ip_mroute.c revision 131151
1/*
2 * IP multicast forwarding procedures
3 *
4 * Written by David Waitzman, BBN Labs, August 1988.
5 * Modified by Steve Deering, Stanford, February 1989.
6 * Modified by Mark J. Steiglitz, Stanford, May, 1991
7 * Modified by Van Jacobson, LBL, January 1993
8 * Modified by Ajit Thyagarajan, PARC, August 1993
9 * Modified by Bill Fenner, PARC, April 1995
10 * Modified by Ahmed Helmy, SGI, June 1996
11 * Modified by George Edmond Eddy (Rusty), ISI, February 1998
12 * Modified by Pavlin Radoslavov, USC/ISI, May 1998, August 1999, October 2000
13 * Modified by Hitoshi Asaeda, WIDE, August 2000
14 * Modified by Pavlin Radoslavov, ICSI, October 2002
15 *
16 * MROUTING Revision: 3.5
17 * and PIM-SMv2 and PIM-DM support, advanced API support,
18 * bandwidth metering and signaling
19 *
20 * $FreeBSD: head/sys/netinet/ip_mroute.c 131151 2004-06-26 19:10:39Z rwatson $
21 */
22
23#include "opt_mac.h"
24#include "opt_mrouting.h"
25#include "opt_random_ip_id.h"
26
27#ifdef PIM
28#define _PIM_VT 1
29#endif
30
31#include <sys/param.h>
32#include <sys/kernel.h>
33#include <sys/lock.h>
34#include <sys/mac.h>
35#include <sys/malloc.h>
36#include <sys/mbuf.h>
37#include <sys/module.h>
38#include <sys/protosw.h>
39#include <sys/signalvar.h>
40#include <sys/socket.h>
41#include <sys/socketvar.h>
42#include <sys/sockio.h>
43#include <sys/sx.h>
44#include <sys/sysctl.h>
45#include <sys/syslog.h>
46#include <sys/systm.h>
47#include <sys/time.h>
48#include <net/if.h>
49#include <net/netisr.h>
50#include <net/route.h>
51#include <netinet/in.h>
52#include <netinet/igmp.h>
53#include <netinet/in_systm.h>
54#include <netinet/in_var.h>
55#include <netinet/ip.h>
56#include <netinet/ip_encap.h>
57#include <netinet/ip_mroute.h>
58#include <netinet/ip_var.h>
59#ifdef PIM
60#include <netinet/pim.h>
61#include <netinet/pim_var.h>
62#endif
63#include <netinet/udp.h>
64#include <machine/in_cksum.h>
65
66/*
67 * Control debugging code for rsvp and multicast routing code.
68 * Can only set them with the debugger.
69 */
70static u_int    rsvpdebug;		/* non-zero enables debugging	*/
71
72static u_int	mrtdebug;		/* any set of the flags below	*/
73#define		DEBUG_MFC	0x02
74#define		DEBUG_FORWARD	0x04
75#define		DEBUG_EXPIRE	0x08
76#define		DEBUG_XMIT	0x10
77#define		DEBUG_PIM	0x20
78
79#define		VIFI_INVALID	((vifi_t) -1)
80
81#define M_HASCL(m)	((m)->m_flags & M_EXT)
82
83static MALLOC_DEFINE(M_MRTABLE, "mroutetbl", "multicast routing tables");
84
85/*
86 * Locking.  We use two locks: one for the virtual interface table and
87 * one for the forwarding table.  These locks may be nested in which case
88 * the VIF lock must always be taken first.  Note that each lock is used
89 * to cover not only the specific data structure but also related data
90 * structures.  It may be better to add more fine-grained locking later;
91 * it's not clear how performance-critical this code is.
92 */
93
94static struct mrtstat	mrtstat;
95SYSCTL_STRUCT(_net_inet_ip, OID_AUTO, mrtstat, CTLFLAG_RW,
96    &mrtstat, mrtstat,
97    "Multicast Routing Statistics (struct mrtstat, netinet/ip_mroute.h)");
98
99static struct mfc	*mfctable[MFCTBLSIZ];
100SYSCTL_OPAQUE(_net_inet_ip, OID_AUTO, mfctable, CTLFLAG_RD,
101    &mfctable, sizeof(mfctable), "S,*mfc[MFCTBLSIZ]",
102    "Multicast Forwarding Table (struct *mfc[MFCTBLSIZ], netinet/ip_mroute.h)");
103
104static struct mtx mfc_mtx;
105#define	MFC_LOCK()	mtx_lock(&mfc_mtx)
106#define	MFC_UNLOCK()	mtx_unlock(&mfc_mtx)
107#define	MFC_LOCK_ASSERT()	do {					\
108	mtx_assert(&mfc_mtx, MA_OWNED);					\
109	NET_ASSERT_GIANT();						\
110} while (0)
111#define	MFC_LOCK_INIT()	mtx_init(&mfc_mtx, "mroute mfc table", NULL, MTX_DEF)
112#define	MFC_LOCK_DESTROY()	mtx_destroy(&mfc_mtx)
113
114static struct vif	viftable[MAXVIFS];
115SYSCTL_OPAQUE(_net_inet_ip, OID_AUTO, viftable, CTLFLAG_RD,
116    &viftable, sizeof(viftable), "S,vif[MAXVIFS]",
117    "Multicast Virtual Interfaces (struct vif[MAXVIFS], netinet/ip_mroute.h)");
118
119static struct mtx vif_mtx;
120#define	VIF_LOCK()	mtx_lock(&vif_mtx)
121#define	VIF_UNLOCK()	mtx_unlock(&vif_mtx)
122#define	VIF_LOCK_ASSERT()	mtx_assert(&vif_mtx, MA_OWNED)
123#define	VIF_LOCK_INIT()	mtx_init(&vif_mtx, "mroute vif table", NULL, MTX_DEF)
124#define	VIF_LOCK_DESTROY()	mtx_destroy(&vif_mtx)
125
126static u_char		nexpire[MFCTBLSIZ];
127
128static struct callout expire_upcalls_ch;
129
130#define		EXPIRE_TIMEOUT	(hz / 4)	/* 4x / second		*/
131#define		UPCALL_EXPIRE	6		/* number of timeouts	*/
132
133/*
134 * Define the token bucket filter structures
135 * tbftable -> each vif has one of these for storing info
136 */
137
138static struct tbf tbftable[MAXVIFS];
139#define		TBF_REPROCESS	(hz / 100)	/* 100x / second */
140
141/*
142 * 'Interfaces' associated with decapsulator (so we can tell
143 * packets that went through it from ones that get reflected
144 * by a broken gateway).  These interfaces are never linked into
145 * the system ifnet list & no routes point to them.  I.e., packets
146 * can't be sent this way.  They only exist as a placeholder for
147 * multicast source verification.
148 */
149static struct ifnet multicast_decap_if[MAXVIFS];
150
151#define ENCAP_TTL 64
152#define ENCAP_PROTO IPPROTO_IPIP	/* 4 */
153
154/* prototype IP hdr for encapsulated packets */
155static struct ip multicast_encap_iphdr = {
156#if BYTE_ORDER == LITTLE_ENDIAN
157	sizeof(struct ip) >> 2, IPVERSION,
158#else
159	IPVERSION, sizeof(struct ip) >> 2,
160#endif
161	0,				/* tos */
162	sizeof(struct ip),		/* total length */
163	0,				/* id */
164	0,				/* frag offset */
165	ENCAP_TTL, ENCAP_PROTO,
166	0,				/* checksum */
167};
168
169/*
170 * Bandwidth meter variables and constants
171 */
172static MALLOC_DEFINE(M_BWMETER, "bwmeter", "multicast upcall bw meters");
173/*
174 * Pending timeouts are stored in a hash table, the key being the
175 * expiration time. Periodically, the entries are analysed and processed.
176 */
177#define BW_METER_BUCKETS	1024
178static struct bw_meter *bw_meter_timers[BW_METER_BUCKETS];
179static struct callout bw_meter_ch;
180#define BW_METER_PERIOD (hz)		/* periodical handling of bw meters */
181
182/*
183 * Pending upcalls are stored in a vector which is flushed when
184 * full, or periodically
185 */
186static struct bw_upcall	bw_upcalls[BW_UPCALLS_MAX];
187static u_int	bw_upcalls_n; /* # of pending upcalls */
188static struct callout bw_upcalls_ch;
189#define BW_UPCALLS_PERIOD (hz)		/* periodical flush of bw upcalls */
190
191#ifdef PIM
192static struct pimstat pimstat;
193SYSCTL_STRUCT(_net_inet_pim, PIMCTL_STATS, stats, CTLFLAG_RD,
194    &pimstat, pimstat,
195    "PIM Statistics (struct pimstat, netinet/pim_var.h)");
196
197/*
198 * Note: the PIM Register encapsulation adds the following in front of a
199 * data packet:
200 *
201 * struct pim_encap_hdr {
202 *    struct ip ip;
203 *    struct pim_encap_pimhdr  pim;
204 * }
205 *
206 */
207
208struct pim_encap_pimhdr {
209	struct pim pim;
210	uint32_t   flags;
211};
212
213static struct ip pim_encap_iphdr = {
214#if BYTE_ORDER == LITTLE_ENDIAN
215	sizeof(struct ip) >> 2,
216	IPVERSION,
217#else
218	IPVERSION,
219	sizeof(struct ip) >> 2,
220#endif
221	0,			/* tos */
222	sizeof(struct ip),	/* total length */
223	0,			/* id */
224	0,			/* frag offset */
225	ENCAP_TTL,
226	IPPROTO_PIM,
227	0,			/* checksum */
228};
229
230static struct pim_encap_pimhdr pim_encap_pimhdr = {
231    {
232	PIM_MAKE_VT(PIM_VERSION, PIM_REGISTER), /* PIM vers and message type */
233	0,			/* reserved */
234	0,			/* checksum */
235    },
236    0				/* flags */
237};
238
239static struct ifnet multicast_register_if;
240static vifi_t reg_vif_num = VIFI_INVALID;
241#endif /* PIM */
242
243/*
244 * Private variables.
245 */
246static vifi_t	   numvifs;
247static const struct encaptab *encap_cookie;
248
249/*
250 * one-back cache used by mroute_encapcheck to locate a tunnel's vif
251 * given a datagram's src ip address.
252 */
253static u_long last_encap_src;
254static struct vif *last_encap_vif;
255
256/*
257 * Callout for queue processing.
258 */
259static struct callout tbf_reprocess_ch;
260
261static u_long	X_ip_mcast_src(int vifi);
262static int	X_ip_mforward(struct ip *ip, struct ifnet *ifp,
263			struct mbuf *m, struct ip_moptions *imo);
264static int	X_ip_mrouter_done(void);
265static int	X_ip_mrouter_get(struct socket *so, struct sockopt *m);
266static int	X_ip_mrouter_set(struct socket *so, struct sockopt *m);
267static int	X_legal_vif_num(int vif);
268static int	X_mrt_ioctl(int cmd, caddr_t data);
269
270static int get_sg_cnt(struct sioc_sg_req *);
271static int get_vif_cnt(struct sioc_vif_req *);
272static int ip_mrouter_init(struct socket *, int);
273static int add_vif(struct vifctl *);
274static int del_vif(vifi_t);
275static int add_mfc(struct mfcctl2 *);
276static int del_mfc(struct mfcctl2 *);
277static int set_api_config(uint32_t *); /* chose API capabilities */
278static int socket_send(struct socket *, struct mbuf *, struct sockaddr_in *);
279static int set_assert(int);
280static void expire_upcalls(void *);
281static int ip_mdq(struct mbuf *, struct ifnet *, struct mfc *, vifi_t);
282static void phyint_send(struct ip *, struct vif *, struct mbuf *);
283static void encap_send(struct ip *, struct vif *, struct mbuf *);
284static void tbf_control(struct vif *, struct mbuf *, struct ip *, u_long);
285static void tbf_queue(struct vif *, struct mbuf *);
286static void tbf_process_q(struct vif *);
287static void tbf_reprocess_q(void *);
288static int tbf_dq_sel(struct vif *, struct ip *);
289static void tbf_send_packet(struct vif *, struct mbuf *);
290static void tbf_update_tokens(struct vif *);
291static int priority(struct vif *, struct ip *);
292
293/*
294 * Bandwidth monitoring
295 */
296static void free_bw_list(struct bw_meter *list);
297static int add_bw_upcall(struct bw_upcall *);
298static int del_bw_upcall(struct bw_upcall *);
299static void bw_meter_receive_packet(struct bw_meter *x, int plen,
300		struct timeval *nowp);
301static void bw_meter_prepare_upcall(struct bw_meter *x, struct timeval *nowp);
302static void bw_upcalls_send(void);
303static void schedule_bw_meter(struct bw_meter *x, struct timeval *nowp);
304static void unschedule_bw_meter(struct bw_meter *x);
305static void bw_meter_process(void);
306static void expire_bw_upcalls_send(void *);
307static void expire_bw_meter_process(void *);
308
309#ifdef PIM
310static int pim_register_send(struct ip *, struct vif *,
311		struct mbuf *, struct mfc *);
312static int pim_register_send_rp(struct ip *, struct vif *,
313		struct mbuf *, struct mfc *);
314static int pim_register_send_upcall(struct ip *, struct vif *,
315		struct mbuf *, struct mfc *);
316static struct mbuf *pim_register_prepare(struct ip *, struct mbuf *);
317#endif
318
319/*
320 * whether or not special PIM assert processing is enabled.
321 */
322static int pim_assert;
323/*
324 * Rate limit for assert notification messages, in usec
325 */
326#define ASSERT_MSG_TIME		3000000
327
328/*
329 * Kernel multicast routing API capabilities and setup.
330 * If more API capabilities are added to the kernel, they should be
331 * recorded in `mrt_api_support'.
332 */
333static const uint32_t mrt_api_support = (MRT_MFC_FLAGS_DISABLE_WRONGVIF |
334					 MRT_MFC_FLAGS_BORDER_VIF |
335					 MRT_MFC_RP |
336					 MRT_MFC_BW_UPCALL);
337static uint32_t mrt_api_config = 0;
338
339/*
340 * Hash function for a source, group entry
341 */
342#define MFCHASH(a, g) MFCHASHMOD(((a) >> 20) ^ ((a) >> 10) ^ (a) ^ \
343			((g) >> 20) ^ ((g) >> 10) ^ (g))
344
345/*
346 * Find a route for a given origin IP address and Multicast group address
347 * Type of service parameter to be added in the future!!!
348 * Statistics are updated by the caller if needed
349 * (mrtstat.mrts_mfc_lookups and mrtstat.mrts_mfc_misses)
350 */
351static struct mfc *
352mfc_find(in_addr_t o, in_addr_t g)
353{
354    struct mfc *rt;
355
356    MFC_LOCK_ASSERT();
357
358    for (rt = mfctable[MFCHASH(o,g)]; rt; rt = rt->mfc_next)
359	if ((rt->mfc_origin.s_addr == o) &&
360		(rt->mfc_mcastgrp.s_addr == g) && (rt->mfc_stall == NULL))
361	    break;
362    return rt;
363}
364
365/*
366 * Macros to compute elapsed time efficiently
367 * Borrowed from Van Jacobson's scheduling code
368 */
369#define TV_DELTA(a, b, delta) {					\
370	int xxs;						\
371	delta = (a).tv_usec - (b).tv_usec;			\
372	if ((xxs = (a).tv_sec - (b).tv_sec)) {			\
373		switch (xxs) {					\
374		case 2:						\
375		      delta += 1000000;				\
376		      /* FALLTHROUGH */				\
377		case 1:						\
378		      delta += 1000000;				\
379		      break;					\
380		default:					\
381		      delta += (1000000 * xxs);			\
382		}						\
383	}							\
384}
385
386#define TV_LT(a, b) (((a).tv_usec < (b).tv_usec && \
387	      (a).tv_sec <= (b).tv_sec) || (a).tv_sec < (b).tv_sec)
388
389/*
390 * Handle MRT setsockopt commands to modify the multicast routing tables.
391 */
392static int
393X_ip_mrouter_set(struct socket *so, struct sockopt *sopt)
394{
395    int	error, optval;
396    vifi_t	vifi;
397    struct	vifctl vifc;
398    struct	mfcctl2 mfc;
399    struct	bw_upcall bw_upcall;
400    uint32_t	i;
401
402    if (so != ip_mrouter && sopt->sopt_name != MRT_INIT)
403	return EPERM;
404
405    error = 0;
406    switch (sopt->sopt_name) {
407    case MRT_INIT:
408	error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval);
409	if (error)
410	    break;
411	error = ip_mrouter_init(so, optval);
412	break;
413
414    case MRT_DONE:
415	error = ip_mrouter_done();
416	break;
417
418    case MRT_ADD_VIF:
419	error = sooptcopyin(sopt, &vifc, sizeof vifc, sizeof vifc);
420	if (error)
421	    break;
422	error = add_vif(&vifc);
423	break;
424
425    case MRT_DEL_VIF:
426	error = sooptcopyin(sopt, &vifi, sizeof vifi, sizeof vifi);
427	if (error)
428	    break;
429	error = del_vif(vifi);
430	break;
431
432    case MRT_ADD_MFC:
433    case MRT_DEL_MFC:
434	/*
435	 * select data size depending on API version.
436	 */
437	if (sopt->sopt_name == MRT_ADD_MFC &&
438		mrt_api_config & MRT_API_FLAGS_ALL) {
439	    error = sooptcopyin(sopt, &mfc, sizeof(struct mfcctl2),
440				sizeof(struct mfcctl2));
441	} else {
442	    error = sooptcopyin(sopt, &mfc, sizeof(struct mfcctl),
443				sizeof(struct mfcctl));
444	    bzero((caddr_t)&mfc + sizeof(struct mfcctl),
445			sizeof(mfc) - sizeof(struct mfcctl));
446	}
447	if (error)
448	    break;
449	if (sopt->sopt_name == MRT_ADD_MFC)
450	    error = add_mfc(&mfc);
451	else
452	    error = del_mfc(&mfc);
453	break;
454
455    case MRT_ASSERT:
456	error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval);
457	if (error)
458	    break;
459	set_assert(optval);
460	break;
461
462    case MRT_API_CONFIG:
463	error = sooptcopyin(sopt, &i, sizeof i, sizeof i);
464	if (!error)
465	    error = set_api_config(&i);
466	if (!error)
467	    error = sooptcopyout(sopt, &i, sizeof i);
468	break;
469
470    case MRT_ADD_BW_UPCALL:
471    case MRT_DEL_BW_UPCALL:
472	error = sooptcopyin(sopt, &bw_upcall, sizeof bw_upcall,
473				sizeof bw_upcall);
474	if (error)
475	    break;
476	if (sopt->sopt_name == MRT_ADD_BW_UPCALL)
477	    error = add_bw_upcall(&bw_upcall);
478	else
479	    error = del_bw_upcall(&bw_upcall);
480	break;
481
482    default:
483	error = EOPNOTSUPP;
484	break;
485    }
486    return error;
487}
488
489/*
490 * Handle MRT getsockopt commands
491 */
492static int
493X_ip_mrouter_get(struct socket *so, struct sockopt *sopt)
494{
495    int error;
496    static int version = 0x0305; /* !!! why is this here? XXX */
497
498    switch (sopt->sopt_name) {
499    case MRT_VERSION:
500	error = sooptcopyout(sopt, &version, sizeof version);
501	break;
502
503    case MRT_ASSERT:
504	error = sooptcopyout(sopt, &pim_assert, sizeof pim_assert);
505	break;
506
507    case MRT_API_SUPPORT:
508	error = sooptcopyout(sopt, &mrt_api_support, sizeof mrt_api_support);
509	break;
510
511    case MRT_API_CONFIG:
512	error = sooptcopyout(sopt, &mrt_api_config, sizeof mrt_api_config);
513	break;
514
515    default:
516	error = EOPNOTSUPP;
517	break;
518    }
519    return error;
520}
521
522/*
523 * Handle ioctl commands to obtain information from the cache
524 */
525static int
526X_mrt_ioctl(int cmd, caddr_t data)
527{
528    int error = 0;
529
530    switch (cmd) {
531    case (SIOCGETVIFCNT):
532	error = get_vif_cnt((struct sioc_vif_req *)data);
533	break;
534
535    case (SIOCGETSGCNT):
536	error = get_sg_cnt((struct sioc_sg_req *)data);
537	break;
538
539    default:
540	error = EINVAL;
541	break;
542    }
543    return error;
544}
545
546/*
547 * returns the packet, byte, rpf-failure count for the source group provided
548 */
549static int
550get_sg_cnt(struct sioc_sg_req *req)
551{
552    struct mfc *rt;
553
554    MFC_LOCK();
555    rt = mfc_find(req->src.s_addr, req->grp.s_addr);
556    if (rt == NULL) {
557	MFC_UNLOCK();
558	req->pktcnt = req->bytecnt = req->wrong_if = 0xffffffff;
559	return EADDRNOTAVAIL;
560    }
561    req->pktcnt = rt->mfc_pkt_cnt;
562    req->bytecnt = rt->mfc_byte_cnt;
563    req->wrong_if = rt->mfc_wrong_if;
564    MFC_UNLOCK();
565    return 0;
566}
567
568/*
569 * returns the input and output packet and byte counts on the vif provided
570 */
571static int
572get_vif_cnt(struct sioc_vif_req *req)
573{
574    vifi_t vifi = req->vifi;
575
576    VIF_LOCK();
577    if (vifi >= numvifs) {
578	VIF_UNLOCK();
579	return EINVAL;
580    }
581
582    req->icount = viftable[vifi].v_pkt_in;
583    req->ocount = viftable[vifi].v_pkt_out;
584    req->ibytes = viftable[vifi].v_bytes_in;
585    req->obytes = viftable[vifi].v_bytes_out;
586    VIF_UNLOCK();
587
588    return 0;
589}
590
591static void
592ip_mrouter_reset(void)
593{
594    bzero((caddr_t)mfctable, sizeof(mfctable));
595    bzero((caddr_t)nexpire, sizeof(nexpire));
596
597    pim_assert = 0;
598    mrt_api_config = 0;
599
600    callout_init(&expire_upcalls_ch, CALLOUT_MPSAFE);
601
602    bw_upcalls_n = 0;
603    bzero((caddr_t)bw_meter_timers, sizeof(bw_meter_timers));
604    callout_init(&bw_upcalls_ch, CALLOUT_MPSAFE);
605    callout_init(&bw_meter_ch, CALLOUT_MPSAFE);
606
607    callout_init(&tbf_reprocess_ch, CALLOUT_MPSAFE);
608}
609
610static struct mtx mrouter_mtx;		/* used to synch init/done work */
611
612/*
613 * Enable multicast routing
614 */
615static int
616ip_mrouter_init(struct socket *so, int version)
617{
618    if (mrtdebug)
619	log(LOG_DEBUG, "ip_mrouter_init: so_type = %d, pr_protocol = %d\n",
620	    so->so_type, so->so_proto->pr_protocol);
621
622    if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_IGMP)
623	return EOPNOTSUPP;
624
625    if (version != 1)
626	return ENOPROTOOPT;
627
628    mtx_lock(&mrouter_mtx);
629
630    if (ip_mrouter != NULL) {
631	mtx_unlock(&mrouter_mtx);
632	return EADDRINUSE;
633    }
634
635    callout_reset(&expire_upcalls_ch, EXPIRE_TIMEOUT, expire_upcalls, NULL);
636
637    callout_reset(&bw_upcalls_ch, BW_UPCALLS_PERIOD,
638	expire_bw_upcalls_send, NULL);
639    callout_reset(&bw_meter_ch, BW_METER_PERIOD, expire_bw_meter_process, NULL);
640
641    ip_mrouter = so;
642
643    mtx_unlock(&mrouter_mtx);
644
645    if (mrtdebug)
646	log(LOG_DEBUG, "ip_mrouter_init\n");
647
648    return 0;
649}
650
651/*
652 * Disable multicast routing
653 */
654static int
655X_ip_mrouter_done(void)
656{
657    vifi_t vifi;
658    int i;
659    struct ifnet *ifp;
660    struct ifreq ifr;
661    struct mfc *rt;
662    struct rtdetq *rte;
663
664    mtx_lock(&mrouter_mtx);
665
666    if (ip_mrouter == NULL) {
667	mtx_unlock(&mrouter_mtx);
668	return EINVAL;
669    }
670
671    /*
672     * Detach/disable hooks to the reset of the system.
673     */
674    ip_mrouter = NULL;
675    mrt_api_config = 0;
676
677    VIF_LOCK();
678    if (encap_cookie) {
679	const struct encaptab *c = encap_cookie;
680	encap_cookie = NULL;
681	encap_detach(c);
682    }
683    VIF_UNLOCK();
684
685    callout_stop(&tbf_reprocess_ch);
686
687    VIF_LOCK();
688    /*
689     * For each phyint in use, disable promiscuous reception of all IP
690     * multicasts.
691     */
692    for (vifi = 0; vifi < numvifs; vifi++) {
693	if (viftable[vifi].v_lcl_addr.s_addr != 0 &&
694		!(viftable[vifi].v_flags & (VIFF_TUNNEL | VIFF_REGISTER))) {
695	    struct sockaddr_in *so = (struct sockaddr_in *)&(ifr.ifr_addr);
696
697	    so->sin_len = sizeof(struct sockaddr_in);
698	    so->sin_family = AF_INET;
699	    so->sin_addr.s_addr = INADDR_ANY;
700	    ifp = viftable[vifi].v_ifp;
701	    if_allmulti(ifp, 0);
702	}
703    }
704    bzero((caddr_t)tbftable, sizeof(tbftable));
705    bzero((caddr_t)viftable, sizeof(viftable));
706    numvifs = 0;
707    pim_assert = 0;
708    VIF_UNLOCK();
709
710    /*
711     * Free all multicast forwarding cache entries.
712     */
713    callout_stop(&expire_upcalls_ch);
714    callout_stop(&bw_upcalls_ch);
715    callout_stop(&bw_meter_ch);
716
717    MFC_LOCK();
718    for (i = 0; i < MFCTBLSIZ; i++) {
719	for (rt = mfctable[i]; rt != NULL; ) {
720	    struct mfc *nr = rt->mfc_next;
721
722	    for (rte = rt->mfc_stall; rte != NULL; ) {
723		struct rtdetq *n = rte->next;
724
725		m_freem(rte->m);
726		free(rte, M_MRTABLE);
727		rte = n;
728	    }
729	    free_bw_list(rt->mfc_bw_meter);
730	    free(rt, M_MRTABLE);
731	    rt = nr;
732	}
733    }
734    bzero((caddr_t)mfctable, sizeof(mfctable));
735    bzero((caddr_t)nexpire, sizeof(nexpire));
736    bw_upcalls_n = 0;
737    bzero(bw_meter_timers, sizeof(bw_meter_timers));
738    MFC_UNLOCK();
739
740    /*
741     * Reset de-encapsulation cache
742     */
743    last_encap_src = INADDR_ANY;
744    last_encap_vif = NULL;
745#ifdef PIM
746    reg_vif_num = VIFI_INVALID;
747#endif
748
749    mtx_unlock(&mrouter_mtx);
750
751    if (mrtdebug)
752	log(LOG_DEBUG, "ip_mrouter_done\n");
753
754    return 0;
755}
756
757/*
758 * Set PIM assert processing global
759 */
760static int
761set_assert(int i)
762{
763    if ((i != 1) && (i != 0))
764	return EINVAL;
765
766    pim_assert = i;
767
768    return 0;
769}
770
771/*
772 * Configure API capabilities
773 */
774int
775set_api_config(uint32_t *apival)
776{
777    int i;
778
779    /*
780     * We can set the API capabilities only if it is the first operation
781     * after MRT_INIT. I.e.:
782     *  - there are no vifs installed
783     *  - pim_assert is not enabled
784     *  - the MFC table is empty
785     */
786    if (numvifs > 0) {
787	*apival = 0;
788	return EPERM;
789    }
790    if (pim_assert) {
791	*apival = 0;
792	return EPERM;
793    }
794    for (i = 0; i < MFCTBLSIZ; i++) {
795	if (mfctable[i] != NULL) {
796	    *apival = 0;
797	    return EPERM;
798	}
799    }
800
801    mrt_api_config = *apival & mrt_api_support;
802    *apival = mrt_api_config;
803
804    return 0;
805}
806
807/*
808 * Decide if a packet is from a tunnelled peer.
809 * Return 0 if not, 64 if so.  XXX yuck.. 64 ???
810 */
811static int
812mroute_encapcheck(const struct mbuf *m, int off, int proto, void *arg)
813{
814    struct ip *ip = mtod(m, struct ip *);
815    int hlen = ip->ip_hl << 2;
816
817    /*
818     * don't claim the packet if it's not to a multicast destination or if
819     * we don't have an encapsulating tunnel with the source.
820     * Note:  This code assumes that the remote site IP address
821     * uniquely identifies the tunnel (i.e., that this site has
822     * at most one tunnel with the remote site).
823     */
824    if (!IN_MULTICAST(ntohl(((struct ip *)((char *)ip+hlen))->ip_dst.s_addr)))
825	return 0;
826    if (ip->ip_src.s_addr != last_encap_src) {
827	struct vif *vifp = viftable;
828	struct vif *vife = vifp + numvifs;
829
830	last_encap_src = ip->ip_src.s_addr;
831	last_encap_vif = NULL;
832	for ( ; vifp < vife; ++vifp)
833	    if (vifp->v_rmt_addr.s_addr == ip->ip_src.s_addr) {
834		if ((vifp->v_flags & (VIFF_TUNNEL|VIFF_SRCRT)) == VIFF_TUNNEL)
835		    last_encap_vif = vifp;
836		break;
837	    }
838    }
839    if (last_encap_vif == NULL) {
840	last_encap_src = INADDR_ANY;
841	return 0;
842    }
843    return 64;
844}
845
846/*
847 * De-encapsulate a packet and feed it back through ip input (this
848 * routine is called whenever IP gets a packet that mroute_encap_func()
849 * claimed).
850 */
851static void
852mroute_encap_input(struct mbuf *m, int off)
853{
854    struct ip *ip = mtod(m, struct ip *);
855    int hlen = ip->ip_hl << 2;
856
857    if (hlen > sizeof(struct ip))
858	ip_stripoptions(m, (struct mbuf *) 0);
859    m->m_data += sizeof(struct ip);
860    m->m_len -= sizeof(struct ip);
861    m->m_pkthdr.len -= sizeof(struct ip);
862
863    m->m_pkthdr.rcvif = last_encap_vif->v_ifp;
864
865    netisr_queue(NETISR_IP, m);
866    /*
867     * normally we would need a "schednetisr(NETISR_IP)"
868     * here but we were called by ip_input and it is going
869     * to loop back & try to dequeue the packet we just
870     * queued as soon as we return so we avoid the
871     * unnecessary software interrrupt.
872     *
873     * XXX
874     * This no longer holds - we may have direct-dispatched the packet,
875     * or there may be a queue processing limit.
876     */
877}
878
879extern struct domain inetdomain;
880static struct protosw mroute_encap_protosw =
881{ SOCK_RAW,	&inetdomain,	IPPROTO_IPV4,	PR_ATOMIC|PR_ADDR,
882  mroute_encap_input,	0,	0,		rip_ctloutput,
883  0,
884  0,		0,		0,		0,
885  &rip_usrreqs
886};
887
888/*
889 * Add a vif to the vif table
890 */
891static int
892add_vif(struct vifctl *vifcp)
893{
894    struct vif *vifp = viftable + vifcp->vifc_vifi;
895    struct sockaddr_in sin = {sizeof sin, AF_INET};
896    struct ifaddr *ifa;
897    struct ifnet *ifp;
898    int error;
899    struct tbf *v_tbf = tbftable + vifcp->vifc_vifi;
900
901    VIF_LOCK();
902    if (vifcp->vifc_vifi >= MAXVIFS) {
903	VIF_UNLOCK();
904	return EINVAL;
905    }
906    if (vifp->v_lcl_addr.s_addr != INADDR_ANY) {
907	VIF_UNLOCK();
908	return EADDRINUSE;
909    }
910    if (vifcp->vifc_lcl_addr.s_addr == INADDR_ANY) {
911	VIF_UNLOCK();
912	return EADDRNOTAVAIL;
913    }
914
915    /* Find the interface with an address in AF_INET family */
916#ifdef PIM
917    if (vifcp->vifc_flags & VIFF_REGISTER) {
918	/*
919	 * XXX: Because VIFF_REGISTER does not really need a valid
920	 * local interface (e.g. it could be 127.0.0.2), we don't
921	 * check its address.
922	 */
923	ifp = NULL;
924    } else
925#endif
926    {
927	sin.sin_addr = vifcp->vifc_lcl_addr;
928	ifa = ifa_ifwithaddr((struct sockaddr *)&sin);
929	if (ifa == NULL) {
930	    VIF_UNLOCK();
931	    return EADDRNOTAVAIL;
932	}
933	ifp = ifa->ifa_ifp;
934    }
935
936    if (vifcp->vifc_flags & VIFF_TUNNEL) {
937	if ((vifcp->vifc_flags & VIFF_SRCRT) == 0) {
938	    /*
939	     * An encapsulating tunnel is wanted.  Tell
940	     * mroute_encap_input() to start paying attention
941	     * to encapsulated packets.
942	     */
943	    if (encap_cookie == NULL) {
944		int i;
945
946		encap_cookie = encap_attach_func(AF_INET, IPPROTO_IPV4,
947				mroute_encapcheck,
948				(struct protosw *)&mroute_encap_protosw, NULL);
949
950		if (encap_cookie == NULL) {
951		    printf("ip_mroute: unable to attach encap\n");
952		    VIF_UNLOCK();
953		    return EIO;	/* XXX */
954		}
955		for (i = 0; i < MAXVIFS; ++i) {
956		    if_initname(&multicast_decap_if[i], "mdecap", i);
957		}
958	    }
959	    /*
960	     * Set interface to fake encapsulator interface
961	     */
962	    ifp = &multicast_decap_if[vifcp->vifc_vifi];
963	    /*
964	     * Prepare cached route entry
965	     */
966	    bzero(&vifp->v_route, sizeof(vifp->v_route));
967	} else {
968	    log(LOG_ERR, "source routed tunnels not supported\n");
969	    VIF_UNLOCK();
970	    return EOPNOTSUPP;
971	}
972#ifdef PIM
973    } else if (vifcp->vifc_flags & VIFF_REGISTER) {
974	ifp = &multicast_register_if;
975	if (mrtdebug)
976	    log(LOG_DEBUG, "Adding a register vif, ifp: %p\n",
977		    (void *)&multicast_register_if);
978	if (reg_vif_num == VIFI_INVALID) {
979	    if_initname(&multicast_register_if, "register_vif", 0);
980	    multicast_register_if.if_flags = IFF_LOOPBACK;
981	    bzero(&vifp->v_route, sizeof(vifp->v_route));
982	    reg_vif_num = vifcp->vifc_vifi;
983	}
984#endif
985    } else {		/* Make sure the interface supports multicast */
986	if ((ifp->if_flags & IFF_MULTICAST) == 0) {
987	    VIF_UNLOCK();
988	    return EOPNOTSUPP;
989	}
990
991	/* Enable promiscuous reception of all IP multicasts from the if */
992	error = if_allmulti(ifp, 1);
993	if (error) {
994	    VIF_UNLOCK();
995	    return error;
996	}
997    }
998
999    /* define parameters for the tbf structure */
1000    vifp->v_tbf = v_tbf;
1001    GET_TIME(vifp->v_tbf->tbf_last_pkt_t);
1002    vifp->v_tbf->tbf_n_tok = 0;
1003    vifp->v_tbf->tbf_q_len = 0;
1004    vifp->v_tbf->tbf_max_q_len = MAXQSIZE;
1005    vifp->v_tbf->tbf_q = vifp->v_tbf->tbf_t = NULL;
1006
1007    vifp->v_flags     = vifcp->vifc_flags;
1008    vifp->v_threshold = vifcp->vifc_threshold;
1009    vifp->v_lcl_addr  = vifcp->vifc_lcl_addr;
1010    vifp->v_rmt_addr  = vifcp->vifc_rmt_addr;
1011    vifp->v_ifp       = ifp;
1012    /* scaling up here allows division by 1024 in critical code */
1013    vifp->v_rate_limit= vifcp->vifc_rate_limit * 1024 / 1000;
1014    vifp->v_rsvp_on   = 0;
1015    vifp->v_rsvpd     = NULL;
1016    /* initialize per vif pkt counters */
1017    vifp->v_pkt_in    = 0;
1018    vifp->v_pkt_out   = 0;
1019    vifp->v_bytes_in  = 0;
1020    vifp->v_bytes_out = 0;
1021
1022    /* Adjust numvifs up if the vifi is higher than numvifs */
1023    if (numvifs <= vifcp->vifc_vifi) numvifs = vifcp->vifc_vifi + 1;
1024
1025    VIF_UNLOCK();
1026
1027    if (mrtdebug)
1028	log(LOG_DEBUG, "add_vif #%d, lcladdr %lx, %s %lx, thresh %x, rate %d\n",
1029	    vifcp->vifc_vifi,
1030	    (u_long)ntohl(vifcp->vifc_lcl_addr.s_addr),
1031	    (vifcp->vifc_flags & VIFF_TUNNEL) ? "rmtaddr" : "mask",
1032	    (u_long)ntohl(vifcp->vifc_rmt_addr.s_addr),
1033	    vifcp->vifc_threshold,
1034	    vifcp->vifc_rate_limit);
1035
1036    return 0;
1037}
1038
1039/*
1040 * Delete a vif from the vif table
1041 */
1042static int
1043del_vif(vifi_t vifi)
1044{
1045    struct vif *vifp;
1046
1047    VIF_LOCK();
1048
1049    if (vifi >= numvifs) {
1050	VIF_UNLOCK();
1051	return EINVAL;
1052    }
1053    vifp = &viftable[vifi];
1054    if (vifp->v_lcl_addr.s_addr == INADDR_ANY) {
1055	VIF_UNLOCK();
1056	return EADDRNOTAVAIL;
1057    }
1058
1059    if (!(vifp->v_flags & (VIFF_TUNNEL | VIFF_REGISTER)))
1060	if_allmulti(vifp->v_ifp, 0);
1061
1062    if (vifp == last_encap_vif) {
1063	last_encap_vif = NULL;
1064	last_encap_src = INADDR_ANY;
1065    }
1066
1067    /*
1068     * Free packets queued at the interface
1069     */
1070    while (vifp->v_tbf->tbf_q) {
1071	struct mbuf *m = vifp->v_tbf->tbf_q;
1072
1073	vifp->v_tbf->tbf_q = m->m_act;
1074	m_freem(m);
1075    }
1076
1077#ifdef PIM
1078    if (vifp->v_flags & VIFF_REGISTER)
1079	reg_vif_num = VIFI_INVALID;
1080#endif
1081
1082    bzero((caddr_t)vifp->v_tbf, sizeof(*(vifp->v_tbf)));
1083    bzero((caddr_t)vifp, sizeof (*vifp));
1084
1085    if (mrtdebug)
1086	log(LOG_DEBUG, "del_vif %d, numvifs %d\n", vifi, numvifs);
1087
1088    /* Adjust numvifs down */
1089    for (vifi = numvifs; vifi > 0; vifi--)
1090	if (viftable[vifi-1].v_lcl_addr.s_addr != INADDR_ANY)
1091	    break;
1092    numvifs = vifi;
1093
1094    VIF_UNLOCK();
1095
1096    return 0;
1097}
1098
1099/*
1100 * update an mfc entry without resetting counters and S,G addresses.
1101 */
1102static void
1103update_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp)
1104{
1105    int i;
1106
1107    rt->mfc_parent = mfccp->mfcc_parent;
1108    for (i = 0; i < numvifs; i++) {
1109	rt->mfc_ttls[i] = mfccp->mfcc_ttls[i];
1110	rt->mfc_flags[i] = mfccp->mfcc_flags[i] & mrt_api_config &
1111	    MRT_MFC_FLAGS_ALL;
1112    }
1113    /* set the RP address */
1114    if (mrt_api_config & MRT_MFC_RP)
1115	rt->mfc_rp = mfccp->mfcc_rp;
1116    else
1117	rt->mfc_rp.s_addr = INADDR_ANY;
1118}
1119
1120/*
1121 * fully initialize an mfc entry from the parameter.
1122 */
1123static void
1124init_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp)
1125{
1126    rt->mfc_origin     = mfccp->mfcc_origin;
1127    rt->mfc_mcastgrp   = mfccp->mfcc_mcastgrp;
1128
1129    update_mfc_params(rt, mfccp);
1130
1131    /* initialize pkt counters per src-grp */
1132    rt->mfc_pkt_cnt    = 0;
1133    rt->mfc_byte_cnt   = 0;
1134    rt->mfc_wrong_if   = 0;
1135    rt->mfc_last_assert.tv_sec = rt->mfc_last_assert.tv_usec = 0;
1136}
1137
1138
1139/*
1140 * Add an mfc entry
1141 */
1142static int
1143add_mfc(struct mfcctl2 *mfccp)
1144{
1145    struct mfc *rt;
1146    u_long hash;
1147    struct rtdetq *rte;
1148    u_short nstl;
1149
1150    VIF_LOCK();
1151    MFC_LOCK();
1152
1153    rt = mfc_find(mfccp->mfcc_origin.s_addr, mfccp->mfcc_mcastgrp.s_addr);
1154
1155    /* If an entry already exists, just update the fields */
1156    if (rt) {
1157	if (mrtdebug & DEBUG_MFC)
1158	    log(LOG_DEBUG,"add_mfc update o %lx g %lx p %x\n",
1159		(u_long)ntohl(mfccp->mfcc_origin.s_addr),
1160		(u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr),
1161		mfccp->mfcc_parent);
1162
1163	update_mfc_params(rt, mfccp);
1164	MFC_UNLOCK();
1165	VIF_UNLOCK();
1166	return 0;
1167    }
1168
1169    /*
1170     * Find the entry for which the upcall was made and update
1171     */
1172    hash = MFCHASH(mfccp->mfcc_origin.s_addr, mfccp->mfcc_mcastgrp.s_addr);
1173    for (rt = mfctable[hash], nstl = 0; rt; rt = rt->mfc_next) {
1174
1175	if ((rt->mfc_origin.s_addr == mfccp->mfcc_origin.s_addr) &&
1176		(rt->mfc_mcastgrp.s_addr == mfccp->mfcc_mcastgrp.s_addr) &&
1177		(rt->mfc_stall != NULL)) {
1178
1179	    if (nstl++)
1180		log(LOG_ERR, "add_mfc %s o %lx g %lx p %x dbx %p\n",
1181		    "multiple kernel entries",
1182		    (u_long)ntohl(mfccp->mfcc_origin.s_addr),
1183		    (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr),
1184		    mfccp->mfcc_parent, (void *)rt->mfc_stall);
1185
1186	    if (mrtdebug & DEBUG_MFC)
1187		log(LOG_DEBUG,"add_mfc o %lx g %lx p %x dbg %p\n",
1188		    (u_long)ntohl(mfccp->mfcc_origin.s_addr),
1189		    (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr),
1190		    mfccp->mfcc_parent, (void *)rt->mfc_stall);
1191
1192	    init_mfc_params(rt, mfccp);
1193
1194	    rt->mfc_expire = 0;	/* Don't clean this guy up */
1195	    nexpire[hash]--;
1196
1197	    /* free packets Qed at the end of this entry */
1198	    for (rte = rt->mfc_stall; rte != NULL; ) {
1199		struct rtdetq *n = rte->next;
1200
1201		ip_mdq(rte->m, rte->ifp, rt, -1);
1202		m_freem(rte->m);
1203		free(rte, M_MRTABLE);
1204		rte = n;
1205	    }
1206	    rt->mfc_stall = NULL;
1207	}
1208    }
1209
1210    /*
1211     * It is possible that an entry is being inserted without an upcall
1212     */
1213    if (nstl == 0) {
1214	if (mrtdebug & DEBUG_MFC)
1215	    log(LOG_DEBUG,"add_mfc no upcall h %lu o %lx g %lx p %x\n",
1216		hash, (u_long)ntohl(mfccp->mfcc_origin.s_addr),
1217		(u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr),
1218		mfccp->mfcc_parent);
1219
1220	for (rt = mfctable[hash]; rt != NULL; rt = rt->mfc_next) {
1221	    if ((rt->mfc_origin.s_addr == mfccp->mfcc_origin.s_addr) &&
1222		    (rt->mfc_mcastgrp.s_addr == mfccp->mfcc_mcastgrp.s_addr)) {
1223		init_mfc_params(rt, mfccp);
1224		if (rt->mfc_expire)
1225		    nexpire[hash]--;
1226		rt->mfc_expire = 0;
1227		break; /* XXX */
1228	    }
1229	}
1230	if (rt == NULL) {		/* no upcall, so make a new entry */
1231	    rt = (struct mfc *)malloc(sizeof(*rt), M_MRTABLE, M_NOWAIT);
1232	    if (rt == NULL) {
1233		MFC_UNLOCK();
1234		VIF_UNLOCK();
1235		return ENOBUFS;
1236	    }
1237
1238	    init_mfc_params(rt, mfccp);
1239	    rt->mfc_expire     = 0;
1240	    rt->mfc_stall      = NULL;
1241
1242	    rt->mfc_bw_meter = NULL;
1243	    /* insert new entry at head of hash chain */
1244	    rt->mfc_next = mfctable[hash];
1245	    mfctable[hash] = rt;
1246	}
1247    }
1248    MFC_UNLOCK();
1249    VIF_UNLOCK();
1250    return 0;
1251}
1252
1253/*
1254 * Delete an mfc entry
1255 */
1256static int
1257del_mfc(struct mfcctl2 *mfccp)
1258{
1259    struct in_addr 	origin;
1260    struct in_addr 	mcastgrp;
1261    struct mfc 		*rt;
1262    struct mfc	 	**nptr;
1263    u_long 		hash;
1264    struct bw_meter	*list;
1265
1266    origin = mfccp->mfcc_origin;
1267    mcastgrp = mfccp->mfcc_mcastgrp;
1268
1269    if (mrtdebug & DEBUG_MFC)
1270	log(LOG_DEBUG,"del_mfc orig %lx mcastgrp %lx\n",
1271	    (u_long)ntohl(origin.s_addr), (u_long)ntohl(mcastgrp.s_addr));
1272
1273    MFC_LOCK();
1274
1275    hash = MFCHASH(origin.s_addr, mcastgrp.s_addr);
1276    for (nptr = &mfctable[hash]; (rt = *nptr) != NULL; nptr = &rt->mfc_next)
1277	if (origin.s_addr == rt->mfc_origin.s_addr &&
1278		mcastgrp.s_addr == rt->mfc_mcastgrp.s_addr &&
1279		rt->mfc_stall == NULL)
1280	    break;
1281    if (rt == NULL) {
1282	MFC_UNLOCK();
1283	return EADDRNOTAVAIL;
1284    }
1285
1286    *nptr = rt->mfc_next;
1287
1288    /*
1289     * free the bw_meter entries
1290     */
1291    list = rt->mfc_bw_meter;
1292    rt->mfc_bw_meter = NULL;
1293
1294    free(rt, M_MRTABLE);
1295
1296    free_bw_list(list);
1297
1298    MFC_UNLOCK();
1299
1300    return 0;
1301}
1302
1303/*
1304 * Send a message to mrouted on the multicast routing socket
1305 */
1306static int
1307socket_send(struct socket *s, struct mbuf *mm, struct sockaddr_in *src)
1308{
1309    if (s) {
1310	SOCKBUF_LOCK(&s->so_rcv);
1311	if (sbappendaddr_locked(&s->so_rcv, (struct sockaddr *)src, mm,
1312	    NULL) != 0) {
1313	    sorwakeup_locked(s);
1314	    return 0;
1315	}
1316	SOCKBUF_UNLOCK(&s->so_rcv);
1317    }
1318    m_freem(mm);
1319    return -1;
1320}
1321
1322/*
1323 * IP multicast forwarding function. This function assumes that the packet
1324 * pointed to by "ip" has arrived on (or is about to be sent to) the interface
1325 * pointed to by "ifp", and the packet is to be relayed to other networks
1326 * that have members of the packet's destination IP multicast group.
1327 *
1328 * The packet is returned unscathed to the caller, unless it is
1329 * erroneous, in which case a non-zero return value tells the caller to
1330 * discard it.
1331 */
1332
1333#define TUNNEL_LEN  12  /* # bytes of IP option for tunnel encapsulation  */
1334
1335static int
1336X_ip_mforward(struct ip *ip, struct ifnet *ifp, struct mbuf *m,
1337    struct ip_moptions *imo)
1338{
1339    struct mfc *rt;
1340    int error;
1341    vifi_t vifi;
1342
1343    if (mrtdebug & DEBUG_FORWARD)
1344	log(LOG_DEBUG, "ip_mforward: src %lx, dst %lx, ifp %p\n",
1345	    (u_long)ntohl(ip->ip_src.s_addr), (u_long)ntohl(ip->ip_dst.s_addr),
1346	    (void *)ifp);
1347
1348    if (ip->ip_hl < (sizeof(struct ip) + TUNNEL_LEN) >> 2 ||
1349		((u_char *)(ip + 1))[1] != IPOPT_LSRR ) {
1350	/*
1351	 * Packet arrived via a physical interface or
1352	 * an encapsulated tunnel or a register_vif.
1353	 */
1354    } else {
1355	/*
1356	 * Packet arrived through a source-route tunnel.
1357	 * Source-route tunnels are no longer supported.
1358	 */
1359	static int last_log;
1360	if (last_log != time_second) {
1361	    last_log = time_second;
1362	    log(LOG_ERR,
1363		"ip_mforward: received source-routed packet from %lx\n",
1364		(u_long)ntohl(ip->ip_src.s_addr));
1365	}
1366	return 1;
1367    }
1368
1369    VIF_LOCK();
1370    MFC_LOCK();
1371    if (imo && ((vifi = imo->imo_multicast_vif) < numvifs)) {
1372	if (ip->ip_ttl < 255)
1373	    ip->ip_ttl++;	/* compensate for -1 in *_send routines */
1374	if (rsvpdebug && ip->ip_p == IPPROTO_RSVP) {
1375	    struct vif *vifp = viftable + vifi;
1376
1377	    printf("Sending IPPROTO_RSVP from %lx to %lx on vif %d (%s%s)\n",
1378		(long)ntohl(ip->ip_src.s_addr), (long)ntohl(ip->ip_dst.s_addr),
1379		vifi,
1380		(vifp->v_flags & VIFF_TUNNEL) ? "tunnel on " : "",
1381		vifp->v_ifp->if_xname);
1382	}
1383	error = ip_mdq(m, ifp, NULL, vifi);
1384	MFC_UNLOCK();
1385	VIF_UNLOCK();
1386	return error;
1387    }
1388    if (rsvpdebug && ip->ip_p == IPPROTO_RSVP) {
1389	printf("Warning: IPPROTO_RSVP from %lx to %lx without vif option\n",
1390	    (long)ntohl(ip->ip_src.s_addr), (long)ntohl(ip->ip_dst.s_addr));
1391	if (!imo)
1392	    printf("In fact, no options were specified at all\n");
1393    }
1394
1395    /*
1396     * Don't forward a packet with time-to-live of zero or one,
1397     * or a packet destined to a local-only group.
1398     */
1399    if (ip->ip_ttl <= 1 || ntohl(ip->ip_dst.s_addr) <= INADDR_MAX_LOCAL_GROUP) {
1400	MFC_UNLOCK();
1401	VIF_UNLOCK();
1402	return 0;
1403    }
1404
1405    /*
1406     * Determine forwarding vifs from the forwarding cache table
1407     */
1408    ++mrtstat.mrts_mfc_lookups;
1409    rt = mfc_find(ip->ip_src.s_addr, ip->ip_dst.s_addr);
1410
1411    /* Entry exists, so forward if necessary */
1412    if (rt != NULL) {
1413	error = ip_mdq(m, ifp, rt, -1);
1414	MFC_UNLOCK();
1415	VIF_UNLOCK();
1416	return error;
1417    } else {
1418	/*
1419	 * If we don't have a route for packet's origin,
1420	 * Make a copy of the packet & send message to routing daemon
1421	 */
1422
1423	struct mbuf *mb0;
1424	struct rtdetq *rte;
1425	u_long hash;
1426	int hlen = ip->ip_hl << 2;
1427
1428	++mrtstat.mrts_mfc_misses;
1429
1430	mrtstat.mrts_no_route++;
1431	if (mrtdebug & (DEBUG_FORWARD | DEBUG_MFC))
1432	    log(LOG_DEBUG, "ip_mforward: no rte s %lx g %lx\n",
1433		(u_long)ntohl(ip->ip_src.s_addr),
1434		(u_long)ntohl(ip->ip_dst.s_addr));
1435
1436	/*
1437	 * Allocate mbufs early so that we don't do extra work if we are
1438	 * just going to fail anyway.  Make sure to pullup the header so
1439	 * that other people can't step on it.
1440	 */
1441	rte = (struct rtdetq *)malloc((sizeof *rte), M_MRTABLE, M_NOWAIT);
1442	if (rte == NULL) {
1443	    MFC_UNLOCK();
1444	    VIF_UNLOCK();
1445	    return ENOBUFS;
1446	}
1447	mb0 = m_copypacket(m, M_DONTWAIT);
1448	if (mb0 && (M_HASCL(mb0) || mb0->m_len < hlen))
1449	    mb0 = m_pullup(mb0, hlen);
1450	if (mb0 == NULL) {
1451	    free(rte, M_MRTABLE);
1452	    MFC_UNLOCK();
1453	    VIF_UNLOCK();
1454	    return ENOBUFS;
1455	}
1456
1457	/* is there an upcall waiting for this flow ? */
1458	hash = MFCHASH(ip->ip_src.s_addr, ip->ip_dst.s_addr);
1459	for (rt = mfctable[hash]; rt; rt = rt->mfc_next) {
1460	    if ((ip->ip_src.s_addr == rt->mfc_origin.s_addr) &&
1461		    (ip->ip_dst.s_addr == rt->mfc_mcastgrp.s_addr) &&
1462		    (rt->mfc_stall != NULL))
1463		break;
1464	}
1465
1466	if (rt == NULL) {
1467	    int i;
1468	    struct igmpmsg *im;
1469	    struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
1470	    struct mbuf *mm;
1471
1472	    /*
1473	     * Locate the vifi for the incoming interface for this packet.
1474	     * If none found, drop packet.
1475	     */
1476	    for (vifi=0; vifi < numvifs && viftable[vifi].v_ifp != ifp; vifi++)
1477		;
1478	    if (vifi >= numvifs)	/* vif not found, drop packet */
1479		goto non_fatal;
1480
1481	    /* no upcall, so make a new entry */
1482	    rt = (struct mfc *)malloc(sizeof(*rt), M_MRTABLE, M_NOWAIT);
1483	    if (rt == NULL)
1484		goto fail;
1485	    /* Make a copy of the header to send to the user level process */
1486	    mm = m_copy(mb0, 0, hlen);
1487	    if (mm == NULL)
1488		goto fail1;
1489
1490	    /*
1491	     * Send message to routing daemon to install
1492	     * a route into the kernel table
1493	     */
1494
1495	    im = mtod(mm, struct igmpmsg *);
1496	    im->im_msgtype = IGMPMSG_NOCACHE;
1497	    im->im_mbz = 0;
1498	    im->im_vif = vifi;
1499
1500	    mrtstat.mrts_upcalls++;
1501
1502	    k_igmpsrc.sin_addr = ip->ip_src;
1503	    if (socket_send(ip_mrouter, mm, &k_igmpsrc) < 0) {
1504		log(LOG_WARNING, "ip_mforward: ip_mrouter socket queue full\n");
1505		++mrtstat.mrts_upq_sockfull;
1506fail1:
1507		free(rt, M_MRTABLE);
1508fail:
1509		free(rte, M_MRTABLE);
1510		m_freem(mb0);
1511		MFC_UNLOCK();
1512		VIF_UNLOCK();
1513		return ENOBUFS;
1514	    }
1515
1516	    /* insert new entry at head of hash chain */
1517	    rt->mfc_origin.s_addr     = ip->ip_src.s_addr;
1518	    rt->mfc_mcastgrp.s_addr   = ip->ip_dst.s_addr;
1519	    rt->mfc_expire	      = UPCALL_EXPIRE;
1520	    nexpire[hash]++;
1521	    for (i = 0; i < numvifs; i++) {
1522		rt->mfc_ttls[i] = 0;
1523		rt->mfc_flags[i] = 0;
1524	    }
1525	    rt->mfc_parent = -1;
1526
1527	    rt->mfc_rp.s_addr = INADDR_ANY; /* clear the RP address */
1528
1529	    rt->mfc_bw_meter = NULL;
1530
1531	    /* link into table */
1532	    rt->mfc_next   = mfctable[hash];
1533	    mfctable[hash] = rt;
1534	    rt->mfc_stall = rte;
1535
1536	} else {
1537	    /* determine if q has overflowed */
1538	    int npkts = 0;
1539	    struct rtdetq **p;
1540
1541	    /*
1542	     * XXX ouch! we need to append to the list, but we
1543	     * only have a pointer to the front, so we have to
1544	     * scan the entire list every time.
1545	     */
1546	    for (p = &rt->mfc_stall; *p != NULL; p = &(*p)->next)
1547		npkts++;
1548
1549	    if (npkts > MAX_UPQ) {
1550		mrtstat.mrts_upq_ovflw++;
1551non_fatal:
1552		free(rte, M_MRTABLE);
1553		m_freem(mb0);
1554		MFC_UNLOCK();
1555		VIF_UNLOCK();
1556		return 0;
1557	    }
1558
1559	    /* Add this entry to the end of the queue */
1560	    *p = rte;
1561	}
1562
1563	rte->m 			= mb0;
1564	rte->ifp 		= ifp;
1565	rte->next		= NULL;
1566
1567	MFC_UNLOCK();
1568	VIF_UNLOCK();
1569
1570	return 0;
1571    }
1572}
1573
1574/*
1575 * Clean up the cache entry if upcall is not serviced
1576 */
1577static void
1578expire_upcalls(void *unused)
1579{
1580    struct rtdetq *rte;
1581    struct mfc *mfc, **nptr;
1582    int i;
1583
1584    MFC_LOCK();
1585    for (i = 0; i < MFCTBLSIZ; i++) {
1586	if (nexpire[i] == 0)
1587	    continue;
1588	nptr = &mfctable[i];
1589	for (mfc = *nptr; mfc != NULL; mfc = *nptr) {
1590	    /*
1591	     * Skip real cache entries
1592	     * Make sure it wasn't marked to not expire (shouldn't happen)
1593	     * If it expires now
1594	     */
1595	    if (mfc->mfc_stall != NULL && mfc->mfc_expire != 0 &&
1596		    --mfc->mfc_expire == 0) {
1597		if (mrtdebug & DEBUG_EXPIRE)
1598		    log(LOG_DEBUG, "expire_upcalls: expiring (%lx %lx)\n",
1599			(u_long)ntohl(mfc->mfc_origin.s_addr),
1600			(u_long)ntohl(mfc->mfc_mcastgrp.s_addr));
1601		/*
1602		 * drop all the packets
1603		 * free the mbuf with the pkt, if, timing info
1604		 */
1605		for (rte = mfc->mfc_stall; rte; ) {
1606		    struct rtdetq *n = rte->next;
1607
1608		    m_freem(rte->m);
1609		    free(rte, M_MRTABLE);
1610		    rte = n;
1611		}
1612		++mrtstat.mrts_cache_cleanups;
1613		nexpire[i]--;
1614
1615		/*
1616		 * free the bw_meter entries
1617		 */
1618		while (mfc->mfc_bw_meter != NULL) {
1619		    struct bw_meter *x = mfc->mfc_bw_meter;
1620
1621		    mfc->mfc_bw_meter = x->bm_mfc_next;
1622		    free(x, M_BWMETER);
1623		}
1624
1625		*nptr = mfc->mfc_next;
1626		free(mfc, M_MRTABLE);
1627	    } else {
1628		nptr = &mfc->mfc_next;
1629	    }
1630	}
1631    }
1632    MFC_UNLOCK();
1633
1634    callout_reset(&expire_upcalls_ch, EXPIRE_TIMEOUT, expire_upcalls, NULL);
1635}
1636
1637/*
1638 * Packet forwarding routine once entry in the cache is made
1639 */
1640static int
1641ip_mdq(struct mbuf *m, struct ifnet *ifp, struct mfc *rt, vifi_t xmt_vif)
1642{
1643    struct ip  *ip = mtod(m, struct ip *);
1644    vifi_t vifi;
1645    int plen = ip->ip_len;
1646
1647    VIF_LOCK_ASSERT();
1648/*
1649 * Macro to send packet on vif.  Since RSVP packets don't get counted on
1650 * input, they shouldn't get counted on output, so statistics keeping is
1651 * separate.
1652 */
1653#define MC_SEND(ip,vifp,m) {				\
1654		if ((vifp)->v_flags & VIFF_TUNNEL)	\
1655		    encap_send((ip), (vifp), (m));	\
1656		else					\
1657		    phyint_send((ip), (vifp), (m));	\
1658}
1659
1660    /*
1661     * If xmt_vif is not -1, send on only the requested vif.
1662     *
1663     * (since vifi_t is u_short, -1 becomes MAXUSHORT, which > numvifs.)
1664     */
1665    if (xmt_vif < numvifs) {
1666#ifdef PIM
1667	if (viftable[xmt_vif].v_flags & VIFF_REGISTER)
1668	    pim_register_send(ip, viftable + xmt_vif, m, rt);
1669        else
1670#endif
1671	MC_SEND(ip, viftable + xmt_vif, m);
1672	return 1;
1673    }
1674
1675    /*
1676     * Don't forward if it didn't arrive from the parent vif for its origin.
1677     */
1678    vifi = rt->mfc_parent;
1679    if ((vifi >= numvifs) || (viftable[vifi].v_ifp != ifp)) {
1680	/* came in the wrong interface */
1681	if (mrtdebug & DEBUG_FORWARD)
1682	    log(LOG_DEBUG, "wrong if: ifp %p vifi %d vififp %p\n",
1683		(void *)ifp, vifi, (void *)viftable[vifi].v_ifp);
1684	++mrtstat.mrts_wrong_if;
1685	++rt->mfc_wrong_if;
1686	/*
1687	 * If we are doing PIM assert processing, send a message
1688	 * to the routing daemon.
1689	 *
1690	 * XXX: A PIM-SM router needs the WRONGVIF detection so it
1691	 * can complete the SPT switch, regardless of the type
1692	 * of the iif (broadcast media, GRE tunnel, etc).
1693	 */
1694	if (pim_assert && (vifi < numvifs) && viftable[vifi].v_ifp) {
1695	    struct timeval now;
1696	    u_long delta;
1697
1698#ifdef PIM
1699	    if (ifp == &multicast_register_if)
1700		pimstat.pims_rcv_registers_wrongiif++;
1701#endif
1702
1703	    /* Get vifi for the incoming packet */
1704	    for (vifi=0; vifi < numvifs && viftable[vifi].v_ifp != ifp; vifi++)
1705		;
1706	    if (vifi >= numvifs)
1707		return 0;	/* The iif is not found: ignore the packet. */
1708
1709	    if (rt->mfc_flags[vifi] & MRT_MFC_FLAGS_DISABLE_WRONGVIF)
1710		return 0;	/* WRONGVIF disabled: ignore the packet */
1711
1712	    GET_TIME(now);
1713
1714	    TV_DELTA(rt->mfc_last_assert, now, delta);
1715
1716	    if (delta > ASSERT_MSG_TIME) {
1717		struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
1718		struct igmpmsg *im;
1719		int hlen = ip->ip_hl << 2;
1720		struct mbuf *mm = m_copy(m, 0, hlen);
1721
1722		if (mm && (M_HASCL(mm) || mm->m_len < hlen))
1723		    mm = m_pullup(mm, hlen);
1724		if (mm == NULL)
1725		    return ENOBUFS;
1726
1727		rt->mfc_last_assert = now;
1728
1729		im = mtod(mm, struct igmpmsg *);
1730		im->im_msgtype	= IGMPMSG_WRONGVIF;
1731		im->im_mbz		= 0;
1732		im->im_vif		= vifi;
1733
1734		mrtstat.mrts_upcalls++;
1735
1736		k_igmpsrc.sin_addr = im->im_src;
1737		if (socket_send(ip_mrouter, mm, &k_igmpsrc) < 0) {
1738		    log(LOG_WARNING,
1739			"ip_mforward: ip_mrouter socket queue full\n");
1740		    ++mrtstat.mrts_upq_sockfull;
1741		    return ENOBUFS;
1742		}
1743	    }
1744	}
1745	return 0;
1746    }
1747
1748    /* If I sourced this packet, it counts as output, else it was input. */
1749    if (ip->ip_src.s_addr == viftable[vifi].v_lcl_addr.s_addr) {
1750	viftable[vifi].v_pkt_out++;
1751	viftable[vifi].v_bytes_out += plen;
1752    } else {
1753	viftable[vifi].v_pkt_in++;
1754	viftable[vifi].v_bytes_in += plen;
1755    }
1756    rt->mfc_pkt_cnt++;
1757    rt->mfc_byte_cnt += plen;
1758
1759    /*
1760     * For each vif, decide if a copy of the packet should be forwarded.
1761     * Forward if:
1762     *		- the ttl exceeds the vif's threshold
1763     *		- there are group members downstream on interface
1764     */
1765    for (vifi = 0; vifi < numvifs; vifi++)
1766	if ((rt->mfc_ttls[vifi] > 0) && (ip->ip_ttl > rt->mfc_ttls[vifi])) {
1767	    viftable[vifi].v_pkt_out++;
1768	    viftable[vifi].v_bytes_out += plen;
1769#ifdef PIM
1770	    if (viftable[vifi].v_flags & VIFF_REGISTER)
1771		pim_register_send(ip, viftable + vifi, m, rt);
1772	    else
1773#endif
1774	    MC_SEND(ip, viftable+vifi, m);
1775	}
1776
1777    /*
1778     * Perform upcall-related bw measuring.
1779     */
1780    if (rt->mfc_bw_meter != NULL) {
1781	struct bw_meter *x;
1782	struct timeval now;
1783
1784	GET_TIME(now);
1785	MFC_LOCK_ASSERT();
1786	for (x = rt->mfc_bw_meter; x != NULL; x = x->bm_mfc_next)
1787	    bw_meter_receive_packet(x, plen, &now);
1788    }
1789
1790    return 0;
1791}
1792
1793/*
1794 * check if a vif number is legal/ok. This is used by ip_output.
1795 */
1796static int
1797X_legal_vif_num(int vif)
1798{
1799    /* XXX unlocked, matter? */
1800    return (vif >= 0 && vif < numvifs);
1801}
1802
1803/*
1804 * Return the local address used by this vif
1805 */
1806static u_long
1807X_ip_mcast_src(int vifi)
1808{
1809    /* XXX unlocked, matter? */
1810    if (vifi >= 0 && vifi < numvifs)
1811	return viftable[vifi].v_lcl_addr.s_addr;
1812    else
1813	return INADDR_ANY;
1814}
1815
1816static void
1817phyint_send(struct ip *ip, struct vif *vifp, struct mbuf *m)
1818{
1819    struct mbuf *mb_copy;
1820    int hlen = ip->ip_hl << 2;
1821
1822    VIF_LOCK_ASSERT();
1823
1824    /*
1825     * Make a new reference to the packet; make sure that
1826     * the IP header is actually copied, not just referenced,
1827     * so that ip_output() only scribbles on the copy.
1828     */
1829    mb_copy = m_copypacket(m, M_DONTWAIT);
1830    if (mb_copy && (M_HASCL(mb_copy) || mb_copy->m_len < hlen))
1831	mb_copy = m_pullup(mb_copy, hlen);
1832    if (mb_copy == NULL)
1833	return;
1834
1835    if (vifp->v_rate_limit == 0)
1836	tbf_send_packet(vifp, mb_copy);
1837    else
1838	tbf_control(vifp, mb_copy, mtod(mb_copy, struct ip *), ip->ip_len);
1839}
1840
1841static void
1842encap_send(struct ip *ip, struct vif *vifp, struct mbuf *m)
1843{
1844    struct mbuf *mb_copy;
1845    struct ip *ip_copy;
1846    int i, len = ip->ip_len;
1847
1848    VIF_LOCK_ASSERT();
1849
1850    /* Take care of delayed checksums */
1851    if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
1852	in_delayed_cksum(m);
1853	m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
1854    }
1855
1856    /*
1857     * copy the old packet & pullup its IP header into the
1858     * new mbuf so we can modify it.  Try to fill the new
1859     * mbuf since if we don't the ethernet driver will.
1860     */
1861    MGETHDR(mb_copy, M_DONTWAIT, MT_HEADER);
1862    if (mb_copy == NULL)
1863	return;
1864#ifdef MAC
1865    mac_create_mbuf_multicast_encap(m, vifp->v_ifp, mb_copy);
1866#endif
1867    mb_copy->m_data += max_linkhdr;
1868    mb_copy->m_len = sizeof(multicast_encap_iphdr);
1869
1870    if ((mb_copy->m_next = m_copypacket(m, M_DONTWAIT)) == NULL) {
1871	m_freem(mb_copy);
1872	return;
1873    }
1874    i = MHLEN - M_LEADINGSPACE(mb_copy);
1875    if (i > len)
1876	i = len;
1877    mb_copy = m_pullup(mb_copy, i);
1878    if (mb_copy == NULL)
1879	return;
1880    mb_copy->m_pkthdr.len = len + sizeof(multicast_encap_iphdr);
1881
1882    /*
1883     * fill in the encapsulating IP header.
1884     */
1885    ip_copy = mtod(mb_copy, struct ip *);
1886    *ip_copy = multicast_encap_iphdr;
1887#ifdef RANDOM_IP_ID
1888    ip_copy->ip_id = ip_randomid();
1889#else
1890    ip_copy->ip_id = htons(ip_id++);
1891#endif
1892    ip_copy->ip_len += len;
1893    ip_copy->ip_src = vifp->v_lcl_addr;
1894    ip_copy->ip_dst = vifp->v_rmt_addr;
1895
1896    /*
1897     * turn the encapsulated IP header back into a valid one.
1898     */
1899    ip = (struct ip *)((caddr_t)ip_copy + sizeof(multicast_encap_iphdr));
1900    --ip->ip_ttl;
1901    ip->ip_len = htons(ip->ip_len);
1902    ip->ip_off = htons(ip->ip_off);
1903    ip->ip_sum = 0;
1904    mb_copy->m_data += sizeof(multicast_encap_iphdr);
1905    ip->ip_sum = in_cksum(mb_copy, ip->ip_hl << 2);
1906    mb_copy->m_data -= sizeof(multicast_encap_iphdr);
1907
1908    if (vifp->v_rate_limit == 0)
1909	tbf_send_packet(vifp, mb_copy);
1910    else
1911	tbf_control(vifp, mb_copy, ip, ip_copy->ip_len);
1912}
1913
1914/*
1915 * Token bucket filter module
1916 */
1917
1918static void
1919tbf_control(struct vif *vifp, struct mbuf *m, struct ip *ip, u_long p_len)
1920{
1921    struct tbf *t = vifp->v_tbf;
1922
1923    VIF_LOCK_ASSERT();
1924
1925    if (p_len > MAX_BKT_SIZE) {		/* drop if packet is too large */
1926	mrtstat.mrts_pkt2large++;
1927	m_freem(m);
1928	return;
1929    }
1930
1931    tbf_update_tokens(vifp);
1932
1933    if (t->tbf_q_len == 0) {		/* queue empty...		*/
1934	if (p_len <= t->tbf_n_tok) {	/* send packet if enough tokens */
1935	    t->tbf_n_tok -= p_len;
1936	    tbf_send_packet(vifp, m);
1937	} else {			/* no, queue packet and try later */
1938	    tbf_queue(vifp, m);
1939	    callout_reset(&tbf_reprocess_ch, TBF_REPROCESS,
1940		tbf_reprocess_q, vifp);
1941	}
1942    } else if (t->tbf_q_len < t->tbf_max_q_len) {
1943	/* finite queue length, so queue pkts and process queue */
1944	tbf_queue(vifp, m);
1945	tbf_process_q(vifp);
1946    } else {
1947	/* queue full, try to dq and queue and process */
1948	if (!tbf_dq_sel(vifp, ip)) {
1949	    mrtstat.mrts_q_overflow++;
1950	    m_freem(m);
1951	} else {
1952	    tbf_queue(vifp, m);
1953	    tbf_process_q(vifp);
1954	}
1955    }
1956}
1957
1958/*
1959 * adds a packet to the queue at the interface
1960 */
1961static void
1962tbf_queue(struct vif *vifp, struct mbuf *m)
1963{
1964    struct tbf *t = vifp->v_tbf;
1965
1966    VIF_LOCK_ASSERT();
1967
1968    if (t->tbf_t == NULL)	/* Queue was empty */
1969	t->tbf_q = m;
1970    else			/* Insert at tail */
1971	t->tbf_t->m_act = m;
1972
1973    t->tbf_t = m;		/* Set new tail pointer */
1974
1975#ifdef DIAGNOSTIC
1976    /* Make sure we didn't get fed a bogus mbuf */
1977    if (m->m_act)
1978	panic("tbf_queue: m_act");
1979#endif
1980    m->m_act = NULL;
1981
1982    t->tbf_q_len++;
1983}
1984
1985/*
1986 * processes the queue at the interface
1987 */
1988static void
1989tbf_process_q(struct vif *vifp)
1990{
1991    struct tbf *t = vifp->v_tbf;
1992
1993    VIF_LOCK_ASSERT();
1994
1995    /* loop through the queue at the interface and send as many packets
1996     * as possible
1997     */
1998    while (t->tbf_q_len > 0) {
1999	struct mbuf *m = t->tbf_q;
2000	int len = mtod(m, struct ip *)->ip_len;
2001
2002	/* determine if the packet can be sent */
2003	if (len > t->tbf_n_tok)	/* not enough tokens, we are done */
2004	    break;
2005	/* ok, reduce no of tokens, dequeue and send the packet. */
2006	t->tbf_n_tok -= len;
2007
2008	t->tbf_q = m->m_act;
2009	if (--t->tbf_q_len == 0)
2010	    t->tbf_t = NULL;
2011
2012	m->m_act = NULL;
2013	tbf_send_packet(vifp, m);
2014    }
2015}
2016
2017static void
2018tbf_reprocess_q(void *xvifp)
2019{
2020    struct vif *vifp = xvifp;
2021
2022    if (ip_mrouter == NULL)
2023	return;
2024    VIF_LOCK();
2025    tbf_update_tokens(vifp);
2026    tbf_process_q(vifp);
2027    if (vifp->v_tbf->tbf_q_len)
2028	callout_reset(&tbf_reprocess_ch, TBF_REPROCESS, tbf_reprocess_q, vifp);
2029    VIF_UNLOCK();
2030}
2031
2032/* function that will selectively discard a member of the queue
2033 * based on the precedence value and the priority
2034 */
2035static int
2036tbf_dq_sel(struct vif *vifp, struct ip *ip)
2037{
2038    u_int p;
2039    struct mbuf *m, *last;
2040    struct mbuf **np;
2041    struct tbf *t = vifp->v_tbf;
2042
2043    VIF_LOCK_ASSERT();
2044
2045    p = priority(vifp, ip);
2046
2047    np = &t->tbf_q;
2048    last = NULL;
2049    while ((m = *np) != NULL) {
2050	if (p > priority(vifp, mtod(m, struct ip *))) {
2051	    *np = m->m_act;
2052	    /* If we're removing the last packet, fix the tail pointer */
2053	    if (m == t->tbf_t)
2054		t->tbf_t = last;
2055	    m_freem(m);
2056	    /* It's impossible for the queue to be empty, but check anyways. */
2057	    if (--t->tbf_q_len == 0)
2058		t->tbf_t = NULL;
2059	    mrtstat.mrts_drop_sel++;
2060	    return 1;
2061	}
2062	np = &m->m_act;
2063	last = m;
2064    }
2065    return 0;
2066}
2067
2068static void
2069tbf_send_packet(struct vif *vifp, struct mbuf *m)
2070{
2071    VIF_LOCK_ASSERT();
2072
2073    if (vifp->v_flags & VIFF_TUNNEL)	/* If tunnel options */
2074	ip_output(m, NULL, &vifp->v_route, IP_FORWARDING, NULL, NULL);
2075    else {
2076	struct ip_moptions imo;
2077	int error;
2078	static struct route ro; /* XXX check this */
2079
2080	imo.imo_multicast_ifp  = vifp->v_ifp;
2081	imo.imo_multicast_ttl  = mtod(m, struct ip *)->ip_ttl - 1;
2082	imo.imo_multicast_loop = 1;
2083	imo.imo_multicast_vif  = -1;
2084
2085	/*
2086	 * Re-entrancy should not be a problem here, because
2087	 * the packets that we send out and are looped back at us
2088	 * should get rejected because they appear to come from
2089	 * the loopback interface, thus preventing looping.
2090	 */
2091	error = ip_output(m, NULL, &ro, IP_FORWARDING, &imo, NULL);
2092
2093	if (mrtdebug & DEBUG_XMIT)
2094	    log(LOG_DEBUG, "phyint_send on vif %d err %d\n",
2095		(int)(vifp - viftable), error);
2096    }
2097}
2098
2099/* determine the current time and then
2100 * the elapsed time (between the last time and time now)
2101 * in milliseconds & update the no. of tokens in the bucket
2102 */
2103static void
2104tbf_update_tokens(struct vif *vifp)
2105{
2106    struct timeval tp;
2107    u_long tm;
2108    struct tbf *t = vifp->v_tbf;
2109
2110    VIF_LOCK_ASSERT();
2111
2112    GET_TIME(tp);
2113
2114    TV_DELTA(tp, t->tbf_last_pkt_t, tm);
2115
2116    /*
2117     * This formula is actually
2118     * "time in seconds" * "bytes/second".
2119     *
2120     * (tm / 1000000) * (v_rate_limit * 1000 * (1000/1024) / 8)
2121     *
2122     * The (1000/1024) was introduced in add_vif to optimize
2123     * this divide into a shift.
2124     */
2125    t->tbf_n_tok += tm * vifp->v_rate_limit / 1024 / 8;
2126    t->tbf_last_pkt_t = tp;
2127
2128    if (t->tbf_n_tok > MAX_BKT_SIZE)
2129	t->tbf_n_tok = MAX_BKT_SIZE;
2130}
2131
2132static int
2133priority(struct vif *vifp, struct ip *ip)
2134{
2135    int prio = 50; /* the lowest priority -- default case */
2136
2137    /* temporary hack; may add general packet classifier some day */
2138
2139    /*
2140     * The UDP port space is divided up into four priority ranges:
2141     * [0, 16384)     : unclassified - lowest priority
2142     * [16384, 32768) : audio - highest priority
2143     * [32768, 49152) : whiteboard - medium priority
2144     * [49152, 65536) : video - low priority
2145     *
2146     * Everything else gets lowest priority.
2147     */
2148    if (ip->ip_p == IPPROTO_UDP) {
2149	struct udphdr *udp = (struct udphdr *)(((char *)ip) + (ip->ip_hl << 2));
2150	switch (ntohs(udp->uh_dport) & 0xc000) {
2151	case 0x4000:
2152	    prio = 70;
2153	    break;
2154	case 0x8000:
2155	    prio = 60;
2156	    break;
2157	case 0xc000:
2158	    prio = 55;
2159	    break;
2160	}
2161    }
2162    return prio;
2163}
2164
2165/*
2166 * End of token bucket filter modifications
2167 */
2168
2169static int
2170X_ip_rsvp_vif(struct socket *so, struct sockopt *sopt)
2171{
2172    int error, vifi;
2173
2174    if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_RSVP)
2175	return EOPNOTSUPP;
2176
2177    error = sooptcopyin(sopt, &vifi, sizeof vifi, sizeof vifi);
2178    if (error)
2179	return error;
2180
2181    VIF_LOCK();
2182
2183    if (vifi < 0 || vifi >= numvifs) {	/* Error if vif is invalid */
2184	VIF_UNLOCK();
2185	return EADDRNOTAVAIL;
2186    }
2187
2188    if (sopt->sopt_name == IP_RSVP_VIF_ON) {
2189	/* Check if socket is available. */
2190	if (viftable[vifi].v_rsvpd != NULL) {
2191	    VIF_UNLOCK();
2192	    return EADDRINUSE;
2193	}
2194
2195	viftable[vifi].v_rsvpd = so;
2196	/* This may seem silly, but we need to be sure we don't over-increment
2197	 * the RSVP counter, in case something slips up.
2198	 */
2199	if (!viftable[vifi].v_rsvp_on) {
2200	    viftable[vifi].v_rsvp_on = 1;
2201	    rsvp_on++;
2202	}
2203    } else { /* must be VIF_OFF */
2204	/*
2205	 * XXX as an additional consistency check, one could make sure
2206	 * that viftable[vifi].v_rsvpd == so, otherwise passing so as
2207	 * first parameter is pretty useless.
2208	 */
2209	viftable[vifi].v_rsvpd = NULL;
2210	/*
2211	 * This may seem silly, but we need to be sure we don't over-decrement
2212	 * the RSVP counter, in case something slips up.
2213	 */
2214	if (viftable[vifi].v_rsvp_on) {
2215	    viftable[vifi].v_rsvp_on = 0;
2216	    rsvp_on--;
2217	}
2218    }
2219    VIF_UNLOCK();
2220    return 0;
2221}
2222
2223static void
2224X_ip_rsvp_force_done(struct socket *so)
2225{
2226    int vifi;
2227
2228    /* Don't bother if it is not the right type of socket. */
2229    if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_RSVP)
2230	return;
2231
2232    VIF_LOCK();
2233
2234    /* The socket may be attached to more than one vif...this
2235     * is perfectly legal.
2236     */
2237    for (vifi = 0; vifi < numvifs; vifi++) {
2238	if (viftable[vifi].v_rsvpd == so) {
2239	    viftable[vifi].v_rsvpd = NULL;
2240	    /* This may seem silly, but we need to be sure we don't
2241	     * over-decrement the RSVP counter, in case something slips up.
2242	     */
2243	    if (viftable[vifi].v_rsvp_on) {
2244		viftable[vifi].v_rsvp_on = 0;
2245		rsvp_on--;
2246	    }
2247	}
2248    }
2249
2250    VIF_UNLOCK();
2251}
2252
2253static void
2254X_rsvp_input(struct mbuf *m, int off)
2255{
2256    int vifi;
2257    struct ip *ip = mtod(m, struct ip *);
2258    struct sockaddr_in rsvp_src = { sizeof rsvp_src, AF_INET };
2259    struct ifnet *ifp;
2260
2261    if (rsvpdebug)
2262	printf("rsvp_input: rsvp_on %d\n",rsvp_on);
2263
2264    /* Can still get packets with rsvp_on = 0 if there is a local member
2265     * of the group to which the RSVP packet is addressed.  But in this
2266     * case we want to throw the packet away.
2267     */
2268    if (!rsvp_on) {
2269	m_freem(m);
2270	return;
2271    }
2272
2273    if (rsvpdebug)
2274	printf("rsvp_input: check vifs\n");
2275
2276#ifdef DIAGNOSTIC
2277    M_ASSERTPKTHDR(m);
2278#endif
2279
2280    ifp = m->m_pkthdr.rcvif;
2281
2282    VIF_LOCK();
2283    /* Find which vif the packet arrived on. */
2284    for (vifi = 0; vifi < numvifs; vifi++)
2285	if (viftable[vifi].v_ifp == ifp)
2286	    break;
2287
2288    if (vifi == numvifs || viftable[vifi].v_rsvpd == NULL) {
2289	/*
2290	 * Drop the lock here to avoid holding it across rip_input.
2291	 * This could make rsvpdebug printfs wrong.  If you care,
2292	 * record the state of stuff before dropping the lock.
2293	 */
2294	VIF_UNLOCK();
2295	/*
2296	 * If the old-style non-vif-associated socket is set,
2297	 * then use it.  Otherwise, drop packet since there
2298	 * is no specific socket for this vif.
2299	 */
2300	if (ip_rsvpd != NULL) {
2301	    if (rsvpdebug)
2302		printf("rsvp_input: Sending packet up old-style socket\n");
2303	    rip_input(m, off);  /* xxx */
2304	} else {
2305	    if (rsvpdebug && vifi == numvifs)
2306		printf("rsvp_input: Can't find vif for packet.\n");
2307	    else if (rsvpdebug && viftable[vifi].v_rsvpd == NULL)
2308		printf("rsvp_input: No socket defined for vif %d\n",vifi);
2309	    m_freem(m);
2310	}
2311	return;
2312    }
2313    rsvp_src.sin_addr = ip->ip_src;
2314
2315    if (rsvpdebug && m)
2316	printf("rsvp_input: m->m_len = %d, sbspace() = %ld\n",
2317	       m->m_len,sbspace(&(viftable[vifi].v_rsvpd->so_rcv)));
2318
2319    if (socket_send(viftable[vifi].v_rsvpd, m, &rsvp_src) < 0) {
2320	if (rsvpdebug)
2321	    printf("rsvp_input: Failed to append to socket\n");
2322    } else {
2323	if (rsvpdebug)
2324	    printf("rsvp_input: send packet up\n");
2325    }
2326    VIF_UNLOCK();
2327}
2328
2329/*
2330 * Code for bandwidth monitors
2331 */
2332
2333/*
2334 * Define common interface for timeval-related methods
2335 */
2336#define	BW_TIMEVALCMP(tvp, uvp, cmp) timevalcmp((tvp), (uvp), cmp)
2337#define	BW_TIMEVALDECR(vvp, uvp) timevalsub((vvp), (uvp))
2338#define	BW_TIMEVALADD(vvp, uvp) timevaladd((vvp), (uvp))
2339
2340static uint32_t
2341compute_bw_meter_flags(struct bw_upcall *req)
2342{
2343    uint32_t flags = 0;
2344
2345    if (req->bu_flags & BW_UPCALL_UNIT_PACKETS)
2346	flags |= BW_METER_UNIT_PACKETS;
2347    if (req->bu_flags & BW_UPCALL_UNIT_BYTES)
2348	flags |= BW_METER_UNIT_BYTES;
2349    if (req->bu_flags & BW_UPCALL_GEQ)
2350	flags |= BW_METER_GEQ;
2351    if (req->bu_flags & BW_UPCALL_LEQ)
2352	flags |= BW_METER_LEQ;
2353
2354    return flags;
2355}
2356
2357/*
2358 * Add a bw_meter entry
2359 */
2360static int
2361add_bw_upcall(struct bw_upcall *req)
2362{
2363    struct mfc *mfc;
2364    struct timeval delta = { BW_UPCALL_THRESHOLD_INTERVAL_MIN_SEC,
2365		BW_UPCALL_THRESHOLD_INTERVAL_MIN_USEC };
2366    struct timeval now;
2367    struct bw_meter *x;
2368    uint32_t flags;
2369
2370    if (!(mrt_api_config & MRT_MFC_BW_UPCALL))
2371	return EOPNOTSUPP;
2372
2373    /* Test if the flags are valid */
2374    if (!(req->bu_flags & (BW_UPCALL_UNIT_PACKETS | BW_UPCALL_UNIT_BYTES)))
2375	return EINVAL;
2376    if (!(req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ)))
2377	return EINVAL;
2378    if ((req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ))
2379	    == (BW_UPCALL_GEQ | BW_UPCALL_LEQ))
2380	return EINVAL;
2381
2382    /* Test if the threshold time interval is valid */
2383    if (BW_TIMEVALCMP(&req->bu_threshold.b_time, &delta, <))
2384	return EINVAL;
2385
2386    flags = compute_bw_meter_flags(req);
2387
2388    /*
2389     * Find if we have already same bw_meter entry
2390     */
2391    MFC_LOCK();
2392    mfc = mfc_find(req->bu_src.s_addr, req->bu_dst.s_addr);
2393    if (mfc == NULL) {
2394	MFC_UNLOCK();
2395	return EADDRNOTAVAIL;
2396    }
2397    for (x = mfc->mfc_bw_meter; x != NULL; x = x->bm_mfc_next) {
2398	if ((BW_TIMEVALCMP(&x->bm_threshold.b_time,
2399			   &req->bu_threshold.b_time, ==)) &&
2400	    (x->bm_threshold.b_packets == req->bu_threshold.b_packets) &&
2401	    (x->bm_threshold.b_bytes == req->bu_threshold.b_bytes) &&
2402	    (x->bm_flags & BW_METER_USER_FLAGS) == flags)  {
2403	    MFC_UNLOCK();
2404	    return 0;		/* XXX Already installed */
2405	}
2406    }
2407
2408    /* Allocate the new bw_meter entry */
2409    x = (struct bw_meter *)malloc(sizeof(*x), M_BWMETER, M_NOWAIT);
2410    if (x == NULL) {
2411	MFC_UNLOCK();
2412	return ENOBUFS;
2413    }
2414
2415    /* Set the new bw_meter entry */
2416    x->bm_threshold.b_time = req->bu_threshold.b_time;
2417    GET_TIME(now);
2418    x->bm_start_time = now;
2419    x->bm_threshold.b_packets = req->bu_threshold.b_packets;
2420    x->bm_threshold.b_bytes = req->bu_threshold.b_bytes;
2421    x->bm_measured.b_packets = 0;
2422    x->bm_measured.b_bytes = 0;
2423    x->bm_flags = flags;
2424    x->bm_time_next = NULL;
2425    x->bm_time_hash = BW_METER_BUCKETS;
2426
2427    /* Add the new bw_meter entry to the front of entries for this MFC */
2428    x->bm_mfc = mfc;
2429    x->bm_mfc_next = mfc->mfc_bw_meter;
2430    mfc->mfc_bw_meter = x;
2431    schedule_bw_meter(x, &now);
2432    MFC_UNLOCK();
2433
2434    return 0;
2435}
2436
2437static void
2438free_bw_list(struct bw_meter *list)
2439{
2440    while (list != NULL) {
2441	struct bw_meter *x = list;
2442
2443	list = list->bm_mfc_next;
2444	unschedule_bw_meter(x);
2445	free(x, M_BWMETER);
2446    }
2447}
2448
2449/*
2450 * Delete one or multiple bw_meter entries
2451 */
2452static int
2453del_bw_upcall(struct bw_upcall *req)
2454{
2455    struct mfc *mfc;
2456    struct bw_meter *x;
2457
2458    if (!(mrt_api_config & MRT_MFC_BW_UPCALL))
2459	return EOPNOTSUPP;
2460
2461    MFC_LOCK();
2462    /* Find the corresponding MFC entry */
2463    mfc = mfc_find(req->bu_src.s_addr, req->bu_dst.s_addr);
2464    if (mfc == NULL) {
2465	MFC_UNLOCK();
2466	return EADDRNOTAVAIL;
2467    } else if (req->bu_flags & BW_UPCALL_DELETE_ALL) {
2468	/*
2469	 * Delete all bw_meter entries for this mfc
2470	 */
2471	struct bw_meter *list;
2472
2473	list = mfc->mfc_bw_meter;
2474	mfc->mfc_bw_meter = NULL;
2475	free_bw_list(list);
2476	MFC_UNLOCK();
2477	return 0;
2478    } else {			/* Delete a single bw_meter entry */
2479	struct bw_meter *prev;
2480	uint32_t flags = 0;
2481
2482	flags = compute_bw_meter_flags(req);
2483
2484	/* Find the bw_meter entry to delete */
2485	for (prev = NULL, x = mfc->mfc_bw_meter; x != NULL;
2486	     x = x->bm_mfc_next) {
2487	    if ((BW_TIMEVALCMP(&x->bm_threshold.b_time,
2488			       &req->bu_threshold.b_time, ==)) &&
2489		(x->bm_threshold.b_packets == req->bu_threshold.b_packets) &&
2490		(x->bm_threshold.b_bytes == req->bu_threshold.b_bytes) &&
2491		(x->bm_flags & BW_METER_USER_FLAGS) == flags)
2492		break;
2493	}
2494	if (x != NULL) { /* Delete entry from the list for this MFC */
2495	    if (prev != NULL)
2496		prev->bm_mfc_next = x->bm_mfc_next;	/* remove from middle*/
2497	    else
2498		x->bm_mfc->mfc_bw_meter = x->bm_mfc_next;/* new head of list */
2499
2500	    unschedule_bw_meter(x);
2501	    MFC_UNLOCK();
2502	    /* Free the bw_meter entry */
2503	    free(x, M_BWMETER);
2504	    return 0;
2505	} else {
2506	    MFC_UNLOCK();
2507	    return EINVAL;
2508	}
2509    }
2510    /* NOTREACHED */
2511}
2512
2513/*
2514 * Perform bandwidth measurement processing that may result in an upcall
2515 */
2516static void
2517bw_meter_receive_packet(struct bw_meter *x, int plen, struct timeval *nowp)
2518{
2519    struct timeval delta;
2520
2521    MFC_LOCK_ASSERT();
2522
2523    delta = *nowp;
2524    BW_TIMEVALDECR(&delta, &x->bm_start_time);
2525
2526    if (x->bm_flags & BW_METER_GEQ) {
2527	/*
2528	 * Processing for ">=" type of bw_meter entry
2529	 */
2530	if (BW_TIMEVALCMP(&delta, &x->bm_threshold.b_time, >)) {
2531	    /* Reset the bw_meter entry */
2532	    x->bm_start_time = *nowp;
2533	    x->bm_measured.b_packets = 0;
2534	    x->bm_measured.b_bytes = 0;
2535	    x->bm_flags &= ~BW_METER_UPCALL_DELIVERED;
2536	}
2537
2538	/* Record that a packet is received */
2539	x->bm_measured.b_packets++;
2540	x->bm_measured.b_bytes += plen;
2541
2542	/*
2543	 * Test if we should deliver an upcall
2544	 */
2545	if (!(x->bm_flags & BW_METER_UPCALL_DELIVERED)) {
2546	    if (((x->bm_flags & BW_METER_UNIT_PACKETS) &&
2547		 (x->bm_measured.b_packets >= x->bm_threshold.b_packets)) ||
2548		((x->bm_flags & BW_METER_UNIT_BYTES) &&
2549		 (x->bm_measured.b_bytes >= x->bm_threshold.b_bytes))) {
2550		/* Prepare an upcall for delivery */
2551		bw_meter_prepare_upcall(x, nowp);
2552		x->bm_flags |= BW_METER_UPCALL_DELIVERED;
2553	    }
2554	}
2555    } else if (x->bm_flags & BW_METER_LEQ) {
2556	/*
2557	 * Processing for "<=" type of bw_meter entry
2558	 */
2559	if (BW_TIMEVALCMP(&delta, &x->bm_threshold.b_time, >)) {
2560	    /*
2561	     * We are behind time with the multicast forwarding table
2562	     * scanning for "<=" type of bw_meter entries, so test now
2563	     * if we should deliver an upcall.
2564	     */
2565	    if (((x->bm_flags & BW_METER_UNIT_PACKETS) &&
2566		 (x->bm_measured.b_packets <= x->bm_threshold.b_packets)) ||
2567		((x->bm_flags & BW_METER_UNIT_BYTES) &&
2568		 (x->bm_measured.b_bytes <= x->bm_threshold.b_bytes))) {
2569		/* Prepare an upcall for delivery */
2570		bw_meter_prepare_upcall(x, nowp);
2571	    }
2572	    /* Reschedule the bw_meter entry */
2573	    unschedule_bw_meter(x);
2574	    schedule_bw_meter(x, nowp);
2575	}
2576
2577	/* Record that a packet is received */
2578	x->bm_measured.b_packets++;
2579	x->bm_measured.b_bytes += plen;
2580
2581	/*
2582	 * Test if we should restart the measuring interval
2583	 */
2584	if ((x->bm_flags & BW_METER_UNIT_PACKETS &&
2585	     x->bm_measured.b_packets <= x->bm_threshold.b_packets) ||
2586	    (x->bm_flags & BW_METER_UNIT_BYTES &&
2587	     x->bm_measured.b_bytes <= x->bm_threshold.b_bytes)) {
2588	    /* Don't restart the measuring interval */
2589	} else {
2590	    /* Do restart the measuring interval */
2591	    /*
2592	     * XXX: note that we don't unschedule and schedule, because this
2593	     * might be too much overhead per packet. Instead, when we process
2594	     * all entries for a given timer hash bin, we check whether it is
2595	     * really a timeout. If not, we reschedule at that time.
2596	     */
2597	    x->bm_start_time = *nowp;
2598	    x->bm_measured.b_packets = 0;
2599	    x->bm_measured.b_bytes = 0;
2600	    x->bm_flags &= ~BW_METER_UPCALL_DELIVERED;
2601	}
2602    }
2603}
2604
2605/*
2606 * Prepare a bandwidth-related upcall
2607 */
2608static void
2609bw_meter_prepare_upcall(struct bw_meter *x, struct timeval *nowp)
2610{
2611    struct timeval delta;
2612    struct bw_upcall *u;
2613
2614    MFC_LOCK_ASSERT();
2615
2616    /*
2617     * Compute the measured time interval
2618     */
2619    delta = *nowp;
2620    BW_TIMEVALDECR(&delta, &x->bm_start_time);
2621
2622    /*
2623     * If there are too many pending upcalls, deliver them now
2624     */
2625    if (bw_upcalls_n >= BW_UPCALLS_MAX)
2626	bw_upcalls_send();
2627
2628    /*
2629     * Set the bw_upcall entry
2630     */
2631    u = &bw_upcalls[bw_upcalls_n++];
2632    u->bu_src = x->bm_mfc->mfc_origin;
2633    u->bu_dst = x->bm_mfc->mfc_mcastgrp;
2634    u->bu_threshold.b_time = x->bm_threshold.b_time;
2635    u->bu_threshold.b_packets = x->bm_threshold.b_packets;
2636    u->bu_threshold.b_bytes = x->bm_threshold.b_bytes;
2637    u->bu_measured.b_time = delta;
2638    u->bu_measured.b_packets = x->bm_measured.b_packets;
2639    u->bu_measured.b_bytes = x->bm_measured.b_bytes;
2640    u->bu_flags = 0;
2641    if (x->bm_flags & BW_METER_UNIT_PACKETS)
2642	u->bu_flags |= BW_UPCALL_UNIT_PACKETS;
2643    if (x->bm_flags & BW_METER_UNIT_BYTES)
2644	u->bu_flags |= BW_UPCALL_UNIT_BYTES;
2645    if (x->bm_flags & BW_METER_GEQ)
2646	u->bu_flags |= BW_UPCALL_GEQ;
2647    if (x->bm_flags & BW_METER_LEQ)
2648	u->bu_flags |= BW_UPCALL_LEQ;
2649}
2650
2651/*
2652 * Send the pending bandwidth-related upcalls
2653 */
2654static void
2655bw_upcalls_send(void)
2656{
2657    struct mbuf *m;
2658    int len = bw_upcalls_n * sizeof(bw_upcalls[0]);
2659    struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
2660    static struct igmpmsg igmpmsg = { 0,		/* unused1 */
2661				      0,		/* unused2 */
2662				      IGMPMSG_BW_UPCALL,/* im_msgtype */
2663				      0,		/* im_mbz  */
2664				      0,		/* im_vif  */
2665				      0,		/* unused3 */
2666				      { 0 },		/* im_src  */
2667				      { 0 } };		/* im_dst  */
2668
2669    MFC_LOCK_ASSERT();
2670
2671    if (bw_upcalls_n == 0)
2672	return;			/* No pending upcalls */
2673
2674    bw_upcalls_n = 0;
2675
2676    /*
2677     * Allocate a new mbuf, initialize it with the header and
2678     * the payload for the pending calls.
2679     */
2680    MGETHDR(m, M_DONTWAIT, MT_HEADER);
2681    if (m == NULL) {
2682	log(LOG_WARNING, "bw_upcalls_send: cannot allocate mbuf\n");
2683	return;
2684    }
2685
2686    m->m_len = m->m_pkthdr.len = 0;
2687    m_copyback(m, 0, sizeof(struct igmpmsg), (caddr_t)&igmpmsg);
2688    m_copyback(m, sizeof(struct igmpmsg), len, (caddr_t)&bw_upcalls[0]);
2689
2690    /*
2691     * Send the upcalls
2692     * XXX do we need to set the address in k_igmpsrc ?
2693     */
2694    mrtstat.mrts_upcalls++;
2695    if (socket_send(ip_mrouter, m, &k_igmpsrc) < 0) {
2696	log(LOG_WARNING, "bw_upcalls_send: ip_mrouter socket queue full\n");
2697	++mrtstat.mrts_upq_sockfull;
2698    }
2699}
2700
2701/*
2702 * Compute the timeout hash value for the bw_meter entries
2703 */
2704#define	BW_METER_TIMEHASH(bw_meter, hash)				\
2705    do {								\
2706	struct timeval next_timeval = (bw_meter)->bm_start_time;	\
2707									\
2708	BW_TIMEVALADD(&next_timeval, &(bw_meter)->bm_threshold.b_time); \
2709	(hash) = next_timeval.tv_sec;					\
2710	if (next_timeval.tv_usec)					\
2711	    (hash)++; /* XXX: make sure we don't timeout early */	\
2712	(hash) %= BW_METER_BUCKETS;					\
2713    } while (0)
2714
2715/*
2716 * Schedule a timer to process periodically bw_meter entry of type "<="
2717 * by linking the entry in the proper hash bucket.
2718 */
2719static void
2720schedule_bw_meter(struct bw_meter *x, struct timeval *nowp)
2721{
2722    int time_hash;
2723
2724    MFC_LOCK_ASSERT();
2725
2726    if (!(x->bm_flags & BW_METER_LEQ))
2727	return;		/* XXX: we schedule timers only for "<=" entries */
2728
2729    /*
2730     * Reset the bw_meter entry
2731     */
2732    x->bm_start_time = *nowp;
2733    x->bm_measured.b_packets = 0;
2734    x->bm_measured.b_bytes = 0;
2735    x->bm_flags &= ~BW_METER_UPCALL_DELIVERED;
2736
2737    /*
2738     * Compute the timeout hash value and insert the entry
2739     */
2740    BW_METER_TIMEHASH(x, time_hash);
2741    x->bm_time_next = bw_meter_timers[time_hash];
2742    bw_meter_timers[time_hash] = x;
2743    x->bm_time_hash = time_hash;
2744}
2745
2746/*
2747 * Unschedule the periodic timer that processes bw_meter entry of type "<="
2748 * by removing the entry from the proper hash bucket.
2749 */
2750static void
2751unschedule_bw_meter(struct bw_meter *x)
2752{
2753    int time_hash;
2754    struct bw_meter *prev, *tmp;
2755
2756    MFC_LOCK_ASSERT();
2757
2758    if (!(x->bm_flags & BW_METER_LEQ))
2759	return;		/* XXX: we schedule timers only for "<=" entries */
2760
2761    /*
2762     * Compute the timeout hash value and delete the entry
2763     */
2764    time_hash = x->bm_time_hash;
2765    if (time_hash >= BW_METER_BUCKETS)
2766	return;		/* Entry was not scheduled */
2767
2768    for (prev = NULL, tmp = bw_meter_timers[time_hash];
2769	     tmp != NULL; prev = tmp, tmp = tmp->bm_time_next)
2770	if (tmp == x)
2771	    break;
2772
2773    if (tmp == NULL)
2774	panic("unschedule_bw_meter: bw_meter entry not found");
2775
2776    if (prev != NULL)
2777	prev->bm_time_next = x->bm_time_next;
2778    else
2779	bw_meter_timers[time_hash] = x->bm_time_next;
2780
2781    x->bm_time_next = NULL;
2782    x->bm_time_hash = BW_METER_BUCKETS;
2783}
2784
2785
2786/*
2787 * Process all "<=" type of bw_meter that should be processed now,
2788 * and for each entry prepare an upcall if necessary. Each processed
2789 * entry is rescheduled again for the (periodic) processing.
2790 *
2791 * This is run periodically (once per second normally). On each round,
2792 * all the potentially matching entries are in the hash slot that we are
2793 * looking at.
2794 */
2795static void
2796bw_meter_process()
2797{
2798    static uint32_t last_tv_sec;	/* last time we processed this */
2799
2800    uint32_t loops;
2801    int i;
2802    struct timeval now, process_endtime;
2803
2804    GET_TIME(now);
2805    if (last_tv_sec == now.tv_sec)
2806	return;		/* nothing to do */
2807
2808    loops = now.tv_sec - last_tv_sec;
2809    last_tv_sec = now.tv_sec;
2810    if (loops > BW_METER_BUCKETS)
2811	loops = BW_METER_BUCKETS;
2812
2813    MFC_LOCK();
2814    /*
2815     * Process all bins of bw_meter entries from the one after the last
2816     * processed to the current one. On entry, i points to the last bucket
2817     * visited, so we need to increment i at the beginning of the loop.
2818     */
2819    for (i = (now.tv_sec - loops) % BW_METER_BUCKETS; loops > 0; loops--) {
2820	struct bw_meter *x, *tmp_list;
2821
2822	if (++i >= BW_METER_BUCKETS)
2823	    i = 0;
2824
2825	/* Disconnect the list of bw_meter entries from the bin */
2826	tmp_list = bw_meter_timers[i];
2827	bw_meter_timers[i] = NULL;
2828
2829	/* Process the list of bw_meter entries */
2830	while (tmp_list != NULL) {
2831	    x = tmp_list;
2832	    tmp_list = tmp_list->bm_time_next;
2833
2834	    /* Test if the time interval is over */
2835	    process_endtime = x->bm_start_time;
2836	    BW_TIMEVALADD(&process_endtime, &x->bm_threshold.b_time);
2837	    if (BW_TIMEVALCMP(&process_endtime, &now, >)) {
2838		/* Not yet: reschedule, but don't reset */
2839		int time_hash;
2840
2841		BW_METER_TIMEHASH(x, time_hash);
2842		if (time_hash == i && process_endtime.tv_sec == now.tv_sec) {
2843		    /*
2844		     * XXX: somehow the bin processing is a bit ahead of time.
2845		     * Put the entry in the next bin.
2846		     */
2847		    if (++time_hash >= BW_METER_BUCKETS)
2848			time_hash = 0;
2849		}
2850		x->bm_time_next = bw_meter_timers[time_hash];
2851		bw_meter_timers[time_hash] = x;
2852		x->bm_time_hash = time_hash;
2853
2854		continue;
2855	    }
2856
2857	    /*
2858	     * Test if we should deliver an upcall
2859	     */
2860	    if (((x->bm_flags & BW_METER_UNIT_PACKETS) &&
2861		 (x->bm_measured.b_packets <= x->bm_threshold.b_packets)) ||
2862		((x->bm_flags & BW_METER_UNIT_BYTES) &&
2863		 (x->bm_measured.b_bytes <= x->bm_threshold.b_bytes))) {
2864		/* Prepare an upcall for delivery */
2865		bw_meter_prepare_upcall(x, &now);
2866	    }
2867
2868	    /*
2869	     * Reschedule for next processing
2870	     */
2871	    schedule_bw_meter(x, &now);
2872	}
2873    }
2874
2875    /* Send all upcalls that are pending delivery */
2876    bw_upcalls_send();
2877
2878    MFC_UNLOCK();
2879}
2880
2881/*
2882 * A periodic function for sending all upcalls that are pending delivery
2883 */
2884static void
2885expire_bw_upcalls_send(void *unused)
2886{
2887    MFC_LOCK();
2888    bw_upcalls_send();
2889    MFC_UNLOCK();
2890
2891    callout_reset(&bw_upcalls_ch, BW_UPCALLS_PERIOD,
2892	expire_bw_upcalls_send, NULL);
2893}
2894
2895/*
2896 * A periodic function for periodic scanning of the multicast forwarding
2897 * table for processing all "<=" bw_meter entries.
2898 */
2899static void
2900expire_bw_meter_process(void *unused)
2901{
2902    if (mrt_api_config & MRT_MFC_BW_UPCALL)
2903	bw_meter_process();
2904
2905    callout_reset(&bw_meter_ch, BW_METER_PERIOD, expire_bw_meter_process, NULL);
2906}
2907
2908/*
2909 * End of bandwidth monitoring code
2910 */
2911
2912#ifdef PIM
2913/*
2914 * Send the packet up to the user daemon, or eventually do kernel encapsulation
2915 *
2916 */
2917static int
2918pim_register_send(struct ip *ip, struct vif *vifp,
2919	struct mbuf *m, struct mfc *rt)
2920{
2921    struct mbuf *mb_copy, *mm;
2922
2923    if (mrtdebug & DEBUG_PIM)
2924        log(LOG_DEBUG, "pim_register_send: ");
2925
2926    mb_copy = pim_register_prepare(ip, m);
2927    if (mb_copy == NULL)
2928	return ENOBUFS;
2929
2930    /*
2931     * Send all the fragments. Note that the mbuf for each fragment
2932     * is freed by the sending machinery.
2933     */
2934    for (mm = mb_copy; mm; mm = mb_copy) {
2935	mb_copy = mm->m_nextpkt;
2936	mm->m_nextpkt = 0;
2937	mm = m_pullup(mm, sizeof(struct ip));
2938	if (mm != NULL) {
2939	    ip = mtod(mm, struct ip *);
2940	    if ((mrt_api_config & MRT_MFC_RP) &&
2941		(rt->mfc_rp.s_addr != INADDR_ANY)) {
2942		pim_register_send_rp(ip, vifp, mm, rt);
2943	    } else {
2944		pim_register_send_upcall(ip, vifp, mm, rt);
2945	    }
2946	}
2947    }
2948
2949    return 0;
2950}
2951
2952/*
2953 * Return a copy of the data packet that is ready for PIM Register
2954 * encapsulation.
2955 * XXX: Note that in the returned copy the IP header is a valid one.
2956 */
2957static struct mbuf *
2958pim_register_prepare(struct ip *ip, struct mbuf *m)
2959{
2960    struct mbuf *mb_copy = NULL;
2961    int mtu;
2962
2963    /* Take care of delayed checksums */
2964    if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
2965	in_delayed_cksum(m);
2966	m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
2967    }
2968
2969    /*
2970     * Copy the old packet & pullup its IP header into the
2971     * new mbuf so we can modify it.
2972     */
2973    mb_copy = m_copypacket(m, M_DONTWAIT);
2974    if (mb_copy == NULL)
2975	return NULL;
2976    mb_copy = m_pullup(mb_copy, ip->ip_hl << 2);
2977    if (mb_copy == NULL)
2978	return NULL;
2979
2980    /* take care of the TTL */
2981    ip = mtod(mb_copy, struct ip *);
2982    --ip->ip_ttl;
2983
2984    /* Compute the MTU after the PIM Register encapsulation */
2985    mtu = 0xffff - sizeof(pim_encap_iphdr) - sizeof(pim_encap_pimhdr);
2986
2987    if (ip->ip_len <= mtu) {
2988	/* Turn the IP header into a valid one */
2989	ip->ip_len = htons(ip->ip_len);
2990	ip->ip_off = htons(ip->ip_off);
2991	ip->ip_sum = 0;
2992	ip->ip_sum = in_cksum(mb_copy, ip->ip_hl << 2);
2993    } else {
2994	/* Fragment the packet */
2995	if (ip_fragment(ip, &mb_copy, mtu, 0, CSUM_DELAY_IP) != 0) {
2996	    m_freem(mb_copy);
2997	    return NULL;
2998	}
2999    }
3000    return mb_copy;
3001}
3002
3003/*
3004 * Send an upcall with the data packet to the user-level process.
3005 */
3006static int
3007pim_register_send_upcall(struct ip *ip, struct vif *vifp,
3008	struct mbuf *mb_copy, struct mfc *rt)
3009{
3010    struct mbuf *mb_first;
3011    int len = ntohs(ip->ip_len);
3012    struct igmpmsg *im;
3013    struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
3014
3015    VIF_LOCK_ASSERT();
3016
3017    /*
3018     * Add a new mbuf with an upcall header
3019     */
3020    MGETHDR(mb_first, M_DONTWAIT, MT_HEADER);
3021    if (mb_first == NULL) {
3022	m_freem(mb_copy);
3023	return ENOBUFS;
3024    }
3025    mb_first->m_data += max_linkhdr;
3026    mb_first->m_pkthdr.len = len + sizeof(struct igmpmsg);
3027    mb_first->m_len = sizeof(struct igmpmsg);
3028    mb_first->m_next = mb_copy;
3029
3030    /* Send message to routing daemon */
3031    im = mtod(mb_first, struct igmpmsg *);
3032    im->im_msgtype	= IGMPMSG_WHOLEPKT;
3033    im->im_mbz		= 0;
3034    im->im_vif		= vifp - viftable;
3035    im->im_src		= ip->ip_src;
3036    im->im_dst		= ip->ip_dst;
3037
3038    k_igmpsrc.sin_addr	= ip->ip_src;
3039
3040    mrtstat.mrts_upcalls++;
3041
3042    if (socket_send(ip_mrouter, mb_first, &k_igmpsrc) < 0) {
3043	if (mrtdebug & DEBUG_PIM)
3044	    log(LOG_WARNING,
3045		"mcast: pim_register_send_upcall: ip_mrouter socket queue full");
3046	++mrtstat.mrts_upq_sockfull;
3047	return ENOBUFS;
3048    }
3049
3050    /* Keep statistics */
3051    pimstat.pims_snd_registers_msgs++;
3052    pimstat.pims_snd_registers_bytes += len;
3053
3054    return 0;
3055}
3056
3057/*
3058 * Encapsulate the data packet in PIM Register message and send it to the RP.
3059 */
3060static int
3061pim_register_send_rp(struct ip *ip, struct vif *vifp,
3062	struct mbuf *mb_copy, struct mfc *rt)
3063{
3064    struct mbuf *mb_first;
3065    struct ip *ip_outer;
3066    struct pim_encap_pimhdr *pimhdr;
3067    int len = ntohs(ip->ip_len);
3068    vifi_t vifi = rt->mfc_parent;
3069
3070    VIF_LOCK_ASSERT();
3071
3072    if ((vifi >= numvifs) || (viftable[vifi].v_lcl_addr.s_addr == 0)) {
3073	m_freem(mb_copy);
3074	return EADDRNOTAVAIL;		/* The iif vif is invalid */
3075    }
3076
3077    /*
3078     * Add a new mbuf with the encapsulating header
3079     */
3080    MGETHDR(mb_first, M_DONTWAIT, MT_HEADER);
3081    if (mb_first == NULL) {
3082	m_freem(mb_copy);
3083	return ENOBUFS;
3084    }
3085    mb_first->m_data += max_linkhdr;
3086    mb_first->m_len = sizeof(pim_encap_iphdr) + sizeof(pim_encap_pimhdr);
3087    mb_first->m_next = mb_copy;
3088
3089    mb_first->m_pkthdr.len = len + mb_first->m_len;
3090
3091    /*
3092     * Fill in the encapsulating IP and PIM header
3093     */
3094    ip_outer = mtod(mb_first, struct ip *);
3095    *ip_outer = pim_encap_iphdr;
3096#ifdef RANDOM_IP_ID
3097    ip_outer->ip_id = ip_randomid();
3098#else
3099    ip_outer->ip_id = htons(ip_id++);
3100#endif
3101    ip_outer->ip_len = len + sizeof(pim_encap_iphdr) + sizeof(pim_encap_pimhdr);
3102    ip_outer->ip_src = viftable[vifi].v_lcl_addr;
3103    ip_outer->ip_dst = rt->mfc_rp;
3104    /*
3105     * Copy the inner header TOS to the outer header, and take care of the
3106     * IP_DF bit.
3107     */
3108    ip_outer->ip_tos = ip->ip_tos;
3109    if (ntohs(ip->ip_off) & IP_DF)
3110	ip_outer->ip_off |= IP_DF;
3111    pimhdr = (struct pim_encap_pimhdr *)((caddr_t)ip_outer
3112					 + sizeof(pim_encap_iphdr));
3113    *pimhdr = pim_encap_pimhdr;
3114    /* If the iif crosses a border, set the Border-bit */
3115    if (rt->mfc_flags[vifi] & MRT_MFC_FLAGS_BORDER_VIF & mrt_api_config)
3116	pimhdr->flags |= htonl(PIM_BORDER_REGISTER);
3117
3118    mb_first->m_data += sizeof(pim_encap_iphdr);
3119    pimhdr->pim.pim_cksum = in_cksum(mb_first, sizeof(pim_encap_pimhdr));
3120    mb_first->m_data -= sizeof(pim_encap_iphdr);
3121
3122    if (vifp->v_rate_limit == 0)
3123	tbf_send_packet(vifp, mb_first);
3124    else
3125	tbf_control(vifp, mb_first, ip, ip_outer->ip_len);
3126
3127    /* Keep statistics */
3128    pimstat.pims_snd_registers_msgs++;
3129    pimstat.pims_snd_registers_bytes += len;
3130
3131    return 0;
3132}
3133
3134/*
3135 * PIM-SMv2 and PIM-DM messages processing.
3136 * Receives and verifies the PIM control messages, and passes them
3137 * up to the listening socket, using rip_input().
3138 * The only message with special processing is the PIM_REGISTER message
3139 * (used by PIM-SM): the PIM header is stripped off, and the inner packet
3140 * is passed to if_simloop().
3141 */
3142void
3143pim_input(struct mbuf *m, int off)
3144{
3145    struct ip *ip = mtod(m, struct ip *);
3146    struct pim *pim;
3147    int minlen;
3148    int datalen = ip->ip_len;
3149    int ip_tos;
3150    int iphlen = off;
3151
3152    /* Keep statistics */
3153    pimstat.pims_rcv_total_msgs++;
3154    pimstat.pims_rcv_total_bytes += datalen;
3155
3156    /*
3157     * Validate lengths
3158     */
3159    if (datalen < PIM_MINLEN) {
3160	pimstat.pims_rcv_tooshort++;
3161	log(LOG_ERR, "pim_input: packet size too small %d from %lx\n",
3162	    datalen, (u_long)ip->ip_src.s_addr);
3163	m_freem(m);
3164	return;
3165    }
3166
3167    /*
3168     * If the packet is at least as big as a REGISTER, go agead
3169     * and grab the PIM REGISTER header size, to avoid another
3170     * possible m_pullup() later.
3171     *
3172     * PIM_MINLEN       == pimhdr + u_int32_t == 4 + 4 = 8
3173     * PIM_REG_MINLEN   == pimhdr + reghdr + encap_iphdr == 4 + 4 + 20 = 28
3174     */
3175    minlen = iphlen + (datalen >= PIM_REG_MINLEN ? PIM_REG_MINLEN : PIM_MINLEN);
3176    /*
3177     * Get the IP and PIM headers in contiguous memory, and
3178     * possibly the PIM REGISTER header.
3179     */
3180    if ((m->m_flags & M_EXT || m->m_len < minlen) &&
3181	(m = m_pullup(m, minlen)) == 0) {
3182	log(LOG_ERR, "pim_input: m_pullup failure\n");
3183	return;
3184    }
3185    /* m_pullup() may have given us a new mbuf so reset ip. */
3186    ip = mtod(m, struct ip *);
3187    ip_tos = ip->ip_tos;
3188
3189    /* adjust mbuf to point to the PIM header */
3190    m->m_data += iphlen;
3191    m->m_len  -= iphlen;
3192    pim = mtod(m, struct pim *);
3193
3194    /*
3195     * Validate checksum. If PIM REGISTER, exclude the data packet.
3196     *
3197     * XXX: some older PIMv2 implementations don't make this distinction,
3198     * so for compatibility reason perform the checksum over part of the
3199     * message, and if error, then over the whole message.
3200     */
3201    if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER && in_cksum(m, PIM_MINLEN) == 0) {
3202	/* do nothing, checksum okay */
3203    } else if (in_cksum(m, datalen)) {
3204	pimstat.pims_rcv_badsum++;
3205	if (mrtdebug & DEBUG_PIM)
3206	    log(LOG_DEBUG, "pim_input: invalid checksum");
3207	m_freem(m);
3208	return;
3209    }
3210
3211    /* PIM version check */
3212    if (PIM_VT_V(pim->pim_vt) < PIM_VERSION) {
3213	pimstat.pims_rcv_badversion++;
3214	log(LOG_ERR, "pim_input: incorrect version %d, expecting %d\n",
3215	    PIM_VT_V(pim->pim_vt), PIM_VERSION);
3216	m_freem(m);
3217	return;
3218    }
3219
3220    /* restore mbuf back to the outer IP */
3221    m->m_data -= iphlen;
3222    m->m_len  += iphlen;
3223
3224    if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER) {
3225	/*
3226	 * Since this is a REGISTER, we'll make a copy of the register
3227	 * headers ip + pim + u_int32 + encap_ip, to be passed up to the
3228	 * routing daemon.
3229	 */
3230	struct sockaddr_in dst = { sizeof(dst), AF_INET };
3231	struct mbuf *mcp;
3232	struct ip *encap_ip;
3233	u_int32_t *reghdr;
3234	struct ifnet *vifp;
3235
3236	VIF_LOCK();
3237	if ((reg_vif_num >= numvifs) || (reg_vif_num == VIFI_INVALID)) {
3238	    VIF_UNLOCK();
3239	    if (mrtdebug & DEBUG_PIM)
3240		log(LOG_DEBUG,
3241		    "pim_input: register vif not set: %d\n", reg_vif_num);
3242	    m_freem(m);
3243	    return;
3244	}
3245	/* XXX need refcnt? */
3246	vifp = viftable[reg_vif_num].v_ifp;
3247	VIF_UNLOCK();
3248
3249	/*
3250	 * Validate length
3251	 */
3252	if (datalen < PIM_REG_MINLEN) {
3253	    pimstat.pims_rcv_tooshort++;
3254	    pimstat.pims_rcv_badregisters++;
3255	    log(LOG_ERR,
3256		"pim_input: register packet size too small %d from %lx\n",
3257		datalen, (u_long)ip->ip_src.s_addr);
3258	    m_freem(m);
3259	    return;
3260	}
3261
3262	reghdr = (u_int32_t *)(pim + 1);
3263	encap_ip = (struct ip *)(reghdr + 1);
3264
3265	if (mrtdebug & DEBUG_PIM) {
3266	    log(LOG_DEBUG,
3267		"pim_input[register], encap_ip: %lx -> %lx, encap_ip len %d\n",
3268		(u_long)ntohl(encap_ip->ip_src.s_addr),
3269		(u_long)ntohl(encap_ip->ip_dst.s_addr),
3270		ntohs(encap_ip->ip_len));
3271	}
3272
3273	/* verify the version number of the inner packet */
3274	if (encap_ip->ip_v != IPVERSION) {
3275	    pimstat.pims_rcv_badregisters++;
3276	    if (mrtdebug & DEBUG_PIM) {
3277		log(LOG_DEBUG, "pim_input: invalid IP version (%d) "
3278		    "of the inner packet\n", encap_ip->ip_v);
3279	    }
3280	    m_freem(m);
3281	    return;
3282	}
3283
3284	/* verify the inner packet is destined to a mcast group */
3285	if (!IN_MULTICAST(ntohl(encap_ip->ip_dst.s_addr))) {
3286	    pimstat.pims_rcv_badregisters++;
3287	    if (mrtdebug & DEBUG_PIM)
3288		log(LOG_DEBUG,
3289		    "pim_input: inner packet of register is not "
3290		    "multicast %lx\n",
3291		    (u_long)ntohl(encap_ip->ip_dst.s_addr));
3292	    m_freem(m);
3293	    return;
3294	}
3295
3296	/* If a NULL_REGISTER, pass it to the daemon */
3297	if ((ntohl(*reghdr) & PIM_NULL_REGISTER))
3298	    goto pim_input_to_daemon;
3299
3300	/*
3301	 * Copy the TOS from the outer IP header to the inner IP header.
3302	 */
3303	if (encap_ip->ip_tos != ip_tos) {
3304	    /* Outer TOS -> inner TOS */
3305	    encap_ip->ip_tos = ip_tos;
3306	    /* Recompute the inner header checksum. Sigh... */
3307
3308	    /* adjust mbuf to point to the inner IP header */
3309	    m->m_data += (iphlen + PIM_MINLEN);
3310	    m->m_len  -= (iphlen + PIM_MINLEN);
3311
3312	    encap_ip->ip_sum = 0;
3313	    encap_ip->ip_sum = in_cksum(m, encap_ip->ip_hl << 2);
3314
3315	    /* restore mbuf to point back to the outer IP header */
3316	    m->m_data -= (iphlen + PIM_MINLEN);
3317	    m->m_len  += (iphlen + PIM_MINLEN);
3318	}
3319
3320	/*
3321	 * Decapsulate the inner IP packet and loopback to forward it
3322	 * as a normal multicast packet. Also, make a copy of the
3323	 *     outer_iphdr + pimhdr + reghdr + encap_iphdr
3324	 * to pass to the daemon later, so it can take the appropriate
3325	 * actions (e.g., send back PIM_REGISTER_STOP).
3326	 * XXX: here m->m_data points to the outer IP header.
3327	 */
3328	mcp = m_copy(m, 0, iphlen + PIM_REG_MINLEN);
3329	if (mcp == NULL) {
3330	    log(LOG_ERR,
3331		"pim_input: pim register: could not copy register head\n");
3332	    m_freem(m);
3333	    return;
3334	}
3335
3336	/* Keep statistics */
3337	/* XXX: registers_bytes include only the encap. mcast pkt */
3338	pimstat.pims_rcv_registers_msgs++;
3339	pimstat.pims_rcv_registers_bytes += ntohs(encap_ip->ip_len);
3340
3341	/*
3342	 * forward the inner ip packet; point m_data at the inner ip.
3343	 */
3344	m_adj(m, iphlen + PIM_MINLEN);
3345
3346	if (mrtdebug & DEBUG_PIM) {
3347	    log(LOG_DEBUG,
3348		"pim_input: forwarding decapsulated register: "
3349		"src %lx, dst %lx, vif %d\n",
3350		(u_long)ntohl(encap_ip->ip_src.s_addr),
3351		(u_long)ntohl(encap_ip->ip_dst.s_addr),
3352		reg_vif_num);
3353	}
3354	/* NB: vifp was collected above; can it change on us? */
3355	if_simloop(vifp, m, dst.sin_family, 0);
3356
3357	/* prepare the register head to send to the mrouting daemon */
3358	m = mcp;
3359    }
3360
3361pim_input_to_daemon:
3362    /*
3363     * Pass the PIM message up to the daemon; if it is a Register message,
3364     * pass the 'head' only up to the daemon. This includes the
3365     * outer IP header, PIM header, PIM-Register header and the
3366     * inner IP header.
3367     * XXX: the outer IP header pkt size of a Register is not adjust to
3368     * reflect the fact that the inner multicast data is truncated.
3369     */
3370    rip_input(m, iphlen);
3371
3372    return;
3373}
3374#endif /* PIM */
3375
3376static int
3377ip_mroute_modevent(module_t mod, int type, void *unused)
3378{
3379    switch (type) {
3380    case MOD_LOAD:
3381	mtx_init(&mrouter_mtx, "mrouter initialization", NULL, MTX_DEF);
3382	MFC_LOCK_INIT();
3383	VIF_LOCK_INIT();
3384	ip_mrouter_reset();
3385	ip_mcast_src = X_ip_mcast_src;
3386	ip_mforward = X_ip_mforward;
3387	ip_mrouter_done = X_ip_mrouter_done;
3388	ip_mrouter_get = X_ip_mrouter_get;
3389	ip_mrouter_set = X_ip_mrouter_set;
3390	ip_rsvp_force_done = X_ip_rsvp_force_done;
3391	ip_rsvp_vif = X_ip_rsvp_vif;
3392	legal_vif_num = X_legal_vif_num;
3393	mrt_ioctl = X_mrt_ioctl;
3394	rsvp_input_p = X_rsvp_input;
3395	break;
3396
3397    case MOD_UNLOAD:
3398	/*
3399	 * Typically module unload happens after the user-level
3400	 * process has shutdown the kernel services (the check
3401	 * below insures someone can't just yank the module out
3402	 * from under a running process).  But if the module is
3403	 * just loaded and then unloaded w/o starting up a user
3404	 * process we still need to cleanup.
3405	 */
3406	if (ip_mrouter)
3407	    return EINVAL;
3408
3409	X_ip_mrouter_done();
3410	ip_mcast_src = NULL;
3411	ip_mforward = NULL;
3412	ip_mrouter_done = NULL;
3413	ip_mrouter_get = NULL;
3414	ip_mrouter_set = NULL;
3415	ip_rsvp_force_done = NULL;
3416	ip_rsvp_vif = NULL;
3417	legal_vif_num = NULL;
3418	mrt_ioctl = NULL;
3419	rsvp_input_p = NULL;
3420	VIF_LOCK_DESTROY();
3421	MFC_LOCK_DESTROY();
3422	mtx_destroy(&mrouter_mtx);
3423	break;
3424    }
3425    return 0;
3426}
3427
3428static moduledata_t ip_mroutemod = {
3429    "ip_mroute",
3430    ip_mroute_modevent,
3431    0
3432};
3433DECLARE_MODULE(ip_mroute, ip_mroutemod, SI_SUB_PSEUDO, SI_ORDER_ANY);
3434