ip_mroute.c revision 121700
1/*
2 * IP multicast forwarding procedures
3 *
4 * Written by David Waitzman, BBN Labs, August 1988.
5 * Modified by Steve Deering, Stanford, February 1989.
6 * Modified by Mark J. Steiglitz, Stanford, May, 1991
7 * Modified by Van Jacobson, LBL, January 1993
8 * Modified by Ajit Thyagarajan, PARC, August 1993
9 * Modified by Bill Fenner, PARC, April 1995
10 * Modified by Ahmed Helmy, SGI, June 1996
11 * Modified by George Edmond Eddy (Rusty), ISI, February 1998
12 * Modified by Pavlin Radoslavov, USC/ISI, May 1998, August 1999, October 2000
13 * Modified by Hitoshi Asaeda, WIDE, August 2000
14 * Modified by Pavlin Radoslavov, ICSI, October 2002
15 *
16 * MROUTING Revision: 3.5
17 * and PIM-SMv2 and PIM-DM support, advanced API support,
18 * bandwidth metering and signaling
19 *
20 * $FreeBSD: head/sys/netinet/ip_mroute.c 121700 2003-10-29 19:15:00Z sam $
21 */
22
23#include "opt_mac.h"
24#include "opt_mrouting.h"
25#include "opt_random_ip_id.h"
26
27#ifdef PIM
28#define _PIM_VT 1
29#endif
30
31#include <sys/param.h>
32#include <sys/kernel.h>
33#include <sys/lock.h>
34#include <sys/mac.h>
35#include <sys/malloc.h>
36#include <sys/mbuf.h>
37#include <sys/protosw.h>
38#include <sys/signalvar.h>
39#include <sys/socket.h>
40#include <sys/socketvar.h>
41#include <sys/sockio.h>
42#include <sys/sx.h>
43#include <sys/sysctl.h>
44#include <sys/syslog.h>
45#include <sys/systm.h>
46#include <sys/time.h>
47#include <net/if.h>
48#include <net/netisr.h>
49#include <net/route.h>
50#include <netinet/in.h>
51#include <netinet/igmp.h>
52#include <netinet/in_systm.h>
53#include <netinet/in_var.h>
54#include <netinet/ip.h>
55#include <netinet/ip_encap.h>
56#include <netinet/ip_mroute.h>
57#include <netinet/ip_var.h>
58#ifdef PIM
59#include <netinet/pim.h>
60#include <netinet/pim_var.h>
61#endif
62#include <netinet/udp.h>
63#include <machine/in_cksum.h>
64
65/*
66 * Control debugging code for rsvp and multicast routing code.
67 * Can only set them with the debugger.
68 */
69static u_int    rsvpdebug;		/* non-zero enables debugging	*/
70
71static u_int	mrtdebug;		/* any set of the flags below	*/
72#define		DEBUG_MFC	0x02
73#define		DEBUG_FORWARD	0x04
74#define		DEBUG_EXPIRE	0x08
75#define		DEBUG_XMIT	0x10
76#define		DEBUG_PIM	0x20
77
78#define		VIFI_INVALID	((vifi_t) -1)
79
80#define M_HASCL(m)	((m)->m_flags & M_EXT)
81
82static MALLOC_DEFINE(M_MRTABLE, "mroutetbl", "multicast routing tables");
83
84/*
85 * Locking.  We use two locks: one for the virtual interface table and
86 * one for the forwarding table.  These locks may be nested in which case
87 * the VIF lock must always be taken first.  Note that each lock is used
88 * to cover not only the specific data structure but also related data
89 * structures.  It may be better to add more fine-grained locking later;
90 * it's not clear how performance-critical this code is.
91 */
92
93static struct mrtstat	mrtstat;
94SYSCTL_STRUCT(_net_inet_ip, OID_AUTO, mrtstat, CTLFLAG_RW,
95    &mrtstat, mrtstat,
96    "Multicast Routing Statistics (struct mrtstat, netinet/ip_mroute.h)");
97
98static struct mfc	*mfctable[MFCTBLSIZ];
99SYSCTL_OPAQUE(_net_inet_ip, OID_AUTO, mfctable, CTLFLAG_RD,
100    &mfctable, sizeof(mfctable), "S,*mfc[MFCTBLSIZ]",
101    "Multicast Forwarding Table (struct *mfc[MFCTBLSIZ], netinet/ip_mroute.h)");
102
103static struct mtx mfc_mtx;
104#define	MFC_LOCK()	mtx_lock(&mfc_mtx)
105#define	MFC_UNLOCK()	mtx_unlock(&mfc_mtx)
106#define	MFC_LOCK_ASSERT()	mtx_assert(&mfc_mtx, MA_OWNED)
107#define	MFC_LOCK_INIT()	mtx_init(&mfc_mtx, "mroute mfc table", NULL, MTX_DEF)
108#define	MFC_LOCK_DESTROY()	mtx_destroy(&mfc_mtx)
109
110static struct vif	viftable[MAXVIFS];
111SYSCTL_OPAQUE(_net_inet_ip, OID_AUTO, viftable, CTLFLAG_RD,
112    &viftable, sizeof(viftable), "S,vif[MAXVIFS]",
113    "Multicast Virtual Interfaces (struct vif[MAXVIFS], netinet/ip_mroute.h)");
114
115static struct mtx vif_mtx;
116#define	VIF_LOCK()	mtx_lock(&vif_mtx)
117#define	VIF_UNLOCK()	mtx_unlock(&vif_mtx)
118#define	VIF_LOCK_ASSERT()	mtx_assert(&vif_mtx, MA_OWNED)
119#define	VIF_LOCK_INIT()	mtx_init(&vif_mtx, "mroute vif table", NULL, MTX_DEF)
120#define	VIF_LOCK_DESTROY()	mtx_destroy(&vif_mtx)
121
122static u_char		nexpire[MFCTBLSIZ];
123
124static struct callout expire_upcalls_ch;
125
126#define		EXPIRE_TIMEOUT	(hz / 4)	/* 4x / second		*/
127#define		UPCALL_EXPIRE	6		/* number of timeouts	*/
128
129/*
130 * Define the token bucket filter structures
131 * tbftable -> each vif has one of these for storing info
132 */
133
134static struct tbf tbftable[MAXVIFS];
135#define		TBF_REPROCESS	(hz / 100)	/* 100x / second */
136
137/*
138 * 'Interfaces' associated with decapsulator (so we can tell
139 * packets that went through it from ones that get reflected
140 * by a broken gateway).  These interfaces are never linked into
141 * the system ifnet list & no routes point to them.  I.e., packets
142 * can't be sent this way.  They only exist as a placeholder for
143 * multicast source verification.
144 */
145static struct ifnet multicast_decap_if[MAXVIFS];
146
147#define ENCAP_TTL 64
148#define ENCAP_PROTO IPPROTO_IPIP	/* 4 */
149
150/* prototype IP hdr for encapsulated packets */
151static struct ip multicast_encap_iphdr = {
152#if BYTE_ORDER == LITTLE_ENDIAN
153	sizeof(struct ip) >> 2, IPVERSION,
154#else
155	IPVERSION, sizeof(struct ip) >> 2,
156#endif
157	0,				/* tos */
158	sizeof(struct ip),		/* total length */
159	0,				/* id */
160	0,				/* frag offset */
161	ENCAP_TTL, ENCAP_PROTO,
162	0,				/* checksum */
163};
164
165/*
166 * Bandwidth meter variables and constants
167 */
168static MALLOC_DEFINE(M_BWMETER, "bwmeter", "multicast upcall bw meters");
169/*
170 * Pending timeouts are stored in a hash table, the key being the
171 * expiration time. Periodically, the entries are analysed and processed.
172 */
173#define BW_METER_BUCKETS	1024
174static struct bw_meter *bw_meter_timers[BW_METER_BUCKETS];
175static struct callout bw_meter_ch;
176#define BW_METER_PERIOD (hz)		/* periodical handling of bw meters */
177
178/*
179 * Pending upcalls are stored in a vector which is flushed when
180 * full, or periodically
181 */
182static struct bw_upcall	bw_upcalls[BW_UPCALLS_MAX];
183static u_int	bw_upcalls_n; /* # of pending upcalls */
184static struct callout bw_upcalls_ch;
185#define BW_UPCALLS_PERIOD (hz)		/* periodical flush of bw upcalls */
186
187#ifdef PIM
188static struct pimstat pimstat;
189SYSCTL_STRUCT(_net_inet_pim, PIMCTL_STATS, stats, CTLFLAG_RD,
190    &pimstat, pimstat,
191    "PIM Statistics (struct pimstat, netinet/pim_var.h)");
192
193/*
194 * Note: the PIM Register encapsulation adds the following in front of a
195 * data packet:
196 *
197 * struct pim_encap_hdr {
198 *    struct ip ip;
199 *    struct pim_encap_pimhdr  pim;
200 * }
201 *
202 */
203
204struct pim_encap_pimhdr {
205	struct pim pim;
206	uint32_t   flags;
207};
208
209static struct ip pim_encap_iphdr = {
210#if BYTE_ORDER == LITTLE_ENDIAN
211	sizeof(struct ip) >> 2,
212	IPVERSION,
213#else
214	IPVERSION,
215	sizeof(struct ip) >> 2,
216#endif
217	0,			/* tos */
218	sizeof(struct ip),	/* total length */
219	0,			/* id */
220	0,			/* frag offset */
221	ENCAP_TTL,
222	IPPROTO_PIM,
223	0,			/* checksum */
224};
225
226static struct pim_encap_pimhdr pim_encap_pimhdr = {
227    {
228	PIM_MAKE_VT(PIM_VERSION, PIM_REGISTER), /* PIM vers and message type */
229	0,			/* reserved */
230	0,			/* checksum */
231    },
232    0				/* flags */
233};
234
235static struct ifnet multicast_register_if;
236static vifi_t reg_vif_num = VIFI_INVALID;
237#endif /* PIM */
238
239/*
240 * Private variables.
241 */
242static vifi_t	   numvifs;
243static const struct encaptab *encap_cookie;
244
245/*
246 * one-back cache used by mroute_encapcheck to locate a tunnel's vif
247 * given a datagram's src ip address.
248 */
249static u_long last_encap_src;
250static struct vif *last_encap_vif;
251
252/*
253 * Callout for queue processing.
254 */
255static struct callout tbf_reprocess_ch;
256
257static u_long	X_ip_mcast_src(int vifi);
258static int	X_ip_mforward(struct ip *ip, struct ifnet *ifp,
259			struct mbuf *m, struct ip_moptions *imo);
260static int	X_ip_mrouter_done(void);
261static int	X_ip_mrouter_get(struct socket *so, struct sockopt *m);
262static int	X_ip_mrouter_set(struct socket *so, struct sockopt *m);
263static int	X_legal_vif_num(int vif);
264static int	X_mrt_ioctl(int cmd, caddr_t data);
265
266static int get_sg_cnt(struct sioc_sg_req *);
267static int get_vif_cnt(struct sioc_vif_req *);
268static int ip_mrouter_init(struct socket *, int);
269static int add_vif(struct vifctl *);
270static int del_vif(vifi_t);
271static int add_mfc(struct mfcctl2 *);
272static int del_mfc(struct mfcctl2 *);
273static int set_api_config(uint32_t *); /* chose API capabilities */
274static int socket_send(struct socket *, struct mbuf *, struct sockaddr_in *);
275static int set_assert(int);
276static void expire_upcalls(void *);
277static int ip_mdq(struct mbuf *, struct ifnet *, struct mfc *, vifi_t);
278static void phyint_send(struct ip *, struct vif *, struct mbuf *);
279static void encap_send(struct ip *, struct vif *, struct mbuf *);
280static void tbf_control(struct vif *, struct mbuf *, struct ip *, u_long);
281static void tbf_queue(struct vif *, struct mbuf *);
282static void tbf_process_q(struct vif *);
283static void tbf_reprocess_q(void *);
284static int tbf_dq_sel(struct vif *, struct ip *);
285static void tbf_send_packet(struct vif *, struct mbuf *);
286static void tbf_update_tokens(struct vif *);
287static int priority(struct vif *, struct ip *);
288
289/*
290 * Bandwidth monitoring
291 */
292static void free_bw_list(struct bw_meter *list);
293static int add_bw_upcall(struct bw_upcall *);
294static int del_bw_upcall(struct bw_upcall *);
295static void bw_meter_receive_packet(struct bw_meter *x, int plen,
296		struct timeval *nowp);
297static void bw_meter_prepare_upcall(struct bw_meter *x, struct timeval *nowp);
298static void bw_upcalls_send(void);
299static void schedule_bw_meter(struct bw_meter *x, struct timeval *nowp);
300static void unschedule_bw_meter(struct bw_meter *x);
301static void bw_meter_process(void);
302static void expire_bw_upcalls_send(void *);
303static void expire_bw_meter_process(void *);
304
305#ifdef PIM
306static int pim_register_send(struct ip *, struct vif *,
307		struct mbuf *, struct mfc *);
308static int pim_register_send_rp(struct ip *, struct vif *,
309		struct mbuf *, struct mfc *);
310static int pim_register_send_upcall(struct ip *, struct vif *,
311		struct mbuf *, struct mfc *);
312static struct mbuf *pim_register_prepare(struct ip *, struct mbuf *);
313#endif
314
315/*
316 * whether or not special PIM assert processing is enabled.
317 */
318static int pim_assert;
319/*
320 * Rate limit for assert notification messages, in usec
321 */
322#define ASSERT_MSG_TIME		3000000
323
324/*
325 * Kernel multicast routing API capabilities and setup.
326 * If more API capabilities are added to the kernel, they should be
327 * recorded in `mrt_api_support'.
328 */
329static const uint32_t mrt_api_support = (MRT_MFC_FLAGS_DISABLE_WRONGVIF |
330					 MRT_MFC_FLAGS_BORDER_VIF |
331					 MRT_MFC_RP |
332					 MRT_MFC_BW_UPCALL);
333static uint32_t mrt_api_config = 0;
334
335/*
336 * Hash function for a source, group entry
337 */
338#define MFCHASH(a, g) MFCHASHMOD(((a) >> 20) ^ ((a) >> 10) ^ (a) ^ \
339			((g) >> 20) ^ ((g) >> 10) ^ (g))
340
341/*
342 * Find a route for a given origin IP address and Multicast group address
343 * Type of service parameter to be added in the future!!!
344 * Statistics are updated by the caller if needed
345 * (mrtstat.mrts_mfc_lookups and mrtstat.mrts_mfc_misses)
346 */
347static struct mfc *
348mfc_find(in_addr_t o, in_addr_t g)
349{
350    struct mfc *rt;
351
352    MFC_LOCK_ASSERT();
353
354    for (rt = mfctable[MFCHASH(o,g)]; rt; rt = rt->mfc_next)
355	if ((rt->mfc_origin.s_addr == o) &&
356		(rt->mfc_mcastgrp.s_addr == g) && (rt->mfc_stall == NULL))
357	    break;
358    return rt;
359}
360
361/*
362 * Macros to compute elapsed time efficiently
363 * Borrowed from Van Jacobson's scheduling code
364 */
365#define TV_DELTA(a, b, delta) {					\
366	int xxs;						\
367	delta = (a).tv_usec - (b).tv_usec;			\
368	if ((xxs = (a).tv_sec - (b).tv_sec)) {			\
369		switch (xxs) {					\
370		case 2:						\
371		      delta += 1000000;				\
372		      /* FALLTHROUGH */				\
373		case 1:						\
374		      delta += 1000000;				\
375		      break;					\
376		default:					\
377		      delta += (1000000 * xxs);			\
378		}						\
379	}							\
380}
381
382#define TV_LT(a, b) (((a).tv_usec < (b).tv_usec && \
383	      (a).tv_sec <= (b).tv_sec) || (a).tv_sec < (b).tv_sec)
384
385/*
386 * Handle MRT setsockopt commands to modify the multicast routing tables.
387 */
388static int
389X_ip_mrouter_set(struct socket *so, struct sockopt *sopt)
390{
391    int	error, optval;
392    vifi_t	vifi;
393    struct	vifctl vifc;
394    struct	mfcctl2 mfc;
395    struct	bw_upcall bw_upcall;
396    uint32_t	i;
397
398    if (so != ip_mrouter && sopt->sopt_name != MRT_INIT)
399	return EPERM;
400
401    error = 0;
402    switch (sopt->sopt_name) {
403    case MRT_INIT:
404	error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval);
405	if (error)
406	    break;
407	error = ip_mrouter_init(so, optval);
408	break;
409
410    case MRT_DONE:
411	error = ip_mrouter_done();
412	break;
413
414    case MRT_ADD_VIF:
415	error = sooptcopyin(sopt, &vifc, sizeof vifc, sizeof vifc);
416	if (error)
417	    break;
418	error = add_vif(&vifc);
419	break;
420
421    case MRT_DEL_VIF:
422	error = sooptcopyin(sopt, &vifi, sizeof vifi, sizeof vifi);
423	if (error)
424	    break;
425	error = del_vif(vifi);
426	break;
427
428    case MRT_ADD_MFC:
429    case MRT_DEL_MFC:
430	/*
431	 * select data size depending on API version.
432	 */
433	if (sopt->sopt_name == MRT_ADD_MFC &&
434		mrt_api_config & MRT_API_FLAGS_ALL) {
435	    error = sooptcopyin(sopt, &mfc, sizeof(struct mfcctl2),
436				sizeof(struct mfcctl2));
437	} else {
438	    error = sooptcopyin(sopt, &mfc, sizeof(struct mfcctl),
439				sizeof(struct mfcctl));
440	    bzero((caddr_t)&mfc + sizeof(struct mfcctl),
441			sizeof(mfc) - sizeof(struct mfcctl));
442	}
443	if (error)
444	    break;
445	if (sopt->sopt_name == MRT_ADD_MFC)
446	    error = add_mfc(&mfc);
447	else
448	    error = del_mfc(&mfc);
449	break;
450
451    case MRT_ASSERT:
452	error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval);
453	if (error)
454	    break;
455	set_assert(optval);
456	break;
457
458    case MRT_API_CONFIG:
459	error = sooptcopyin(sopt, &i, sizeof i, sizeof i);
460	if (!error)
461	    error = set_api_config(&i);
462	if (!error)
463	    error = sooptcopyout(sopt, &i, sizeof i);
464	break;
465
466    case MRT_ADD_BW_UPCALL:
467    case MRT_DEL_BW_UPCALL:
468	error = sooptcopyin(sopt, &bw_upcall, sizeof bw_upcall,
469				sizeof bw_upcall);
470	if (error)
471	    break;
472	if (sopt->sopt_name == MRT_ADD_BW_UPCALL)
473	    error = add_bw_upcall(&bw_upcall);
474	else
475	    error = del_bw_upcall(&bw_upcall);
476	break;
477
478    default:
479	error = EOPNOTSUPP;
480	break;
481    }
482    return error;
483}
484
485/*
486 * Handle MRT getsockopt commands
487 */
488static int
489X_ip_mrouter_get(struct socket *so, struct sockopt *sopt)
490{
491    int error;
492    static int version = 0x0305; /* !!! why is this here? XXX */
493
494    switch (sopt->sopt_name) {
495    case MRT_VERSION:
496	error = sooptcopyout(sopt, &version, sizeof version);
497	break;
498
499    case MRT_ASSERT:
500	error = sooptcopyout(sopt, &pim_assert, sizeof pim_assert);
501	break;
502
503    case MRT_API_SUPPORT:
504	error = sooptcopyout(sopt, &mrt_api_support, sizeof mrt_api_support);
505	break;
506
507    case MRT_API_CONFIG:
508	error = sooptcopyout(sopt, &mrt_api_config, sizeof mrt_api_config);
509	break;
510
511    default:
512	error = EOPNOTSUPP;
513	break;
514    }
515    return error;
516}
517
518/*
519 * Handle ioctl commands to obtain information from the cache
520 */
521static int
522X_mrt_ioctl(int cmd, caddr_t data)
523{
524    int error = 0;
525
526    switch (cmd) {
527    case (SIOCGETVIFCNT):
528	error = get_vif_cnt((struct sioc_vif_req *)data);
529	break;
530
531    case (SIOCGETSGCNT):
532	error = get_sg_cnt((struct sioc_sg_req *)data);
533	break;
534
535    default:
536	error = EINVAL;
537	break;
538    }
539    return error;
540}
541
542/*
543 * returns the packet, byte, rpf-failure count for the source group provided
544 */
545static int
546get_sg_cnt(struct sioc_sg_req *req)
547{
548    struct mfc *rt;
549
550    MFC_LOCK();
551    rt = mfc_find(req->src.s_addr, req->grp.s_addr);
552    if (rt == NULL) {
553	MFC_UNLOCK();
554	req->pktcnt = req->bytecnt = req->wrong_if = 0xffffffff;
555	return EADDRNOTAVAIL;
556    }
557    req->pktcnt = rt->mfc_pkt_cnt;
558    req->bytecnt = rt->mfc_byte_cnt;
559    req->wrong_if = rt->mfc_wrong_if;
560    MFC_UNLOCK();
561    return 0;
562}
563
564/*
565 * returns the input and output packet and byte counts on the vif provided
566 */
567static int
568get_vif_cnt(struct sioc_vif_req *req)
569{
570    vifi_t vifi = req->vifi;
571
572    VIF_LOCK();
573    if (vifi >= numvifs) {
574	VIF_UNLOCK();
575	return EINVAL;
576    }
577
578    req->icount = viftable[vifi].v_pkt_in;
579    req->ocount = viftable[vifi].v_pkt_out;
580    req->ibytes = viftable[vifi].v_bytes_in;
581    req->obytes = viftable[vifi].v_bytes_out;
582    VIF_UNLOCK();
583
584    return 0;
585}
586
587static void
588ip_mrouter_reset(void)
589{
590    bzero((caddr_t)mfctable, sizeof(mfctable));
591    MFC_LOCK_INIT();
592    VIF_LOCK_INIT();
593    bzero((caddr_t)nexpire, sizeof(nexpire));
594
595    pim_assert = 0;
596    mrt_api_config = 0;
597
598    callout_init(&expire_upcalls_ch, CALLOUT_MPSAFE);
599
600    bw_upcalls_n = 0;
601    bzero((caddr_t)bw_meter_timers, sizeof(bw_meter_timers));
602    callout_init(&bw_upcalls_ch, CALLOUT_MPSAFE);
603    callout_init(&bw_meter_ch, CALLOUT_MPSAFE);
604
605    callout_init(&tbf_reprocess_ch, CALLOUT_MPSAFE);
606}
607
608/*
609 * Enable multicast routing
610 */
611static int
612ip_mrouter_init(struct socket *so, int version)
613{
614    if (mrtdebug)
615	log(LOG_DEBUG, "ip_mrouter_init: so_type = %d, pr_protocol = %d\n",
616	    so->so_type, so->so_proto->pr_protocol);
617
618    if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_IGMP)
619	return EOPNOTSUPP;
620
621    if (version != 1)
622	return ENOPROTOOPT;
623
624    if (ip_mrouter != NULL)
625	return EADDRINUSE;
626
627    ip_mrouter_reset();
628
629    callout_reset(&expire_upcalls_ch, EXPIRE_TIMEOUT, expire_upcalls, NULL);
630
631    callout_reset(&bw_upcalls_ch, BW_UPCALLS_PERIOD,
632	expire_bw_upcalls_send, NULL);
633    callout_reset(&bw_meter_ch, BW_METER_PERIOD, expire_bw_meter_process, NULL);
634
635    ip_mrouter = so;
636
637    if (mrtdebug)
638	log(LOG_DEBUG, "ip_mrouter_init\n");
639
640    return 0;
641}
642
643/*
644 * Disable multicast routing
645 */
646static int
647X_ip_mrouter_done(void)
648{
649    vifi_t vifi;
650    int i;
651    struct ifnet *ifp;
652    struct ifreq ifr;
653    struct mfc *rt;
654    struct rtdetq *rte;
655
656    /*
657     * Detach/disable hooks to the reset of the system.
658     */
659    ip_mrouter = NULL;
660    mrt_api_config = 0;
661
662    VIF_LOCK();
663    if (encap_cookie) {
664	const struct encaptab *c = encap_cookie;
665	encap_cookie = NULL;
666	encap_detach(c);
667    }
668    VIF_UNLOCK();
669
670    callout_stop(&tbf_reprocess_ch);
671
672    VIF_LOCK();
673    /*
674     * For each phyint in use, disable promiscuous reception of all IP
675     * multicasts.
676     */
677    for (vifi = 0; vifi < numvifs; vifi++) {
678	if (viftable[vifi].v_lcl_addr.s_addr != 0 &&
679		!(viftable[vifi].v_flags & (VIFF_TUNNEL | VIFF_REGISTER))) {
680	    struct sockaddr_in *so = (struct sockaddr_in *)&(ifr.ifr_addr);
681
682	    so->sin_len = sizeof(struct sockaddr_in);
683	    so->sin_family = AF_INET;
684	    so->sin_addr.s_addr = INADDR_ANY;
685	    ifp = viftable[vifi].v_ifp;
686	    if_allmulti(ifp, 0);
687	}
688    }
689    bzero((caddr_t)tbftable, sizeof(tbftable));
690    bzero((caddr_t)viftable, sizeof(viftable));
691    numvifs = 0;
692    pim_assert = 0;
693    VIF_LOCK_DESTROY();
694
695    /*
696     * Free all multicast forwarding cache entries.
697     */
698    callout_stop(&expire_upcalls_ch);
699    callout_stop(&bw_upcalls_ch);
700    callout_stop(&bw_meter_ch);
701
702    MFC_LOCK();
703    for (i = 0; i < MFCTBLSIZ; i++) {
704	for (rt = mfctable[i]; rt != NULL; ) {
705	    struct mfc *nr = rt->mfc_next;
706
707	    for (rte = rt->mfc_stall; rte != NULL; ) {
708		struct rtdetq *n = rte->next;
709
710		m_freem(rte->m);
711		free(rte, M_MRTABLE);
712		rte = n;
713	    }
714	    free_bw_list(rt->mfc_bw_meter);
715	    free(rt, M_MRTABLE);
716	    rt = nr;
717	}
718    }
719    bzero((caddr_t)mfctable, sizeof(mfctable));
720    bw_upcalls_n = 0;
721    bzero(bw_meter_timers, sizeof(bw_meter_timers));
722    MFC_LOCK_DESTROY();
723
724    /*
725     * Reset de-encapsulation cache
726     */
727    last_encap_src = INADDR_ANY;
728    last_encap_vif = NULL;
729#ifdef PIM
730    reg_vif_num = VIFI_INVALID;
731#endif
732
733    if (mrtdebug)
734	log(LOG_DEBUG, "ip_mrouter_done\n");
735
736    return 0;
737}
738
739/*
740 * Set PIM assert processing global
741 */
742static int
743set_assert(int i)
744{
745    if ((i != 1) && (i != 0))
746	return EINVAL;
747
748    pim_assert = i;
749
750    return 0;
751}
752
753/*
754 * Configure API capabilities
755 */
756int
757set_api_config(uint32_t *apival)
758{
759    int i;
760
761    /*
762     * We can set the API capabilities only if it is the first operation
763     * after MRT_INIT. I.e.:
764     *  - there are no vifs installed
765     *  - pim_assert is not enabled
766     *  - the MFC table is empty
767     */
768    if (numvifs > 0) {
769	*apival = 0;
770	return EPERM;
771    }
772    if (pim_assert) {
773	*apival = 0;
774	return EPERM;
775    }
776    for (i = 0; i < MFCTBLSIZ; i++) {
777	if (mfctable[i] != NULL) {
778	    *apival = 0;
779	    return EPERM;
780	}
781    }
782
783    mrt_api_config = *apival & mrt_api_support;
784    *apival = mrt_api_config;
785
786    return 0;
787}
788
789/*
790 * Decide if a packet is from a tunnelled peer.
791 * Return 0 if not, 64 if so.  XXX yuck.. 64 ???
792 */
793static int
794mroute_encapcheck(const struct mbuf *m, int off, int proto, void *arg)
795{
796    struct ip *ip = mtod(m, struct ip *);
797    int hlen = ip->ip_hl << 2;
798
799    /*
800     * don't claim the packet if it's not to a multicast destination or if
801     * we don't have an encapsulating tunnel with the source.
802     * Note:  This code assumes that the remote site IP address
803     * uniquely identifies the tunnel (i.e., that this site has
804     * at most one tunnel with the remote site).
805     */
806    if (!IN_MULTICAST(ntohl(((struct ip *)((char *)ip+hlen))->ip_dst.s_addr)))
807	return 0;
808    if (ip->ip_src.s_addr != last_encap_src) {
809	struct vif *vifp = viftable;
810	struct vif *vife = vifp + numvifs;
811
812	last_encap_src = ip->ip_src.s_addr;
813	last_encap_vif = NULL;
814	for ( ; vifp < vife; ++vifp)
815	    if (vifp->v_rmt_addr.s_addr == ip->ip_src.s_addr) {
816		if ((vifp->v_flags & (VIFF_TUNNEL|VIFF_SRCRT)) == VIFF_TUNNEL)
817		    last_encap_vif = vifp;
818		break;
819	    }
820    }
821    if (last_encap_vif == NULL) {
822	last_encap_src = INADDR_ANY;
823	return 0;
824    }
825    return 64;
826}
827
828/*
829 * De-encapsulate a packet and feed it back through ip input (this
830 * routine is called whenever IP gets a packet that mroute_encap_func()
831 * claimed).
832 */
833static void
834mroute_encap_input(struct mbuf *m, int off)
835{
836    struct ip *ip = mtod(m, struct ip *);
837    int hlen = ip->ip_hl << 2;
838
839    if (hlen > sizeof(struct ip))
840	ip_stripoptions(m, (struct mbuf *) 0);
841    m->m_data += sizeof(struct ip);
842    m->m_len -= sizeof(struct ip);
843    m->m_pkthdr.len -= sizeof(struct ip);
844
845    m->m_pkthdr.rcvif = last_encap_vif->v_ifp;
846
847    netisr_queue(NETISR_IP, m);
848    /*
849     * normally we would need a "schednetisr(NETISR_IP)"
850     * here but we were called by ip_input and it is going
851     * to loop back & try to dequeue the packet we just
852     * queued as soon as we return so we avoid the
853     * unnecessary software interrrupt.
854     *
855     * XXX
856     * This no longer holds - we may have direct-dispatched the packet,
857     * or there may be a queue processing limit.
858     */
859}
860
861extern struct domain inetdomain;
862static struct protosw mroute_encap_protosw =
863{ SOCK_RAW,	&inetdomain,	IPPROTO_IPV4,	PR_ATOMIC|PR_ADDR,
864  mroute_encap_input,	0,	0,		rip_ctloutput,
865  0,
866  0,		0,		0,		0,
867  &rip_usrreqs
868};
869
870/*
871 * Add a vif to the vif table
872 */
873static int
874add_vif(struct vifctl *vifcp)
875{
876    struct vif *vifp = viftable + vifcp->vifc_vifi;
877    struct sockaddr_in sin = {sizeof sin, AF_INET};
878    struct ifaddr *ifa;
879    struct ifnet *ifp;
880    int error;
881    struct tbf *v_tbf = tbftable + vifcp->vifc_vifi;
882
883    VIF_LOCK();
884    if (vifcp->vifc_vifi >= MAXVIFS) {
885	VIF_UNLOCK();
886	return EINVAL;
887    }
888    if (vifp->v_lcl_addr.s_addr != INADDR_ANY) {
889	VIF_UNLOCK();
890	return EADDRINUSE;
891    }
892    if (vifcp->vifc_lcl_addr.s_addr == INADDR_ANY) {
893	VIF_UNLOCK();
894	return EADDRNOTAVAIL;
895    }
896
897    /* Find the interface with an address in AF_INET family */
898#ifdef PIM
899    if (vifcp->vifc_flags & VIFF_REGISTER) {
900	/*
901	 * XXX: Because VIFF_REGISTER does not really need a valid
902	 * local interface (e.g. it could be 127.0.0.2), we don't
903	 * check its address.
904	 */
905	ifp = NULL;
906    } else
907#endif
908    {
909	sin.sin_addr = vifcp->vifc_lcl_addr;
910	ifa = ifa_ifwithaddr((struct sockaddr *)&sin);
911	if (ifa == NULL) {
912	    VIF_UNLOCK();
913	    return EADDRNOTAVAIL;
914	}
915	ifp = ifa->ifa_ifp;
916    }
917
918    if (vifcp->vifc_flags & VIFF_TUNNEL) {
919	if ((vifcp->vifc_flags & VIFF_SRCRT) == 0) {
920	    /*
921	     * An encapsulating tunnel is wanted.  Tell
922	     * mroute_encap_input() to start paying attention
923	     * to encapsulated packets.
924	     */
925	    if (encap_cookie == NULL) {
926		int i;
927
928		encap_cookie = encap_attach_func(AF_INET, IPPROTO_IPV4,
929				mroute_encapcheck,
930				(struct protosw *)&mroute_encap_protosw, NULL);
931
932		if (encap_cookie == NULL) {
933		    printf("ip_mroute: unable to attach encap\n");
934		    VIF_UNLOCK();
935		    return EIO;	/* XXX */
936		}
937		for (i = 0; i < MAXVIFS; ++i) {
938		    multicast_decap_if[i].if_name = "mdecap";
939		    multicast_decap_if[i].if_unit = i;
940		}
941	    }
942	    /*
943	     * Set interface to fake encapsulator interface
944	     */
945	    ifp = &multicast_decap_if[vifcp->vifc_vifi];
946	    /*
947	     * Prepare cached route entry
948	     */
949	    bzero(&vifp->v_route, sizeof(vifp->v_route));
950	} else {
951	    log(LOG_ERR, "source routed tunnels not supported\n");
952	    VIF_UNLOCK();
953	    return EOPNOTSUPP;
954	}
955#ifdef PIM
956    } else if (vifcp->vifc_flags & VIFF_REGISTER) {
957	ifp = &multicast_register_if;
958	if (mrtdebug)
959	    log(LOG_DEBUG, "Adding a register vif, ifp: %p\n",
960		    (void *)&multicast_register_if);
961	if (reg_vif_num == VIFI_INVALID) {
962	    multicast_register_if.if_name = "register_vif";
963	    multicast_register_if.if_unit = 0;
964	    multicast_register_if.if_flags = IFF_LOOPBACK;
965	    bzero(&vifp->v_route, sizeof(vifp->v_route));
966	    reg_vif_num = vifcp->vifc_vifi;
967	}
968#endif
969    } else {		/* Make sure the interface supports multicast */
970	if ((ifp->if_flags & IFF_MULTICAST) == 0) {
971	    VIF_UNLOCK();
972	    return EOPNOTSUPP;
973	}
974
975	/* Enable promiscuous reception of all IP multicasts from the if */
976	error = if_allmulti(ifp, 1);
977	if (error) {
978	    VIF_UNLOCK();
979	    return error;
980	}
981    }
982
983    /* define parameters for the tbf structure */
984    vifp->v_tbf = v_tbf;
985    GET_TIME(vifp->v_tbf->tbf_last_pkt_t);
986    vifp->v_tbf->tbf_n_tok = 0;
987    vifp->v_tbf->tbf_q_len = 0;
988    vifp->v_tbf->tbf_max_q_len = MAXQSIZE;
989    vifp->v_tbf->tbf_q = vifp->v_tbf->tbf_t = NULL;
990
991    vifp->v_flags     = vifcp->vifc_flags;
992    vifp->v_threshold = vifcp->vifc_threshold;
993    vifp->v_lcl_addr  = vifcp->vifc_lcl_addr;
994    vifp->v_rmt_addr  = vifcp->vifc_rmt_addr;
995    vifp->v_ifp       = ifp;
996    /* scaling up here allows division by 1024 in critical code */
997    vifp->v_rate_limit= vifcp->vifc_rate_limit * 1024 / 1000;
998    vifp->v_rsvp_on   = 0;
999    vifp->v_rsvpd     = NULL;
1000    /* initialize per vif pkt counters */
1001    vifp->v_pkt_in    = 0;
1002    vifp->v_pkt_out   = 0;
1003    vifp->v_bytes_in  = 0;
1004    vifp->v_bytes_out = 0;
1005
1006    /* Adjust numvifs up if the vifi is higher than numvifs */
1007    if (numvifs <= vifcp->vifc_vifi) numvifs = vifcp->vifc_vifi + 1;
1008
1009    VIF_UNLOCK();
1010
1011    if (mrtdebug)
1012	log(LOG_DEBUG, "add_vif #%d, lcladdr %lx, %s %lx, thresh %x, rate %d\n",
1013	    vifcp->vifc_vifi,
1014	    (u_long)ntohl(vifcp->vifc_lcl_addr.s_addr),
1015	    (vifcp->vifc_flags & VIFF_TUNNEL) ? "rmtaddr" : "mask",
1016	    (u_long)ntohl(vifcp->vifc_rmt_addr.s_addr),
1017	    vifcp->vifc_threshold,
1018	    vifcp->vifc_rate_limit);
1019
1020    return 0;
1021}
1022
1023/*
1024 * Delete a vif from the vif table
1025 */
1026static int
1027del_vif(vifi_t vifi)
1028{
1029    struct vif *vifp;
1030
1031    VIF_LOCK();
1032
1033    if (vifi >= numvifs) {
1034	VIF_UNLOCK();
1035	return EINVAL;
1036    }
1037    vifp = &viftable[vifi];
1038    if (vifp->v_lcl_addr.s_addr == INADDR_ANY) {
1039	VIF_UNLOCK();
1040	return EADDRNOTAVAIL;
1041    }
1042
1043    if (!(vifp->v_flags & (VIFF_TUNNEL | VIFF_REGISTER)))
1044	if_allmulti(vifp->v_ifp, 0);
1045
1046    if (vifp == last_encap_vif) {
1047	last_encap_vif = NULL;
1048	last_encap_src = INADDR_ANY;
1049    }
1050
1051    /*
1052     * Free packets queued at the interface
1053     */
1054    while (vifp->v_tbf->tbf_q) {
1055	struct mbuf *m = vifp->v_tbf->tbf_q;
1056
1057	vifp->v_tbf->tbf_q = m->m_act;
1058	m_freem(m);
1059    }
1060
1061#ifdef PIM
1062    if (vifp->v_flags & VIFF_REGISTER)
1063	reg_vif_num = VIFI_INVALID;
1064#endif
1065
1066    bzero((caddr_t)vifp->v_tbf, sizeof(*(vifp->v_tbf)));
1067    bzero((caddr_t)vifp, sizeof (*vifp));
1068
1069    if (mrtdebug)
1070	log(LOG_DEBUG, "del_vif %d, numvifs %d\n", vifi, numvifs);
1071
1072    /* Adjust numvifs down */
1073    for (vifi = numvifs; vifi > 0; vifi--)
1074	if (viftable[vifi-1].v_lcl_addr.s_addr != INADDR_ANY)
1075	    break;
1076    numvifs = vifi;
1077
1078    VIF_UNLOCK();
1079
1080    return 0;
1081}
1082
1083/*
1084 * update an mfc entry without resetting counters and S,G addresses.
1085 */
1086static void
1087update_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp)
1088{
1089    int i;
1090
1091    rt->mfc_parent = mfccp->mfcc_parent;
1092    for (i = 0; i < numvifs; i++) {
1093	rt->mfc_ttls[i] = mfccp->mfcc_ttls[i];
1094	rt->mfc_flags[i] = mfccp->mfcc_flags[i] & mrt_api_config &
1095	    MRT_MFC_FLAGS_ALL;
1096    }
1097    /* set the RP address */
1098    if (mrt_api_config & MRT_MFC_RP)
1099	rt->mfc_rp = mfccp->mfcc_rp;
1100    else
1101	rt->mfc_rp.s_addr = INADDR_ANY;
1102}
1103
1104/*
1105 * fully initialize an mfc entry from the parameter.
1106 */
1107static void
1108init_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp)
1109{
1110    rt->mfc_origin     = mfccp->mfcc_origin;
1111    rt->mfc_mcastgrp   = mfccp->mfcc_mcastgrp;
1112
1113    update_mfc_params(rt, mfccp);
1114
1115    /* initialize pkt counters per src-grp */
1116    rt->mfc_pkt_cnt    = 0;
1117    rt->mfc_byte_cnt   = 0;
1118    rt->mfc_wrong_if   = 0;
1119    rt->mfc_last_assert.tv_sec = rt->mfc_last_assert.tv_usec = 0;
1120}
1121
1122
1123/*
1124 * Add an mfc entry
1125 */
1126static int
1127add_mfc(struct mfcctl2 *mfccp)
1128{
1129    struct mfc *rt;
1130    u_long hash;
1131    struct rtdetq *rte;
1132    u_short nstl;
1133
1134    VIF_LOCK();
1135    MFC_LOCK();
1136
1137    rt = mfc_find(mfccp->mfcc_origin.s_addr, mfccp->mfcc_mcastgrp.s_addr);
1138
1139    /* If an entry already exists, just update the fields */
1140    if (rt) {
1141	if (mrtdebug & DEBUG_MFC)
1142	    log(LOG_DEBUG,"add_mfc update o %lx g %lx p %x\n",
1143		(u_long)ntohl(mfccp->mfcc_origin.s_addr),
1144		(u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr),
1145		mfccp->mfcc_parent);
1146
1147	update_mfc_params(rt, mfccp);
1148	MFC_UNLOCK();
1149	VIF_UNLOCK();
1150	return 0;
1151    }
1152
1153    /*
1154     * Find the entry for which the upcall was made and update
1155     */
1156    hash = MFCHASH(mfccp->mfcc_origin.s_addr, mfccp->mfcc_mcastgrp.s_addr);
1157    for (rt = mfctable[hash], nstl = 0; rt; rt = rt->mfc_next) {
1158
1159	if ((rt->mfc_origin.s_addr == mfccp->mfcc_origin.s_addr) &&
1160		(rt->mfc_mcastgrp.s_addr == mfccp->mfcc_mcastgrp.s_addr) &&
1161		(rt->mfc_stall != NULL)) {
1162
1163	    if (nstl++)
1164		log(LOG_ERR, "add_mfc %s o %lx g %lx p %x dbx %p\n",
1165		    "multiple kernel entries",
1166		    (u_long)ntohl(mfccp->mfcc_origin.s_addr),
1167		    (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr),
1168		    mfccp->mfcc_parent, (void *)rt->mfc_stall);
1169
1170	    if (mrtdebug & DEBUG_MFC)
1171		log(LOG_DEBUG,"add_mfc o %lx g %lx p %x dbg %p\n",
1172		    (u_long)ntohl(mfccp->mfcc_origin.s_addr),
1173		    (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr),
1174		    mfccp->mfcc_parent, (void *)rt->mfc_stall);
1175
1176	    init_mfc_params(rt, mfccp);
1177
1178	    rt->mfc_expire = 0;	/* Don't clean this guy up */
1179	    nexpire[hash]--;
1180
1181	    /* free packets Qed at the end of this entry */
1182	    for (rte = rt->mfc_stall; rte != NULL; ) {
1183		struct rtdetq *n = rte->next;
1184
1185		ip_mdq(rte->m, rte->ifp, rt, -1);
1186		m_freem(rte->m);
1187		free(rte, M_MRTABLE);
1188		rte = n;
1189	    }
1190	    rt->mfc_stall = NULL;
1191	}
1192    }
1193
1194    /*
1195     * It is possible that an entry is being inserted without an upcall
1196     */
1197    if (nstl == 0) {
1198	if (mrtdebug & DEBUG_MFC)
1199	    log(LOG_DEBUG,"add_mfc no upcall h %lu o %lx g %lx p %x\n",
1200		hash, (u_long)ntohl(mfccp->mfcc_origin.s_addr),
1201		(u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr),
1202		mfccp->mfcc_parent);
1203
1204	for (rt = mfctable[hash]; rt != NULL; rt = rt->mfc_next) {
1205	    if ((rt->mfc_origin.s_addr == mfccp->mfcc_origin.s_addr) &&
1206		    (rt->mfc_mcastgrp.s_addr == mfccp->mfcc_mcastgrp.s_addr)) {
1207		init_mfc_params(rt, mfccp);
1208		if (rt->mfc_expire)
1209		    nexpire[hash]--;
1210		rt->mfc_expire = 0;
1211		break; /* XXX */
1212	    }
1213	}
1214	if (rt == NULL) {		/* no upcall, so make a new entry */
1215	    rt = (struct mfc *)malloc(sizeof(*rt), M_MRTABLE, M_NOWAIT);
1216	    if (rt == NULL) {
1217		MFC_UNLOCK();
1218		VIF_UNLOCK();
1219		return ENOBUFS;
1220	    }
1221
1222	    init_mfc_params(rt, mfccp);
1223	    rt->mfc_expire     = 0;
1224	    rt->mfc_stall      = NULL;
1225
1226	    rt->mfc_bw_meter = NULL;
1227	    /* insert new entry at head of hash chain */
1228	    rt->mfc_next = mfctable[hash];
1229	    mfctable[hash] = rt;
1230	}
1231    }
1232    MFC_UNLOCK();
1233    VIF_UNLOCK();
1234    return 0;
1235}
1236
1237/*
1238 * Delete an mfc entry
1239 */
1240static int
1241del_mfc(struct mfcctl2 *mfccp)
1242{
1243    struct in_addr 	origin;
1244    struct in_addr 	mcastgrp;
1245    struct mfc 		*rt;
1246    struct mfc	 	**nptr;
1247    u_long 		hash;
1248    struct bw_meter	*list;
1249
1250    origin = mfccp->mfcc_origin;
1251    mcastgrp = mfccp->mfcc_mcastgrp;
1252
1253    if (mrtdebug & DEBUG_MFC)
1254	log(LOG_DEBUG,"del_mfc orig %lx mcastgrp %lx\n",
1255	    (u_long)ntohl(origin.s_addr), (u_long)ntohl(mcastgrp.s_addr));
1256
1257    MFC_LOCK();
1258
1259    hash = MFCHASH(origin.s_addr, mcastgrp.s_addr);
1260    for (nptr = &mfctable[hash]; (rt = *nptr) != NULL; nptr = &rt->mfc_next)
1261	if (origin.s_addr == rt->mfc_origin.s_addr &&
1262		mcastgrp.s_addr == rt->mfc_mcastgrp.s_addr &&
1263		rt->mfc_stall == NULL)
1264	    break;
1265    if (rt == NULL) {
1266	MFC_UNLOCK();
1267	return EADDRNOTAVAIL;
1268    }
1269
1270    *nptr = rt->mfc_next;
1271
1272    /*
1273     * free the bw_meter entries
1274     */
1275    list = rt->mfc_bw_meter;
1276    rt->mfc_bw_meter = NULL;
1277
1278    free(rt, M_MRTABLE);
1279
1280    free_bw_list(list);
1281
1282    MFC_UNLOCK();
1283
1284    return 0;
1285}
1286
1287/*
1288 * Send a message to mrouted on the multicast routing socket
1289 */
1290static int
1291socket_send(struct socket *s, struct mbuf *mm, struct sockaddr_in *src)
1292{
1293    if (s) {
1294	if (sbappendaddr(&s->so_rcv, (struct sockaddr *)src, mm, NULL) != 0) {
1295	    sorwakeup(s);
1296	    return 0;
1297	}
1298    }
1299    m_freem(mm);
1300    return -1;
1301}
1302
1303/*
1304 * IP multicast forwarding function. This function assumes that the packet
1305 * pointed to by "ip" has arrived on (or is about to be sent to) the interface
1306 * pointed to by "ifp", and the packet is to be relayed to other networks
1307 * that have members of the packet's destination IP multicast group.
1308 *
1309 * The packet is returned unscathed to the caller, unless it is
1310 * erroneous, in which case a non-zero return value tells the caller to
1311 * discard it.
1312 */
1313
1314#define TUNNEL_LEN  12  /* # bytes of IP option for tunnel encapsulation  */
1315
1316static int
1317X_ip_mforward(struct ip *ip, struct ifnet *ifp, struct mbuf *m,
1318    struct ip_moptions *imo)
1319{
1320    struct mfc *rt;
1321    int error;
1322    vifi_t vifi;
1323
1324    if (mrtdebug & DEBUG_FORWARD)
1325	log(LOG_DEBUG, "ip_mforward: src %lx, dst %lx, ifp %p\n",
1326	    (u_long)ntohl(ip->ip_src.s_addr), (u_long)ntohl(ip->ip_dst.s_addr),
1327	    (void *)ifp);
1328
1329    if (ip->ip_hl < (sizeof(struct ip) + TUNNEL_LEN) >> 2 ||
1330		((u_char *)(ip + 1))[1] != IPOPT_LSRR ) {
1331	/*
1332	 * Packet arrived via a physical interface or
1333	 * an encapsulated tunnel or a register_vif.
1334	 */
1335    } else {
1336	/*
1337	 * Packet arrived through a source-route tunnel.
1338	 * Source-route tunnels are no longer supported.
1339	 */
1340	static int last_log;
1341	if (last_log != time_second) {
1342	    last_log = time_second;
1343	    log(LOG_ERR,
1344		"ip_mforward: received source-routed packet from %lx\n",
1345		(u_long)ntohl(ip->ip_src.s_addr));
1346	}
1347	return 1;
1348    }
1349
1350    VIF_LOCK();
1351    MFC_LOCK();
1352    if (imo && ((vifi = imo->imo_multicast_vif) < numvifs)) {
1353	if (ip->ip_ttl < 255)
1354	    ip->ip_ttl++;	/* compensate for -1 in *_send routines */
1355	if (rsvpdebug && ip->ip_p == IPPROTO_RSVP) {
1356	    struct vif *vifp = viftable + vifi;
1357
1358	    printf("Sending IPPROTO_RSVP from %lx to %lx on vif %d (%s%s%d)\n",
1359		(long)ntohl(ip->ip_src.s_addr), (long)ntohl(ip->ip_dst.s_addr),
1360		vifi,
1361		(vifp->v_flags & VIFF_TUNNEL) ? "tunnel on " : "",
1362		vifp->v_ifp->if_name, vifp->v_ifp->if_unit);
1363	}
1364	error = ip_mdq(m, ifp, NULL, vifi);
1365	MFC_UNLOCK();
1366	VIF_UNLOCK();
1367	return error;
1368    }
1369    if (rsvpdebug && ip->ip_p == IPPROTO_RSVP) {
1370	printf("Warning: IPPROTO_RSVP from %lx to %lx without vif option\n",
1371	    (long)ntohl(ip->ip_src.s_addr), (long)ntohl(ip->ip_dst.s_addr));
1372	if (!imo)
1373	    printf("In fact, no options were specified at all\n");
1374    }
1375
1376    /*
1377     * Don't forward a packet with time-to-live of zero or one,
1378     * or a packet destined to a local-only group.
1379     */
1380    if (ip->ip_ttl <= 1 || ntohl(ip->ip_dst.s_addr) <= INADDR_MAX_LOCAL_GROUP) {
1381	MFC_UNLOCK();
1382	VIF_UNLOCK();
1383	return 0;
1384    }
1385
1386    /*
1387     * Determine forwarding vifs from the forwarding cache table
1388     */
1389    ++mrtstat.mrts_mfc_lookups;
1390    rt = mfc_find(ip->ip_src.s_addr, ip->ip_dst.s_addr);
1391
1392    /* Entry exists, so forward if necessary */
1393    if (rt != NULL) {
1394	error = ip_mdq(m, ifp, rt, -1);
1395	MFC_UNLOCK();
1396	VIF_UNLOCK();
1397	return error;
1398    } else {
1399	/*
1400	 * If we don't have a route for packet's origin,
1401	 * Make a copy of the packet & send message to routing daemon
1402	 */
1403
1404	struct mbuf *mb0;
1405	struct rtdetq *rte;
1406	u_long hash;
1407	int hlen = ip->ip_hl << 2;
1408
1409	++mrtstat.mrts_mfc_misses;
1410
1411	mrtstat.mrts_no_route++;
1412	if (mrtdebug & (DEBUG_FORWARD | DEBUG_MFC))
1413	    log(LOG_DEBUG, "ip_mforward: no rte s %lx g %lx\n",
1414		(u_long)ntohl(ip->ip_src.s_addr),
1415		(u_long)ntohl(ip->ip_dst.s_addr));
1416
1417	/*
1418	 * Allocate mbufs early so that we don't do extra work if we are
1419	 * just going to fail anyway.  Make sure to pullup the header so
1420	 * that other people can't step on it.
1421	 */
1422	rte = (struct rtdetq *)malloc((sizeof *rte), M_MRTABLE, M_NOWAIT);
1423	if (rte == NULL) {
1424	    MFC_UNLOCK();
1425	    VIF_UNLOCK();
1426	    return ENOBUFS;
1427	}
1428	mb0 = m_copypacket(m, M_DONTWAIT);
1429	if (mb0 && (M_HASCL(mb0) || mb0->m_len < hlen))
1430	    mb0 = m_pullup(mb0, hlen);
1431	if (mb0 == NULL) {
1432	    free(rte, M_MRTABLE);
1433	    MFC_UNLOCK();
1434	    VIF_UNLOCK();
1435	    return ENOBUFS;
1436	}
1437
1438	/* is there an upcall waiting for this flow ? */
1439	hash = MFCHASH(ip->ip_src.s_addr, ip->ip_dst.s_addr);
1440	for (rt = mfctable[hash]; rt; rt = rt->mfc_next) {
1441	    if ((ip->ip_src.s_addr == rt->mfc_origin.s_addr) &&
1442		    (ip->ip_dst.s_addr == rt->mfc_mcastgrp.s_addr) &&
1443		    (rt->mfc_stall != NULL))
1444		break;
1445	}
1446
1447	if (rt == NULL) {
1448	    int i;
1449	    struct igmpmsg *im;
1450	    struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
1451	    struct mbuf *mm;
1452
1453	    /*
1454	     * Locate the vifi for the incoming interface for this packet.
1455	     * If none found, drop packet.
1456	     */
1457	    for (vifi=0; vifi < numvifs && viftable[vifi].v_ifp != ifp; vifi++)
1458		;
1459	    if (vifi >= numvifs)	/* vif not found, drop packet */
1460		goto non_fatal;
1461
1462	    /* no upcall, so make a new entry */
1463	    rt = (struct mfc *)malloc(sizeof(*rt), M_MRTABLE, M_NOWAIT);
1464	    if (rt == NULL)
1465		goto fail;
1466	    /* Make a copy of the header to send to the user level process */
1467	    mm = m_copy(mb0, 0, hlen);
1468	    if (mm == NULL)
1469		goto fail1;
1470
1471	    /*
1472	     * Send message to routing daemon to install
1473	     * a route into the kernel table
1474	     */
1475
1476	    im = mtod(mm, struct igmpmsg *);
1477	    im->im_msgtype = IGMPMSG_NOCACHE;
1478	    im->im_mbz = 0;
1479	    im->im_vif = vifi;
1480
1481	    mrtstat.mrts_upcalls++;
1482
1483	    k_igmpsrc.sin_addr = ip->ip_src;
1484	    if (socket_send(ip_mrouter, mm, &k_igmpsrc) < 0) {
1485		log(LOG_WARNING, "ip_mforward: ip_mrouter socket queue full\n");
1486		++mrtstat.mrts_upq_sockfull;
1487fail1:
1488		free(rt, M_MRTABLE);
1489fail:
1490		free(rte, M_MRTABLE);
1491		m_freem(mb0);
1492		MFC_UNLOCK();
1493		VIF_UNLOCK();
1494		return ENOBUFS;
1495	    }
1496
1497	    /* insert new entry at head of hash chain */
1498	    rt->mfc_origin.s_addr     = ip->ip_src.s_addr;
1499	    rt->mfc_mcastgrp.s_addr   = ip->ip_dst.s_addr;
1500	    rt->mfc_expire	      = UPCALL_EXPIRE;
1501	    nexpire[hash]++;
1502	    for (i = 0; i < numvifs; i++) {
1503		rt->mfc_ttls[i] = 0;
1504		rt->mfc_flags[i] = 0;
1505	    }
1506	    rt->mfc_parent = -1;
1507
1508	    rt->mfc_rp.s_addr = INADDR_ANY; /* clear the RP address */
1509
1510	    rt->mfc_bw_meter = NULL;
1511
1512	    /* link into table */
1513	    rt->mfc_next   = mfctable[hash];
1514	    mfctable[hash] = rt;
1515	    rt->mfc_stall = rte;
1516
1517	} else {
1518	    /* determine if q has overflowed */
1519	    int npkts = 0;
1520	    struct rtdetq **p;
1521
1522	    /*
1523	     * XXX ouch! we need to append to the list, but we
1524	     * only have a pointer to the front, so we have to
1525	     * scan the entire list every time.
1526	     */
1527	    for (p = &rt->mfc_stall; *p != NULL; p = &(*p)->next)
1528		npkts++;
1529
1530	    if (npkts > MAX_UPQ) {
1531		mrtstat.mrts_upq_ovflw++;
1532non_fatal:
1533		free(rte, M_MRTABLE);
1534		m_freem(mb0);
1535		MFC_UNLOCK();
1536		VIF_UNLOCK();
1537		return 0;
1538	    }
1539
1540	    /* Add this entry to the end of the queue */
1541	    *p = rte;
1542	}
1543
1544	rte->m 			= mb0;
1545	rte->ifp 		= ifp;
1546	rte->next		= NULL;
1547
1548	MFC_UNLOCK();
1549	VIF_UNLOCK();
1550
1551	return 0;
1552    }
1553}
1554
1555/*
1556 * Clean up the cache entry if upcall is not serviced
1557 */
1558static void
1559expire_upcalls(void *unused)
1560{
1561    struct rtdetq *rte;
1562    struct mfc *mfc, **nptr;
1563    int i;
1564
1565    MFC_LOCK();
1566    for (i = 0; i < MFCTBLSIZ; i++) {
1567	if (nexpire[i] == 0)
1568	    continue;
1569	nptr = &mfctable[i];
1570	for (mfc = *nptr; mfc != NULL; mfc = *nptr) {
1571	    /*
1572	     * Skip real cache entries
1573	     * Make sure it wasn't marked to not expire (shouldn't happen)
1574	     * If it expires now
1575	     */
1576	    if (mfc->mfc_stall != NULL && mfc->mfc_expire != 0 &&
1577		    --mfc->mfc_expire == 0) {
1578		if (mrtdebug & DEBUG_EXPIRE)
1579		    log(LOG_DEBUG, "expire_upcalls: expiring (%lx %lx)\n",
1580			(u_long)ntohl(mfc->mfc_origin.s_addr),
1581			(u_long)ntohl(mfc->mfc_mcastgrp.s_addr));
1582		/*
1583		 * drop all the packets
1584		 * free the mbuf with the pkt, if, timing info
1585		 */
1586		for (rte = mfc->mfc_stall; rte; ) {
1587		    struct rtdetq *n = rte->next;
1588
1589		    m_freem(rte->m);
1590		    free(rte, M_MRTABLE);
1591		    rte = n;
1592		}
1593		++mrtstat.mrts_cache_cleanups;
1594		nexpire[i]--;
1595
1596		/*
1597		 * free the bw_meter entries
1598		 */
1599		while (mfc->mfc_bw_meter != NULL) {
1600		    struct bw_meter *x = mfc->mfc_bw_meter;
1601
1602		    mfc->mfc_bw_meter = x->bm_mfc_next;
1603		    free(x, M_BWMETER);
1604		}
1605
1606		*nptr = mfc->mfc_next;
1607		free(mfc, M_MRTABLE);
1608	    } else {
1609		nptr = &mfc->mfc_next;
1610	    }
1611	}
1612    }
1613    MFC_UNLOCK();
1614
1615    callout_reset(&expire_upcalls_ch, EXPIRE_TIMEOUT, expire_upcalls, NULL);
1616}
1617
1618/*
1619 * Packet forwarding routine once entry in the cache is made
1620 */
1621static int
1622ip_mdq(struct mbuf *m, struct ifnet *ifp, struct mfc *rt, vifi_t xmt_vif)
1623{
1624    struct ip  *ip = mtod(m, struct ip *);
1625    vifi_t vifi;
1626    int plen = ip->ip_len;
1627
1628    VIF_LOCK_ASSERT();
1629/*
1630 * Macro to send packet on vif.  Since RSVP packets don't get counted on
1631 * input, they shouldn't get counted on output, so statistics keeping is
1632 * separate.
1633 */
1634#define MC_SEND(ip,vifp,m) {				\
1635		if ((vifp)->v_flags & VIFF_TUNNEL)	\
1636		    encap_send((ip), (vifp), (m));	\
1637		else					\
1638		    phyint_send((ip), (vifp), (m));	\
1639}
1640
1641    /*
1642     * If xmt_vif is not -1, send on only the requested vif.
1643     *
1644     * (since vifi_t is u_short, -1 becomes MAXUSHORT, which > numvifs.)
1645     */
1646    if (xmt_vif < numvifs) {
1647#ifdef PIM
1648	if (viftable[xmt_vif].v_flags & VIFF_REGISTER)
1649	    pim_register_send(ip, viftable + xmt_vif, m, rt);
1650        else
1651#endif
1652	MC_SEND(ip, viftable + xmt_vif, m);
1653	return 1;
1654    }
1655
1656    /*
1657     * Don't forward if it didn't arrive from the parent vif for its origin.
1658     */
1659    vifi = rt->mfc_parent;
1660    if ((vifi >= numvifs) || (viftable[vifi].v_ifp != ifp)) {
1661	/* came in the wrong interface */
1662	if (mrtdebug & DEBUG_FORWARD)
1663	    log(LOG_DEBUG, "wrong if: ifp %p vifi %d vififp %p\n",
1664		(void *)ifp, vifi, (void *)viftable[vifi].v_ifp);
1665	++mrtstat.mrts_wrong_if;
1666	++rt->mfc_wrong_if;
1667	/*
1668	 * If we are doing PIM assert processing, send a message
1669	 * to the routing daemon.
1670	 *
1671	 * XXX: A PIM-SM router needs the WRONGVIF detection so it
1672	 * can complete the SPT switch, regardless of the type
1673	 * of the iif (broadcast media, GRE tunnel, etc).
1674	 */
1675	if (pim_assert && (vifi < numvifs) && viftable[vifi].v_ifp) {
1676	    struct timeval now;
1677	    u_long delta;
1678
1679#ifdef PIM
1680	    if (ifp == &multicast_register_if)
1681		pimstat.pims_rcv_registers_wrongiif++;
1682#endif
1683
1684	    /* Get vifi for the incoming packet */
1685	    for (vifi=0; vifi < numvifs && viftable[vifi].v_ifp != ifp; vifi++)
1686		;
1687	    if (vifi >= numvifs)
1688		return 0;	/* The iif is not found: ignore the packet. */
1689
1690	    if (rt->mfc_flags[vifi] & MRT_MFC_FLAGS_DISABLE_WRONGVIF)
1691		return 0;	/* WRONGVIF disabled: ignore the packet */
1692
1693	    GET_TIME(now);
1694
1695	    TV_DELTA(rt->mfc_last_assert, now, delta);
1696
1697	    if (delta > ASSERT_MSG_TIME) {
1698		struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
1699		struct igmpmsg *im;
1700		int hlen = ip->ip_hl << 2;
1701		struct mbuf *mm = m_copy(m, 0, hlen);
1702
1703		if (mm && (M_HASCL(mm) || mm->m_len < hlen))
1704		    mm = m_pullup(mm, hlen);
1705		if (mm == NULL)
1706		    return ENOBUFS;
1707
1708		rt->mfc_last_assert = now;
1709
1710		im = mtod(mm, struct igmpmsg *);
1711		im->im_msgtype	= IGMPMSG_WRONGVIF;
1712		im->im_mbz		= 0;
1713		im->im_vif		= vifi;
1714
1715		mrtstat.mrts_upcalls++;
1716
1717		k_igmpsrc.sin_addr = im->im_src;
1718		if (socket_send(ip_mrouter, mm, &k_igmpsrc) < 0) {
1719		    log(LOG_WARNING,
1720			"ip_mforward: ip_mrouter socket queue full\n");
1721		    ++mrtstat.mrts_upq_sockfull;
1722		    return ENOBUFS;
1723		}
1724	    }
1725	}
1726	return 0;
1727    }
1728
1729    /* If I sourced this packet, it counts as output, else it was input. */
1730    if (ip->ip_src.s_addr == viftable[vifi].v_lcl_addr.s_addr) {
1731	viftable[vifi].v_pkt_out++;
1732	viftable[vifi].v_bytes_out += plen;
1733    } else {
1734	viftable[vifi].v_pkt_in++;
1735	viftable[vifi].v_bytes_in += plen;
1736    }
1737    rt->mfc_pkt_cnt++;
1738    rt->mfc_byte_cnt += plen;
1739
1740    /*
1741     * For each vif, decide if a copy of the packet should be forwarded.
1742     * Forward if:
1743     *		- the ttl exceeds the vif's threshold
1744     *		- there are group members downstream on interface
1745     */
1746    for (vifi = 0; vifi < numvifs; vifi++)
1747	if ((rt->mfc_ttls[vifi] > 0) && (ip->ip_ttl > rt->mfc_ttls[vifi])) {
1748	    viftable[vifi].v_pkt_out++;
1749	    viftable[vifi].v_bytes_out += plen;
1750#ifdef PIM
1751	    if (viftable[vifi].v_flags & VIFF_REGISTER)
1752		pim_register_send(ip, viftable + vifi, m, rt);
1753	    else
1754#endif
1755	    MC_SEND(ip, viftable+vifi, m);
1756	}
1757
1758    /*
1759     * Perform upcall-related bw measuring.
1760     */
1761    if (rt->mfc_bw_meter != NULL) {
1762	struct bw_meter *x;
1763	struct timeval now;
1764
1765	GET_TIME(now);
1766	MFC_LOCK_ASSERT();
1767	for (x = rt->mfc_bw_meter; x != NULL; x = x->bm_mfc_next)
1768	    bw_meter_receive_packet(x, plen, &now);
1769    }
1770
1771    return 0;
1772}
1773
1774/*
1775 * check if a vif number is legal/ok. This is used by ip_output.
1776 */
1777static int
1778X_legal_vif_num(int vif)
1779{
1780    /* XXX unlocked, matter? */
1781    return (vif >= 0 && vif < numvifs);
1782}
1783
1784/*
1785 * Return the local address used by this vif
1786 */
1787static u_long
1788X_ip_mcast_src(int vifi)
1789{
1790    /* XXX unlocked, matter? */
1791    if (vifi >= 0 && vifi < numvifs)
1792	return viftable[vifi].v_lcl_addr.s_addr;
1793    else
1794	return INADDR_ANY;
1795}
1796
1797static void
1798phyint_send(struct ip *ip, struct vif *vifp, struct mbuf *m)
1799{
1800    struct mbuf *mb_copy;
1801    int hlen = ip->ip_hl << 2;
1802
1803    VIF_LOCK_ASSERT();
1804
1805    /*
1806     * Make a new reference to the packet; make sure that
1807     * the IP header is actually copied, not just referenced,
1808     * so that ip_output() only scribbles on the copy.
1809     */
1810    mb_copy = m_copypacket(m, M_DONTWAIT);
1811    if (mb_copy && (M_HASCL(mb_copy) || mb_copy->m_len < hlen))
1812	mb_copy = m_pullup(mb_copy, hlen);
1813    if (mb_copy == NULL)
1814	return;
1815
1816    if (vifp->v_rate_limit == 0)
1817	tbf_send_packet(vifp, mb_copy);
1818    else
1819	tbf_control(vifp, mb_copy, mtod(mb_copy, struct ip *), ip->ip_len);
1820}
1821
1822static void
1823encap_send(struct ip *ip, struct vif *vifp, struct mbuf *m)
1824{
1825    struct mbuf *mb_copy;
1826    struct ip *ip_copy;
1827    int i, len = ip->ip_len;
1828
1829    VIF_LOCK_ASSERT();
1830
1831    /* Take care of delayed checksums */
1832    if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
1833	in_delayed_cksum(m);
1834	m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
1835    }
1836
1837    /*
1838     * copy the old packet & pullup its IP header into the
1839     * new mbuf so we can modify it.  Try to fill the new
1840     * mbuf since if we don't the ethernet driver will.
1841     */
1842    MGETHDR(mb_copy, M_DONTWAIT, MT_HEADER);
1843    if (mb_copy == NULL)
1844	return;
1845#ifdef MAC
1846    mac_create_mbuf_multicast_encap(m, vifp->v_ifp, mb_copy);
1847#endif
1848    mb_copy->m_data += max_linkhdr;
1849    mb_copy->m_len = sizeof(multicast_encap_iphdr);
1850
1851    if ((mb_copy->m_next = m_copypacket(m, M_DONTWAIT)) == NULL) {
1852	m_freem(mb_copy);
1853	return;
1854    }
1855    i = MHLEN - M_LEADINGSPACE(mb_copy);
1856    if (i > len)
1857	i = len;
1858    mb_copy = m_pullup(mb_copy, i);
1859    if (mb_copy == NULL)
1860	return;
1861    mb_copy->m_pkthdr.len = len + sizeof(multicast_encap_iphdr);
1862
1863    /*
1864     * fill in the encapsulating IP header.
1865     */
1866    ip_copy = mtod(mb_copy, struct ip *);
1867    *ip_copy = multicast_encap_iphdr;
1868#ifdef RANDOM_IP_ID
1869    ip_copy->ip_id = ip_randomid();
1870#else
1871    ip_copy->ip_id = htons(ip_id++);
1872#endif
1873    ip_copy->ip_len += len;
1874    ip_copy->ip_src = vifp->v_lcl_addr;
1875    ip_copy->ip_dst = vifp->v_rmt_addr;
1876
1877    /*
1878     * turn the encapsulated IP header back into a valid one.
1879     */
1880    ip = (struct ip *)((caddr_t)ip_copy + sizeof(multicast_encap_iphdr));
1881    --ip->ip_ttl;
1882    ip->ip_len = htons(ip->ip_len);
1883    ip->ip_off = htons(ip->ip_off);
1884    ip->ip_sum = 0;
1885    mb_copy->m_data += sizeof(multicast_encap_iphdr);
1886    ip->ip_sum = in_cksum(mb_copy, ip->ip_hl << 2);
1887    mb_copy->m_data -= sizeof(multicast_encap_iphdr);
1888
1889    if (vifp->v_rate_limit == 0)
1890	tbf_send_packet(vifp, mb_copy);
1891    else
1892	tbf_control(vifp, mb_copy, ip, ip_copy->ip_len);
1893}
1894
1895/*
1896 * Token bucket filter module
1897 */
1898
1899static void
1900tbf_control(struct vif *vifp, struct mbuf *m, struct ip *ip, u_long p_len)
1901{
1902    struct tbf *t = vifp->v_tbf;
1903
1904    VIF_LOCK_ASSERT();
1905
1906    if (p_len > MAX_BKT_SIZE) {		/* drop if packet is too large */
1907	mrtstat.mrts_pkt2large++;
1908	m_freem(m);
1909	return;
1910    }
1911
1912    tbf_update_tokens(vifp);
1913
1914    if (t->tbf_q_len == 0) {		/* queue empty...		*/
1915	if (p_len <= t->tbf_n_tok) {	/* send packet if enough tokens */
1916	    t->tbf_n_tok -= p_len;
1917	    tbf_send_packet(vifp, m);
1918	} else {			/* no, queue packet and try later */
1919	    tbf_queue(vifp, m);
1920	    callout_reset(&tbf_reprocess_ch, TBF_REPROCESS,
1921		tbf_reprocess_q, vifp);
1922	}
1923    } else if (t->tbf_q_len < t->tbf_max_q_len) {
1924	/* finite queue length, so queue pkts and process queue */
1925	tbf_queue(vifp, m);
1926	tbf_process_q(vifp);
1927    } else {
1928	/* queue full, try to dq and queue and process */
1929	if (!tbf_dq_sel(vifp, ip)) {
1930	    mrtstat.mrts_q_overflow++;
1931	    m_freem(m);
1932	} else {
1933	    tbf_queue(vifp, m);
1934	    tbf_process_q(vifp);
1935	}
1936    }
1937}
1938
1939/*
1940 * adds a packet to the queue at the interface
1941 */
1942static void
1943tbf_queue(struct vif *vifp, struct mbuf *m)
1944{
1945    struct tbf *t = vifp->v_tbf;
1946
1947    VIF_LOCK_ASSERT();
1948
1949    if (t->tbf_t == NULL)	/* Queue was empty */
1950	t->tbf_q = m;
1951    else			/* Insert at tail */
1952	t->tbf_t->m_act = m;
1953
1954    t->tbf_t = m;		/* Set new tail pointer */
1955
1956#ifdef DIAGNOSTIC
1957    /* Make sure we didn't get fed a bogus mbuf */
1958    if (m->m_act)
1959	panic("tbf_queue: m_act");
1960#endif
1961    m->m_act = NULL;
1962
1963    t->tbf_q_len++;
1964}
1965
1966/*
1967 * processes the queue at the interface
1968 */
1969static void
1970tbf_process_q(struct vif *vifp)
1971{
1972    struct tbf *t = vifp->v_tbf;
1973
1974    VIF_LOCK_ASSERT();
1975
1976    /* loop through the queue at the interface and send as many packets
1977     * as possible
1978     */
1979    while (t->tbf_q_len > 0) {
1980	struct mbuf *m = t->tbf_q;
1981	int len = mtod(m, struct ip *)->ip_len;
1982
1983	/* determine if the packet can be sent */
1984	if (len > t->tbf_n_tok)	/* not enough tokens, we are done */
1985	    break;
1986	/* ok, reduce no of tokens, dequeue and send the packet. */
1987	t->tbf_n_tok -= len;
1988
1989	t->tbf_q = m->m_act;
1990	if (--t->tbf_q_len == 0)
1991	    t->tbf_t = NULL;
1992
1993	m->m_act = NULL;
1994	tbf_send_packet(vifp, m);
1995    }
1996}
1997
1998static void
1999tbf_reprocess_q(void *xvifp)
2000{
2001    struct vif *vifp = xvifp;
2002
2003    if (ip_mrouter == NULL)
2004	return;
2005    VIF_LOCK();
2006    tbf_update_tokens(vifp);
2007    tbf_process_q(vifp);
2008    if (vifp->v_tbf->tbf_q_len)
2009	callout_reset(&tbf_reprocess_ch, TBF_REPROCESS, tbf_reprocess_q, vifp);
2010    VIF_UNLOCK();
2011}
2012
2013/* function that will selectively discard a member of the queue
2014 * based on the precedence value and the priority
2015 */
2016static int
2017tbf_dq_sel(struct vif *vifp, struct ip *ip)
2018{
2019    u_int p;
2020    struct mbuf *m, *last;
2021    struct mbuf **np;
2022    struct tbf *t = vifp->v_tbf;
2023
2024    VIF_LOCK_ASSERT();
2025
2026    p = priority(vifp, ip);
2027
2028    np = &t->tbf_q;
2029    last = NULL;
2030    while ((m = *np) != NULL) {
2031	if (p > priority(vifp, mtod(m, struct ip *))) {
2032	    *np = m->m_act;
2033	    /* If we're removing the last packet, fix the tail pointer */
2034	    if (m == t->tbf_t)
2035		t->tbf_t = last;
2036	    m_freem(m);
2037	    /* It's impossible for the queue to be empty, but check anyways. */
2038	    if (--t->tbf_q_len == 0)
2039		t->tbf_t = NULL;
2040	    mrtstat.mrts_drop_sel++;
2041	    return 1;
2042	}
2043	np = &m->m_act;
2044	last = m;
2045    }
2046    return 0;
2047}
2048
2049static void
2050tbf_send_packet(struct vif *vifp, struct mbuf *m)
2051{
2052    VIF_LOCK_ASSERT();
2053
2054    if (vifp->v_flags & VIFF_TUNNEL)	/* If tunnel options */
2055	ip_output(m, NULL, &vifp->v_route, IP_FORWARDING, NULL, NULL);
2056    else {
2057	struct ip_moptions imo;
2058	int error;
2059	static struct route ro; /* XXX check this */
2060
2061	imo.imo_multicast_ifp  = vifp->v_ifp;
2062	imo.imo_multicast_ttl  = mtod(m, struct ip *)->ip_ttl - 1;
2063	imo.imo_multicast_loop = 1;
2064	imo.imo_multicast_vif  = -1;
2065
2066	/*
2067	 * Re-entrancy should not be a problem here, because
2068	 * the packets that we send out and are looped back at us
2069	 * should get rejected because they appear to come from
2070	 * the loopback interface, thus preventing looping.
2071	 */
2072	error = ip_output(m, NULL, &ro, IP_FORWARDING, &imo, NULL);
2073
2074	if (mrtdebug & DEBUG_XMIT)
2075	    log(LOG_DEBUG, "phyint_send on vif %d err %d\n",
2076		(int)(vifp - viftable), error);
2077    }
2078}
2079
2080/* determine the current time and then
2081 * the elapsed time (between the last time and time now)
2082 * in milliseconds & update the no. of tokens in the bucket
2083 */
2084static void
2085tbf_update_tokens(struct vif *vifp)
2086{
2087    struct timeval tp;
2088    u_long tm;
2089    struct tbf *t = vifp->v_tbf;
2090
2091    VIF_LOCK_ASSERT();
2092
2093    GET_TIME(tp);
2094
2095    TV_DELTA(tp, t->tbf_last_pkt_t, tm);
2096
2097    /*
2098     * This formula is actually
2099     * "time in seconds" * "bytes/second".
2100     *
2101     * (tm / 1000000) * (v_rate_limit * 1000 * (1000/1024) / 8)
2102     *
2103     * The (1000/1024) was introduced in add_vif to optimize
2104     * this divide into a shift.
2105     */
2106    t->tbf_n_tok += tm * vifp->v_rate_limit / 1024 / 8;
2107    t->tbf_last_pkt_t = tp;
2108
2109    if (t->tbf_n_tok > MAX_BKT_SIZE)
2110	t->tbf_n_tok = MAX_BKT_SIZE;
2111}
2112
2113static int
2114priority(struct vif *vifp, struct ip *ip)
2115{
2116    int prio = 50; /* the lowest priority -- default case */
2117
2118    /* temporary hack; may add general packet classifier some day */
2119
2120    /*
2121     * The UDP port space is divided up into four priority ranges:
2122     * [0, 16384)     : unclassified - lowest priority
2123     * [16384, 32768) : audio - highest priority
2124     * [32768, 49152) : whiteboard - medium priority
2125     * [49152, 65536) : video - low priority
2126     *
2127     * Everything else gets lowest priority.
2128     */
2129    if (ip->ip_p == IPPROTO_UDP) {
2130	struct udphdr *udp = (struct udphdr *)(((char *)ip) + (ip->ip_hl << 2));
2131	switch (ntohs(udp->uh_dport) & 0xc000) {
2132	case 0x4000:
2133	    prio = 70;
2134	    break;
2135	case 0x8000:
2136	    prio = 60;
2137	    break;
2138	case 0xc000:
2139	    prio = 55;
2140	    break;
2141	}
2142    }
2143    return prio;
2144}
2145
2146/*
2147 * End of token bucket filter modifications
2148 */
2149
2150static int
2151X_ip_rsvp_vif(struct socket *so, struct sockopt *sopt)
2152{
2153    int error, vifi;
2154
2155    if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_RSVP)
2156	return EOPNOTSUPP;
2157
2158    error = sooptcopyin(sopt, &vifi, sizeof vifi, sizeof vifi);
2159    if (error)
2160	return error;
2161
2162    VIF_LOCK();
2163
2164    if (vifi < 0 || vifi >= numvifs) {	/* Error if vif is invalid */
2165	VIF_UNLOCK();
2166	return EADDRNOTAVAIL;
2167    }
2168
2169    if (sopt->sopt_name == IP_RSVP_VIF_ON) {
2170	/* Check if socket is available. */
2171	if (viftable[vifi].v_rsvpd != NULL) {
2172	    VIF_UNLOCK();
2173	    return EADDRINUSE;
2174	}
2175
2176	viftable[vifi].v_rsvpd = so;
2177	/* This may seem silly, but we need to be sure we don't over-increment
2178	 * the RSVP counter, in case something slips up.
2179	 */
2180	if (!viftable[vifi].v_rsvp_on) {
2181	    viftable[vifi].v_rsvp_on = 1;
2182	    rsvp_on++;
2183	}
2184    } else { /* must be VIF_OFF */
2185	/*
2186	 * XXX as an additional consistency check, one could make sure
2187	 * that viftable[vifi].v_rsvpd == so, otherwise passing so as
2188	 * first parameter is pretty useless.
2189	 */
2190	viftable[vifi].v_rsvpd = NULL;
2191	/*
2192	 * This may seem silly, but we need to be sure we don't over-decrement
2193	 * the RSVP counter, in case something slips up.
2194	 */
2195	if (viftable[vifi].v_rsvp_on) {
2196	    viftable[vifi].v_rsvp_on = 0;
2197	    rsvp_on--;
2198	}
2199    }
2200    VIF_UNLOCK();
2201    return 0;
2202}
2203
2204static void
2205X_ip_rsvp_force_done(struct socket *so)
2206{
2207    int vifi;
2208
2209    /* Don't bother if it is not the right type of socket. */
2210    if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_RSVP)
2211	return;
2212
2213    VIF_LOCK();
2214
2215    /* The socket may be attached to more than one vif...this
2216     * is perfectly legal.
2217     */
2218    for (vifi = 0; vifi < numvifs; vifi++) {
2219	if (viftable[vifi].v_rsvpd == so) {
2220	    viftable[vifi].v_rsvpd = NULL;
2221	    /* This may seem silly, but we need to be sure we don't
2222	     * over-decrement the RSVP counter, in case something slips up.
2223	     */
2224	    if (viftable[vifi].v_rsvp_on) {
2225		viftable[vifi].v_rsvp_on = 0;
2226		rsvp_on--;
2227	    }
2228	}
2229    }
2230
2231    VIF_UNLOCK();
2232}
2233
2234static void
2235X_rsvp_input(struct mbuf *m, int off)
2236{
2237    int vifi;
2238    struct ip *ip = mtod(m, struct ip *);
2239    struct sockaddr_in rsvp_src = { sizeof rsvp_src, AF_INET };
2240    struct ifnet *ifp;
2241
2242    if (rsvpdebug)
2243	printf("rsvp_input: rsvp_on %d\n",rsvp_on);
2244
2245    /* Can still get packets with rsvp_on = 0 if there is a local member
2246     * of the group to which the RSVP packet is addressed.  But in this
2247     * case we want to throw the packet away.
2248     */
2249    if (!rsvp_on) {
2250	m_freem(m);
2251	return;
2252    }
2253
2254    if (rsvpdebug)
2255	printf("rsvp_input: check vifs\n");
2256
2257#ifdef DIAGNOSTIC
2258    M_ASSERTPKTHDR(m);
2259#endif
2260
2261    ifp = m->m_pkthdr.rcvif;
2262
2263    VIF_LOCK();
2264    /* Find which vif the packet arrived on. */
2265    for (vifi = 0; vifi < numvifs; vifi++)
2266	if (viftable[vifi].v_ifp == ifp)
2267	    break;
2268
2269    if (vifi == numvifs || viftable[vifi].v_rsvpd == NULL) {
2270	/*
2271	 * Drop the lock here to avoid holding it across rip_input.
2272	 * This could make rsvpdebug printfs wrong.  If you care,
2273	 * record the state of stuff before dropping the lock.
2274	 */
2275	VIF_UNLOCK();
2276	/*
2277	 * If the old-style non-vif-associated socket is set,
2278	 * then use it.  Otherwise, drop packet since there
2279	 * is no specific socket for this vif.
2280	 */
2281	if (ip_rsvpd != NULL) {
2282	    if (rsvpdebug)
2283		printf("rsvp_input: Sending packet up old-style socket\n");
2284	    rip_input(m, off);  /* xxx */
2285	} else {
2286	    if (rsvpdebug && vifi == numvifs)
2287		printf("rsvp_input: Can't find vif for packet.\n");
2288	    else if (rsvpdebug && viftable[vifi].v_rsvpd == NULL)
2289		printf("rsvp_input: No socket defined for vif %d\n",vifi);
2290	    m_freem(m);
2291	}
2292	return;
2293    }
2294    rsvp_src.sin_addr = ip->ip_src;
2295
2296    if (rsvpdebug && m)
2297	printf("rsvp_input: m->m_len = %d, sbspace() = %ld\n",
2298	       m->m_len,sbspace(&(viftable[vifi].v_rsvpd->so_rcv)));
2299
2300    if (socket_send(viftable[vifi].v_rsvpd, m, &rsvp_src) < 0) {
2301	if (rsvpdebug)
2302	    printf("rsvp_input: Failed to append to socket\n");
2303    } else {
2304	if (rsvpdebug)
2305	    printf("rsvp_input: send packet up\n");
2306    }
2307    VIF_UNLOCK();
2308}
2309
2310/*
2311 * Code for bandwidth monitors
2312 */
2313
2314/*
2315 * Define common interface for timeval-related methods
2316 */
2317#define	BW_TIMEVALCMP(tvp, uvp, cmp) timevalcmp((tvp), (uvp), cmp)
2318#define	BW_TIMEVALDECR(vvp, uvp) timevalsub((vvp), (uvp))
2319#define	BW_TIMEVALADD(vvp, uvp) timevaladd((vvp), (uvp))
2320
2321static uint32_t
2322compute_bw_meter_flags(struct bw_upcall *req)
2323{
2324    uint32_t flags = 0;
2325
2326    if (req->bu_flags & BW_UPCALL_UNIT_PACKETS)
2327	flags |= BW_METER_UNIT_PACKETS;
2328    if (req->bu_flags & BW_UPCALL_UNIT_BYTES)
2329	flags |= BW_METER_UNIT_BYTES;
2330    if (req->bu_flags & BW_UPCALL_GEQ)
2331	flags |= BW_METER_GEQ;
2332    if (req->bu_flags & BW_UPCALL_LEQ)
2333	flags |= BW_METER_LEQ;
2334
2335    return flags;
2336}
2337
2338/*
2339 * Add a bw_meter entry
2340 */
2341static int
2342add_bw_upcall(struct bw_upcall *req)
2343{
2344    struct mfc *mfc;
2345    struct timeval delta = { BW_UPCALL_THRESHOLD_INTERVAL_MIN_SEC,
2346		BW_UPCALL_THRESHOLD_INTERVAL_MIN_USEC };
2347    struct timeval now;
2348    struct bw_meter *x;
2349    uint32_t flags;
2350
2351    if (!(mrt_api_config & MRT_MFC_BW_UPCALL))
2352	return EOPNOTSUPP;
2353
2354    /* Test if the flags are valid */
2355    if (!(req->bu_flags & (BW_UPCALL_UNIT_PACKETS | BW_UPCALL_UNIT_BYTES)))
2356	return EINVAL;
2357    if (!(req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ)))
2358	return EINVAL;
2359    if ((req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ))
2360	    == (BW_UPCALL_GEQ | BW_UPCALL_LEQ))
2361	return EINVAL;
2362
2363    /* Test if the threshold time interval is valid */
2364    if (BW_TIMEVALCMP(&req->bu_threshold.b_time, &delta, <))
2365	return EINVAL;
2366
2367    flags = compute_bw_meter_flags(req);
2368
2369    /*
2370     * Find if we have already same bw_meter entry
2371     */
2372    MFC_LOCK();
2373    mfc = mfc_find(req->bu_src.s_addr, req->bu_dst.s_addr);
2374    if (mfc == NULL) {
2375	MFC_UNLOCK();
2376	return EADDRNOTAVAIL;
2377    }
2378    for (x = mfc->mfc_bw_meter; x != NULL; x = x->bm_mfc_next) {
2379	if ((BW_TIMEVALCMP(&x->bm_threshold.b_time,
2380			   &req->bu_threshold.b_time, ==)) &&
2381	    (x->bm_threshold.b_packets == req->bu_threshold.b_packets) &&
2382	    (x->bm_threshold.b_bytes == req->bu_threshold.b_bytes) &&
2383	    (x->bm_flags & BW_METER_USER_FLAGS) == flags)  {
2384	    MFC_UNLOCK();
2385	    return 0;		/* XXX Already installed */
2386	}
2387    }
2388
2389    /* Allocate the new bw_meter entry */
2390    x = (struct bw_meter *)malloc(sizeof(*x), M_BWMETER, M_NOWAIT);
2391    if (x == NULL) {
2392	MFC_UNLOCK();
2393	return ENOBUFS;
2394    }
2395
2396    /* Set the new bw_meter entry */
2397    x->bm_threshold.b_time = req->bu_threshold.b_time;
2398    GET_TIME(now);
2399    x->bm_start_time = now;
2400    x->bm_threshold.b_packets = req->bu_threshold.b_packets;
2401    x->bm_threshold.b_bytes = req->bu_threshold.b_bytes;
2402    x->bm_measured.b_packets = 0;
2403    x->bm_measured.b_bytes = 0;
2404    x->bm_flags = flags;
2405    x->bm_time_next = NULL;
2406    x->bm_time_hash = BW_METER_BUCKETS;
2407
2408    /* Add the new bw_meter entry to the front of entries for this MFC */
2409    x->bm_mfc = mfc;
2410    x->bm_mfc_next = mfc->mfc_bw_meter;
2411    mfc->mfc_bw_meter = x;
2412    schedule_bw_meter(x, &now);
2413    MFC_UNLOCK();
2414
2415    return 0;
2416}
2417
2418static void
2419free_bw_list(struct bw_meter *list)
2420{
2421    while (list != NULL) {
2422	struct bw_meter *x = list;
2423
2424	list = list->bm_mfc_next;
2425	unschedule_bw_meter(x);
2426	free(x, M_BWMETER);
2427    }
2428}
2429
2430/*
2431 * Delete one or multiple bw_meter entries
2432 */
2433static int
2434del_bw_upcall(struct bw_upcall *req)
2435{
2436    struct mfc *mfc;
2437    struct bw_meter *x;
2438
2439    if (!(mrt_api_config & MRT_MFC_BW_UPCALL))
2440	return EOPNOTSUPP;
2441
2442    MFC_LOCK();
2443    /* Find the corresponding MFC entry */
2444    mfc = mfc_find(req->bu_src.s_addr, req->bu_dst.s_addr);
2445    if (mfc == NULL) {
2446	MFC_UNLOCK();
2447	return EADDRNOTAVAIL;
2448    } else if (req->bu_flags & BW_UPCALL_DELETE_ALL) {
2449	/*
2450	 * Delete all bw_meter entries for this mfc
2451	 */
2452	struct bw_meter *list;
2453
2454	list = mfc->mfc_bw_meter;
2455	mfc->mfc_bw_meter = NULL;
2456	free_bw_list(list);
2457	MFC_UNLOCK();
2458	return 0;
2459    } else {			/* Delete a single bw_meter entry */
2460	struct bw_meter *prev;
2461	uint32_t flags = 0;
2462
2463	flags = compute_bw_meter_flags(req);
2464
2465	/* Find the bw_meter entry to delete */
2466	for (prev = NULL, x = mfc->mfc_bw_meter; x != NULL;
2467	     x = x->bm_mfc_next) {
2468	    if ((BW_TIMEVALCMP(&x->bm_threshold.b_time,
2469			       &req->bu_threshold.b_time, ==)) &&
2470		(x->bm_threshold.b_packets == req->bu_threshold.b_packets) &&
2471		(x->bm_threshold.b_bytes == req->bu_threshold.b_bytes) &&
2472		(x->bm_flags & BW_METER_USER_FLAGS) == flags)
2473		break;
2474	}
2475	if (x != NULL) { /* Delete entry from the list for this MFC */
2476	    if (prev != NULL)
2477		prev->bm_mfc_next = x->bm_mfc_next;	/* remove from middle*/
2478	    else
2479		x->bm_mfc->mfc_bw_meter = x->bm_mfc_next;/* new head of list */
2480
2481	    unschedule_bw_meter(x);
2482	    MFC_UNLOCK();
2483	    /* Free the bw_meter entry */
2484	    free(x, M_BWMETER);
2485	    return 0;
2486	} else {
2487	    MFC_UNLOCK();
2488	    return EINVAL;
2489	}
2490    }
2491    /* NOTREACHED */
2492}
2493
2494/*
2495 * Perform bandwidth measurement processing that may result in an upcall
2496 */
2497static void
2498bw_meter_receive_packet(struct bw_meter *x, int plen, struct timeval *nowp)
2499{
2500    struct timeval delta;
2501
2502    MFC_LOCK_ASSERT();
2503
2504    delta = *nowp;
2505    BW_TIMEVALDECR(&delta, &x->bm_start_time);
2506
2507    if (x->bm_flags & BW_METER_GEQ) {
2508	/*
2509	 * Processing for ">=" type of bw_meter entry
2510	 */
2511	if (BW_TIMEVALCMP(&delta, &x->bm_threshold.b_time, >)) {
2512	    /* Reset the bw_meter entry */
2513	    x->bm_start_time = *nowp;
2514	    x->bm_measured.b_packets = 0;
2515	    x->bm_measured.b_bytes = 0;
2516	    x->bm_flags &= ~BW_METER_UPCALL_DELIVERED;
2517	}
2518
2519	/* Record that a packet is received */
2520	x->bm_measured.b_packets++;
2521	x->bm_measured.b_bytes += plen;
2522
2523	/*
2524	 * Test if we should deliver an upcall
2525	 */
2526	if (!(x->bm_flags & BW_METER_UPCALL_DELIVERED)) {
2527	    if (((x->bm_flags & BW_METER_UNIT_PACKETS) &&
2528		 (x->bm_measured.b_packets >= x->bm_threshold.b_packets)) ||
2529		((x->bm_flags & BW_METER_UNIT_BYTES) &&
2530		 (x->bm_measured.b_bytes >= x->bm_threshold.b_bytes))) {
2531		/* Prepare an upcall for delivery */
2532		bw_meter_prepare_upcall(x, nowp);
2533		x->bm_flags |= BW_METER_UPCALL_DELIVERED;
2534	    }
2535	}
2536    } else if (x->bm_flags & BW_METER_LEQ) {
2537	/*
2538	 * Processing for "<=" type of bw_meter entry
2539	 */
2540	if (BW_TIMEVALCMP(&delta, &x->bm_threshold.b_time, >)) {
2541	    /*
2542	     * We are behind time with the multicast forwarding table
2543	     * scanning for "<=" type of bw_meter entries, so test now
2544	     * if we should deliver an upcall.
2545	     */
2546	    if (((x->bm_flags & BW_METER_UNIT_PACKETS) &&
2547		 (x->bm_measured.b_packets <= x->bm_threshold.b_packets)) ||
2548		((x->bm_flags & BW_METER_UNIT_BYTES) &&
2549		 (x->bm_measured.b_bytes <= x->bm_threshold.b_bytes))) {
2550		/* Prepare an upcall for delivery */
2551		bw_meter_prepare_upcall(x, nowp);
2552	    }
2553	    /* Reschedule the bw_meter entry */
2554	    unschedule_bw_meter(x);
2555	    schedule_bw_meter(x, nowp);
2556	}
2557
2558	/* Record that a packet is received */
2559	x->bm_measured.b_packets++;
2560	x->bm_measured.b_bytes += plen;
2561
2562	/*
2563	 * Test if we should restart the measuring interval
2564	 */
2565	if ((x->bm_flags & BW_METER_UNIT_PACKETS &&
2566	     x->bm_measured.b_packets <= x->bm_threshold.b_packets) ||
2567	    (x->bm_flags & BW_METER_UNIT_BYTES &&
2568	     x->bm_measured.b_bytes <= x->bm_threshold.b_bytes)) {
2569	    /* Don't restart the measuring interval */
2570	} else {
2571	    /* Do restart the measuring interval */
2572	    /*
2573	     * XXX: note that we don't unschedule and schedule, because this
2574	     * might be too much overhead per packet. Instead, when we process
2575	     * all entries for a given timer hash bin, we check whether it is
2576	     * really a timeout. If not, we reschedule at that time.
2577	     */
2578	    x->bm_start_time = *nowp;
2579	    x->bm_measured.b_packets = 0;
2580	    x->bm_measured.b_bytes = 0;
2581	    x->bm_flags &= ~BW_METER_UPCALL_DELIVERED;
2582	}
2583    }
2584}
2585
2586/*
2587 * Prepare a bandwidth-related upcall
2588 */
2589static void
2590bw_meter_prepare_upcall(struct bw_meter *x, struct timeval *nowp)
2591{
2592    struct timeval delta;
2593    struct bw_upcall *u;
2594
2595    MFC_LOCK_ASSERT();
2596
2597    /*
2598     * Compute the measured time interval
2599     */
2600    delta = *nowp;
2601    BW_TIMEVALDECR(&delta, &x->bm_start_time);
2602
2603    /*
2604     * If there are too many pending upcalls, deliver them now
2605     */
2606    if (bw_upcalls_n >= BW_UPCALLS_MAX)
2607	bw_upcalls_send();
2608
2609    /*
2610     * Set the bw_upcall entry
2611     */
2612    u = &bw_upcalls[bw_upcalls_n++];
2613    u->bu_src = x->bm_mfc->mfc_origin;
2614    u->bu_dst = x->bm_mfc->mfc_mcastgrp;
2615    u->bu_threshold.b_time = x->bm_threshold.b_time;
2616    u->bu_threshold.b_packets = x->bm_threshold.b_packets;
2617    u->bu_threshold.b_bytes = x->bm_threshold.b_bytes;
2618    u->bu_measured.b_time = delta;
2619    u->bu_measured.b_packets = x->bm_measured.b_packets;
2620    u->bu_measured.b_bytes = x->bm_measured.b_bytes;
2621    u->bu_flags = 0;
2622    if (x->bm_flags & BW_METER_UNIT_PACKETS)
2623	u->bu_flags |= BW_UPCALL_UNIT_PACKETS;
2624    if (x->bm_flags & BW_METER_UNIT_BYTES)
2625	u->bu_flags |= BW_UPCALL_UNIT_BYTES;
2626    if (x->bm_flags & BW_METER_GEQ)
2627	u->bu_flags |= BW_UPCALL_GEQ;
2628    if (x->bm_flags & BW_METER_LEQ)
2629	u->bu_flags |= BW_UPCALL_LEQ;
2630}
2631
2632/*
2633 * Send the pending bandwidth-related upcalls
2634 */
2635static void
2636bw_upcalls_send(void)
2637{
2638    struct mbuf *m;
2639    int len = bw_upcalls_n * sizeof(bw_upcalls[0]);
2640    struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
2641    static struct igmpmsg igmpmsg = { 0,		/* unused1 */
2642				      0,		/* unused2 */
2643				      IGMPMSG_BW_UPCALL,/* im_msgtype */
2644				      0,		/* im_mbz  */
2645				      0,		/* im_vif  */
2646				      0,		/* unused3 */
2647				      { 0 },		/* im_src  */
2648				      { 0 } };		/* im_dst  */
2649
2650    MFC_LOCK_ASSERT();
2651
2652    if (bw_upcalls_n == 0)
2653	return;			/* No pending upcalls */
2654
2655    bw_upcalls_n = 0;
2656
2657    /*
2658     * Allocate a new mbuf, initialize it with the header and
2659     * the payload for the pending calls.
2660     */
2661    MGETHDR(m, M_DONTWAIT, MT_HEADER);
2662    if (m == NULL) {
2663	log(LOG_WARNING, "bw_upcalls_send: cannot allocate mbuf\n");
2664	return;
2665    }
2666
2667    m->m_len = m->m_pkthdr.len = 0;
2668    m_copyback(m, 0, sizeof(struct igmpmsg), (caddr_t)&igmpmsg);
2669    m_copyback(m, sizeof(struct igmpmsg), len, (caddr_t)&bw_upcalls[0]);
2670
2671    /*
2672     * Send the upcalls
2673     * XXX do we need to set the address in k_igmpsrc ?
2674     */
2675    mrtstat.mrts_upcalls++;
2676    if (socket_send(ip_mrouter, m, &k_igmpsrc) < 0) {
2677	log(LOG_WARNING, "bw_upcalls_send: ip_mrouter socket queue full\n");
2678	++mrtstat.mrts_upq_sockfull;
2679    }
2680}
2681
2682/*
2683 * Compute the timeout hash value for the bw_meter entries
2684 */
2685#define	BW_METER_TIMEHASH(bw_meter, hash)				\
2686    do {								\
2687	struct timeval next_timeval = (bw_meter)->bm_start_time;	\
2688									\
2689	BW_TIMEVALADD(&next_timeval, &(bw_meter)->bm_threshold.b_time); \
2690	(hash) = next_timeval.tv_sec;					\
2691	if (next_timeval.tv_usec)					\
2692	    (hash)++; /* XXX: make sure we don't timeout early */	\
2693	(hash) %= BW_METER_BUCKETS;					\
2694    } while (0)
2695
2696/*
2697 * Schedule a timer to process periodically bw_meter entry of type "<="
2698 * by linking the entry in the proper hash bucket.
2699 */
2700static void
2701schedule_bw_meter(struct bw_meter *x, struct timeval *nowp)
2702{
2703    int time_hash;
2704
2705    MFC_LOCK_ASSERT();
2706
2707    if (!(x->bm_flags & BW_METER_LEQ))
2708	return;		/* XXX: we schedule timers only for "<=" entries */
2709
2710    /*
2711     * Reset the bw_meter entry
2712     */
2713    x->bm_start_time = *nowp;
2714    x->bm_measured.b_packets = 0;
2715    x->bm_measured.b_bytes = 0;
2716    x->bm_flags &= ~BW_METER_UPCALL_DELIVERED;
2717
2718    /*
2719     * Compute the timeout hash value and insert the entry
2720     */
2721    BW_METER_TIMEHASH(x, time_hash);
2722    x->bm_time_next = bw_meter_timers[time_hash];
2723    bw_meter_timers[time_hash] = x;
2724    x->bm_time_hash = time_hash;
2725}
2726
2727/*
2728 * Unschedule the periodic timer that processes bw_meter entry of type "<="
2729 * by removing the entry from the proper hash bucket.
2730 */
2731static void
2732unschedule_bw_meter(struct bw_meter *x)
2733{
2734    int time_hash;
2735    struct bw_meter *prev, *tmp;
2736
2737    MFC_LOCK_ASSERT();
2738
2739    if (!(x->bm_flags & BW_METER_LEQ))
2740	return;		/* XXX: we schedule timers only for "<=" entries */
2741
2742    /*
2743     * Compute the timeout hash value and delete the entry
2744     */
2745    time_hash = x->bm_time_hash;
2746    if (time_hash >= BW_METER_BUCKETS)
2747	return;		/* Entry was not scheduled */
2748
2749    for (prev = NULL, tmp = bw_meter_timers[time_hash];
2750	     tmp != NULL; prev = tmp, tmp = tmp->bm_time_next)
2751	if (tmp == x)
2752	    break;
2753
2754    if (tmp == NULL)
2755	panic("unschedule_bw_meter: bw_meter entry not found");
2756
2757    if (prev != NULL)
2758	prev->bm_time_next = x->bm_time_next;
2759    else
2760	bw_meter_timers[time_hash] = x->bm_time_next;
2761
2762    x->bm_time_next = NULL;
2763    x->bm_time_hash = BW_METER_BUCKETS;
2764}
2765
2766
2767/*
2768 * Process all "<=" type of bw_meter that should be processed now,
2769 * and for each entry prepare an upcall if necessary. Each processed
2770 * entry is rescheduled again for the (periodic) processing.
2771 *
2772 * This is run periodically (once per second normally). On each round,
2773 * all the potentially matching entries are in the hash slot that we are
2774 * looking at.
2775 */
2776static void
2777bw_meter_process()
2778{
2779    static uint32_t last_tv_sec;	/* last time we processed this */
2780
2781    uint32_t loops;
2782    int i;
2783    struct timeval now, process_endtime;
2784
2785    GET_TIME(now);
2786    if (last_tv_sec == now.tv_sec)
2787	return;		/* nothing to do */
2788
2789    loops = now.tv_sec - last_tv_sec;
2790    last_tv_sec = now.tv_sec;
2791    if (loops > BW_METER_BUCKETS)
2792	loops = BW_METER_BUCKETS;
2793
2794    MFC_LOCK();
2795    /*
2796     * Process all bins of bw_meter entries from the one after the last
2797     * processed to the current one. On entry, i points to the last bucket
2798     * visited, so we need to increment i at the beginning of the loop.
2799     */
2800    for (i = (now.tv_sec - loops) % BW_METER_BUCKETS; loops > 0; loops--) {
2801	struct bw_meter *x, *tmp_list;
2802
2803	if (++i >= BW_METER_BUCKETS)
2804	    i = 0;
2805
2806	/* Disconnect the list of bw_meter entries from the bin */
2807	tmp_list = bw_meter_timers[i];
2808	bw_meter_timers[i] = NULL;
2809
2810	/* Process the list of bw_meter entries */
2811	while (tmp_list != NULL) {
2812	    x = tmp_list;
2813	    tmp_list = tmp_list->bm_time_next;
2814
2815	    /* Test if the time interval is over */
2816	    process_endtime = x->bm_start_time;
2817	    BW_TIMEVALADD(&process_endtime, &x->bm_threshold.b_time);
2818	    if (BW_TIMEVALCMP(&process_endtime, &now, >)) {
2819		/* Not yet: reschedule, but don't reset */
2820		int time_hash;
2821
2822		BW_METER_TIMEHASH(x, time_hash);
2823		if (time_hash == i && process_endtime.tv_sec == now.tv_sec) {
2824		    /*
2825		     * XXX: somehow the bin processing is a bit ahead of time.
2826		     * Put the entry in the next bin.
2827		     */
2828		    if (++time_hash >= BW_METER_BUCKETS)
2829			time_hash = 0;
2830		}
2831		x->bm_time_next = bw_meter_timers[time_hash];
2832		bw_meter_timers[time_hash] = x;
2833		x->bm_time_hash = time_hash;
2834
2835		continue;
2836	    }
2837
2838	    /*
2839	     * Test if we should deliver an upcall
2840	     */
2841	    if (((x->bm_flags & BW_METER_UNIT_PACKETS) &&
2842		 (x->bm_measured.b_packets <= x->bm_threshold.b_packets)) ||
2843		((x->bm_flags & BW_METER_UNIT_BYTES) &&
2844		 (x->bm_measured.b_bytes <= x->bm_threshold.b_bytes))) {
2845		/* Prepare an upcall for delivery */
2846		bw_meter_prepare_upcall(x, &now);
2847	    }
2848
2849	    /*
2850	     * Reschedule for next processing
2851	     */
2852	    schedule_bw_meter(x, &now);
2853	}
2854    }
2855
2856    /* Send all upcalls that are pending delivery */
2857    bw_upcalls_send();
2858
2859    MFC_UNLOCK();
2860}
2861
2862/*
2863 * A periodic function for sending all upcalls that are pending delivery
2864 */
2865static void
2866expire_bw_upcalls_send(void *unused)
2867{
2868    MFC_LOCK();
2869    bw_upcalls_send();
2870    MFC_UNLOCK();
2871
2872    callout_reset(&bw_upcalls_ch, BW_UPCALLS_PERIOD,
2873	expire_bw_upcalls_send, NULL);
2874}
2875
2876/*
2877 * A periodic function for periodic scanning of the multicast forwarding
2878 * table for processing all "<=" bw_meter entries.
2879 */
2880static void
2881expire_bw_meter_process(void *unused)
2882{
2883    if (mrt_api_config & MRT_MFC_BW_UPCALL)
2884	bw_meter_process();
2885
2886    callout_reset(&bw_meter_ch, BW_METER_PERIOD, expire_bw_meter_process, NULL);
2887}
2888
2889/*
2890 * End of bandwidth monitoring code
2891 */
2892
2893#ifdef PIM
2894/*
2895 * Send the packet up to the user daemon, or eventually do kernel encapsulation
2896 *
2897 */
2898static int
2899pim_register_send(struct ip *ip, struct vif *vifp,
2900	struct mbuf *m, struct mfc *rt)
2901{
2902    struct mbuf *mb_copy, *mm;
2903
2904    if (mrtdebug & DEBUG_PIM)
2905        log(LOG_DEBUG, "pim_register_send: ");
2906
2907    mb_copy = pim_register_prepare(ip, m);
2908    if (mb_copy == NULL)
2909	return ENOBUFS;
2910
2911    /*
2912     * Send all the fragments. Note that the mbuf for each fragment
2913     * is freed by the sending machinery.
2914     */
2915    for (mm = mb_copy; mm; mm = mb_copy) {
2916	mb_copy = mm->m_nextpkt;
2917	mm->m_nextpkt = 0;
2918	mm = m_pullup(mm, sizeof(struct ip));
2919	if (mm != NULL) {
2920	    ip = mtod(mm, struct ip *);
2921	    if ((mrt_api_config & MRT_MFC_RP) &&
2922		(rt->mfc_rp.s_addr != INADDR_ANY)) {
2923		pim_register_send_rp(ip, vifp, mm, rt);
2924	    } else {
2925		pim_register_send_upcall(ip, vifp, mm, rt);
2926	    }
2927	}
2928    }
2929
2930    return 0;
2931}
2932
2933/*
2934 * Return a copy of the data packet that is ready for PIM Register
2935 * encapsulation.
2936 * XXX: Note that in the returned copy the IP header is a valid one.
2937 */
2938static struct mbuf *
2939pim_register_prepare(struct ip *ip, struct mbuf *m)
2940{
2941    struct mbuf *mb_copy = NULL;
2942    int mtu;
2943
2944    /* Take care of delayed checksums */
2945    if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
2946	in_delayed_cksum(m);
2947	m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
2948    }
2949
2950    /*
2951     * Copy the old packet & pullup its IP header into the
2952     * new mbuf so we can modify it.
2953     */
2954    mb_copy = m_copypacket(m, M_DONTWAIT);
2955    if (mb_copy == NULL)
2956	return NULL;
2957    mb_copy = m_pullup(mb_copy, ip->ip_hl << 2);
2958    if (mb_copy == NULL)
2959	return NULL;
2960
2961    /* take care of the TTL */
2962    ip = mtod(mb_copy, struct ip *);
2963    --ip->ip_ttl;
2964
2965    /* Compute the MTU after the PIM Register encapsulation */
2966    mtu = 0xffff - sizeof(pim_encap_iphdr) - sizeof(pim_encap_pimhdr);
2967
2968    if (ip->ip_len <= mtu) {
2969	/* Turn the IP header into a valid one */
2970	ip->ip_len = htons(ip->ip_len);
2971	ip->ip_off = htons(ip->ip_off);
2972	ip->ip_sum = 0;
2973	ip->ip_sum = in_cksum(mb_copy, ip->ip_hl << 2);
2974    } else {
2975	/* Fragment the packet */
2976	if (ip_fragment(ip, &mb_copy, mtu, 0, CSUM_DELAY_IP) != 0) {
2977	    m_freem(mb_copy);
2978	    return NULL;
2979	}
2980    }
2981    return mb_copy;
2982}
2983
2984/*
2985 * Send an upcall with the data packet to the user-level process.
2986 */
2987static int
2988pim_register_send_upcall(struct ip *ip, struct vif *vifp,
2989	struct mbuf *mb_copy, struct mfc *rt)
2990{
2991    struct mbuf *mb_first;
2992    int len = ntohs(ip->ip_len);
2993    struct igmpmsg *im;
2994    struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
2995
2996    VIF_LOCK_ASSERT();
2997
2998    /*
2999     * Add a new mbuf with an upcall header
3000     */
3001    MGETHDR(mb_first, M_DONTWAIT, MT_HEADER);
3002    if (mb_first == NULL) {
3003	m_freem(mb_copy);
3004	return ENOBUFS;
3005    }
3006    mb_first->m_data += max_linkhdr;
3007    mb_first->m_pkthdr.len = len + sizeof(struct igmpmsg);
3008    mb_first->m_len = sizeof(struct igmpmsg);
3009    mb_first->m_next = mb_copy;
3010
3011    /* Send message to routing daemon */
3012    im = mtod(mb_first, struct igmpmsg *);
3013    im->im_msgtype	= IGMPMSG_WHOLEPKT;
3014    im->im_mbz		= 0;
3015    im->im_vif		= vifp - viftable;
3016    im->im_src		= ip->ip_src;
3017    im->im_dst		= ip->ip_dst;
3018
3019    k_igmpsrc.sin_addr	= ip->ip_src;
3020
3021    mrtstat.mrts_upcalls++;
3022
3023    if (socket_send(ip_mrouter, mb_first, &k_igmpsrc) < 0) {
3024	if (mrtdebug & DEBUG_PIM)
3025	    log(LOG_WARNING,
3026		"mcast: pim_register_send_upcall: ip_mrouter socket queue full");
3027	++mrtstat.mrts_upq_sockfull;
3028	return ENOBUFS;
3029    }
3030
3031    /* Keep statistics */
3032    pimstat.pims_snd_registers_msgs++;
3033    pimstat.pims_snd_registers_bytes += len;
3034
3035    return 0;
3036}
3037
3038/*
3039 * Encapsulate the data packet in PIM Register message and send it to the RP.
3040 */
3041static int
3042pim_register_send_rp(struct ip *ip, struct vif *vifp,
3043	struct mbuf *mb_copy, struct mfc *rt)
3044{
3045    struct mbuf *mb_first;
3046    struct ip *ip_outer;
3047    struct pim_encap_pimhdr *pimhdr;
3048    int len = ntohs(ip->ip_len);
3049    vifi_t vifi = rt->mfc_parent;
3050
3051    VIF_LOCK_ASSERT();
3052
3053    if ((vifi >= numvifs) || (viftable[vifi].v_lcl_addr.s_addr == 0)) {
3054	m_freem(mb_copy);
3055	return EADDRNOTAVAIL;		/* The iif vif is invalid */
3056    }
3057
3058    /*
3059     * Add a new mbuf with the encapsulating header
3060     */
3061    MGETHDR(mb_first, M_DONTWAIT, MT_HEADER);
3062    if (mb_first == NULL) {
3063	m_freem(mb_copy);
3064	return ENOBUFS;
3065    }
3066    mb_first->m_data += max_linkhdr;
3067    mb_first->m_len = sizeof(pim_encap_iphdr) + sizeof(pim_encap_pimhdr);
3068    mb_first->m_next = mb_copy;
3069
3070    mb_first->m_pkthdr.len = len + mb_first->m_len;
3071
3072    /*
3073     * Fill in the encapsulating IP and PIM header
3074     */
3075    ip_outer = mtod(mb_first, struct ip *);
3076    *ip_outer = pim_encap_iphdr;
3077#ifdef RANDOM_IP_ID
3078    ip_outer->ip_id = ip_randomid();
3079#else
3080    ip_outer->ip_id = htons(ip_id++);
3081#endif
3082    ip_outer->ip_len = len + sizeof(pim_encap_iphdr) + sizeof(pim_encap_pimhdr);
3083    ip_outer->ip_src = viftable[vifi].v_lcl_addr;
3084    ip_outer->ip_dst = rt->mfc_rp;
3085    /*
3086     * Copy the inner header TOS to the outer header, and take care of the
3087     * IP_DF bit.
3088     */
3089    ip_outer->ip_tos = ip->ip_tos;
3090    if (ntohs(ip->ip_off) & IP_DF)
3091	ip_outer->ip_off |= IP_DF;
3092    pimhdr = (struct pim_encap_pimhdr *)((caddr_t)ip_outer
3093					 + sizeof(pim_encap_iphdr));
3094    *pimhdr = pim_encap_pimhdr;
3095    /* If the iif crosses a border, set the Border-bit */
3096    if (rt->mfc_flags[vifi] & MRT_MFC_FLAGS_BORDER_VIF & mrt_api_config)
3097	pimhdr->flags |= htonl(PIM_BORDER_REGISTER);
3098
3099    mb_first->m_data += sizeof(pim_encap_iphdr);
3100    pimhdr->pim.pim_cksum = in_cksum(mb_first, sizeof(pim_encap_pimhdr));
3101    mb_first->m_data -= sizeof(pim_encap_iphdr);
3102
3103    if (vifp->v_rate_limit == 0)
3104	tbf_send_packet(vifp, mb_first);
3105    else
3106	tbf_control(vifp, mb_first, ip, ip_outer->ip_len);
3107
3108    /* Keep statistics */
3109    pimstat.pims_snd_registers_msgs++;
3110    pimstat.pims_snd_registers_bytes += len;
3111
3112    return 0;
3113}
3114
3115/*
3116 * PIM-SMv2 and PIM-DM messages processing.
3117 * Receives and verifies the PIM control messages, and passes them
3118 * up to the listening socket, using rip_input().
3119 * The only message with special processing is the PIM_REGISTER message
3120 * (used by PIM-SM): the PIM header is stripped off, and the inner packet
3121 * is passed to if_simloop().
3122 */
3123void
3124pim_input(struct mbuf *m, int off)
3125{
3126    struct ip *ip = mtod(m, struct ip *);
3127    struct pim *pim;
3128    int minlen;
3129    int datalen = ip->ip_len;
3130    int ip_tos;
3131    int iphlen = off;
3132
3133    /* Keep statistics */
3134    pimstat.pims_rcv_total_msgs++;
3135    pimstat.pims_rcv_total_bytes += datalen;
3136
3137    /*
3138     * Validate lengths
3139     */
3140    if (datalen < PIM_MINLEN) {
3141	pimstat.pims_rcv_tooshort++;
3142	log(LOG_ERR, "pim_input: packet size too small %d from %lx\n",
3143	    datalen, (u_long)ip->ip_src.s_addr);
3144	m_freem(m);
3145	return;
3146    }
3147
3148    /*
3149     * If the packet is at least as big as a REGISTER, go agead
3150     * and grab the PIM REGISTER header size, to avoid another
3151     * possible m_pullup() later.
3152     *
3153     * PIM_MINLEN       == pimhdr + u_int32_t == 4 + 4 = 8
3154     * PIM_REG_MINLEN   == pimhdr + reghdr + encap_iphdr == 4 + 4 + 20 = 28
3155     */
3156    minlen = iphlen + (datalen >= PIM_REG_MINLEN ? PIM_REG_MINLEN : PIM_MINLEN);
3157    /*
3158     * Get the IP and PIM headers in contiguous memory, and
3159     * possibly the PIM REGISTER header.
3160     */
3161    if ((m->m_flags & M_EXT || m->m_len < minlen) &&
3162	(m = m_pullup(m, minlen)) == 0) {
3163	log(LOG_ERR, "pim_input: m_pullup failure\n");
3164	return;
3165    }
3166    /* m_pullup() may have given us a new mbuf so reset ip. */
3167    ip = mtod(m, struct ip *);
3168    ip_tos = ip->ip_tos;
3169
3170    /* adjust mbuf to point to the PIM header */
3171    m->m_data += iphlen;
3172    m->m_len  -= iphlen;
3173    pim = mtod(m, struct pim *);
3174
3175    /*
3176     * Validate checksum. If PIM REGISTER, exclude the data packet.
3177     *
3178     * XXX: some older PIMv2 implementations don't make this distinction,
3179     * so for compatibility reason perform the checksum over part of the
3180     * message, and if error, then over the whole message.
3181     */
3182    if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER && in_cksum(m, PIM_MINLEN) == 0) {
3183	/* do nothing, checksum okay */
3184    } else if (in_cksum(m, datalen)) {
3185	pimstat.pims_rcv_badsum++;
3186	if (mrtdebug & DEBUG_PIM)
3187	    log(LOG_DEBUG, "pim_input: invalid checksum");
3188	m_freem(m);
3189	return;
3190    }
3191
3192    /* PIM version check */
3193    if (PIM_VT_V(pim->pim_vt) < PIM_VERSION) {
3194	pimstat.pims_rcv_badversion++;
3195	log(LOG_ERR, "pim_input: incorrect version %d, expecting %d\n",
3196	    PIM_VT_V(pim->pim_vt), PIM_VERSION);
3197	m_freem(m);
3198	return;
3199    }
3200
3201    /* restore mbuf back to the outer IP */
3202    m->m_data -= iphlen;
3203    m->m_len  += iphlen;
3204
3205    if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER) {
3206	/*
3207	 * Since this is a REGISTER, we'll make a copy of the register
3208	 * headers ip + pim + u_int32 + encap_ip, to be passed up to the
3209	 * routing daemon.
3210	 */
3211	struct sockaddr_in dst = { sizeof(dst), AF_INET };
3212	struct mbuf *mcp;
3213	struct ip *encap_ip;
3214	u_int32_t *reghdr;
3215	struct ifnet *vifp;
3216
3217	VIF_LOCK();
3218	if ((reg_vif_num >= numvifs) || (reg_vif_num == VIFI_INVALID)) {
3219	    VIF_UNLOCK();
3220	    if (mrtdebug & DEBUG_PIM)
3221		log(LOG_DEBUG,
3222		    "pim_input: register vif not set: %d\n", reg_vif_num);
3223	    m_freem(m);
3224	    return;
3225	}
3226	/* XXX need refcnt? */
3227	vifp = viftable[reg_vif_num].v_ifp;
3228	VIF_UNLOCK();
3229
3230	/*
3231	 * Validate length
3232	 */
3233	if (datalen < PIM_REG_MINLEN) {
3234	    pimstat.pims_rcv_tooshort++;
3235	    pimstat.pims_rcv_badregisters++;
3236	    log(LOG_ERR,
3237		"pim_input: register packet size too small %d from %lx\n",
3238		datalen, (u_long)ip->ip_src.s_addr);
3239	    m_freem(m);
3240	    return;
3241	}
3242
3243	reghdr = (u_int32_t *)(pim + 1);
3244	encap_ip = (struct ip *)(reghdr + 1);
3245
3246	if (mrtdebug & DEBUG_PIM) {
3247	    log(LOG_DEBUG,
3248		"pim_input[register], encap_ip: %lx -> %lx, encap_ip len %d\n",
3249		(u_long)ntohl(encap_ip->ip_src.s_addr),
3250		(u_long)ntohl(encap_ip->ip_dst.s_addr),
3251		ntohs(encap_ip->ip_len));
3252	}
3253
3254	/* verify the version number of the inner packet */
3255	if (encap_ip->ip_v != IPVERSION) {
3256	    pimstat.pims_rcv_badregisters++;
3257	    if (mrtdebug & DEBUG_PIM) {
3258		log(LOG_DEBUG, "pim_input: invalid IP version (%d) "
3259		    "of the inner packet\n", encap_ip->ip_v);
3260	    }
3261	    m_freem(m);
3262	    return;
3263	}
3264
3265	/* verify the inner packet is destined to a mcast group */
3266	if (!IN_MULTICAST(ntohl(encap_ip->ip_dst.s_addr))) {
3267	    pimstat.pims_rcv_badregisters++;
3268	    if (mrtdebug & DEBUG_PIM)
3269		log(LOG_DEBUG,
3270		    "pim_input: inner packet of register is not "
3271		    "multicast %lx\n",
3272		    (u_long)ntohl(encap_ip->ip_dst.s_addr));
3273	    m_freem(m);
3274	    return;
3275	}
3276
3277	/*
3278	 * Copy the TOS from the outer IP header to the inner IP header.
3279	 */
3280	if (encap_ip->ip_tos != ip_tos) {
3281	    /* Outer TOS -> inner TOS */
3282	    encap_ip->ip_tos = ip_tos;
3283	    /* Recompute the inner header checksum. Sigh... */
3284
3285	    /* adjust mbuf to point to the inner IP header */
3286	    m->m_data += (iphlen + PIM_MINLEN);
3287	    m->m_len  -= (iphlen + PIM_MINLEN);
3288
3289	    encap_ip->ip_sum = 0;
3290	    encap_ip->ip_sum = in_cksum(m, encap_ip->ip_hl << 2);
3291
3292	    /* restore mbuf to point back to the outer IP header */
3293	    m->m_data -= (iphlen + PIM_MINLEN);
3294	    m->m_len  += (iphlen + PIM_MINLEN);
3295	}
3296
3297	/* If a NULL_REGISTER, pass it to the daemon */
3298	if ((ntohl(*reghdr) & PIM_NULL_REGISTER))
3299	    goto pim_input_to_daemon;
3300
3301	/*
3302	 * Decapsulate the inner IP packet and loopback to forward it
3303	 * as a normal multicast packet. Also, make a copy of the
3304	 *     outer_iphdr + pimhdr + reghdr + encap_iphdr
3305	 * to pass to the daemon later, so it can take the appropriate
3306	 * actions (e.g., send back PIM_REGISTER_STOP).
3307	 * XXX: here m->m_data points to the outer IP header.
3308	 */
3309	mcp = m_copy(m, 0, iphlen + PIM_REG_MINLEN);
3310	if (mcp == NULL) {
3311	    log(LOG_ERR,
3312		"pim_input: pim register: could not copy register head\n");
3313	    m_freem(m);
3314	    return;
3315	}
3316
3317	/* Keep statistics */
3318	/* XXX: registers_bytes include only the encap. mcast pkt */
3319	pimstat.pims_rcv_registers_msgs++;
3320	pimstat.pims_rcv_registers_bytes += ntohs(encap_ip->ip_len);
3321
3322	/*
3323	 * forward the inner ip packet; point m_data at the inner ip.
3324	 */
3325	m_adj(m, iphlen + PIM_MINLEN);
3326
3327	if (mrtdebug & DEBUG_PIM) {
3328	    log(LOG_DEBUG,
3329		"pim_input: forwarding decapsulated register: "
3330		"src %lx, dst %lx, vif %d\n",
3331		(u_long)ntohl(encap_ip->ip_src.s_addr),
3332		(u_long)ntohl(encap_ip->ip_dst.s_addr),
3333		reg_vif_num);
3334	}
3335	/* NB: vifp was collected above; can it change on us? */
3336	if_simloop(vifp, m, dst.sin_family, 0);
3337
3338	/* prepare the register head to send to the mrouting daemon */
3339	m = mcp;
3340    }
3341
3342pim_input_to_daemon:
3343    /*
3344     * Pass the PIM message up to the daemon; if it is a Register message,
3345     * pass the 'head' only up to the daemon. This includes the
3346     * outer IP header, PIM header, PIM-Register header and the
3347     * inner IP header.
3348     * XXX: the outer IP header pkt size of a Register is not adjust to
3349     * reflect the fact that the inner multicast data is truncated.
3350     */
3351    rip_input(m, iphlen);
3352
3353    return;
3354}
3355#endif /* PIM */
3356
3357static int
3358ip_mroute_modevent(module_t mod, int type, void *unused)
3359{
3360    int s;
3361
3362    switch (type) {
3363    case MOD_LOAD:
3364	s = splnet();
3365	ip_mrouter_reset();
3366	/* XXX synchronize setup */
3367	ip_mcast_src = X_ip_mcast_src;
3368	ip_mforward = X_ip_mforward;
3369	ip_mrouter_done = X_ip_mrouter_done;
3370	ip_mrouter_get = X_ip_mrouter_get;
3371	ip_mrouter_set = X_ip_mrouter_set;
3372	ip_rsvp_force_done = X_ip_rsvp_force_done;
3373	ip_rsvp_vif = X_ip_rsvp_vif;
3374	legal_vif_num = X_legal_vif_num;
3375	mrt_ioctl = X_mrt_ioctl;
3376	rsvp_input_p = X_rsvp_input;
3377	break;
3378
3379    case MOD_UNLOAD:
3380	/*
3381	 * Typically module unload happens after the user-level
3382	 * process has shutdown the kernel services (the check
3383	 * below insures someone can't just yank the module out
3384	 * from under a running process).  But if the module is
3385	 * just loaded and then unloaded w/o starting up a user
3386	 * process we still need to cleanup.
3387	 */
3388	if (ip_mrouter)
3389	    return EINVAL;
3390
3391	X_ip_mrouter_done();
3392	ip_mcast_src = NULL;
3393	ip_mforward = NULL;
3394	ip_mrouter_done = NULL;
3395	ip_mrouter_get = NULL;
3396	ip_mrouter_set = NULL;
3397	ip_rsvp_force_done = NULL;
3398	ip_rsvp_vif = NULL;
3399	legal_vif_num = NULL;
3400	mrt_ioctl = NULL;
3401	rsvp_input_p = NULL;
3402	break;
3403    }
3404    return 0;
3405}
3406
3407static moduledata_t ip_mroutemod = {
3408    "ip_mroute",
3409    ip_mroute_modevent,
3410    0
3411};
3412DECLARE_MODULE(ip_mroute, ip_mroutemod, SI_SUB_PSEUDO, SI_ORDER_ANY);
3413