ip_mroute.c revision 133874
1/*
2 * IP multicast forwarding procedures
3 *
4 * Written by David Waitzman, BBN Labs, August 1988.
5 * Modified by Steve Deering, Stanford, February 1989.
6 * Modified by Mark J. Steiglitz, Stanford, May, 1991
7 * Modified by Van Jacobson, LBL, January 1993
8 * Modified by Ajit Thyagarajan, PARC, August 1993
9 * Modified by Bill Fenner, PARC, April 1995
10 * Modified by Ahmed Helmy, SGI, June 1996
11 * Modified by George Edmond Eddy (Rusty), ISI, February 1998
12 * Modified by Pavlin Radoslavov, USC/ISI, May 1998, August 1999, October 2000
13 * Modified by Hitoshi Asaeda, WIDE, August 2000
14 * Modified by Pavlin Radoslavov, ICSI, October 2002
15 *
16 * MROUTING Revision: 3.5
17 * and PIM-SMv2 and PIM-DM support, advanced API support,
18 * bandwidth metering and signaling
19 *
20 * $FreeBSD: head/sys/netinet/ip_mroute.c 133874 2004-08-16 18:32:07Z rwatson $
21 */
22
23#include "opt_mac.h"
24#include "opt_mrouting.h"
25
26#ifdef PIM
27#define _PIM_VT 1
28#endif
29
30#include <sys/param.h>
31#include <sys/kernel.h>
32#include <sys/lock.h>
33#include <sys/mac.h>
34#include <sys/malloc.h>
35#include <sys/mbuf.h>
36#include <sys/module.h>
37#include <sys/protosw.h>
38#include <sys/signalvar.h>
39#include <sys/socket.h>
40#include <sys/socketvar.h>
41#include <sys/sockio.h>
42#include <sys/sx.h>
43#include <sys/sysctl.h>
44#include <sys/syslog.h>
45#include <sys/systm.h>
46#include <sys/time.h>
47#include <net/if.h>
48#include <net/netisr.h>
49#include <net/route.h>
50#include <netinet/in.h>
51#include <netinet/igmp.h>
52#include <netinet/in_systm.h>
53#include <netinet/in_var.h>
54#include <netinet/ip.h>
55#include <netinet/ip_encap.h>
56#include <netinet/ip_mroute.h>
57#include <netinet/ip_var.h>
58#ifdef PIM
59#include <netinet/pim.h>
60#include <netinet/pim_var.h>
61#endif
62#include <netinet/udp.h>
63#include <machine/in_cksum.h>
64
65/*
66 * Control debugging code for rsvp and multicast routing code.
67 * Can only set them with the debugger.
68 */
69static u_int    rsvpdebug;		/* non-zero enables debugging	*/
70
71static u_int	mrtdebug;		/* any set of the flags below	*/
72#define		DEBUG_MFC	0x02
73#define		DEBUG_FORWARD	0x04
74#define		DEBUG_EXPIRE	0x08
75#define		DEBUG_XMIT	0x10
76#define		DEBUG_PIM	0x20
77
78#define		VIFI_INVALID	((vifi_t) -1)
79
80#define M_HASCL(m)	((m)->m_flags & M_EXT)
81
82static MALLOC_DEFINE(M_MRTABLE, "mroutetbl", "multicast routing tables");
83
84/*
85 * Locking.  We use two locks: one for the virtual interface table and
86 * one for the forwarding table.  These locks may be nested in which case
87 * the VIF lock must always be taken first.  Note that each lock is used
88 * to cover not only the specific data structure but also related data
89 * structures.  It may be better to add more fine-grained locking later;
90 * it's not clear how performance-critical this code is.
91 */
92
93static struct mrtstat	mrtstat;
94SYSCTL_STRUCT(_net_inet_ip, OID_AUTO, mrtstat, CTLFLAG_RW,
95    &mrtstat, mrtstat,
96    "Multicast Routing Statistics (struct mrtstat, netinet/ip_mroute.h)");
97
98static struct mfc	*mfctable[MFCTBLSIZ];
99SYSCTL_OPAQUE(_net_inet_ip, OID_AUTO, mfctable, CTLFLAG_RD,
100    &mfctable, sizeof(mfctable), "S,*mfc[MFCTBLSIZ]",
101    "Multicast Forwarding Table (struct *mfc[MFCTBLSIZ], netinet/ip_mroute.h)");
102
103static struct mtx mfc_mtx;
104#define	MFC_LOCK()	mtx_lock(&mfc_mtx)
105#define	MFC_UNLOCK()	mtx_unlock(&mfc_mtx)
106#define	MFC_LOCK_ASSERT()	do {					\
107	mtx_assert(&mfc_mtx, MA_OWNED);					\
108	NET_ASSERT_GIANT();						\
109} while (0)
110#define	MFC_LOCK_INIT()	mtx_init(&mfc_mtx, "mroute mfc table", NULL, MTX_DEF)
111#define	MFC_LOCK_DESTROY()	mtx_destroy(&mfc_mtx)
112
113static struct vif	viftable[MAXVIFS];
114SYSCTL_OPAQUE(_net_inet_ip, OID_AUTO, viftable, CTLFLAG_RD,
115    &viftable, sizeof(viftable), "S,vif[MAXVIFS]",
116    "Multicast Virtual Interfaces (struct vif[MAXVIFS], netinet/ip_mroute.h)");
117
118static struct mtx vif_mtx;
119#define	VIF_LOCK()	mtx_lock(&vif_mtx)
120#define	VIF_UNLOCK()	mtx_unlock(&vif_mtx)
121#define	VIF_LOCK_ASSERT()	mtx_assert(&vif_mtx, MA_OWNED)
122#define	VIF_LOCK_INIT()	mtx_init(&vif_mtx, "mroute vif table", NULL, MTX_DEF)
123#define	VIF_LOCK_DESTROY()	mtx_destroy(&vif_mtx)
124
125static u_char		nexpire[MFCTBLSIZ];
126
127static struct callout expire_upcalls_ch;
128
129#define		EXPIRE_TIMEOUT	(hz / 4)	/* 4x / second		*/
130#define		UPCALL_EXPIRE	6		/* number of timeouts	*/
131
132/*
133 * Define the token bucket filter structures
134 * tbftable -> each vif has one of these for storing info
135 */
136
137static struct tbf tbftable[MAXVIFS];
138#define		TBF_REPROCESS	(hz / 100)	/* 100x / second */
139
140/*
141 * 'Interfaces' associated with decapsulator (so we can tell
142 * packets that went through it from ones that get reflected
143 * by a broken gateway).  These interfaces are never linked into
144 * the system ifnet list & no routes point to them.  I.e., packets
145 * can't be sent this way.  They only exist as a placeholder for
146 * multicast source verification.
147 */
148static struct ifnet multicast_decap_if[MAXVIFS];
149
150#define ENCAP_TTL 64
151#define ENCAP_PROTO IPPROTO_IPIP	/* 4 */
152
153/* prototype IP hdr for encapsulated packets */
154static struct ip multicast_encap_iphdr = {
155#if BYTE_ORDER == LITTLE_ENDIAN
156	sizeof(struct ip) >> 2, IPVERSION,
157#else
158	IPVERSION, sizeof(struct ip) >> 2,
159#endif
160	0,				/* tos */
161	sizeof(struct ip),		/* total length */
162	0,				/* id */
163	0,				/* frag offset */
164	ENCAP_TTL, ENCAP_PROTO,
165	0,				/* checksum */
166};
167
168/*
169 * Bandwidth meter variables and constants
170 */
171static MALLOC_DEFINE(M_BWMETER, "bwmeter", "multicast upcall bw meters");
172/*
173 * Pending timeouts are stored in a hash table, the key being the
174 * expiration time. Periodically, the entries are analysed and processed.
175 */
176#define BW_METER_BUCKETS	1024
177static struct bw_meter *bw_meter_timers[BW_METER_BUCKETS];
178static struct callout bw_meter_ch;
179#define BW_METER_PERIOD (hz)		/* periodical handling of bw meters */
180
181/*
182 * Pending upcalls are stored in a vector which is flushed when
183 * full, or periodically
184 */
185static struct bw_upcall	bw_upcalls[BW_UPCALLS_MAX];
186static u_int	bw_upcalls_n; /* # of pending upcalls */
187static struct callout bw_upcalls_ch;
188#define BW_UPCALLS_PERIOD (hz)		/* periodical flush of bw upcalls */
189
190#ifdef PIM
191static struct pimstat pimstat;
192SYSCTL_STRUCT(_net_inet_pim, PIMCTL_STATS, stats, CTLFLAG_RD,
193    &pimstat, pimstat,
194    "PIM Statistics (struct pimstat, netinet/pim_var.h)");
195
196/*
197 * Note: the PIM Register encapsulation adds the following in front of a
198 * data packet:
199 *
200 * struct pim_encap_hdr {
201 *    struct ip ip;
202 *    struct pim_encap_pimhdr  pim;
203 * }
204 *
205 */
206
207struct pim_encap_pimhdr {
208	struct pim pim;
209	uint32_t   flags;
210};
211
212static struct ip pim_encap_iphdr = {
213#if BYTE_ORDER == LITTLE_ENDIAN
214	sizeof(struct ip) >> 2,
215	IPVERSION,
216#else
217	IPVERSION,
218	sizeof(struct ip) >> 2,
219#endif
220	0,			/* tos */
221	sizeof(struct ip),	/* total length */
222	0,			/* id */
223	0,			/* frag offset */
224	ENCAP_TTL,
225	IPPROTO_PIM,
226	0,			/* checksum */
227};
228
229static struct pim_encap_pimhdr pim_encap_pimhdr = {
230    {
231	PIM_MAKE_VT(PIM_VERSION, PIM_REGISTER), /* PIM vers and message type */
232	0,			/* reserved */
233	0,			/* checksum */
234    },
235    0				/* flags */
236};
237
238static struct ifnet multicast_register_if;
239static vifi_t reg_vif_num = VIFI_INVALID;
240#endif /* PIM */
241
242/*
243 * Private variables.
244 */
245static vifi_t	   numvifs;
246static const struct encaptab *encap_cookie;
247
248/*
249 * one-back cache used by mroute_encapcheck to locate a tunnel's vif
250 * given a datagram's src ip address.
251 */
252static u_long last_encap_src;
253static struct vif *last_encap_vif;
254
255/*
256 * Callout for queue processing.
257 */
258static struct callout tbf_reprocess_ch;
259
260static u_long	X_ip_mcast_src(int vifi);
261static int	X_ip_mforward(struct ip *ip, struct ifnet *ifp,
262			struct mbuf *m, struct ip_moptions *imo);
263static int	X_ip_mrouter_done(void);
264static int	X_ip_mrouter_get(struct socket *so, struct sockopt *m);
265static int	X_ip_mrouter_set(struct socket *so, struct sockopt *m);
266static int	X_legal_vif_num(int vif);
267static int	X_mrt_ioctl(int cmd, caddr_t data);
268
269static int get_sg_cnt(struct sioc_sg_req *);
270static int get_vif_cnt(struct sioc_vif_req *);
271static int ip_mrouter_init(struct socket *, int);
272static int add_vif(struct vifctl *);
273static int del_vif(vifi_t);
274static int add_mfc(struct mfcctl2 *);
275static int del_mfc(struct mfcctl2 *);
276static int set_api_config(uint32_t *); /* chose API capabilities */
277static int socket_send(struct socket *, struct mbuf *, struct sockaddr_in *);
278static int set_assert(int);
279static void expire_upcalls(void *);
280static int ip_mdq(struct mbuf *, struct ifnet *, struct mfc *, vifi_t);
281static void phyint_send(struct ip *, struct vif *, struct mbuf *);
282static void encap_send(struct ip *, struct vif *, struct mbuf *);
283static void tbf_control(struct vif *, struct mbuf *, struct ip *, u_long);
284static void tbf_queue(struct vif *, struct mbuf *);
285static void tbf_process_q(struct vif *);
286static void tbf_reprocess_q(void *);
287static int tbf_dq_sel(struct vif *, struct ip *);
288static void tbf_send_packet(struct vif *, struct mbuf *);
289static void tbf_update_tokens(struct vif *);
290static int priority(struct vif *, struct ip *);
291
292/*
293 * Bandwidth monitoring
294 */
295static void free_bw_list(struct bw_meter *list);
296static int add_bw_upcall(struct bw_upcall *);
297static int del_bw_upcall(struct bw_upcall *);
298static void bw_meter_receive_packet(struct bw_meter *x, int plen,
299		struct timeval *nowp);
300static void bw_meter_prepare_upcall(struct bw_meter *x, struct timeval *nowp);
301static void bw_upcalls_send(void);
302static void schedule_bw_meter(struct bw_meter *x, struct timeval *nowp);
303static void unschedule_bw_meter(struct bw_meter *x);
304static void bw_meter_process(void);
305static void expire_bw_upcalls_send(void *);
306static void expire_bw_meter_process(void *);
307
308#ifdef PIM
309static int pim_register_send(struct ip *, struct vif *,
310		struct mbuf *, struct mfc *);
311static int pim_register_send_rp(struct ip *, struct vif *,
312		struct mbuf *, struct mfc *);
313static int pim_register_send_upcall(struct ip *, struct vif *,
314		struct mbuf *, struct mfc *);
315static struct mbuf *pim_register_prepare(struct ip *, struct mbuf *);
316#endif
317
318/*
319 * whether or not special PIM assert processing is enabled.
320 */
321static int pim_assert;
322/*
323 * Rate limit for assert notification messages, in usec
324 */
325#define ASSERT_MSG_TIME		3000000
326
327/*
328 * Kernel multicast routing API capabilities and setup.
329 * If more API capabilities are added to the kernel, they should be
330 * recorded in `mrt_api_support'.
331 */
332static const uint32_t mrt_api_support = (MRT_MFC_FLAGS_DISABLE_WRONGVIF |
333					 MRT_MFC_FLAGS_BORDER_VIF |
334					 MRT_MFC_RP |
335					 MRT_MFC_BW_UPCALL);
336static uint32_t mrt_api_config = 0;
337
338/*
339 * Hash function for a source, group entry
340 */
341#define MFCHASH(a, g) MFCHASHMOD(((a) >> 20) ^ ((a) >> 10) ^ (a) ^ \
342			((g) >> 20) ^ ((g) >> 10) ^ (g))
343
344/*
345 * Find a route for a given origin IP address and Multicast group address
346 * Type of service parameter to be added in the future!!!
347 * Statistics are updated by the caller if needed
348 * (mrtstat.mrts_mfc_lookups and mrtstat.mrts_mfc_misses)
349 */
350static struct mfc *
351mfc_find(in_addr_t o, in_addr_t g)
352{
353    struct mfc *rt;
354
355    MFC_LOCK_ASSERT();
356
357    for (rt = mfctable[MFCHASH(o,g)]; rt; rt = rt->mfc_next)
358	if ((rt->mfc_origin.s_addr == o) &&
359		(rt->mfc_mcastgrp.s_addr == g) && (rt->mfc_stall == NULL))
360	    break;
361    return rt;
362}
363
364/*
365 * Macros to compute elapsed time efficiently
366 * Borrowed from Van Jacobson's scheduling code
367 */
368#define TV_DELTA(a, b, delta) {					\
369	int xxs;						\
370	delta = (a).tv_usec - (b).tv_usec;			\
371	if ((xxs = (a).tv_sec - (b).tv_sec)) {			\
372		switch (xxs) {					\
373		case 2:						\
374		      delta += 1000000;				\
375		      /* FALLTHROUGH */				\
376		case 1:						\
377		      delta += 1000000;				\
378		      break;					\
379		default:					\
380		      delta += (1000000 * xxs);			\
381		}						\
382	}							\
383}
384
385#define TV_LT(a, b) (((a).tv_usec < (b).tv_usec && \
386	      (a).tv_sec <= (b).tv_sec) || (a).tv_sec < (b).tv_sec)
387
388/*
389 * Handle MRT setsockopt commands to modify the multicast routing tables.
390 */
391static int
392X_ip_mrouter_set(struct socket *so, struct sockopt *sopt)
393{
394    int	error, optval;
395    vifi_t	vifi;
396    struct	vifctl vifc;
397    struct	mfcctl2 mfc;
398    struct	bw_upcall bw_upcall;
399    uint32_t	i;
400
401    if (so != ip_mrouter && sopt->sopt_name != MRT_INIT)
402	return EPERM;
403
404    error = 0;
405    switch (sopt->sopt_name) {
406    case MRT_INIT:
407	error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval);
408	if (error)
409	    break;
410	error = ip_mrouter_init(so, optval);
411	break;
412
413    case MRT_DONE:
414	error = ip_mrouter_done();
415	break;
416
417    case MRT_ADD_VIF:
418	error = sooptcopyin(sopt, &vifc, sizeof vifc, sizeof vifc);
419	if (error)
420	    break;
421	error = add_vif(&vifc);
422	break;
423
424    case MRT_DEL_VIF:
425	error = sooptcopyin(sopt, &vifi, sizeof vifi, sizeof vifi);
426	if (error)
427	    break;
428	error = del_vif(vifi);
429	break;
430
431    case MRT_ADD_MFC:
432    case MRT_DEL_MFC:
433	/*
434	 * select data size depending on API version.
435	 */
436	if (sopt->sopt_name == MRT_ADD_MFC &&
437		mrt_api_config & MRT_API_FLAGS_ALL) {
438	    error = sooptcopyin(sopt, &mfc, sizeof(struct mfcctl2),
439				sizeof(struct mfcctl2));
440	} else {
441	    error = sooptcopyin(sopt, &mfc, sizeof(struct mfcctl),
442				sizeof(struct mfcctl));
443	    bzero((caddr_t)&mfc + sizeof(struct mfcctl),
444			sizeof(mfc) - sizeof(struct mfcctl));
445	}
446	if (error)
447	    break;
448	if (sopt->sopt_name == MRT_ADD_MFC)
449	    error = add_mfc(&mfc);
450	else
451	    error = del_mfc(&mfc);
452	break;
453
454    case MRT_ASSERT:
455	error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval);
456	if (error)
457	    break;
458	set_assert(optval);
459	break;
460
461    case MRT_API_CONFIG:
462	error = sooptcopyin(sopt, &i, sizeof i, sizeof i);
463	if (!error)
464	    error = set_api_config(&i);
465	if (!error)
466	    error = sooptcopyout(sopt, &i, sizeof i);
467	break;
468
469    case MRT_ADD_BW_UPCALL:
470    case MRT_DEL_BW_UPCALL:
471	error = sooptcopyin(sopt, &bw_upcall, sizeof bw_upcall,
472				sizeof bw_upcall);
473	if (error)
474	    break;
475	if (sopt->sopt_name == MRT_ADD_BW_UPCALL)
476	    error = add_bw_upcall(&bw_upcall);
477	else
478	    error = del_bw_upcall(&bw_upcall);
479	break;
480
481    default:
482	error = EOPNOTSUPP;
483	break;
484    }
485    return error;
486}
487
488/*
489 * Handle MRT getsockopt commands
490 */
491static int
492X_ip_mrouter_get(struct socket *so, struct sockopt *sopt)
493{
494    int error;
495    static int version = 0x0305; /* !!! why is this here? XXX */
496
497    switch (sopt->sopt_name) {
498    case MRT_VERSION:
499	error = sooptcopyout(sopt, &version, sizeof version);
500	break;
501
502    case MRT_ASSERT:
503	error = sooptcopyout(sopt, &pim_assert, sizeof pim_assert);
504	break;
505
506    case MRT_API_SUPPORT:
507	error = sooptcopyout(sopt, &mrt_api_support, sizeof mrt_api_support);
508	break;
509
510    case MRT_API_CONFIG:
511	error = sooptcopyout(sopt, &mrt_api_config, sizeof mrt_api_config);
512	break;
513
514    default:
515	error = EOPNOTSUPP;
516	break;
517    }
518    return error;
519}
520
521/*
522 * Handle ioctl commands to obtain information from the cache
523 */
524static int
525X_mrt_ioctl(int cmd, caddr_t data)
526{
527    int error = 0;
528
529    switch (cmd) {
530    case (SIOCGETVIFCNT):
531	error = get_vif_cnt((struct sioc_vif_req *)data);
532	break;
533
534    case (SIOCGETSGCNT):
535	error = get_sg_cnt((struct sioc_sg_req *)data);
536	break;
537
538    default:
539	error = EINVAL;
540	break;
541    }
542    return error;
543}
544
545/*
546 * returns the packet, byte, rpf-failure count for the source group provided
547 */
548static int
549get_sg_cnt(struct sioc_sg_req *req)
550{
551    struct mfc *rt;
552
553    MFC_LOCK();
554    rt = mfc_find(req->src.s_addr, req->grp.s_addr);
555    if (rt == NULL) {
556	MFC_UNLOCK();
557	req->pktcnt = req->bytecnt = req->wrong_if = 0xffffffff;
558	return EADDRNOTAVAIL;
559    }
560    req->pktcnt = rt->mfc_pkt_cnt;
561    req->bytecnt = rt->mfc_byte_cnt;
562    req->wrong_if = rt->mfc_wrong_if;
563    MFC_UNLOCK();
564    return 0;
565}
566
567/*
568 * returns the input and output packet and byte counts on the vif provided
569 */
570static int
571get_vif_cnt(struct sioc_vif_req *req)
572{
573    vifi_t vifi = req->vifi;
574
575    VIF_LOCK();
576    if (vifi >= numvifs) {
577	VIF_UNLOCK();
578	return EINVAL;
579    }
580
581    req->icount = viftable[vifi].v_pkt_in;
582    req->ocount = viftable[vifi].v_pkt_out;
583    req->ibytes = viftable[vifi].v_bytes_in;
584    req->obytes = viftable[vifi].v_bytes_out;
585    VIF_UNLOCK();
586
587    return 0;
588}
589
590static void
591ip_mrouter_reset(void)
592{
593    bzero((caddr_t)mfctable, sizeof(mfctable));
594    bzero((caddr_t)nexpire, sizeof(nexpire));
595
596    pim_assert = 0;
597    mrt_api_config = 0;
598
599    callout_init(&expire_upcalls_ch, CALLOUT_MPSAFE);
600
601    bw_upcalls_n = 0;
602    bzero((caddr_t)bw_meter_timers, sizeof(bw_meter_timers));
603    callout_init(&bw_upcalls_ch, CALLOUT_MPSAFE);
604    callout_init(&bw_meter_ch, CALLOUT_MPSAFE);
605
606    callout_init(&tbf_reprocess_ch, CALLOUT_MPSAFE);
607}
608
609static struct mtx mrouter_mtx;		/* used to synch init/done work */
610
611/*
612 * Enable multicast routing
613 */
614static int
615ip_mrouter_init(struct socket *so, int version)
616{
617    if (mrtdebug)
618	log(LOG_DEBUG, "ip_mrouter_init: so_type = %d, pr_protocol = %d\n",
619	    so->so_type, so->so_proto->pr_protocol);
620
621    if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_IGMP)
622	return EOPNOTSUPP;
623
624    if (version != 1)
625	return ENOPROTOOPT;
626
627    mtx_lock(&mrouter_mtx);
628
629    if (ip_mrouter != NULL) {
630	mtx_unlock(&mrouter_mtx);
631	return EADDRINUSE;
632    }
633
634    callout_reset(&expire_upcalls_ch, EXPIRE_TIMEOUT, expire_upcalls, NULL);
635
636    callout_reset(&bw_upcalls_ch, BW_UPCALLS_PERIOD,
637	expire_bw_upcalls_send, NULL);
638    callout_reset(&bw_meter_ch, BW_METER_PERIOD, expire_bw_meter_process, NULL);
639
640    ip_mrouter = so;
641
642    mtx_unlock(&mrouter_mtx);
643
644    if (mrtdebug)
645	log(LOG_DEBUG, "ip_mrouter_init\n");
646
647    return 0;
648}
649
650/*
651 * Disable multicast routing
652 */
653static int
654X_ip_mrouter_done(void)
655{
656    vifi_t vifi;
657    int i;
658    struct ifnet *ifp;
659    struct ifreq ifr;
660    struct mfc *rt;
661    struct rtdetq *rte;
662
663    mtx_lock(&mrouter_mtx);
664
665    if (ip_mrouter == NULL) {
666	mtx_unlock(&mrouter_mtx);
667	return EINVAL;
668    }
669
670    /*
671     * Detach/disable hooks to the reset of the system.
672     */
673    ip_mrouter = NULL;
674    mrt_api_config = 0;
675
676    VIF_LOCK();
677    if (encap_cookie) {
678	const struct encaptab *c = encap_cookie;
679	encap_cookie = NULL;
680	encap_detach(c);
681    }
682    VIF_UNLOCK();
683
684    callout_stop(&tbf_reprocess_ch);
685
686    VIF_LOCK();
687    /*
688     * For each phyint in use, disable promiscuous reception of all IP
689     * multicasts.
690     */
691    for (vifi = 0; vifi < numvifs; vifi++) {
692	if (viftable[vifi].v_lcl_addr.s_addr != 0 &&
693		!(viftable[vifi].v_flags & (VIFF_TUNNEL | VIFF_REGISTER))) {
694	    struct sockaddr_in *so = (struct sockaddr_in *)&(ifr.ifr_addr);
695
696	    so->sin_len = sizeof(struct sockaddr_in);
697	    so->sin_family = AF_INET;
698	    so->sin_addr.s_addr = INADDR_ANY;
699	    ifp = viftable[vifi].v_ifp;
700	    if_allmulti(ifp, 0);
701	}
702    }
703    bzero((caddr_t)tbftable, sizeof(tbftable));
704    bzero((caddr_t)viftable, sizeof(viftable));
705    numvifs = 0;
706    pim_assert = 0;
707    VIF_UNLOCK();
708
709    /*
710     * Free all multicast forwarding cache entries.
711     */
712    callout_stop(&expire_upcalls_ch);
713    callout_stop(&bw_upcalls_ch);
714    callout_stop(&bw_meter_ch);
715
716    MFC_LOCK();
717    for (i = 0; i < MFCTBLSIZ; i++) {
718	for (rt = mfctable[i]; rt != NULL; ) {
719	    struct mfc *nr = rt->mfc_next;
720
721	    for (rte = rt->mfc_stall; rte != NULL; ) {
722		struct rtdetq *n = rte->next;
723
724		m_freem(rte->m);
725		free(rte, M_MRTABLE);
726		rte = n;
727	    }
728	    free_bw_list(rt->mfc_bw_meter);
729	    free(rt, M_MRTABLE);
730	    rt = nr;
731	}
732    }
733    bzero((caddr_t)mfctable, sizeof(mfctable));
734    bzero((caddr_t)nexpire, sizeof(nexpire));
735    bw_upcalls_n = 0;
736    bzero(bw_meter_timers, sizeof(bw_meter_timers));
737    MFC_UNLOCK();
738
739    /*
740     * Reset de-encapsulation cache
741     */
742    last_encap_src = INADDR_ANY;
743    last_encap_vif = NULL;
744#ifdef PIM
745    reg_vif_num = VIFI_INVALID;
746#endif
747
748    mtx_unlock(&mrouter_mtx);
749
750    if (mrtdebug)
751	log(LOG_DEBUG, "ip_mrouter_done\n");
752
753    return 0;
754}
755
756/*
757 * Set PIM assert processing global
758 */
759static int
760set_assert(int i)
761{
762    if ((i != 1) && (i != 0))
763	return EINVAL;
764
765    pim_assert = i;
766
767    return 0;
768}
769
770/*
771 * Configure API capabilities
772 */
773int
774set_api_config(uint32_t *apival)
775{
776    int i;
777
778    /*
779     * We can set the API capabilities only if it is the first operation
780     * after MRT_INIT. I.e.:
781     *  - there are no vifs installed
782     *  - pim_assert is not enabled
783     *  - the MFC table is empty
784     */
785    if (numvifs > 0) {
786	*apival = 0;
787	return EPERM;
788    }
789    if (pim_assert) {
790	*apival = 0;
791	return EPERM;
792    }
793    for (i = 0; i < MFCTBLSIZ; i++) {
794	if (mfctable[i] != NULL) {
795	    *apival = 0;
796	    return EPERM;
797	}
798    }
799
800    mrt_api_config = *apival & mrt_api_support;
801    *apival = mrt_api_config;
802
803    return 0;
804}
805
806/*
807 * Decide if a packet is from a tunnelled peer.
808 * Return 0 if not, 64 if so.  XXX yuck.. 64 ???
809 */
810static int
811mroute_encapcheck(const struct mbuf *m, int off, int proto, void *arg)
812{
813    struct ip *ip = mtod(m, struct ip *);
814    int hlen = ip->ip_hl << 2;
815
816    /*
817     * don't claim the packet if it's not to a multicast destination or if
818     * we don't have an encapsulating tunnel with the source.
819     * Note:  This code assumes that the remote site IP address
820     * uniquely identifies the tunnel (i.e., that this site has
821     * at most one tunnel with the remote site).
822     */
823    if (!IN_MULTICAST(ntohl(((struct ip *)((char *)ip+hlen))->ip_dst.s_addr)))
824	return 0;
825    if (ip->ip_src.s_addr != last_encap_src) {
826	struct vif *vifp = viftable;
827	struct vif *vife = vifp + numvifs;
828
829	last_encap_src = ip->ip_src.s_addr;
830	last_encap_vif = NULL;
831	for ( ; vifp < vife; ++vifp)
832	    if (vifp->v_rmt_addr.s_addr == ip->ip_src.s_addr) {
833		if ((vifp->v_flags & (VIFF_TUNNEL|VIFF_SRCRT)) == VIFF_TUNNEL)
834		    last_encap_vif = vifp;
835		break;
836	    }
837    }
838    if (last_encap_vif == NULL) {
839	last_encap_src = INADDR_ANY;
840	return 0;
841    }
842    return 64;
843}
844
845/*
846 * De-encapsulate a packet and feed it back through ip input (this
847 * routine is called whenever IP gets a packet that mroute_encap_func()
848 * claimed).
849 */
850static void
851mroute_encap_input(struct mbuf *m, int off)
852{
853    struct ip *ip = mtod(m, struct ip *);
854    int hlen = ip->ip_hl << 2;
855
856    if (hlen > sizeof(struct ip))
857	ip_stripoptions(m, (struct mbuf *) 0);
858    m->m_data += sizeof(struct ip);
859    m->m_len -= sizeof(struct ip);
860    m->m_pkthdr.len -= sizeof(struct ip);
861
862    m->m_pkthdr.rcvif = last_encap_vif->v_ifp;
863
864    netisr_queue(NETISR_IP, m);
865    /*
866     * normally we would need a "schednetisr(NETISR_IP)"
867     * here but we were called by ip_input and it is going
868     * to loop back & try to dequeue the packet we just
869     * queued as soon as we return so we avoid the
870     * unnecessary software interrrupt.
871     *
872     * XXX
873     * This no longer holds - we may have direct-dispatched the packet,
874     * or there may be a queue processing limit.
875     */
876}
877
878extern struct domain inetdomain;
879static struct protosw mroute_encap_protosw =
880{ SOCK_RAW,	&inetdomain,	IPPROTO_IPV4,	PR_ATOMIC|PR_ADDR,
881  mroute_encap_input,	0,	0,		rip_ctloutput,
882  0,
883  0,		0,		0,		0,
884  &rip_usrreqs
885};
886
887/*
888 * Add a vif to the vif table
889 */
890static int
891add_vif(struct vifctl *vifcp)
892{
893    struct vif *vifp = viftable + vifcp->vifc_vifi;
894    struct sockaddr_in sin = {sizeof sin, AF_INET};
895    struct ifaddr *ifa;
896    struct ifnet *ifp;
897    int error;
898    struct tbf *v_tbf = tbftable + vifcp->vifc_vifi;
899
900    VIF_LOCK();
901    if (vifcp->vifc_vifi >= MAXVIFS) {
902	VIF_UNLOCK();
903	return EINVAL;
904    }
905    if (vifp->v_lcl_addr.s_addr != INADDR_ANY) {
906	VIF_UNLOCK();
907	return EADDRINUSE;
908    }
909    if (vifcp->vifc_lcl_addr.s_addr == INADDR_ANY) {
910	VIF_UNLOCK();
911	return EADDRNOTAVAIL;
912    }
913
914    /* Find the interface with an address in AF_INET family */
915#ifdef PIM
916    if (vifcp->vifc_flags & VIFF_REGISTER) {
917	/*
918	 * XXX: Because VIFF_REGISTER does not really need a valid
919	 * local interface (e.g. it could be 127.0.0.2), we don't
920	 * check its address.
921	 */
922	ifp = NULL;
923    } else
924#endif
925    {
926	sin.sin_addr = vifcp->vifc_lcl_addr;
927	ifa = ifa_ifwithaddr((struct sockaddr *)&sin);
928	if (ifa == NULL) {
929	    VIF_UNLOCK();
930	    return EADDRNOTAVAIL;
931	}
932	ifp = ifa->ifa_ifp;
933    }
934
935    if (vifcp->vifc_flags & VIFF_TUNNEL) {
936	if ((vifcp->vifc_flags & VIFF_SRCRT) == 0) {
937	    /*
938	     * An encapsulating tunnel is wanted.  Tell
939	     * mroute_encap_input() to start paying attention
940	     * to encapsulated packets.
941	     */
942	    if (encap_cookie == NULL) {
943		int i;
944
945		encap_cookie = encap_attach_func(AF_INET, IPPROTO_IPV4,
946				mroute_encapcheck,
947				(struct protosw *)&mroute_encap_protosw, NULL);
948
949		if (encap_cookie == NULL) {
950		    printf("ip_mroute: unable to attach encap\n");
951		    VIF_UNLOCK();
952		    return EIO;	/* XXX */
953		}
954		for (i = 0; i < MAXVIFS; ++i) {
955		    if_initname(&multicast_decap_if[i], "mdecap", i);
956		}
957	    }
958	    /*
959	     * Set interface to fake encapsulator interface
960	     */
961	    ifp = &multicast_decap_if[vifcp->vifc_vifi];
962	    /*
963	     * Prepare cached route entry
964	     */
965	    bzero(&vifp->v_route, sizeof(vifp->v_route));
966	} else {
967	    log(LOG_ERR, "source routed tunnels not supported\n");
968	    VIF_UNLOCK();
969	    return EOPNOTSUPP;
970	}
971#ifdef PIM
972    } else if (vifcp->vifc_flags & VIFF_REGISTER) {
973	ifp = &multicast_register_if;
974	if (mrtdebug)
975	    log(LOG_DEBUG, "Adding a register vif, ifp: %p\n",
976		    (void *)&multicast_register_if);
977	if (reg_vif_num == VIFI_INVALID) {
978	    if_initname(&multicast_register_if, "register_vif", 0);
979	    multicast_register_if.if_flags = IFF_LOOPBACK;
980	    bzero(&vifp->v_route, sizeof(vifp->v_route));
981	    reg_vif_num = vifcp->vifc_vifi;
982	}
983#endif
984    } else {		/* Make sure the interface supports multicast */
985	if ((ifp->if_flags & IFF_MULTICAST) == 0) {
986	    VIF_UNLOCK();
987	    return EOPNOTSUPP;
988	}
989
990	/* Enable promiscuous reception of all IP multicasts from the if */
991	error = if_allmulti(ifp, 1);
992	if (error) {
993	    VIF_UNLOCK();
994	    return error;
995	}
996    }
997
998    /* define parameters for the tbf structure */
999    vifp->v_tbf = v_tbf;
1000    GET_TIME(vifp->v_tbf->tbf_last_pkt_t);
1001    vifp->v_tbf->tbf_n_tok = 0;
1002    vifp->v_tbf->tbf_q_len = 0;
1003    vifp->v_tbf->tbf_max_q_len = MAXQSIZE;
1004    vifp->v_tbf->tbf_q = vifp->v_tbf->tbf_t = NULL;
1005
1006    vifp->v_flags     = vifcp->vifc_flags;
1007    vifp->v_threshold = vifcp->vifc_threshold;
1008    vifp->v_lcl_addr  = vifcp->vifc_lcl_addr;
1009    vifp->v_rmt_addr  = vifcp->vifc_rmt_addr;
1010    vifp->v_ifp       = ifp;
1011    /* scaling up here allows division by 1024 in critical code */
1012    vifp->v_rate_limit= vifcp->vifc_rate_limit * 1024 / 1000;
1013    vifp->v_rsvp_on   = 0;
1014    vifp->v_rsvpd     = NULL;
1015    /* initialize per vif pkt counters */
1016    vifp->v_pkt_in    = 0;
1017    vifp->v_pkt_out   = 0;
1018    vifp->v_bytes_in  = 0;
1019    vifp->v_bytes_out = 0;
1020
1021    /* Adjust numvifs up if the vifi is higher than numvifs */
1022    if (numvifs <= vifcp->vifc_vifi) numvifs = vifcp->vifc_vifi + 1;
1023
1024    VIF_UNLOCK();
1025
1026    if (mrtdebug)
1027	log(LOG_DEBUG, "add_vif #%d, lcladdr %lx, %s %lx, thresh %x, rate %d\n",
1028	    vifcp->vifc_vifi,
1029	    (u_long)ntohl(vifcp->vifc_lcl_addr.s_addr),
1030	    (vifcp->vifc_flags & VIFF_TUNNEL) ? "rmtaddr" : "mask",
1031	    (u_long)ntohl(vifcp->vifc_rmt_addr.s_addr),
1032	    vifcp->vifc_threshold,
1033	    vifcp->vifc_rate_limit);
1034
1035    return 0;
1036}
1037
1038/*
1039 * Delete a vif from the vif table
1040 */
1041static int
1042del_vif(vifi_t vifi)
1043{
1044    struct vif *vifp;
1045
1046    VIF_LOCK();
1047
1048    if (vifi >= numvifs) {
1049	VIF_UNLOCK();
1050	return EINVAL;
1051    }
1052    vifp = &viftable[vifi];
1053    if (vifp->v_lcl_addr.s_addr == INADDR_ANY) {
1054	VIF_UNLOCK();
1055	return EADDRNOTAVAIL;
1056    }
1057
1058    if (!(vifp->v_flags & (VIFF_TUNNEL | VIFF_REGISTER)))
1059	if_allmulti(vifp->v_ifp, 0);
1060
1061    if (vifp == last_encap_vif) {
1062	last_encap_vif = NULL;
1063	last_encap_src = INADDR_ANY;
1064    }
1065
1066    /*
1067     * Free packets queued at the interface
1068     */
1069    while (vifp->v_tbf->tbf_q) {
1070	struct mbuf *m = vifp->v_tbf->tbf_q;
1071
1072	vifp->v_tbf->tbf_q = m->m_act;
1073	m_freem(m);
1074    }
1075
1076#ifdef PIM
1077    if (vifp->v_flags & VIFF_REGISTER)
1078	reg_vif_num = VIFI_INVALID;
1079#endif
1080
1081    bzero((caddr_t)vifp->v_tbf, sizeof(*(vifp->v_tbf)));
1082    bzero((caddr_t)vifp, sizeof (*vifp));
1083
1084    if (mrtdebug)
1085	log(LOG_DEBUG, "del_vif %d, numvifs %d\n", vifi, numvifs);
1086
1087    /* Adjust numvifs down */
1088    for (vifi = numvifs; vifi > 0; vifi--)
1089	if (viftable[vifi-1].v_lcl_addr.s_addr != INADDR_ANY)
1090	    break;
1091    numvifs = vifi;
1092
1093    VIF_UNLOCK();
1094
1095    return 0;
1096}
1097
1098/*
1099 * update an mfc entry without resetting counters and S,G addresses.
1100 */
1101static void
1102update_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp)
1103{
1104    int i;
1105
1106    rt->mfc_parent = mfccp->mfcc_parent;
1107    for (i = 0; i < numvifs; i++) {
1108	rt->mfc_ttls[i] = mfccp->mfcc_ttls[i];
1109	rt->mfc_flags[i] = mfccp->mfcc_flags[i] & mrt_api_config &
1110	    MRT_MFC_FLAGS_ALL;
1111    }
1112    /* set the RP address */
1113    if (mrt_api_config & MRT_MFC_RP)
1114	rt->mfc_rp = mfccp->mfcc_rp;
1115    else
1116	rt->mfc_rp.s_addr = INADDR_ANY;
1117}
1118
1119/*
1120 * fully initialize an mfc entry from the parameter.
1121 */
1122static void
1123init_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp)
1124{
1125    rt->mfc_origin     = mfccp->mfcc_origin;
1126    rt->mfc_mcastgrp   = mfccp->mfcc_mcastgrp;
1127
1128    update_mfc_params(rt, mfccp);
1129
1130    /* initialize pkt counters per src-grp */
1131    rt->mfc_pkt_cnt    = 0;
1132    rt->mfc_byte_cnt   = 0;
1133    rt->mfc_wrong_if   = 0;
1134    rt->mfc_last_assert.tv_sec = rt->mfc_last_assert.tv_usec = 0;
1135}
1136
1137
1138/*
1139 * Add an mfc entry
1140 */
1141static int
1142add_mfc(struct mfcctl2 *mfccp)
1143{
1144    struct mfc *rt;
1145    u_long hash;
1146    struct rtdetq *rte;
1147    u_short nstl;
1148
1149    VIF_LOCK();
1150    MFC_LOCK();
1151
1152    rt = mfc_find(mfccp->mfcc_origin.s_addr, mfccp->mfcc_mcastgrp.s_addr);
1153
1154    /* If an entry already exists, just update the fields */
1155    if (rt) {
1156	if (mrtdebug & DEBUG_MFC)
1157	    log(LOG_DEBUG,"add_mfc update o %lx g %lx p %x\n",
1158		(u_long)ntohl(mfccp->mfcc_origin.s_addr),
1159		(u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr),
1160		mfccp->mfcc_parent);
1161
1162	update_mfc_params(rt, mfccp);
1163	MFC_UNLOCK();
1164	VIF_UNLOCK();
1165	return 0;
1166    }
1167
1168    /*
1169     * Find the entry for which the upcall was made and update
1170     */
1171    hash = MFCHASH(mfccp->mfcc_origin.s_addr, mfccp->mfcc_mcastgrp.s_addr);
1172    for (rt = mfctable[hash], nstl = 0; rt; rt = rt->mfc_next) {
1173
1174	if ((rt->mfc_origin.s_addr == mfccp->mfcc_origin.s_addr) &&
1175		(rt->mfc_mcastgrp.s_addr == mfccp->mfcc_mcastgrp.s_addr) &&
1176		(rt->mfc_stall != NULL)) {
1177
1178	    if (nstl++)
1179		log(LOG_ERR, "add_mfc %s o %lx g %lx p %x dbx %p\n",
1180		    "multiple kernel entries",
1181		    (u_long)ntohl(mfccp->mfcc_origin.s_addr),
1182		    (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr),
1183		    mfccp->mfcc_parent, (void *)rt->mfc_stall);
1184
1185	    if (mrtdebug & DEBUG_MFC)
1186		log(LOG_DEBUG,"add_mfc o %lx g %lx p %x dbg %p\n",
1187		    (u_long)ntohl(mfccp->mfcc_origin.s_addr),
1188		    (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr),
1189		    mfccp->mfcc_parent, (void *)rt->mfc_stall);
1190
1191	    init_mfc_params(rt, mfccp);
1192
1193	    rt->mfc_expire = 0;	/* Don't clean this guy up */
1194	    nexpire[hash]--;
1195
1196	    /* free packets Qed at the end of this entry */
1197	    for (rte = rt->mfc_stall; rte != NULL; ) {
1198		struct rtdetq *n = rte->next;
1199
1200		ip_mdq(rte->m, rte->ifp, rt, -1);
1201		m_freem(rte->m);
1202		free(rte, M_MRTABLE);
1203		rte = n;
1204	    }
1205	    rt->mfc_stall = NULL;
1206	}
1207    }
1208
1209    /*
1210     * It is possible that an entry is being inserted without an upcall
1211     */
1212    if (nstl == 0) {
1213	if (mrtdebug & DEBUG_MFC)
1214	    log(LOG_DEBUG,"add_mfc no upcall h %lu o %lx g %lx p %x\n",
1215		hash, (u_long)ntohl(mfccp->mfcc_origin.s_addr),
1216		(u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr),
1217		mfccp->mfcc_parent);
1218
1219	for (rt = mfctable[hash]; rt != NULL; rt = rt->mfc_next) {
1220	    if ((rt->mfc_origin.s_addr == mfccp->mfcc_origin.s_addr) &&
1221		    (rt->mfc_mcastgrp.s_addr == mfccp->mfcc_mcastgrp.s_addr)) {
1222		init_mfc_params(rt, mfccp);
1223		if (rt->mfc_expire)
1224		    nexpire[hash]--;
1225		rt->mfc_expire = 0;
1226		break; /* XXX */
1227	    }
1228	}
1229	if (rt == NULL) {		/* no upcall, so make a new entry */
1230	    rt = (struct mfc *)malloc(sizeof(*rt), M_MRTABLE, M_NOWAIT);
1231	    if (rt == NULL) {
1232		MFC_UNLOCK();
1233		VIF_UNLOCK();
1234		return ENOBUFS;
1235	    }
1236
1237	    init_mfc_params(rt, mfccp);
1238	    rt->mfc_expire     = 0;
1239	    rt->mfc_stall      = NULL;
1240
1241	    rt->mfc_bw_meter = NULL;
1242	    /* insert new entry at head of hash chain */
1243	    rt->mfc_next = mfctable[hash];
1244	    mfctable[hash] = rt;
1245	}
1246    }
1247    MFC_UNLOCK();
1248    VIF_UNLOCK();
1249    return 0;
1250}
1251
1252/*
1253 * Delete an mfc entry
1254 */
1255static int
1256del_mfc(struct mfcctl2 *mfccp)
1257{
1258    struct in_addr	origin;
1259    struct in_addr	mcastgrp;
1260    struct mfc		*rt;
1261    struct mfc		**nptr;
1262    u_long		hash;
1263    struct bw_meter	*list;
1264
1265    origin = mfccp->mfcc_origin;
1266    mcastgrp = mfccp->mfcc_mcastgrp;
1267
1268    if (mrtdebug & DEBUG_MFC)
1269	log(LOG_DEBUG,"del_mfc orig %lx mcastgrp %lx\n",
1270	    (u_long)ntohl(origin.s_addr), (u_long)ntohl(mcastgrp.s_addr));
1271
1272    MFC_LOCK();
1273
1274    hash = MFCHASH(origin.s_addr, mcastgrp.s_addr);
1275    for (nptr = &mfctable[hash]; (rt = *nptr) != NULL; nptr = &rt->mfc_next)
1276	if (origin.s_addr == rt->mfc_origin.s_addr &&
1277		mcastgrp.s_addr == rt->mfc_mcastgrp.s_addr &&
1278		rt->mfc_stall == NULL)
1279	    break;
1280    if (rt == NULL) {
1281	MFC_UNLOCK();
1282	return EADDRNOTAVAIL;
1283    }
1284
1285    *nptr = rt->mfc_next;
1286
1287    /*
1288     * free the bw_meter entries
1289     */
1290    list = rt->mfc_bw_meter;
1291    rt->mfc_bw_meter = NULL;
1292
1293    free(rt, M_MRTABLE);
1294
1295    free_bw_list(list);
1296
1297    MFC_UNLOCK();
1298
1299    return 0;
1300}
1301
1302/*
1303 * Send a message to mrouted on the multicast routing socket
1304 */
1305static int
1306socket_send(struct socket *s, struct mbuf *mm, struct sockaddr_in *src)
1307{
1308    if (s) {
1309	SOCKBUF_LOCK(&s->so_rcv);
1310	if (sbappendaddr_locked(&s->so_rcv, (struct sockaddr *)src, mm,
1311	    NULL) != 0) {
1312	    sorwakeup_locked(s);
1313	    return 0;
1314	}
1315	SOCKBUF_UNLOCK(&s->so_rcv);
1316    }
1317    m_freem(mm);
1318    return -1;
1319}
1320
1321/*
1322 * IP multicast forwarding function. This function assumes that the packet
1323 * pointed to by "ip" has arrived on (or is about to be sent to) the interface
1324 * pointed to by "ifp", and the packet is to be relayed to other networks
1325 * that have members of the packet's destination IP multicast group.
1326 *
1327 * The packet is returned unscathed to the caller, unless it is
1328 * erroneous, in which case a non-zero return value tells the caller to
1329 * discard it.
1330 */
1331
1332#define TUNNEL_LEN  12  /* # bytes of IP option for tunnel encapsulation  */
1333
1334static int
1335X_ip_mforward(struct ip *ip, struct ifnet *ifp, struct mbuf *m,
1336    struct ip_moptions *imo)
1337{
1338    struct mfc *rt;
1339    int error;
1340    vifi_t vifi;
1341
1342    if (mrtdebug & DEBUG_FORWARD)
1343	log(LOG_DEBUG, "ip_mforward: src %lx, dst %lx, ifp %p\n",
1344	    (u_long)ntohl(ip->ip_src.s_addr), (u_long)ntohl(ip->ip_dst.s_addr),
1345	    (void *)ifp);
1346
1347    if (ip->ip_hl < (sizeof(struct ip) + TUNNEL_LEN) >> 2 ||
1348		((u_char *)(ip + 1))[1] != IPOPT_LSRR ) {
1349	/*
1350	 * Packet arrived via a physical interface or
1351	 * an encapsulated tunnel or a register_vif.
1352	 */
1353    } else {
1354	/*
1355	 * Packet arrived through a source-route tunnel.
1356	 * Source-route tunnels are no longer supported.
1357	 */
1358	static int last_log;
1359	if (last_log != time_second) {
1360	    last_log = time_second;
1361	    log(LOG_ERR,
1362		"ip_mforward: received source-routed packet from %lx\n",
1363		(u_long)ntohl(ip->ip_src.s_addr));
1364	}
1365	return 1;
1366    }
1367
1368    VIF_LOCK();
1369    MFC_LOCK();
1370    if (imo && ((vifi = imo->imo_multicast_vif) < numvifs)) {
1371	if (ip->ip_ttl < 255)
1372	    ip->ip_ttl++;	/* compensate for -1 in *_send routines */
1373	if (rsvpdebug && ip->ip_p == IPPROTO_RSVP) {
1374	    struct vif *vifp = viftable + vifi;
1375
1376	    printf("Sending IPPROTO_RSVP from %lx to %lx on vif %d (%s%s)\n",
1377		(long)ntohl(ip->ip_src.s_addr), (long)ntohl(ip->ip_dst.s_addr),
1378		vifi,
1379		(vifp->v_flags & VIFF_TUNNEL) ? "tunnel on " : "",
1380		vifp->v_ifp->if_xname);
1381	}
1382	error = ip_mdq(m, ifp, NULL, vifi);
1383	MFC_UNLOCK();
1384	VIF_UNLOCK();
1385	return error;
1386    }
1387    if (rsvpdebug && ip->ip_p == IPPROTO_RSVP) {
1388	printf("Warning: IPPROTO_RSVP from %lx to %lx without vif option\n",
1389	    (long)ntohl(ip->ip_src.s_addr), (long)ntohl(ip->ip_dst.s_addr));
1390	if (!imo)
1391	    printf("In fact, no options were specified at all\n");
1392    }
1393
1394    /*
1395     * Don't forward a packet with time-to-live of zero or one,
1396     * or a packet destined to a local-only group.
1397     */
1398    if (ip->ip_ttl <= 1 || ntohl(ip->ip_dst.s_addr) <= INADDR_MAX_LOCAL_GROUP) {
1399	MFC_UNLOCK();
1400	VIF_UNLOCK();
1401	return 0;
1402    }
1403
1404    /*
1405     * Determine forwarding vifs from the forwarding cache table
1406     */
1407    ++mrtstat.mrts_mfc_lookups;
1408    rt = mfc_find(ip->ip_src.s_addr, ip->ip_dst.s_addr);
1409
1410    /* Entry exists, so forward if necessary */
1411    if (rt != NULL) {
1412	error = ip_mdq(m, ifp, rt, -1);
1413	MFC_UNLOCK();
1414	VIF_UNLOCK();
1415	return error;
1416    } else {
1417	/*
1418	 * If we don't have a route for packet's origin,
1419	 * Make a copy of the packet & send message to routing daemon
1420	 */
1421
1422	struct mbuf *mb0;
1423	struct rtdetq *rte;
1424	u_long hash;
1425	int hlen = ip->ip_hl << 2;
1426
1427	++mrtstat.mrts_mfc_misses;
1428
1429	mrtstat.mrts_no_route++;
1430	if (mrtdebug & (DEBUG_FORWARD | DEBUG_MFC))
1431	    log(LOG_DEBUG, "ip_mforward: no rte s %lx g %lx\n",
1432		(u_long)ntohl(ip->ip_src.s_addr),
1433		(u_long)ntohl(ip->ip_dst.s_addr));
1434
1435	/*
1436	 * Allocate mbufs early so that we don't do extra work if we are
1437	 * just going to fail anyway.  Make sure to pullup the header so
1438	 * that other people can't step on it.
1439	 */
1440	rte = (struct rtdetq *)malloc((sizeof *rte), M_MRTABLE, M_NOWAIT);
1441	if (rte == NULL) {
1442	    MFC_UNLOCK();
1443	    VIF_UNLOCK();
1444	    return ENOBUFS;
1445	}
1446	mb0 = m_copypacket(m, M_DONTWAIT);
1447	if (mb0 && (M_HASCL(mb0) || mb0->m_len < hlen))
1448	    mb0 = m_pullup(mb0, hlen);
1449	if (mb0 == NULL) {
1450	    free(rte, M_MRTABLE);
1451	    MFC_UNLOCK();
1452	    VIF_UNLOCK();
1453	    return ENOBUFS;
1454	}
1455
1456	/* is there an upcall waiting for this flow ? */
1457	hash = MFCHASH(ip->ip_src.s_addr, ip->ip_dst.s_addr);
1458	for (rt = mfctable[hash]; rt; rt = rt->mfc_next) {
1459	    if ((ip->ip_src.s_addr == rt->mfc_origin.s_addr) &&
1460		    (ip->ip_dst.s_addr == rt->mfc_mcastgrp.s_addr) &&
1461		    (rt->mfc_stall != NULL))
1462		break;
1463	}
1464
1465	if (rt == NULL) {
1466	    int i;
1467	    struct igmpmsg *im;
1468	    struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
1469	    struct mbuf *mm;
1470
1471	    /*
1472	     * Locate the vifi for the incoming interface for this packet.
1473	     * If none found, drop packet.
1474	     */
1475	    for (vifi=0; vifi < numvifs && viftable[vifi].v_ifp != ifp; vifi++)
1476		;
1477	    if (vifi >= numvifs)	/* vif not found, drop packet */
1478		goto non_fatal;
1479
1480	    /* no upcall, so make a new entry */
1481	    rt = (struct mfc *)malloc(sizeof(*rt), M_MRTABLE, M_NOWAIT);
1482	    if (rt == NULL)
1483		goto fail;
1484	    /* Make a copy of the header to send to the user level process */
1485	    mm = m_copy(mb0, 0, hlen);
1486	    if (mm == NULL)
1487		goto fail1;
1488
1489	    /*
1490	     * Send message to routing daemon to install
1491	     * a route into the kernel table
1492	     */
1493
1494	    im = mtod(mm, struct igmpmsg *);
1495	    im->im_msgtype = IGMPMSG_NOCACHE;
1496	    im->im_mbz = 0;
1497	    im->im_vif = vifi;
1498
1499	    mrtstat.mrts_upcalls++;
1500
1501	    k_igmpsrc.sin_addr = ip->ip_src;
1502	    if (socket_send(ip_mrouter, mm, &k_igmpsrc) < 0) {
1503		log(LOG_WARNING, "ip_mforward: ip_mrouter socket queue full\n");
1504		++mrtstat.mrts_upq_sockfull;
1505fail1:
1506		free(rt, M_MRTABLE);
1507fail:
1508		free(rte, M_MRTABLE);
1509		m_freem(mb0);
1510		MFC_UNLOCK();
1511		VIF_UNLOCK();
1512		return ENOBUFS;
1513	    }
1514
1515	    /* insert new entry at head of hash chain */
1516	    rt->mfc_origin.s_addr     = ip->ip_src.s_addr;
1517	    rt->mfc_mcastgrp.s_addr   = ip->ip_dst.s_addr;
1518	    rt->mfc_expire	      = UPCALL_EXPIRE;
1519	    nexpire[hash]++;
1520	    for (i = 0; i < numvifs; i++) {
1521		rt->mfc_ttls[i] = 0;
1522		rt->mfc_flags[i] = 0;
1523	    }
1524	    rt->mfc_parent = -1;
1525
1526	    rt->mfc_rp.s_addr = INADDR_ANY; /* clear the RP address */
1527
1528	    rt->mfc_bw_meter = NULL;
1529
1530	    /* link into table */
1531	    rt->mfc_next   = mfctable[hash];
1532	    mfctable[hash] = rt;
1533	    rt->mfc_stall = rte;
1534
1535	} else {
1536	    /* determine if q has overflowed */
1537	    int npkts = 0;
1538	    struct rtdetq **p;
1539
1540	    /*
1541	     * XXX ouch! we need to append to the list, but we
1542	     * only have a pointer to the front, so we have to
1543	     * scan the entire list every time.
1544	     */
1545	    for (p = &rt->mfc_stall; *p != NULL; p = &(*p)->next)
1546		npkts++;
1547
1548	    if (npkts > MAX_UPQ) {
1549		mrtstat.mrts_upq_ovflw++;
1550non_fatal:
1551		free(rte, M_MRTABLE);
1552		m_freem(mb0);
1553		MFC_UNLOCK();
1554		VIF_UNLOCK();
1555		return 0;
1556	    }
1557
1558	    /* Add this entry to the end of the queue */
1559	    *p = rte;
1560	}
1561
1562	rte->m			= mb0;
1563	rte->ifp		= ifp;
1564	rte->next		= NULL;
1565
1566	MFC_UNLOCK();
1567	VIF_UNLOCK();
1568
1569	return 0;
1570    }
1571}
1572
1573/*
1574 * Clean up the cache entry if upcall is not serviced
1575 */
1576static void
1577expire_upcalls(void *unused)
1578{
1579    struct rtdetq *rte;
1580    struct mfc *mfc, **nptr;
1581    int i;
1582
1583    MFC_LOCK();
1584    for (i = 0; i < MFCTBLSIZ; i++) {
1585	if (nexpire[i] == 0)
1586	    continue;
1587	nptr = &mfctable[i];
1588	for (mfc = *nptr; mfc != NULL; mfc = *nptr) {
1589	    /*
1590	     * Skip real cache entries
1591	     * Make sure it wasn't marked to not expire (shouldn't happen)
1592	     * If it expires now
1593	     */
1594	    if (mfc->mfc_stall != NULL && mfc->mfc_expire != 0 &&
1595		    --mfc->mfc_expire == 0) {
1596		if (mrtdebug & DEBUG_EXPIRE)
1597		    log(LOG_DEBUG, "expire_upcalls: expiring (%lx %lx)\n",
1598			(u_long)ntohl(mfc->mfc_origin.s_addr),
1599			(u_long)ntohl(mfc->mfc_mcastgrp.s_addr));
1600		/*
1601		 * drop all the packets
1602		 * free the mbuf with the pkt, if, timing info
1603		 */
1604		for (rte = mfc->mfc_stall; rte; ) {
1605		    struct rtdetq *n = rte->next;
1606
1607		    m_freem(rte->m);
1608		    free(rte, M_MRTABLE);
1609		    rte = n;
1610		}
1611		++mrtstat.mrts_cache_cleanups;
1612		nexpire[i]--;
1613
1614		/*
1615		 * free the bw_meter entries
1616		 */
1617		while (mfc->mfc_bw_meter != NULL) {
1618		    struct bw_meter *x = mfc->mfc_bw_meter;
1619
1620		    mfc->mfc_bw_meter = x->bm_mfc_next;
1621		    free(x, M_BWMETER);
1622		}
1623
1624		*nptr = mfc->mfc_next;
1625		free(mfc, M_MRTABLE);
1626	    } else {
1627		nptr = &mfc->mfc_next;
1628	    }
1629	}
1630    }
1631    MFC_UNLOCK();
1632
1633    callout_reset(&expire_upcalls_ch, EXPIRE_TIMEOUT, expire_upcalls, NULL);
1634}
1635
1636/*
1637 * Packet forwarding routine once entry in the cache is made
1638 */
1639static int
1640ip_mdq(struct mbuf *m, struct ifnet *ifp, struct mfc *rt, vifi_t xmt_vif)
1641{
1642    struct ip  *ip = mtod(m, struct ip *);
1643    vifi_t vifi;
1644    int plen = ip->ip_len;
1645
1646    VIF_LOCK_ASSERT();
1647/*
1648 * Macro to send packet on vif.  Since RSVP packets don't get counted on
1649 * input, they shouldn't get counted on output, so statistics keeping is
1650 * separate.
1651 */
1652#define MC_SEND(ip,vifp,m) {				\
1653		if ((vifp)->v_flags & VIFF_TUNNEL)	\
1654		    encap_send((ip), (vifp), (m));	\
1655		else					\
1656		    phyint_send((ip), (vifp), (m));	\
1657}
1658
1659    /*
1660     * If xmt_vif is not -1, send on only the requested vif.
1661     *
1662     * (since vifi_t is u_short, -1 becomes MAXUSHORT, which > numvifs.)
1663     */
1664    if (xmt_vif < numvifs) {
1665#ifdef PIM
1666	if (viftable[xmt_vif].v_flags & VIFF_REGISTER)
1667	    pim_register_send(ip, viftable + xmt_vif, m, rt);
1668	else
1669#endif
1670	MC_SEND(ip, viftable + xmt_vif, m);
1671	return 1;
1672    }
1673
1674    /*
1675     * Don't forward if it didn't arrive from the parent vif for its origin.
1676     */
1677    vifi = rt->mfc_parent;
1678    if ((vifi >= numvifs) || (viftable[vifi].v_ifp != ifp)) {
1679	/* came in the wrong interface */
1680	if (mrtdebug & DEBUG_FORWARD)
1681	    log(LOG_DEBUG, "wrong if: ifp %p vifi %d vififp %p\n",
1682		(void *)ifp, vifi, (void *)viftable[vifi].v_ifp);
1683	++mrtstat.mrts_wrong_if;
1684	++rt->mfc_wrong_if;
1685	/*
1686	 * If we are doing PIM assert processing, send a message
1687	 * to the routing daemon.
1688	 *
1689	 * XXX: A PIM-SM router needs the WRONGVIF detection so it
1690	 * can complete the SPT switch, regardless of the type
1691	 * of the iif (broadcast media, GRE tunnel, etc).
1692	 */
1693	if (pim_assert && (vifi < numvifs) && viftable[vifi].v_ifp) {
1694	    struct timeval now;
1695	    u_long delta;
1696
1697#ifdef PIM
1698	    if (ifp == &multicast_register_if)
1699		pimstat.pims_rcv_registers_wrongiif++;
1700#endif
1701
1702	    /* Get vifi for the incoming packet */
1703	    for (vifi=0; vifi < numvifs && viftable[vifi].v_ifp != ifp; vifi++)
1704		;
1705	    if (vifi >= numvifs)
1706		return 0;	/* The iif is not found: ignore the packet. */
1707
1708	    if (rt->mfc_flags[vifi] & MRT_MFC_FLAGS_DISABLE_WRONGVIF)
1709		return 0;	/* WRONGVIF disabled: ignore the packet */
1710
1711	    GET_TIME(now);
1712
1713	    TV_DELTA(rt->mfc_last_assert, now, delta);
1714
1715	    if (delta > ASSERT_MSG_TIME) {
1716		struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
1717		struct igmpmsg *im;
1718		int hlen = ip->ip_hl << 2;
1719		struct mbuf *mm = m_copy(m, 0, hlen);
1720
1721		if (mm && (M_HASCL(mm) || mm->m_len < hlen))
1722		    mm = m_pullup(mm, hlen);
1723		if (mm == NULL)
1724		    return ENOBUFS;
1725
1726		rt->mfc_last_assert = now;
1727
1728		im = mtod(mm, struct igmpmsg *);
1729		im->im_msgtype	= IGMPMSG_WRONGVIF;
1730		im->im_mbz		= 0;
1731		im->im_vif		= vifi;
1732
1733		mrtstat.mrts_upcalls++;
1734
1735		k_igmpsrc.sin_addr = im->im_src;
1736		if (socket_send(ip_mrouter, mm, &k_igmpsrc) < 0) {
1737		    log(LOG_WARNING,
1738			"ip_mforward: ip_mrouter socket queue full\n");
1739		    ++mrtstat.mrts_upq_sockfull;
1740		    return ENOBUFS;
1741		}
1742	    }
1743	}
1744	return 0;
1745    }
1746
1747    /* If I sourced this packet, it counts as output, else it was input. */
1748    if (ip->ip_src.s_addr == viftable[vifi].v_lcl_addr.s_addr) {
1749	viftable[vifi].v_pkt_out++;
1750	viftable[vifi].v_bytes_out += plen;
1751    } else {
1752	viftable[vifi].v_pkt_in++;
1753	viftable[vifi].v_bytes_in += plen;
1754    }
1755    rt->mfc_pkt_cnt++;
1756    rt->mfc_byte_cnt += plen;
1757
1758    /*
1759     * For each vif, decide if a copy of the packet should be forwarded.
1760     * Forward if:
1761     *		- the ttl exceeds the vif's threshold
1762     *		- there are group members downstream on interface
1763     */
1764    for (vifi = 0; vifi < numvifs; vifi++)
1765	if ((rt->mfc_ttls[vifi] > 0) && (ip->ip_ttl > rt->mfc_ttls[vifi])) {
1766	    viftable[vifi].v_pkt_out++;
1767	    viftable[vifi].v_bytes_out += plen;
1768#ifdef PIM
1769	    if (viftable[vifi].v_flags & VIFF_REGISTER)
1770		pim_register_send(ip, viftable + vifi, m, rt);
1771	    else
1772#endif
1773	    MC_SEND(ip, viftable+vifi, m);
1774	}
1775
1776    /*
1777     * Perform upcall-related bw measuring.
1778     */
1779    if (rt->mfc_bw_meter != NULL) {
1780	struct bw_meter *x;
1781	struct timeval now;
1782
1783	GET_TIME(now);
1784	MFC_LOCK_ASSERT();
1785	for (x = rt->mfc_bw_meter; x != NULL; x = x->bm_mfc_next)
1786	    bw_meter_receive_packet(x, plen, &now);
1787    }
1788
1789    return 0;
1790}
1791
1792/*
1793 * check if a vif number is legal/ok. This is used by ip_output.
1794 */
1795static int
1796X_legal_vif_num(int vif)
1797{
1798    /* XXX unlocked, matter? */
1799    return (vif >= 0 && vif < numvifs);
1800}
1801
1802/*
1803 * Return the local address used by this vif
1804 */
1805static u_long
1806X_ip_mcast_src(int vifi)
1807{
1808    /* XXX unlocked, matter? */
1809    if (vifi >= 0 && vifi < numvifs)
1810	return viftable[vifi].v_lcl_addr.s_addr;
1811    else
1812	return INADDR_ANY;
1813}
1814
1815static void
1816phyint_send(struct ip *ip, struct vif *vifp, struct mbuf *m)
1817{
1818    struct mbuf *mb_copy;
1819    int hlen = ip->ip_hl << 2;
1820
1821    VIF_LOCK_ASSERT();
1822
1823    /*
1824     * Make a new reference to the packet; make sure that
1825     * the IP header is actually copied, not just referenced,
1826     * so that ip_output() only scribbles on the copy.
1827     */
1828    mb_copy = m_copypacket(m, M_DONTWAIT);
1829    if (mb_copy && (M_HASCL(mb_copy) || mb_copy->m_len < hlen))
1830	mb_copy = m_pullup(mb_copy, hlen);
1831    if (mb_copy == NULL)
1832	return;
1833
1834    if (vifp->v_rate_limit == 0)
1835	tbf_send_packet(vifp, mb_copy);
1836    else
1837	tbf_control(vifp, mb_copy, mtod(mb_copy, struct ip *), ip->ip_len);
1838}
1839
1840static void
1841encap_send(struct ip *ip, struct vif *vifp, struct mbuf *m)
1842{
1843    struct mbuf *mb_copy;
1844    struct ip *ip_copy;
1845    int i, len = ip->ip_len;
1846
1847    VIF_LOCK_ASSERT();
1848
1849    /* Take care of delayed checksums */
1850    if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
1851	in_delayed_cksum(m);
1852	m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
1853    }
1854
1855    /*
1856     * copy the old packet & pullup its IP header into the
1857     * new mbuf so we can modify it.  Try to fill the new
1858     * mbuf since if we don't the ethernet driver will.
1859     */
1860    MGETHDR(mb_copy, M_DONTWAIT, MT_HEADER);
1861    if (mb_copy == NULL)
1862	return;
1863#ifdef MAC
1864    mac_create_mbuf_multicast_encap(m, vifp->v_ifp, mb_copy);
1865#endif
1866    mb_copy->m_data += max_linkhdr;
1867    mb_copy->m_len = sizeof(multicast_encap_iphdr);
1868
1869    if ((mb_copy->m_next = m_copypacket(m, M_DONTWAIT)) == NULL) {
1870	m_freem(mb_copy);
1871	return;
1872    }
1873    i = MHLEN - M_LEADINGSPACE(mb_copy);
1874    if (i > len)
1875	i = len;
1876    mb_copy = m_pullup(mb_copy, i);
1877    if (mb_copy == NULL)
1878	return;
1879    mb_copy->m_pkthdr.len = len + sizeof(multicast_encap_iphdr);
1880
1881    /*
1882     * fill in the encapsulating IP header.
1883     */
1884    ip_copy = mtod(mb_copy, struct ip *);
1885    *ip_copy = multicast_encap_iphdr;
1886    ip_copy->ip_id = ip_newid();
1887    ip_copy->ip_len += len;
1888    ip_copy->ip_src = vifp->v_lcl_addr;
1889    ip_copy->ip_dst = vifp->v_rmt_addr;
1890
1891    /*
1892     * turn the encapsulated IP header back into a valid one.
1893     */
1894    ip = (struct ip *)((caddr_t)ip_copy + sizeof(multicast_encap_iphdr));
1895    --ip->ip_ttl;
1896    ip->ip_len = htons(ip->ip_len);
1897    ip->ip_off = htons(ip->ip_off);
1898    ip->ip_sum = 0;
1899    mb_copy->m_data += sizeof(multicast_encap_iphdr);
1900    ip->ip_sum = in_cksum(mb_copy, ip->ip_hl << 2);
1901    mb_copy->m_data -= sizeof(multicast_encap_iphdr);
1902
1903    if (vifp->v_rate_limit == 0)
1904	tbf_send_packet(vifp, mb_copy);
1905    else
1906	tbf_control(vifp, mb_copy, ip, ip_copy->ip_len);
1907}
1908
1909/*
1910 * Token bucket filter module
1911 */
1912
1913static void
1914tbf_control(struct vif *vifp, struct mbuf *m, struct ip *ip, u_long p_len)
1915{
1916    struct tbf *t = vifp->v_tbf;
1917
1918    VIF_LOCK_ASSERT();
1919
1920    if (p_len > MAX_BKT_SIZE) {		/* drop if packet is too large */
1921	mrtstat.mrts_pkt2large++;
1922	m_freem(m);
1923	return;
1924    }
1925
1926    tbf_update_tokens(vifp);
1927
1928    if (t->tbf_q_len == 0) {		/* queue empty...		*/
1929	if (p_len <= t->tbf_n_tok) {	/* send packet if enough tokens */
1930	    t->tbf_n_tok -= p_len;
1931	    tbf_send_packet(vifp, m);
1932	} else {			/* no, queue packet and try later */
1933	    tbf_queue(vifp, m);
1934	    callout_reset(&tbf_reprocess_ch, TBF_REPROCESS,
1935		tbf_reprocess_q, vifp);
1936	}
1937    } else if (t->tbf_q_len < t->tbf_max_q_len) {
1938	/* finite queue length, so queue pkts and process queue */
1939	tbf_queue(vifp, m);
1940	tbf_process_q(vifp);
1941    } else {
1942	/* queue full, try to dq and queue and process */
1943	if (!tbf_dq_sel(vifp, ip)) {
1944	    mrtstat.mrts_q_overflow++;
1945	    m_freem(m);
1946	} else {
1947	    tbf_queue(vifp, m);
1948	    tbf_process_q(vifp);
1949	}
1950    }
1951}
1952
1953/*
1954 * adds a packet to the queue at the interface
1955 */
1956static void
1957tbf_queue(struct vif *vifp, struct mbuf *m)
1958{
1959    struct tbf *t = vifp->v_tbf;
1960
1961    VIF_LOCK_ASSERT();
1962
1963    if (t->tbf_t == NULL)	/* Queue was empty */
1964	t->tbf_q = m;
1965    else			/* Insert at tail */
1966	t->tbf_t->m_act = m;
1967
1968    t->tbf_t = m;		/* Set new tail pointer */
1969
1970#ifdef DIAGNOSTIC
1971    /* Make sure we didn't get fed a bogus mbuf */
1972    if (m->m_act)
1973	panic("tbf_queue: m_act");
1974#endif
1975    m->m_act = NULL;
1976
1977    t->tbf_q_len++;
1978}
1979
1980/*
1981 * processes the queue at the interface
1982 */
1983static void
1984tbf_process_q(struct vif *vifp)
1985{
1986    struct tbf *t = vifp->v_tbf;
1987
1988    VIF_LOCK_ASSERT();
1989
1990    /* loop through the queue at the interface and send as many packets
1991     * as possible
1992     */
1993    while (t->tbf_q_len > 0) {
1994	struct mbuf *m = t->tbf_q;
1995	int len = mtod(m, struct ip *)->ip_len;
1996
1997	/* determine if the packet can be sent */
1998	if (len > t->tbf_n_tok)	/* not enough tokens, we are done */
1999	    break;
2000	/* ok, reduce no of tokens, dequeue and send the packet. */
2001	t->tbf_n_tok -= len;
2002
2003	t->tbf_q = m->m_act;
2004	if (--t->tbf_q_len == 0)
2005	    t->tbf_t = NULL;
2006
2007	m->m_act = NULL;
2008	tbf_send_packet(vifp, m);
2009    }
2010}
2011
2012static void
2013tbf_reprocess_q(void *xvifp)
2014{
2015    struct vif *vifp = xvifp;
2016
2017    if (ip_mrouter == NULL)
2018	return;
2019    VIF_LOCK();
2020    tbf_update_tokens(vifp);
2021    tbf_process_q(vifp);
2022    if (vifp->v_tbf->tbf_q_len)
2023	callout_reset(&tbf_reprocess_ch, TBF_REPROCESS, tbf_reprocess_q, vifp);
2024    VIF_UNLOCK();
2025}
2026
2027/* function that will selectively discard a member of the queue
2028 * based on the precedence value and the priority
2029 */
2030static int
2031tbf_dq_sel(struct vif *vifp, struct ip *ip)
2032{
2033    u_int p;
2034    struct mbuf *m, *last;
2035    struct mbuf **np;
2036    struct tbf *t = vifp->v_tbf;
2037
2038    VIF_LOCK_ASSERT();
2039
2040    p = priority(vifp, ip);
2041
2042    np = &t->tbf_q;
2043    last = NULL;
2044    while ((m = *np) != NULL) {
2045	if (p > priority(vifp, mtod(m, struct ip *))) {
2046	    *np = m->m_act;
2047	    /* If we're removing the last packet, fix the tail pointer */
2048	    if (m == t->tbf_t)
2049		t->tbf_t = last;
2050	    m_freem(m);
2051	    /* It's impossible for the queue to be empty, but check anyways. */
2052	    if (--t->tbf_q_len == 0)
2053		t->tbf_t = NULL;
2054	    mrtstat.mrts_drop_sel++;
2055	    return 1;
2056	}
2057	np = &m->m_act;
2058	last = m;
2059    }
2060    return 0;
2061}
2062
2063static void
2064tbf_send_packet(struct vif *vifp, struct mbuf *m)
2065{
2066    VIF_LOCK_ASSERT();
2067
2068    if (vifp->v_flags & VIFF_TUNNEL)	/* If tunnel options */
2069	ip_output(m, NULL, &vifp->v_route, IP_FORWARDING, NULL, NULL);
2070    else {
2071	struct ip_moptions imo;
2072	int error;
2073	static struct route ro; /* XXX check this */
2074
2075	imo.imo_multicast_ifp  = vifp->v_ifp;
2076	imo.imo_multicast_ttl  = mtod(m, struct ip *)->ip_ttl - 1;
2077	imo.imo_multicast_loop = 1;
2078	imo.imo_multicast_vif  = -1;
2079
2080	/*
2081	 * Re-entrancy should not be a problem here, because
2082	 * the packets that we send out and are looped back at us
2083	 * should get rejected because they appear to come from
2084	 * the loopback interface, thus preventing looping.
2085	 */
2086	error = ip_output(m, NULL, &ro, IP_FORWARDING, &imo, NULL);
2087
2088	if (mrtdebug & DEBUG_XMIT)
2089	    log(LOG_DEBUG, "phyint_send on vif %d err %d\n",
2090		(int)(vifp - viftable), error);
2091    }
2092}
2093
2094/* determine the current time and then
2095 * the elapsed time (between the last time and time now)
2096 * in milliseconds & update the no. of tokens in the bucket
2097 */
2098static void
2099tbf_update_tokens(struct vif *vifp)
2100{
2101    struct timeval tp;
2102    u_long tm;
2103    struct tbf *t = vifp->v_tbf;
2104
2105    VIF_LOCK_ASSERT();
2106
2107    GET_TIME(tp);
2108
2109    TV_DELTA(tp, t->tbf_last_pkt_t, tm);
2110
2111    /*
2112     * This formula is actually
2113     * "time in seconds" * "bytes/second".
2114     *
2115     * (tm / 1000000) * (v_rate_limit * 1000 * (1000/1024) / 8)
2116     *
2117     * The (1000/1024) was introduced in add_vif to optimize
2118     * this divide into a shift.
2119     */
2120    t->tbf_n_tok += tm * vifp->v_rate_limit / 1024 / 8;
2121    t->tbf_last_pkt_t = tp;
2122
2123    if (t->tbf_n_tok > MAX_BKT_SIZE)
2124	t->tbf_n_tok = MAX_BKT_SIZE;
2125}
2126
2127static int
2128priority(struct vif *vifp, struct ip *ip)
2129{
2130    int prio = 50; /* the lowest priority -- default case */
2131
2132    /* temporary hack; may add general packet classifier some day */
2133
2134    /*
2135     * The UDP port space is divided up into four priority ranges:
2136     * [0, 16384)     : unclassified - lowest priority
2137     * [16384, 32768) : audio - highest priority
2138     * [32768, 49152) : whiteboard - medium priority
2139     * [49152, 65536) : video - low priority
2140     *
2141     * Everything else gets lowest priority.
2142     */
2143    if (ip->ip_p == IPPROTO_UDP) {
2144	struct udphdr *udp = (struct udphdr *)(((char *)ip) + (ip->ip_hl << 2));
2145	switch (ntohs(udp->uh_dport) & 0xc000) {
2146	case 0x4000:
2147	    prio = 70;
2148	    break;
2149	case 0x8000:
2150	    prio = 60;
2151	    break;
2152	case 0xc000:
2153	    prio = 55;
2154	    break;
2155	}
2156    }
2157    return prio;
2158}
2159
2160/*
2161 * End of token bucket filter modifications
2162 */
2163
2164static int
2165X_ip_rsvp_vif(struct socket *so, struct sockopt *sopt)
2166{
2167    int error, vifi;
2168
2169    if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_RSVP)
2170	return EOPNOTSUPP;
2171
2172    error = sooptcopyin(sopt, &vifi, sizeof vifi, sizeof vifi);
2173    if (error)
2174	return error;
2175
2176    VIF_LOCK();
2177
2178    if (vifi < 0 || vifi >= numvifs) {	/* Error if vif is invalid */
2179	VIF_UNLOCK();
2180	return EADDRNOTAVAIL;
2181    }
2182
2183    if (sopt->sopt_name == IP_RSVP_VIF_ON) {
2184	/* Check if socket is available. */
2185	if (viftable[vifi].v_rsvpd != NULL) {
2186	    VIF_UNLOCK();
2187	    return EADDRINUSE;
2188	}
2189
2190	viftable[vifi].v_rsvpd = so;
2191	/* This may seem silly, but we need to be sure we don't over-increment
2192	 * the RSVP counter, in case something slips up.
2193	 */
2194	if (!viftable[vifi].v_rsvp_on) {
2195	    viftable[vifi].v_rsvp_on = 1;
2196	    rsvp_on++;
2197	}
2198    } else { /* must be VIF_OFF */
2199	/*
2200	 * XXX as an additional consistency check, one could make sure
2201	 * that viftable[vifi].v_rsvpd == so, otherwise passing so as
2202	 * first parameter is pretty useless.
2203	 */
2204	viftable[vifi].v_rsvpd = NULL;
2205	/*
2206	 * This may seem silly, but we need to be sure we don't over-decrement
2207	 * the RSVP counter, in case something slips up.
2208	 */
2209	if (viftable[vifi].v_rsvp_on) {
2210	    viftable[vifi].v_rsvp_on = 0;
2211	    rsvp_on--;
2212	}
2213    }
2214    VIF_UNLOCK();
2215    return 0;
2216}
2217
2218static void
2219X_ip_rsvp_force_done(struct socket *so)
2220{
2221    int vifi;
2222
2223    /* Don't bother if it is not the right type of socket. */
2224    if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_RSVP)
2225	return;
2226
2227    VIF_LOCK();
2228
2229    /* The socket may be attached to more than one vif...this
2230     * is perfectly legal.
2231     */
2232    for (vifi = 0; vifi < numvifs; vifi++) {
2233	if (viftable[vifi].v_rsvpd == so) {
2234	    viftable[vifi].v_rsvpd = NULL;
2235	    /* This may seem silly, but we need to be sure we don't
2236	     * over-decrement the RSVP counter, in case something slips up.
2237	     */
2238	    if (viftable[vifi].v_rsvp_on) {
2239		viftable[vifi].v_rsvp_on = 0;
2240		rsvp_on--;
2241	    }
2242	}
2243    }
2244
2245    VIF_UNLOCK();
2246}
2247
2248static void
2249X_rsvp_input(struct mbuf *m, int off)
2250{
2251    int vifi;
2252    struct ip *ip = mtod(m, struct ip *);
2253    struct sockaddr_in rsvp_src = { sizeof rsvp_src, AF_INET };
2254    struct ifnet *ifp;
2255
2256    if (rsvpdebug)
2257	printf("rsvp_input: rsvp_on %d\n",rsvp_on);
2258
2259    /* Can still get packets with rsvp_on = 0 if there is a local member
2260     * of the group to which the RSVP packet is addressed.  But in this
2261     * case we want to throw the packet away.
2262     */
2263    if (!rsvp_on) {
2264	m_freem(m);
2265	return;
2266    }
2267
2268    if (rsvpdebug)
2269	printf("rsvp_input: check vifs\n");
2270
2271#ifdef DIAGNOSTIC
2272    M_ASSERTPKTHDR(m);
2273#endif
2274
2275    ifp = m->m_pkthdr.rcvif;
2276
2277    VIF_LOCK();
2278    /* Find which vif the packet arrived on. */
2279    for (vifi = 0; vifi < numvifs; vifi++)
2280	if (viftable[vifi].v_ifp == ifp)
2281	    break;
2282
2283    if (vifi == numvifs || viftable[vifi].v_rsvpd == NULL) {
2284	/*
2285	 * Drop the lock here to avoid holding it across rip_input.
2286	 * This could make rsvpdebug printfs wrong.  If you care,
2287	 * record the state of stuff before dropping the lock.
2288	 */
2289	VIF_UNLOCK();
2290	/*
2291	 * If the old-style non-vif-associated socket is set,
2292	 * then use it.  Otherwise, drop packet since there
2293	 * is no specific socket for this vif.
2294	 */
2295	if (ip_rsvpd != NULL) {
2296	    if (rsvpdebug)
2297		printf("rsvp_input: Sending packet up old-style socket\n");
2298	    rip_input(m, off);  /* xxx */
2299	} else {
2300	    if (rsvpdebug && vifi == numvifs)
2301		printf("rsvp_input: Can't find vif for packet.\n");
2302	    else if (rsvpdebug && viftable[vifi].v_rsvpd == NULL)
2303		printf("rsvp_input: No socket defined for vif %d\n",vifi);
2304	    m_freem(m);
2305	}
2306	return;
2307    }
2308    rsvp_src.sin_addr = ip->ip_src;
2309
2310    if (rsvpdebug && m)
2311	printf("rsvp_input: m->m_len = %d, sbspace() = %ld\n",
2312	       m->m_len,sbspace(&(viftable[vifi].v_rsvpd->so_rcv)));
2313
2314    if (socket_send(viftable[vifi].v_rsvpd, m, &rsvp_src) < 0) {
2315	if (rsvpdebug)
2316	    printf("rsvp_input: Failed to append to socket\n");
2317    } else {
2318	if (rsvpdebug)
2319	    printf("rsvp_input: send packet up\n");
2320    }
2321    VIF_UNLOCK();
2322}
2323
2324/*
2325 * Code for bandwidth monitors
2326 */
2327
2328/*
2329 * Define common interface for timeval-related methods
2330 */
2331#define	BW_TIMEVALCMP(tvp, uvp, cmp) timevalcmp((tvp), (uvp), cmp)
2332#define	BW_TIMEVALDECR(vvp, uvp) timevalsub((vvp), (uvp))
2333#define	BW_TIMEVALADD(vvp, uvp) timevaladd((vvp), (uvp))
2334
2335static uint32_t
2336compute_bw_meter_flags(struct bw_upcall *req)
2337{
2338    uint32_t flags = 0;
2339
2340    if (req->bu_flags & BW_UPCALL_UNIT_PACKETS)
2341	flags |= BW_METER_UNIT_PACKETS;
2342    if (req->bu_flags & BW_UPCALL_UNIT_BYTES)
2343	flags |= BW_METER_UNIT_BYTES;
2344    if (req->bu_flags & BW_UPCALL_GEQ)
2345	flags |= BW_METER_GEQ;
2346    if (req->bu_flags & BW_UPCALL_LEQ)
2347	flags |= BW_METER_LEQ;
2348
2349    return flags;
2350}
2351
2352/*
2353 * Add a bw_meter entry
2354 */
2355static int
2356add_bw_upcall(struct bw_upcall *req)
2357{
2358    struct mfc *mfc;
2359    struct timeval delta = { BW_UPCALL_THRESHOLD_INTERVAL_MIN_SEC,
2360		BW_UPCALL_THRESHOLD_INTERVAL_MIN_USEC };
2361    struct timeval now;
2362    struct bw_meter *x;
2363    uint32_t flags;
2364
2365    if (!(mrt_api_config & MRT_MFC_BW_UPCALL))
2366	return EOPNOTSUPP;
2367
2368    /* Test if the flags are valid */
2369    if (!(req->bu_flags & (BW_UPCALL_UNIT_PACKETS | BW_UPCALL_UNIT_BYTES)))
2370	return EINVAL;
2371    if (!(req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ)))
2372	return EINVAL;
2373    if ((req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ))
2374	    == (BW_UPCALL_GEQ | BW_UPCALL_LEQ))
2375	return EINVAL;
2376
2377    /* Test if the threshold time interval is valid */
2378    if (BW_TIMEVALCMP(&req->bu_threshold.b_time, &delta, <))
2379	return EINVAL;
2380
2381    flags = compute_bw_meter_flags(req);
2382
2383    /*
2384     * Find if we have already same bw_meter entry
2385     */
2386    MFC_LOCK();
2387    mfc = mfc_find(req->bu_src.s_addr, req->bu_dst.s_addr);
2388    if (mfc == NULL) {
2389	MFC_UNLOCK();
2390	return EADDRNOTAVAIL;
2391    }
2392    for (x = mfc->mfc_bw_meter; x != NULL; x = x->bm_mfc_next) {
2393	if ((BW_TIMEVALCMP(&x->bm_threshold.b_time,
2394			   &req->bu_threshold.b_time, ==)) &&
2395	    (x->bm_threshold.b_packets == req->bu_threshold.b_packets) &&
2396	    (x->bm_threshold.b_bytes == req->bu_threshold.b_bytes) &&
2397	    (x->bm_flags & BW_METER_USER_FLAGS) == flags)  {
2398	    MFC_UNLOCK();
2399	    return 0;		/* XXX Already installed */
2400	}
2401    }
2402
2403    /* Allocate the new bw_meter entry */
2404    x = (struct bw_meter *)malloc(sizeof(*x), M_BWMETER, M_NOWAIT);
2405    if (x == NULL) {
2406	MFC_UNLOCK();
2407	return ENOBUFS;
2408    }
2409
2410    /* Set the new bw_meter entry */
2411    x->bm_threshold.b_time = req->bu_threshold.b_time;
2412    GET_TIME(now);
2413    x->bm_start_time = now;
2414    x->bm_threshold.b_packets = req->bu_threshold.b_packets;
2415    x->bm_threshold.b_bytes = req->bu_threshold.b_bytes;
2416    x->bm_measured.b_packets = 0;
2417    x->bm_measured.b_bytes = 0;
2418    x->bm_flags = flags;
2419    x->bm_time_next = NULL;
2420    x->bm_time_hash = BW_METER_BUCKETS;
2421
2422    /* Add the new bw_meter entry to the front of entries for this MFC */
2423    x->bm_mfc = mfc;
2424    x->bm_mfc_next = mfc->mfc_bw_meter;
2425    mfc->mfc_bw_meter = x;
2426    schedule_bw_meter(x, &now);
2427    MFC_UNLOCK();
2428
2429    return 0;
2430}
2431
2432static void
2433free_bw_list(struct bw_meter *list)
2434{
2435    while (list != NULL) {
2436	struct bw_meter *x = list;
2437
2438	list = list->bm_mfc_next;
2439	unschedule_bw_meter(x);
2440	free(x, M_BWMETER);
2441    }
2442}
2443
2444/*
2445 * Delete one or multiple bw_meter entries
2446 */
2447static int
2448del_bw_upcall(struct bw_upcall *req)
2449{
2450    struct mfc *mfc;
2451    struct bw_meter *x;
2452
2453    if (!(mrt_api_config & MRT_MFC_BW_UPCALL))
2454	return EOPNOTSUPP;
2455
2456    MFC_LOCK();
2457    /* Find the corresponding MFC entry */
2458    mfc = mfc_find(req->bu_src.s_addr, req->bu_dst.s_addr);
2459    if (mfc == NULL) {
2460	MFC_UNLOCK();
2461	return EADDRNOTAVAIL;
2462    } else if (req->bu_flags & BW_UPCALL_DELETE_ALL) {
2463	/*
2464	 * Delete all bw_meter entries for this mfc
2465	 */
2466	struct bw_meter *list;
2467
2468	list = mfc->mfc_bw_meter;
2469	mfc->mfc_bw_meter = NULL;
2470	free_bw_list(list);
2471	MFC_UNLOCK();
2472	return 0;
2473    } else {			/* Delete a single bw_meter entry */
2474	struct bw_meter *prev;
2475	uint32_t flags = 0;
2476
2477	flags = compute_bw_meter_flags(req);
2478
2479	/* Find the bw_meter entry to delete */
2480	for (prev = NULL, x = mfc->mfc_bw_meter; x != NULL;
2481	     prev = x, x = x->bm_mfc_next) {
2482	    if ((BW_TIMEVALCMP(&x->bm_threshold.b_time,
2483			       &req->bu_threshold.b_time, ==)) &&
2484		(x->bm_threshold.b_packets == req->bu_threshold.b_packets) &&
2485		(x->bm_threshold.b_bytes == req->bu_threshold.b_bytes) &&
2486		(x->bm_flags & BW_METER_USER_FLAGS) == flags)
2487		break;
2488	}
2489	if (x != NULL) { /* Delete entry from the list for this MFC */
2490	    if (prev != NULL)
2491		prev->bm_mfc_next = x->bm_mfc_next;	/* remove from middle*/
2492	    else
2493		x->bm_mfc->mfc_bw_meter = x->bm_mfc_next;/* new head of list */
2494
2495	    unschedule_bw_meter(x);
2496	    MFC_UNLOCK();
2497	    /* Free the bw_meter entry */
2498	    free(x, M_BWMETER);
2499	    return 0;
2500	} else {
2501	    MFC_UNLOCK();
2502	    return EINVAL;
2503	}
2504    }
2505    /* NOTREACHED */
2506}
2507
2508/*
2509 * Perform bandwidth measurement processing that may result in an upcall
2510 */
2511static void
2512bw_meter_receive_packet(struct bw_meter *x, int plen, struct timeval *nowp)
2513{
2514    struct timeval delta;
2515
2516    MFC_LOCK_ASSERT();
2517
2518    delta = *nowp;
2519    BW_TIMEVALDECR(&delta, &x->bm_start_time);
2520
2521    if (x->bm_flags & BW_METER_GEQ) {
2522	/*
2523	 * Processing for ">=" type of bw_meter entry
2524	 */
2525	if (BW_TIMEVALCMP(&delta, &x->bm_threshold.b_time, >)) {
2526	    /* Reset the bw_meter entry */
2527	    x->bm_start_time = *nowp;
2528	    x->bm_measured.b_packets = 0;
2529	    x->bm_measured.b_bytes = 0;
2530	    x->bm_flags &= ~BW_METER_UPCALL_DELIVERED;
2531	}
2532
2533	/* Record that a packet is received */
2534	x->bm_measured.b_packets++;
2535	x->bm_measured.b_bytes += plen;
2536
2537	/*
2538	 * Test if we should deliver an upcall
2539	 */
2540	if (!(x->bm_flags & BW_METER_UPCALL_DELIVERED)) {
2541	    if (((x->bm_flags & BW_METER_UNIT_PACKETS) &&
2542		 (x->bm_measured.b_packets >= x->bm_threshold.b_packets)) ||
2543		((x->bm_flags & BW_METER_UNIT_BYTES) &&
2544		 (x->bm_measured.b_bytes >= x->bm_threshold.b_bytes))) {
2545		/* Prepare an upcall for delivery */
2546		bw_meter_prepare_upcall(x, nowp);
2547		x->bm_flags |= BW_METER_UPCALL_DELIVERED;
2548	    }
2549	}
2550    } else if (x->bm_flags & BW_METER_LEQ) {
2551	/*
2552	 * Processing for "<=" type of bw_meter entry
2553	 */
2554	if (BW_TIMEVALCMP(&delta, &x->bm_threshold.b_time, >)) {
2555	    /*
2556	     * We are behind time with the multicast forwarding table
2557	     * scanning for "<=" type of bw_meter entries, so test now
2558	     * if we should deliver an upcall.
2559	     */
2560	    if (((x->bm_flags & BW_METER_UNIT_PACKETS) &&
2561		 (x->bm_measured.b_packets <= x->bm_threshold.b_packets)) ||
2562		((x->bm_flags & BW_METER_UNIT_BYTES) &&
2563		 (x->bm_measured.b_bytes <= x->bm_threshold.b_bytes))) {
2564		/* Prepare an upcall for delivery */
2565		bw_meter_prepare_upcall(x, nowp);
2566	    }
2567	    /* Reschedule the bw_meter entry */
2568	    unschedule_bw_meter(x);
2569	    schedule_bw_meter(x, nowp);
2570	}
2571
2572	/* Record that a packet is received */
2573	x->bm_measured.b_packets++;
2574	x->bm_measured.b_bytes += plen;
2575
2576	/*
2577	 * Test if we should restart the measuring interval
2578	 */
2579	if ((x->bm_flags & BW_METER_UNIT_PACKETS &&
2580	     x->bm_measured.b_packets <= x->bm_threshold.b_packets) ||
2581	    (x->bm_flags & BW_METER_UNIT_BYTES &&
2582	     x->bm_measured.b_bytes <= x->bm_threshold.b_bytes)) {
2583	    /* Don't restart the measuring interval */
2584	} else {
2585	    /* Do restart the measuring interval */
2586	    /*
2587	     * XXX: note that we don't unschedule and schedule, because this
2588	     * might be too much overhead per packet. Instead, when we process
2589	     * all entries for a given timer hash bin, we check whether it is
2590	     * really a timeout. If not, we reschedule at that time.
2591	     */
2592	    x->bm_start_time = *nowp;
2593	    x->bm_measured.b_packets = 0;
2594	    x->bm_measured.b_bytes = 0;
2595	    x->bm_flags &= ~BW_METER_UPCALL_DELIVERED;
2596	}
2597    }
2598}
2599
2600/*
2601 * Prepare a bandwidth-related upcall
2602 */
2603static void
2604bw_meter_prepare_upcall(struct bw_meter *x, struct timeval *nowp)
2605{
2606    struct timeval delta;
2607    struct bw_upcall *u;
2608
2609    MFC_LOCK_ASSERT();
2610
2611    /*
2612     * Compute the measured time interval
2613     */
2614    delta = *nowp;
2615    BW_TIMEVALDECR(&delta, &x->bm_start_time);
2616
2617    /*
2618     * If there are too many pending upcalls, deliver them now
2619     */
2620    if (bw_upcalls_n >= BW_UPCALLS_MAX)
2621	bw_upcalls_send();
2622
2623    /*
2624     * Set the bw_upcall entry
2625     */
2626    u = &bw_upcalls[bw_upcalls_n++];
2627    u->bu_src = x->bm_mfc->mfc_origin;
2628    u->bu_dst = x->bm_mfc->mfc_mcastgrp;
2629    u->bu_threshold.b_time = x->bm_threshold.b_time;
2630    u->bu_threshold.b_packets = x->bm_threshold.b_packets;
2631    u->bu_threshold.b_bytes = x->bm_threshold.b_bytes;
2632    u->bu_measured.b_time = delta;
2633    u->bu_measured.b_packets = x->bm_measured.b_packets;
2634    u->bu_measured.b_bytes = x->bm_measured.b_bytes;
2635    u->bu_flags = 0;
2636    if (x->bm_flags & BW_METER_UNIT_PACKETS)
2637	u->bu_flags |= BW_UPCALL_UNIT_PACKETS;
2638    if (x->bm_flags & BW_METER_UNIT_BYTES)
2639	u->bu_flags |= BW_UPCALL_UNIT_BYTES;
2640    if (x->bm_flags & BW_METER_GEQ)
2641	u->bu_flags |= BW_UPCALL_GEQ;
2642    if (x->bm_flags & BW_METER_LEQ)
2643	u->bu_flags |= BW_UPCALL_LEQ;
2644}
2645
2646/*
2647 * Send the pending bandwidth-related upcalls
2648 */
2649static void
2650bw_upcalls_send(void)
2651{
2652    struct mbuf *m;
2653    int len = bw_upcalls_n * sizeof(bw_upcalls[0]);
2654    struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
2655    static struct igmpmsg igmpmsg = { 0,		/* unused1 */
2656				      0,		/* unused2 */
2657				      IGMPMSG_BW_UPCALL,/* im_msgtype */
2658				      0,		/* im_mbz  */
2659				      0,		/* im_vif  */
2660				      0,		/* unused3 */
2661				      { 0 },		/* im_src  */
2662				      { 0 } };		/* im_dst  */
2663
2664    MFC_LOCK_ASSERT();
2665
2666    if (bw_upcalls_n == 0)
2667	return;			/* No pending upcalls */
2668
2669    bw_upcalls_n = 0;
2670
2671    /*
2672     * Allocate a new mbuf, initialize it with the header and
2673     * the payload for the pending calls.
2674     */
2675    MGETHDR(m, M_DONTWAIT, MT_HEADER);
2676    if (m == NULL) {
2677	log(LOG_WARNING, "bw_upcalls_send: cannot allocate mbuf\n");
2678	return;
2679    }
2680
2681    m->m_len = m->m_pkthdr.len = 0;
2682    m_copyback(m, 0, sizeof(struct igmpmsg), (caddr_t)&igmpmsg);
2683    m_copyback(m, sizeof(struct igmpmsg), len, (caddr_t)&bw_upcalls[0]);
2684
2685    /*
2686     * Send the upcalls
2687     * XXX do we need to set the address in k_igmpsrc ?
2688     */
2689    mrtstat.mrts_upcalls++;
2690    if (socket_send(ip_mrouter, m, &k_igmpsrc) < 0) {
2691	log(LOG_WARNING, "bw_upcalls_send: ip_mrouter socket queue full\n");
2692	++mrtstat.mrts_upq_sockfull;
2693    }
2694}
2695
2696/*
2697 * Compute the timeout hash value for the bw_meter entries
2698 */
2699#define	BW_METER_TIMEHASH(bw_meter, hash)				\
2700    do {								\
2701	struct timeval next_timeval = (bw_meter)->bm_start_time;	\
2702									\
2703	BW_TIMEVALADD(&next_timeval, &(bw_meter)->bm_threshold.b_time); \
2704	(hash) = next_timeval.tv_sec;					\
2705	if (next_timeval.tv_usec)					\
2706	    (hash)++; /* XXX: make sure we don't timeout early */	\
2707	(hash) %= BW_METER_BUCKETS;					\
2708    } while (0)
2709
2710/*
2711 * Schedule a timer to process periodically bw_meter entry of type "<="
2712 * by linking the entry in the proper hash bucket.
2713 */
2714static void
2715schedule_bw_meter(struct bw_meter *x, struct timeval *nowp)
2716{
2717    int time_hash;
2718
2719    MFC_LOCK_ASSERT();
2720
2721    if (!(x->bm_flags & BW_METER_LEQ))
2722	return;		/* XXX: we schedule timers only for "<=" entries */
2723
2724    /*
2725     * Reset the bw_meter entry
2726     */
2727    x->bm_start_time = *nowp;
2728    x->bm_measured.b_packets = 0;
2729    x->bm_measured.b_bytes = 0;
2730    x->bm_flags &= ~BW_METER_UPCALL_DELIVERED;
2731
2732    /*
2733     * Compute the timeout hash value and insert the entry
2734     */
2735    BW_METER_TIMEHASH(x, time_hash);
2736    x->bm_time_next = bw_meter_timers[time_hash];
2737    bw_meter_timers[time_hash] = x;
2738    x->bm_time_hash = time_hash;
2739}
2740
2741/*
2742 * Unschedule the periodic timer that processes bw_meter entry of type "<="
2743 * by removing the entry from the proper hash bucket.
2744 */
2745static void
2746unschedule_bw_meter(struct bw_meter *x)
2747{
2748    int time_hash;
2749    struct bw_meter *prev, *tmp;
2750
2751    MFC_LOCK_ASSERT();
2752
2753    if (!(x->bm_flags & BW_METER_LEQ))
2754	return;		/* XXX: we schedule timers only for "<=" entries */
2755
2756    /*
2757     * Compute the timeout hash value and delete the entry
2758     */
2759    time_hash = x->bm_time_hash;
2760    if (time_hash >= BW_METER_BUCKETS)
2761	return;		/* Entry was not scheduled */
2762
2763    for (prev = NULL, tmp = bw_meter_timers[time_hash];
2764	     tmp != NULL; prev = tmp, tmp = tmp->bm_time_next)
2765	if (tmp == x)
2766	    break;
2767
2768    if (tmp == NULL)
2769	panic("unschedule_bw_meter: bw_meter entry not found");
2770
2771    if (prev != NULL)
2772	prev->bm_time_next = x->bm_time_next;
2773    else
2774	bw_meter_timers[time_hash] = x->bm_time_next;
2775
2776    x->bm_time_next = NULL;
2777    x->bm_time_hash = BW_METER_BUCKETS;
2778}
2779
2780
2781/*
2782 * Process all "<=" type of bw_meter that should be processed now,
2783 * and for each entry prepare an upcall if necessary. Each processed
2784 * entry is rescheduled again for the (periodic) processing.
2785 *
2786 * This is run periodically (once per second normally). On each round,
2787 * all the potentially matching entries are in the hash slot that we are
2788 * looking at.
2789 */
2790static void
2791bw_meter_process()
2792{
2793    static uint32_t last_tv_sec;	/* last time we processed this */
2794
2795    uint32_t loops;
2796    int i;
2797    struct timeval now, process_endtime;
2798
2799    GET_TIME(now);
2800    if (last_tv_sec == now.tv_sec)
2801	return;		/* nothing to do */
2802
2803    loops = now.tv_sec - last_tv_sec;
2804    last_tv_sec = now.tv_sec;
2805    if (loops > BW_METER_BUCKETS)
2806	loops = BW_METER_BUCKETS;
2807
2808    MFC_LOCK();
2809    /*
2810     * Process all bins of bw_meter entries from the one after the last
2811     * processed to the current one. On entry, i points to the last bucket
2812     * visited, so we need to increment i at the beginning of the loop.
2813     */
2814    for (i = (now.tv_sec - loops) % BW_METER_BUCKETS; loops > 0; loops--) {
2815	struct bw_meter *x, *tmp_list;
2816
2817	if (++i >= BW_METER_BUCKETS)
2818	    i = 0;
2819
2820	/* Disconnect the list of bw_meter entries from the bin */
2821	tmp_list = bw_meter_timers[i];
2822	bw_meter_timers[i] = NULL;
2823
2824	/* Process the list of bw_meter entries */
2825	while (tmp_list != NULL) {
2826	    x = tmp_list;
2827	    tmp_list = tmp_list->bm_time_next;
2828
2829	    /* Test if the time interval is over */
2830	    process_endtime = x->bm_start_time;
2831	    BW_TIMEVALADD(&process_endtime, &x->bm_threshold.b_time);
2832	    if (BW_TIMEVALCMP(&process_endtime, &now, >)) {
2833		/* Not yet: reschedule, but don't reset */
2834		int time_hash;
2835
2836		BW_METER_TIMEHASH(x, time_hash);
2837		if (time_hash == i && process_endtime.tv_sec == now.tv_sec) {
2838		    /*
2839		     * XXX: somehow the bin processing is a bit ahead of time.
2840		     * Put the entry in the next bin.
2841		     */
2842		    if (++time_hash >= BW_METER_BUCKETS)
2843			time_hash = 0;
2844		}
2845		x->bm_time_next = bw_meter_timers[time_hash];
2846		bw_meter_timers[time_hash] = x;
2847		x->bm_time_hash = time_hash;
2848
2849		continue;
2850	    }
2851
2852	    /*
2853	     * Test if we should deliver an upcall
2854	     */
2855	    if (((x->bm_flags & BW_METER_UNIT_PACKETS) &&
2856		 (x->bm_measured.b_packets <= x->bm_threshold.b_packets)) ||
2857		((x->bm_flags & BW_METER_UNIT_BYTES) &&
2858		 (x->bm_measured.b_bytes <= x->bm_threshold.b_bytes))) {
2859		/* Prepare an upcall for delivery */
2860		bw_meter_prepare_upcall(x, &now);
2861	    }
2862
2863	    /*
2864	     * Reschedule for next processing
2865	     */
2866	    schedule_bw_meter(x, &now);
2867	}
2868    }
2869
2870    /* Send all upcalls that are pending delivery */
2871    bw_upcalls_send();
2872
2873    MFC_UNLOCK();
2874}
2875
2876/*
2877 * A periodic function for sending all upcalls that are pending delivery
2878 */
2879static void
2880expire_bw_upcalls_send(void *unused)
2881{
2882    MFC_LOCK();
2883    bw_upcalls_send();
2884    MFC_UNLOCK();
2885
2886    callout_reset(&bw_upcalls_ch, BW_UPCALLS_PERIOD,
2887	expire_bw_upcalls_send, NULL);
2888}
2889
2890/*
2891 * A periodic function for periodic scanning of the multicast forwarding
2892 * table for processing all "<=" bw_meter entries.
2893 */
2894static void
2895expire_bw_meter_process(void *unused)
2896{
2897    if (mrt_api_config & MRT_MFC_BW_UPCALL)
2898	bw_meter_process();
2899
2900    callout_reset(&bw_meter_ch, BW_METER_PERIOD, expire_bw_meter_process, NULL);
2901}
2902
2903/*
2904 * End of bandwidth monitoring code
2905 */
2906
2907#ifdef PIM
2908/*
2909 * Send the packet up to the user daemon, or eventually do kernel encapsulation
2910 *
2911 */
2912static int
2913pim_register_send(struct ip *ip, struct vif *vifp,
2914	struct mbuf *m, struct mfc *rt)
2915{
2916    struct mbuf *mb_copy, *mm;
2917
2918    if (mrtdebug & DEBUG_PIM)
2919	log(LOG_DEBUG, "pim_register_send: ");
2920
2921    mb_copy = pim_register_prepare(ip, m);
2922    if (mb_copy == NULL)
2923	return ENOBUFS;
2924
2925    /*
2926     * Send all the fragments. Note that the mbuf for each fragment
2927     * is freed by the sending machinery.
2928     */
2929    for (mm = mb_copy; mm; mm = mb_copy) {
2930	mb_copy = mm->m_nextpkt;
2931	mm->m_nextpkt = 0;
2932	mm = m_pullup(mm, sizeof(struct ip));
2933	if (mm != NULL) {
2934	    ip = mtod(mm, struct ip *);
2935	    if ((mrt_api_config & MRT_MFC_RP) &&
2936		(rt->mfc_rp.s_addr != INADDR_ANY)) {
2937		pim_register_send_rp(ip, vifp, mm, rt);
2938	    } else {
2939		pim_register_send_upcall(ip, vifp, mm, rt);
2940	    }
2941	}
2942    }
2943
2944    return 0;
2945}
2946
2947/*
2948 * Return a copy of the data packet that is ready for PIM Register
2949 * encapsulation.
2950 * XXX: Note that in the returned copy the IP header is a valid one.
2951 */
2952static struct mbuf *
2953pim_register_prepare(struct ip *ip, struct mbuf *m)
2954{
2955    struct mbuf *mb_copy = NULL;
2956    int mtu;
2957
2958    /* Take care of delayed checksums */
2959    if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
2960	in_delayed_cksum(m);
2961	m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
2962    }
2963
2964    /*
2965     * Copy the old packet & pullup its IP header into the
2966     * new mbuf so we can modify it.
2967     */
2968    mb_copy = m_copypacket(m, M_DONTWAIT);
2969    if (mb_copy == NULL)
2970	return NULL;
2971    mb_copy = m_pullup(mb_copy, ip->ip_hl << 2);
2972    if (mb_copy == NULL)
2973	return NULL;
2974
2975    /* take care of the TTL */
2976    ip = mtod(mb_copy, struct ip *);
2977    --ip->ip_ttl;
2978
2979    /* Compute the MTU after the PIM Register encapsulation */
2980    mtu = 0xffff - sizeof(pim_encap_iphdr) - sizeof(pim_encap_pimhdr);
2981
2982    if (ip->ip_len <= mtu) {
2983	/* Turn the IP header into a valid one */
2984	ip->ip_len = htons(ip->ip_len);
2985	ip->ip_off = htons(ip->ip_off);
2986	ip->ip_sum = 0;
2987	ip->ip_sum = in_cksum(mb_copy, ip->ip_hl << 2);
2988    } else {
2989	/* Fragment the packet */
2990	if (ip_fragment(ip, &mb_copy, mtu, 0, CSUM_DELAY_IP) != 0) {
2991	    m_freem(mb_copy);
2992	    return NULL;
2993	}
2994    }
2995    return mb_copy;
2996}
2997
2998/*
2999 * Send an upcall with the data packet to the user-level process.
3000 */
3001static int
3002pim_register_send_upcall(struct ip *ip, struct vif *vifp,
3003	struct mbuf *mb_copy, struct mfc *rt)
3004{
3005    struct mbuf *mb_first;
3006    int len = ntohs(ip->ip_len);
3007    struct igmpmsg *im;
3008    struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
3009
3010    VIF_LOCK_ASSERT();
3011
3012    /*
3013     * Add a new mbuf with an upcall header
3014     */
3015    MGETHDR(mb_first, M_DONTWAIT, MT_HEADER);
3016    if (mb_first == NULL) {
3017	m_freem(mb_copy);
3018	return ENOBUFS;
3019    }
3020    mb_first->m_data += max_linkhdr;
3021    mb_first->m_pkthdr.len = len + sizeof(struct igmpmsg);
3022    mb_first->m_len = sizeof(struct igmpmsg);
3023    mb_first->m_next = mb_copy;
3024
3025    /* Send message to routing daemon */
3026    im = mtod(mb_first, struct igmpmsg *);
3027    im->im_msgtype	= IGMPMSG_WHOLEPKT;
3028    im->im_mbz		= 0;
3029    im->im_vif		= vifp - viftable;
3030    im->im_src		= ip->ip_src;
3031    im->im_dst		= ip->ip_dst;
3032
3033    k_igmpsrc.sin_addr	= ip->ip_src;
3034
3035    mrtstat.mrts_upcalls++;
3036
3037    if (socket_send(ip_mrouter, mb_first, &k_igmpsrc) < 0) {
3038	if (mrtdebug & DEBUG_PIM)
3039	    log(LOG_WARNING,
3040		"mcast: pim_register_send_upcall: ip_mrouter socket queue full");
3041	++mrtstat.mrts_upq_sockfull;
3042	return ENOBUFS;
3043    }
3044
3045    /* Keep statistics */
3046    pimstat.pims_snd_registers_msgs++;
3047    pimstat.pims_snd_registers_bytes += len;
3048
3049    return 0;
3050}
3051
3052/*
3053 * Encapsulate the data packet in PIM Register message and send it to the RP.
3054 */
3055static int
3056pim_register_send_rp(struct ip *ip, struct vif *vifp,
3057	struct mbuf *mb_copy, struct mfc *rt)
3058{
3059    struct mbuf *mb_first;
3060    struct ip *ip_outer;
3061    struct pim_encap_pimhdr *pimhdr;
3062    int len = ntohs(ip->ip_len);
3063    vifi_t vifi = rt->mfc_parent;
3064
3065    VIF_LOCK_ASSERT();
3066
3067    if ((vifi >= numvifs) || (viftable[vifi].v_lcl_addr.s_addr == 0)) {
3068	m_freem(mb_copy);
3069	return EADDRNOTAVAIL;		/* The iif vif is invalid */
3070    }
3071
3072    /*
3073     * Add a new mbuf with the encapsulating header
3074     */
3075    MGETHDR(mb_first, M_DONTWAIT, MT_HEADER);
3076    if (mb_first == NULL) {
3077	m_freem(mb_copy);
3078	return ENOBUFS;
3079    }
3080    mb_first->m_data += max_linkhdr;
3081    mb_first->m_len = sizeof(pim_encap_iphdr) + sizeof(pim_encap_pimhdr);
3082    mb_first->m_next = mb_copy;
3083
3084    mb_first->m_pkthdr.len = len + mb_first->m_len;
3085
3086    /*
3087     * Fill in the encapsulating IP and PIM header
3088     */
3089    ip_outer = mtod(mb_first, struct ip *);
3090    *ip_outer = pim_encap_iphdr;
3091    ip_outer->ip_id = ip_newid();
3092    ip_outer->ip_len = len + sizeof(pim_encap_iphdr) + sizeof(pim_encap_pimhdr);
3093    ip_outer->ip_src = viftable[vifi].v_lcl_addr;
3094    ip_outer->ip_dst = rt->mfc_rp;
3095    /*
3096     * Copy the inner header TOS to the outer header, and take care of the
3097     * IP_DF bit.
3098     */
3099    ip_outer->ip_tos = ip->ip_tos;
3100    if (ntohs(ip->ip_off) & IP_DF)
3101	ip_outer->ip_off |= IP_DF;
3102    pimhdr = (struct pim_encap_pimhdr *)((caddr_t)ip_outer
3103					 + sizeof(pim_encap_iphdr));
3104    *pimhdr = pim_encap_pimhdr;
3105    /* If the iif crosses a border, set the Border-bit */
3106    if (rt->mfc_flags[vifi] & MRT_MFC_FLAGS_BORDER_VIF & mrt_api_config)
3107	pimhdr->flags |= htonl(PIM_BORDER_REGISTER);
3108
3109    mb_first->m_data += sizeof(pim_encap_iphdr);
3110    pimhdr->pim.pim_cksum = in_cksum(mb_first, sizeof(pim_encap_pimhdr));
3111    mb_first->m_data -= sizeof(pim_encap_iphdr);
3112
3113    if (vifp->v_rate_limit == 0)
3114	tbf_send_packet(vifp, mb_first);
3115    else
3116	tbf_control(vifp, mb_first, ip, ip_outer->ip_len);
3117
3118    /* Keep statistics */
3119    pimstat.pims_snd_registers_msgs++;
3120    pimstat.pims_snd_registers_bytes += len;
3121
3122    return 0;
3123}
3124
3125/*
3126 * PIM-SMv2 and PIM-DM messages processing.
3127 * Receives and verifies the PIM control messages, and passes them
3128 * up to the listening socket, using rip_input().
3129 * The only message with special processing is the PIM_REGISTER message
3130 * (used by PIM-SM): the PIM header is stripped off, and the inner packet
3131 * is passed to if_simloop().
3132 */
3133void
3134pim_input(struct mbuf *m, int off)
3135{
3136    struct ip *ip = mtod(m, struct ip *);
3137    struct pim *pim;
3138    int minlen;
3139    int datalen = ip->ip_len;
3140    int ip_tos;
3141    int iphlen = off;
3142
3143    /* Keep statistics */
3144    pimstat.pims_rcv_total_msgs++;
3145    pimstat.pims_rcv_total_bytes += datalen;
3146
3147    /*
3148     * Validate lengths
3149     */
3150    if (datalen < PIM_MINLEN) {
3151	pimstat.pims_rcv_tooshort++;
3152	log(LOG_ERR, "pim_input: packet size too small %d from %lx\n",
3153	    datalen, (u_long)ip->ip_src.s_addr);
3154	m_freem(m);
3155	return;
3156    }
3157
3158    /*
3159     * If the packet is at least as big as a REGISTER, go agead
3160     * and grab the PIM REGISTER header size, to avoid another
3161     * possible m_pullup() later.
3162     *
3163     * PIM_MINLEN       == pimhdr + u_int32_t == 4 + 4 = 8
3164     * PIM_REG_MINLEN   == pimhdr + reghdr + encap_iphdr == 4 + 4 + 20 = 28
3165     */
3166    minlen = iphlen + (datalen >= PIM_REG_MINLEN ? PIM_REG_MINLEN : PIM_MINLEN);
3167    /*
3168     * Get the IP and PIM headers in contiguous memory, and
3169     * possibly the PIM REGISTER header.
3170     */
3171    if ((m->m_flags & M_EXT || m->m_len < minlen) &&
3172	(m = m_pullup(m, minlen)) == 0) {
3173	log(LOG_ERR, "pim_input: m_pullup failure\n");
3174	return;
3175    }
3176    /* m_pullup() may have given us a new mbuf so reset ip. */
3177    ip = mtod(m, struct ip *);
3178    ip_tos = ip->ip_tos;
3179
3180    /* adjust mbuf to point to the PIM header */
3181    m->m_data += iphlen;
3182    m->m_len  -= iphlen;
3183    pim = mtod(m, struct pim *);
3184
3185    /*
3186     * Validate checksum. If PIM REGISTER, exclude the data packet.
3187     *
3188     * XXX: some older PIMv2 implementations don't make this distinction,
3189     * so for compatibility reason perform the checksum over part of the
3190     * message, and if error, then over the whole message.
3191     */
3192    if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER && in_cksum(m, PIM_MINLEN) == 0) {
3193	/* do nothing, checksum okay */
3194    } else if (in_cksum(m, datalen)) {
3195	pimstat.pims_rcv_badsum++;
3196	if (mrtdebug & DEBUG_PIM)
3197	    log(LOG_DEBUG, "pim_input: invalid checksum");
3198	m_freem(m);
3199	return;
3200    }
3201
3202    /* PIM version check */
3203    if (PIM_VT_V(pim->pim_vt) < PIM_VERSION) {
3204	pimstat.pims_rcv_badversion++;
3205	log(LOG_ERR, "pim_input: incorrect version %d, expecting %d\n",
3206	    PIM_VT_V(pim->pim_vt), PIM_VERSION);
3207	m_freem(m);
3208	return;
3209    }
3210
3211    /* restore mbuf back to the outer IP */
3212    m->m_data -= iphlen;
3213    m->m_len  += iphlen;
3214
3215    if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER) {
3216	/*
3217	 * Since this is a REGISTER, we'll make a copy of the register
3218	 * headers ip + pim + u_int32 + encap_ip, to be passed up to the
3219	 * routing daemon.
3220	 */
3221	struct sockaddr_in dst = { sizeof(dst), AF_INET };
3222	struct mbuf *mcp;
3223	struct ip *encap_ip;
3224	u_int32_t *reghdr;
3225	struct ifnet *vifp;
3226
3227	VIF_LOCK();
3228	if ((reg_vif_num >= numvifs) || (reg_vif_num == VIFI_INVALID)) {
3229	    VIF_UNLOCK();
3230	    if (mrtdebug & DEBUG_PIM)
3231		log(LOG_DEBUG,
3232		    "pim_input: register vif not set: %d\n", reg_vif_num);
3233	    m_freem(m);
3234	    return;
3235	}
3236	/* XXX need refcnt? */
3237	vifp = viftable[reg_vif_num].v_ifp;
3238	VIF_UNLOCK();
3239
3240	/*
3241	 * Validate length
3242	 */
3243	if (datalen < PIM_REG_MINLEN) {
3244	    pimstat.pims_rcv_tooshort++;
3245	    pimstat.pims_rcv_badregisters++;
3246	    log(LOG_ERR,
3247		"pim_input: register packet size too small %d from %lx\n",
3248		datalen, (u_long)ip->ip_src.s_addr);
3249	    m_freem(m);
3250	    return;
3251	}
3252
3253	reghdr = (u_int32_t *)(pim + 1);
3254	encap_ip = (struct ip *)(reghdr + 1);
3255
3256	if (mrtdebug & DEBUG_PIM) {
3257	    log(LOG_DEBUG,
3258		"pim_input[register], encap_ip: %lx -> %lx, encap_ip len %d\n",
3259		(u_long)ntohl(encap_ip->ip_src.s_addr),
3260		(u_long)ntohl(encap_ip->ip_dst.s_addr),
3261		ntohs(encap_ip->ip_len));
3262	}
3263
3264	/* verify the version number of the inner packet */
3265	if (encap_ip->ip_v != IPVERSION) {
3266	    pimstat.pims_rcv_badregisters++;
3267	    if (mrtdebug & DEBUG_PIM) {
3268		log(LOG_DEBUG, "pim_input: invalid IP version (%d) "
3269		    "of the inner packet\n", encap_ip->ip_v);
3270	    }
3271	    m_freem(m);
3272	    return;
3273	}
3274
3275	/* verify the inner packet is destined to a mcast group */
3276	if (!IN_MULTICAST(ntohl(encap_ip->ip_dst.s_addr))) {
3277	    pimstat.pims_rcv_badregisters++;
3278	    if (mrtdebug & DEBUG_PIM)
3279		log(LOG_DEBUG,
3280		    "pim_input: inner packet of register is not "
3281		    "multicast %lx\n",
3282		    (u_long)ntohl(encap_ip->ip_dst.s_addr));
3283	    m_freem(m);
3284	    return;
3285	}
3286
3287	/* If a NULL_REGISTER, pass it to the daemon */
3288	if ((ntohl(*reghdr) & PIM_NULL_REGISTER))
3289	    goto pim_input_to_daemon;
3290
3291	/*
3292	 * Copy the TOS from the outer IP header to the inner IP header.
3293	 */
3294	if (encap_ip->ip_tos != ip_tos) {
3295	    /* Outer TOS -> inner TOS */
3296	    encap_ip->ip_tos = ip_tos;
3297	    /* Recompute the inner header checksum. Sigh... */
3298
3299	    /* adjust mbuf to point to the inner IP header */
3300	    m->m_data += (iphlen + PIM_MINLEN);
3301	    m->m_len  -= (iphlen + PIM_MINLEN);
3302
3303	    encap_ip->ip_sum = 0;
3304	    encap_ip->ip_sum = in_cksum(m, encap_ip->ip_hl << 2);
3305
3306	    /* restore mbuf to point back to the outer IP header */
3307	    m->m_data -= (iphlen + PIM_MINLEN);
3308	    m->m_len  += (iphlen + PIM_MINLEN);
3309	}
3310
3311	/*
3312	 * Decapsulate the inner IP packet and loopback to forward it
3313	 * as a normal multicast packet. Also, make a copy of the
3314	 *     outer_iphdr + pimhdr + reghdr + encap_iphdr
3315	 * to pass to the daemon later, so it can take the appropriate
3316	 * actions (e.g., send back PIM_REGISTER_STOP).
3317	 * XXX: here m->m_data points to the outer IP header.
3318	 */
3319	mcp = m_copy(m, 0, iphlen + PIM_REG_MINLEN);
3320	if (mcp == NULL) {
3321	    log(LOG_ERR,
3322		"pim_input: pim register: could not copy register head\n");
3323	    m_freem(m);
3324	    return;
3325	}
3326
3327	/* Keep statistics */
3328	/* XXX: registers_bytes include only the encap. mcast pkt */
3329	pimstat.pims_rcv_registers_msgs++;
3330	pimstat.pims_rcv_registers_bytes += ntohs(encap_ip->ip_len);
3331
3332	/*
3333	 * forward the inner ip packet; point m_data at the inner ip.
3334	 */
3335	m_adj(m, iphlen + PIM_MINLEN);
3336
3337	if (mrtdebug & DEBUG_PIM) {
3338	    log(LOG_DEBUG,
3339		"pim_input: forwarding decapsulated register: "
3340		"src %lx, dst %lx, vif %d\n",
3341		(u_long)ntohl(encap_ip->ip_src.s_addr),
3342		(u_long)ntohl(encap_ip->ip_dst.s_addr),
3343		reg_vif_num);
3344	}
3345	/* NB: vifp was collected above; can it change on us? */
3346	if_simloop(vifp, m, dst.sin_family, 0);
3347
3348	/* prepare the register head to send to the mrouting daemon */
3349	m = mcp;
3350    }
3351
3352pim_input_to_daemon:
3353    /*
3354     * Pass the PIM message up to the daemon; if it is a Register message,
3355     * pass the 'head' only up to the daemon. This includes the
3356     * outer IP header, PIM header, PIM-Register header and the
3357     * inner IP header.
3358     * XXX: the outer IP header pkt size of a Register is not adjust to
3359     * reflect the fact that the inner multicast data is truncated.
3360     */
3361    rip_input(m, iphlen);
3362
3363    return;
3364}
3365#endif /* PIM */
3366
3367static int
3368ip_mroute_modevent(module_t mod, int type, void *unused)
3369{
3370    switch (type) {
3371    case MOD_LOAD:
3372	mtx_init(&mrouter_mtx, "mrouter initialization", NULL, MTX_DEF);
3373	MFC_LOCK_INIT();
3374	VIF_LOCK_INIT();
3375	ip_mrouter_reset();
3376	ip_mcast_src = X_ip_mcast_src;
3377	ip_mforward = X_ip_mforward;
3378	ip_mrouter_done = X_ip_mrouter_done;
3379	ip_mrouter_get = X_ip_mrouter_get;
3380	ip_mrouter_set = X_ip_mrouter_set;
3381	ip_rsvp_force_done = X_ip_rsvp_force_done;
3382	ip_rsvp_vif = X_ip_rsvp_vif;
3383	legal_vif_num = X_legal_vif_num;
3384	mrt_ioctl = X_mrt_ioctl;
3385	rsvp_input_p = X_rsvp_input;
3386	break;
3387
3388    case MOD_UNLOAD:
3389	/*
3390	 * Typically module unload happens after the user-level
3391	 * process has shutdown the kernel services (the check
3392	 * below insures someone can't just yank the module out
3393	 * from under a running process).  But if the module is
3394	 * just loaded and then unloaded w/o starting up a user
3395	 * process we still need to cleanup.
3396	 */
3397	if (ip_mrouter)
3398	    return EINVAL;
3399
3400	X_ip_mrouter_done();
3401	ip_mcast_src = NULL;
3402	ip_mforward = NULL;
3403	ip_mrouter_done = NULL;
3404	ip_mrouter_get = NULL;
3405	ip_mrouter_set = NULL;
3406	ip_rsvp_force_done = NULL;
3407	ip_rsvp_vif = NULL;
3408	legal_vif_num = NULL;
3409	mrt_ioctl = NULL;
3410	rsvp_input_p = NULL;
3411	VIF_LOCK_DESTROY();
3412	MFC_LOCK_DESTROY();
3413	mtx_destroy(&mrouter_mtx);
3414	break;
3415    default:
3416	return EOPNOTSUPP;
3417    }
3418    return 0;
3419}
3420
3421static moduledata_t ip_mroutemod = {
3422    "ip_mroute",
3423    ip_mroute_modevent,
3424    0
3425};
3426DECLARE_MODULE(ip_mroute, ip_mroutemod, SI_SUB_PSEUDO, SI_ORDER_ANY);
3427