ip_mroute.c revision 150350
1/*-
2 * Copyright (c) 1989 Stephen Deering
3 * Copyright (c) 1992, 1993
4 *      The Regents of the University of California.  All rights reserved.
5 *
6 * This code is derived from software contributed to Berkeley by
7 * Stephen Deering of Stanford University.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in the
16 *    documentation and/or other materials provided with the distribution.
17 * 4. Neither the name of the University nor the names of its contributors
18 *    may be used to endorse or promote products derived from this software
19 *    without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 *
33 *      @(#)ip_mroute.c 8.2 (Berkeley) 11/15/93
34 */
35
36/*
37 * IP multicast forwarding procedures
38 *
39 * Written by David Waitzman, BBN Labs, August 1988.
40 * Modified by Steve Deering, Stanford, February 1989.
41 * Modified by Mark J. Steiglitz, Stanford, May, 1991
42 * Modified by Van Jacobson, LBL, January 1993
43 * Modified by Ajit Thyagarajan, PARC, August 1993
44 * Modified by Bill Fenner, PARC, April 1995
45 * Modified by Ahmed Helmy, SGI, June 1996
46 * Modified by George Edmond Eddy (Rusty), ISI, February 1998
47 * Modified by Pavlin Radoslavov, USC/ISI, May 1998, August 1999, October 2000
48 * Modified by Hitoshi Asaeda, WIDE, August 2000
49 * Modified by Pavlin Radoslavov, ICSI, October 2002
50 *
51 * MROUTING Revision: 3.5
52 * and PIM-SMv2 and PIM-DM support, advanced API support,
53 * bandwidth metering and signaling
54 *
55 * $FreeBSD: head/sys/netinet/ip_mroute.c 150350 2005-09-19 22:31:45Z andre $
56 */
57
58#include "opt_mac.h"
59#include "opt_mrouting.h"
60
61#ifdef PIM
62#define _PIM_VT 1
63#endif
64
65#include <sys/param.h>
66#include <sys/kernel.h>
67#include <sys/lock.h>
68#include <sys/mac.h>
69#include <sys/malloc.h>
70#include <sys/mbuf.h>
71#include <sys/module.h>
72#include <sys/protosw.h>
73#include <sys/signalvar.h>
74#include <sys/socket.h>
75#include <sys/socketvar.h>
76#include <sys/sockio.h>
77#include <sys/sx.h>
78#include <sys/sysctl.h>
79#include <sys/syslog.h>
80#include <sys/systm.h>
81#include <sys/time.h>
82#include <net/if.h>
83#include <net/netisr.h>
84#include <net/route.h>
85#include <netinet/in.h>
86#include <netinet/igmp.h>
87#include <netinet/in_systm.h>
88#include <netinet/in_var.h>
89#include <netinet/ip.h>
90#include <netinet/ip_encap.h>
91#include <netinet/ip_mroute.h>
92#include <netinet/ip_var.h>
93#ifdef PIM
94#include <netinet/pim.h>
95#include <netinet/pim_var.h>
96#endif
97#include <netinet/udp.h>
98#include <machine/in_cksum.h>
99
100/*
101 * Control debugging code for rsvp and multicast routing code.
102 * Can only set them with the debugger.
103 */
104static u_int    rsvpdebug;		/* non-zero enables debugging	*/
105
106static u_int	mrtdebug;		/* any set of the flags below	*/
107#define		DEBUG_MFC	0x02
108#define		DEBUG_FORWARD	0x04
109#define		DEBUG_EXPIRE	0x08
110#define		DEBUG_XMIT	0x10
111#define		DEBUG_PIM	0x20
112
113#define		VIFI_INVALID	((vifi_t) -1)
114
115#define M_HASCL(m)	((m)->m_flags & M_EXT)
116
117static MALLOC_DEFINE(M_MRTABLE, "mroutetbl", "multicast routing tables");
118
119/*
120 * Locking.  We use two locks: one for the virtual interface table and
121 * one for the forwarding table.  These locks may be nested in which case
122 * the VIF lock must always be taken first.  Note that each lock is used
123 * to cover not only the specific data structure but also related data
124 * structures.  It may be better to add more fine-grained locking later;
125 * it's not clear how performance-critical this code is.
126 */
127
128static struct mrtstat	mrtstat;
129SYSCTL_STRUCT(_net_inet_ip, OID_AUTO, mrtstat, CTLFLAG_RW,
130    &mrtstat, mrtstat,
131    "Multicast Routing Statistics (struct mrtstat, netinet/ip_mroute.h)");
132
133static struct mfc	*mfctable[MFCTBLSIZ];
134SYSCTL_OPAQUE(_net_inet_ip, OID_AUTO, mfctable, CTLFLAG_RD,
135    &mfctable, sizeof(mfctable), "S,*mfc[MFCTBLSIZ]",
136    "Multicast Forwarding Table (struct *mfc[MFCTBLSIZ], netinet/ip_mroute.h)");
137
138static struct mtx mfc_mtx;
139#define	MFC_LOCK()	mtx_lock(&mfc_mtx)
140#define	MFC_UNLOCK()	mtx_unlock(&mfc_mtx)
141#define	MFC_LOCK_ASSERT()	do {					\
142	mtx_assert(&mfc_mtx, MA_OWNED);					\
143	NET_ASSERT_GIANT();						\
144} while (0)
145#define	MFC_LOCK_INIT()	mtx_init(&mfc_mtx, "mroute mfc table", NULL, MTX_DEF)
146#define	MFC_LOCK_DESTROY()	mtx_destroy(&mfc_mtx)
147
148static struct vif	viftable[MAXVIFS];
149SYSCTL_OPAQUE(_net_inet_ip, OID_AUTO, viftable, CTLFLAG_RD,
150    &viftable, sizeof(viftable), "S,vif[MAXVIFS]",
151    "Multicast Virtual Interfaces (struct vif[MAXVIFS], netinet/ip_mroute.h)");
152
153static struct mtx vif_mtx;
154#define	VIF_LOCK()	mtx_lock(&vif_mtx)
155#define	VIF_UNLOCK()	mtx_unlock(&vif_mtx)
156#define	VIF_LOCK_ASSERT()	mtx_assert(&vif_mtx, MA_OWNED)
157#define	VIF_LOCK_INIT()	mtx_init(&vif_mtx, "mroute vif table", NULL, MTX_DEF)
158#define	VIF_LOCK_DESTROY()	mtx_destroy(&vif_mtx)
159
160static u_char		nexpire[MFCTBLSIZ];
161
162static struct callout expire_upcalls_ch;
163
164#define		EXPIRE_TIMEOUT	(hz / 4)	/* 4x / second		*/
165#define		UPCALL_EXPIRE	6		/* number of timeouts	*/
166
167/*
168 * Define the token bucket filter structures
169 * tbftable -> each vif has one of these for storing info
170 */
171
172static struct tbf tbftable[MAXVIFS];
173#define		TBF_REPROCESS	(hz / 100)	/* 100x / second */
174
175/*
176 * 'Interfaces' associated with decapsulator (so we can tell
177 * packets that went through it from ones that get reflected
178 * by a broken gateway).  These interfaces are never linked into
179 * the system ifnet list & no routes point to them.  I.e., packets
180 * can't be sent this way.  They only exist as a placeholder for
181 * multicast source verification.
182 */
183static struct ifnet multicast_decap_if[MAXVIFS];
184
185#define ENCAP_TTL 64
186#define ENCAP_PROTO IPPROTO_IPIP	/* 4 */
187
188/* prototype IP hdr for encapsulated packets */
189static struct ip multicast_encap_iphdr = {
190#if BYTE_ORDER == LITTLE_ENDIAN
191	sizeof(struct ip) >> 2, IPVERSION,
192#else
193	IPVERSION, sizeof(struct ip) >> 2,
194#endif
195	0,				/* tos */
196	sizeof(struct ip),		/* total length */
197	0,				/* id */
198	0,				/* frag offset */
199	ENCAP_TTL, ENCAP_PROTO,
200	0,				/* checksum */
201};
202
203/*
204 * Bandwidth meter variables and constants
205 */
206static MALLOC_DEFINE(M_BWMETER, "bwmeter", "multicast upcall bw meters");
207/*
208 * Pending timeouts are stored in a hash table, the key being the
209 * expiration time. Periodically, the entries are analysed and processed.
210 */
211#define BW_METER_BUCKETS	1024
212static struct bw_meter *bw_meter_timers[BW_METER_BUCKETS];
213static struct callout bw_meter_ch;
214#define BW_METER_PERIOD (hz)		/* periodical handling of bw meters */
215
216/*
217 * Pending upcalls are stored in a vector which is flushed when
218 * full, or periodically
219 */
220static struct bw_upcall	bw_upcalls[BW_UPCALLS_MAX];
221static u_int	bw_upcalls_n; /* # of pending upcalls */
222static struct callout bw_upcalls_ch;
223#define BW_UPCALLS_PERIOD (hz)		/* periodical flush of bw upcalls */
224
225#ifdef PIM
226static struct pimstat pimstat;
227SYSCTL_STRUCT(_net_inet_pim, PIMCTL_STATS, stats, CTLFLAG_RD,
228    &pimstat, pimstat,
229    "PIM Statistics (struct pimstat, netinet/pim_var.h)");
230
231/*
232 * Note: the PIM Register encapsulation adds the following in front of a
233 * data packet:
234 *
235 * struct pim_encap_hdr {
236 *    struct ip ip;
237 *    struct pim_encap_pimhdr  pim;
238 * }
239 *
240 */
241
242struct pim_encap_pimhdr {
243	struct pim pim;
244	uint32_t   flags;
245};
246
247static struct ip pim_encap_iphdr = {
248#if BYTE_ORDER == LITTLE_ENDIAN
249	sizeof(struct ip) >> 2,
250	IPVERSION,
251#else
252	IPVERSION,
253	sizeof(struct ip) >> 2,
254#endif
255	0,			/* tos */
256	sizeof(struct ip),	/* total length */
257	0,			/* id */
258	0,			/* frag offset */
259	ENCAP_TTL,
260	IPPROTO_PIM,
261	0,			/* checksum */
262};
263
264static struct pim_encap_pimhdr pim_encap_pimhdr = {
265    {
266	PIM_MAKE_VT(PIM_VERSION, PIM_REGISTER), /* PIM vers and message type */
267	0,			/* reserved */
268	0,			/* checksum */
269    },
270    0				/* flags */
271};
272
273static struct ifnet multicast_register_if;
274static vifi_t reg_vif_num = VIFI_INVALID;
275#endif /* PIM */
276
277/*
278 * Private variables.
279 */
280static vifi_t	   numvifs;
281static const struct encaptab *encap_cookie;
282
283/*
284 * one-back cache used by mroute_encapcheck to locate a tunnel's vif
285 * given a datagram's src ip address.
286 */
287static u_long last_encap_src;
288static struct vif *last_encap_vif;
289
290/*
291 * Callout for queue processing.
292 */
293static struct callout tbf_reprocess_ch;
294
295static u_long	X_ip_mcast_src(int vifi);
296static int	X_ip_mforward(struct ip *ip, struct ifnet *ifp,
297			struct mbuf *m, struct ip_moptions *imo);
298static int	X_ip_mrouter_done(void);
299static int	X_ip_mrouter_get(struct socket *so, struct sockopt *m);
300static int	X_ip_mrouter_set(struct socket *so, struct sockopt *m);
301static int	X_legal_vif_num(int vif);
302static int	X_mrt_ioctl(int cmd, caddr_t data);
303
304static int get_sg_cnt(struct sioc_sg_req *);
305static int get_vif_cnt(struct sioc_vif_req *);
306static int ip_mrouter_init(struct socket *, int);
307static int add_vif(struct vifctl *);
308static int del_vif(vifi_t);
309static int add_mfc(struct mfcctl2 *);
310static int del_mfc(struct mfcctl2 *);
311static int set_api_config(uint32_t *); /* chose API capabilities */
312static int socket_send(struct socket *, struct mbuf *, struct sockaddr_in *);
313static int set_assert(int);
314static void expire_upcalls(void *);
315static int ip_mdq(struct mbuf *, struct ifnet *, struct mfc *, vifi_t);
316static void phyint_send(struct ip *, struct vif *, struct mbuf *);
317static void encap_send(struct ip *, struct vif *, struct mbuf *);
318static void tbf_control(struct vif *, struct mbuf *, struct ip *, u_long);
319static void tbf_queue(struct vif *, struct mbuf *);
320static void tbf_process_q(struct vif *);
321static void tbf_reprocess_q(void *);
322static int tbf_dq_sel(struct vif *, struct ip *);
323static void tbf_send_packet(struct vif *, struct mbuf *);
324static void tbf_update_tokens(struct vif *);
325static int priority(struct vif *, struct ip *);
326
327/*
328 * Bandwidth monitoring
329 */
330static void free_bw_list(struct bw_meter *list);
331static int add_bw_upcall(struct bw_upcall *);
332static int del_bw_upcall(struct bw_upcall *);
333static void bw_meter_receive_packet(struct bw_meter *x, int plen,
334		struct timeval *nowp);
335static void bw_meter_prepare_upcall(struct bw_meter *x, struct timeval *nowp);
336static void bw_upcalls_send(void);
337static void schedule_bw_meter(struct bw_meter *x, struct timeval *nowp);
338static void unschedule_bw_meter(struct bw_meter *x);
339static void bw_meter_process(void);
340static void expire_bw_upcalls_send(void *);
341static void expire_bw_meter_process(void *);
342
343#ifdef PIM
344static int pim_register_send(struct ip *, struct vif *,
345		struct mbuf *, struct mfc *);
346static int pim_register_send_rp(struct ip *, struct vif *,
347		struct mbuf *, struct mfc *);
348static int pim_register_send_upcall(struct ip *, struct vif *,
349		struct mbuf *, struct mfc *);
350static struct mbuf *pim_register_prepare(struct ip *, struct mbuf *);
351#endif
352
353/*
354 * whether or not special PIM assert processing is enabled.
355 */
356static int pim_assert;
357/*
358 * Rate limit for assert notification messages, in usec
359 */
360#define ASSERT_MSG_TIME		3000000
361
362/*
363 * Kernel multicast routing API capabilities and setup.
364 * If more API capabilities are added to the kernel, they should be
365 * recorded in `mrt_api_support'.
366 */
367static const uint32_t mrt_api_support = (MRT_MFC_FLAGS_DISABLE_WRONGVIF |
368					 MRT_MFC_FLAGS_BORDER_VIF |
369					 MRT_MFC_RP |
370					 MRT_MFC_BW_UPCALL);
371static uint32_t mrt_api_config = 0;
372
373/*
374 * Hash function for a source, group entry
375 */
376#define MFCHASH(a, g) MFCHASHMOD(((a) >> 20) ^ ((a) >> 10) ^ (a) ^ \
377			((g) >> 20) ^ ((g) >> 10) ^ (g))
378
379/*
380 * Find a route for a given origin IP address and Multicast group address
381 * Type of service parameter to be added in the future!!!
382 * Statistics are updated by the caller if needed
383 * (mrtstat.mrts_mfc_lookups and mrtstat.mrts_mfc_misses)
384 */
385static struct mfc *
386mfc_find(in_addr_t o, in_addr_t g)
387{
388    struct mfc *rt;
389
390    MFC_LOCK_ASSERT();
391
392    for (rt = mfctable[MFCHASH(o,g)]; rt; rt = rt->mfc_next)
393	if ((rt->mfc_origin.s_addr == o) &&
394		(rt->mfc_mcastgrp.s_addr == g) && (rt->mfc_stall == NULL))
395	    break;
396    return rt;
397}
398
399/*
400 * Macros to compute elapsed time efficiently
401 * Borrowed from Van Jacobson's scheduling code
402 */
403#define TV_DELTA(a, b, delta) {					\
404	int xxs;						\
405	delta = (a).tv_usec - (b).tv_usec;			\
406	if ((xxs = (a).tv_sec - (b).tv_sec)) {			\
407		switch (xxs) {					\
408		case 2:						\
409		      delta += 1000000;				\
410		      /* FALLTHROUGH */				\
411		case 1:						\
412		      delta += 1000000;				\
413		      break;					\
414		default:					\
415		      delta += (1000000 * xxs);			\
416		}						\
417	}							\
418}
419
420#define TV_LT(a, b) (((a).tv_usec < (b).tv_usec && \
421	      (a).tv_sec <= (b).tv_sec) || (a).tv_sec < (b).tv_sec)
422
423/*
424 * Handle MRT setsockopt commands to modify the multicast routing tables.
425 */
426static int
427X_ip_mrouter_set(struct socket *so, struct sockopt *sopt)
428{
429    int	error, optval;
430    vifi_t	vifi;
431    struct	vifctl vifc;
432    struct	mfcctl2 mfc;
433    struct	bw_upcall bw_upcall;
434    uint32_t	i;
435
436    if (so != ip_mrouter && sopt->sopt_name != MRT_INIT)
437	return EPERM;
438
439    error = 0;
440    switch (sopt->sopt_name) {
441    case MRT_INIT:
442	error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval);
443	if (error)
444	    break;
445	error = ip_mrouter_init(so, optval);
446	break;
447
448    case MRT_DONE:
449	error = ip_mrouter_done();
450	break;
451
452    case MRT_ADD_VIF:
453	error = sooptcopyin(sopt, &vifc, sizeof vifc, sizeof vifc);
454	if (error)
455	    break;
456	error = add_vif(&vifc);
457	break;
458
459    case MRT_DEL_VIF:
460	error = sooptcopyin(sopt, &vifi, sizeof vifi, sizeof vifi);
461	if (error)
462	    break;
463	error = del_vif(vifi);
464	break;
465
466    case MRT_ADD_MFC:
467    case MRT_DEL_MFC:
468	/*
469	 * select data size depending on API version.
470	 */
471	if (sopt->sopt_name == MRT_ADD_MFC &&
472		mrt_api_config & MRT_API_FLAGS_ALL) {
473	    error = sooptcopyin(sopt, &mfc, sizeof(struct mfcctl2),
474				sizeof(struct mfcctl2));
475	} else {
476	    error = sooptcopyin(sopt, &mfc, sizeof(struct mfcctl),
477				sizeof(struct mfcctl));
478	    bzero((caddr_t)&mfc + sizeof(struct mfcctl),
479			sizeof(mfc) - sizeof(struct mfcctl));
480	}
481	if (error)
482	    break;
483	if (sopt->sopt_name == MRT_ADD_MFC)
484	    error = add_mfc(&mfc);
485	else
486	    error = del_mfc(&mfc);
487	break;
488
489    case MRT_ASSERT:
490	error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval);
491	if (error)
492	    break;
493	set_assert(optval);
494	break;
495
496    case MRT_API_CONFIG:
497	error = sooptcopyin(sopt, &i, sizeof i, sizeof i);
498	if (!error)
499	    error = set_api_config(&i);
500	if (!error)
501	    error = sooptcopyout(sopt, &i, sizeof i);
502	break;
503
504    case MRT_ADD_BW_UPCALL:
505    case MRT_DEL_BW_UPCALL:
506	error = sooptcopyin(sopt, &bw_upcall, sizeof bw_upcall,
507				sizeof bw_upcall);
508	if (error)
509	    break;
510	if (sopt->sopt_name == MRT_ADD_BW_UPCALL)
511	    error = add_bw_upcall(&bw_upcall);
512	else
513	    error = del_bw_upcall(&bw_upcall);
514	break;
515
516    default:
517	error = EOPNOTSUPP;
518	break;
519    }
520    return error;
521}
522
523/*
524 * Handle MRT getsockopt commands
525 */
526static int
527X_ip_mrouter_get(struct socket *so, struct sockopt *sopt)
528{
529    int error;
530    static int version = 0x0305; /* !!! why is this here? XXX */
531
532    switch (sopt->sopt_name) {
533    case MRT_VERSION:
534	error = sooptcopyout(sopt, &version, sizeof version);
535	break;
536
537    case MRT_ASSERT:
538	error = sooptcopyout(sopt, &pim_assert, sizeof pim_assert);
539	break;
540
541    case MRT_API_SUPPORT:
542	error = sooptcopyout(sopt, &mrt_api_support, sizeof mrt_api_support);
543	break;
544
545    case MRT_API_CONFIG:
546	error = sooptcopyout(sopt, &mrt_api_config, sizeof mrt_api_config);
547	break;
548
549    default:
550	error = EOPNOTSUPP;
551	break;
552    }
553    return error;
554}
555
556/*
557 * Handle ioctl commands to obtain information from the cache
558 */
559static int
560X_mrt_ioctl(int cmd, caddr_t data)
561{
562    int error = 0;
563
564    /*
565     * Currently the only function calling this ioctl routine is rtioctl().
566     * Typically, only root can create the raw socket in order to execute
567     * this ioctl method, however the request might be coming from a prison
568     */
569    error = suser(curthread);
570    if (error)
571	return (error);
572    switch (cmd) {
573    case (SIOCGETVIFCNT):
574	error = get_vif_cnt((struct sioc_vif_req *)data);
575	break;
576
577    case (SIOCGETSGCNT):
578	error = get_sg_cnt((struct sioc_sg_req *)data);
579	break;
580
581    default:
582	error = EINVAL;
583	break;
584    }
585    return error;
586}
587
588/*
589 * returns the packet, byte, rpf-failure count for the source group provided
590 */
591static int
592get_sg_cnt(struct sioc_sg_req *req)
593{
594    struct mfc *rt;
595
596    MFC_LOCK();
597    rt = mfc_find(req->src.s_addr, req->grp.s_addr);
598    if (rt == NULL) {
599	MFC_UNLOCK();
600	req->pktcnt = req->bytecnt = req->wrong_if = 0xffffffff;
601	return EADDRNOTAVAIL;
602    }
603    req->pktcnt = rt->mfc_pkt_cnt;
604    req->bytecnt = rt->mfc_byte_cnt;
605    req->wrong_if = rt->mfc_wrong_if;
606    MFC_UNLOCK();
607    return 0;
608}
609
610/*
611 * returns the input and output packet and byte counts on the vif provided
612 */
613static int
614get_vif_cnt(struct sioc_vif_req *req)
615{
616    vifi_t vifi = req->vifi;
617
618    VIF_LOCK();
619    if (vifi >= numvifs) {
620	VIF_UNLOCK();
621	return EINVAL;
622    }
623
624    req->icount = viftable[vifi].v_pkt_in;
625    req->ocount = viftable[vifi].v_pkt_out;
626    req->ibytes = viftable[vifi].v_bytes_in;
627    req->obytes = viftable[vifi].v_bytes_out;
628    VIF_UNLOCK();
629
630    return 0;
631}
632
633static void
634ip_mrouter_reset(void)
635{
636    bzero((caddr_t)mfctable, sizeof(mfctable));
637    bzero((caddr_t)nexpire, sizeof(nexpire));
638
639    pim_assert = 0;
640    mrt_api_config = 0;
641
642    callout_init(&expire_upcalls_ch, NET_CALLOUT_MPSAFE);
643
644    bw_upcalls_n = 0;
645    bzero((caddr_t)bw_meter_timers, sizeof(bw_meter_timers));
646    callout_init(&bw_upcalls_ch, NET_CALLOUT_MPSAFE);
647    callout_init(&bw_meter_ch, NET_CALLOUT_MPSAFE);
648
649    callout_init(&tbf_reprocess_ch, NET_CALLOUT_MPSAFE);
650}
651
652static struct mtx mrouter_mtx;		/* used to synch init/done work */
653
654/*
655 * Enable multicast routing
656 */
657static int
658ip_mrouter_init(struct socket *so, int version)
659{
660    if (mrtdebug)
661	log(LOG_DEBUG, "ip_mrouter_init: so_type = %d, pr_protocol = %d\n",
662	    so->so_type, so->so_proto->pr_protocol);
663
664    if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_IGMP)
665	return EOPNOTSUPP;
666
667    if (version != 1)
668	return ENOPROTOOPT;
669
670    mtx_lock(&mrouter_mtx);
671
672    if (ip_mrouter != NULL) {
673	mtx_unlock(&mrouter_mtx);
674	return EADDRINUSE;
675    }
676
677    callout_reset(&expire_upcalls_ch, EXPIRE_TIMEOUT, expire_upcalls, NULL);
678
679    callout_reset(&bw_upcalls_ch, BW_UPCALLS_PERIOD,
680	expire_bw_upcalls_send, NULL);
681    callout_reset(&bw_meter_ch, BW_METER_PERIOD, expire_bw_meter_process, NULL);
682
683    ip_mrouter = so;
684
685    mtx_unlock(&mrouter_mtx);
686
687    if (mrtdebug)
688	log(LOG_DEBUG, "ip_mrouter_init\n");
689
690    return 0;
691}
692
693/*
694 * Disable multicast routing
695 */
696static int
697X_ip_mrouter_done(void)
698{
699    vifi_t vifi;
700    int i;
701    struct ifnet *ifp;
702    struct ifreq ifr;
703    struct mfc *rt;
704    struct rtdetq *rte;
705
706    mtx_lock(&mrouter_mtx);
707
708    if (ip_mrouter == NULL) {
709	mtx_unlock(&mrouter_mtx);
710	return EINVAL;
711    }
712
713    /*
714     * Detach/disable hooks to the reset of the system.
715     */
716    ip_mrouter = NULL;
717    mrt_api_config = 0;
718
719    VIF_LOCK();
720    if (encap_cookie) {
721	const struct encaptab *c = encap_cookie;
722	encap_cookie = NULL;
723	encap_detach(c);
724    }
725    VIF_UNLOCK();
726
727    callout_stop(&tbf_reprocess_ch);
728
729    VIF_LOCK();
730    /*
731     * For each phyint in use, disable promiscuous reception of all IP
732     * multicasts.
733     */
734    for (vifi = 0; vifi < numvifs; vifi++) {
735	if (viftable[vifi].v_lcl_addr.s_addr != 0 &&
736		!(viftable[vifi].v_flags & (VIFF_TUNNEL | VIFF_REGISTER))) {
737	    struct sockaddr_in *so = (struct sockaddr_in *)&(ifr.ifr_addr);
738
739	    so->sin_len = sizeof(struct sockaddr_in);
740	    so->sin_family = AF_INET;
741	    so->sin_addr.s_addr = INADDR_ANY;
742	    ifp = viftable[vifi].v_ifp;
743	    if_allmulti(ifp, 0);
744	}
745    }
746    bzero((caddr_t)tbftable, sizeof(tbftable));
747    bzero((caddr_t)viftable, sizeof(viftable));
748    numvifs = 0;
749    pim_assert = 0;
750    VIF_UNLOCK();
751
752    /*
753     * Free all multicast forwarding cache entries.
754     */
755    callout_stop(&expire_upcalls_ch);
756    callout_stop(&bw_upcalls_ch);
757    callout_stop(&bw_meter_ch);
758
759    MFC_LOCK();
760    for (i = 0; i < MFCTBLSIZ; i++) {
761	for (rt = mfctable[i]; rt != NULL; ) {
762	    struct mfc *nr = rt->mfc_next;
763
764	    for (rte = rt->mfc_stall; rte != NULL; ) {
765		struct rtdetq *n = rte->next;
766
767		m_freem(rte->m);
768		free(rte, M_MRTABLE);
769		rte = n;
770	    }
771	    free_bw_list(rt->mfc_bw_meter);
772	    free(rt, M_MRTABLE);
773	    rt = nr;
774	}
775    }
776    bzero((caddr_t)mfctable, sizeof(mfctable));
777    bzero((caddr_t)nexpire, sizeof(nexpire));
778    bw_upcalls_n = 0;
779    bzero(bw_meter_timers, sizeof(bw_meter_timers));
780    MFC_UNLOCK();
781
782    /*
783     * Reset de-encapsulation cache
784     */
785    last_encap_src = INADDR_ANY;
786    last_encap_vif = NULL;
787#ifdef PIM
788    reg_vif_num = VIFI_INVALID;
789#endif
790
791    mtx_unlock(&mrouter_mtx);
792
793    if (mrtdebug)
794	log(LOG_DEBUG, "ip_mrouter_done\n");
795
796    return 0;
797}
798
799/*
800 * Set PIM assert processing global
801 */
802static int
803set_assert(int i)
804{
805    if ((i != 1) && (i != 0))
806	return EINVAL;
807
808    pim_assert = i;
809
810    return 0;
811}
812
813/*
814 * Configure API capabilities
815 */
816int
817set_api_config(uint32_t *apival)
818{
819    int i;
820
821    /*
822     * We can set the API capabilities only if it is the first operation
823     * after MRT_INIT. I.e.:
824     *  - there are no vifs installed
825     *  - pim_assert is not enabled
826     *  - the MFC table is empty
827     */
828    if (numvifs > 0) {
829	*apival = 0;
830	return EPERM;
831    }
832    if (pim_assert) {
833	*apival = 0;
834	return EPERM;
835    }
836    for (i = 0; i < MFCTBLSIZ; i++) {
837	if (mfctable[i] != NULL) {
838	    *apival = 0;
839	    return EPERM;
840	}
841    }
842
843    mrt_api_config = *apival & mrt_api_support;
844    *apival = mrt_api_config;
845
846    return 0;
847}
848
849/*
850 * Decide if a packet is from a tunnelled peer.
851 * Return 0 if not, 64 if so.  XXX yuck.. 64 ???
852 */
853static int
854mroute_encapcheck(const struct mbuf *m, int off, int proto, void *arg)
855{
856    struct ip *ip = mtod(m, struct ip *);
857    int hlen = ip->ip_hl << 2;
858
859    /*
860     * don't claim the packet if it's not to a multicast destination or if
861     * we don't have an encapsulating tunnel with the source.
862     * Note:  This code assumes that the remote site IP address
863     * uniquely identifies the tunnel (i.e., that this site has
864     * at most one tunnel with the remote site).
865     */
866    if (!IN_MULTICAST(ntohl(((struct ip *)((char *)ip+hlen))->ip_dst.s_addr)))
867	return 0;
868    if (ip->ip_src.s_addr != last_encap_src) {
869	struct vif *vifp = viftable;
870	struct vif *vife = vifp + numvifs;
871
872	last_encap_src = ip->ip_src.s_addr;
873	last_encap_vif = NULL;
874	for ( ; vifp < vife; ++vifp)
875	    if (vifp->v_rmt_addr.s_addr == ip->ip_src.s_addr) {
876		if ((vifp->v_flags & (VIFF_TUNNEL|VIFF_SRCRT)) == VIFF_TUNNEL)
877		    last_encap_vif = vifp;
878		break;
879	    }
880    }
881    if (last_encap_vif == NULL) {
882	last_encap_src = INADDR_ANY;
883	return 0;
884    }
885    return 64;
886}
887
888/*
889 * De-encapsulate a packet and feed it back through ip input (this
890 * routine is called whenever IP gets a packet that mroute_encap_func()
891 * claimed).
892 */
893static void
894mroute_encap_input(struct mbuf *m, int off)
895{
896    struct ip *ip = mtod(m, struct ip *);
897    int hlen = ip->ip_hl << 2;
898
899    if (hlen > sizeof(struct ip))
900	ip_stripoptions(m, (struct mbuf *) 0);
901    m->m_data += sizeof(struct ip);
902    m->m_len -= sizeof(struct ip);
903    m->m_pkthdr.len -= sizeof(struct ip);
904
905    m->m_pkthdr.rcvif = last_encap_vif->v_ifp;
906
907    netisr_queue(NETISR_IP, m);		/* mbuf is free'd on failure. */
908    /*
909     * normally we would need a "schednetisr(NETISR_IP)"
910     * here but we were called by ip_input and it is going
911     * to loop back & try to dequeue the packet we just
912     * queued as soon as we return so we avoid the
913     * unnecessary software interrrupt.
914     *
915     * XXX
916     * This no longer holds - we may have direct-dispatched the packet,
917     * or there may be a queue processing limit.
918     */
919}
920
921extern struct domain inetdomain;
922static struct protosw mroute_encap_protosw =
923{ SOCK_RAW,	&inetdomain,	IPPROTO_IPV4,	PR_ATOMIC|PR_ADDR,
924  mroute_encap_input,	0,	0,		rip_ctloutput,
925  0,
926  0,		0,		0,		0,
927  &rip_usrreqs
928};
929
930/*
931 * Add a vif to the vif table
932 */
933static int
934add_vif(struct vifctl *vifcp)
935{
936    struct vif *vifp = viftable + vifcp->vifc_vifi;
937    struct sockaddr_in sin = {sizeof sin, AF_INET};
938    struct ifaddr *ifa;
939    struct ifnet *ifp;
940    int error;
941    struct tbf *v_tbf = tbftable + vifcp->vifc_vifi;
942
943    VIF_LOCK();
944    if (vifcp->vifc_vifi >= MAXVIFS) {
945	VIF_UNLOCK();
946	return EINVAL;
947    }
948    if (vifp->v_lcl_addr.s_addr != INADDR_ANY) {
949	VIF_UNLOCK();
950	return EADDRINUSE;
951    }
952    if (vifcp->vifc_lcl_addr.s_addr == INADDR_ANY) {
953	VIF_UNLOCK();
954	return EADDRNOTAVAIL;
955    }
956
957    /* Find the interface with an address in AF_INET family */
958#ifdef PIM
959    if (vifcp->vifc_flags & VIFF_REGISTER) {
960	/*
961	 * XXX: Because VIFF_REGISTER does not really need a valid
962	 * local interface (e.g. it could be 127.0.0.2), we don't
963	 * check its address.
964	 */
965	ifp = NULL;
966    } else
967#endif
968    {
969	sin.sin_addr = vifcp->vifc_lcl_addr;
970	ifa = ifa_ifwithaddr((struct sockaddr *)&sin);
971	if (ifa == NULL) {
972	    VIF_UNLOCK();
973	    return EADDRNOTAVAIL;
974	}
975	ifp = ifa->ifa_ifp;
976    }
977
978    if (vifcp->vifc_flags & VIFF_TUNNEL) {
979	if ((vifcp->vifc_flags & VIFF_SRCRT) == 0) {
980	    /*
981	     * An encapsulating tunnel is wanted.  Tell
982	     * mroute_encap_input() to start paying attention
983	     * to encapsulated packets.
984	     */
985	    if (encap_cookie == NULL) {
986		int i;
987
988		encap_cookie = encap_attach_func(AF_INET, IPPROTO_IPV4,
989				mroute_encapcheck,
990				(struct protosw *)&mroute_encap_protosw, NULL);
991
992		if (encap_cookie == NULL) {
993		    printf("ip_mroute: unable to attach encap\n");
994		    VIF_UNLOCK();
995		    return EIO;	/* XXX */
996		}
997		for (i = 0; i < MAXVIFS; ++i) {
998		    if_initname(&multicast_decap_if[i], "mdecap", i);
999		}
1000	    }
1001	    /*
1002	     * Set interface to fake encapsulator interface
1003	     */
1004	    ifp = &multicast_decap_if[vifcp->vifc_vifi];
1005	    /*
1006	     * Prepare cached route entry
1007	     */
1008	    bzero(&vifp->v_route, sizeof(vifp->v_route));
1009	} else {
1010	    log(LOG_ERR, "source routed tunnels not supported\n");
1011	    VIF_UNLOCK();
1012	    return EOPNOTSUPP;
1013	}
1014#ifdef PIM
1015    } else if (vifcp->vifc_flags & VIFF_REGISTER) {
1016	ifp = &multicast_register_if;
1017	if (mrtdebug)
1018	    log(LOG_DEBUG, "Adding a register vif, ifp: %p\n",
1019		    (void *)&multicast_register_if);
1020	if (reg_vif_num == VIFI_INVALID) {
1021	    if_initname(&multicast_register_if, "register_vif", 0);
1022	    multicast_register_if.if_flags = IFF_LOOPBACK;
1023	    bzero(&vifp->v_route, sizeof(vifp->v_route));
1024	    reg_vif_num = vifcp->vifc_vifi;
1025	}
1026#endif
1027    } else {		/* Make sure the interface supports multicast */
1028	if ((ifp->if_flags & IFF_MULTICAST) == 0) {
1029	    VIF_UNLOCK();
1030	    return EOPNOTSUPP;
1031	}
1032
1033	/* Enable promiscuous reception of all IP multicasts from the if */
1034	error = if_allmulti(ifp, 1);
1035	if (error) {
1036	    VIF_UNLOCK();
1037	    return error;
1038	}
1039    }
1040
1041    /* define parameters for the tbf structure */
1042    vifp->v_tbf = v_tbf;
1043    GET_TIME(vifp->v_tbf->tbf_last_pkt_t);
1044    vifp->v_tbf->tbf_n_tok = 0;
1045    vifp->v_tbf->tbf_q_len = 0;
1046    vifp->v_tbf->tbf_max_q_len = MAXQSIZE;
1047    vifp->v_tbf->tbf_q = vifp->v_tbf->tbf_t = NULL;
1048
1049    vifp->v_flags     = vifcp->vifc_flags;
1050    vifp->v_threshold = vifcp->vifc_threshold;
1051    vifp->v_lcl_addr  = vifcp->vifc_lcl_addr;
1052    vifp->v_rmt_addr  = vifcp->vifc_rmt_addr;
1053    vifp->v_ifp       = ifp;
1054    /* scaling up here allows division by 1024 in critical code */
1055    vifp->v_rate_limit= vifcp->vifc_rate_limit * 1024 / 1000;
1056    vifp->v_rsvp_on   = 0;
1057    vifp->v_rsvpd     = NULL;
1058    /* initialize per vif pkt counters */
1059    vifp->v_pkt_in    = 0;
1060    vifp->v_pkt_out   = 0;
1061    vifp->v_bytes_in  = 0;
1062    vifp->v_bytes_out = 0;
1063
1064    /* Adjust numvifs up if the vifi is higher than numvifs */
1065    if (numvifs <= vifcp->vifc_vifi) numvifs = vifcp->vifc_vifi + 1;
1066
1067    VIF_UNLOCK();
1068
1069    if (mrtdebug)
1070	log(LOG_DEBUG, "add_vif #%d, lcladdr %lx, %s %lx, thresh %x, rate %d\n",
1071	    vifcp->vifc_vifi,
1072	    (u_long)ntohl(vifcp->vifc_lcl_addr.s_addr),
1073	    (vifcp->vifc_flags & VIFF_TUNNEL) ? "rmtaddr" : "mask",
1074	    (u_long)ntohl(vifcp->vifc_rmt_addr.s_addr),
1075	    vifcp->vifc_threshold,
1076	    vifcp->vifc_rate_limit);
1077
1078    return 0;
1079}
1080
1081/*
1082 * Delete a vif from the vif table
1083 */
1084static int
1085del_vif(vifi_t vifi)
1086{
1087    struct vif *vifp;
1088
1089    VIF_LOCK();
1090
1091    if (vifi >= numvifs) {
1092	VIF_UNLOCK();
1093	return EINVAL;
1094    }
1095    vifp = &viftable[vifi];
1096    if (vifp->v_lcl_addr.s_addr == INADDR_ANY) {
1097	VIF_UNLOCK();
1098	return EADDRNOTAVAIL;
1099    }
1100
1101    if (!(vifp->v_flags & (VIFF_TUNNEL | VIFF_REGISTER)))
1102	if_allmulti(vifp->v_ifp, 0);
1103
1104    if (vifp == last_encap_vif) {
1105	last_encap_vif = NULL;
1106	last_encap_src = INADDR_ANY;
1107    }
1108
1109    /*
1110     * Free packets queued at the interface
1111     */
1112    while (vifp->v_tbf->tbf_q) {
1113	struct mbuf *m = vifp->v_tbf->tbf_q;
1114
1115	vifp->v_tbf->tbf_q = m->m_act;
1116	m_freem(m);
1117    }
1118
1119#ifdef PIM
1120    if (vifp->v_flags & VIFF_REGISTER)
1121	reg_vif_num = VIFI_INVALID;
1122#endif
1123
1124    bzero((caddr_t)vifp->v_tbf, sizeof(*(vifp->v_tbf)));
1125    bzero((caddr_t)vifp, sizeof (*vifp));
1126
1127    if (mrtdebug)
1128	log(LOG_DEBUG, "del_vif %d, numvifs %d\n", vifi, numvifs);
1129
1130    /* Adjust numvifs down */
1131    for (vifi = numvifs; vifi > 0; vifi--)
1132	if (viftable[vifi-1].v_lcl_addr.s_addr != INADDR_ANY)
1133	    break;
1134    numvifs = vifi;
1135
1136    VIF_UNLOCK();
1137
1138    return 0;
1139}
1140
1141/*
1142 * update an mfc entry without resetting counters and S,G addresses.
1143 */
1144static void
1145update_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp)
1146{
1147    int i;
1148
1149    rt->mfc_parent = mfccp->mfcc_parent;
1150    for (i = 0; i < numvifs; i++) {
1151	rt->mfc_ttls[i] = mfccp->mfcc_ttls[i];
1152	rt->mfc_flags[i] = mfccp->mfcc_flags[i] & mrt_api_config &
1153	    MRT_MFC_FLAGS_ALL;
1154    }
1155    /* set the RP address */
1156    if (mrt_api_config & MRT_MFC_RP)
1157	rt->mfc_rp = mfccp->mfcc_rp;
1158    else
1159	rt->mfc_rp.s_addr = INADDR_ANY;
1160}
1161
1162/*
1163 * fully initialize an mfc entry from the parameter.
1164 */
1165static void
1166init_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp)
1167{
1168    rt->mfc_origin     = mfccp->mfcc_origin;
1169    rt->mfc_mcastgrp   = mfccp->mfcc_mcastgrp;
1170
1171    update_mfc_params(rt, mfccp);
1172
1173    /* initialize pkt counters per src-grp */
1174    rt->mfc_pkt_cnt    = 0;
1175    rt->mfc_byte_cnt   = 0;
1176    rt->mfc_wrong_if   = 0;
1177    rt->mfc_last_assert.tv_sec = rt->mfc_last_assert.tv_usec = 0;
1178}
1179
1180
1181/*
1182 * Add an mfc entry
1183 */
1184static int
1185add_mfc(struct mfcctl2 *mfccp)
1186{
1187    struct mfc *rt;
1188    u_long hash;
1189    struct rtdetq *rte;
1190    u_short nstl;
1191
1192    VIF_LOCK();
1193    MFC_LOCK();
1194
1195    rt = mfc_find(mfccp->mfcc_origin.s_addr, mfccp->mfcc_mcastgrp.s_addr);
1196
1197    /* If an entry already exists, just update the fields */
1198    if (rt) {
1199	if (mrtdebug & DEBUG_MFC)
1200	    log(LOG_DEBUG,"add_mfc update o %lx g %lx p %x\n",
1201		(u_long)ntohl(mfccp->mfcc_origin.s_addr),
1202		(u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr),
1203		mfccp->mfcc_parent);
1204
1205	update_mfc_params(rt, mfccp);
1206	MFC_UNLOCK();
1207	VIF_UNLOCK();
1208	return 0;
1209    }
1210
1211    /*
1212     * Find the entry for which the upcall was made and update
1213     */
1214    hash = MFCHASH(mfccp->mfcc_origin.s_addr, mfccp->mfcc_mcastgrp.s_addr);
1215    for (rt = mfctable[hash], nstl = 0; rt; rt = rt->mfc_next) {
1216
1217	if ((rt->mfc_origin.s_addr == mfccp->mfcc_origin.s_addr) &&
1218		(rt->mfc_mcastgrp.s_addr == mfccp->mfcc_mcastgrp.s_addr) &&
1219		(rt->mfc_stall != NULL)) {
1220
1221	    if (nstl++)
1222		log(LOG_ERR, "add_mfc %s o %lx g %lx p %x dbx %p\n",
1223		    "multiple kernel entries",
1224		    (u_long)ntohl(mfccp->mfcc_origin.s_addr),
1225		    (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr),
1226		    mfccp->mfcc_parent, (void *)rt->mfc_stall);
1227
1228	    if (mrtdebug & DEBUG_MFC)
1229		log(LOG_DEBUG,"add_mfc o %lx g %lx p %x dbg %p\n",
1230		    (u_long)ntohl(mfccp->mfcc_origin.s_addr),
1231		    (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr),
1232		    mfccp->mfcc_parent, (void *)rt->mfc_stall);
1233
1234	    init_mfc_params(rt, mfccp);
1235
1236	    rt->mfc_expire = 0;	/* Don't clean this guy up */
1237	    nexpire[hash]--;
1238
1239	    /* free packets Qed at the end of this entry */
1240	    for (rte = rt->mfc_stall; rte != NULL; ) {
1241		struct rtdetq *n = rte->next;
1242
1243		ip_mdq(rte->m, rte->ifp, rt, -1);
1244		m_freem(rte->m);
1245		free(rte, M_MRTABLE);
1246		rte = n;
1247	    }
1248	    rt->mfc_stall = NULL;
1249	}
1250    }
1251
1252    /*
1253     * It is possible that an entry is being inserted without an upcall
1254     */
1255    if (nstl == 0) {
1256	if (mrtdebug & DEBUG_MFC)
1257	    log(LOG_DEBUG,"add_mfc no upcall h %lu o %lx g %lx p %x\n",
1258		hash, (u_long)ntohl(mfccp->mfcc_origin.s_addr),
1259		(u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr),
1260		mfccp->mfcc_parent);
1261
1262	for (rt = mfctable[hash]; rt != NULL; rt = rt->mfc_next) {
1263	    if ((rt->mfc_origin.s_addr == mfccp->mfcc_origin.s_addr) &&
1264		    (rt->mfc_mcastgrp.s_addr == mfccp->mfcc_mcastgrp.s_addr)) {
1265		init_mfc_params(rt, mfccp);
1266		if (rt->mfc_expire)
1267		    nexpire[hash]--;
1268		rt->mfc_expire = 0;
1269		break; /* XXX */
1270	    }
1271	}
1272	if (rt == NULL) {		/* no upcall, so make a new entry */
1273	    rt = (struct mfc *)malloc(sizeof(*rt), M_MRTABLE, M_NOWAIT);
1274	    if (rt == NULL) {
1275		MFC_UNLOCK();
1276		VIF_UNLOCK();
1277		return ENOBUFS;
1278	    }
1279
1280	    init_mfc_params(rt, mfccp);
1281	    rt->mfc_expire     = 0;
1282	    rt->mfc_stall      = NULL;
1283
1284	    rt->mfc_bw_meter = NULL;
1285	    /* insert new entry at head of hash chain */
1286	    rt->mfc_next = mfctable[hash];
1287	    mfctable[hash] = rt;
1288	}
1289    }
1290    MFC_UNLOCK();
1291    VIF_UNLOCK();
1292    return 0;
1293}
1294
1295/*
1296 * Delete an mfc entry
1297 */
1298static int
1299del_mfc(struct mfcctl2 *mfccp)
1300{
1301    struct in_addr	origin;
1302    struct in_addr	mcastgrp;
1303    struct mfc		*rt;
1304    struct mfc		**nptr;
1305    u_long		hash;
1306    struct bw_meter	*list;
1307
1308    origin = mfccp->mfcc_origin;
1309    mcastgrp = mfccp->mfcc_mcastgrp;
1310
1311    if (mrtdebug & DEBUG_MFC)
1312	log(LOG_DEBUG,"del_mfc orig %lx mcastgrp %lx\n",
1313	    (u_long)ntohl(origin.s_addr), (u_long)ntohl(mcastgrp.s_addr));
1314
1315    MFC_LOCK();
1316
1317    hash = MFCHASH(origin.s_addr, mcastgrp.s_addr);
1318    for (nptr = &mfctable[hash]; (rt = *nptr) != NULL; nptr = &rt->mfc_next)
1319	if (origin.s_addr == rt->mfc_origin.s_addr &&
1320		mcastgrp.s_addr == rt->mfc_mcastgrp.s_addr &&
1321		rt->mfc_stall == NULL)
1322	    break;
1323    if (rt == NULL) {
1324	MFC_UNLOCK();
1325	return EADDRNOTAVAIL;
1326    }
1327
1328    *nptr = rt->mfc_next;
1329
1330    /*
1331     * free the bw_meter entries
1332     */
1333    list = rt->mfc_bw_meter;
1334    rt->mfc_bw_meter = NULL;
1335
1336    free(rt, M_MRTABLE);
1337
1338    free_bw_list(list);
1339
1340    MFC_UNLOCK();
1341
1342    return 0;
1343}
1344
1345/*
1346 * Send a message to mrouted on the multicast routing socket
1347 */
1348static int
1349socket_send(struct socket *s, struct mbuf *mm, struct sockaddr_in *src)
1350{
1351    if (s) {
1352	SOCKBUF_LOCK(&s->so_rcv);
1353	if (sbappendaddr_locked(&s->so_rcv, (struct sockaddr *)src, mm,
1354	    NULL) != 0) {
1355	    sorwakeup_locked(s);
1356	    return 0;
1357	}
1358	SOCKBUF_UNLOCK(&s->so_rcv);
1359    }
1360    m_freem(mm);
1361    return -1;
1362}
1363
1364/*
1365 * IP multicast forwarding function. This function assumes that the packet
1366 * pointed to by "ip" has arrived on (or is about to be sent to) the interface
1367 * pointed to by "ifp", and the packet is to be relayed to other networks
1368 * that have members of the packet's destination IP multicast group.
1369 *
1370 * The packet is returned unscathed to the caller, unless it is
1371 * erroneous, in which case a non-zero return value tells the caller to
1372 * discard it.
1373 */
1374
1375#define TUNNEL_LEN  12  /* # bytes of IP option for tunnel encapsulation  */
1376
1377static int
1378X_ip_mforward(struct ip *ip, struct ifnet *ifp, struct mbuf *m,
1379    struct ip_moptions *imo)
1380{
1381    struct mfc *rt;
1382    int error;
1383    vifi_t vifi;
1384
1385    if (mrtdebug & DEBUG_FORWARD)
1386	log(LOG_DEBUG, "ip_mforward: src %lx, dst %lx, ifp %p\n",
1387	    (u_long)ntohl(ip->ip_src.s_addr), (u_long)ntohl(ip->ip_dst.s_addr),
1388	    (void *)ifp);
1389
1390    if (ip->ip_hl < (sizeof(struct ip) + TUNNEL_LEN) >> 2 ||
1391		((u_char *)(ip + 1))[1] != IPOPT_LSRR ) {
1392	/*
1393	 * Packet arrived via a physical interface or
1394	 * an encapsulated tunnel or a register_vif.
1395	 */
1396    } else {
1397	/*
1398	 * Packet arrived through a source-route tunnel.
1399	 * Source-route tunnels are no longer supported.
1400	 */
1401	static int last_log;
1402	if (last_log != time_uptime) {
1403	    last_log = time_uptime;
1404	    log(LOG_ERR,
1405		"ip_mforward: received source-routed packet from %lx\n",
1406		(u_long)ntohl(ip->ip_src.s_addr));
1407	}
1408	return 1;
1409    }
1410
1411    VIF_LOCK();
1412    MFC_LOCK();
1413    if (imo && ((vifi = imo->imo_multicast_vif) < numvifs)) {
1414	if (ip->ip_ttl < 255)
1415	    ip->ip_ttl++;	/* compensate for -1 in *_send routines */
1416	if (rsvpdebug && ip->ip_p == IPPROTO_RSVP) {
1417	    struct vif *vifp = viftable + vifi;
1418
1419	    printf("Sending IPPROTO_RSVP from %lx to %lx on vif %d (%s%s)\n",
1420		(long)ntohl(ip->ip_src.s_addr), (long)ntohl(ip->ip_dst.s_addr),
1421		vifi,
1422		(vifp->v_flags & VIFF_TUNNEL) ? "tunnel on " : "",
1423		vifp->v_ifp->if_xname);
1424	}
1425	error = ip_mdq(m, ifp, NULL, vifi);
1426	MFC_UNLOCK();
1427	VIF_UNLOCK();
1428	return error;
1429    }
1430    if (rsvpdebug && ip->ip_p == IPPROTO_RSVP) {
1431	printf("Warning: IPPROTO_RSVP from %lx to %lx without vif option\n",
1432	    (long)ntohl(ip->ip_src.s_addr), (long)ntohl(ip->ip_dst.s_addr));
1433	if (!imo)
1434	    printf("In fact, no options were specified at all\n");
1435    }
1436
1437    /*
1438     * Don't forward a packet with time-to-live of zero or one,
1439     * or a packet destined to a local-only group.
1440     */
1441    if (ip->ip_ttl <= 1 || ntohl(ip->ip_dst.s_addr) <= INADDR_MAX_LOCAL_GROUP) {
1442	MFC_UNLOCK();
1443	VIF_UNLOCK();
1444	return 0;
1445    }
1446
1447    /*
1448     * Determine forwarding vifs from the forwarding cache table
1449     */
1450    ++mrtstat.mrts_mfc_lookups;
1451    rt = mfc_find(ip->ip_src.s_addr, ip->ip_dst.s_addr);
1452
1453    /* Entry exists, so forward if necessary */
1454    if (rt != NULL) {
1455	error = ip_mdq(m, ifp, rt, -1);
1456	MFC_UNLOCK();
1457	VIF_UNLOCK();
1458	return error;
1459    } else {
1460	/*
1461	 * If we don't have a route for packet's origin,
1462	 * Make a copy of the packet & send message to routing daemon
1463	 */
1464
1465	struct mbuf *mb0;
1466	struct rtdetq *rte;
1467	u_long hash;
1468	int hlen = ip->ip_hl << 2;
1469
1470	++mrtstat.mrts_mfc_misses;
1471
1472	mrtstat.mrts_no_route++;
1473	if (mrtdebug & (DEBUG_FORWARD | DEBUG_MFC))
1474	    log(LOG_DEBUG, "ip_mforward: no rte s %lx g %lx\n",
1475		(u_long)ntohl(ip->ip_src.s_addr),
1476		(u_long)ntohl(ip->ip_dst.s_addr));
1477
1478	/*
1479	 * Allocate mbufs early so that we don't do extra work if we are
1480	 * just going to fail anyway.  Make sure to pullup the header so
1481	 * that other people can't step on it.
1482	 */
1483	rte = (struct rtdetq *)malloc((sizeof *rte), M_MRTABLE, M_NOWAIT);
1484	if (rte == NULL) {
1485	    MFC_UNLOCK();
1486	    VIF_UNLOCK();
1487	    return ENOBUFS;
1488	}
1489	mb0 = m_copypacket(m, M_DONTWAIT);
1490	if (mb0 && (M_HASCL(mb0) || mb0->m_len < hlen))
1491	    mb0 = m_pullup(mb0, hlen);
1492	if (mb0 == NULL) {
1493	    free(rte, M_MRTABLE);
1494	    MFC_UNLOCK();
1495	    VIF_UNLOCK();
1496	    return ENOBUFS;
1497	}
1498
1499	/* is there an upcall waiting for this flow ? */
1500	hash = MFCHASH(ip->ip_src.s_addr, ip->ip_dst.s_addr);
1501	for (rt = mfctable[hash]; rt; rt = rt->mfc_next) {
1502	    if ((ip->ip_src.s_addr == rt->mfc_origin.s_addr) &&
1503		    (ip->ip_dst.s_addr == rt->mfc_mcastgrp.s_addr) &&
1504		    (rt->mfc_stall != NULL))
1505		break;
1506	}
1507
1508	if (rt == NULL) {
1509	    int i;
1510	    struct igmpmsg *im;
1511	    struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
1512	    struct mbuf *mm;
1513
1514	    /*
1515	     * Locate the vifi for the incoming interface for this packet.
1516	     * If none found, drop packet.
1517	     */
1518	    for (vifi=0; vifi < numvifs && viftable[vifi].v_ifp != ifp; vifi++)
1519		;
1520	    if (vifi >= numvifs)	/* vif not found, drop packet */
1521		goto non_fatal;
1522
1523	    /* no upcall, so make a new entry */
1524	    rt = (struct mfc *)malloc(sizeof(*rt), M_MRTABLE, M_NOWAIT);
1525	    if (rt == NULL)
1526		goto fail;
1527	    /* Make a copy of the header to send to the user level process */
1528	    mm = m_copy(mb0, 0, hlen);
1529	    if (mm == NULL)
1530		goto fail1;
1531
1532	    /*
1533	     * Send message to routing daemon to install
1534	     * a route into the kernel table
1535	     */
1536
1537	    im = mtod(mm, struct igmpmsg *);
1538	    im->im_msgtype = IGMPMSG_NOCACHE;
1539	    im->im_mbz = 0;
1540	    im->im_vif = vifi;
1541
1542	    mrtstat.mrts_upcalls++;
1543
1544	    k_igmpsrc.sin_addr = ip->ip_src;
1545	    if (socket_send(ip_mrouter, mm, &k_igmpsrc) < 0) {
1546		log(LOG_WARNING, "ip_mforward: ip_mrouter socket queue full\n");
1547		++mrtstat.mrts_upq_sockfull;
1548fail1:
1549		free(rt, M_MRTABLE);
1550fail:
1551		free(rte, M_MRTABLE);
1552		m_freem(mb0);
1553		MFC_UNLOCK();
1554		VIF_UNLOCK();
1555		return ENOBUFS;
1556	    }
1557
1558	    /* insert new entry at head of hash chain */
1559	    rt->mfc_origin.s_addr     = ip->ip_src.s_addr;
1560	    rt->mfc_mcastgrp.s_addr   = ip->ip_dst.s_addr;
1561	    rt->mfc_expire	      = UPCALL_EXPIRE;
1562	    nexpire[hash]++;
1563	    for (i = 0; i < numvifs; i++) {
1564		rt->mfc_ttls[i] = 0;
1565		rt->mfc_flags[i] = 0;
1566	    }
1567	    rt->mfc_parent = -1;
1568
1569	    rt->mfc_rp.s_addr = INADDR_ANY; /* clear the RP address */
1570
1571	    rt->mfc_bw_meter = NULL;
1572
1573	    /* link into table */
1574	    rt->mfc_next   = mfctable[hash];
1575	    mfctable[hash] = rt;
1576	    rt->mfc_stall = rte;
1577
1578	} else {
1579	    /* determine if q has overflowed */
1580	    int npkts = 0;
1581	    struct rtdetq **p;
1582
1583	    /*
1584	     * XXX ouch! we need to append to the list, but we
1585	     * only have a pointer to the front, so we have to
1586	     * scan the entire list every time.
1587	     */
1588	    for (p = &rt->mfc_stall; *p != NULL; p = &(*p)->next)
1589		npkts++;
1590
1591	    if (npkts > MAX_UPQ) {
1592		mrtstat.mrts_upq_ovflw++;
1593non_fatal:
1594		free(rte, M_MRTABLE);
1595		m_freem(mb0);
1596		MFC_UNLOCK();
1597		VIF_UNLOCK();
1598		return 0;
1599	    }
1600
1601	    /* Add this entry to the end of the queue */
1602	    *p = rte;
1603	}
1604
1605	rte->m			= mb0;
1606	rte->ifp		= ifp;
1607	rte->next		= NULL;
1608
1609	MFC_UNLOCK();
1610	VIF_UNLOCK();
1611
1612	return 0;
1613    }
1614}
1615
1616/*
1617 * Clean up the cache entry if upcall is not serviced
1618 */
1619static void
1620expire_upcalls(void *unused)
1621{
1622    struct rtdetq *rte;
1623    struct mfc *mfc, **nptr;
1624    int i;
1625
1626    MFC_LOCK();
1627    for (i = 0; i < MFCTBLSIZ; i++) {
1628	if (nexpire[i] == 0)
1629	    continue;
1630	nptr = &mfctable[i];
1631	for (mfc = *nptr; mfc != NULL; mfc = *nptr) {
1632	    /*
1633	     * Skip real cache entries
1634	     * Make sure it wasn't marked to not expire (shouldn't happen)
1635	     * If it expires now
1636	     */
1637	    if (mfc->mfc_stall != NULL && mfc->mfc_expire != 0 &&
1638		    --mfc->mfc_expire == 0) {
1639		if (mrtdebug & DEBUG_EXPIRE)
1640		    log(LOG_DEBUG, "expire_upcalls: expiring (%lx %lx)\n",
1641			(u_long)ntohl(mfc->mfc_origin.s_addr),
1642			(u_long)ntohl(mfc->mfc_mcastgrp.s_addr));
1643		/*
1644		 * drop all the packets
1645		 * free the mbuf with the pkt, if, timing info
1646		 */
1647		for (rte = mfc->mfc_stall; rte; ) {
1648		    struct rtdetq *n = rte->next;
1649
1650		    m_freem(rte->m);
1651		    free(rte, M_MRTABLE);
1652		    rte = n;
1653		}
1654		++mrtstat.mrts_cache_cleanups;
1655		nexpire[i]--;
1656
1657		/*
1658		 * free the bw_meter entries
1659		 */
1660		while (mfc->mfc_bw_meter != NULL) {
1661		    struct bw_meter *x = mfc->mfc_bw_meter;
1662
1663		    mfc->mfc_bw_meter = x->bm_mfc_next;
1664		    free(x, M_BWMETER);
1665		}
1666
1667		*nptr = mfc->mfc_next;
1668		free(mfc, M_MRTABLE);
1669	    } else {
1670		nptr = &mfc->mfc_next;
1671	    }
1672	}
1673    }
1674    MFC_UNLOCK();
1675
1676    callout_reset(&expire_upcalls_ch, EXPIRE_TIMEOUT, expire_upcalls, NULL);
1677}
1678
1679/*
1680 * Packet forwarding routine once entry in the cache is made
1681 */
1682static int
1683ip_mdq(struct mbuf *m, struct ifnet *ifp, struct mfc *rt, vifi_t xmt_vif)
1684{
1685    struct ip  *ip = mtod(m, struct ip *);
1686    vifi_t vifi;
1687    int plen = ip->ip_len;
1688
1689    VIF_LOCK_ASSERT();
1690/*
1691 * Macro to send packet on vif.  Since RSVP packets don't get counted on
1692 * input, they shouldn't get counted on output, so statistics keeping is
1693 * separate.
1694 */
1695#define MC_SEND(ip,vifp,m) {				\
1696		if ((vifp)->v_flags & VIFF_TUNNEL)	\
1697		    encap_send((ip), (vifp), (m));	\
1698		else					\
1699		    phyint_send((ip), (vifp), (m));	\
1700}
1701
1702    /*
1703     * If xmt_vif is not -1, send on only the requested vif.
1704     *
1705     * (since vifi_t is u_short, -1 becomes MAXUSHORT, which > numvifs.)
1706     */
1707    if (xmt_vif < numvifs) {
1708#ifdef PIM
1709	if (viftable[xmt_vif].v_flags & VIFF_REGISTER)
1710	    pim_register_send(ip, viftable + xmt_vif, m, rt);
1711	else
1712#endif
1713	MC_SEND(ip, viftable + xmt_vif, m);
1714	return 1;
1715    }
1716
1717    /*
1718     * Don't forward if it didn't arrive from the parent vif for its origin.
1719     */
1720    vifi = rt->mfc_parent;
1721    if ((vifi >= numvifs) || (viftable[vifi].v_ifp != ifp)) {
1722	/* came in the wrong interface */
1723	if (mrtdebug & DEBUG_FORWARD)
1724	    log(LOG_DEBUG, "wrong if: ifp %p vifi %d vififp %p\n",
1725		(void *)ifp, vifi, (void *)viftable[vifi].v_ifp);
1726	++mrtstat.mrts_wrong_if;
1727	++rt->mfc_wrong_if;
1728	/*
1729	 * If we are doing PIM assert processing, send a message
1730	 * to the routing daemon.
1731	 *
1732	 * XXX: A PIM-SM router needs the WRONGVIF detection so it
1733	 * can complete the SPT switch, regardless of the type
1734	 * of the iif (broadcast media, GRE tunnel, etc).
1735	 */
1736	if (pim_assert && (vifi < numvifs) && viftable[vifi].v_ifp) {
1737	    struct timeval now;
1738	    u_long delta;
1739
1740#ifdef PIM
1741	    if (ifp == &multicast_register_if)
1742		pimstat.pims_rcv_registers_wrongiif++;
1743#endif
1744
1745	    /* Get vifi for the incoming packet */
1746	    for (vifi=0; vifi < numvifs && viftable[vifi].v_ifp != ifp; vifi++)
1747		;
1748	    if (vifi >= numvifs)
1749		return 0;	/* The iif is not found: ignore the packet. */
1750
1751	    if (rt->mfc_flags[vifi] & MRT_MFC_FLAGS_DISABLE_WRONGVIF)
1752		return 0;	/* WRONGVIF disabled: ignore the packet */
1753
1754	    GET_TIME(now);
1755
1756	    TV_DELTA(rt->mfc_last_assert, now, delta);
1757
1758	    if (delta > ASSERT_MSG_TIME) {
1759		struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
1760		struct igmpmsg *im;
1761		int hlen = ip->ip_hl << 2;
1762		struct mbuf *mm = m_copy(m, 0, hlen);
1763
1764		if (mm && (M_HASCL(mm) || mm->m_len < hlen))
1765		    mm = m_pullup(mm, hlen);
1766		if (mm == NULL)
1767		    return ENOBUFS;
1768
1769		rt->mfc_last_assert = now;
1770
1771		im = mtod(mm, struct igmpmsg *);
1772		im->im_msgtype	= IGMPMSG_WRONGVIF;
1773		im->im_mbz		= 0;
1774		im->im_vif		= vifi;
1775
1776		mrtstat.mrts_upcalls++;
1777
1778		k_igmpsrc.sin_addr = im->im_src;
1779		if (socket_send(ip_mrouter, mm, &k_igmpsrc) < 0) {
1780		    log(LOG_WARNING,
1781			"ip_mforward: ip_mrouter socket queue full\n");
1782		    ++mrtstat.mrts_upq_sockfull;
1783		    return ENOBUFS;
1784		}
1785	    }
1786	}
1787	return 0;
1788    }
1789
1790    /* If I sourced this packet, it counts as output, else it was input. */
1791    if (ip->ip_src.s_addr == viftable[vifi].v_lcl_addr.s_addr) {
1792	viftable[vifi].v_pkt_out++;
1793	viftable[vifi].v_bytes_out += plen;
1794    } else {
1795	viftable[vifi].v_pkt_in++;
1796	viftable[vifi].v_bytes_in += plen;
1797    }
1798    rt->mfc_pkt_cnt++;
1799    rt->mfc_byte_cnt += plen;
1800
1801    /*
1802     * For each vif, decide if a copy of the packet should be forwarded.
1803     * Forward if:
1804     *		- the ttl exceeds the vif's threshold
1805     *		- there are group members downstream on interface
1806     */
1807    for (vifi = 0; vifi < numvifs; vifi++)
1808	if ((rt->mfc_ttls[vifi] > 0) && (ip->ip_ttl > rt->mfc_ttls[vifi])) {
1809	    viftable[vifi].v_pkt_out++;
1810	    viftable[vifi].v_bytes_out += plen;
1811#ifdef PIM
1812	    if (viftable[vifi].v_flags & VIFF_REGISTER)
1813		pim_register_send(ip, viftable + vifi, m, rt);
1814	    else
1815#endif
1816	    MC_SEND(ip, viftable+vifi, m);
1817	}
1818
1819    /*
1820     * Perform upcall-related bw measuring.
1821     */
1822    if (rt->mfc_bw_meter != NULL) {
1823	struct bw_meter *x;
1824	struct timeval now;
1825
1826	GET_TIME(now);
1827	MFC_LOCK_ASSERT();
1828	for (x = rt->mfc_bw_meter; x != NULL; x = x->bm_mfc_next)
1829	    bw_meter_receive_packet(x, plen, &now);
1830    }
1831
1832    return 0;
1833}
1834
1835/*
1836 * check if a vif number is legal/ok. This is used by ip_output.
1837 */
1838static int
1839X_legal_vif_num(int vif)
1840{
1841    /* XXX unlocked, matter? */
1842    return (vif >= 0 && vif < numvifs);
1843}
1844
1845/*
1846 * Return the local address used by this vif
1847 */
1848static u_long
1849X_ip_mcast_src(int vifi)
1850{
1851    /* XXX unlocked, matter? */
1852    if (vifi >= 0 && vifi < numvifs)
1853	return viftable[vifi].v_lcl_addr.s_addr;
1854    else
1855	return INADDR_ANY;
1856}
1857
1858static void
1859phyint_send(struct ip *ip, struct vif *vifp, struct mbuf *m)
1860{
1861    struct mbuf *mb_copy;
1862    int hlen = ip->ip_hl << 2;
1863
1864    VIF_LOCK_ASSERT();
1865
1866    /*
1867     * Make a new reference to the packet; make sure that
1868     * the IP header is actually copied, not just referenced,
1869     * so that ip_output() only scribbles on the copy.
1870     */
1871    mb_copy = m_copypacket(m, M_DONTWAIT);
1872    if (mb_copy && (M_HASCL(mb_copy) || mb_copy->m_len < hlen))
1873	mb_copy = m_pullup(mb_copy, hlen);
1874    if (mb_copy == NULL)
1875	return;
1876
1877    if (vifp->v_rate_limit == 0)
1878	tbf_send_packet(vifp, mb_copy);
1879    else
1880	tbf_control(vifp, mb_copy, mtod(mb_copy, struct ip *), ip->ip_len);
1881}
1882
1883static void
1884encap_send(struct ip *ip, struct vif *vifp, struct mbuf *m)
1885{
1886    struct mbuf *mb_copy;
1887    struct ip *ip_copy;
1888    int i, len = ip->ip_len;
1889
1890    VIF_LOCK_ASSERT();
1891
1892    /* Take care of delayed checksums */
1893    if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
1894	in_delayed_cksum(m);
1895	m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
1896    }
1897
1898    /*
1899     * copy the old packet & pullup its IP header into the
1900     * new mbuf so we can modify it.  Try to fill the new
1901     * mbuf since if we don't the ethernet driver will.
1902     */
1903    MGETHDR(mb_copy, M_DONTWAIT, MT_HEADER);
1904    if (mb_copy == NULL)
1905	return;
1906#ifdef MAC
1907    mac_create_mbuf_multicast_encap(m, vifp->v_ifp, mb_copy);
1908#endif
1909    mb_copy->m_data += max_linkhdr;
1910    mb_copy->m_len = sizeof(multicast_encap_iphdr);
1911
1912    if ((mb_copy->m_next = m_copypacket(m, M_DONTWAIT)) == NULL) {
1913	m_freem(mb_copy);
1914	return;
1915    }
1916    i = MHLEN - M_LEADINGSPACE(mb_copy);
1917    if (i > len)
1918	i = len;
1919    mb_copy = m_pullup(mb_copy, i);
1920    if (mb_copy == NULL)
1921	return;
1922    mb_copy->m_pkthdr.len = len + sizeof(multicast_encap_iphdr);
1923
1924    /*
1925     * fill in the encapsulating IP header.
1926     */
1927    ip_copy = mtod(mb_copy, struct ip *);
1928    *ip_copy = multicast_encap_iphdr;
1929    ip_copy->ip_id = ip_newid();
1930    ip_copy->ip_len += len;
1931    ip_copy->ip_src = vifp->v_lcl_addr;
1932    ip_copy->ip_dst = vifp->v_rmt_addr;
1933
1934    /*
1935     * turn the encapsulated IP header back into a valid one.
1936     */
1937    ip = (struct ip *)((caddr_t)ip_copy + sizeof(multicast_encap_iphdr));
1938    --ip->ip_ttl;
1939    ip->ip_len = htons(ip->ip_len);
1940    ip->ip_off = htons(ip->ip_off);
1941    ip->ip_sum = 0;
1942    mb_copy->m_data += sizeof(multicast_encap_iphdr);
1943    ip->ip_sum = in_cksum(mb_copy, ip->ip_hl << 2);
1944    mb_copy->m_data -= sizeof(multicast_encap_iphdr);
1945
1946    if (vifp->v_rate_limit == 0)
1947	tbf_send_packet(vifp, mb_copy);
1948    else
1949	tbf_control(vifp, mb_copy, ip, ip_copy->ip_len);
1950}
1951
1952/*
1953 * Token bucket filter module
1954 */
1955
1956static void
1957tbf_control(struct vif *vifp, struct mbuf *m, struct ip *ip, u_long p_len)
1958{
1959    struct tbf *t = vifp->v_tbf;
1960
1961    VIF_LOCK_ASSERT();
1962
1963    if (p_len > MAX_BKT_SIZE) {		/* drop if packet is too large */
1964	mrtstat.mrts_pkt2large++;
1965	m_freem(m);
1966	return;
1967    }
1968
1969    tbf_update_tokens(vifp);
1970
1971    if (t->tbf_q_len == 0) {		/* queue empty...		*/
1972	if (p_len <= t->tbf_n_tok) {	/* send packet if enough tokens */
1973	    t->tbf_n_tok -= p_len;
1974	    tbf_send_packet(vifp, m);
1975	} else {			/* no, queue packet and try later */
1976	    tbf_queue(vifp, m);
1977	    callout_reset(&tbf_reprocess_ch, TBF_REPROCESS,
1978		tbf_reprocess_q, vifp);
1979	}
1980    } else if (t->tbf_q_len < t->tbf_max_q_len) {
1981	/* finite queue length, so queue pkts and process queue */
1982	tbf_queue(vifp, m);
1983	tbf_process_q(vifp);
1984    } else {
1985	/* queue full, try to dq and queue and process */
1986	if (!tbf_dq_sel(vifp, ip)) {
1987	    mrtstat.mrts_q_overflow++;
1988	    m_freem(m);
1989	} else {
1990	    tbf_queue(vifp, m);
1991	    tbf_process_q(vifp);
1992	}
1993    }
1994}
1995
1996/*
1997 * adds a packet to the queue at the interface
1998 */
1999static void
2000tbf_queue(struct vif *vifp, struct mbuf *m)
2001{
2002    struct tbf *t = vifp->v_tbf;
2003
2004    VIF_LOCK_ASSERT();
2005
2006    if (t->tbf_t == NULL)	/* Queue was empty */
2007	t->tbf_q = m;
2008    else			/* Insert at tail */
2009	t->tbf_t->m_act = m;
2010
2011    t->tbf_t = m;		/* Set new tail pointer */
2012
2013#ifdef DIAGNOSTIC
2014    /* Make sure we didn't get fed a bogus mbuf */
2015    if (m->m_act)
2016	panic("tbf_queue: m_act");
2017#endif
2018    m->m_act = NULL;
2019
2020    t->tbf_q_len++;
2021}
2022
2023/*
2024 * processes the queue at the interface
2025 */
2026static void
2027tbf_process_q(struct vif *vifp)
2028{
2029    struct tbf *t = vifp->v_tbf;
2030
2031    VIF_LOCK_ASSERT();
2032
2033    /* loop through the queue at the interface and send as many packets
2034     * as possible
2035     */
2036    while (t->tbf_q_len > 0) {
2037	struct mbuf *m = t->tbf_q;
2038	int len = mtod(m, struct ip *)->ip_len;
2039
2040	/* determine if the packet can be sent */
2041	if (len > t->tbf_n_tok)	/* not enough tokens, we are done */
2042	    break;
2043	/* ok, reduce no of tokens, dequeue and send the packet. */
2044	t->tbf_n_tok -= len;
2045
2046	t->tbf_q = m->m_act;
2047	if (--t->tbf_q_len == 0)
2048	    t->tbf_t = NULL;
2049
2050	m->m_act = NULL;
2051	tbf_send_packet(vifp, m);
2052    }
2053}
2054
2055static void
2056tbf_reprocess_q(void *xvifp)
2057{
2058    struct vif *vifp = xvifp;
2059
2060    if (ip_mrouter == NULL)
2061	return;
2062    VIF_LOCK();
2063    tbf_update_tokens(vifp);
2064    tbf_process_q(vifp);
2065    if (vifp->v_tbf->tbf_q_len)
2066	callout_reset(&tbf_reprocess_ch, TBF_REPROCESS, tbf_reprocess_q, vifp);
2067    VIF_UNLOCK();
2068}
2069
2070/* function that will selectively discard a member of the queue
2071 * based on the precedence value and the priority
2072 */
2073static int
2074tbf_dq_sel(struct vif *vifp, struct ip *ip)
2075{
2076    u_int p;
2077    struct mbuf *m, *last;
2078    struct mbuf **np;
2079    struct tbf *t = vifp->v_tbf;
2080
2081    VIF_LOCK_ASSERT();
2082
2083    p = priority(vifp, ip);
2084
2085    np = &t->tbf_q;
2086    last = NULL;
2087    while ((m = *np) != NULL) {
2088	if (p > priority(vifp, mtod(m, struct ip *))) {
2089	    *np = m->m_act;
2090	    /* If we're removing the last packet, fix the tail pointer */
2091	    if (m == t->tbf_t)
2092		t->tbf_t = last;
2093	    m_freem(m);
2094	    /* It's impossible for the queue to be empty, but check anyways. */
2095	    if (--t->tbf_q_len == 0)
2096		t->tbf_t = NULL;
2097	    mrtstat.mrts_drop_sel++;
2098	    return 1;
2099	}
2100	np = &m->m_act;
2101	last = m;
2102    }
2103    return 0;
2104}
2105
2106static void
2107tbf_send_packet(struct vif *vifp, struct mbuf *m)
2108{
2109    VIF_LOCK_ASSERT();
2110
2111    if (vifp->v_flags & VIFF_TUNNEL)	/* If tunnel options */
2112	ip_output(m, NULL, &vifp->v_route, IP_FORWARDING, NULL, NULL);
2113    else {
2114	struct ip_moptions imo;
2115	int error;
2116	static struct route ro; /* XXX check this */
2117
2118	imo.imo_multicast_ifp  = vifp->v_ifp;
2119	imo.imo_multicast_ttl  = mtod(m, struct ip *)->ip_ttl - 1;
2120	imo.imo_multicast_loop = 1;
2121	imo.imo_multicast_vif  = -1;
2122
2123	/*
2124	 * Re-entrancy should not be a problem here, because
2125	 * the packets that we send out and are looped back at us
2126	 * should get rejected because they appear to come from
2127	 * the loopback interface, thus preventing looping.
2128	 */
2129	error = ip_output(m, NULL, &ro, IP_FORWARDING, &imo, NULL);
2130
2131	if (mrtdebug & DEBUG_XMIT)
2132	    log(LOG_DEBUG, "phyint_send on vif %d err %d\n",
2133		(int)(vifp - viftable), error);
2134    }
2135}
2136
2137/* determine the current time and then
2138 * the elapsed time (between the last time and time now)
2139 * in milliseconds & update the no. of tokens in the bucket
2140 */
2141static void
2142tbf_update_tokens(struct vif *vifp)
2143{
2144    struct timeval tp;
2145    u_long tm;
2146    struct tbf *t = vifp->v_tbf;
2147
2148    VIF_LOCK_ASSERT();
2149
2150    GET_TIME(tp);
2151
2152    TV_DELTA(tp, t->tbf_last_pkt_t, tm);
2153
2154    /*
2155     * This formula is actually
2156     * "time in seconds" * "bytes/second".
2157     *
2158     * (tm / 1000000) * (v_rate_limit * 1000 * (1000/1024) / 8)
2159     *
2160     * The (1000/1024) was introduced in add_vif to optimize
2161     * this divide into a shift.
2162     */
2163    t->tbf_n_tok += tm * vifp->v_rate_limit / 1024 / 8;
2164    t->tbf_last_pkt_t = tp;
2165
2166    if (t->tbf_n_tok > MAX_BKT_SIZE)
2167	t->tbf_n_tok = MAX_BKT_SIZE;
2168}
2169
2170static int
2171priority(struct vif *vifp, struct ip *ip)
2172{
2173    int prio = 50; /* the lowest priority -- default case */
2174
2175    /* temporary hack; may add general packet classifier some day */
2176
2177    /*
2178     * The UDP port space is divided up into four priority ranges:
2179     * [0, 16384)     : unclassified - lowest priority
2180     * [16384, 32768) : audio - highest priority
2181     * [32768, 49152) : whiteboard - medium priority
2182     * [49152, 65536) : video - low priority
2183     *
2184     * Everything else gets lowest priority.
2185     */
2186    if (ip->ip_p == IPPROTO_UDP) {
2187	struct udphdr *udp = (struct udphdr *)(((char *)ip) + (ip->ip_hl << 2));
2188	switch (ntohs(udp->uh_dport) & 0xc000) {
2189	case 0x4000:
2190	    prio = 70;
2191	    break;
2192	case 0x8000:
2193	    prio = 60;
2194	    break;
2195	case 0xc000:
2196	    prio = 55;
2197	    break;
2198	}
2199    }
2200    return prio;
2201}
2202
2203/*
2204 * End of token bucket filter modifications
2205 */
2206
2207static int
2208X_ip_rsvp_vif(struct socket *so, struct sockopt *sopt)
2209{
2210    int error, vifi;
2211
2212    if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_RSVP)
2213	return EOPNOTSUPP;
2214
2215    error = sooptcopyin(sopt, &vifi, sizeof vifi, sizeof vifi);
2216    if (error)
2217	return error;
2218
2219    VIF_LOCK();
2220
2221    if (vifi < 0 || vifi >= numvifs) {	/* Error if vif is invalid */
2222	VIF_UNLOCK();
2223	return EADDRNOTAVAIL;
2224    }
2225
2226    if (sopt->sopt_name == IP_RSVP_VIF_ON) {
2227	/* Check if socket is available. */
2228	if (viftable[vifi].v_rsvpd != NULL) {
2229	    VIF_UNLOCK();
2230	    return EADDRINUSE;
2231	}
2232
2233	viftable[vifi].v_rsvpd = so;
2234	/* This may seem silly, but we need to be sure we don't over-increment
2235	 * the RSVP counter, in case something slips up.
2236	 */
2237	if (!viftable[vifi].v_rsvp_on) {
2238	    viftable[vifi].v_rsvp_on = 1;
2239	    rsvp_on++;
2240	}
2241    } else { /* must be VIF_OFF */
2242	/*
2243	 * XXX as an additional consistency check, one could make sure
2244	 * that viftable[vifi].v_rsvpd == so, otherwise passing so as
2245	 * first parameter is pretty useless.
2246	 */
2247	viftable[vifi].v_rsvpd = NULL;
2248	/*
2249	 * This may seem silly, but we need to be sure we don't over-decrement
2250	 * the RSVP counter, in case something slips up.
2251	 */
2252	if (viftable[vifi].v_rsvp_on) {
2253	    viftable[vifi].v_rsvp_on = 0;
2254	    rsvp_on--;
2255	}
2256    }
2257    VIF_UNLOCK();
2258    return 0;
2259}
2260
2261static void
2262X_ip_rsvp_force_done(struct socket *so)
2263{
2264    int vifi;
2265
2266    /* Don't bother if it is not the right type of socket. */
2267    if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_RSVP)
2268	return;
2269
2270    VIF_LOCK();
2271
2272    /* The socket may be attached to more than one vif...this
2273     * is perfectly legal.
2274     */
2275    for (vifi = 0; vifi < numvifs; vifi++) {
2276	if (viftable[vifi].v_rsvpd == so) {
2277	    viftable[vifi].v_rsvpd = NULL;
2278	    /* This may seem silly, but we need to be sure we don't
2279	     * over-decrement the RSVP counter, in case something slips up.
2280	     */
2281	    if (viftable[vifi].v_rsvp_on) {
2282		viftable[vifi].v_rsvp_on = 0;
2283		rsvp_on--;
2284	    }
2285	}
2286    }
2287
2288    VIF_UNLOCK();
2289}
2290
2291static void
2292X_rsvp_input(struct mbuf *m, int off)
2293{
2294    int vifi;
2295    struct ip *ip = mtod(m, struct ip *);
2296    struct sockaddr_in rsvp_src = { sizeof rsvp_src, AF_INET };
2297    struct ifnet *ifp;
2298
2299    if (rsvpdebug)
2300	printf("rsvp_input: rsvp_on %d\n",rsvp_on);
2301
2302    /* Can still get packets with rsvp_on = 0 if there is a local member
2303     * of the group to which the RSVP packet is addressed.  But in this
2304     * case we want to throw the packet away.
2305     */
2306    if (!rsvp_on) {
2307	m_freem(m);
2308	return;
2309    }
2310
2311    if (rsvpdebug)
2312	printf("rsvp_input: check vifs\n");
2313
2314#ifdef DIAGNOSTIC
2315    M_ASSERTPKTHDR(m);
2316#endif
2317
2318    ifp = m->m_pkthdr.rcvif;
2319
2320    VIF_LOCK();
2321    /* Find which vif the packet arrived on. */
2322    for (vifi = 0; vifi < numvifs; vifi++)
2323	if (viftable[vifi].v_ifp == ifp)
2324	    break;
2325
2326    if (vifi == numvifs || viftable[vifi].v_rsvpd == NULL) {
2327	/*
2328	 * Drop the lock here to avoid holding it across rip_input.
2329	 * This could make rsvpdebug printfs wrong.  If you care,
2330	 * record the state of stuff before dropping the lock.
2331	 */
2332	VIF_UNLOCK();
2333	/*
2334	 * If the old-style non-vif-associated socket is set,
2335	 * then use it.  Otherwise, drop packet since there
2336	 * is no specific socket for this vif.
2337	 */
2338	if (ip_rsvpd != NULL) {
2339	    if (rsvpdebug)
2340		printf("rsvp_input: Sending packet up old-style socket\n");
2341	    rip_input(m, off);  /* xxx */
2342	} else {
2343	    if (rsvpdebug && vifi == numvifs)
2344		printf("rsvp_input: Can't find vif for packet.\n");
2345	    else if (rsvpdebug && viftable[vifi].v_rsvpd == NULL)
2346		printf("rsvp_input: No socket defined for vif %d\n",vifi);
2347	    m_freem(m);
2348	}
2349	return;
2350    }
2351    rsvp_src.sin_addr = ip->ip_src;
2352
2353    if (rsvpdebug && m)
2354	printf("rsvp_input: m->m_len = %d, sbspace() = %ld\n",
2355	       m->m_len,sbspace(&(viftable[vifi].v_rsvpd->so_rcv)));
2356
2357    if (socket_send(viftable[vifi].v_rsvpd, m, &rsvp_src) < 0) {
2358	if (rsvpdebug)
2359	    printf("rsvp_input: Failed to append to socket\n");
2360    } else {
2361	if (rsvpdebug)
2362	    printf("rsvp_input: send packet up\n");
2363    }
2364    VIF_UNLOCK();
2365}
2366
2367/*
2368 * Code for bandwidth monitors
2369 */
2370
2371/*
2372 * Define common interface for timeval-related methods
2373 */
2374#define	BW_TIMEVALCMP(tvp, uvp, cmp) timevalcmp((tvp), (uvp), cmp)
2375#define	BW_TIMEVALDECR(vvp, uvp) timevalsub((vvp), (uvp))
2376#define	BW_TIMEVALADD(vvp, uvp) timevaladd((vvp), (uvp))
2377
2378static uint32_t
2379compute_bw_meter_flags(struct bw_upcall *req)
2380{
2381    uint32_t flags = 0;
2382
2383    if (req->bu_flags & BW_UPCALL_UNIT_PACKETS)
2384	flags |= BW_METER_UNIT_PACKETS;
2385    if (req->bu_flags & BW_UPCALL_UNIT_BYTES)
2386	flags |= BW_METER_UNIT_BYTES;
2387    if (req->bu_flags & BW_UPCALL_GEQ)
2388	flags |= BW_METER_GEQ;
2389    if (req->bu_flags & BW_UPCALL_LEQ)
2390	flags |= BW_METER_LEQ;
2391
2392    return flags;
2393}
2394
2395/*
2396 * Add a bw_meter entry
2397 */
2398static int
2399add_bw_upcall(struct bw_upcall *req)
2400{
2401    struct mfc *mfc;
2402    struct timeval delta = { BW_UPCALL_THRESHOLD_INTERVAL_MIN_SEC,
2403		BW_UPCALL_THRESHOLD_INTERVAL_MIN_USEC };
2404    struct timeval now;
2405    struct bw_meter *x;
2406    uint32_t flags;
2407
2408    if (!(mrt_api_config & MRT_MFC_BW_UPCALL))
2409	return EOPNOTSUPP;
2410
2411    /* Test if the flags are valid */
2412    if (!(req->bu_flags & (BW_UPCALL_UNIT_PACKETS | BW_UPCALL_UNIT_BYTES)))
2413	return EINVAL;
2414    if (!(req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ)))
2415	return EINVAL;
2416    if ((req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ))
2417	    == (BW_UPCALL_GEQ | BW_UPCALL_LEQ))
2418	return EINVAL;
2419
2420    /* Test if the threshold time interval is valid */
2421    if (BW_TIMEVALCMP(&req->bu_threshold.b_time, &delta, <))
2422	return EINVAL;
2423
2424    flags = compute_bw_meter_flags(req);
2425
2426    /*
2427     * Find if we have already same bw_meter entry
2428     */
2429    MFC_LOCK();
2430    mfc = mfc_find(req->bu_src.s_addr, req->bu_dst.s_addr);
2431    if (mfc == NULL) {
2432	MFC_UNLOCK();
2433	return EADDRNOTAVAIL;
2434    }
2435    for (x = mfc->mfc_bw_meter; x != NULL; x = x->bm_mfc_next) {
2436	if ((BW_TIMEVALCMP(&x->bm_threshold.b_time,
2437			   &req->bu_threshold.b_time, ==)) &&
2438	    (x->bm_threshold.b_packets == req->bu_threshold.b_packets) &&
2439	    (x->bm_threshold.b_bytes == req->bu_threshold.b_bytes) &&
2440	    (x->bm_flags & BW_METER_USER_FLAGS) == flags)  {
2441	    MFC_UNLOCK();
2442	    return 0;		/* XXX Already installed */
2443	}
2444    }
2445
2446    /* Allocate the new bw_meter entry */
2447    x = (struct bw_meter *)malloc(sizeof(*x), M_BWMETER, M_NOWAIT);
2448    if (x == NULL) {
2449	MFC_UNLOCK();
2450	return ENOBUFS;
2451    }
2452
2453    /* Set the new bw_meter entry */
2454    x->bm_threshold.b_time = req->bu_threshold.b_time;
2455    GET_TIME(now);
2456    x->bm_start_time = now;
2457    x->bm_threshold.b_packets = req->bu_threshold.b_packets;
2458    x->bm_threshold.b_bytes = req->bu_threshold.b_bytes;
2459    x->bm_measured.b_packets = 0;
2460    x->bm_measured.b_bytes = 0;
2461    x->bm_flags = flags;
2462    x->bm_time_next = NULL;
2463    x->bm_time_hash = BW_METER_BUCKETS;
2464
2465    /* Add the new bw_meter entry to the front of entries for this MFC */
2466    x->bm_mfc = mfc;
2467    x->bm_mfc_next = mfc->mfc_bw_meter;
2468    mfc->mfc_bw_meter = x;
2469    schedule_bw_meter(x, &now);
2470    MFC_UNLOCK();
2471
2472    return 0;
2473}
2474
2475static void
2476free_bw_list(struct bw_meter *list)
2477{
2478    while (list != NULL) {
2479	struct bw_meter *x = list;
2480
2481	list = list->bm_mfc_next;
2482	unschedule_bw_meter(x);
2483	free(x, M_BWMETER);
2484    }
2485}
2486
2487/*
2488 * Delete one or multiple bw_meter entries
2489 */
2490static int
2491del_bw_upcall(struct bw_upcall *req)
2492{
2493    struct mfc *mfc;
2494    struct bw_meter *x;
2495
2496    if (!(mrt_api_config & MRT_MFC_BW_UPCALL))
2497	return EOPNOTSUPP;
2498
2499    MFC_LOCK();
2500    /* Find the corresponding MFC entry */
2501    mfc = mfc_find(req->bu_src.s_addr, req->bu_dst.s_addr);
2502    if (mfc == NULL) {
2503	MFC_UNLOCK();
2504	return EADDRNOTAVAIL;
2505    } else if (req->bu_flags & BW_UPCALL_DELETE_ALL) {
2506	/*
2507	 * Delete all bw_meter entries for this mfc
2508	 */
2509	struct bw_meter *list;
2510
2511	list = mfc->mfc_bw_meter;
2512	mfc->mfc_bw_meter = NULL;
2513	free_bw_list(list);
2514	MFC_UNLOCK();
2515	return 0;
2516    } else {			/* Delete a single bw_meter entry */
2517	struct bw_meter *prev;
2518	uint32_t flags = 0;
2519
2520	flags = compute_bw_meter_flags(req);
2521
2522	/* Find the bw_meter entry to delete */
2523	for (prev = NULL, x = mfc->mfc_bw_meter; x != NULL;
2524	     prev = x, x = x->bm_mfc_next) {
2525	    if ((BW_TIMEVALCMP(&x->bm_threshold.b_time,
2526			       &req->bu_threshold.b_time, ==)) &&
2527		(x->bm_threshold.b_packets == req->bu_threshold.b_packets) &&
2528		(x->bm_threshold.b_bytes == req->bu_threshold.b_bytes) &&
2529		(x->bm_flags & BW_METER_USER_FLAGS) == flags)
2530		break;
2531	}
2532	if (x != NULL) { /* Delete entry from the list for this MFC */
2533	    if (prev != NULL)
2534		prev->bm_mfc_next = x->bm_mfc_next;	/* remove from middle*/
2535	    else
2536		x->bm_mfc->mfc_bw_meter = x->bm_mfc_next;/* new head of list */
2537
2538	    unschedule_bw_meter(x);
2539	    MFC_UNLOCK();
2540	    /* Free the bw_meter entry */
2541	    free(x, M_BWMETER);
2542	    return 0;
2543	} else {
2544	    MFC_UNLOCK();
2545	    return EINVAL;
2546	}
2547    }
2548    /* NOTREACHED */
2549}
2550
2551/*
2552 * Perform bandwidth measurement processing that may result in an upcall
2553 */
2554static void
2555bw_meter_receive_packet(struct bw_meter *x, int plen, struct timeval *nowp)
2556{
2557    struct timeval delta;
2558
2559    MFC_LOCK_ASSERT();
2560
2561    delta = *nowp;
2562    BW_TIMEVALDECR(&delta, &x->bm_start_time);
2563
2564    if (x->bm_flags & BW_METER_GEQ) {
2565	/*
2566	 * Processing for ">=" type of bw_meter entry
2567	 */
2568	if (BW_TIMEVALCMP(&delta, &x->bm_threshold.b_time, >)) {
2569	    /* Reset the bw_meter entry */
2570	    x->bm_start_time = *nowp;
2571	    x->bm_measured.b_packets = 0;
2572	    x->bm_measured.b_bytes = 0;
2573	    x->bm_flags &= ~BW_METER_UPCALL_DELIVERED;
2574	}
2575
2576	/* Record that a packet is received */
2577	x->bm_measured.b_packets++;
2578	x->bm_measured.b_bytes += plen;
2579
2580	/*
2581	 * Test if we should deliver an upcall
2582	 */
2583	if (!(x->bm_flags & BW_METER_UPCALL_DELIVERED)) {
2584	    if (((x->bm_flags & BW_METER_UNIT_PACKETS) &&
2585		 (x->bm_measured.b_packets >= x->bm_threshold.b_packets)) ||
2586		((x->bm_flags & BW_METER_UNIT_BYTES) &&
2587		 (x->bm_measured.b_bytes >= x->bm_threshold.b_bytes))) {
2588		/* Prepare an upcall for delivery */
2589		bw_meter_prepare_upcall(x, nowp);
2590		x->bm_flags |= BW_METER_UPCALL_DELIVERED;
2591	    }
2592	}
2593    } else if (x->bm_flags & BW_METER_LEQ) {
2594	/*
2595	 * Processing for "<=" type of bw_meter entry
2596	 */
2597	if (BW_TIMEVALCMP(&delta, &x->bm_threshold.b_time, >)) {
2598	    /*
2599	     * We are behind time with the multicast forwarding table
2600	     * scanning for "<=" type of bw_meter entries, so test now
2601	     * if we should deliver an upcall.
2602	     */
2603	    if (((x->bm_flags & BW_METER_UNIT_PACKETS) &&
2604		 (x->bm_measured.b_packets <= x->bm_threshold.b_packets)) ||
2605		((x->bm_flags & BW_METER_UNIT_BYTES) &&
2606		 (x->bm_measured.b_bytes <= x->bm_threshold.b_bytes))) {
2607		/* Prepare an upcall for delivery */
2608		bw_meter_prepare_upcall(x, nowp);
2609	    }
2610	    /* Reschedule the bw_meter entry */
2611	    unschedule_bw_meter(x);
2612	    schedule_bw_meter(x, nowp);
2613	}
2614
2615	/* Record that a packet is received */
2616	x->bm_measured.b_packets++;
2617	x->bm_measured.b_bytes += plen;
2618
2619	/*
2620	 * Test if we should restart the measuring interval
2621	 */
2622	if ((x->bm_flags & BW_METER_UNIT_PACKETS &&
2623	     x->bm_measured.b_packets <= x->bm_threshold.b_packets) ||
2624	    (x->bm_flags & BW_METER_UNIT_BYTES &&
2625	     x->bm_measured.b_bytes <= x->bm_threshold.b_bytes)) {
2626	    /* Don't restart the measuring interval */
2627	} else {
2628	    /* Do restart the measuring interval */
2629	    /*
2630	     * XXX: note that we don't unschedule and schedule, because this
2631	     * might be too much overhead per packet. Instead, when we process
2632	     * all entries for a given timer hash bin, we check whether it is
2633	     * really a timeout. If not, we reschedule at that time.
2634	     */
2635	    x->bm_start_time = *nowp;
2636	    x->bm_measured.b_packets = 0;
2637	    x->bm_measured.b_bytes = 0;
2638	    x->bm_flags &= ~BW_METER_UPCALL_DELIVERED;
2639	}
2640    }
2641}
2642
2643/*
2644 * Prepare a bandwidth-related upcall
2645 */
2646static void
2647bw_meter_prepare_upcall(struct bw_meter *x, struct timeval *nowp)
2648{
2649    struct timeval delta;
2650    struct bw_upcall *u;
2651
2652    MFC_LOCK_ASSERT();
2653
2654    /*
2655     * Compute the measured time interval
2656     */
2657    delta = *nowp;
2658    BW_TIMEVALDECR(&delta, &x->bm_start_time);
2659
2660    /*
2661     * If there are too many pending upcalls, deliver them now
2662     */
2663    if (bw_upcalls_n >= BW_UPCALLS_MAX)
2664	bw_upcalls_send();
2665
2666    /*
2667     * Set the bw_upcall entry
2668     */
2669    u = &bw_upcalls[bw_upcalls_n++];
2670    u->bu_src = x->bm_mfc->mfc_origin;
2671    u->bu_dst = x->bm_mfc->mfc_mcastgrp;
2672    u->bu_threshold.b_time = x->bm_threshold.b_time;
2673    u->bu_threshold.b_packets = x->bm_threshold.b_packets;
2674    u->bu_threshold.b_bytes = x->bm_threshold.b_bytes;
2675    u->bu_measured.b_time = delta;
2676    u->bu_measured.b_packets = x->bm_measured.b_packets;
2677    u->bu_measured.b_bytes = x->bm_measured.b_bytes;
2678    u->bu_flags = 0;
2679    if (x->bm_flags & BW_METER_UNIT_PACKETS)
2680	u->bu_flags |= BW_UPCALL_UNIT_PACKETS;
2681    if (x->bm_flags & BW_METER_UNIT_BYTES)
2682	u->bu_flags |= BW_UPCALL_UNIT_BYTES;
2683    if (x->bm_flags & BW_METER_GEQ)
2684	u->bu_flags |= BW_UPCALL_GEQ;
2685    if (x->bm_flags & BW_METER_LEQ)
2686	u->bu_flags |= BW_UPCALL_LEQ;
2687}
2688
2689/*
2690 * Send the pending bandwidth-related upcalls
2691 */
2692static void
2693bw_upcalls_send(void)
2694{
2695    struct mbuf *m;
2696    int len = bw_upcalls_n * sizeof(bw_upcalls[0]);
2697    struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
2698    static struct igmpmsg igmpmsg = { 0,		/* unused1 */
2699				      0,		/* unused2 */
2700				      IGMPMSG_BW_UPCALL,/* im_msgtype */
2701				      0,		/* im_mbz  */
2702				      0,		/* im_vif  */
2703				      0,		/* unused3 */
2704				      { 0 },		/* im_src  */
2705				      { 0 } };		/* im_dst  */
2706
2707    MFC_LOCK_ASSERT();
2708
2709    if (bw_upcalls_n == 0)
2710	return;			/* No pending upcalls */
2711
2712    bw_upcalls_n = 0;
2713
2714    /*
2715     * Allocate a new mbuf, initialize it with the header and
2716     * the payload for the pending calls.
2717     */
2718    MGETHDR(m, M_DONTWAIT, MT_HEADER);
2719    if (m == NULL) {
2720	log(LOG_WARNING, "bw_upcalls_send: cannot allocate mbuf\n");
2721	return;
2722    }
2723
2724    m->m_len = m->m_pkthdr.len = 0;
2725    m_copyback(m, 0, sizeof(struct igmpmsg), (caddr_t)&igmpmsg);
2726    m_copyback(m, sizeof(struct igmpmsg), len, (caddr_t)&bw_upcalls[0]);
2727
2728    /*
2729     * Send the upcalls
2730     * XXX do we need to set the address in k_igmpsrc ?
2731     */
2732    mrtstat.mrts_upcalls++;
2733    if (socket_send(ip_mrouter, m, &k_igmpsrc) < 0) {
2734	log(LOG_WARNING, "bw_upcalls_send: ip_mrouter socket queue full\n");
2735	++mrtstat.mrts_upq_sockfull;
2736    }
2737}
2738
2739/*
2740 * Compute the timeout hash value for the bw_meter entries
2741 */
2742#define	BW_METER_TIMEHASH(bw_meter, hash)				\
2743    do {								\
2744	struct timeval next_timeval = (bw_meter)->bm_start_time;	\
2745									\
2746	BW_TIMEVALADD(&next_timeval, &(bw_meter)->bm_threshold.b_time); \
2747	(hash) = next_timeval.tv_sec;					\
2748	if (next_timeval.tv_usec)					\
2749	    (hash)++; /* XXX: make sure we don't timeout early */	\
2750	(hash) %= BW_METER_BUCKETS;					\
2751    } while (0)
2752
2753/*
2754 * Schedule a timer to process periodically bw_meter entry of type "<="
2755 * by linking the entry in the proper hash bucket.
2756 */
2757static void
2758schedule_bw_meter(struct bw_meter *x, struct timeval *nowp)
2759{
2760    int time_hash;
2761
2762    MFC_LOCK_ASSERT();
2763
2764    if (!(x->bm_flags & BW_METER_LEQ))
2765	return;		/* XXX: we schedule timers only for "<=" entries */
2766
2767    /*
2768     * Reset the bw_meter entry
2769     */
2770    x->bm_start_time = *nowp;
2771    x->bm_measured.b_packets = 0;
2772    x->bm_measured.b_bytes = 0;
2773    x->bm_flags &= ~BW_METER_UPCALL_DELIVERED;
2774
2775    /*
2776     * Compute the timeout hash value and insert the entry
2777     */
2778    BW_METER_TIMEHASH(x, time_hash);
2779    x->bm_time_next = bw_meter_timers[time_hash];
2780    bw_meter_timers[time_hash] = x;
2781    x->bm_time_hash = time_hash;
2782}
2783
2784/*
2785 * Unschedule the periodic timer that processes bw_meter entry of type "<="
2786 * by removing the entry from the proper hash bucket.
2787 */
2788static void
2789unschedule_bw_meter(struct bw_meter *x)
2790{
2791    int time_hash;
2792    struct bw_meter *prev, *tmp;
2793
2794    MFC_LOCK_ASSERT();
2795
2796    if (!(x->bm_flags & BW_METER_LEQ))
2797	return;		/* XXX: we schedule timers only for "<=" entries */
2798
2799    /*
2800     * Compute the timeout hash value and delete the entry
2801     */
2802    time_hash = x->bm_time_hash;
2803    if (time_hash >= BW_METER_BUCKETS)
2804	return;		/* Entry was not scheduled */
2805
2806    for (prev = NULL, tmp = bw_meter_timers[time_hash];
2807	     tmp != NULL; prev = tmp, tmp = tmp->bm_time_next)
2808	if (tmp == x)
2809	    break;
2810
2811    if (tmp == NULL)
2812	panic("unschedule_bw_meter: bw_meter entry not found");
2813
2814    if (prev != NULL)
2815	prev->bm_time_next = x->bm_time_next;
2816    else
2817	bw_meter_timers[time_hash] = x->bm_time_next;
2818
2819    x->bm_time_next = NULL;
2820    x->bm_time_hash = BW_METER_BUCKETS;
2821}
2822
2823
2824/*
2825 * Process all "<=" type of bw_meter that should be processed now,
2826 * and for each entry prepare an upcall if necessary. Each processed
2827 * entry is rescheduled again for the (periodic) processing.
2828 *
2829 * This is run periodically (once per second normally). On each round,
2830 * all the potentially matching entries are in the hash slot that we are
2831 * looking at.
2832 */
2833static void
2834bw_meter_process()
2835{
2836    static uint32_t last_tv_sec;	/* last time we processed this */
2837
2838    uint32_t loops;
2839    int i;
2840    struct timeval now, process_endtime;
2841
2842    GET_TIME(now);
2843    if (last_tv_sec == now.tv_sec)
2844	return;		/* nothing to do */
2845
2846    loops = now.tv_sec - last_tv_sec;
2847    last_tv_sec = now.tv_sec;
2848    if (loops > BW_METER_BUCKETS)
2849	loops = BW_METER_BUCKETS;
2850
2851    MFC_LOCK();
2852    /*
2853     * Process all bins of bw_meter entries from the one after the last
2854     * processed to the current one. On entry, i points to the last bucket
2855     * visited, so we need to increment i at the beginning of the loop.
2856     */
2857    for (i = (now.tv_sec - loops) % BW_METER_BUCKETS; loops > 0; loops--) {
2858	struct bw_meter *x, *tmp_list;
2859
2860	if (++i >= BW_METER_BUCKETS)
2861	    i = 0;
2862
2863	/* Disconnect the list of bw_meter entries from the bin */
2864	tmp_list = bw_meter_timers[i];
2865	bw_meter_timers[i] = NULL;
2866
2867	/* Process the list of bw_meter entries */
2868	while (tmp_list != NULL) {
2869	    x = tmp_list;
2870	    tmp_list = tmp_list->bm_time_next;
2871
2872	    /* Test if the time interval is over */
2873	    process_endtime = x->bm_start_time;
2874	    BW_TIMEVALADD(&process_endtime, &x->bm_threshold.b_time);
2875	    if (BW_TIMEVALCMP(&process_endtime, &now, >)) {
2876		/* Not yet: reschedule, but don't reset */
2877		int time_hash;
2878
2879		BW_METER_TIMEHASH(x, time_hash);
2880		if (time_hash == i && process_endtime.tv_sec == now.tv_sec) {
2881		    /*
2882		     * XXX: somehow the bin processing is a bit ahead of time.
2883		     * Put the entry in the next bin.
2884		     */
2885		    if (++time_hash >= BW_METER_BUCKETS)
2886			time_hash = 0;
2887		}
2888		x->bm_time_next = bw_meter_timers[time_hash];
2889		bw_meter_timers[time_hash] = x;
2890		x->bm_time_hash = time_hash;
2891
2892		continue;
2893	    }
2894
2895	    /*
2896	     * Test if we should deliver an upcall
2897	     */
2898	    if (((x->bm_flags & BW_METER_UNIT_PACKETS) &&
2899		 (x->bm_measured.b_packets <= x->bm_threshold.b_packets)) ||
2900		((x->bm_flags & BW_METER_UNIT_BYTES) &&
2901		 (x->bm_measured.b_bytes <= x->bm_threshold.b_bytes))) {
2902		/* Prepare an upcall for delivery */
2903		bw_meter_prepare_upcall(x, &now);
2904	    }
2905
2906	    /*
2907	     * Reschedule for next processing
2908	     */
2909	    schedule_bw_meter(x, &now);
2910	}
2911    }
2912
2913    /* Send all upcalls that are pending delivery */
2914    bw_upcalls_send();
2915
2916    MFC_UNLOCK();
2917}
2918
2919/*
2920 * A periodic function for sending all upcalls that are pending delivery
2921 */
2922static void
2923expire_bw_upcalls_send(void *unused)
2924{
2925    MFC_LOCK();
2926    bw_upcalls_send();
2927    MFC_UNLOCK();
2928
2929    callout_reset(&bw_upcalls_ch, BW_UPCALLS_PERIOD,
2930	expire_bw_upcalls_send, NULL);
2931}
2932
2933/*
2934 * A periodic function for periodic scanning of the multicast forwarding
2935 * table for processing all "<=" bw_meter entries.
2936 */
2937static void
2938expire_bw_meter_process(void *unused)
2939{
2940    if (mrt_api_config & MRT_MFC_BW_UPCALL)
2941	bw_meter_process();
2942
2943    callout_reset(&bw_meter_ch, BW_METER_PERIOD, expire_bw_meter_process, NULL);
2944}
2945
2946/*
2947 * End of bandwidth monitoring code
2948 */
2949
2950#ifdef PIM
2951/*
2952 * Send the packet up to the user daemon, or eventually do kernel encapsulation
2953 *
2954 */
2955static int
2956pim_register_send(struct ip *ip, struct vif *vifp,
2957	struct mbuf *m, struct mfc *rt)
2958{
2959    struct mbuf *mb_copy, *mm;
2960
2961    if (mrtdebug & DEBUG_PIM)
2962	log(LOG_DEBUG, "pim_register_send: ");
2963
2964    mb_copy = pim_register_prepare(ip, m);
2965    if (mb_copy == NULL)
2966	return ENOBUFS;
2967
2968    /*
2969     * Send all the fragments. Note that the mbuf for each fragment
2970     * is freed by the sending machinery.
2971     */
2972    for (mm = mb_copy; mm; mm = mb_copy) {
2973	mb_copy = mm->m_nextpkt;
2974	mm->m_nextpkt = 0;
2975	mm = m_pullup(mm, sizeof(struct ip));
2976	if (mm != NULL) {
2977	    ip = mtod(mm, struct ip *);
2978	    if ((mrt_api_config & MRT_MFC_RP) &&
2979		(rt->mfc_rp.s_addr != INADDR_ANY)) {
2980		pim_register_send_rp(ip, vifp, mm, rt);
2981	    } else {
2982		pim_register_send_upcall(ip, vifp, mm, rt);
2983	    }
2984	}
2985    }
2986
2987    return 0;
2988}
2989
2990/*
2991 * Return a copy of the data packet that is ready for PIM Register
2992 * encapsulation.
2993 * XXX: Note that in the returned copy the IP header is a valid one.
2994 */
2995static struct mbuf *
2996pim_register_prepare(struct ip *ip, struct mbuf *m)
2997{
2998    struct mbuf *mb_copy = NULL;
2999    int mtu;
3000
3001    /* Take care of delayed checksums */
3002    if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
3003	in_delayed_cksum(m);
3004	m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
3005    }
3006
3007    /*
3008     * Copy the old packet & pullup its IP header into the
3009     * new mbuf so we can modify it.
3010     */
3011    mb_copy = m_copypacket(m, M_DONTWAIT);
3012    if (mb_copy == NULL)
3013	return NULL;
3014    mb_copy = m_pullup(mb_copy, ip->ip_hl << 2);
3015    if (mb_copy == NULL)
3016	return NULL;
3017
3018    /* take care of the TTL */
3019    ip = mtod(mb_copy, struct ip *);
3020    --ip->ip_ttl;
3021
3022    /* Compute the MTU after the PIM Register encapsulation */
3023    mtu = 0xffff - sizeof(pim_encap_iphdr) - sizeof(pim_encap_pimhdr);
3024
3025    if (ip->ip_len <= mtu) {
3026	/* Turn the IP header into a valid one */
3027	ip->ip_len = htons(ip->ip_len);
3028	ip->ip_off = htons(ip->ip_off);
3029	ip->ip_sum = 0;
3030	ip->ip_sum = in_cksum(mb_copy, ip->ip_hl << 2);
3031    } else {
3032	/* Fragment the packet */
3033	if (ip_fragment(ip, &mb_copy, mtu, 0, CSUM_DELAY_IP) != 0) {
3034	    m_freem(mb_copy);
3035	    return NULL;
3036	}
3037    }
3038    return mb_copy;
3039}
3040
3041/*
3042 * Send an upcall with the data packet to the user-level process.
3043 */
3044static int
3045pim_register_send_upcall(struct ip *ip, struct vif *vifp,
3046	struct mbuf *mb_copy, struct mfc *rt)
3047{
3048    struct mbuf *mb_first;
3049    int len = ntohs(ip->ip_len);
3050    struct igmpmsg *im;
3051    struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
3052
3053    VIF_LOCK_ASSERT();
3054
3055    /*
3056     * Add a new mbuf with an upcall header
3057     */
3058    MGETHDR(mb_first, M_DONTWAIT, MT_HEADER);
3059    if (mb_first == NULL) {
3060	m_freem(mb_copy);
3061	return ENOBUFS;
3062    }
3063    mb_first->m_data += max_linkhdr;
3064    mb_first->m_pkthdr.len = len + sizeof(struct igmpmsg);
3065    mb_first->m_len = sizeof(struct igmpmsg);
3066    mb_first->m_next = mb_copy;
3067
3068    /* Send message to routing daemon */
3069    im = mtod(mb_first, struct igmpmsg *);
3070    im->im_msgtype	= IGMPMSG_WHOLEPKT;
3071    im->im_mbz		= 0;
3072    im->im_vif		= vifp - viftable;
3073    im->im_src		= ip->ip_src;
3074    im->im_dst		= ip->ip_dst;
3075
3076    k_igmpsrc.sin_addr	= ip->ip_src;
3077
3078    mrtstat.mrts_upcalls++;
3079
3080    if (socket_send(ip_mrouter, mb_first, &k_igmpsrc) < 0) {
3081	if (mrtdebug & DEBUG_PIM)
3082	    log(LOG_WARNING,
3083		"mcast: pim_register_send_upcall: ip_mrouter socket queue full");
3084	++mrtstat.mrts_upq_sockfull;
3085	return ENOBUFS;
3086    }
3087
3088    /* Keep statistics */
3089    pimstat.pims_snd_registers_msgs++;
3090    pimstat.pims_snd_registers_bytes += len;
3091
3092    return 0;
3093}
3094
3095/*
3096 * Encapsulate the data packet in PIM Register message and send it to the RP.
3097 */
3098static int
3099pim_register_send_rp(struct ip *ip, struct vif *vifp,
3100	struct mbuf *mb_copy, struct mfc *rt)
3101{
3102    struct mbuf *mb_first;
3103    struct ip *ip_outer;
3104    struct pim_encap_pimhdr *pimhdr;
3105    int len = ntohs(ip->ip_len);
3106    vifi_t vifi = rt->mfc_parent;
3107
3108    VIF_LOCK_ASSERT();
3109
3110    if ((vifi >= numvifs) || (viftable[vifi].v_lcl_addr.s_addr == 0)) {
3111	m_freem(mb_copy);
3112	return EADDRNOTAVAIL;		/* The iif vif is invalid */
3113    }
3114
3115    /*
3116     * Add a new mbuf with the encapsulating header
3117     */
3118    MGETHDR(mb_first, M_DONTWAIT, MT_HEADER);
3119    if (mb_first == NULL) {
3120	m_freem(mb_copy);
3121	return ENOBUFS;
3122    }
3123    mb_first->m_data += max_linkhdr;
3124    mb_first->m_len = sizeof(pim_encap_iphdr) + sizeof(pim_encap_pimhdr);
3125    mb_first->m_next = mb_copy;
3126
3127    mb_first->m_pkthdr.len = len + mb_first->m_len;
3128
3129    /*
3130     * Fill in the encapsulating IP and PIM header
3131     */
3132    ip_outer = mtod(mb_first, struct ip *);
3133    *ip_outer = pim_encap_iphdr;
3134    ip_outer->ip_id = ip_newid();
3135    ip_outer->ip_len = len + sizeof(pim_encap_iphdr) + sizeof(pim_encap_pimhdr);
3136    ip_outer->ip_src = viftable[vifi].v_lcl_addr;
3137    ip_outer->ip_dst = rt->mfc_rp;
3138    /*
3139     * Copy the inner header TOS to the outer header, and take care of the
3140     * IP_DF bit.
3141     */
3142    ip_outer->ip_tos = ip->ip_tos;
3143    if (ntohs(ip->ip_off) & IP_DF)
3144	ip_outer->ip_off |= IP_DF;
3145    pimhdr = (struct pim_encap_pimhdr *)((caddr_t)ip_outer
3146					 + sizeof(pim_encap_iphdr));
3147    *pimhdr = pim_encap_pimhdr;
3148    /* If the iif crosses a border, set the Border-bit */
3149    if (rt->mfc_flags[vifi] & MRT_MFC_FLAGS_BORDER_VIF & mrt_api_config)
3150	pimhdr->flags |= htonl(PIM_BORDER_REGISTER);
3151
3152    mb_first->m_data += sizeof(pim_encap_iphdr);
3153    pimhdr->pim.pim_cksum = in_cksum(mb_first, sizeof(pim_encap_pimhdr));
3154    mb_first->m_data -= sizeof(pim_encap_iphdr);
3155
3156    if (vifp->v_rate_limit == 0)
3157	tbf_send_packet(vifp, mb_first);
3158    else
3159	tbf_control(vifp, mb_first, ip, ip_outer->ip_len);
3160
3161    /* Keep statistics */
3162    pimstat.pims_snd_registers_msgs++;
3163    pimstat.pims_snd_registers_bytes += len;
3164
3165    return 0;
3166}
3167
3168/*
3169 * PIM-SMv2 and PIM-DM messages processing.
3170 * Receives and verifies the PIM control messages, and passes them
3171 * up to the listening socket, using rip_input().
3172 * The only message with special processing is the PIM_REGISTER message
3173 * (used by PIM-SM): the PIM header is stripped off, and the inner packet
3174 * is passed to if_simloop().
3175 */
3176void
3177pim_input(struct mbuf *m, int off)
3178{
3179    struct ip *ip = mtod(m, struct ip *);
3180    struct pim *pim;
3181    int minlen;
3182    int datalen = ip->ip_len;
3183    int ip_tos;
3184    int iphlen = off;
3185
3186    /* Keep statistics */
3187    pimstat.pims_rcv_total_msgs++;
3188    pimstat.pims_rcv_total_bytes += datalen;
3189
3190    /*
3191     * Validate lengths
3192     */
3193    if (datalen < PIM_MINLEN) {
3194	pimstat.pims_rcv_tooshort++;
3195	log(LOG_ERR, "pim_input: packet size too small %d from %lx\n",
3196	    datalen, (u_long)ip->ip_src.s_addr);
3197	m_freem(m);
3198	return;
3199    }
3200
3201    /*
3202     * If the packet is at least as big as a REGISTER, go agead
3203     * and grab the PIM REGISTER header size, to avoid another
3204     * possible m_pullup() later.
3205     *
3206     * PIM_MINLEN       == pimhdr + u_int32_t == 4 + 4 = 8
3207     * PIM_REG_MINLEN   == pimhdr + reghdr + encap_iphdr == 4 + 4 + 20 = 28
3208     */
3209    minlen = iphlen + (datalen >= PIM_REG_MINLEN ? PIM_REG_MINLEN : PIM_MINLEN);
3210    /*
3211     * Get the IP and PIM headers in contiguous memory, and
3212     * possibly the PIM REGISTER header.
3213     */
3214    if ((m->m_flags & M_EXT || m->m_len < minlen) &&
3215	(m = m_pullup(m, minlen)) == 0) {
3216	log(LOG_ERR, "pim_input: m_pullup failure\n");
3217	return;
3218    }
3219    /* m_pullup() may have given us a new mbuf so reset ip. */
3220    ip = mtod(m, struct ip *);
3221    ip_tos = ip->ip_tos;
3222
3223    /* adjust mbuf to point to the PIM header */
3224    m->m_data += iphlen;
3225    m->m_len  -= iphlen;
3226    pim = mtod(m, struct pim *);
3227
3228    /*
3229     * Validate checksum. If PIM REGISTER, exclude the data packet.
3230     *
3231     * XXX: some older PIMv2 implementations don't make this distinction,
3232     * so for compatibility reason perform the checksum over part of the
3233     * message, and if error, then over the whole message.
3234     */
3235    if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER && in_cksum(m, PIM_MINLEN) == 0) {
3236	/* do nothing, checksum okay */
3237    } else if (in_cksum(m, datalen)) {
3238	pimstat.pims_rcv_badsum++;
3239	if (mrtdebug & DEBUG_PIM)
3240	    log(LOG_DEBUG, "pim_input: invalid checksum");
3241	m_freem(m);
3242	return;
3243    }
3244
3245    /* PIM version check */
3246    if (PIM_VT_V(pim->pim_vt) < PIM_VERSION) {
3247	pimstat.pims_rcv_badversion++;
3248	log(LOG_ERR, "pim_input: incorrect version %d, expecting %d\n",
3249	    PIM_VT_V(pim->pim_vt), PIM_VERSION);
3250	m_freem(m);
3251	return;
3252    }
3253
3254    /* restore mbuf back to the outer IP */
3255    m->m_data -= iphlen;
3256    m->m_len  += iphlen;
3257
3258    if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER) {
3259	/*
3260	 * Since this is a REGISTER, we'll make a copy of the register
3261	 * headers ip + pim + u_int32 + encap_ip, to be passed up to the
3262	 * routing daemon.
3263	 */
3264	struct sockaddr_in dst = { sizeof(dst), AF_INET };
3265	struct mbuf *mcp;
3266	struct ip *encap_ip;
3267	u_int32_t *reghdr;
3268	struct ifnet *vifp;
3269
3270	VIF_LOCK();
3271	if ((reg_vif_num >= numvifs) || (reg_vif_num == VIFI_INVALID)) {
3272	    VIF_UNLOCK();
3273	    if (mrtdebug & DEBUG_PIM)
3274		log(LOG_DEBUG,
3275		    "pim_input: register vif not set: %d\n", reg_vif_num);
3276	    m_freem(m);
3277	    return;
3278	}
3279	/* XXX need refcnt? */
3280	vifp = viftable[reg_vif_num].v_ifp;
3281	VIF_UNLOCK();
3282
3283	/*
3284	 * Validate length
3285	 */
3286	if (datalen < PIM_REG_MINLEN) {
3287	    pimstat.pims_rcv_tooshort++;
3288	    pimstat.pims_rcv_badregisters++;
3289	    log(LOG_ERR,
3290		"pim_input: register packet size too small %d from %lx\n",
3291		datalen, (u_long)ip->ip_src.s_addr);
3292	    m_freem(m);
3293	    return;
3294	}
3295
3296	reghdr = (u_int32_t *)(pim + 1);
3297	encap_ip = (struct ip *)(reghdr + 1);
3298
3299	if (mrtdebug & DEBUG_PIM) {
3300	    log(LOG_DEBUG,
3301		"pim_input[register], encap_ip: %lx -> %lx, encap_ip len %d\n",
3302		(u_long)ntohl(encap_ip->ip_src.s_addr),
3303		(u_long)ntohl(encap_ip->ip_dst.s_addr),
3304		ntohs(encap_ip->ip_len));
3305	}
3306
3307	/* verify the version number of the inner packet */
3308	if (encap_ip->ip_v != IPVERSION) {
3309	    pimstat.pims_rcv_badregisters++;
3310	    if (mrtdebug & DEBUG_PIM) {
3311		log(LOG_DEBUG, "pim_input: invalid IP version (%d) "
3312		    "of the inner packet\n", encap_ip->ip_v);
3313	    }
3314	    m_freem(m);
3315	    return;
3316	}
3317
3318	/* verify the inner packet is destined to a mcast group */
3319	if (!IN_MULTICAST(ntohl(encap_ip->ip_dst.s_addr))) {
3320	    pimstat.pims_rcv_badregisters++;
3321	    if (mrtdebug & DEBUG_PIM)
3322		log(LOG_DEBUG,
3323		    "pim_input: inner packet of register is not "
3324		    "multicast %lx\n",
3325		    (u_long)ntohl(encap_ip->ip_dst.s_addr));
3326	    m_freem(m);
3327	    return;
3328	}
3329
3330	/* If a NULL_REGISTER, pass it to the daemon */
3331	if ((ntohl(*reghdr) & PIM_NULL_REGISTER))
3332	    goto pim_input_to_daemon;
3333
3334	/*
3335	 * Copy the TOS from the outer IP header to the inner IP header.
3336	 */
3337	if (encap_ip->ip_tos != ip_tos) {
3338	    /* Outer TOS -> inner TOS */
3339	    encap_ip->ip_tos = ip_tos;
3340	    /* Recompute the inner header checksum. Sigh... */
3341
3342	    /* adjust mbuf to point to the inner IP header */
3343	    m->m_data += (iphlen + PIM_MINLEN);
3344	    m->m_len  -= (iphlen + PIM_MINLEN);
3345
3346	    encap_ip->ip_sum = 0;
3347	    encap_ip->ip_sum = in_cksum(m, encap_ip->ip_hl << 2);
3348
3349	    /* restore mbuf to point back to the outer IP header */
3350	    m->m_data -= (iphlen + PIM_MINLEN);
3351	    m->m_len  += (iphlen + PIM_MINLEN);
3352	}
3353
3354	/*
3355	 * Decapsulate the inner IP packet and loopback to forward it
3356	 * as a normal multicast packet. Also, make a copy of the
3357	 *     outer_iphdr + pimhdr + reghdr + encap_iphdr
3358	 * to pass to the daemon later, so it can take the appropriate
3359	 * actions (e.g., send back PIM_REGISTER_STOP).
3360	 * XXX: here m->m_data points to the outer IP header.
3361	 */
3362	mcp = m_copy(m, 0, iphlen + PIM_REG_MINLEN);
3363	if (mcp == NULL) {
3364	    log(LOG_ERR,
3365		"pim_input: pim register: could not copy register head\n");
3366	    m_freem(m);
3367	    return;
3368	}
3369
3370	/* Keep statistics */
3371	/* XXX: registers_bytes include only the encap. mcast pkt */
3372	pimstat.pims_rcv_registers_msgs++;
3373	pimstat.pims_rcv_registers_bytes += ntohs(encap_ip->ip_len);
3374
3375	/*
3376	 * forward the inner ip packet; point m_data at the inner ip.
3377	 */
3378	m_adj(m, iphlen + PIM_MINLEN);
3379
3380	if (mrtdebug & DEBUG_PIM) {
3381	    log(LOG_DEBUG,
3382		"pim_input: forwarding decapsulated register: "
3383		"src %lx, dst %lx, vif %d\n",
3384		(u_long)ntohl(encap_ip->ip_src.s_addr),
3385		(u_long)ntohl(encap_ip->ip_dst.s_addr),
3386		reg_vif_num);
3387	}
3388	/* NB: vifp was collected above; can it change on us? */
3389	if_simloop(vifp, m, dst.sin_family, 0);
3390
3391	/* prepare the register head to send to the mrouting daemon */
3392	m = mcp;
3393    }
3394
3395pim_input_to_daemon:
3396    /*
3397     * Pass the PIM message up to the daemon; if it is a Register message,
3398     * pass the 'head' only up to the daemon. This includes the
3399     * outer IP header, PIM header, PIM-Register header and the
3400     * inner IP header.
3401     * XXX: the outer IP header pkt size of a Register is not adjust to
3402     * reflect the fact that the inner multicast data is truncated.
3403     */
3404    rip_input(m, iphlen);
3405
3406    return;
3407}
3408#endif /* PIM */
3409
3410static int
3411ip_mroute_modevent(module_t mod, int type, void *unused)
3412{
3413    switch (type) {
3414    case MOD_LOAD:
3415	mtx_init(&mrouter_mtx, "mrouter initialization", NULL, MTX_DEF);
3416	MFC_LOCK_INIT();
3417	VIF_LOCK_INIT();
3418	ip_mrouter_reset();
3419	ip_mcast_src = X_ip_mcast_src;
3420	ip_mforward = X_ip_mforward;
3421	ip_mrouter_done = X_ip_mrouter_done;
3422	ip_mrouter_get = X_ip_mrouter_get;
3423	ip_mrouter_set = X_ip_mrouter_set;
3424	ip_rsvp_force_done = X_ip_rsvp_force_done;
3425	ip_rsvp_vif = X_ip_rsvp_vif;
3426	legal_vif_num = X_legal_vif_num;
3427	mrt_ioctl = X_mrt_ioctl;
3428	rsvp_input_p = X_rsvp_input;
3429	break;
3430
3431    case MOD_UNLOAD:
3432	/*
3433	 * Typically module unload happens after the user-level
3434	 * process has shutdown the kernel services (the check
3435	 * below insures someone can't just yank the module out
3436	 * from under a running process).  But if the module is
3437	 * just loaded and then unloaded w/o starting up a user
3438	 * process we still need to cleanup.
3439	 */
3440	if (ip_mrouter)
3441	    return EINVAL;
3442
3443	X_ip_mrouter_done();
3444	ip_mcast_src = NULL;
3445	ip_mforward = NULL;
3446	ip_mrouter_done = NULL;
3447	ip_mrouter_get = NULL;
3448	ip_mrouter_set = NULL;
3449	ip_rsvp_force_done = NULL;
3450	ip_rsvp_vif = NULL;
3451	legal_vif_num = NULL;
3452	mrt_ioctl = NULL;
3453	rsvp_input_p = NULL;
3454	VIF_LOCK_DESTROY();
3455	MFC_LOCK_DESTROY();
3456	mtx_destroy(&mrouter_mtx);
3457	break;
3458    default:
3459	return EOPNOTSUPP;
3460    }
3461    return 0;
3462}
3463
3464static moduledata_t ip_mroutemod = {
3465    "ip_mroute",
3466    ip_mroute_modevent,
3467    0
3468};
3469DECLARE_MODULE(ip_mroute, ip_mroutemod, SI_SUB_PSEUDO, SI_ORDER_ANY);
3470