ip_mroute.c revision 122323
1/*
2 * IP multicast forwarding procedures
3 *
4 * Written by David Waitzman, BBN Labs, August 1988.
5 * Modified by Steve Deering, Stanford, February 1989.
6 * Modified by Mark J. Steiglitz, Stanford, May, 1991
7 * Modified by Van Jacobson, LBL, January 1993
8 * Modified by Ajit Thyagarajan, PARC, August 1993
9 * Modified by Bill Fenner, PARC, April 1995
10 * Modified by Ahmed Helmy, SGI, June 1996
11 * Modified by George Edmond Eddy (Rusty), ISI, February 1998
12 * Modified by Pavlin Radoslavov, USC/ISI, May 1998, August 1999, October 2000
13 * Modified by Hitoshi Asaeda, WIDE, August 2000
14 * Modified by Pavlin Radoslavov, ICSI, October 2002
15 *
16 * MROUTING Revision: 3.5
17 * and PIM-SMv2 and PIM-DM support, advanced API support,
18 * bandwidth metering and signaling
19 *
20 * $FreeBSD: head/sys/netinet/ip_mroute.c 122323 2003-11-08 22:51:18Z sam $
21 */
22
23#include "opt_mac.h"
24#include "opt_mrouting.h"
25#include "opt_random_ip_id.h"
26
27#ifdef PIM
28#define _PIM_VT 1
29#endif
30
31#include <sys/param.h>
32#include <sys/kernel.h>
33#include <sys/lock.h>
34#include <sys/mac.h>
35#include <sys/malloc.h>
36#include <sys/mbuf.h>
37#include <sys/protosw.h>
38#include <sys/signalvar.h>
39#include <sys/socket.h>
40#include <sys/socketvar.h>
41#include <sys/sockio.h>
42#include <sys/sx.h>
43#include <sys/sysctl.h>
44#include <sys/syslog.h>
45#include <sys/systm.h>
46#include <sys/time.h>
47#include <net/if.h>
48#include <net/netisr.h>
49#include <net/route.h>
50#include <netinet/in.h>
51#include <netinet/igmp.h>
52#include <netinet/in_systm.h>
53#include <netinet/in_var.h>
54#include <netinet/ip.h>
55#include <netinet/ip_encap.h>
56#include <netinet/ip_mroute.h>
57#include <netinet/ip_var.h>
58#ifdef PIM
59#include <netinet/pim.h>
60#include <netinet/pim_var.h>
61#endif
62#include <netinet/udp.h>
63#include <machine/in_cksum.h>
64
65/*
66 * Control debugging code for rsvp and multicast routing code.
67 * Can only set them with the debugger.
68 */
69static u_int    rsvpdebug;		/* non-zero enables debugging	*/
70
71static u_int	mrtdebug;		/* any set of the flags below	*/
72#define		DEBUG_MFC	0x02
73#define		DEBUG_FORWARD	0x04
74#define		DEBUG_EXPIRE	0x08
75#define		DEBUG_XMIT	0x10
76#define		DEBUG_PIM	0x20
77
78#define		VIFI_INVALID	((vifi_t) -1)
79
80#define M_HASCL(m)	((m)->m_flags & M_EXT)
81
82static MALLOC_DEFINE(M_MRTABLE, "mroutetbl", "multicast routing tables");
83
84/*
85 * Locking.  We use two locks: one for the virtual interface table and
86 * one for the forwarding table.  These locks may be nested in which case
87 * the VIF lock must always be taken first.  Note that each lock is used
88 * to cover not only the specific data structure but also related data
89 * structures.  It may be better to add more fine-grained locking later;
90 * it's not clear how performance-critical this code is.
91 */
92
93static struct mrtstat	mrtstat;
94SYSCTL_STRUCT(_net_inet_ip, OID_AUTO, mrtstat, CTLFLAG_RW,
95    &mrtstat, mrtstat,
96    "Multicast Routing Statistics (struct mrtstat, netinet/ip_mroute.h)");
97
98static struct mfc	*mfctable[MFCTBLSIZ];
99SYSCTL_OPAQUE(_net_inet_ip, OID_AUTO, mfctable, CTLFLAG_RD,
100    &mfctable, sizeof(mfctable), "S,*mfc[MFCTBLSIZ]",
101    "Multicast Forwarding Table (struct *mfc[MFCTBLSIZ], netinet/ip_mroute.h)");
102
103static struct mtx mfc_mtx;
104#define	MFC_LOCK()	mtx_lock(&mfc_mtx)
105#define	MFC_UNLOCK()	mtx_unlock(&mfc_mtx)
106#define	MFC_LOCK_ASSERT()	mtx_assert(&mfc_mtx, MA_OWNED)
107#define	MFC_LOCK_INIT()	mtx_init(&mfc_mtx, "mroute mfc table", NULL, MTX_DEF)
108#define	MFC_LOCK_DESTROY()	mtx_destroy(&mfc_mtx)
109
110static struct vif	viftable[MAXVIFS];
111SYSCTL_OPAQUE(_net_inet_ip, OID_AUTO, viftable, CTLFLAG_RD,
112    &viftable, sizeof(viftable), "S,vif[MAXVIFS]",
113    "Multicast Virtual Interfaces (struct vif[MAXVIFS], netinet/ip_mroute.h)");
114
115static struct mtx vif_mtx;
116#define	VIF_LOCK()	mtx_lock(&vif_mtx)
117#define	VIF_UNLOCK()	mtx_unlock(&vif_mtx)
118#define	VIF_LOCK_ASSERT()	mtx_assert(&vif_mtx, MA_OWNED)
119#define	VIF_LOCK_INIT()	mtx_init(&vif_mtx, "mroute vif table", NULL, MTX_DEF)
120#define	VIF_LOCK_DESTROY()	mtx_destroy(&vif_mtx)
121
122static u_char		nexpire[MFCTBLSIZ];
123
124static struct callout expire_upcalls_ch;
125
126#define		EXPIRE_TIMEOUT	(hz / 4)	/* 4x / second		*/
127#define		UPCALL_EXPIRE	6		/* number of timeouts	*/
128
129/*
130 * Define the token bucket filter structures
131 * tbftable -> each vif has one of these for storing info
132 */
133
134static struct tbf tbftable[MAXVIFS];
135#define		TBF_REPROCESS	(hz / 100)	/* 100x / second */
136
137/*
138 * 'Interfaces' associated with decapsulator (so we can tell
139 * packets that went through it from ones that get reflected
140 * by a broken gateway).  These interfaces are never linked into
141 * the system ifnet list & no routes point to them.  I.e., packets
142 * can't be sent this way.  They only exist as a placeholder for
143 * multicast source verification.
144 */
145static struct ifnet multicast_decap_if[MAXVIFS];
146
147#define ENCAP_TTL 64
148#define ENCAP_PROTO IPPROTO_IPIP	/* 4 */
149
150/* prototype IP hdr for encapsulated packets */
151static struct ip multicast_encap_iphdr = {
152#if BYTE_ORDER == LITTLE_ENDIAN
153	sizeof(struct ip) >> 2, IPVERSION,
154#else
155	IPVERSION, sizeof(struct ip) >> 2,
156#endif
157	0,				/* tos */
158	sizeof(struct ip),		/* total length */
159	0,				/* id */
160	0,				/* frag offset */
161	ENCAP_TTL, ENCAP_PROTO,
162	0,				/* checksum */
163};
164
165/*
166 * Bandwidth meter variables and constants
167 */
168static MALLOC_DEFINE(M_BWMETER, "bwmeter", "multicast upcall bw meters");
169/*
170 * Pending timeouts are stored in a hash table, the key being the
171 * expiration time. Periodically, the entries are analysed and processed.
172 */
173#define BW_METER_BUCKETS	1024
174static struct bw_meter *bw_meter_timers[BW_METER_BUCKETS];
175static struct callout bw_meter_ch;
176#define BW_METER_PERIOD (hz)		/* periodical handling of bw meters */
177
178/*
179 * Pending upcalls are stored in a vector which is flushed when
180 * full, or periodically
181 */
182static struct bw_upcall	bw_upcalls[BW_UPCALLS_MAX];
183static u_int	bw_upcalls_n; /* # of pending upcalls */
184static struct callout bw_upcalls_ch;
185#define BW_UPCALLS_PERIOD (hz)		/* periodical flush of bw upcalls */
186
187#ifdef PIM
188static struct pimstat pimstat;
189SYSCTL_STRUCT(_net_inet_pim, PIMCTL_STATS, stats, CTLFLAG_RD,
190    &pimstat, pimstat,
191    "PIM Statistics (struct pimstat, netinet/pim_var.h)");
192
193/*
194 * Note: the PIM Register encapsulation adds the following in front of a
195 * data packet:
196 *
197 * struct pim_encap_hdr {
198 *    struct ip ip;
199 *    struct pim_encap_pimhdr  pim;
200 * }
201 *
202 */
203
204struct pim_encap_pimhdr {
205	struct pim pim;
206	uint32_t   flags;
207};
208
209static struct ip pim_encap_iphdr = {
210#if BYTE_ORDER == LITTLE_ENDIAN
211	sizeof(struct ip) >> 2,
212	IPVERSION,
213#else
214	IPVERSION,
215	sizeof(struct ip) >> 2,
216#endif
217	0,			/* tos */
218	sizeof(struct ip),	/* total length */
219	0,			/* id */
220	0,			/* frag offset */
221	ENCAP_TTL,
222	IPPROTO_PIM,
223	0,			/* checksum */
224};
225
226static struct pim_encap_pimhdr pim_encap_pimhdr = {
227    {
228	PIM_MAKE_VT(PIM_VERSION, PIM_REGISTER), /* PIM vers and message type */
229	0,			/* reserved */
230	0,			/* checksum */
231    },
232    0				/* flags */
233};
234
235static struct ifnet multicast_register_if;
236static vifi_t reg_vif_num = VIFI_INVALID;
237#endif /* PIM */
238
239/*
240 * Private variables.
241 */
242static vifi_t	   numvifs;
243static const struct encaptab *encap_cookie;
244
245/*
246 * one-back cache used by mroute_encapcheck to locate a tunnel's vif
247 * given a datagram's src ip address.
248 */
249static u_long last_encap_src;
250static struct vif *last_encap_vif;
251
252/*
253 * Callout for queue processing.
254 */
255static struct callout tbf_reprocess_ch;
256
257static u_long	X_ip_mcast_src(int vifi);
258static int	X_ip_mforward(struct ip *ip, struct ifnet *ifp,
259			struct mbuf *m, struct ip_moptions *imo);
260static int	X_ip_mrouter_done(void);
261static int	X_ip_mrouter_get(struct socket *so, struct sockopt *m);
262static int	X_ip_mrouter_set(struct socket *so, struct sockopt *m);
263static int	X_legal_vif_num(int vif);
264static int	X_mrt_ioctl(int cmd, caddr_t data);
265
266static int get_sg_cnt(struct sioc_sg_req *);
267static int get_vif_cnt(struct sioc_vif_req *);
268static int ip_mrouter_init(struct socket *, int);
269static int add_vif(struct vifctl *);
270static int del_vif(vifi_t);
271static int add_mfc(struct mfcctl2 *);
272static int del_mfc(struct mfcctl2 *);
273static int set_api_config(uint32_t *); /* chose API capabilities */
274static int socket_send(struct socket *, struct mbuf *, struct sockaddr_in *);
275static int set_assert(int);
276static void expire_upcalls(void *);
277static int ip_mdq(struct mbuf *, struct ifnet *, struct mfc *, vifi_t);
278static void phyint_send(struct ip *, struct vif *, struct mbuf *);
279static void encap_send(struct ip *, struct vif *, struct mbuf *);
280static void tbf_control(struct vif *, struct mbuf *, struct ip *, u_long);
281static void tbf_queue(struct vif *, struct mbuf *);
282static void tbf_process_q(struct vif *);
283static void tbf_reprocess_q(void *);
284static int tbf_dq_sel(struct vif *, struct ip *);
285static void tbf_send_packet(struct vif *, struct mbuf *);
286static void tbf_update_tokens(struct vif *);
287static int priority(struct vif *, struct ip *);
288
289/*
290 * Bandwidth monitoring
291 */
292static void free_bw_list(struct bw_meter *list);
293static int add_bw_upcall(struct bw_upcall *);
294static int del_bw_upcall(struct bw_upcall *);
295static void bw_meter_receive_packet(struct bw_meter *x, int plen,
296		struct timeval *nowp);
297static void bw_meter_prepare_upcall(struct bw_meter *x, struct timeval *nowp);
298static void bw_upcalls_send(void);
299static void schedule_bw_meter(struct bw_meter *x, struct timeval *nowp);
300static void unschedule_bw_meter(struct bw_meter *x);
301static void bw_meter_process(void);
302static void expire_bw_upcalls_send(void *);
303static void expire_bw_meter_process(void *);
304
305#ifdef PIM
306static int pim_register_send(struct ip *, struct vif *,
307		struct mbuf *, struct mfc *);
308static int pim_register_send_rp(struct ip *, struct vif *,
309		struct mbuf *, struct mfc *);
310static int pim_register_send_upcall(struct ip *, struct vif *,
311		struct mbuf *, struct mfc *);
312static struct mbuf *pim_register_prepare(struct ip *, struct mbuf *);
313#endif
314
315/*
316 * whether or not special PIM assert processing is enabled.
317 */
318static int pim_assert;
319/*
320 * Rate limit for assert notification messages, in usec
321 */
322#define ASSERT_MSG_TIME		3000000
323
324/*
325 * Kernel multicast routing API capabilities and setup.
326 * If more API capabilities are added to the kernel, they should be
327 * recorded in `mrt_api_support'.
328 */
329static const uint32_t mrt_api_support = (MRT_MFC_FLAGS_DISABLE_WRONGVIF |
330					 MRT_MFC_FLAGS_BORDER_VIF |
331					 MRT_MFC_RP |
332					 MRT_MFC_BW_UPCALL);
333static uint32_t mrt_api_config = 0;
334
335/*
336 * Hash function for a source, group entry
337 */
338#define MFCHASH(a, g) MFCHASHMOD(((a) >> 20) ^ ((a) >> 10) ^ (a) ^ \
339			((g) >> 20) ^ ((g) >> 10) ^ (g))
340
341/*
342 * Find a route for a given origin IP address and Multicast group address
343 * Type of service parameter to be added in the future!!!
344 * Statistics are updated by the caller if needed
345 * (mrtstat.mrts_mfc_lookups and mrtstat.mrts_mfc_misses)
346 */
347static struct mfc *
348mfc_find(in_addr_t o, in_addr_t g)
349{
350    struct mfc *rt;
351
352    MFC_LOCK_ASSERT();
353
354    for (rt = mfctable[MFCHASH(o,g)]; rt; rt = rt->mfc_next)
355	if ((rt->mfc_origin.s_addr == o) &&
356		(rt->mfc_mcastgrp.s_addr == g) && (rt->mfc_stall == NULL))
357	    break;
358    return rt;
359}
360
361/*
362 * Macros to compute elapsed time efficiently
363 * Borrowed from Van Jacobson's scheduling code
364 */
365#define TV_DELTA(a, b, delta) {					\
366	int xxs;						\
367	delta = (a).tv_usec - (b).tv_usec;			\
368	if ((xxs = (a).tv_sec - (b).tv_sec)) {			\
369		switch (xxs) {					\
370		case 2:						\
371		      delta += 1000000;				\
372		      /* FALLTHROUGH */				\
373		case 1:						\
374		      delta += 1000000;				\
375		      break;					\
376		default:					\
377		      delta += (1000000 * xxs);			\
378		}						\
379	}							\
380}
381
382#define TV_LT(a, b) (((a).tv_usec < (b).tv_usec && \
383	      (a).tv_sec <= (b).tv_sec) || (a).tv_sec < (b).tv_sec)
384
385/*
386 * Handle MRT setsockopt commands to modify the multicast routing tables.
387 */
388static int
389X_ip_mrouter_set(struct socket *so, struct sockopt *sopt)
390{
391    int	error, optval;
392    vifi_t	vifi;
393    struct	vifctl vifc;
394    struct	mfcctl2 mfc;
395    struct	bw_upcall bw_upcall;
396    uint32_t	i;
397
398    if (so != ip_mrouter && sopt->sopt_name != MRT_INIT)
399	return EPERM;
400
401    error = 0;
402    switch (sopt->sopt_name) {
403    case MRT_INIT:
404	error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval);
405	if (error)
406	    break;
407	error = ip_mrouter_init(so, optval);
408	break;
409
410    case MRT_DONE:
411	error = ip_mrouter_done();
412	break;
413
414    case MRT_ADD_VIF:
415	error = sooptcopyin(sopt, &vifc, sizeof vifc, sizeof vifc);
416	if (error)
417	    break;
418	error = add_vif(&vifc);
419	break;
420
421    case MRT_DEL_VIF:
422	error = sooptcopyin(sopt, &vifi, sizeof vifi, sizeof vifi);
423	if (error)
424	    break;
425	error = del_vif(vifi);
426	break;
427
428    case MRT_ADD_MFC:
429    case MRT_DEL_MFC:
430	/*
431	 * select data size depending on API version.
432	 */
433	if (sopt->sopt_name == MRT_ADD_MFC &&
434		mrt_api_config & MRT_API_FLAGS_ALL) {
435	    error = sooptcopyin(sopt, &mfc, sizeof(struct mfcctl2),
436				sizeof(struct mfcctl2));
437	} else {
438	    error = sooptcopyin(sopt, &mfc, sizeof(struct mfcctl),
439				sizeof(struct mfcctl));
440	    bzero((caddr_t)&mfc + sizeof(struct mfcctl),
441			sizeof(mfc) - sizeof(struct mfcctl));
442	}
443	if (error)
444	    break;
445	if (sopt->sopt_name == MRT_ADD_MFC)
446	    error = add_mfc(&mfc);
447	else
448	    error = del_mfc(&mfc);
449	break;
450
451    case MRT_ASSERT:
452	error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval);
453	if (error)
454	    break;
455	set_assert(optval);
456	break;
457
458    case MRT_API_CONFIG:
459	error = sooptcopyin(sopt, &i, sizeof i, sizeof i);
460	if (!error)
461	    error = set_api_config(&i);
462	if (!error)
463	    error = sooptcopyout(sopt, &i, sizeof i);
464	break;
465
466    case MRT_ADD_BW_UPCALL:
467    case MRT_DEL_BW_UPCALL:
468	error = sooptcopyin(sopt, &bw_upcall, sizeof bw_upcall,
469				sizeof bw_upcall);
470	if (error)
471	    break;
472	if (sopt->sopt_name == MRT_ADD_BW_UPCALL)
473	    error = add_bw_upcall(&bw_upcall);
474	else
475	    error = del_bw_upcall(&bw_upcall);
476	break;
477
478    default:
479	error = EOPNOTSUPP;
480	break;
481    }
482    return error;
483}
484
485/*
486 * Handle MRT getsockopt commands
487 */
488static int
489X_ip_mrouter_get(struct socket *so, struct sockopt *sopt)
490{
491    int error;
492    static int version = 0x0305; /* !!! why is this here? XXX */
493
494    switch (sopt->sopt_name) {
495    case MRT_VERSION:
496	error = sooptcopyout(sopt, &version, sizeof version);
497	break;
498
499    case MRT_ASSERT:
500	error = sooptcopyout(sopt, &pim_assert, sizeof pim_assert);
501	break;
502
503    case MRT_API_SUPPORT:
504	error = sooptcopyout(sopt, &mrt_api_support, sizeof mrt_api_support);
505	break;
506
507    case MRT_API_CONFIG:
508	error = sooptcopyout(sopt, &mrt_api_config, sizeof mrt_api_config);
509	break;
510
511    default:
512	error = EOPNOTSUPP;
513	break;
514    }
515    return error;
516}
517
518/*
519 * Handle ioctl commands to obtain information from the cache
520 */
521static int
522X_mrt_ioctl(int cmd, caddr_t data)
523{
524    int error = 0;
525
526    switch (cmd) {
527    case (SIOCGETVIFCNT):
528	error = get_vif_cnt((struct sioc_vif_req *)data);
529	break;
530
531    case (SIOCGETSGCNT):
532	error = get_sg_cnt((struct sioc_sg_req *)data);
533	break;
534
535    default:
536	error = EINVAL;
537	break;
538    }
539    return error;
540}
541
542/*
543 * returns the packet, byte, rpf-failure count for the source group provided
544 */
545static int
546get_sg_cnt(struct sioc_sg_req *req)
547{
548    struct mfc *rt;
549
550    MFC_LOCK();
551    rt = mfc_find(req->src.s_addr, req->grp.s_addr);
552    if (rt == NULL) {
553	MFC_UNLOCK();
554	req->pktcnt = req->bytecnt = req->wrong_if = 0xffffffff;
555	return EADDRNOTAVAIL;
556    }
557    req->pktcnt = rt->mfc_pkt_cnt;
558    req->bytecnt = rt->mfc_byte_cnt;
559    req->wrong_if = rt->mfc_wrong_if;
560    MFC_UNLOCK();
561    return 0;
562}
563
564/*
565 * returns the input and output packet and byte counts on the vif provided
566 */
567static int
568get_vif_cnt(struct sioc_vif_req *req)
569{
570    vifi_t vifi = req->vifi;
571
572    VIF_LOCK();
573    if (vifi >= numvifs) {
574	VIF_UNLOCK();
575	return EINVAL;
576    }
577
578    req->icount = viftable[vifi].v_pkt_in;
579    req->ocount = viftable[vifi].v_pkt_out;
580    req->ibytes = viftable[vifi].v_bytes_in;
581    req->obytes = viftable[vifi].v_bytes_out;
582    VIF_UNLOCK();
583
584    return 0;
585}
586
587static void
588ip_mrouter_reset(void)
589{
590    bzero((caddr_t)mfctable, sizeof(mfctable));
591    MFC_LOCK_INIT();
592    VIF_LOCK_INIT();
593    bzero((caddr_t)nexpire, sizeof(nexpire));
594
595    pim_assert = 0;
596    mrt_api_config = 0;
597
598    callout_init(&expire_upcalls_ch, CALLOUT_MPSAFE);
599
600    bw_upcalls_n = 0;
601    bzero((caddr_t)bw_meter_timers, sizeof(bw_meter_timers));
602    callout_init(&bw_upcalls_ch, CALLOUT_MPSAFE);
603    callout_init(&bw_meter_ch, CALLOUT_MPSAFE);
604
605    callout_init(&tbf_reprocess_ch, CALLOUT_MPSAFE);
606}
607
608/*
609 * Enable multicast routing
610 */
611static int
612ip_mrouter_init(struct socket *so, int version)
613{
614    if (mrtdebug)
615	log(LOG_DEBUG, "ip_mrouter_init: so_type = %d, pr_protocol = %d\n",
616	    so->so_type, so->so_proto->pr_protocol);
617
618    if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_IGMP)
619	return EOPNOTSUPP;
620
621    if (version != 1)
622	return ENOPROTOOPT;
623
624    if (ip_mrouter != NULL)
625	return EADDRINUSE;
626
627    ip_mrouter_reset();
628
629    callout_reset(&expire_upcalls_ch, EXPIRE_TIMEOUT, expire_upcalls, NULL);
630
631    callout_reset(&bw_upcalls_ch, BW_UPCALLS_PERIOD,
632	expire_bw_upcalls_send, NULL);
633    callout_reset(&bw_meter_ch, BW_METER_PERIOD, expire_bw_meter_process, NULL);
634
635    ip_mrouter = so;
636
637    if (mrtdebug)
638	log(LOG_DEBUG, "ip_mrouter_init\n");
639
640    return 0;
641}
642
643/*
644 * Disable multicast routing
645 */
646static int
647X_ip_mrouter_done(void)
648{
649    vifi_t vifi;
650    int i;
651    struct ifnet *ifp;
652    struct ifreq ifr;
653    struct mfc *rt;
654    struct rtdetq *rte;
655
656    /*
657     * Detach/disable hooks to the reset of the system.
658     */
659    ip_mrouter = NULL;
660    mrt_api_config = 0;
661
662    VIF_LOCK();
663    if (encap_cookie) {
664	const struct encaptab *c = encap_cookie;
665	encap_cookie = NULL;
666	encap_detach(c);
667    }
668    VIF_UNLOCK();
669
670    callout_stop(&tbf_reprocess_ch);
671
672    VIF_LOCK();
673    /*
674     * For each phyint in use, disable promiscuous reception of all IP
675     * multicasts.
676     */
677    for (vifi = 0; vifi < numvifs; vifi++) {
678	if (viftable[vifi].v_lcl_addr.s_addr != 0 &&
679		!(viftable[vifi].v_flags & (VIFF_TUNNEL | VIFF_REGISTER))) {
680	    struct sockaddr_in *so = (struct sockaddr_in *)&(ifr.ifr_addr);
681
682	    so->sin_len = sizeof(struct sockaddr_in);
683	    so->sin_family = AF_INET;
684	    so->sin_addr.s_addr = INADDR_ANY;
685	    ifp = viftable[vifi].v_ifp;
686	    if_allmulti(ifp, 0);
687	}
688    }
689    bzero((caddr_t)tbftable, sizeof(tbftable));
690    bzero((caddr_t)viftable, sizeof(viftable));
691    numvifs = 0;
692    pim_assert = 0;
693    VIF_LOCK_DESTROY();
694
695    /*
696     * Free all multicast forwarding cache entries.
697     */
698    callout_stop(&expire_upcalls_ch);
699    callout_stop(&bw_upcalls_ch);
700    callout_stop(&bw_meter_ch);
701
702    MFC_LOCK();
703    for (i = 0; i < MFCTBLSIZ; i++) {
704	for (rt = mfctable[i]; rt != NULL; ) {
705	    struct mfc *nr = rt->mfc_next;
706
707	    for (rte = rt->mfc_stall; rte != NULL; ) {
708		struct rtdetq *n = rte->next;
709
710		m_freem(rte->m);
711		free(rte, M_MRTABLE);
712		rte = n;
713	    }
714	    free_bw_list(rt->mfc_bw_meter);
715	    free(rt, M_MRTABLE);
716	    rt = nr;
717	}
718    }
719    bzero((caddr_t)mfctable, sizeof(mfctable));
720    bw_upcalls_n = 0;
721    bzero(bw_meter_timers, sizeof(bw_meter_timers));
722    MFC_LOCK_DESTROY();
723
724    /*
725     * Reset de-encapsulation cache
726     */
727    last_encap_src = INADDR_ANY;
728    last_encap_vif = NULL;
729#ifdef PIM
730    reg_vif_num = VIFI_INVALID;
731#endif
732
733    if (mrtdebug)
734	log(LOG_DEBUG, "ip_mrouter_done\n");
735
736    return 0;
737}
738
739/*
740 * Set PIM assert processing global
741 */
742static int
743set_assert(int i)
744{
745    if ((i != 1) && (i != 0))
746	return EINVAL;
747
748    pim_assert = i;
749
750    return 0;
751}
752
753/*
754 * Configure API capabilities
755 */
756int
757set_api_config(uint32_t *apival)
758{
759    int i;
760
761    /*
762     * We can set the API capabilities only if it is the first operation
763     * after MRT_INIT. I.e.:
764     *  - there are no vifs installed
765     *  - pim_assert is not enabled
766     *  - the MFC table is empty
767     */
768    if (numvifs > 0) {
769	*apival = 0;
770	return EPERM;
771    }
772    if (pim_assert) {
773	*apival = 0;
774	return EPERM;
775    }
776    for (i = 0; i < MFCTBLSIZ; i++) {
777	if (mfctable[i] != NULL) {
778	    *apival = 0;
779	    return EPERM;
780	}
781    }
782
783    mrt_api_config = *apival & mrt_api_support;
784    *apival = mrt_api_config;
785
786    return 0;
787}
788
789/*
790 * Decide if a packet is from a tunnelled peer.
791 * Return 0 if not, 64 if so.  XXX yuck.. 64 ???
792 */
793static int
794mroute_encapcheck(const struct mbuf *m, int off, int proto, void *arg)
795{
796    struct ip *ip = mtod(m, struct ip *);
797    int hlen = ip->ip_hl << 2;
798
799    /*
800     * don't claim the packet if it's not to a multicast destination or if
801     * we don't have an encapsulating tunnel with the source.
802     * Note:  This code assumes that the remote site IP address
803     * uniquely identifies the tunnel (i.e., that this site has
804     * at most one tunnel with the remote site).
805     */
806    if (!IN_MULTICAST(ntohl(((struct ip *)((char *)ip+hlen))->ip_dst.s_addr)))
807	return 0;
808    if (ip->ip_src.s_addr != last_encap_src) {
809	struct vif *vifp = viftable;
810	struct vif *vife = vifp + numvifs;
811
812	last_encap_src = ip->ip_src.s_addr;
813	last_encap_vif = NULL;
814	for ( ; vifp < vife; ++vifp)
815	    if (vifp->v_rmt_addr.s_addr == ip->ip_src.s_addr) {
816		if ((vifp->v_flags & (VIFF_TUNNEL|VIFF_SRCRT)) == VIFF_TUNNEL)
817		    last_encap_vif = vifp;
818		break;
819	    }
820    }
821    if (last_encap_vif == NULL) {
822	last_encap_src = INADDR_ANY;
823	return 0;
824    }
825    return 64;
826}
827
828/*
829 * De-encapsulate a packet and feed it back through ip input (this
830 * routine is called whenever IP gets a packet that mroute_encap_func()
831 * claimed).
832 */
833static void
834mroute_encap_input(struct mbuf *m, int off)
835{
836    struct ip *ip = mtod(m, struct ip *);
837    int hlen = ip->ip_hl << 2;
838
839    if (hlen > sizeof(struct ip))
840	ip_stripoptions(m, (struct mbuf *) 0);
841    m->m_data += sizeof(struct ip);
842    m->m_len -= sizeof(struct ip);
843    m->m_pkthdr.len -= sizeof(struct ip);
844
845    m->m_pkthdr.rcvif = last_encap_vif->v_ifp;
846
847    netisr_queue(NETISR_IP, m);
848    /*
849     * normally we would need a "schednetisr(NETISR_IP)"
850     * here but we were called by ip_input and it is going
851     * to loop back & try to dequeue the packet we just
852     * queued as soon as we return so we avoid the
853     * unnecessary software interrrupt.
854     *
855     * XXX
856     * This no longer holds - we may have direct-dispatched the packet,
857     * or there may be a queue processing limit.
858     */
859}
860
861extern struct domain inetdomain;
862static struct protosw mroute_encap_protosw =
863{ SOCK_RAW,	&inetdomain,	IPPROTO_IPV4,	PR_ATOMIC|PR_ADDR,
864  mroute_encap_input,	0,	0,		rip_ctloutput,
865  0,
866  0,		0,		0,		0,
867  &rip_usrreqs
868};
869
870/*
871 * Add a vif to the vif table
872 */
873static int
874add_vif(struct vifctl *vifcp)
875{
876    struct vif *vifp = viftable + vifcp->vifc_vifi;
877    struct sockaddr_in sin = {sizeof sin, AF_INET};
878    struct ifaddr *ifa;
879    struct ifnet *ifp;
880    int error;
881    struct tbf *v_tbf = tbftable + vifcp->vifc_vifi;
882
883    VIF_LOCK();
884    if (vifcp->vifc_vifi >= MAXVIFS) {
885	VIF_UNLOCK();
886	return EINVAL;
887    }
888    if (vifp->v_lcl_addr.s_addr != INADDR_ANY) {
889	VIF_UNLOCK();
890	return EADDRINUSE;
891    }
892    if (vifcp->vifc_lcl_addr.s_addr == INADDR_ANY) {
893	VIF_UNLOCK();
894	return EADDRNOTAVAIL;
895    }
896
897    /* Find the interface with an address in AF_INET family */
898#ifdef PIM
899    if (vifcp->vifc_flags & VIFF_REGISTER) {
900	/*
901	 * XXX: Because VIFF_REGISTER does not really need a valid
902	 * local interface (e.g. it could be 127.0.0.2), we don't
903	 * check its address.
904	 */
905	ifp = NULL;
906    } else
907#endif
908    {
909	sin.sin_addr = vifcp->vifc_lcl_addr;
910	ifa = ifa_ifwithaddr((struct sockaddr *)&sin);
911	if (ifa == NULL) {
912	    VIF_UNLOCK();
913	    return EADDRNOTAVAIL;
914	}
915	ifp = ifa->ifa_ifp;
916    }
917
918    if (vifcp->vifc_flags & VIFF_TUNNEL) {
919	if ((vifcp->vifc_flags & VIFF_SRCRT) == 0) {
920	    /*
921	     * An encapsulating tunnel is wanted.  Tell
922	     * mroute_encap_input() to start paying attention
923	     * to encapsulated packets.
924	     */
925	    if (encap_cookie == NULL) {
926		int i;
927
928		encap_cookie = encap_attach_func(AF_INET, IPPROTO_IPV4,
929				mroute_encapcheck,
930				(struct protosw *)&mroute_encap_protosw, NULL);
931
932		if (encap_cookie == NULL) {
933		    printf("ip_mroute: unable to attach encap\n");
934		    VIF_UNLOCK();
935		    return EIO;	/* XXX */
936		}
937		for (i = 0; i < MAXVIFS; ++i) {
938		    if_initname(&multicast_decap_if[i], "mdecap", i);
939		}
940	    }
941	    /*
942	     * Set interface to fake encapsulator interface
943	     */
944	    ifp = &multicast_decap_if[vifcp->vifc_vifi];
945	    /*
946	     * Prepare cached route entry
947	     */
948	    bzero(&vifp->v_route, sizeof(vifp->v_route));
949	} else {
950	    log(LOG_ERR, "source routed tunnels not supported\n");
951	    VIF_UNLOCK();
952	    return EOPNOTSUPP;
953	}
954#ifdef PIM
955    } else if (vifcp->vifc_flags & VIFF_REGISTER) {
956	ifp = &multicast_register_if;
957	if (mrtdebug)
958	    log(LOG_DEBUG, "Adding a register vif, ifp: %p\n",
959		    (void *)&multicast_register_if);
960	if (reg_vif_num == VIFI_INVALID) {
961	    if_initname(&multicast_register_if, "register_vif", 0);
962	    multicast_register_if.if_flags = IFF_LOOPBACK;
963	    bzero(&vifp->v_route, sizeof(vifp->v_route));
964	    reg_vif_num = vifcp->vifc_vifi;
965	}
966#endif
967    } else {		/* Make sure the interface supports multicast */
968	if ((ifp->if_flags & IFF_MULTICAST) == 0) {
969	    VIF_UNLOCK();
970	    return EOPNOTSUPP;
971	}
972
973	/* Enable promiscuous reception of all IP multicasts from the if */
974	error = if_allmulti(ifp, 1);
975	if (error) {
976	    VIF_UNLOCK();
977	    return error;
978	}
979    }
980
981    /* define parameters for the tbf structure */
982    vifp->v_tbf = v_tbf;
983    GET_TIME(vifp->v_tbf->tbf_last_pkt_t);
984    vifp->v_tbf->tbf_n_tok = 0;
985    vifp->v_tbf->tbf_q_len = 0;
986    vifp->v_tbf->tbf_max_q_len = MAXQSIZE;
987    vifp->v_tbf->tbf_q = vifp->v_tbf->tbf_t = NULL;
988
989    vifp->v_flags     = vifcp->vifc_flags;
990    vifp->v_threshold = vifcp->vifc_threshold;
991    vifp->v_lcl_addr  = vifcp->vifc_lcl_addr;
992    vifp->v_rmt_addr  = vifcp->vifc_rmt_addr;
993    vifp->v_ifp       = ifp;
994    /* scaling up here allows division by 1024 in critical code */
995    vifp->v_rate_limit= vifcp->vifc_rate_limit * 1024 / 1000;
996    vifp->v_rsvp_on   = 0;
997    vifp->v_rsvpd     = NULL;
998    /* initialize per vif pkt counters */
999    vifp->v_pkt_in    = 0;
1000    vifp->v_pkt_out   = 0;
1001    vifp->v_bytes_in  = 0;
1002    vifp->v_bytes_out = 0;
1003
1004    /* Adjust numvifs up if the vifi is higher than numvifs */
1005    if (numvifs <= vifcp->vifc_vifi) numvifs = vifcp->vifc_vifi + 1;
1006
1007    VIF_UNLOCK();
1008
1009    if (mrtdebug)
1010	log(LOG_DEBUG, "add_vif #%d, lcladdr %lx, %s %lx, thresh %x, rate %d\n",
1011	    vifcp->vifc_vifi,
1012	    (u_long)ntohl(vifcp->vifc_lcl_addr.s_addr),
1013	    (vifcp->vifc_flags & VIFF_TUNNEL) ? "rmtaddr" : "mask",
1014	    (u_long)ntohl(vifcp->vifc_rmt_addr.s_addr),
1015	    vifcp->vifc_threshold,
1016	    vifcp->vifc_rate_limit);
1017
1018    return 0;
1019}
1020
1021/*
1022 * Delete a vif from the vif table
1023 */
1024static int
1025del_vif(vifi_t vifi)
1026{
1027    struct vif *vifp;
1028
1029    VIF_LOCK();
1030
1031    if (vifi >= numvifs) {
1032	VIF_UNLOCK();
1033	return EINVAL;
1034    }
1035    vifp = &viftable[vifi];
1036    if (vifp->v_lcl_addr.s_addr == INADDR_ANY) {
1037	VIF_UNLOCK();
1038	return EADDRNOTAVAIL;
1039    }
1040
1041    if (!(vifp->v_flags & (VIFF_TUNNEL | VIFF_REGISTER)))
1042	if_allmulti(vifp->v_ifp, 0);
1043
1044    if (vifp == last_encap_vif) {
1045	last_encap_vif = NULL;
1046	last_encap_src = INADDR_ANY;
1047    }
1048
1049    /*
1050     * Free packets queued at the interface
1051     */
1052    while (vifp->v_tbf->tbf_q) {
1053	struct mbuf *m = vifp->v_tbf->tbf_q;
1054
1055	vifp->v_tbf->tbf_q = m->m_act;
1056	m_freem(m);
1057    }
1058
1059#ifdef PIM
1060    if (vifp->v_flags & VIFF_REGISTER)
1061	reg_vif_num = VIFI_INVALID;
1062#endif
1063
1064    bzero((caddr_t)vifp->v_tbf, sizeof(*(vifp->v_tbf)));
1065    bzero((caddr_t)vifp, sizeof (*vifp));
1066
1067    if (mrtdebug)
1068	log(LOG_DEBUG, "del_vif %d, numvifs %d\n", vifi, numvifs);
1069
1070    /* Adjust numvifs down */
1071    for (vifi = numvifs; vifi > 0; vifi--)
1072	if (viftable[vifi-1].v_lcl_addr.s_addr != INADDR_ANY)
1073	    break;
1074    numvifs = vifi;
1075
1076    VIF_UNLOCK();
1077
1078    return 0;
1079}
1080
1081/*
1082 * update an mfc entry without resetting counters and S,G addresses.
1083 */
1084static void
1085update_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp)
1086{
1087    int i;
1088
1089    rt->mfc_parent = mfccp->mfcc_parent;
1090    for (i = 0; i < numvifs; i++) {
1091	rt->mfc_ttls[i] = mfccp->mfcc_ttls[i];
1092	rt->mfc_flags[i] = mfccp->mfcc_flags[i] & mrt_api_config &
1093	    MRT_MFC_FLAGS_ALL;
1094    }
1095    /* set the RP address */
1096    if (mrt_api_config & MRT_MFC_RP)
1097	rt->mfc_rp = mfccp->mfcc_rp;
1098    else
1099	rt->mfc_rp.s_addr = INADDR_ANY;
1100}
1101
1102/*
1103 * fully initialize an mfc entry from the parameter.
1104 */
1105static void
1106init_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp)
1107{
1108    rt->mfc_origin     = mfccp->mfcc_origin;
1109    rt->mfc_mcastgrp   = mfccp->mfcc_mcastgrp;
1110
1111    update_mfc_params(rt, mfccp);
1112
1113    /* initialize pkt counters per src-grp */
1114    rt->mfc_pkt_cnt    = 0;
1115    rt->mfc_byte_cnt   = 0;
1116    rt->mfc_wrong_if   = 0;
1117    rt->mfc_last_assert.tv_sec = rt->mfc_last_assert.tv_usec = 0;
1118}
1119
1120
1121/*
1122 * Add an mfc entry
1123 */
1124static int
1125add_mfc(struct mfcctl2 *mfccp)
1126{
1127    struct mfc *rt;
1128    u_long hash;
1129    struct rtdetq *rte;
1130    u_short nstl;
1131
1132    VIF_LOCK();
1133    MFC_LOCK();
1134
1135    rt = mfc_find(mfccp->mfcc_origin.s_addr, mfccp->mfcc_mcastgrp.s_addr);
1136
1137    /* If an entry already exists, just update the fields */
1138    if (rt) {
1139	if (mrtdebug & DEBUG_MFC)
1140	    log(LOG_DEBUG,"add_mfc update o %lx g %lx p %x\n",
1141		(u_long)ntohl(mfccp->mfcc_origin.s_addr),
1142		(u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr),
1143		mfccp->mfcc_parent);
1144
1145	update_mfc_params(rt, mfccp);
1146	MFC_UNLOCK();
1147	VIF_UNLOCK();
1148	return 0;
1149    }
1150
1151    /*
1152     * Find the entry for which the upcall was made and update
1153     */
1154    hash = MFCHASH(mfccp->mfcc_origin.s_addr, mfccp->mfcc_mcastgrp.s_addr);
1155    for (rt = mfctable[hash], nstl = 0; rt; rt = rt->mfc_next) {
1156
1157	if ((rt->mfc_origin.s_addr == mfccp->mfcc_origin.s_addr) &&
1158		(rt->mfc_mcastgrp.s_addr == mfccp->mfcc_mcastgrp.s_addr) &&
1159		(rt->mfc_stall != NULL)) {
1160
1161	    if (nstl++)
1162		log(LOG_ERR, "add_mfc %s o %lx g %lx p %x dbx %p\n",
1163		    "multiple kernel entries",
1164		    (u_long)ntohl(mfccp->mfcc_origin.s_addr),
1165		    (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr),
1166		    mfccp->mfcc_parent, (void *)rt->mfc_stall);
1167
1168	    if (mrtdebug & DEBUG_MFC)
1169		log(LOG_DEBUG,"add_mfc o %lx g %lx p %x dbg %p\n",
1170		    (u_long)ntohl(mfccp->mfcc_origin.s_addr),
1171		    (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr),
1172		    mfccp->mfcc_parent, (void *)rt->mfc_stall);
1173
1174	    init_mfc_params(rt, mfccp);
1175
1176	    rt->mfc_expire = 0;	/* Don't clean this guy up */
1177	    nexpire[hash]--;
1178
1179	    /* free packets Qed at the end of this entry */
1180	    for (rte = rt->mfc_stall; rte != NULL; ) {
1181		struct rtdetq *n = rte->next;
1182
1183		ip_mdq(rte->m, rte->ifp, rt, -1);
1184		m_freem(rte->m);
1185		free(rte, M_MRTABLE);
1186		rte = n;
1187	    }
1188	    rt->mfc_stall = NULL;
1189	}
1190    }
1191
1192    /*
1193     * It is possible that an entry is being inserted without an upcall
1194     */
1195    if (nstl == 0) {
1196	if (mrtdebug & DEBUG_MFC)
1197	    log(LOG_DEBUG,"add_mfc no upcall h %lu o %lx g %lx p %x\n",
1198		hash, (u_long)ntohl(mfccp->mfcc_origin.s_addr),
1199		(u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr),
1200		mfccp->mfcc_parent);
1201
1202	for (rt = mfctable[hash]; rt != NULL; rt = rt->mfc_next) {
1203	    if ((rt->mfc_origin.s_addr == mfccp->mfcc_origin.s_addr) &&
1204		    (rt->mfc_mcastgrp.s_addr == mfccp->mfcc_mcastgrp.s_addr)) {
1205		init_mfc_params(rt, mfccp);
1206		if (rt->mfc_expire)
1207		    nexpire[hash]--;
1208		rt->mfc_expire = 0;
1209		break; /* XXX */
1210	    }
1211	}
1212	if (rt == NULL) {		/* no upcall, so make a new entry */
1213	    rt = (struct mfc *)malloc(sizeof(*rt), M_MRTABLE, M_NOWAIT);
1214	    if (rt == NULL) {
1215		MFC_UNLOCK();
1216		VIF_UNLOCK();
1217		return ENOBUFS;
1218	    }
1219
1220	    init_mfc_params(rt, mfccp);
1221	    rt->mfc_expire     = 0;
1222	    rt->mfc_stall      = NULL;
1223
1224	    rt->mfc_bw_meter = NULL;
1225	    /* insert new entry at head of hash chain */
1226	    rt->mfc_next = mfctable[hash];
1227	    mfctable[hash] = rt;
1228	}
1229    }
1230    MFC_UNLOCK();
1231    VIF_UNLOCK();
1232    return 0;
1233}
1234
1235/*
1236 * Delete an mfc entry
1237 */
1238static int
1239del_mfc(struct mfcctl2 *mfccp)
1240{
1241    struct in_addr 	origin;
1242    struct in_addr 	mcastgrp;
1243    struct mfc 		*rt;
1244    struct mfc	 	**nptr;
1245    u_long 		hash;
1246    struct bw_meter	*list;
1247
1248    origin = mfccp->mfcc_origin;
1249    mcastgrp = mfccp->mfcc_mcastgrp;
1250
1251    if (mrtdebug & DEBUG_MFC)
1252	log(LOG_DEBUG,"del_mfc orig %lx mcastgrp %lx\n",
1253	    (u_long)ntohl(origin.s_addr), (u_long)ntohl(mcastgrp.s_addr));
1254
1255    MFC_LOCK();
1256
1257    hash = MFCHASH(origin.s_addr, mcastgrp.s_addr);
1258    for (nptr = &mfctable[hash]; (rt = *nptr) != NULL; nptr = &rt->mfc_next)
1259	if (origin.s_addr == rt->mfc_origin.s_addr &&
1260		mcastgrp.s_addr == rt->mfc_mcastgrp.s_addr &&
1261		rt->mfc_stall == NULL)
1262	    break;
1263    if (rt == NULL) {
1264	MFC_UNLOCK();
1265	return EADDRNOTAVAIL;
1266    }
1267
1268    *nptr = rt->mfc_next;
1269
1270    /*
1271     * free the bw_meter entries
1272     */
1273    list = rt->mfc_bw_meter;
1274    rt->mfc_bw_meter = NULL;
1275
1276    free(rt, M_MRTABLE);
1277
1278    free_bw_list(list);
1279
1280    MFC_UNLOCK();
1281
1282    return 0;
1283}
1284
1285/*
1286 * Send a message to mrouted on the multicast routing socket
1287 */
1288static int
1289socket_send(struct socket *s, struct mbuf *mm, struct sockaddr_in *src)
1290{
1291    if (s) {
1292	mtx_lock(&Giant);		/* XXX until sockets are locked */
1293	if (sbappendaddr(&s->so_rcv, (struct sockaddr *)src, mm, NULL) != 0) {
1294	    sorwakeup(s);
1295	    mtx_unlock(&Giant);
1296	    return 0;
1297	}
1298	mtx_unlock(&Giant);
1299    }
1300    m_freem(mm);
1301    return -1;
1302}
1303
1304/*
1305 * IP multicast forwarding function. This function assumes that the packet
1306 * pointed to by "ip" has arrived on (or is about to be sent to) the interface
1307 * pointed to by "ifp", and the packet is to be relayed to other networks
1308 * that have members of the packet's destination IP multicast group.
1309 *
1310 * The packet is returned unscathed to the caller, unless it is
1311 * erroneous, in which case a non-zero return value tells the caller to
1312 * discard it.
1313 */
1314
1315#define TUNNEL_LEN  12  /* # bytes of IP option for tunnel encapsulation  */
1316
1317static int
1318X_ip_mforward(struct ip *ip, struct ifnet *ifp, struct mbuf *m,
1319    struct ip_moptions *imo)
1320{
1321    struct mfc *rt;
1322    int error;
1323    vifi_t vifi;
1324
1325    if (mrtdebug & DEBUG_FORWARD)
1326	log(LOG_DEBUG, "ip_mforward: src %lx, dst %lx, ifp %p\n",
1327	    (u_long)ntohl(ip->ip_src.s_addr), (u_long)ntohl(ip->ip_dst.s_addr),
1328	    (void *)ifp);
1329
1330    if (ip->ip_hl < (sizeof(struct ip) + TUNNEL_LEN) >> 2 ||
1331		((u_char *)(ip + 1))[1] != IPOPT_LSRR ) {
1332	/*
1333	 * Packet arrived via a physical interface or
1334	 * an encapsulated tunnel or a register_vif.
1335	 */
1336    } else {
1337	/*
1338	 * Packet arrived through a source-route tunnel.
1339	 * Source-route tunnels are no longer supported.
1340	 */
1341	static int last_log;
1342	if (last_log != time_second) {
1343	    last_log = time_second;
1344	    log(LOG_ERR,
1345		"ip_mforward: received source-routed packet from %lx\n",
1346		(u_long)ntohl(ip->ip_src.s_addr));
1347	}
1348	return 1;
1349    }
1350
1351    VIF_LOCK();
1352    MFC_LOCK();
1353    if (imo && ((vifi = imo->imo_multicast_vif) < numvifs)) {
1354	if (ip->ip_ttl < 255)
1355	    ip->ip_ttl++;	/* compensate for -1 in *_send routines */
1356	if (rsvpdebug && ip->ip_p == IPPROTO_RSVP) {
1357	    struct vif *vifp = viftable + vifi;
1358
1359	    printf("Sending IPPROTO_RSVP from %lx to %lx on vif %d (%s%s)\n",
1360		(long)ntohl(ip->ip_src.s_addr), (long)ntohl(ip->ip_dst.s_addr),
1361		vifi,
1362		(vifp->v_flags & VIFF_TUNNEL) ? "tunnel on " : "",
1363		vifp->v_ifp->if_xname);
1364	}
1365	error = ip_mdq(m, ifp, NULL, vifi);
1366	MFC_UNLOCK();
1367	VIF_UNLOCK();
1368	return error;
1369    }
1370    if (rsvpdebug && ip->ip_p == IPPROTO_RSVP) {
1371	printf("Warning: IPPROTO_RSVP from %lx to %lx without vif option\n",
1372	    (long)ntohl(ip->ip_src.s_addr), (long)ntohl(ip->ip_dst.s_addr));
1373	if (!imo)
1374	    printf("In fact, no options were specified at all\n");
1375    }
1376
1377    /*
1378     * Don't forward a packet with time-to-live of zero or one,
1379     * or a packet destined to a local-only group.
1380     */
1381    if (ip->ip_ttl <= 1 || ntohl(ip->ip_dst.s_addr) <= INADDR_MAX_LOCAL_GROUP) {
1382	MFC_UNLOCK();
1383	VIF_UNLOCK();
1384	return 0;
1385    }
1386
1387    /*
1388     * Determine forwarding vifs from the forwarding cache table
1389     */
1390    ++mrtstat.mrts_mfc_lookups;
1391    rt = mfc_find(ip->ip_src.s_addr, ip->ip_dst.s_addr);
1392
1393    /* Entry exists, so forward if necessary */
1394    if (rt != NULL) {
1395	error = ip_mdq(m, ifp, rt, -1);
1396	MFC_UNLOCK();
1397	VIF_UNLOCK();
1398	return error;
1399    } else {
1400	/*
1401	 * If we don't have a route for packet's origin,
1402	 * Make a copy of the packet & send message to routing daemon
1403	 */
1404
1405	struct mbuf *mb0;
1406	struct rtdetq *rte;
1407	u_long hash;
1408	int hlen = ip->ip_hl << 2;
1409
1410	++mrtstat.mrts_mfc_misses;
1411
1412	mrtstat.mrts_no_route++;
1413	if (mrtdebug & (DEBUG_FORWARD | DEBUG_MFC))
1414	    log(LOG_DEBUG, "ip_mforward: no rte s %lx g %lx\n",
1415		(u_long)ntohl(ip->ip_src.s_addr),
1416		(u_long)ntohl(ip->ip_dst.s_addr));
1417
1418	/*
1419	 * Allocate mbufs early so that we don't do extra work if we are
1420	 * just going to fail anyway.  Make sure to pullup the header so
1421	 * that other people can't step on it.
1422	 */
1423	rte = (struct rtdetq *)malloc((sizeof *rte), M_MRTABLE, M_NOWAIT);
1424	if (rte == NULL) {
1425	    MFC_UNLOCK();
1426	    VIF_UNLOCK();
1427	    return ENOBUFS;
1428	}
1429	mb0 = m_copypacket(m, M_DONTWAIT);
1430	if (mb0 && (M_HASCL(mb0) || mb0->m_len < hlen))
1431	    mb0 = m_pullup(mb0, hlen);
1432	if (mb0 == NULL) {
1433	    free(rte, M_MRTABLE);
1434	    MFC_UNLOCK();
1435	    VIF_UNLOCK();
1436	    return ENOBUFS;
1437	}
1438
1439	/* is there an upcall waiting for this flow ? */
1440	hash = MFCHASH(ip->ip_src.s_addr, ip->ip_dst.s_addr);
1441	for (rt = mfctable[hash]; rt; rt = rt->mfc_next) {
1442	    if ((ip->ip_src.s_addr == rt->mfc_origin.s_addr) &&
1443		    (ip->ip_dst.s_addr == rt->mfc_mcastgrp.s_addr) &&
1444		    (rt->mfc_stall != NULL))
1445		break;
1446	}
1447
1448	if (rt == NULL) {
1449	    int i;
1450	    struct igmpmsg *im;
1451	    struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
1452	    struct mbuf *mm;
1453
1454	    /*
1455	     * Locate the vifi for the incoming interface for this packet.
1456	     * If none found, drop packet.
1457	     */
1458	    for (vifi=0; vifi < numvifs && viftable[vifi].v_ifp != ifp; vifi++)
1459		;
1460	    if (vifi >= numvifs)	/* vif not found, drop packet */
1461		goto non_fatal;
1462
1463	    /* no upcall, so make a new entry */
1464	    rt = (struct mfc *)malloc(sizeof(*rt), M_MRTABLE, M_NOWAIT);
1465	    if (rt == NULL)
1466		goto fail;
1467	    /* Make a copy of the header to send to the user level process */
1468	    mm = m_copy(mb0, 0, hlen);
1469	    if (mm == NULL)
1470		goto fail1;
1471
1472	    /*
1473	     * Send message to routing daemon to install
1474	     * a route into the kernel table
1475	     */
1476
1477	    im = mtod(mm, struct igmpmsg *);
1478	    im->im_msgtype = IGMPMSG_NOCACHE;
1479	    im->im_mbz = 0;
1480	    im->im_vif = vifi;
1481
1482	    mrtstat.mrts_upcalls++;
1483
1484	    k_igmpsrc.sin_addr = ip->ip_src;
1485	    if (socket_send(ip_mrouter, mm, &k_igmpsrc) < 0) {
1486		log(LOG_WARNING, "ip_mforward: ip_mrouter socket queue full\n");
1487		++mrtstat.mrts_upq_sockfull;
1488fail1:
1489		free(rt, M_MRTABLE);
1490fail:
1491		free(rte, M_MRTABLE);
1492		m_freem(mb0);
1493		MFC_UNLOCK();
1494		VIF_UNLOCK();
1495		return ENOBUFS;
1496	    }
1497
1498	    /* insert new entry at head of hash chain */
1499	    rt->mfc_origin.s_addr     = ip->ip_src.s_addr;
1500	    rt->mfc_mcastgrp.s_addr   = ip->ip_dst.s_addr;
1501	    rt->mfc_expire	      = UPCALL_EXPIRE;
1502	    nexpire[hash]++;
1503	    for (i = 0; i < numvifs; i++) {
1504		rt->mfc_ttls[i] = 0;
1505		rt->mfc_flags[i] = 0;
1506	    }
1507	    rt->mfc_parent = -1;
1508
1509	    rt->mfc_rp.s_addr = INADDR_ANY; /* clear the RP address */
1510
1511	    rt->mfc_bw_meter = NULL;
1512
1513	    /* link into table */
1514	    rt->mfc_next   = mfctable[hash];
1515	    mfctable[hash] = rt;
1516	    rt->mfc_stall = rte;
1517
1518	} else {
1519	    /* determine if q has overflowed */
1520	    int npkts = 0;
1521	    struct rtdetq **p;
1522
1523	    /*
1524	     * XXX ouch! we need to append to the list, but we
1525	     * only have a pointer to the front, so we have to
1526	     * scan the entire list every time.
1527	     */
1528	    for (p = &rt->mfc_stall; *p != NULL; p = &(*p)->next)
1529		npkts++;
1530
1531	    if (npkts > MAX_UPQ) {
1532		mrtstat.mrts_upq_ovflw++;
1533non_fatal:
1534		free(rte, M_MRTABLE);
1535		m_freem(mb0);
1536		MFC_UNLOCK();
1537		VIF_UNLOCK();
1538		return 0;
1539	    }
1540
1541	    /* Add this entry to the end of the queue */
1542	    *p = rte;
1543	}
1544
1545	rte->m 			= mb0;
1546	rte->ifp 		= ifp;
1547	rte->next		= NULL;
1548
1549	MFC_UNLOCK();
1550	VIF_UNLOCK();
1551
1552	return 0;
1553    }
1554}
1555
1556/*
1557 * Clean up the cache entry if upcall is not serviced
1558 */
1559static void
1560expire_upcalls(void *unused)
1561{
1562    struct rtdetq *rte;
1563    struct mfc *mfc, **nptr;
1564    int i;
1565
1566    MFC_LOCK();
1567    for (i = 0; i < MFCTBLSIZ; i++) {
1568	if (nexpire[i] == 0)
1569	    continue;
1570	nptr = &mfctable[i];
1571	for (mfc = *nptr; mfc != NULL; mfc = *nptr) {
1572	    /*
1573	     * Skip real cache entries
1574	     * Make sure it wasn't marked to not expire (shouldn't happen)
1575	     * If it expires now
1576	     */
1577	    if (mfc->mfc_stall != NULL && mfc->mfc_expire != 0 &&
1578		    --mfc->mfc_expire == 0) {
1579		if (mrtdebug & DEBUG_EXPIRE)
1580		    log(LOG_DEBUG, "expire_upcalls: expiring (%lx %lx)\n",
1581			(u_long)ntohl(mfc->mfc_origin.s_addr),
1582			(u_long)ntohl(mfc->mfc_mcastgrp.s_addr));
1583		/*
1584		 * drop all the packets
1585		 * free the mbuf with the pkt, if, timing info
1586		 */
1587		for (rte = mfc->mfc_stall; rte; ) {
1588		    struct rtdetq *n = rte->next;
1589
1590		    m_freem(rte->m);
1591		    free(rte, M_MRTABLE);
1592		    rte = n;
1593		}
1594		++mrtstat.mrts_cache_cleanups;
1595		nexpire[i]--;
1596
1597		/*
1598		 * free the bw_meter entries
1599		 */
1600		while (mfc->mfc_bw_meter != NULL) {
1601		    struct bw_meter *x = mfc->mfc_bw_meter;
1602
1603		    mfc->mfc_bw_meter = x->bm_mfc_next;
1604		    free(x, M_BWMETER);
1605		}
1606
1607		*nptr = mfc->mfc_next;
1608		free(mfc, M_MRTABLE);
1609	    } else {
1610		nptr = &mfc->mfc_next;
1611	    }
1612	}
1613    }
1614    MFC_UNLOCK();
1615
1616    callout_reset(&expire_upcalls_ch, EXPIRE_TIMEOUT, expire_upcalls, NULL);
1617}
1618
1619/*
1620 * Packet forwarding routine once entry in the cache is made
1621 */
1622static int
1623ip_mdq(struct mbuf *m, struct ifnet *ifp, struct mfc *rt, vifi_t xmt_vif)
1624{
1625    struct ip  *ip = mtod(m, struct ip *);
1626    vifi_t vifi;
1627    int plen = ip->ip_len;
1628
1629    VIF_LOCK_ASSERT();
1630/*
1631 * Macro to send packet on vif.  Since RSVP packets don't get counted on
1632 * input, they shouldn't get counted on output, so statistics keeping is
1633 * separate.
1634 */
1635#define MC_SEND(ip,vifp,m) {				\
1636		if ((vifp)->v_flags & VIFF_TUNNEL)	\
1637		    encap_send((ip), (vifp), (m));	\
1638		else					\
1639		    phyint_send((ip), (vifp), (m));	\
1640}
1641
1642    /*
1643     * If xmt_vif is not -1, send on only the requested vif.
1644     *
1645     * (since vifi_t is u_short, -1 becomes MAXUSHORT, which > numvifs.)
1646     */
1647    if (xmt_vif < numvifs) {
1648#ifdef PIM
1649	if (viftable[xmt_vif].v_flags & VIFF_REGISTER)
1650	    pim_register_send(ip, viftable + xmt_vif, m, rt);
1651        else
1652#endif
1653	MC_SEND(ip, viftable + xmt_vif, m);
1654	return 1;
1655    }
1656
1657    /*
1658     * Don't forward if it didn't arrive from the parent vif for its origin.
1659     */
1660    vifi = rt->mfc_parent;
1661    if ((vifi >= numvifs) || (viftable[vifi].v_ifp != ifp)) {
1662	/* came in the wrong interface */
1663	if (mrtdebug & DEBUG_FORWARD)
1664	    log(LOG_DEBUG, "wrong if: ifp %p vifi %d vififp %p\n",
1665		(void *)ifp, vifi, (void *)viftable[vifi].v_ifp);
1666	++mrtstat.mrts_wrong_if;
1667	++rt->mfc_wrong_if;
1668	/*
1669	 * If we are doing PIM assert processing, send a message
1670	 * to the routing daemon.
1671	 *
1672	 * XXX: A PIM-SM router needs the WRONGVIF detection so it
1673	 * can complete the SPT switch, regardless of the type
1674	 * of the iif (broadcast media, GRE tunnel, etc).
1675	 */
1676	if (pim_assert && (vifi < numvifs) && viftable[vifi].v_ifp) {
1677	    struct timeval now;
1678	    u_long delta;
1679
1680#ifdef PIM
1681	    if (ifp == &multicast_register_if)
1682		pimstat.pims_rcv_registers_wrongiif++;
1683#endif
1684
1685	    /* Get vifi for the incoming packet */
1686	    for (vifi=0; vifi < numvifs && viftable[vifi].v_ifp != ifp; vifi++)
1687		;
1688	    if (vifi >= numvifs)
1689		return 0;	/* The iif is not found: ignore the packet. */
1690
1691	    if (rt->mfc_flags[vifi] & MRT_MFC_FLAGS_DISABLE_WRONGVIF)
1692		return 0;	/* WRONGVIF disabled: ignore the packet */
1693
1694	    GET_TIME(now);
1695
1696	    TV_DELTA(rt->mfc_last_assert, now, delta);
1697
1698	    if (delta > ASSERT_MSG_TIME) {
1699		struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
1700		struct igmpmsg *im;
1701		int hlen = ip->ip_hl << 2;
1702		struct mbuf *mm = m_copy(m, 0, hlen);
1703
1704		if (mm && (M_HASCL(mm) || mm->m_len < hlen))
1705		    mm = m_pullup(mm, hlen);
1706		if (mm == NULL)
1707		    return ENOBUFS;
1708
1709		rt->mfc_last_assert = now;
1710
1711		im = mtod(mm, struct igmpmsg *);
1712		im->im_msgtype	= IGMPMSG_WRONGVIF;
1713		im->im_mbz		= 0;
1714		im->im_vif		= vifi;
1715
1716		mrtstat.mrts_upcalls++;
1717
1718		k_igmpsrc.sin_addr = im->im_src;
1719		if (socket_send(ip_mrouter, mm, &k_igmpsrc) < 0) {
1720		    log(LOG_WARNING,
1721			"ip_mforward: ip_mrouter socket queue full\n");
1722		    ++mrtstat.mrts_upq_sockfull;
1723		    return ENOBUFS;
1724		}
1725	    }
1726	}
1727	return 0;
1728    }
1729
1730    /* If I sourced this packet, it counts as output, else it was input. */
1731    if (ip->ip_src.s_addr == viftable[vifi].v_lcl_addr.s_addr) {
1732	viftable[vifi].v_pkt_out++;
1733	viftable[vifi].v_bytes_out += plen;
1734    } else {
1735	viftable[vifi].v_pkt_in++;
1736	viftable[vifi].v_bytes_in += plen;
1737    }
1738    rt->mfc_pkt_cnt++;
1739    rt->mfc_byte_cnt += plen;
1740
1741    /*
1742     * For each vif, decide if a copy of the packet should be forwarded.
1743     * Forward if:
1744     *		- the ttl exceeds the vif's threshold
1745     *		- there are group members downstream on interface
1746     */
1747    for (vifi = 0; vifi < numvifs; vifi++)
1748	if ((rt->mfc_ttls[vifi] > 0) && (ip->ip_ttl > rt->mfc_ttls[vifi])) {
1749	    viftable[vifi].v_pkt_out++;
1750	    viftable[vifi].v_bytes_out += plen;
1751#ifdef PIM
1752	    if (viftable[vifi].v_flags & VIFF_REGISTER)
1753		pim_register_send(ip, viftable + vifi, m, rt);
1754	    else
1755#endif
1756	    MC_SEND(ip, viftable+vifi, m);
1757	}
1758
1759    /*
1760     * Perform upcall-related bw measuring.
1761     */
1762    if (rt->mfc_bw_meter != NULL) {
1763	struct bw_meter *x;
1764	struct timeval now;
1765
1766	GET_TIME(now);
1767	MFC_LOCK_ASSERT();
1768	for (x = rt->mfc_bw_meter; x != NULL; x = x->bm_mfc_next)
1769	    bw_meter_receive_packet(x, plen, &now);
1770    }
1771
1772    return 0;
1773}
1774
1775/*
1776 * check if a vif number is legal/ok. This is used by ip_output.
1777 */
1778static int
1779X_legal_vif_num(int vif)
1780{
1781    /* XXX unlocked, matter? */
1782    return (vif >= 0 && vif < numvifs);
1783}
1784
1785/*
1786 * Return the local address used by this vif
1787 */
1788static u_long
1789X_ip_mcast_src(int vifi)
1790{
1791    /* XXX unlocked, matter? */
1792    if (vifi >= 0 && vifi < numvifs)
1793	return viftable[vifi].v_lcl_addr.s_addr;
1794    else
1795	return INADDR_ANY;
1796}
1797
1798static void
1799phyint_send(struct ip *ip, struct vif *vifp, struct mbuf *m)
1800{
1801    struct mbuf *mb_copy;
1802    int hlen = ip->ip_hl << 2;
1803
1804    VIF_LOCK_ASSERT();
1805
1806    /*
1807     * Make a new reference to the packet; make sure that
1808     * the IP header is actually copied, not just referenced,
1809     * so that ip_output() only scribbles on the copy.
1810     */
1811    mb_copy = m_copypacket(m, M_DONTWAIT);
1812    if (mb_copy && (M_HASCL(mb_copy) || mb_copy->m_len < hlen))
1813	mb_copy = m_pullup(mb_copy, hlen);
1814    if (mb_copy == NULL)
1815	return;
1816
1817    if (vifp->v_rate_limit == 0)
1818	tbf_send_packet(vifp, mb_copy);
1819    else
1820	tbf_control(vifp, mb_copy, mtod(mb_copy, struct ip *), ip->ip_len);
1821}
1822
1823static void
1824encap_send(struct ip *ip, struct vif *vifp, struct mbuf *m)
1825{
1826    struct mbuf *mb_copy;
1827    struct ip *ip_copy;
1828    int i, len = ip->ip_len;
1829
1830    VIF_LOCK_ASSERT();
1831
1832    /* Take care of delayed checksums */
1833    if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
1834	in_delayed_cksum(m);
1835	m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
1836    }
1837
1838    /*
1839     * copy the old packet & pullup its IP header into the
1840     * new mbuf so we can modify it.  Try to fill the new
1841     * mbuf since if we don't the ethernet driver will.
1842     */
1843    MGETHDR(mb_copy, M_DONTWAIT, MT_HEADER);
1844    if (mb_copy == NULL)
1845	return;
1846#ifdef MAC
1847    mac_create_mbuf_multicast_encap(m, vifp->v_ifp, mb_copy);
1848#endif
1849    mb_copy->m_data += max_linkhdr;
1850    mb_copy->m_len = sizeof(multicast_encap_iphdr);
1851
1852    if ((mb_copy->m_next = m_copypacket(m, M_DONTWAIT)) == NULL) {
1853	m_freem(mb_copy);
1854	return;
1855    }
1856    i = MHLEN - M_LEADINGSPACE(mb_copy);
1857    if (i > len)
1858	i = len;
1859    mb_copy = m_pullup(mb_copy, i);
1860    if (mb_copy == NULL)
1861	return;
1862    mb_copy->m_pkthdr.len = len + sizeof(multicast_encap_iphdr);
1863
1864    /*
1865     * fill in the encapsulating IP header.
1866     */
1867    ip_copy = mtod(mb_copy, struct ip *);
1868    *ip_copy = multicast_encap_iphdr;
1869#ifdef RANDOM_IP_ID
1870    ip_copy->ip_id = ip_randomid();
1871#else
1872    ip_copy->ip_id = htons(ip_id++);
1873#endif
1874    ip_copy->ip_len += len;
1875    ip_copy->ip_src = vifp->v_lcl_addr;
1876    ip_copy->ip_dst = vifp->v_rmt_addr;
1877
1878    /*
1879     * turn the encapsulated IP header back into a valid one.
1880     */
1881    ip = (struct ip *)((caddr_t)ip_copy + sizeof(multicast_encap_iphdr));
1882    --ip->ip_ttl;
1883    ip->ip_len = htons(ip->ip_len);
1884    ip->ip_off = htons(ip->ip_off);
1885    ip->ip_sum = 0;
1886    mb_copy->m_data += sizeof(multicast_encap_iphdr);
1887    ip->ip_sum = in_cksum(mb_copy, ip->ip_hl << 2);
1888    mb_copy->m_data -= sizeof(multicast_encap_iphdr);
1889
1890    if (vifp->v_rate_limit == 0)
1891	tbf_send_packet(vifp, mb_copy);
1892    else
1893	tbf_control(vifp, mb_copy, ip, ip_copy->ip_len);
1894}
1895
1896/*
1897 * Token bucket filter module
1898 */
1899
1900static void
1901tbf_control(struct vif *vifp, struct mbuf *m, struct ip *ip, u_long p_len)
1902{
1903    struct tbf *t = vifp->v_tbf;
1904
1905    VIF_LOCK_ASSERT();
1906
1907    if (p_len > MAX_BKT_SIZE) {		/* drop if packet is too large */
1908	mrtstat.mrts_pkt2large++;
1909	m_freem(m);
1910	return;
1911    }
1912
1913    tbf_update_tokens(vifp);
1914
1915    if (t->tbf_q_len == 0) {		/* queue empty...		*/
1916	if (p_len <= t->tbf_n_tok) {	/* send packet if enough tokens */
1917	    t->tbf_n_tok -= p_len;
1918	    tbf_send_packet(vifp, m);
1919	} else {			/* no, queue packet and try later */
1920	    tbf_queue(vifp, m);
1921	    callout_reset(&tbf_reprocess_ch, TBF_REPROCESS,
1922		tbf_reprocess_q, vifp);
1923	}
1924    } else if (t->tbf_q_len < t->tbf_max_q_len) {
1925	/* finite queue length, so queue pkts and process queue */
1926	tbf_queue(vifp, m);
1927	tbf_process_q(vifp);
1928    } else {
1929	/* queue full, try to dq and queue and process */
1930	if (!tbf_dq_sel(vifp, ip)) {
1931	    mrtstat.mrts_q_overflow++;
1932	    m_freem(m);
1933	} else {
1934	    tbf_queue(vifp, m);
1935	    tbf_process_q(vifp);
1936	}
1937    }
1938}
1939
1940/*
1941 * adds a packet to the queue at the interface
1942 */
1943static void
1944tbf_queue(struct vif *vifp, struct mbuf *m)
1945{
1946    struct tbf *t = vifp->v_tbf;
1947
1948    VIF_LOCK_ASSERT();
1949
1950    if (t->tbf_t == NULL)	/* Queue was empty */
1951	t->tbf_q = m;
1952    else			/* Insert at tail */
1953	t->tbf_t->m_act = m;
1954
1955    t->tbf_t = m;		/* Set new tail pointer */
1956
1957#ifdef DIAGNOSTIC
1958    /* Make sure we didn't get fed a bogus mbuf */
1959    if (m->m_act)
1960	panic("tbf_queue: m_act");
1961#endif
1962    m->m_act = NULL;
1963
1964    t->tbf_q_len++;
1965}
1966
1967/*
1968 * processes the queue at the interface
1969 */
1970static void
1971tbf_process_q(struct vif *vifp)
1972{
1973    struct tbf *t = vifp->v_tbf;
1974
1975    VIF_LOCK_ASSERT();
1976
1977    /* loop through the queue at the interface and send as many packets
1978     * as possible
1979     */
1980    while (t->tbf_q_len > 0) {
1981	struct mbuf *m = t->tbf_q;
1982	int len = mtod(m, struct ip *)->ip_len;
1983
1984	/* determine if the packet can be sent */
1985	if (len > t->tbf_n_tok)	/* not enough tokens, we are done */
1986	    break;
1987	/* ok, reduce no of tokens, dequeue and send the packet. */
1988	t->tbf_n_tok -= len;
1989
1990	t->tbf_q = m->m_act;
1991	if (--t->tbf_q_len == 0)
1992	    t->tbf_t = NULL;
1993
1994	m->m_act = NULL;
1995	tbf_send_packet(vifp, m);
1996    }
1997}
1998
1999static void
2000tbf_reprocess_q(void *xvifp)
2001{
2002    struct vif *vifp = xvifp;
2003
2004    if (ip_mrouter == NULL)
2005	return;
2006    VIF_LOCK();
2007    tbf_update_tokens(vifp);
2008    tbf_process_q(vifp);
2009    if (vifp->v_tbf->tbf_q_len)
2010	callout_reset(&tbf_reprocess_ch, TBF_REPROCESS, tbf_reprocess_q, vifp);
2011    VIF_UNLOCK();
2012}
2013
2014/* function that will selectively discard a member of the queue
2015 * based on the precedence value and the priority
2016 */
2017static int
2018tbf_dq_sel(struct vif *vifp, struct ip *ip)
2019{
2020    u_int p;
2021    struct mbuf *m, *last;
2022    struct mbuf **np;
2023    struct tbf *t = vifp->v_tbf;
2024
2025    VIF_LOCK_ASSERT();
2026
2027    p = priority(vifp, ip);
2028
2029    np = &t->tbf_q;
2030    last = NULL;
2031    while ((m = *np) != NULL) {
2032	if (p > priority(vifp, mtod(m, struct ip *))) {
2033	    *np = m->m_act;
2034	    /* If we're removing the last packet, fix the tail pointer */
2035	    if (m == t->tbf_t)
2036		t->tbf_t = last;
2037	    m_freem(m);
2038	    /* It's impossible for the queue to be empty, but check anyways. */
2039	    if (--t->tbf_q_len == 0)
2040		t->tbf_t = NULL;
2041	    mrtstat.mrts_drop_sel++;
2042	    return 1;
2043	}
2044	np = &m->m_act;
2045	last = m;
2046    }
2047    return 0;
2048}
2049
2050static void
2051tbf_send_packet(struct vif *vifp, struct mbuf *m)
2052{
2053    VIF_LOCK_ASSERT();
2054
2055    if (vifp->v_flags & VIFF_TUNNEL)	/* If tunnel options */
2056	ip_output(m, NULL, &vifp->v_route, IP_FORWARDING, NULL, NULL);
2057    else {
2058	struct ip_moptions imo;
2059	int error;
2060	static struct route ro; /* XXX check this */
2061
2062	imo.imo_multicast_ifp  = vifp->v_ifp;
2063	imo.imo_multicast_ttl  = mtod(m, struct ip *)->ip_ttl - 1;
2064	imo.imo_multicast_loop = 1;
2065	imo.imo_multicast_vif  = -1;
2066
2067	/*
2068	 * Re-entrancy should not be a problem here, because
2069	 * the packets that we send out and are looped back at us
2070	 * should get rejected because they appear to come from
2071	 * the loopback interface, thus preventing looping.
2072	 */
2073	error = ip_output(m, NULL, &ro, IP_FORWARDING, &imo, NULL);
2074
2075	if (mrtdebug & DEBUG_XMIT)
2076	    log(LOG_DEBUG, "phyint_send on vif %d err %d\n",
2077		(int)(vifp - viftable), error);
2078    }
2079}
2080
2081/* determine the current time and then
2082 * the elapsed time (between the last time and time now)
2083 * in milliseconds & update the no. of tokens in the bucket
2084 */
2085static void
2086tbf_update_tokens(struct vif *vifp)
2087{
2088    struct timeval tp;
2089    u_long tm;
2090    struct tbf *t = vifp->v_tbf;
2091
2092    VIF_LOCK_ASSERT();
2093
2094    GET_TIME(tp);
2095
2096    TV_DELTA(tp, t->tbf_last_pkt_t, tm);
2097
2098    /*
2099     * This formula is actually
2100     * "time in seconds" * "bytes/second".
2101     *
2102     * (tm / 1000000) * (v_rate_limit * 1000 * (1000/1024) / 8)
2103     *
2104     * The (1000/1024) was introduced in add_vif to optimize
2105     * this divide into a shift.
2106     */
2107    t->tbf_n_tok += tm * vifp->v_rate_limit / 1024 / 8;
2108    t->tbf_last_pkt_t = tp;
2109
2110    if (t->tbf_n_tok > MAX_BKT_SIZE)
2111	t->tbf_n_tok = MAX_BKT_SIZE;
2112}
2113
2114static int
2115priority(struct vif *vifp, struct ip *ip)
2116{
2117    int prio = 50; /* the lowest priority -- default case */
2118
2119    /* temporary hack; may add general packet classifier some day */
2120
2121    /*
2122     * The UDP port space is divided up into four priority ranges:
2123     * [0, 16384)     : unclassified - lowest priority
2124     * [16384, 32768) : audio - highest priority
2125     * [32768, 49152) : whiteboard - medium priority
2126     * [49152, 65536) : video - low priority
2127     *
2128     * Everything else gets lowest priority.
2129     */
2130    if (ip->ip_p == IPPROTO_UDP) {
2131	struct udphdr *udp = (struct udphdr *)(((char *)ip) + (ip->ip_hl << 2));
2132	switch (ntohs(udp->uh_dport) & 0xc000) {
2133	case 0x4000:
2134	    prio = 70;
2135	    break;
2136	case 0x8000:
2137	    prio = 60;
2138	    break;
2139	case 0xc000:
2140	    prio = 55;
2141	    break;
2142	}
2143    }
2144    return prio;
2145}
2146
2147/*
2148 * End of token bucket filter modifications
2149 */
2150
2151static int
2152X_ip_rsvp_vif(struct socket *so, struct sockopt *sopt)
2153{
2154    int error, vifi;
2155
2156    if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_RSVP)
2157	return EOPNOTSUPP;
2158
2159    error = sooptcopyin(sopt, &vifi, sizeof vifi, sizeof vifi);
2160    if (error)
2161	return error;
2162
2163    VIF_LOCK();
2164
2165    if (vifi < 0 || vifi >= numvifs) {	/* Error if vif is invalid */
2166	VIF_UNLOCK();
2167	return EADDRNOTAVAIL;
2168    }
2169
2170    if (sopt->sopt_name == IP_RSVP_VIF_ON) {
2171	/* Check if socket is available. */
2172	if (viftable[vifi].v_rsvpd != NULL) {
2173	    VIF_UNLOCK();
2174	    return EADDRINUSE;
2175	}
2176
2177	viftable[vifi].v_rsvpd = so;
2178	/* This may seem silly, but we need to be sure we don't over-increment
2179	 * the RSVP counter, in case something slips up.
2180	 */
2181	if (!viftable[vifi].v_rsvp_on) {
2182	    viftable[vifi].v_rsvp_on = 1;
2183	    rsvp_on++;
2184	}
2185    } else { /* must be VIF_OFF */
2186	/*
2187	 * XXX as an additional consistency check, one could make sure
2188	 * that viftable[vifi].v_rsvpd == so, otherwise passing so as
2189	 * first parameter is pretty useless.
2190	 */
2191	viftable[vifi].v_rsvpd = NULL;
2192	/*
2193	 * This may seem silly, but we need to be sure we don't over-decrement
2194	 * the RSVP counter, in case something slips up.
2195	 */
2196	if (viftable[vifi].v_rsvp_on) {
2197	    viftable[vifi].v_rsvp_on = 0;
2198	    rsvp_on--;
2199	}
2200    }
2201    VIF_UNLOCK();
2202    return 0;
2203}
2204
2205static void
2206X_ip_rsvp_force_done(struct socket *so)
2207{
2208    int vifi;
2209
2210    /* Don't bother if it is not the right type of socket. */
2211    if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_RSVP)
2212	return;
2213
2214    VIF_LOCK();
2215
2216    /* The socket may be attached to more than one vif...this
2217     * is perfectly legal.
2218     */
2219    for (vifi = 0; vifi < numvifs; vifi++) {
2220	if (viftable[vifi].v_rsvpd == so) {
2221	    viftable[vifi].v_rsvpd = NULL;
2222	    /* This may seem silly, but we need to be sure we don't
2223	     * over-decrement the RSVP counter, in case something slips up.
2224	     */
2225	    if (viftable[vifi].v_rsvp_on) {
2226		viftable[vifi].v_rsvp_on = 0;
2227		rsvp_on--;
2228	    }
2229	}
2230    }
2231
2232    VIF_UNLOCK();
2233}
2234
2235static void
2236X_rsvp_input(struct mbuf *m, int off)
2237{
2238    int vifi;
2239    struct ip *ip = mtod(m, struct ip *);
2240    struct sockaddr_in rsvp_src = { sizeof rsvp_src, AF_INET };
2241    struct ifnet *ifp;
2242
2243    if (rsvpdebug)
2244	printf("rsvp_input: rsvp_on %d\n",rsvp_on);
2245
2246    /* Can still get packets with rsvp_on = 0 if there is a local member
2247     * of the group to which the RSVP packet is addressed.  But in this
2248     * case we want to throw the packet away.
2249     */
2250    if (!rsvp_on) {
2251	m_freem(m);
2252	return;
2253    }
2254
2255    if (rsvpdebug)
2256	printf("rsvp_input: check vifs\n");
2257
2258#ifdef DIAGNOSTIC
2259    M_ASSERTPKTHDR(m);
2260#endif
2261
2262    ifp = m->m_pkthdr.rcvif;
2263
2264    VIF_LOCK();
2265    /* Find which vif the packet arrived on. */
2266    for (vifi = 0; vifi < numvifs; vifi++)
2267	if (viftable[vifi].v_ifp == ifp)
2268	    break;
2269
2270    if (vifi == numvifs || viftable[vifi].v_rsvpd == NULL) {
2271	/*
2272	 * Drop the lock here to avoid holding it across rip_input.
2273	 * This could make rsvpdebug printfs wrong.  If you care,
2274	 * record the state of stuff before dropping the lock.
2275	 */
2276	VIF_UNLOCK();
2277	/*
2278	 * If the old-style non-vif-associated socket is set,
2279	 * then use it.  Otherwise, drop packet since there
2280	 * is no specific socket for this vif.
2281	 */
2282	if (ip_rsvpd != NULL) {
2283	    if (rsvpdebug)
2284		printf("rsvp_input: Sending packet up old-style socket\n");
2285	    rip_input(m, off);  /* xxx */
2286	} else {
2287	    if (rsvpdebug && vifi == numvifs)
2288		printf("rsvp_input: Can't find vif for packet.\n");
2289	    else if (rsvpdebug && viftable[vifi].v_rsvpd == NULL)
2290		printf("rsvp_input: No socket defined for vif %d\n",vifi);
2291	    m_freem(m);
2292	}
2293	return;
2294    }
2295    rsvp_src.sin_addr = ip->ip_src;
2296
2297    if (rsvpdebug && m)
2298	printf("rsvp_input: m->m_len = %d, sbspace() = %ld\n",
2299	       m->m_len,sbspace(&(viftable[vifi].v_rsvpd->so_rcv)));
2300
2301    if (socket_send(viftable[vifi].v_rsvpd, m, &rsvp_src) < 0) {
2302	if (rsvpdebug)
2303	    printf("rsvp_input: Failed to append to socket\n");
2304    } else {
2305	if (rsvpdebug)
2306	    printf("rsvp_input: send packet up\n");
2307    }
2308    VIF_UNLOCK();
2309}
2310
2311/*
2312 * Code for bandwidth monitors
2313 */
2314
2315/*
2316 * Define common interface for timeval-related methods
2317 */
2318#define	BW_TIMEVALCMP(tvp, uvp, cmp) timevalcmp((tvp), (uvp), cmp)
2319#define	BW_TIMEVALDECR(vvp, uvp) timevalsub((vvp), (uvp))
2320#define	BW_TIMEVALADD(vvp, uvp) timevaladd((vvp), (uvp))
2321
2322static uint32_t
2323compute_bw_meter_flags(struct bw_upcall *req)
2324{
2325    uint32_t flags = 0;
2326
2327    if (req->bu_flags & BW_UPCALL_UNIT_PACKETS)
2328	flags |= BW_METER_UNIT_PACKETS;
2329    if (req->bu_flags & BW_UPCALL_UNIT_BYTES)
2330	flags |= BW_METER_UNIT_BYTES;
2331    if (req->bu_flags & BW_UPCALL_GEQ)
2332	flags |= BW_METER_GEQ;
2333    if (req->bu_flags & BW_UPCALL_LEQ)
2334	flags |= BW_METER_LEQ;
2335
2336    return flags;
2337}
2338
2339/*
2340 * Add a bw_meter entry
2341 */
2342static int
2343add_bw_upcall(struct bw_upcall *req)
2344{
2345    struct mfc *mfc;
2346    struct timeval delta = { BW_UPCALL_THRESHOLD_INTERVAL_MIN_SEC,
2347		BW_UPCALL_THRESHOLD_INTERVAL_MIN_USEC };
2348    struct timeval now;
2349    struct bw_meter *x;
2350    uint32_t flags;
2351
2352    if (!(mrt_api_config & MRT_MFC_BW_UPCALL))
2353	return EOPNOTSUPP;
2354
2355    /* Test if the flags are valid */
2356    if (!(req->bu_flags & (BW_UPCALL_UNIT_PACKETS | BW_UPCALL_UNIT_BYTES)))
2357	return EINVAL;
2358    if (!(req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ)))
2359	return EINVAL;
2360    if ((req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ))
2361	    == (BW_UPCALL_GEQ | BW_UPCALL_LEQ))
2362	return EINVAL;
2363
2364    /* Test if the threshold time interval is valid */
2365    if (BW_TIMEVALCMP(&req->bu_threshold.b_time, &delta, <))
2366	return EINVAL;
2367
2368    flags = compute_bw_meter_flags(req);
2369
2370    /*
2371     * Find if we have already same bw_meter entry
2372     */
2373    MFC_LOCK();
2374    mfc = mfc_find(req->bu_src.s_addr, req->bu_dst.s_addr);
2375    if (mfc == NULL) {
2376	MFC_UNLOCK();
2377	return EADDRNOTAVAIL;
2378    }
2379    for (x = mfc->mfc_bw_meter; x != NULL; x = x->bm_mfc_next) {
2380	if ((BW_TIMEVALCMP(&x->bm_threshold.b_time,
2381			   &req->bu_threshold.b_time, ==)) &&
2382	    (x->bm_threshold.b_packets == req->bu_threshold.b_packets) &&
2383	    (x->bm_threshold.b_bytes == req->bu_threshold.b_bytes) &&
2384	    (x->bm_flags & BW_METER_USER_FLAGS) == flags)  {
2385	    MFC_UNLOCK();
2386	    return 0;		/* XXX Already installed */
2387	}
2388    }
2389
2390    /* Allocate the new bw_meter entry */
2391    x = (struct bw_meter *)malloc(sizeof(*x), M_BWMETER, M_NOWAIT);
2392    if (x == NULL) {
2393	MFC_UNLOCK();
2394	return ENOBUFS;
2395    }
2396
2397    /* Set the new bw_meter entry */
2398    x->bm_threshold.b_time = req->bu_threshold.b_time;
2399    GET_TIME(now);
2400    x->bm_start_time = now;
2401    x->bm_threshold.b_packets = req->bu_threshold.b_packets;
2402    x->bm_threshold.b_bytes = req->bu_threshold.b_bytes;
2403    x->bm_measured.b_packets = 0;
2404    x->bm_measured.b_bytes = 0;
2405    x->bm_flags = flags;
2406    x->bm_time_next = NULL;
2407    x->bm_time_hash = BW_METER_BUCKETS;
2408
2409    /* Add the new bw_meter entry to the front of entries for this MFC */
2410    x->bm_mfc = mfc;
2411    x->bm_mfc_next = mfc->mfc_bw_meter;
2412    mfc->mfc_bw_meter = x;
2413    schedule_bw_meter(x, &now);
2414    MFC_UNLOCK();
2415
2416    return 0;
2417}
2418
2419static void
2420free_bw_list(struct bw_meter *list)
2421{
2422    while (list != NULL) {
2423	struct bw_meter *x = list;
2424
2425	list = list->bm_mfc_next;
2426	unschedule_bw_meter(x);
2427	free(x, M_BWMETER);
2428    }
2429}
2430
2431/*
2432 * Delete one or multiple bw_meter entries
2433 */
2434static int
2435del_bw_upcall(struct bw_upcall *req)
2436{
2437    struct mfc *mfc;
2438    struct bw_meter *x;
2439
2440    if (!(mrt_api_config & MRT_MFC_BW_UPCALL))
2441	return EOPNOTSUPP;
2442
2443    MFC_LOCK();
2444    /* Find the corresponding MFC entry */
2445    mfc = mfc_find(req->bu_src.s_addr, req->bu_dst.s_addr);
2446    if (mfc == NULL) {
2447	MFC_UNLOCK();
2448	return EADDRNOTAVAIL;
2449    } else if (req->bu_flags & BW_UPCALL_DELETE_ALL) {
2450	/*
2451	 * Delete all bw_meter entries for this mfc
2452	 */
2453	struct bw_meter *list;
2454
2455	list = mfc->mfc_bw_meter;
2456	mfc->mfc_bw_meter = NULL;
2457	free_bw_list(list);
2458	MFC_UNLOCK();
2459	return 0;
2460    } else {			/* Delete a single bw_meter entry */
2461	struct bw_meter *prev;
2462	uint32_t flags = 0;
2463
2464	flags = compute_bw_meter_flags(req);
2465
2466	/* Find the bw_meter entry to delete */
2467	for (prev = NULL, x = mfc->mfc_bw_meter; x != NULL;
2468	     x = x->bm_mfc_next) {
2469	    if ((BW_TIMEVALCMP(&x->bm_threshold.b_time,
2470			       &req->bu_threshold.b_time, ==)) &&
2471		(x->bm_threshold.b_packets == req->bu_threshold.b_packets) &&
2472		(x->bm_threshold.b_bytes == req->bu_threshold.b_bytes) &&
2473		(x->bm_flags & BW_METER_USER_FLAGS) == flags)
2474		break;
2475	}
2476	if (x != NULL) { /* Delete entry from the list for this MFC */
2477	    if (prev != NULL)
2478		prev->bm_mfc_next = x->bm_mfc_next;	/* remove from middle*/
2479	    else
2480		x->bm_mfc->mfc_bw_meter = x->bm_mfc_next;/* new head of list */
2481
2482	    unschedule_bw_meter(x);
2483	    MFC_UNLOCK();
2484	    /* Free the bw_meter entry */
2485	    free(x, M_BWMETER);
2486	    return 0;
2487	} else {
2488	    MFC_UNLOCK();
2489	    return EINVAL;
2490	}
2491    }
2492    /* NOTREACHED */
2493}
2494
2495/*
2496 * Perform bandwidth measurement processing that may result in an upcall
2497 */
2498static void
2499bw_meter_receive_packet(struct bw_meter *x, int plen, struct timeval *nowp)
2500{
2501    struct timeval delta;
2502
2503    MFC_LOCK_ASSERT();
2504
2505    delta = *nowp;
2506    BW_TIMEVALDECR(&delta, &x->bm_start_time);
2507
2508    if (x->bm_flags & BW_METER_GEQ) {
2509	/*
2510	 * Processing for ">=" type of bw_meter entry
2511	 */
2512	if (BW_TIMEVALCMP(&delta, &x->bm_threshold.b_time, >)) {
2513	    /* Reset the bw_meter entry */
2514	    x->bm_start_time = *nowp;
2515	    x->bm_measured.b_packets = 0;
2516	    x->bm_measured.b_bytes = 0;
2517	    x->bm_flags &= ~BW_METER_UPCALL_DELIVERED;
2518	}
2519
2520	/* Record that a packet is received */
2521	x->bm_measured.b_packets++;
2522	x->bm_measured.b_bytes += plen;
2523
2524	/*
2525	 * Test if we should deliver an upcall
2526	 */
2527	if (!(x->bm_flags & BW_METER_UPCALL_DELIVERED)) {
2528	    if (((x->bm_flags & BW_METER_UNIT_PACKETS) &&
2529		 (x->bm_measured.b_packets >= x->bm_threshold.b_packets)) ||
2530		((x->bm_flags & BW_METER_UNIT_BYTES) &&
2531		 (x->bm_measured.b_bytes >= x->bm_threshold.b_bytes))) {
2532		/* Prepare an upcall for delivery */
2533		bw_meter_prepare_upcall(x, nowp);
2534		x->bm_flags |= BW_METER_UPCALL_DELIVERED;
2535	    }
2536	}
2537    } else if (x->bm_flags & BW_METER_LEQ) {
2538	/*
2539	 * Processing for "<=" type of bw_meter entry
2540	 */
2541	if (BW_TIMEVALCMP(&delta, &x->bm_threshold.b_time, >)) {
2542	    /*
2543	     * We are behind time with the multicast forwarding table
2544	     * scanning for "<=" type of bw_meter entries, so test now
2545	     * if we should deliver an upcall.
2546	     */
2547	    if (((x->bm_flags & BW_METER_UNIT_PACKETS) &&
2548		 (x->bm_measured.b_packets <= x->bm_threshold.b_packets)) ||
2549		((x->bm_flags & BW_METER_UNIT_BYTES) &&
2550		 (x->bm_measured.b_bytes <= x->bm_threshold.b_bytes))) {
2551		/* Prepare an upcall for delivery */
2552		bw_meter_prepare_upcall(x, nowp);
2553	    }
2554	    /* Reschedule the bw_meter entry */
2555	    unschedule_bw_meter(x);
2556	    schedule_bw_meter(x, nowp);
2557	}
2558
2559	/* Record that a packet is received */
2560	x->bm_measured.b_packets++;
2561	x->bm_measured.b_bytes += plen;
2562
2563	/*
2564	 * Test if we should restart the measuring interval
2565	 */
2566	if ((x->bm_flags & BW_METER_UNIT_PACKETS &&
2567	     x->bm_measured.b_packets <= x->bm_threshold.b_packets) ||
2568	    (x->bm_flags & BW_METER_UNIT_BYTES &&
2569	     x->bm_measured.b_bytes <= x->bm_threshold.b_bytes)) {
2570	    /* Don't restart the measuring interval */
2571	} else {
2572	    /* Do restart the measuring interval */
2573	    /*
2574	     * XXX: note that we don't unschedule and schedule, because this
2575	     * might be too much overhead per packet. Instead, when we process
2576	     * all entries for a given timer hash bin, we check whether it is
2577	     * really a timeout. If not, we reschedule at that time.
2578	     */
2579	    x->bm_start_time = *nowp;
2580	    x->bm_measured.b_packets = 0;
2581	    x->bm_measured.b_bytes = 0;
2582	    x->bm_flags &= ~BW_METER_UPCALL_DELIVERED;
2583	}
2584    }
2585}
2586
2587/*
2588 * Prepare a bandwidth-related upcall
2589 */
2590static void
2591bw_meter_prepare_upcall(struct bw_meter *x, struct timeval *nowp)
2592{
2593    struct timeval delta;
2594    struct bw_upcall *u;
2595
2596    MFC_LOCK_ASSERT();
2597
2598    /*
2599     * Compute the measured time interval
2600     */
2601    delta = *nowp;
2602    BW_TIMEVALDECR(&delta, &x->bm_start_time);
2603
2604    /*
2605     * If there are too many pending upcalls, deliver them now
2606     */
2607    if (bw_upcalls_n >= BW_UPCALLS_MAX)
2608	bw_upcalls_send();
2609
2610    /*
2611     * Set the bw_upcall entry
2612     */
2613    u = &bw_upcalls[bw_upcalls_n++];
2614    u->bu_src = x->bm_mfc->mfc_origin;
2615    u->bu_dst = x->bm_mfc->mfc_mcastgrp;
2616    u->bu_threshold.b_time = x->bm_threshold.b_time;
2617    u->bu_threshold.b_packets = x->bm_threshold.b_packets;
2618    u->bu_threshold.b_bytes = x->bm_threshold.b_bytes;
2619    u->bu_measured.b_time = delta;
2620    u->bu_measured.b_packets = x->bm_measured.b_packets;
2621    u->bu_measured.b_bytes = x->bm_measured.b_bytes;
2622    u->bu_flags = 0;
2623    if (x->bm_flags & BW_METER_UNIT_PACKETS)
2624	u->bu_flags |= BW_UPCALL_UNIT_PACKETS;
2625    if (x->bm_flags & BW_METER_UNIT_BYTES)
2626	u->bu_flags |= BW_UPCALL_UNIT_BYTES;
2627    if (x->bm_flags & BW_METER_GEQ)
2628	u->bu_flags |= BW_UPCALL_GEQ;
2629    if (x->bm_flags & BW_METER_LEQ)
2630	u->bu_flags |= BW_UPCALL_LEQ;
2631}
2632
2633/*
2634 * Send the pending bandwidth-related upcalls
2635 */
2636static void
2637bw_upcalls_send(void)
2638{
2639    struct mbuf *m;
2640    int len = bw_upcalls_n * sizeof(bw_upcalls[0]);
2641    struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
2642    static struct igmpmsg igmpmsg = { 0,		/* unused1 */
2643				      0,		/* unused2 */
2644				      IGMPMSG_BW_UPCALL,/* im_msgtype */
2645				      0,		/* im_mbz  */
2646				      0,		/* im_vif  */
2647				      0,		/* unused3 */
2648				      { 0 },		/* im_src  */
2649				      { 0 } };		/* im_dst  */
2650
2651    MFC_LOCK_ASSERT();
2652
2653    if (bw_upcalls_n == 0)
2654	return;			/* No pending upcalls */
2655
2656    bw_upcalls_n = 0;
2657
2658    /*
2659     * Allocate a new mbuf, initialize it with the header and
2660     * the payload for the pending calls.
2661     */
2662    MGETHDR(m, M_DONTWAIT, MT_HEADER);
2663    if (m == NULL) {
2664	log(LOG_WARNING, "bw_upcalls_send: cannot allocate mbuf\n");
2665	return;
2666    }
2667
2668    m->m_len = m->m_pkthdr.len = 0;
2669    m_copyback(m, 0, sizeof(struct igmpmsg), (caddr_t)&igmpmsg);
2670    m_copyback(m, sizeof(struct igmpmsg), len, (caddr_t)&bw_upcalls[0]);
2671
2672    /*
2673     * Send the upcalls
2674     * XXX do we need to set the address in k_igmpsrc ?
2675     */
2676    mrtstat.mrts_upcalls++;
2677    if (socket_send(ip_mrouter, m, &k_igmpsrc) < 0) {
2678	log(LOG_WARNING, "bw_upcalls_send: ip_mrouter socket queue full\n");
2679	++mrtstat.mrts_upq_sockfull;
2680    }
2681}
2682
2683/*
2684 * Compute the timeout hash value for the bw_meter entries
2685 */
2686#define	BW_METER_TIMEHASH(bw_meter, hash)				\
2687    do {								\
2688	struct timeval next_timeval = (bw_meter)->bm_start_time;	\
2689									\
2690	BW_TIMEVALADD(&next_timeval, &(bw_meter)->bm_threshold.b_time); \
2691	(hash) = next_timeval.tv_sec;					\
2692	if (next_timeval.tv_usec)					\
2693	    (hash)++; /* XXX: make sure we don't timeout early */	\
2694	(hash) %= BW_METER_BUCKETS;					\
2695    } while (0)
2696
2697/*
2698 * Schedule a timer to process periodically bw_meter entry of type "<="
2699 * by linking the entry in the proper hash bucket.
2700 */
2701static void
2702schedule_bw_meter(struct bw_meter *x, struct timeval *nowp)
2703{
2704    int time_hash;
2705
2706    MFC_LOCK_ASSERT();
2707
2708    if (!(x->bm_flags & BW_METER_LEQ))
2709	return;		/* XXX: we schedule timers only for "<=" entries */
2710
2711    /*
2712     * Reset the bw_meter entry
2713     */
2714    x->bm_start_time = *nowp;
2715    x->bm_measured.b_packets = 0;
2716    x->bm_measured.b_bytes = 0;
2717    x->bm_flags &= ~BW_METER_UPCALL_DELIVERED;
2718
2719    /*
2720     * Compute the timeout hash value and insert the entry
2721     */
2722    BW_METER_TIMEHASH(x, time_hash);
2723    x->bm_time_next = bw_meter_timers[time_hash];
2724    bw_meter_timers[time_hash] = x;
2725    x->bm_time_hash = time_hash;
2726}
2727
2728/*
2729 * Unschedule the periodic timer that processes bw_meter entry of type "<="
2730 * by removing the entry from the proper hash bucket.
2731 */
2732static void
2733unschedule_bw_meter(struct bw_meter *x)
2734{
2735    int time_hash;
2736    struct bw_meter *prev, *tmp;
2737
2738    MFC_LOCK_ASSERT();
2739
2740    if (!(x->bm_flags & BW_METER_LEQ))
2741	return;		/* XXX: we schedule timers only for "<=" entries */
2742
2743    /*
2744     * Compute the timeout hash value and delete the entry
2745     */
2746    time_hash = x->bm_time_hash;
2747    if (time_hash >= BW_METER_BUCKETS)
2748	return;		/* Entry was not scheduled */
2749
2750    for (prev = NULL, tmp = bw_meter_timers[time_hash];
2751	     tmp != NULL; prev = tmp, tmp = tmp->bm_time_next)
2752	if (tmp == x)
2753	    break;
2754
2755    if (tmp == NULL)
2756	panic("unschedule_bw_meter: bw_meter entry not found");
2757
2758    if (prev != NULL)
2759	prev->bm_time_next = x->bm_time_next;
2760    else
2761	bw_meter_timers[time_hash] = x->bm_time_next;
2762
2763    x->bm_time_next = NULL;
2764    x->bm_time_hash = BW_METER_BUCKETS;
2765}
2766
2767
2768/*
2769 * Process all "<=" type of bw_meter that should be processed now,
2770 * and for each entry prepare an upcall if necessary. Each processed
2771 * entry is rescheduled again for the (periodic) processing.
2772 *
2773 * This is run periodically (once per second normally). On each round,
2774 * all the potentially matching entries are in the hash slot that we are
2775 * looking at.
2776 */
2777static void
2778bw_meter_process()
2779{
2780    static uint32_t last_tv_sec;	/* last time we processed this */
2781
2782    uint32_t loops;
2783    int i;
2784    struct timeval now, process_endtime;
2785
2786    GET_TIME(now);
2787    if (last_tv_sec == now.tv_sec)
2788	return;		/* nothing to do */
2789
2790    loops = now.tv_sec - last_tv_sec;
2791    last_tv_sec = now.tv_sec;
2792    if (loops > BW_METER_BUCKETS)
2793	loops = BW_METER_BUCKETS;
2794
2795    MFC_LOCK();
2796    /*
2797     * Process all bins of bw_meter entries from the one after the last
2798     * processed to the current one. On entry, i points to the last bucket
2799     * visited, so we need to increment i at the beginning of the loop.
2800     */
2801    for (i = (now.tv_sec - loops) % BW_METER_BUCKETS; loops > 0; loops--) {
2802	struct bw_meter *x, *tmp_list;
2803
2804	if (++i >= BW_METER_BUCKETS)
2805	    i = 0;
2806
2807	/* Disconnect the list of bw_meter entries from the bin */
2808	tmp_list = bw_meter_timers[i];
2809	bw_meter_timers[i] = NULL;
2810
2811	/* Process the list of bw_meter entries */
2812	while (tmp_list != NULL) {
2813	    x = tmp_list;
2814	    tmp_list = tmp_list->bm_time_next;
2815
2816	    /* Test if the time interval is over */
2817	    process_endtime = x->bm_start_time;
2818	    BW_TIMEVALADD(&process_endtime, &x->bm_threshold.b_time);
2819	    if (BW_TIMEVALCMP(&process_endtime, &now, >)) {
2820		/* Not yet: reschedule, but don't reset */
2821		int time_hash;
2822
2823		BW_METER_TIMEHASH(x, time_hash);
2824		if (time_hash == i && process_endtime.tv_sec == now.tv_sec) {
2825		    /*
2826		     * XXX: somehow the bin processing is a bit ahead of time.
2827		     * Put the entry in the next bin.
2828		     */
2829		    if (++time_hash >= BW_METER_BUCKETS)
2830			time_hash = 0;
2831		}
2832		x->bm_time_next = bw_meter_timers[time_hash];
2833		bw_meter_timers[time_hash] = x;
2834		x->bm_time_hash = time_hash;
2835
2836		continue;
2837	    }
2838
2839	    /*
2840	     * Test if we should deliver an upcall
2841	     */
2842	    if (((x->bm_flags & BW_METER_UNIT_PACKETS) &&
2843		 (x->bm_measured.b_packets <= x->bm_threshold.b_packets)) ||
2844		((x->bm_flags & BW_METER_UNIT_BYTES) &&
2845		 (x->bm_measured.b_bytes <= x->bm_threshold.b_bytes))) {
2846		/* Prepare an upcall for delivery */
2847		bw_meter_prepare_upcall(x, &now);
2848	    }
2849
2850	    /*
2851	     * Reschedule for next processing
2852	     */
2853	    schedule_bw_meter(x, &now);
2854	}
2855    }
2856
2857    /* Send all upcalls that are pending delivery */
2858    bw_upcalls_send();
2859
2860    MFC_UNLOCK();
2861}
2862
2863/*
2864 * A periodic function for sending all upcalls that are pending delivery
2865 */
2866static void
2867expire_bw_upcalls_send(void *unused)
2868{
2869    MFC_LOCK();
2870    bw_upcalls_send();
2871    MFC_UNLOCK();
2872
2873    callout_reset(&bw_upcalls_ch, BW_UPCALLS_PERIOD,
2874	expire_bw_upcalls_send, NULL);
2875}
2876
2877/*
2878 * A periodic function for periodic scanning of the multicast forwarding
2879 * table for processing all "<=" bw_meter entries.
2880 */
2881static void
2882expire_bw_meter_process(void *unused)
2883{
2884    if (mrt_api_config & MRT_MFC_BW_UPCALL)
2885	bw_meter_process();
2886
2887    callout_reset(&bw_meter_ch, BW_METER_PERIOD, expire_bw_meter_process, NULL);
2888}
2889
2890/*
2891 * End of bandwidth monitoring code
2892 */
2893
2894#ifdef PIM
2895/*
2896 * Send the packet up to the user daemon, or eventually do kernel encapsulation
2897 *
2898 */
2899static int
2900pim_register_send(struct ip *ip, struct vif *vifp,
2901	struct mbuf *m, struct mfc *rt)
2902{
2903    struct mbuf *mb_copy, *mm;
2904
2905    if (mrtdebug & DEBUG_PIM)
2906        log(LOG_DEBUG, "pim_register_send: ");
2907
2908    mb_copy = pim_register_prepare(ip, m);
2909    if (mb_copy == NULL)
2910	return ENOBUFS;
2911
2912    /*
2913     * Send all the fragments. Note that the mbuf for each fragment
2914     * is freed by the sending machinery.
2915     */
2916    for (mm = mb_copy; mm; mm = mb_copy) {
2917	mb_copy = mm->m_nextpkt;
2918	mm->m_nextpkt = 0;
2919	mm = m_pullup(mm, sizeof(struct ip));
2920	if (mm != NULL) {
2921	    ip = mtod(mm, struct ip *);
2922	    if ((mrt_api_config & MRT_MFC_RP) &&
2923		(rt->mfc_rp.s_addr != INADDR_ANY)) {
2924		pim_register_send_rp(ip, vifp, mm, rt);
2925	    } else {
2926		pim_register_send_upcall(ip, vifp, mm, rt);
2927	    }
2928	}
2929    }
2930
2931    return 0;
2932}
2933
2934/*
2935 * Return a copy of the data packet that is ready for PIM Register
2936 * encapsulation.
2937 * XXX: Note that in the returned copy the IP header is a valid one.
2938 */
2939static struct mbuf *
2940pim_register_prepare(struct ip *ip, struct mbuf *m)
2941{
2942    struct mbuf *mb_copy = NULL;
2943    int mtu;
2944
2945    /* Take care of delayed checksums */
2946    if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
2947	in_delayed_cksum(m);
2948	m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
2949    }
2950
2951    /*
2952     * Copy the old packet & pullup its IP header into the
2953     * new mbuf so we can modify it.
2954     */
2955    mb_copy = m_copypacket(m, M_DONTWAIT);
2956    if (mb_copy == NULL)
2957	return NULL;
2958    mb_copy = m_pullup(mb_copy, ip->ip_hl << 2);
2959    if (mb_copy == NULL)
2960	return NULL;
2961
2962    /* take care of the TTL */
2963    ip = mtod(mb_copy, struct ip *);
2964    --ip->ip_ttl;
2965
2966    /* Compute the MTU after the PIM Register encapsulation */
2967    mtu = 0xffff - sizeof(pim_encap_iphdr) - sizeof(pim_encap_pimhdr);
2968
2969    if (ip->ip_len <= mtu) {
2970	/* Turn the IP header into a valid one */
2971	ip->ip_len = htons(ip->ip_len);
2972	ip->ip_off = htons(ip->ip_off);
2973	ip->ip_sum = 0;
2974	ip->ip_sum = in_cksum(mb_copy, ip->ip_hl << 2);
2975    } else {
2976	/* Fragment the packet */
2977	if (ip_fragment(ip, &mb_copy, mtu, 0, CSUM_DELAY_IP) != 0) {
2978	    m_freem(mb_copy);
2979	    return NULL;
2980	}
2981    }
2982    return mb_copy;
2983}
2984
2985/*
2986 * Send an upcall with the data packet to the user-level process.
2987 */
2988static int
2989pim_register_send_upcall(struct ip *ip, struct vif *vifp,
2990	struct mbuf *mb_copy, struct mfc *rt)
2991{
2992    struct mbuf *mb_first;
2993    int len = ntohs(ip->ip_len);
2994    struct igmpmsg *im;
2995    struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
2996
2997    VIF_LOCK_ASSERT();
2998
2999    /*
3000     * Add a new mbuf with an upcall header
3001     */
3002    MGETHDR(mb_first, M_DONTWAIT, MT_HEADER);
3003    if (mb_first == NULL) {
3004	m_freem(mb_copy);
3005	return ENOBUFS;
3006    }
3007    mb_first->m_data += max_linkhdr;
3008    mb_first->m_pkthdr.len = len + sizeof(struct igmpmsg);
3009    mb_first->m_len = sizeof(struct igmpmsg);
3010    mb_first->m_next = mb_copy;
3011
3012    /* Send message to routing daemon */
3013    im = mtod(mb_first, struct igmpmsg *);
3014    im->im_msgtype	= IGMPMSG_WHOLEPKT;
3015    im->im_mbz		= 0;
3016    im->im_vif		= vifp - viftable;
3017    im->im_src		= ip->ip_src;
3018    im->im_dst		= ip->ip_dst;
3019
3020    k_igmpsrc.sin_addr	= ip->ip_src;
3021
3022    mrtstat.mrts_upcalls++;
3023
3024    if (socket_send(ip_mrouter, mb_first, &k_igmpsrc) < 0) {
3025	if (mrtdebug & DEBUG_PIM)
3026	    log(LOG_WARNING,
3027		"mcast: pim_register_send_upcall: ip_mrouter socket queue full");
3028	++mrtstat.mrts_upq_sockfull;
3029	return ENOBUFS;
3030    }
3031
3032    /* Keep statistics */
3033    pimstat.pims_snd_registers_msgs++;
3034    pimstat.pims_snd_registers_bytes += len;
3035
3036    return 0;
3037}
3038
3039/*
3040 * Encapsulate the data packet in PIM Register message and send it to the RP.
3041 */
3042static int
3043pim_register_send_rp(struct ip *ip, struct vif *vifp,
3044	struct mbuf *mb_copy, struct mfc *rt)
3045{
3046    struct mbuf *mb_first;
3047    struct ip *ip_outer;
3048    struct pim_encap_pimhdr *pimhdr;
3049    int len = ntohs(ip->ip_len);
3050    vifi_t vifi = rt->mfc_parent;
3051
3052    VIF_LOCK_ASSERT();
3053
3054    if ((vifi >= numvifs) || (viftable[vifi].v_lcl_addr.s_addr == 0)) {
3055	m_freem(mb_copy);
3056	return EADDRNOTAVAIL;		/* The iif vif is invalid */
3057    }
3058
3059    /*
3060     * Add a new mbuf with the encapsulating header
3061     */
3062    MGETHDR(mb_first, M_DONTWAIT, MT_HEADER);
3063    if (mb_first == NULL) {
3064	m_freem(mb_copy);
3065	return ENOBUFS;
3066    }
3067    mb_first->m_data += max_linkhdr;
3068    mb_first->m_len = sizeof(pim_encap_iphdr) + sizeof(pim_encap_pimhdr);
3069    mb_first->m_next = mb_copy;
3070
3071    mb_first->m_pkthdr.len = len + mb_first->m_len;
3072
3073    /*
3074     * Fill in the encapsulating IP and PIM header
3075     */
3076    ip_outer = mtod(mb_first, struct ip *);
3077    *ip_outer = pim_encap_iphdr;
3078#ifdef RANDOM_IP_ID
3079    ip_outer->ip_id = ip_randomid();
3080#else
3081    ip_outer->ip_id = htons(ip_id++);
3082#endif
3083    ip_outer->ip_len = len + sizeof(pim_encap_iphdr) + sizeof(pim_encap_pimhdr);
3084    ip_outer->ip_src = viftable[vifi].v_lcl_addr;
3085    ip_outer->ip_dst = rt->mfc_rp;
3086    /*
3087     * Copy the inner header TOS to the outer header, and take care of the
3088     * IP_DF bit.
3089     */
3090    ip_outer->ip_tos = ip->ip_tos;
3091    if (ntohs(ip->ip_off) & IP_DF)
3092	ip_outer->ip_off |= IP_DF;
3093    pimhdr = (struct pim_encap_pimhdr *)((caddr_t)ip_outer
3094					 + sizeof(pim_encap_iphdr));
3095    *pimhdr = pim_encap_pimhdr;
3096    /* If the iif crosses a border, set the Border-bit */
3097    if (rt->mfc_flags[vifi] & MRT_MFC_FLAGS_BORDER_VIF & mrt_api_config)
3098	pimhdr->flags |= htonl(PIM_BORDER_REGISTER);
3099
3100    mb_first->m_data += sizeof(pim_encap_iphdr);
3101    pimhdr->pim.pim_cksum = in_cksum(mb_first, sizeof(pim_encap_pimhdr));
3102    mb_first->m_data -= sizeof(pim_encap_iphdr);
3103
3104    if (vifp->v_rate_limit == 0)
3105	tbf_send_packet(vifp, mb_first);
3106    else
3107	tbf_control(vifp, mb_first, ip, ip_outer->ip_len);
3108
3109    /* Keep statistics */
3110    pimstat.pims_snd_registers_msgs++;
3111    pimstat.pims_snd_registers_bytes += len;
3112
3113    return 0;
3114}
3115
3116/*
3117 * PIM-SMv2 and PIM-DM messages processing.
3118 * Receives and verifies the PIM control messages, and passes them
3119 * up to the listening socket, using rip_input().
3120 * The only message with special processing is the PIM_REGISTER message
3121 * (used by PIM-SM): the PIM header is stripped off, and the inner packet
3122 * is passed to if_simloop().
3123 */
3124void
3125pim_input(struct mbuf *m, int off)
3126{
3127    struct ip *ip = mtod(m, struct ip *);
3128    struct pim *pim;
3129    int minlen;
3130    int datalen = ip->ip_len;
3131    int ip_tos;
3132    int iphlen = off;
3133
3134    /* Keep statistics */
3135    pimstat.pims_rcv_total_msgs++;
3136    pimstat.pims_rcv_total_bytes += datalen;
3137
3138    /*
3139     * Validate lengths
3140     */
3141    if (datalen < PIM_MINLEN) {
3142	pimstat.pims_rcv_tooshort++;
3143	log(LOG_ERR, "pim_input: packet size too small %d from %lx\n",
3144	    datalen, (u_long)ip->ip_src.s_addr);
3145	m_freem(m);
3146	return;
3147    }
3148
3149    /*
3150     * If the packet is at least as big as a REGISTER, go agead
3151     * and grab the PIM REGISTER header size, to avoid another
3152     * possible m_pullup() later.
3153     *
3154     * PIM_MINLEN       == pimhdr + u_int32_t == 4 + 4 = 8
3155     * PIM_REG_MINLEN   == pimhdr + reghdr + encap_iphdr == 4 + 4 + 20 = 28
3156     */
3157    minlen = iphlen + (datalen >= PIM_REG_MINLEN ? PIM_REG_MINLEN : PIM_MINLEN);
3158    /*
3159     * Get the IP and PIM headers in contiguous memory, and
3160     * possibly the PIM REGISTER header.
3161     */
3162    if ((m->m_flags & M_EXT || m->m_len < minlen) &&
3163	(m = m_pullup(m, minlen)) == 0) {
3164	log(LOG_ERR, "pim_input: m_pullup failure\n");
3165	return;
3166    }
3167    /* m_pullup() may have given us a new mbuf so reset ip. */
3168    ip = mtod(m, struct ip *);
3169    ip_tos = ip->ip_tos;
3170
3171    /* adjust mbuf to point to the PIM header */
3172    m->m_data += iphlen;
3173    m->m_len  -= iphlen;
3174    pim = mtod(m, struct pim *);
3175
3176    /*
3177     * Validate checksum. If PIM REGISTER, exclude the data packet.
3178     *
3179     * XXX: some older PIMv2 implementations don't make this distinction,
3180     * so for compatibility reason perform the checksum over part of the
3181     * message, and if error, then over the whole message.
3182     */
3183    if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER && in_cksum(m, PIM_MINLEN) == 0) {
3184	/* do nothing, checksum okay */
3185    } else if (in_cksum(m, datalen)) {
3186	pimstat.pims_rcv_badsum++;
3187	if (mrtdebug & DEBUG_PIM)
3188	    log(LOG_DEBUG, "pim_input: invalid checksum");
3189	m_freem(m);
3190	return;
3191    }
3192
3193    /* PIM version check */
3194    if (PIM_VT_V(pim->pim_vt) < PIM_VERSION) {
3195	pimstat.pims_rcv_badversion++;
3196	log(LOG_ERR, "pim_input: incorrect version %d, expecting %d\n",
3197	    PIM_VT_V(pim->pim_vt), PIM_VERSION);
3198	m_freem(m);
3199	return;
3200    }
3201
3202    /* restore mbuf back to the outer IP */
3203    m->m_data -= iphlen;
3204    m->m_len  += iphlen;
3205
3206    if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER) {
3207	/*
3208	 * Since this is a REGISTER, we'll make a copy of the register
3209	 * headers ip + pim + u_int32 + encap_ip, to be passed up to the
3210	 * routing daemon.
3211	 */
3212	struct sockaddr_in dst = { sizeof(dst), AF_INET };
3213	struct mbuf *mcp;
3214	struct ip *encap_ip;
3215	u_int32_t *reghdr;
3216	struct ifnet *vifp;
3217
3218	VIF_LOCK();
3219	if ((reg_vif_num >= numvifs) || (reg_vif_num == VIFI_INVALID)) {
3220	    VIF_UNLOCK();
3221	    if (mrtdebug & DEBUG_PIM)
3222		log(LOG_DEBUG,
3223		    "pim_input: register vif not set: %d\n", reg_vif_num);
3224	    m_freem(m);
3225	    return;
3226	}
3227	/* XXX need refcnt? */
3228	vifp = viftable[reg_vif_num].v_ifp;
3229	VIF_UNLOCK();
3230
3231	/*
3232	 * Validate length
3233	 */
3234	if (datalen < PIM_REG_MINLEN) {
3235	    pimstat.pims_rcv_tooshort++;
3236	    pimstat.pims_rcv_badregisters++;
3237	    log(LOG_ERR,
3238		"pim_input: register packet size too small %d from %lx\n",
3239		datalen, (u_long)ip->ip_src.s_addr);
3240	    m_freem(m);
3241	    return;
3242	}
3243
3244	reghdr = (u_int32_t *)(pim + 1);
3245	encap_ip = (struct ip *)(reghdr + 1);
3246
3247	if (mrtdebug & DEBUG_PIM) {
3248	    log(LOG_DEBUG,
3249		"pim_input[register], encap_ip: %lx -> %lx, encap_ip len %d\n",
3250		(u_long)ntohl(encap_ip->ip_src.s_addr),
3251		(u_long)ntohl(encap_ip->ip_dst.s_addr),
3252		ntohs(encap_ip->ip_len));
3253	}
3254
3255	/* verify the version number of the inner packet */
3256	if (encap_ip->ip_v != IPVERSION) {
3257	    pimstat.pims_rcv_badregisters++;
3258	    if (mrtdebug & DEBUG_PIM) {
3259		log(LOG_DEBUG, "pim_input: invalid IP version (%d) "
3260		    "of the inner packet\n", encap_ip->ip_v);
3261	    }
3262	    m_freem(m);
3263	    return;
3264	}
3265
3266	/* verify the inner packet is destined to a mcast group */
3267	if (!IN_MULTICAST(ntohl(encap_ip->ip_dst.s_addr))) {
3268	    pimstat.pims_rcv_badregisters++;
3269	    if (mrtdebug & DEBUG_PIM)
3270		log(LOG_DEBUG,
3271		    "pim_input: inner packet of register is not "
3272		    "multicast %lx\n",
3273		    (u_long)ntohl(encap_ip->ip_dst.s_addr));
3274	    m_freem(m);
3275	    return;
3276	}
3277
3278	/*
3279	 * Copy the TOS from the outer IP header to the inner IP header.
3280	 */
3281	if (encap_ip->ip_tos != ip_tos) {
3282	    /* Outer TOS -> inner TOS */
3283	    encap_ip->ip_tos = ip_tos;
3284	    /* Recompute the inner header checksum. Sigh... */
3285
3286	    /* adjust mbuf to point to the inner IP header */
3287	    m->m_data += (iphlen + PIM_MINLEN);
3288	    m->m_len  -= (iphlen + PIM_MINLEN);
3289
3290	    encap_ip->ip_sum = 0;
3291	    encap_ip->ip_sum = in_cksum(m, encap_ip->ip_hl << 2);
3292
3293	    /* restore mbuf to point back to the outer IP header */
3294	    m->m_data -= (iphlen + PIM_MINLEN);
3295	    m->m_len  += (iphlen + PIM_MINLEN);
3296	}
3297
3298	/* If a NULL_REGISTER, pass it to the daemon */
3299	if ((ntohl(*reghdr) & PIM_NULL_REGISTER))
3300	    goto pim_input_to_daemon;
3301
3302	/*
3303	 * Decapsulate the inner IP packet and loopback to forward it
3304	 * as a normal multicast packet. Also, make a copy of the
3305	 *     outer_iphdr + pimhdr + reghdr + encap_iphdr
3306	 * to pass to the daemon later, so it can take the appropriate
3307	 * actions (e.g., send back PIM_REGISTER_STOP).
3308	 * XXX: here m->m_data points to the outer IP header.
3309	 */
3310	mcp = m_copy(m, 0, iphlen + PIM_REG_MINLEN);
3311	if (mcp == NULL) {
3312	    log(LOG_ERR,
3313		"pim_input: pim register: could not copy register head\n");
3314	    m_freem(m);
3315	    return;
3316	}
3317
3318	/* Keep statistics */
3319	/* XXX: registers_bytes include only the encap. mcast pkt */
3320	pimstat.pims_rcv_registers_msgs++;
3321	pimstat.pims_rcv_registers_bytes += ntohs(encap_ip->ip_len);
3322
3323	/*
3324	 * forward the inner ip packet; point m_data at the inner ip.
3325	 */
3326	m_adj(m, iphlen + PIM_MINLEN);
3327
3328	if (mrtdebug & DEBUG_PIM) {
3329	    log(LOG_DEBUG,
3330		"pim_input: forwarding decapsulated register: "
3331		"src %lx, dst %lx, vif %d\n",
3332		(u_long)ntohl(encap_ip->ip_src.s_addr),
3333		(u_long)ntohl(encap_ip->ip_dst.s_addr),
3334		reg_vif_num);
3335	}
3336	/* NB: vifp was collected above; can it change on us? */
3337	if_simloop(vifp, m, dst.sin_family, 0);
3338
3339	/* prepare the register head to send to the mrouting daemon */
3340	m = mcp;
3341    }
3342
3343pim_input_to_daemon:
3344    /*
3345     * Pass the PIM message up to the daemon; if it is a Register message,
3346     * pass the 'head' only up to the daemon. This includes the
3347     * outer IP header, PIM header, PIM-Register header and the
3348     * inner IP header.
3349     * XXX: the outer IP header pkt size of a Register is not adjust to
3350     * reflect the fact that the inner multicast data is truncated.
3351     */
3352    rip_input(m, iphlen);
3353
3354    return;
3355}
3356#endif /* PIM */
3357
3358static int
3359ip_mroute_modevent(module_t mod, int type, void *unused)
3360{
3361    int s;
3362
3363    switch (type) {
3364    case MOD_LOAD:
3365	s = splnet();
3366	ip_mrouter_reset();
3367	/* XXX synchronize setup */
3368	ip_mcast_src = X_ip_mcast_src;
3369	ip_mforward = X_ip_mforward;
3370	ip_mrouter_done = X_ip_mrouter_done;
3371	ip_mrouter_get = X_ip_mrouter_get;
3372	ip_mrouter_set = X_ip_mrouter_set;
3373	ip_rsvp_force_done = X_ip_rsvp_force_done;
3374	ip_rsvp_vif = X_ip_rsvp_vif;
3375	legal_vif_num = X_legal_vif_num;
3376	mrt_ioctl = X_mrt_ioctl;
3377	rsvp_input_p = X_rsvp_input;
3378	break;
3379
3380    case MOD_UNLOAD:
3381	/*
3382	 * Typically module unload happens after the user-level
3383	 * process has shutdown the kernel services (the check
3384	 * below insures someone can't just yank the module out
3385	 * from under a running process).  But if the module is
3386	 * just loaded and then unloaded w/o starting up a user
3387	 * process we still need to cleanup.
3388	 */
3389	if (ip_mrouter)
3390	    return EINVAL;
3391
3392	X_ip_mrouter_done();
3393	ip_mcast_src = NULL;
3394	ip_mforward = NULL;
3395	ip_mrouter_done = NULL;
3396	ip_mrouter_get = NULL;
3397	ip_mrouter_set = NULL;
3398	ip_rsvp_force_done = NULL;
3399	ip_rsvp_vif = NULL;
3400	legal_vif_num = NULL;
3401	mrt_ioctl = NULL;
3402	rsvp_input_p = NULL;
3403	break;
3404    }
3405    return 0;
3406}
3407
3408static moduledata_t ip_mroutemod = {
3409    "ip_mroute",
3410    ip_mroute_modevent,
3411    0
3412};
3413DECLARE_MODULE(ip_mroute, ip_mroutemod, SI_SUB_PSEUDO, SI_ORDER_ANY);
3414