (rsvpdebug)
2098	printf("ip_rsvp_vif_done: v_rsvpd = %p so = %p\n",
2099	       viftable[i].v_rsvpd, so);
2100
2101    viftable[i].v_rsvpd = NULL;
2102    /* This may seem silly, but we need to be sure we don't over-decrement
2103     * the RSVP counter, in case something slips up.
2104     */
2105    if (viftable[i].v_rsvp_on) {
2106	viftable[i].v_rsvp_on = 0;
2107	rsvp_on--;
2108    }
2109
2110    splx(s);
2111    return 0;
2112}
2113
2114void
2115ip_rsvp_force_done(so)
2116    struct socket *so;
2117{
2118    int vifi;
2119    register int s;
2120
2121    /* Don't bother if it is not the right type of socket. */
2122    if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_RSVP)
2123	return;
2124
2125    s = splnet();
2126
2127    /* The socket may be attached to more than one vif...this
2128     * is perfectly legal.
2129     */
2130    for (vifi = 0; vifi < numvifs; vifi++) {
2131	if (viftable[vifi].v_rsvpd == so) {
2132	    viftable[vifi].v_rsvpd = NULL;
2133	    /* This may seem silly, but we need to be sure we don't
2134	     * over-decrement the RSVP counter, in case something slips up.
2135	     */
2136	    if (viftable[vifi].v_rsvp_on) {
2137		viftable[vifi].v_rsvp_on = 0;
2138		rsvp_on--;
2139	    }
2140	}
2141    }
2142
2143    splx(s);
2144    return;
2145}
2146
2147void
2148rsvp_input(m, iphlen)
2149	struct mbuf *m;
2150	int iphlen;
2151{
2152    int vifi;
2153    register struct ip *ip = mtod(m, struct ip *);
2154    static struct sockaddr_in rsvp_src = { sizeof rsvp_src, AF_INET };
2155    register int s;
2156    struct ifnet *ifp;
2157
2158    if (rsvpdebug)
2159	printf("rsvp_input: rsvp_on %d\n",rsvp_on);
2160
2161    /* Can still get packets with rsvp_on = 0 if there is a local member
2162     * of the group to which the RSVP packet is addressed.  But in this
2163     * case we want to throw the packet away.
2164     */
2165    if (!rsvp_on) {
2166	m_freem(m);
2167	return;
2168    }
2169
2170    /* If the old-style non-vif-associated socket is set, then use
2171     * it and ignore the new ones.
2172     */
2173    if (ip_rsvpd != NULL) {
2174	if (rsvpdebug)
2175	    printf("rsvp_input: Sending packet up old-style socket\n");
2176	rip_input(m, iphlen);
2177	return;
2178    }
2179
2180    s = splnet();
2181
2182    if (rsvpdebug)
2183	printf("rsvp_input: check vifs\n");
2184
2185#ifdef DIAGNOSTIC
2186    if (!(m->m_flags & M_PKTHDR))
2187	    panic("rsvp_input no hdr");
2188#endif
2189
2190    ifp = m->m_pkthdr.rcvif;
2191    /* Find which vif the packet arrived on. */
2192    for (vifi = 0; vifi < numvifs; vifi++) {
2193	if (viftable[vifi].v_ifp == ifp)
2194 		break;
2195 	}
2196
2197    if (vifi == numvifs) {
2198	/* Can't find vif packet arrived on. Drop packet. */
2199	if (rsvpdebug)
2200	    printf("rsvp_input: Can't find vif for packet...dropping it.\n");
2201	m_freem(m);
2202	splx(s);
2203	return;
2204    }
2205
2206    if (rsvpdebug)
2207	printf("rsvp_input: check socket\n");
2208
2209    if (viftable[vifi].v_rsvpd == NULL) {
2210	/* drop packet, since there is no specific socket for this
2211	 * interface */
2212	    if (rsvpdebug)
2213		    printf("rsvp_input: No socket defined for vif %d\n",vifi);
2214	    m_freem(m);
2215	    splx(s);
2216	    return;
2217    }
2218    rsvp_src.sin_addr = ip->ip_src;
2219
2220    if (rsvpdebug && m)
2221	printf("rsvp_input: m->m_len = %d, sbspace() = %ld\n",
2222	       m->m_len,sbspace(&(viftable[vifi].v_rsvpd->so_rcv)));
2223
2224    if (socket_send(viftable[vifi].v_rsvpd, m, &rsvp_src) < 0)
2225	if (rsvpdebug)
2226	    printf("rsvp_input: Failed to append to socket\n");
2227    else
2228	if (rsvpdebug)
2229	    printf("rsvp_input: send packet up\n");
2230
2231    splx(s);
2232}
2233
2234#ifdef MROUTE_LKM
2235#include <sys/conf.h>
2236#include <sys/exec.h>
2237#include <sys/sysent.h>
2238#include <sys/lkm.h>
2239
2240MOD_MISC("ip_mroute_mod")
2241
2242static int
2243ip_mroute_mod_handle(struct lkm_table *lkmtp, int cmd)
2244{
2245	int i;
2246	struct lkm_misc	*args = lkmtp->private.lkm_misc;
2247	int err = 0;
2248
2249	switch(cmd) {
2250		static int (*old_ip_mrouter_cmd)();
2251		static int (*old_ip_mrouter_done)();
2252		static int (*old_ip_mforward)();
2253		static int (*old_mrt_ioctl)();
2254		static void (*old_proto4_input)();
2255		static int (*old_legal_vif_num)();
2256		extern struct protosw inetsw[];
2257
2258	case LKM_E_LOAD:
2259		if(lkmexists(lkmtp) || ip_mrtproto)
2260		  return(EEXIST);
2261		old_ip_mrouter_cmd = ip_mrouter_cmd;
2262		ip_mrouter_cmd = X_ip_mrouter_cmd;
2263		old_ip_mrouter_done = ip_mrouter_done;
2264		ip_mrouter_done = X_ip_mrouter_done;
2265		old_ip_mforward = ip_mforward;
2266		ip_mforward = X_ip_mforward;
2267		old_mrt_ioctl = mrt_ioctl;
2268		mrt_ioctl = X_mrt_ioctl;
2269              old_proto4_input = inetsw[ip_protox[ENCAP_PROTO]].pr_input;
2270              inetsw[ip_protox[ENCAP_PROTO]].pr_input = X_ipip_input;
2271		old_legal_vif_num = legal_vif_num;
2272		legal_vif_num = X_legal_vif_num;
2273		ip_mrtproto = IGMP_DVMRP;
2274
2275		printf("\nIP multicast routing loaded\n");
2276		break;
2277
2278	case LKM_E_UNLOAD:
2279		if (ip_mrouter)
2280		  return EINVAL;
2281
2282		ip_mrouter_cmd = old_ip_mrouter_cmd;
2283		ip_mrouter_done = old_ip_mrouter_done;
2284		ip_mforward = old_ip_mforward;
2285		mrt_ioctl = old_mrt_ioctl;
2286              inetsw[ip_protox[ENCAP_PROTO]].pr_input = old_proto4_input;
2287		legal_vif_num = old_legal_vif_num;
2288		ip_mrtproto = 0;
2289		break;
2290
2291	default:
2292		err = EINVAL;
2293		break;
2294	}
2295
2296	return(err);
2297}
2298
2299int
2300ip_mroute_mod(struct lkm_table *lkmtp, int cmd, int ver) {
2301	DISPATCH(lkmtp, cmd, ver, ip_mroute_mod_handle, ip_mroute_mod_handle,
2302		 nosys);
2303}
2304
2305#endif /* MROUTE_LKM */
2306#endif /* MROUTING */
2307