ip_mroute.c revision 119401
1/*
2 * IP multicast forwarding procedures
3 *
4 * Written by David Waitzman, BBN Labs, August 1988.
5 * Modified by Steve Deering, Stanford, February 1989.
6 * Modified by Mark J. Steiglitz, Stanford, May, 1991
7 * Modified by Van Jacobson, LBL, January 1993
8 * Modified by Ajit Thyagarajan, PARC, August 1993
9 * Modified by Bill Fenner, PARC, April 1995
10 * Modified by Ahmed Helmy, SGI, June 1996
11 * Modified by George Edmond Eddy (Rusty), ISI, February 1998
12 * Modified by Pavlin Radoslavov, USC/ISI, May 1998, August 1999, October 2000
13 * Modified by Hitoshi Asaeda, WIDE, August 2000
14 * Modified by Pavlin Radoslavov, ICSI, October 2002
15 *
16 * MROUTING Revision: 3.5
17 * and PIM-SMv2 and PIM-DM support, advanced API support,
18 * bandwidth metering and signaling
19 *
20 * $FreeBSD: head/sys/netinet/ip_mroute.c 119401 2003-08-24 08:27:57Z hsu $
21 */
22
23#include "opt_mac.h"
24#include "opt_mrouting.h"
25#include "opt_random_ip_id.h"
26
27#ifdef PIM
28#define _PIM_VT 1
29#endif
30
31#include <sys/param.h>
32#include <sys/kernel.h>
33#include <sys/lock.h>
34#include <sys/mac.h>
35#include <sys/malloc.h>
36#include <sys/mbuf.h>
37#include <sys/protosw.h>
38#include <sys/signalvar.h>
39#include <sys/socket.h>
40#include <sys/socketvar.h>
41#include <sys/sockio.h>
42#include <sys/sx.h>
43#include <sys/sysctl.h>
44#include <sys/syslog.h>
45#include <sys/systm.h>
46#include <sys/time.h>
47#include <net/if.h>
48#include <net/netisr.h>
49#include <net/route.h>
50#include <netinet/in.h>
51#include <netinet/igmp.h>
52#include <netinet/in_systm.h>
53#include <netinet/in_var.h>
54#include <netinet/ip.h>
55#include <netinet/ip_encap.h>
56#include <netinet/ip_mroute.h>
57#include <netinet/ip_var.h>
58#ifdef PIM
59#include <netinet/pim.h>
60#include <netinet/pim_var.h>
61#endif
62#include <netinet/udp.h>
63#include <machine/in_cksum.h>
64
65/*
66 * Control debugging code for rsvp and multicast routing code.
67 * Can only set them with the debugger.
68 */
69static u_int    rsvpdebug;		/* non-zero enables debugging	*/
70
71static u_int	mrtdebug;		/* any set of the flags below	*/
72#define		DEBUG_MFC	0x02
73#define		DEBUG_FORWARD	0x04
74#define		DEBUG_EXPIRE	0x08
75#define		DEBUG_XMIT	0x10
76#define		DEBUG_PIM	0x20
77
78#define		VIFI_INVALID	((vifi_t) -1)
79
80#define M_HASCL(m)	((m)->m_flags & M_EXT)
81
82static MALLOC_DEFINE(M_MRTABLE, "mroutetbl", "multicast routing tables");
83
84static struct mrtstat	mrtstat;
85SYSCTL_STRUCT(_net_inet_ip, OID_AUTO, mrtstat, CTLFLAG_RW,
86    &mrtstat, mrtstat,
87    "Multicast Routing Statistics (struct mrtstat, netinet/ip_mroute.h)");
88
89static struct mfc	*mfctable[MFCTBLSIZ];
90SYSCTL_OPAQUE(_net_inet_ip, OID_AUTO, mfctable, CTLFLAG_RD,
91    &mfctable, sizeof(mfctable), "S,*mfc[MFCTBLSIZ]",
92    "Multicast Forwarding Table (struct *mfc[MFCTBLSIZ], netinet/ip_mroute.h)");
93
94static struct vif	viftable[MAXVIFS];
95SYSCTL_OPAQUE(_net_inet_ip, OID_AUTO, viftable, CTLFLAG_RD,
96    &viftable, sizeof(viftable), "S,vif[MAXVIFS]",
97    "Multicast Virtual Interfaces (struct vif[MAXVIFS], netinet/ip_mroute.h)");
98
99static u_char		nexpire[MFCTBLSIZ];
100
101static struct callout_handle expire_upcalls_ch;
102
103#define		EXPIRE_TIMEOUT	(hz / 4)	/* 4x / second		*/
104#define		UPCALL_EXPIRE	6		/* number of timeouts	*/
105
106/*
107 * Define the token bucket filter structures
108 * tbftable -> each vif has one of these for storing info
109 */
110
111static struct tbf tbftable[MAXVIFS];
112#define		TBF_REPROCESS	(hz / 100)	/* 100x / second */
113
114/*
115 * 'Interfaces' associated with decapsulator (so we can tell
116 * packets that went through it from ones that get reflected
117 * by a broken gateway).  These interfaces are never linked into
118 * the system ifnet list & no routes point to them.  I.e., packets
119 * can't be sent this way.  They only exist as a placeholder for
120 * multicast source verification.
121 */
122static struct ifnet multicast_decap_if[MAXVIFS];
123
124#define ENCAP_TTL 64
125#define ENCAP_PROTO IPPROTO_IPIP	/* 4 */
126
127/* prototype IP hdr for encapsulated packets */
128static struct ip multicast_encap_iphdr = {
129#if BYTE_ORDER == LITTLE_ENDIAN
130	sizeof(struct ip) >> 2, IPVERSION,
131#else
132	IPVERSION, sizeof(struct ip) >> 2,
133#endif
134	0,				/* tos */
135	sizeof(struct ip),		/* total length */
136	0,				/* id */
137	0,				/* frag offset */
138	ENCAP_TTL, ENCAP_PROTO,
139	0,				/* checksum */
140};
141
142/*
143 * Bandwidth meter variables and constants
144 */
145static MALLOC_DEFINE(M_BWMETER, "bwmeter", "multicast upcall bw meters");
146/*
147 * Pending timeouts are stored in a hash table, the key being the
148 * expiration time. Periodically, the entries are analysed and processed.
149 */
150#define BW_METER_BUCKETS	1024
151static struct bw_meter *bw_meter_timers[BW_METER_BUCKETS];
152static struct callout_handle bw_meter_ch;
153#define BW_METER_PERIOD (hz)		/* periodical handling of bw meters */
154
155/*
156 * Pending upcalls are stored in a vector which is flushed when
157 * full, or periodically
158 */
159static struct bw_upcall	bw_upcalls[BW_UPCALLS_MAX];
160static u_int	bw_upcalls_n; /* # of pending upcalls */
161static struct callout_handle bw_upcalls_ch;
162#define BW_UPCALLS_PERIOD (hz)		/* periodical flush of bw upcalls */
163
164#ifdef PIM
165static struct pimstat pimstat;
166SYSCTL_STRUCT(_net_inet_pim, PIMCTL_STATS, stats, CTLFLAG_RD,
167    &pimstat, pimstat,
168    "PIM Statistics (struct pimstat, netinet/pim_var.h)");
169
170/*
171 * Note: the PIM Register encapsulation adds the following in front of a
172 * data packet:
173 *
174 * struct pim_encap_hdr {
175 *    struct ip ip;
176 *    struct pim_encap_pimhdr  pim;
177 * }
178 *
179 */
180
181struct pim_encap_pimhdr {
182	struct pim pim;
183	uint32_t   flags;
184};
185
186static struct ip pim_encap_iphdr = {
187#if BYTE_ORDER == LITTLE_ENDIAN
188	sizeof(struct ip) >> 2,
189	IPVERSION,
190#else
191	IPVERSION,
192	sizeof(struct ip) >> 2,
193#endif
194	0,			/* tos */
195	sizeof(struct ip),	/* total length */
196	0,			/* id */
197	0,			/* frag offset */
198	ENCAP_TTL,
199	IPPROTO_PIM,
200	0,			/* checksum */
201};
202
203static struct pim_encap_pimhdr pim_encap_pimhdr = {
204    {
205	PIM_MAKE_VT(PIM_VERSION, PIM_REGISTER), /* PIM vers and message type */
206	0,			/* reserved */
207	0,			/* checksum */
208    },
209    0				/* flags */
210};
211
212static struct ifnet multicast_register_if;
213static vifi_t reg_vif_num = VIFI_INVALID;
214#endif /* PIM */
215
216/*
217 * Private variables.
218 */
219static vifi_t	   numvifs;
220static const struct encaptab *encap_cookie;
221
222/*
223 * one-back cache used by mroute_encapcheck to locate a tunnel's vif
224 * given a datagram's src ip address.
225 */
226static u_long last_encap_src;
227static struct vif *last_encap_vif;
228
229static u_long	X_ip_mcast_src(int vifi);
230static int	X_ip_mforward(struct ip *ip, struct ifnet *ifp,
231			struct mbuf *m, struct ip_moptions *imo);
232static int	X_ip_mrouter_done(void);
233static int	X_ip_mrouter_get(struct socket *so, struct sockopt *m);
234static int	X_ip_mrouter_set(struct socket *so, struct sockopt *m);
235static int	X_legal_vif_num(int vif);
236static int	X_mrt_ioctl(int cmd, caddr_t data);
237
238static int get_sg_cnt(struct sioc_sg_req *);
239static int get_vif_cnt(struct sioc_vif_req *);
240static int ip_mrouter_init(struct socket *, int);
241static int add_vif(struct vifctl *);
242static int del_vif(vifi_t);
243static int add_mfc(struct mfcctl2 *);
244static int del_mfc(struct mfcctl2 *);
245static int set_api_config(uint32_t *); /* chose API capabilities */
246static int socket_send(struct socket *, struct mbuf *, struct sockaddr_in *);
247static int set_assert(int);
248static void expire_upcalls(void *);
249static int ip_mdq(struct mbuf *, struct ifnet *, struct mfc *, vifi_t);
250static void phyint_send(struct ip *, struct vif *, struct mbuf *);
251static void encap_send(struct ip *, struct vif *, struct mbuf *);
252static void tbf_control(struct vif *, struct mbuf *, struct ip *, u_long);
253static void tbf_queue(struct vif *, struct mbuf *);
254static void tbf_process_q(struct vif *);
255static void tbf_reprocess_q(void *);
256static int tbf_dq_sel(struct vif *, struct ip *);
257static void tbf_send_packet(struct vif *, struct mbuf *);
258static void tbf_update_tokens(struct vif *);
259static int priority(struct vif *, struct ip *);
260
261/*
262 * Bandwidth monitoring
263 */
264static void free_bw_list(struct bw_meter *list);
265static int add_bw_upcall(struct bw_upcall *);
266static int del_bw_upcall(struct bw_upcall *);
267static void bw_meter_receive_packet(struct bw_meter *x, int plen,
268		struct timeval *nowp);
269static void bw_meter_prepare_upcall(struct bw_meter *x, struct timeval *nowp);
270static void bw_upcalls_send(void);
271static void schedule_bw_meter(struct bw_meter *x, struct timeval *nowp);
272static void unschedule_bw_meter(struct bw_meter *x);
273static void bw_meter_process(void);
274static void expire_bw_upcalls_send(void *);
275static void expire_bw_meter_process(void *);
276
277#ifdef PIM
278static int pim_register_send(struct ip *, struct vif *,
279		struct mbuf *, struct mfc *);
280static int pim_register_send_rp(struct ip *, struct vif *,
281		struct mbuf *, struct mfc *);
282static int pim_register_send_upcall(struct ip *, struct vif *,
283		struct mbuf *, struct mfc *);
284static struct mbuf *pim_register_prepare(struct ip *, struct mbuf *);
285#endif
286
287/*
288 * whether or not special PIM assert processing is enabled.
289 */
290static int pim_assert;
291/*
292 * Rate limit for assert notification messages, in usec
293 */
294#define ASSERT_MSG_TIME		3000000
295
296/*
297 * Kernel multicast routing API capabilities and setup.
298 * If more API capabilities are added to the kernel, they should be
299 * recorded in `mrt_api_support'.
300 */
301static const uint32_t mrt_api_support = (MRT_MFC_FLAGS_DISABLE_WRONGVIF |
302					 MRT_MFC_FLAGS_BORDER_VIF |
303					 MRT_MFC_RP |
304					 MRT_MFC_BW_UPCALL);
305static uint32_t mrt_api_config = 0;
306
307/*
308 * Hash function for a source, group entry
309 */
310#define MFCHASH(a, g) MFCHASHMOD(((a) >> 20) ^ ((a) >> 10) ^ (a) ^ \
311			((g) >> 20) ^ ((g) >> 10) ^ (g))
312
313/*
314 * Find a route for a given origin IP address and Multicast group address
315 * Type of service parameter to be added in the future!!!
316 * Statistics are updated by the caller if needed
317 * (mrtstat.mrts_mfc_lookups and mrtstat.mrts_mfc_misses)
318 */
319static struct mfc *
320mfc_find(in_addr_t o, in_addr_t g)
321{
322    struct mfc *rt;
323
324    for (rt = mfctable[MFCHASH(o,g)]; rt; rt = rt->mfc_next)
325	if ((rt->mfc_origin.s_addr == o) &&
326		(rt->mfc_mcastgrp.s_addr == g) && (rt->mfc_stall == NULL))
327	    break;
328    return rt;
329}
330
331/*
332 * Macros to compute elapsed time efficiently
333 * Borrowed from Van Jacobson's scheduling code
334 */
335#define TV_DELTA(a, b, delta) {					\
336	int xxs;						\
337	delta = (a).tv_usec - (b).tv_usec;			\
338	if ((xxs = (a).tv_sec - (b).tv_sec)) {			\
339		switch (xxs) {					\
340		case 2:						\
341		      delta += 1000000;				\
342		      /* FALLTHROUGH */				\
343		case 1:						\
344		      delta += 1000000;				\
345		      break;					\
346		default:					\
347		      delta += (1000000 * xxs);			\
348		}						\
349	}							\
350}
351
352#define TV_LT(a, b) (((a).tv_usec < (b).tv_usec && \
353	      (a).tv_sec <= (b).tv_sec) || (a).tv_sec < (b).tv_sec)
354
355/*
356 * Handle MRT setsockopt commands to modify the multicast routing tables.
357 */
358static int
359X_ip_mrouter_set(struct socket *so, struct sockopt *sopt)
360{
361    int	error, optval;
362    vifi_t	vifi;
363    struct	vifctl vifc;
364    struct	mfcctl2 mfc;
365    struct	bw_upcall bw_upcall;
366    uint32_t	i;
367
368    if (so != ip_mrouter && sopt->sopt_name != MRT_INIT)
369	return EPERM;
370
371    error = 0;
372    switch (sopt->sopt_name) {
373    case MRT_INIT:
374	error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval);
375	if (error)
376	    break;
377	error = ip_mrouter_init(so, optval);
378	break;
379
380    case MRT_DONE:
381	error = ip_mrouter_done();
382	break;
383
384    case MRT_ADD_VIF:
385	error = sooptcopyin(sopt, &vifc, sizeof vifc, sizeof vifc);
386	if (error)
387	    break;
388	error = add_vif(&vifc);
389	break;
390
391    case MRT_DEL_VIF:
392	error = sooptcopyin(sopt, &vifi, sizeof vifi, sizeof vifi);
393	if (error)
394	    break;
395	error = del_vif(vifi);
396	break;
397
398    case MRT_ADD_MFC:
399    case MRT_DEL_MFC:
400	/*
401	 * select data size depending on API version.
402	 */
403	if (sopt->sopt_name == MRT_ADD_MFC &&
404		mrt_api_config & MRT_API_FLAGS_ALL) {
405	    error = sooptcopyin(sopt, &mfc, sizeof(struct mfcctl2),
406				sizeof(struct mfcctl2));
407	} else {
408	    error = sooptcopyin(sopt, &mfc, sizeof(struct mfcctl),
409				sizeof(struct mfcctl));
410	    bzero((caddr_t)&mfc + sizeof(struct mfcctl),
411			sizeof(mfc) - sizeof(struct mfcctl));
412	}
413	if (error)
414	    break;
415	if (sopt->sopt_name == MRT_ADD_MFC)
416	    error = add_mfc(&mfc);
417	else
418	    error = del_mfc(&mfc);
419	break;
420
421    case MRT_ASSERT:
422	error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval);
423	if (error)
424	    break;
425	set_assert(optval);
426	break;
427
428    case MRT_API_CONFIG:
429	error = sooptcopyin(sopt, &i, sizeof i, sizeof i);
430	if (!error)
431	    error = set_api_config(&i);
432	if (!error)
433	    error = sooptcopyout(sopt, &i, sizeof i);
434	break;
435
436    case MRT_ADD_BW_UPCALL:
437    case MRT_DEL_BW_UPCALL:
438	error = sooptcopyin(sopt, &bw_upcall, sizeof bw_upcall,
439				sizeof bw_upcall);
440	if (error)
441	    break;
442	if (sopt->sopt_name == MRT_ADD_BW_UPCALL)
443	    error = add_bw_upcall(&bw_upcall);
444	else
445	    error = del_bw_upcall(&bw_upcall);
446	break;
447
448    default:
449	error = EOPNOTSUPP;
450	break;
451    }
452    return error;
453}
454
455/*
456 * Handle MRT getsockopt commands
457 */
458static int
459X_ip_mrouter_get(struct socket *so, struct sockopt *sopt)
460{
461    int error;
462    static int version = 0x0305; /* !!! why is this here? XXX */
463
464    switch (sopt->sopt_name) {
465    case MRT_VERSION:
466	error = sooptcopyout(sopt, &version, sizeof version);
467	break;
468
469    case MRT_ASSERT:
470	error = sooptcopyout(sopt, &pim_assert, sizeof pim_assert);
471	break;
472
473    case MRT_API_SUPPORT:
474	error = sooptcopyout(sopt, &mrt_api_support, sizeof mrt_api_support);
475	break;
476
477    case MRT_API_CONFIG:
478	error = sooptcopyout(sopt, &mrt_api_config, sizeof mrt_api_config);
479	break;
480
481    default:
482	error = EOPNOTSUPP;
483	break;
484    }
485    return error;
486}
487
488/*
489 * Handle ioctl commands to obtain information from the cache
490 */
491static int
492X_mrt_ioctl(int cmd, caddr_t data)
493{
494    int error = 0;
495
496    switch (cmd) {
497    case (SIOCGETVIFCNT):
498	error = get_vif_cnt((struct sioc_vif_req *)data);
499	break;
500
501    case (SIOCGETSGCNT):
502	error = get_sg_cnt((struct sioc_sg_req *)data);
503	break;
504
505    default:
506	error = EINVAL;
507	break;
508    }
509    return error;
510}
511
512/*
513 * returns the packet, byte, rpf-failure count for the source group provided
514 */
515static int
516get_sg_cnt(struct sioc_sg_req *req)
517{
518    int s;
519    struct mfc *rt;
520
521    s = splnet();
522    rt = mfc_find(req->src.s_addr, req->grp.s_addr);
523    splx(s);
524    if (rt == NULL) {
525	req->pktcnt = req->bytecnt = req->wrong_if = 0xffffffff;
526	return EADDRNOTAVAIL;
527    }
528    req->pktcnt = rt->mfc_pkt_cnt;
529    req->bytecnt = rt->mfc_byte_cnt;
530    req->wrong_if = rt->mfc_wrong_if;
531    return 0;
532}
533
534/*
535 * returns the input and output packet and byte counts on the vif provided
536 */
537static int
538get_vif_cnt(struct sioc_vif_req *req)
539{
540    vifi_t vifi = req->vifi;
541
542    if (vifi >= numvifs)
543	return EINVAL;
544
545    req->icount = viftable[vifi].v_pkt_in;
546    req->ocount = viftable[vifi].v_pkt_out;
547    req->ibytes = viftable[vifi].v_bytes_in;
548    req->obytes = viftable[vifi].v_bytes_out;
549
550    return 0;
551}
552
553/*
554 * Enable multicast routing
555 */
556static int
557ip_mrouter_init(struct socket *so, int version)
558{
559    if (mrtdebug)
560	log(LOG_DEBUG, "ip_mrouter_init: so_type = %d, pr_protocol = %d\n",
561	    so->so_type, so->so_proto->pr_protocol);
562
563    if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_IGMP)
564	return EOPNOTSUPP;
565
566    if (version != 1)
567	return ENOPROTOOPT;
568
569    if (ip_mrouter != NULL)
570	return EADDRINUSE;
571
572    ip_mrouter = so;
573
574    bzero((caddr_t)mfctable, sizeof(mfctable));
575    bzero((caddr_t)nexpire, sizeof(nexpire));
576
577    pim_assert = 0;
578
579    expire_upcalls_ch = timeout(expire_upcalls, NULL, EXPIRE_TIMEOUT);
580
581    bw_upcalls_n = 0;
582    bzero((caddr_t)bw_meter_timers, sizeof(bw_meter_timers));
583    bw_upcalls_ch = timeout(expire_bw_upcalls_send, NULL, BW_UPCALLS_PERIOD);
584    bw_meter_ch = timeout(expire_bw_meter_process, NULL, BW_METER_PERIOD);
585
586    mrt_api_config = 0;
587
588    if (mrtdebug)
589	log(LOG_DEBUG, "ip_mrouter_init\n");
590
591    return 0;
592}
593
594/*
595 * Disable multicast routing
596 */
597static int
598X_ip_mrouter_done(void)
599{
600    vifi_t vifi;
601    int i;
602    struct ifnet *ifp;
603    struct ifreq ifr;
604    struct mfc *rt;
605    struct rtdetq *rte;
606    int s;
607
608    s = splnet();
609
610    /*
611     * For each phyint in use, disable promiscuous reception of all IP
612     * multicasts.
613     */
614    for (vifi = 0; vifi < numvifs; vifi++) {
615	if (viftable[vifi].v_lcl_addr.s_addr != 0 &&
616		!(viftable[vifi].v_flags & (VIFF_TUNNEL | VIFF_REGISTER))) {
617	    struct sockaddr_in *so = (struct sockaddr_in *)&(ifr.ifr_addr);
618
619	    so->sin_len = sizeof(struct sockaddr_in);
620	    so->sin_family = AF_INET;
621	    so->sin_addr.s_addr = INADDR_ANY;
622	    ifp = viftable[vifi].v_ifp;
623	    if_allmulti(ifp, 0);
624	}
625    }
626    bzero((caddr_t)tbftable, sizeof(tbftable));
627    bzero((caddr_t)viftable, sizeof(viftable));
628    numvifs = 0;
629    pim_assert = 0;
630
631    untimeout(expire_upcalls, NULL, expire_upcalls_ch);
632
633    mrt_api_config = 0;
634    bw_upcalls_n = 0;
635    untimeout(expire_bw_upcalls_send, NULL, bw_upcalls_ch);
636    untimeout(expire_bw_meter_process, NULL, bw_meter_ch);
637
638    /*
639     * Free all multicast forwarding cache entries.
640     */
641    for (i = 0; i < MFCTBLSIZ; i++) {
642	for (rt = mfctable[i]; rt != NULL; ) {
643	    struct mfc *nr = rt->mfc_next;
644
645	    for (rte = rt->mfc_stall; rte != NULL; ) {
646		struct rtdetq *n = rte->next;
647
648		m_freem(rte->m);
649		free(rte, M_MRTABLE);
650		rte = n;
651	    }
652	    free_bw_list(rt->mfc_bw_meter);
653	    free(rt, M_MRTABLE);
654	    rt = nr;
655	}
656    }
657
658    bzero((caddr_t)mfctable, sizeof(mfctable));
659
660    bzero(bw_meter_timers, sizeof(bw_meter_timers));
661
662    /*
663     * Reset de-encapsulation cache
664     */
665    last_encap_src = INADDR_ANY;
666    last_encap_vif = NULL;
667#ifdef PIM
668    reg_vif_num = VIFI_INVALID;
669#endif
670
671    if (encap_cookie) {
672	encap_detach(encap_cookie);
673	encap_cookie = NULL;
674    }
675
676    ip_mrouter = NULL;
677
678    splx(s);
679
680    if (mrtdebug)
681	log(LOG_DEBUG, "ip_mrouter_done\n");
682
683    return 0;
684}
685
686/*
687 * Set PIM assert processing global
688 */
689static int
690set_assert(int i)
691{
692    if ((i != 1) && (i != 0))
693	return EINVAL;
694
695    pim_assert = i;
696
697    return 0;
698}
699
700/*
701 * Configure API capabilities
702 */
703int
704set_api_config(uint32_t *apival)
705{
706    int i;
707
708    /*
709     * We can set the API capabilities only if it is the first operation
710     * after MRT_INIT. I.e.:
711     *  - there are no vifs installed
712     *  - pim_assert is not enabled
713     *  - the MFC table is empty
714     */
715    if (numvifs > 0) {
716	*apival = 0;
717	return EPERM;
718    }
719    if (pim_assert) {
720	*apival = 0;
721	return EPERM;
722    }
723    for (i = 0; i < MFCTBLSIZ; i++) {
724	if (mfctable[i] != NULL) {
725	    *apival = 0;
726	    return EPERM;
727	}
728    }
729
730    mrt_api_config = *apival & mrt_api_support;
731    *apival = mrt_api_config;
732
733    return 0;
734}
735
736/*
737 * Decide if a packet is from a tunnelled peer.
738 * Return 0 if not, 64 if so.  XXX yuck.. 64 ???
739 */
740static int
741mroute_encapcheck(const struct mbuf *m, int off, int proto, void *arg)
742{
743    struct ip *ip = mtod(m, struct ip *);
744    int hlen = ip->ip_hl << 2;
745
746    /*
747     * don't claim the packet if it's not to a multicast destination or if
748     * we don't have an encapsulating tunnel with the source.
749     * Note:  This code assumes that the remote site IP address
750     * uniquely identifies the tunnel (i.e., that this site has
751     * at most one tunnel with the remote site).
752     */
753    if (!IN_MULTICAST(ntohl(((struct ip *)((char *)ip+hlen))->ip_dst.s_addr)))
754	return 0;
755    if (ip->ip_src.s_addr != last_encap_src) {
756	struct vif *vifp = viftable;
757	struct vif *vife = vifp + numvifs;
758
759	last_encap_src = ip->ip_src.s_addr;
760	last_encap_vif = NULL;
761	for ( ; vifp < vife; ++vifp)
762	    if (vifp->v_rmt_addr.s_addr == ip->ip_src.s_addr) {
763		if ((vifp->v_flags & (VIFF_TUNNEL|VIFF_SRCRT)) == VIFF_TUNNEL)
764		    last_encap_vif = vifp;
765		break;
766	    }
767    }
768    if (last_encap_vif == NULL) {
769	last_encap_src = INADDR_ANY;
770	return 0;
771    }
772    return 64;
773}
774
775/*
776 * De-encapsulate a packet and feed it back through ip input (this
777 * routine is called whenever IP gets a packet that mroute_encap_func()
778 * claimed).
779 */
780static void
781mroute_encap_input(struct mbuf *m, int off)
782{
783    struct ip *ip = mtod(m, struct ip *);
784    int hlen = ip->ip_hl << 2;
785
786    if (hlen > sizeof(struct ip))
787	ip_stripoptions(m, (struct mbuf *) 0);
788    m->m_data += sizeof(struct ip);
789    m->m_len -= sizeof(struct ip);
790    m->m_pkthdr.len -= sizeof(struct ip);
791
792    m->m_pkthdr.rcvif = last_encap_vif->v_ifp;
793
794    netisr_queue(NETISR_IP, m);
795    /*
796     * normally we would need a "schednetisr(NETISR_IP)"
797     * here but we were called by ip_input and it is going
798     * to loop back & try to dequeue the packet we just
799     * queued as soon as we return so we avoid the
800     * unnecessary software interrrupt.
801     *
802     * XXX
803     * This no longer holds - we may have direct-dispatched the packet,
804     * or there may be a queue processing limit.
805     */
806}
807
808extern struct domain inetdomain;
809static struct protosw mroute_encap_protosw =
810{ SOCK_RAW,	&inetdomain,	IPPROTO_IPV4,	PR_ATOMIC|PR_ADDR,
811  mroute_encap_input,	0,	0,		rip_ctloutput,
812  0,
813  0,		0,		0,		0,
814  &rip_usrreqs
815};
816
817/*
818 * Add a vif to the vif table
819 */
820static int
821add_vif(struct vifctl *vifcp)
822{
823    struct vif *vifp = viftable + vifcp->vifc_vifi;
824    struct sockaddr_in sin = {sizeof sin, AF_INET};
825    struct ifaddr *ifa;
826    struct ifnet *ifp;
827    int error, s;
828    struct tbf *v_tbf = tbftable + vifcp->vifc_vifi;
829
830    if (vifcp->vifc_vifi >= MAXVIFS)
831	return EINVAL;
832    if (vifp->v_lcl_addr.s_addr != INADDR_ANY)
833	return EADDRINUSE;
834    if (vifcp->vifc_lcl_addr.s_addr == INADDR_ANY)
835	return EADDRNOTAVAIL;
836
837    /* Find the interface with an address in AF_INET family */
838#ifdef PIM
839    if (vifcp->vifc_flags & VIFF_REGISTER) {
840	/*
841	 * XXX: Because VIFF_REGISTER does not really need a valid
842	 * local interface (e.g. it could be 127.0.0.2), we don't
843	 * check its address.
844	 */
845	ifp = NULL;
846    } else
847#endif
848    {
849	sin.sin_addr = vifcp->vifc_lcl_addr;
850	ifa = ifa_ifwithaddr((struct sockaddr *)&sin);
851	if (ifa == NULL)
852	    return EADDRNOTAVAIL;
853	ifp = ifa->ifa_ifp;
854    }
855
856    if (vifcp->vifc_flags & VIFF_TUNNEL) {
857	if ((vifcp->vifc_flags & VIFF_SRCRT) == 0) {
858	    /*
859	     * An encapsulating tunnel is wanted.  Tell
860	     * mroute_encap_input() to start paying attention
861	     * to encapsulated packets.
862	     */
863	    if (encap_cookie == NULL) {
864		encap_cookie = encap_attach_func(AF_INET, IPPROTO_IPV4,
865				mroute_encapcheck,
866				(struct protosw *)&mroute_encap_protosw, NULL);
867
868		if (encap_cookie == NULL) {
869		    printf("ip_mroute: unable to attach encap\n");
870		    return EIO;	/* XXX */
871		}
872		for (s = 0; s < MAXVIFS; ++s) {
873		    multicast_decap_if[s].if_name = "mdecap";
874		    multicast_decap_if[s].if_unit = s;
875		}
876	    }
877	    /*
878	     * Set interface to fake encapsulator interface
879	     */
880	    ifp = &multicast_decap_if[vifcp->vifc_vifi];
881	    /*
882	     * Prepare cached route entry
883	     */
884	    bzero(&vifp->v_route, sizeof(vifp->v_route));
885	} else {
886	    log(LOG_ERR, "source routed tunnels not supported\n");
887	    return EOPNOTSUPP;
888	}
889#ifdef PIM
890    } else if (vifcp->vifc_flags & VIFF_REGISTER) {
891	ifp = &multicast_register_if;
892	if (mrtdebug)
893	    log(LOG_DEBUG, "Adding a register vif, ifp: %p\n",
894		    (void *)&multicast_register_if);
895	if (reg_vif_num == VIFI_INVALID) {
896	    multicast_register_if.if_name = "register_vif";
897	    multicast_register_if.if_unit = 0;
898	    multicast_register_if.if_flags = IFF_LOOPBACK;
899	    bzero(&vifp->v_route, sizeof(vifp->v_route));
900	    reg_vif_num = vifcp->vifc_vifi;
901	}
902#endif
903    } else {		/* Make sure the interface supports multicast */
904	if ((ifp->if_flags & IFF_MULTICAST) == 0)
905	    return EOPNOTSUPP;
906
907	/* Enable promiscuous reception of all IP multicasts from the if */
908	s = splnet();
909	error = if_allmulti(ifp, 1);
910	splx(s);
911	if (error)
912	    return error;
913    }
914
915    s = splnet();
916    /* define parameters for the tbf structure */
917    vifp->v_tbf = v_tbf;
918    GET_TIME(vifp->v_tbf->tbf_last_pkt_t);
919    vifp->v_tbf->tbf_n_tok = 0;
920    vifp->v_tbf->tbf_q_len = 0;
921    vifp->v_tbf->tbf_max_q_len = MAXQSIZE;
922    vifp->v_tbf->tbf_q = vifp->v_tbf->tbf_t = NULL;
923
924    vifp->v_flags     = vifcp->vifc_flags;
925    vifp->v_threshold = vifcp->vifc_threshold;
926    vifp->v_lcl_addr  = vifcp->vifc_lcl_addr;
927    vifp->v_rmt_addr  = vifcp->vifc_rmt_addr;
928    vifp->v_ifp       = ifp;
929    /* scaling up here allows division by 1024 in critical code */
930    vifp->v_rate_limit= vifcp->vifc_rate_limit * 1024 / 1000;
931    vifp->v_rsvp_on   = 0;
932    vifp->v_rsvpd     = NULL;
933    /* initialize per vif pkt counters */
934    vifp->v_pkt_in    = 0;
935    vifp->v_pkt_out   = 0;
936    vifp->v_bytes_in  = 0;
937    vifp->v_bytes_out = 0;
938    splx(s);
939
940    /* Adjust numvifs up if the vifi is higher than numvifs */
941    if (numvifs <= vifcp->vifc_vifi) numvifs = vifcp->vifc_vifi + 1;
942
943    if (mrtdebug)
944	log(LOG_DEBUG, "add_vif #%d, lcladdr %lx, %s %lx, thresh %x, rate %d\n",
945	    vifcp->vifc_vifi,
946	    (u_long)ntohl(vifcp->vifc_lcl_addr.s_addr),
947	    (vifcp->vifc_flags & VIFF_TUNNEL) ? "rmtaddr" : "mask",
948	    (u_long)ntohl(vifcp->vifc_rmt_addr.s_addr),
949	    vifcp->vifc_threshold,
950	    vifcp->vifc_rate_limit);
951
952    return 0;
953}
954
955/*
956 * Delete a vif from the vif table
957 */
958static int
959del_vif(vifi_t vifi)
960{
961    struct vif *vifp;
962    int s;
963
964    if (vifi >= numvifs)
965	return EINVAL;
966    vifp = &viftable[vifi];
967    if (vifp->v_lcl_addr.s_addr == INADDR_ANY)
968	return EADDRNOTAVAIL;
969
970    s = splnet();
971
972    if (!(vifp->v_flags & (VIFF_TUNNEL | VIFF_REGISTER)))
973	if_allmulti(vifp->v_ifp, 0);
974
975    if (vifp == last_encap_vif) {
976	last_encap_vif = NULL;
977	last_encap_src = INADDR_ANY;
978    }
979
980    /*
981     * Free packets queued at the interface
982     */
983    while (vifp->v_tbf->tbf_q) {
984	struct mbuf *m = vifp->v_tbf->tbf_q;
985
986	vifp->v_tbf->tbf_q = m->m_act;
987	m_freem(m);
988    }
989
990#ifdef PIM
991    if (vifp->v_flags & VIFF_REGISTER)
992	reg_vif_num = VIFI_INVALID;
993#endif
994
995    bzero((caddr_t)vifp->v_tbf, sizeof(*(vifp->v_tbf)));
996    bzero((caddr_t)vifp, sizeof (*vifp));
997
998    if (mrtdebug)
999	log(LOG_DEBUG, "del_vif %d, numvifs %d\n", vifi, numvifs);
1000
1001    /* Adjust numvifs down */
1002    for (vifi = numvifs; vifi > 0; vifi--)
1003	if (viftable[vifi-1].v_lcl_addr.s_addr != INADDR_ANY)
1004	    break;
1005    numvifs = vifi;
1006
1007    splx(s);
1008
1009    return 0;
1010}
1011
1012/*
1013 * update an mfc entry without resetting counters and S,G addresses.
1014 */
1015static void
1016update_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp)
1017{
1018    int i;
1019
1020    rt->mfc_parent = mfccp->mfcc_parent;
1021    for (i = 0; i < numvifs; i++) {
1022	rt->mfc_ttls[i] = mfccp->mfcc_ttls[i];
1023	rt->mfc_flags[i] = mfccp->mfcc_flags[i] & mrt_api_config &
1024	    MRT_MFC_FLAGS_ALL;
1025    }
1026    /* set the RP address */
1027    if (mrt_api_config & MRT_MFC_RP)
1028	rt->mfc_rp = mfccp->mfcc_rp;
1029    else
1030	rt->mfc_rp.s_addr = INADDR_ANY;
1031}
1032
1033/*
1034 * fully initialize an mfc entry from the parameter.
1035 */
1036static void
1037init_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp)
1038{
1039    rt->mfc_origin     = mfccp->mfcc_origin;
1040    rt->mfc_mcastgrp   = mfccp->mfcc_mcastgrp;
1041
1042    update_mfc_params(rt, mfccp);
1043
1044    /* initialize pkt counters per src-grp */
1045    rt->mfc_pkt_cnt    = 0;
1046    rt->mfc_byte_cnt   = 0;
1047    rt->mfc_wrong_if   = 0;
1048    rt->mfc_last_assert.tv_sec = rt->mfc_last_assert.tv_usec = 0;
1049}
1050
1051
1052/*
1053 * Add an mfc entry
1054 */
1055static int
1056add_mfc(struct mfcctl2 *mfccp)
1057{
1058    struct mfc *rt;
1059    u_long hash;
1060    struct rtdetq *rte;
1061    u_short nstl;
1062    int s;
1063
1064    rt = mfc_find(mfccp->mfcc_origin.s_addr, mfccp->mfcc_mcastgrp.s_addr);
1065
1066    /* If an entry already exists, just update the fields */
1067    if (rt) {
1068	if (mrtdebug & DEBUG_MFC)
1069	    log(LOG_DEBUG,"add_mfc update o %lx g %lx p %x\n",
1070		(u_long)ntohl(mfccp->mfcc_origin.s_addr),
1071		(u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr),
1072		mfccp->mfcc_parent);
1073
1074	s = splnet();
1075	update_mfc_params(rt, mfccp);
1076	splx(s);
1077	return 0;
1078    }
1079
1080    /*
1081     * Find the entry for which the upcall was made and update
1082     */
1083    s = splnet();
1084    hash = MFCHASH(mfccp->mfcc_origin.s_addr, mfccp->mfcc_mcastgrp.s_addr);
1085    for (rt = mfctable[hash], nstl = 0; rt; rt = rt->mfc_next) {
1086
1087	if ((rt->mfc_origin.s_addr == mfccp->mfcc_origin.s_addr) &&
1088		(rt->mfc_mcastgrp.s_addr == mfccp->mfcc_mcastgrp.s_addr) &&
1089		(rt->mfc_stall != NULL)) {
1090
1091	    if (nstl++)
1092		log(LOG_ERR, "add_mfc %s o %lx g %lx p %x dbx %p\n",
1093		    "multiple kernel entries",
1094		    (u_long)ntohl(mfccp->mfcc_origin.s_addr),
1095		    (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr),
1096		    mfccp->mfcc_parent, (void *)rt->mfc_stall);
1097
1098	    if (mrtdebug & DEBUG_MFC)
1099		log(LOG_DEBUG,"add_mfc o %lx g %lx p %x dbg %p\n",
1100		    (u_long)ntohl(mfccp->mfcc_origin.s_addr),
1101		    (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr),
1102		    mfccp->mfcc_parent, (void *)rt->mfc_stall);
1103
1104	    init_mfc_params(rt, mfccp);
1105
1106	    rt->mfc_expire = 0;	/* Don't clean this guy up */
1107	    nexpire[hash]--;
1108
1109	    /* free packets Qed at the end of this entry */
1110	    for (rte = rt->mfc_stall; rte != NULL; ) {
1111		struct rtdetq *n = rte->next;
1112
1113		ip_mdq(rte->m, rte->ifp, rt, -1);
1114		m_freem(rte->m);
1115		free(rte, M_MRTABLE);
1116		rte = n;
1117	    }
1118	    rt->mfc_stall = NULL;
1119	}
1120    }
1121
1122    /*
1123     * It is possible that an entry is being inserted without an upcall
1124     */
1125    if (nstl == 0) {
1126	if (mrtdebug & DEBUG_MFC)
1127	    log(LOG_DEBUG,"add_mfc no upcall h %lu o %lx g %lx p %x\n",
1128		hash, (u_long)ntohl(mfccp->mfcc_origin.s_addr),
1129		(u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr),
1130		mfccp->mfcc_parent);
1131
1132	for (rt = mfctable[hash]; rt != NULL; rt = rt->mfc_next) {
1133	    if ((rt->mfc_origin.s_addr == mfccp->mfcc_origin.s_addr) &&
1134		    (rt->mfc_mcastgrp.s_addr == mfccp->mfcc_mcastgrp.s_addr)) {
1135		init_mfc_params(rt, mfccp);
1136		if (rt->mfc_expire)
1137		    nexpire[hash]--;
1138		rt->mfc_expire = 0;
1139		break; /* XXX */
1140	    }
1141	}
1142	if (rt == NULL) {		/* no upcall, so make a new entry */
1143	    rt = (struct mfc *)malloc(sizeof(*rt), M_MRTABLE, M_NOWAIT);
1144	    if (rt == NULL) {
1145		splx(s);
1146		return ENOBUFS;
1147	    }
1148
1149	    init_mfc_params(rt, mfccp);
1150	    rt->mfc_expire     = 0;
1151	    rt->mfc_stall      = NULL;
1152
1153	    rt->mfc_bw_meter = NULL;
1154	    /* insert new entry at head of hash chain */
1155	    rt->mfc_next = mfctable[hash];
1156	    mfctable[hash] = rt;
1157	}
1158    }
1159    splx(s);
1160    return 0;
1161}
1162
1163/*
1164 * Delete an mfc entry
1165 */
1166static int
1167del_mfc(struct mfcctl2 *mfccp)
1168{
1169    struct in_addr 	origin;
1170    struct in_addr 	mcastgrp;
1171    struct mfc 		*rt;
1172    struct mfc	 	**nptr;
1173    u_long 		hash;
1174    int s;
1175    struct bw_meter	*list;
1176
1177    origin = mfccp->mfcc_origin;
1178    mcastgrp = mfccp->mfcc_mcastgrp;
1179
1180    if (mrtdebug & DEBUG_MFC)
1181	log(LOG_DEBUG,"del_mfc orig %lx mcastgrp %lx\n",
1182	    (u_long)ntohl(origin.s_addr), (u_long)ntohl(mcastgrp.s_addr));
1183
1184    s = splnet();
1185
1186    hash = MFCHASH(origin.s_addr, mcastgrp.s_addr);
1187    for (nptr = &mfctable[hash]; (rt = *nptr) != NULL; nptr = &rt->mfc_next)
1188	if (origin.s_addr == rt->mfc_origin.s_addr &&
1189		mcastgrp.s_addr == rt->mfc_mcastgrp.s_addr &&
1190		rt->mfc_stall == NULL)
1191	    break;
1192    if (rt == NULL) {
1193	splx(s);
1194	return EADDRNOTAVAIL;
1195    }
1196
1197    *nptr = rt->mfc_next;
1198
1199    /*
1200     * free the bw_meter entries
1201     */
1202    list = rt->mfc_bw_meter;
1203    rt->mfc_bw_meter = NULL;
1204
1205    free(rt, M_MRTABLE);
1206
1207    splx(s);
1208
1209    free_bw_list(list);
1210
1211    return 0;
1212}
1213
1214/*
1215 * Send a message to mrouted on the multicast routing socket
1216 */
1217static int
1218socket_send(struct socket *s, struct mbuf *mm, struct sockaddr_in *src)
1219{
1220    if (s) {
1221	if (sbappendaddr(&s->so_rcv, (struct sockaddr *)src, mm, NULL) != 0) {
1222	    sorwakeup(s);
1223	    return 0;
1224	}
1225    }
1226    m_freem(mm);
1227    return -1;
1228}
1229
1230/*
1231 * IP multicast forwarding function. This function assumes that the packet
1232 * pointed to by "ip" has arrived on (or is about to be sent to) the interface
1233 * pointed to by "ifp", and the packet is to be relayed to other networks
1234 * that have members of the packet's destination IP multicast group.
1235 *
1236 * The packet is returned unscathed to the caller, unless it is
1237 * erroneous, in which case a non-zero return value tells the caller to
1238 * discard it.
1239 */
1240
1241#define TUNNEL_LEN  12  /* # bytes of IP option for tunnel encapsulation  */
1242
1243static int
1244X_ip_mforward(struct ip *ip, struct ifnet *ifp, struct mbuf *m,
1245    struct ip_moptions *imo)
1246{
1247    struct mfc *rt;
1248    int s;
1249    vifi_t vifi;
1250
1251    if (mrtdebug & DEBUG_FORWARD)
1252	log(LOG_DEBUG, "ip_mforward: src %lx, dst %lx, ifp %p\n",
1253	    (u_long)ntohl(ip->ip_src.s_addr), (u_long)ntohl(ip->ip_dst.s_addr),
1254	    (void *)ifp);
1255
1256    if (ip->ip_hl < (sizeof(struct ip) + TUNNEL_LEN) >> 2 ||
1257		((u_char *)(ip + 1))[1] != IPOPT_LSRR ) {
1258	/*
1259	 * Packet arrived via a physical interface or
1260	 * an encapsulated tunnel or a register_vif.
1261	 */
1262    } else {
1263	/*
1264	 * Packet arrived through a source-route tunnel.
1265	 * Source-route tunnels are no longer supported.
1266	 */
1267	static int last_log;
1268	if (last_log != time_second) {
1269	    last_log = time_second;
1270	    log(LOG_ERR,
1271		"ip_mforward: received source-routed packet from %lx\n",
1272		(u_long)ntohl(ip->ip_src.s_addr));
1273	}
1274	return 1;
1275    }
1276
1277    if (imo && ((vifi = imo->imo_multicast_vif) < numvifs)) {
1278	if (ip->ip_ttl < 255)
1279	    ip->ip_ttl++;	/* compensate for -1 in *_send routines */
1280	if (rsvpdebug && ip->ip_p == IPPROTO_RSVP) {
1281	    struct vif *vifp = viftable + vifi;
1282
1283	    printf("Sending IPPROTO_RSVP from %lx to %lx on vif %d (%s%s%d)\n",
1284		(long)ntohl(ip->ip_src.s_addr), (long)ntohl(ip->ip_dst.s_addr),
1285		vifi,
1286		(vifp->v_flags & VIFF_TUNNEL) ? "tunnel on " : "",
1287		vifp->v_ifp->if_name, vifp->v_ifp->if_unit);
1288	}
1289	return ip_mdq(m, ifp, NULL, vifi);
1290    }
1291    if (rsvpdebug && ip->ip_p == IPPROTO_RSVP) {
1292	printf("Warning: IPPROTO_RSVP from %lx to %lx without vif option\n",
1293	    (long)ntohl(ip->ip_src.s_addr), (long)ntohl(ip->ip_dst.s_addr));
1294	if (!imo)
1295	    printf("In fact, no options were specified at all\n");
1296    }
1297
1298    /*
1299     * Don't forward a packet with time-to-live of zero or one,
1300     * or a packet destined to a local-only group.
1301     */
1302    if (ip->ip_ttl <= 1 || ntohl(ip->ip_dst.s_addr) <= INADDR_MAX_LOCAL_GROUP)
1303	return 0;
1304
1305    /*
1306     * Determine forwarding vifs from the forwarding cache table
1307     */
1308    s = splnet();
1309    ++mrtstat.mrts_mfc_lookups;
1310    rt = mfc_find(ip->ip_src.s_addr, ip->ip_dst.s_addr);
1311
1312    /* Entry exists, so forward if necessary */
1313    if (rt != NULL) {
1314	splx(s);
1315	return ip_mdq(m, ifp, rt, -1);
1316    } else {
1317	/*
1318	 * If we don't have a route for packet's origin,
1319	 * Make a copy of the packet & send message to routing daemon
1320	 */
1321
1322	struct mbuf *mb0;
1323	struct rtdetq *rte;
1324	u_long hash;
1325	int hlen = ip->ip_hl << 2;
1326
1327	++mrtstat.mrts_mfc_misses;
1328
1329	mrtstat.mrts_no_route++;
1330	if (mrtdebug & (DEBUG_FORWARD | DEBUG_MFC))
1331	    log(LOG_DEBUG, "ip_mforward: no rte s %lx g %lx\n",
1332		(u_long)ntohl(ip->ip_src.s_addr),
1333		(u_long)ntohl(ip->ip_dst.s_addr));
1334
1335	/*
1336	 * Allocate mbufs early so that we don't do extra work if we are
1337	 * just going to fail anyway.  Make sure to pullup the header so
1338	 * that other people can't step on it.
1339	 */
1340	rte = (struct rtdetq *)malloc((sizeof *rte), M_MRTABLE, M_NOWAIT);
1341	if (rte == NULL) {
1342	    splx(s);
1343	    return ENOBUFS;
1344	}
1345	mb0 = m_copypacket(m, M_DONTWAIT);
1346	if (mb0 && (M_HASCL(mb0) || mb0->m_len < hlen))
1347	    mb0 = m_pullup(mb0, hlen);
1348	if (mb0 == NULL) {
1349	    free(rte, M_MRTABLE);
1350	    splx(s);
1351	    return ENOBUFS;
1352	}
1353
1354	/* is there an upcall waiting for this flow ? */
1355	hash = MFCHASH(ip->ip_src.s_addr, ip->ip_dst.s_addr);
1356	for (rt = mfctable[hash]; rt; rt = rt->mfc_next) {
1357	    if ((ip->ip_src.s_addr == rt->mfc_origin.s_addr) &&
1358		    (ip->ip_dst.s_addr == rt->mfc_mcastgrp.s_addr) &&
1359		    (rt->mfc_stall != NULL))
1360		break;
1361	}
1362
1363	if (rt == NULL) {
1364	    int i;
1365	    struct igmpmsg *im;
1366	    struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
1367	    struct mbuf *mm;
1368
1369	    /*
1370	     * Locate the vifi for the incoming interface for this packet.
1371	     * If none found, drop packet.
1372	     */
1373	    for (vifi=0; vifi < numvifs && viftable[vifi].v_ifp != ifp; vifi++)
1374		;
1375	    if (vifi >= numvifs)	/* vif not found, drop packet */
1376		goto non_fatal;
1377
1378	    /* no upcall, so make a new entry */
1379	    rt = (struct mfc *)malloc(sizeof(*rt), M_MRTABLE, M_NOWAIT);
1380	    if (rt == NULL)
1381		goto fail;
1382	    /* Make a copy of the header to send to the user level process */
1383	    mm = m_copy(mb0, 0, hlen);
1384	    if (mm == NULL)
1385		goto fail1;
1386
1387	    /*
1388	     * Send message to routing daemon to install
1389	     * a route into the kernel table
1390	     */
1391
1392	    im = mtod(mm, struct igmpmsg *);
1393	    im->im_msgtype = IGMPMSG_NOCACHE;
1394	    im->im_mbz = 0;
1395	    im->im_vif = vifi;
1396
1397	    mrtstat.mrts_upcalls++;
1398
1399	    k_igmpsrc.sin_addr = ip->ip_src;
1400	    if (socket_send(ip_mrouter, mm, &k_igmpsrc) < 0) {
1401		log(LOG_WARNING, "ip_mforward: ip_mrouter socket queue full\n");
1402		++mrtstat.mrts_upq_sockfull;
1403fail1:
1404		free(rt, M_MRTABLE);
1405fail:
1406		free(rte, M_MRTABLE);
1407		m_freem(mb0);
1408		splx(s);
1409		return ENOBUFS;
1410	    }
1411
1412	    /* insert new entry at head of hash chain */
1413	    rt->mfc_origin.s_addr     = ip->ip_src.s_addr;
1414	    rt->mfc_mcastgrp.s_addr   = ip->ip_dst.s_addr;
1415	    rt->mfc_expire	      = UPCALL_EXPIRE;
1416	    nexpire[hash]++;
1417	    for (i = 0; i < numvifs; i++) {
1418		rt->mfc_ttls[i] = 0;
1419		rt->mfc_flags[i] = 0;
1420	    }
1421	    rt->mfc_parent = -1;
1422
1423	    rt->mfc_rp.s_addr = INADDR_ANY; /* clear the RP address */
1424
1425	    rt->mfc_bw_meter = NULL;
1426
1427	    /* link into table */
1428	    rt->mfc_next   = mfctable[hash];
1429	    mfctable[hash] = rt;
1430	    rt->mfc_stall = rte;
1431
1432	} else {
1433	    /* determine if q has overflowed */
1434	    int npkts = 0;
1435	    struct rtdetq **p;
1436
1437	    /*
1438	     * XXX ouch! we need to append to the list, but we
1439	     * only have a pointer to the front, so we have to
1440	     * scan the entire list every time.
1441	     */
1442	    for (p = &rt->mfc_stall; *p != NULL; p = &(*p)->next)
1443		npkts++;
1444
1445	    if (npkts > MAX_UPQ) {
1446		mrtstat.mrts_upq_ovflw++;
1447non_fatal:
1448		free(rte, M_MRTABLE);
1449		m_freem(mb0);
1450		splx(s);
1451		return 0;
1452	    }
1453
1454	    /* Add this entry to the end of the queue */
1455	    *p = rte;
1456	}
1457
1458	rte->m 			= mb0;
1459	rte->ifp 		= ifp;
1460	rte->next		= NULL;
1461
1462	splx(s);
1463
1464	return 0;
1465    }
1466}
1467
1468/*
1469 * Clean up the cache entry if upcall is not serviced
1470 */
1471static void
1472expire_upcalls(void *unused)
1473{
1474    struct rtdetq *rte;
1475    struct mfc *mfc, **nptr;
1476    int i;
1477    int s;
1478
1479    s = splnet();
1480    for (i = 0; i < MFCTBLSIZ; i++) {
1481	if (nexpire[i] == 0)
1482	    continue;
1483	nptr = &mfctable[i];
1484	for (mfc = *nptr; mfc != NULL; mfc = *nptr) {
1485	    /*
1486	     * Skip real cache entries
1487	     * Make sure it wasn't marked to not expire (shouldn't happen)
1488	     * If it expires now
1489	     */
1490	    if (mfc->mfc_stall != NULL && mfc->mfc_expire != 0 &&
1491		    --mfc->mfc_expire == 0) {
1492		if (mrtdebug & DEBUG_EXPIRE)
1493		    log(LOG_DEBUG, "expire_upcalls: expiring (%lx %lx)\n",
1494			(u_long)ntohl(mfc->mfc_origin.s_addr),
1495			(u_long)ntohl(mfc->mfc_mcastgrp.s_addr));
1496		/*
1497		 * drop all the packets
1498		 * free the mbuf with the pkt, if, timing info
1499		 */
1500		for (rte = mfc->mfc_stall; rte; ) {
1501		    struct rtdetq *n = rte->next;
1502
1503		    m_freem(rte->m);
1504		    free(rte, M_MRTABLE);
1505		    rte = n;
1506		}
1507		++mrtstat.mrts_cache_cleanups;
1508		nexpire[i]--;
1509
1510		/*
1511		 * free the bw_meter entries
1512		 */
1513		while (mfc->mfc_bw_meter != NULL) {
1514		    struct bw_meter *x = mfc->mfc_bw_meter;
1515
1516		    mfc->mfc_bw_meter = x->bm_mfc_next;
1517		    free(x, M_BWMETER);
1518		}
1519
1520		*nptr = mfc->mfc_next;
1521		free(mfc, M_MRTABLE);
1522	    } else {
1523		nptr = &mfc->mfc_next;
1524	    }
1525	}
1526    }
1527    splx(s);
1528    expire_upcalls_ch = timeout(expire_upcalls, NULL, EXPIRE_TIMEOUT);
1529}
1530
1531/*
1532 * Packet forwarding routine once entry in the cache is made
1533 */
1534static int
1535ip_mdq(struct mbuf *m, struct ifnet *ifp, struct mfc *rt, vifi_t xmt_vif)
1536{
1537    struct ip  *ip = mtod(m, struct ip *);
1538    vifi_t vifi;
1539    int plen = ip->ip_len;
1540
1541/*
1542 * Macro to send packet on vif.  Since RSVP packets don't get counted on
1543 * input, they shouldn't get counted on output, so statistics keeping is
1544 * separate.
1545 */
1546#define MC_SEND(ip,vifp,m) {				\
1547		if ((vifp)->v_flags & VIFF_TUNNEL)	\
1548		    encap_send((ip), (vifp), (m));	\
1549		else					\
1550		    phyint_send((ip), (vifp), (m));	\
1551}
1552
1553    /*
1554     * If xmt_vif is not -1, send on only the requested vif.
1555     *
1556     * (since vifi_t is u_short, -1 becomes MAXUSHORT, which > numvifs.)
1557     */
1558    if (xmt_vif < numvifs) {
1559#ifdef PIM
1560	if (viftable[xmt_vif].v_flags & VIFF_REGISTER)
1561	    pim_register_send(ip, viftable + xmt_vif, m, rt);
1562        else
1563#endif
1564	MC_SEND(ip, viftable + xmt_vif, m);
1565	return 1;
1566    }
1567
1568    /*
1569     * Don't forward if it didn't arrive from the parent vif for its origin.
1570     */
1571    vifi = rt->mfc_parent;
1572    if ((vifi >= numvifs) || (viftable[vifi].v_ifp != ifp)) {
1573	/* came in the wrong interface */
1574	if (mrtdebug & DEBUG_FORWARD)
1575	    log(LOG_DEBUG, "wrong if: ifp %p vifi %d vififp %p\n",
1576		(void *)ifp, vifi, (void *)viftable[vifi].v_ifp);
1577	++mrtstat.mrts_wrong_if;
1578	++rt->mfc_wrong_if;
1579	/*
1580	 * If we are doing PIM assert processing, send a message
1581	 * to the routing daemon.
1582	 *
1583	 * XXX: A PIM-SM router needs the WRONGVIF detection so it
1584	 * can complete the SPT switch, regardless of the type
1585	 * of the iif (broadcast media, GRE tunnel, etc).
1586	 */
1587	if (pim_assert && (vifi < numvifs) && viftable[vifi].v_ifp) {
1588	    struct timeval now;
1589	    u_long delta;
1590
1591#ifdef PIM
1592	    if (ifp == &multicast_register_if)
1593		pimstat.pims_rcv_registers_wrongiif++;
1594#endif
1595
1596	    /* Get vifi for the incoming packet */
1597	    for (vifi=0; vifi < numvifs && viftable[vifi].v_ifp != ifp; vifi++)
1598		;
1599	    if (vifi >= numvifs)
1600		return 0;	/* The iif is not found: ignore the packet. */
1601
1602	    if (rt->mfc_flags[vifi] & MRT_MFC_FLAGS_DISABLE_WRONGVIF)
1603		return 0;	/* WRONGVIF disabled: ignore the packet */
1604
1605	    GET_TIME(now);
1606
1607	    TV_DELTA(rt->mfc_last_assert, now, delta);
1608
1609	    if (delta > ASSERT_MSG_TIME) {
1610		struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
1611		struct igmpmsg *im;
1612		int hlen = ip->ip_hl << 2;
1613		struct mbuf *mm = m_copy(m, 0, hlen);
1614
1615		if (mm && (M_HASCL(mm) || mm->m_len < hlen))
1616		    mm = m_pullup(mm, hlen);
1617		if (mm == NULL)
1618		    return ENOBUFS;
1619
1620		rt->mfc_last_assert = now;
1621
1622		im = mtod(mm, struct igmpmsg *);
1623		im->im_msgtype	= IGMPMSG_WRONGVIF;
1624		im->im_mbz		= 0;
1625		im->im_vif		= vifi;
1626
1627		mrtstat.mrts_upcalls++;
1628
1629		k_igmpsrc.sin_addr = im->im_src;
1630		if (socket_send(ip_mrouter, mm, &k_igmpsrc) < 0) {
1631		    log(LOG_WARNING,
1632			"ip_mforward: ip_mrouter socket queue full\n");
1633		    ++mrtstat.mrts_upq_sockfull;
1634		    return ENOBUFS;
1635		}
1636	    }
1637	}
1638	return 0;
1639    }
1640
1641    /* If I sourced this packet, it counts as output, else it was input. */
1642    if (ip->ip_src.s_addr == viftable[vifi].v_lcl_addr.s_addr) {
1643	viftable[vifi].v_pkt_out++;
1644	viftable[vifi].v_bytes_out += plen;
1645    } else {
1646	viftable[vifi].v_pkt_in++;
1647	viftable[vifi].v_bytes_in += plen;
1648    }
1649    rt->mfc_pkt_cnt++;
1650    rt->mfc_byte_cnt += plen;
1651
1652    /*
1653     * For each vif, decide if a copy of the packet should be forwarded.
1654     * Forward if:
1655     *		- the ttl exceeds the vif's threshold
1656     *		- there are group members downstream on interface
1657     */
1658    for (vifi = 0; vifi < numvifs; vifi++)
1659	if ((rt->mfc_ttls[vifi] > 0) && (ip->ip_ttl > rt->mfc_ttls[vifi])) {
1660	    viftable[vifi].v_pkt_out++;
1661	    viftable[vifi].v_bytes_out += plen;
1662#ifdef PIM
1663	    if (viftable[vifi].v_flags & VIFF_REGISTER)
1664		pim_register_send(ip, viftable + vifi, m, rt);
1665	    else
1666#endif
1667	    MC_SEND(ip, viftable+vifi, m);
1668	}
1669
1670    /*
1671     * Perform upcall-related bw measuring.
1672     */
1673    if (rt->mfc_bw_meter != NULL) {
1674	struct bw_meter *x;
1675	struct timeval now;
1676
1677	GET_TIME(now);
1678	for (x = rt->mfc_bw_meter; x != NULL; x = x->bm_mfc_next)
1679	    bw_meter_receive_packet(x, plen, &now);
1680    }
1681
1682    return 0;
1683}
1684
1685/*
1686 * check if a vif number is legal/ok. This is used by ip_output.
1687 */
1688static int
1689X_legal_vif_num(int vif)
1690{
1691    return (vif >= 0 && vif < numvifs);
1692}
1693
1694/*
1695 * Return the local address used by this vif
1696 */
1697static u_long
1698X_ip_mcast_src(int vifi)
1699{
1700    if (vifi >= 0 && vifi < numvifs)
1701	return viftable[vifi].v_lcl_addr.s_addr;
1702    else
1703	return INADDR_ANY;
1704}
1705
1706static void
1707phyint_send(struct ip *ip, struct vif *vifp, struct mbuf *m)
1708{
1709    struct mbuf *mb_copy;
1710    int hlen = ip->ip_hl << 2;
1711
1712    /*
1713     * Make a new reference to the packet; make sure that
1714     * the IP header is actually copied, not just referenced,
1715     * so that ip_output() only scribbles on the copy.
1716     */
1717    mb_copy = m_copypacket(m, M_DONTWAIT);
1718    if (mb_copy && (M_HASCL(mb_copy) || mb_copy->m_len < hlen))
1719	mb_copy = m_pullup(mb_copy, hlen);
1720    if (mb_copy == NULL)
1721	return;
1722
1723    if (vifp->v_rate_limit == 0)
1724	tbf_send_packet(vifp, mb_copy);
1725    else
1726	tbf_control(vifp, mb_copy, mtod(mb_copy, struct ip *), ip->ip_len);
1727}
1728
1729static void
1730encap_send(struct ip *ip, struct vif *vifp, struct mbuf *m)
1731{
1732    struct mbuf *mb_copy;
1733    struct ip *ip_copy;
1734    int i, len = ip->ip_len;
1735
1736    /* Take care of delayed checksums */
1737    if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
1738	in_delayed_cksum(m);
1739	m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
1740    }
1741
1742    /*
1743     * copy the old packet & pullup its IP header into the
1744     * new mbuf so we can modify it.  Try to fill the new
1745     * mbuf since if we don't the ethernet driver will.
1746     */
1747    MGETHDR(mb_copy, M_DONTWAIT, MT_HEADER);
1748    if (mb_copy == NULL)
1749	return;
1750#ifdef MAC
1751    mac_create_mbuf_multicast_encap(m, vifp->v_ifp, mb_copy);
1752#endif
1753    mb_copy->m_data += max_linkhdr;
1754    mb_copy->m_len = sizeof(multicast_encap_iphdr);
1755
1756    if ((mb_copy->m_next = m_copypacket(m, M_DONTWAIT)) == NULL) {
1757	m_freem(mb_copy);
1758	return;
1759    }
1760    i = MHLEN - M_LEADINGSPACE(mb_copy);
1761    if (i > len)
1762	i = len;
1763    mb_copy = m_pullup(mb_copy, i);
1764    if (mb_copy == NULL)
1765	return;
1766    mb_copy->m_pkthdr.len = len + sizeof(multicast_encap_iphdr);
1767
1768    /*
1769     * fill in the encapsulating IP header.
1770     */
1771    ip_copy = mtod(mb_copy, struct ip *);
1772    *ip_copy = multicast_encap_iphdr;
1773#ifdef RANDOM_IP_ID
1774    ip_copy->ip_id = ip_randomid();
1775#else
1776    ip_copy->ip_id = htons(ip_id++);
1777#endif
1778    ip_copy->ip_len += len;
1779    ip_copy->ip_src = vifp->v_lcl_addr;
1780    ip_copy->ip_dst = vifp->v_rmt_addr;
1781
1782    /*
1783     * turn the encapsulated IP header back into a valid one.
1784     */
1785    ip = (struct ip *)((caddr_t)ip_copy + sizeof(multicast_encap_iphdr));
1786    --ip->ip_ttl;
1787    ip->ip_len = htons(ip->ip_len);
1788    ip->ip_off = htons(ip->ip_off);
1789    ip->ip_sum = 0;
1790    mb_copy->m_data += sizeof(multicast_encap_iphdr);
1791    ip->ip_sum = in_cksum(mb_copy, ip->ip_hl << 2);
1792    mb_copy->m_data -= sizeof(multicast_encap_iphdr);
1793
1794    if (vifp->v_rate_limit == 0)
1795	tbf_send_packet(vifp, mb_copy);
1796    else
1797	tbf_control(vifp, mb_copy, ip, ip_copy->ip_len);
1798}
1799
1800/*
1801 * Token bucket filter module
1802 */
1803
1804static void
1805tbf_control(struct vif *vifp, struct mbuf *m, struct ip *ip, u_long p_len)
1806{
1807    struct tbf *t = vifp->v_tbf;
1808
1809    if (p_len > MAX_BKT_SIZE) {		/* drop if packet is too large */
1810	mrtstat.mrts_pkt2large++;
1811	m_freem(m);
1812	return;
1813    }
1814
1815    tbf_update_tokens(vifp);
1816
1817    if (t->tbf_q_len == 0) {		/* queue empty...		*/
1818	if (p_len <= t->tbf_n_tok) {	/* send packet if enough tokens */
1819	    t->tbf_n_tok -= p_len;
1820	    tbf_send_packet(vifp, m);
1821	} else {			/* no, queue packet and try later */
1822	    tbf_queue(vifp, m);
1823	    timeout(tbf_reprocess_q, (caddr_t)vifp, TBF_REPROCESS);
1824	}
1825    } else if (t->tbf_q_len < t->tbf_max_q_len) {
1826	/* finite queue length, so queue pkts and process queue */
1827	tbf_queue(vifp, m);
1828	tbf_process_q(vifp);
1829    } else {
1830	/* queue full, try to dq and queue and process */
1831	if (!tbf_dq_sel(vifp, ip)) {
1832	    mrtstat.mrts_q_overflow++;
1833	    m_freem(m);
1834	} else {
1835	    tbf_queue(vifp, m);
1836	    tbf_process_q(vifp);
1837	}
1838    }
1839}
1840
1841/*
1842 * adds a packet to the queue at the interface
1843 */
1844static void
1845tbf_queue(struct vif *vifp, struct mbuf *m)
1846{
1847    int s = splnet();
1848    struct tbf *t = vifp->v_tbf;
1849
1850    if (t->tbf_t == NULL)	/* Queue was empty */
1851	t->tbf_q = m;
1852    else			/* Insert at tail */
1853	t->tbf_t->m_act = m;
1854
1855    t->tbf_t = m;		/* Set new tail pointer */
1856
1857#ifdef DIAGNOSTIC
1858    /* Make sure we didn't get fed a bogus mbuf */
1859    if (m->m_act)
1860	panic("tbf_queue: m_act");
1861#endif
1862    m->m_act = NULL;
1863
1864    t->tbf_q_len++;
1865
1866    splx(s);
1867}
1868
1869/*
1870 * processes the queue at the interface
1871 */
1872static void
1873tbf_process_q(struct vif *vifp)
1874{
1875    int s = splnet();
1876    struct tbf *t = vifp->v_tbf;
1877
1878    /* loop through the queue at the interface and send as many packets
1879     * as possible
1880     */
1881    while (t->tbf_q_len > 0) {
1882	struct mbuf *m = t->tbf_q;
1883	int len = mtod(m, struct ip *)->ip_len;
1884
1885	/* determine if the packet can be sent */
1886	if (len > t->tbf_n_tok)	/* not enough tokens, we are done */
1887	    break;
1888	/* ok, reduce no of tokens, dequeue and send the packet. */
1889	t->tbf_n_tok -= len;
1890
1891	t->tbf_q = m->m_act;
1892	if (--t->tbf_q_len == 0)
1893	    t->tbf_t = NULL;
1894
1895	m->m_act = NULL;
1896	tbf_send_packet(vifp, m);
1897    }
1898    splx(s);
1899}
1900
1901static void
1902tbf_reprocess_q(void *xvifp)
1903{
1904    struct vif *vifp = xvifp;
1905
1906    if (ip_mrouter == NULL)
1907	return;
1908    tbf_update_tokens(vifp);
1909    tbf_process_q(vifp);
1910    if (vifp->v_tbf->tbf_q_len)
1911	timeout(tbf_reprocess_q, (caddr_t)vifp, TBF_REPROCESS);
1912}
1913
1914/* function that will selectively discard a member of the queue
1915 * based on the precedence value and the priority
1916 */
1917static int
1918tbf_dq_sel(struct vif *vifp, struct ip *ip)
1919{
1920    int s = splnet();
1921    u_int p;
1922    struct mbuf *m, *last;
1923    struct mbuf **np;
1924    struct tbf *t = vifp->v_tbf;
1925
1926    p = priority(vifp, ip);
1927
1928    np = &t->tbf_q;
1929    last = NULL;
1930    while ((m = *np) != NULL) {
1931	if (p > priority(vifp, mtod(m, struct ip *))) {
1932	    *np = m->m_act;
1933	    /* If we're removing the last packet, fix the tail pointer */
1934	    if (m == t->tbf_t)
1935		t->tbf_t = last;
1936	    m_freem(m);
1937	    /* It's impossible for the queue to be empty, but check anyways. */
1938	    if (--t->tbf_q_len == 0)
1939		t->tbf_t = NULL;
1940	    splx(s);
1941	    mrtstat.mrts_drop_sel++;
1942	    return 1;
1943	}
1944	np = &m->m_act;
1945	last = m;
1946    }
1947    splx(s);
1948    return 0;
1949}
1950
1951static void
1952tbf_send_packet(struct vif *vifp, struct mbuf *m)
1953{
1954    int s = splnet();
1955
1956    if (vifp->v_flags & VIFF_TUNNEL)	/* If tunnel options */
1957	ip_output(m, NULL, &vifp->v_route, IP_FORWARDING, NULL, NULL);
1958    else {
1959	struct ip_moptions imo;
1960	int error;
1961	static struct route ro; /* XXX check this */
1962
1963	imo.imo_multicast_ifp  = vifp->v_ifp;
1964	imo.imo_multicast_ttl  = mtod(m, struct ip *)->ip_ttl - 1;
1965	imo.imo_multicast_loop = 1;
1966	imo.imo_multicast_vif  = -1;
1967
1968	/*
1969	 * Re-entrancy should not be a problem here, because
1970	 * the packets that we send out and are looped back at us
1971	 * should get rejected because they appear to come from
1972	 * the loopback interface, thus preventing looping.
1973	 */
1974	error = ip_output(m, NULL, &ro, IP_FORWARDING, &imo, NULL);
1975
1976	if (mrtdebug & DEBUG_XMIT)
1977	    log(LOG_DEBUG, "phyint_send on vif %d err %d\n",
1978		(int)(vifp - viftable), error);
1979    }
1980    splx(s);
1981}
1982
1983/* determine the current time and then
1984 * the elapsed time (between the last time and time now)
1985 * in milliseconds & update the no. of tokens in the bucket
1986 */
1987static void
1988tbf_update_tokens(struct vif *vifp)
1989{
1990    struct timeval tp;
1991    u_long tm;
1992    int s = splnet();
1993    struct tbf *t = vifp->v_tbf;
1994
1995    GET_TIME(tp);
1996
1997    TV_DELTA(tp, t->tbf_last_pkt_t, tm);
1998
1999    /*
2000     * This formula is actually
2001     * "time in seconds" * "bytes/second".
2002     *
2003     * (tm / 1000000) * (v_rate_limit * 1000 * (1000/1024) / 8)
2004     *
2005     * The (1000/1024) was introduced in add_vif to optimize
2006     * this divide into a shift.
2007     */
2008    t->tbf_n_tok += tm * vifp->v_rate_limit / 1024 / 8;
2009    t->tbf_last_pkt_t = tp;
2010
2011    if (t->tbf_n_tok > MAX_BKT_SIZE)
2012	t->tbf_n_tok = MAX_BKT_SIZE;
2013
2014    splx(s);
2015}
2016
2017static int
2018priority(struct vif *vifp, struct ip *ip)
2019{
2020    int prio = 50; /* the lowest priority -- default case */
2021
2022    /* temporary hack; may add general packet classifier some day */
2023
2024    /*
2025     * The UDP port space is divided up into four priority ranges:
2026     * [0, 16384)     : unclassified - lowest priority
2027     * [16384, 32768) : audio - highest priority
2028     * [32768, 49152) : whiteboard - medium priority
2029     * [49152, 65536) : video - low priority
2030     *
2031     * Everything else gets lowest priority.
2032     */
2033    if (ip->ip_p == IPPROTO_UDP) {
2034	struct udphdr *udp = (struct udphdr *)(((char *)ip) + (ip->ip_hl << 2));
2035	switch (ntohs(udp->uh_dport) & 0xc000) {
2036	case 0x4000:
2037	    prio = 70;
2038	    break;
2039	case 0x8000:
2040	    prio = 60;
2041	    break;
2042	case 0xc000:
2043	    prio = 55;
2044	    break;
2045	}
2046    }
2047    return prio;
2048}
2049
2050/*
2051 * End of token bucket filter modifications
2052 */
2053
2054static int
2055X_ip_rsvp_vif(struct socket *so, struct sockopt *sopt)
2056{
2057    int error, vifi, s;
2058
2059    if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_RSVP)
2060	return EOPNOTSUPP;
2061
2062    error = sooptcopyin(sopt, &vifi, sizeof vifi, sizeof vifi);
2063    if (error)
2064	return error;
2065
2066    s = splnet();
2067
2068    if (vifi < 0 || vifi >= numvifs) {	/* Error if vif is invalid */
2069	splx(s);
2070	return EADDRNOTAVAIL;
2071    }
2072
2073    if (sopt->sopt_name == IP_RSVP_VIF_ON) {
2074	/* Check if socket is available. */
2075	if (viftable[vifi].v_rsvpd != NULL) {
2076	    splx(s);
2077	    return EADDRINUSE;
2078	}
2079
2080	viftable[vifi].v_rsvpd = so;
2081	/* This may seem silly, but we need to be sure we don't over-increment
2082	 * the RSVP counter, in case something slips up.
2083	 */
2084	if (!viftable[vifi].v_rsvp_on) {
2085	    viftable[vifi].v_rsvp_on = 1;
2086	    rsvp_on++;
2087	}
2088    } else { /* must be VIF_OFF */
2089	/*
2090	 * XXX as an additional consistency check, one could make sure
2091	 * that viftable[vifi].v_rsvpd == so, otherwise passing so as
2092	 * first parameter is pretty useless.
2093	 */
2094	viftable[vifi].v_rsvpd = NULL;
2095	/*
2096	 * This may seem silly, but we need to be sure we don't over-decrement
2097	 * the RSVP counter, in case something slips up.
2098	 */
2099	if (viftable[vifi].v_rsvp_on) {
2100	    viftable[vifi].v_rsvp_on = 0;
2101	    rsvp_on--;
2102	}
2103    }
2104    splx(s);
2105    return 0;
2106}
2107
2108static void
2109X_ip_rsvp_force_done(struct socket *so)
2110{
2111    int vifi;
2112    int s;
2113
2114    /* Don't bother if it is not the right type of socket. */
2115    if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_RSVP)
2116	return;
2117
2118    s = splnet();
2119
2120    /* The socket may be attached to more than one vif...this
2121     * is perfectly legal.
2122     */
2123    for (vifi = 0; vifi < numvifs; vifi++) {
2124	if (viftable[vifi].v_rsvpd == so) {
2125	    viftable[vifi].v_rsvpd = NULL;
2126	    /* This may seem silly, but we need to be sure we don't
2127	     * over-decrement the RSVP counter, in case something slips up.
2128	     */
2129	    if (viftable[vifi].v_rsvp_on) {
2130		viftable[vifi].v_rsvp_on = 0;
2131		rsvp_on--;
2132	    }
2133	}
2134    }
2135
2136    splx(s);
2137}
2138
2139static void
2140X_rsvp_input(struct mbuf *m, int off)
2141{
2142    int vifi;
2143    struct ip *ip = mtod(m, struct ip *);
2144    struct sockaddr_in rsvp_src = { sizeof rsvp_src, AF_INET };
2145    int s;
2146    struct ifnet *ifp;
2147
2148    if (rsvpdebug)
2149	printf("rsvp_input: rsvp_on %d\n",rsvp_on);
2150
2151    /* Can still get packets with rsvp_on = 0 if there is a local member
2152     * of the group to which the RSVP packet is addressed.  But in this
2153     * case we want to throw the packet away.
2154     */
2155    if (!rsvp_on) {
2156	m_freem(m);
2157	return;
2158    }
2159
2160    s = splnet();
2161
2162    if (rsvpdebug)
2163	printf("rsvp_input: check vifs\n");
2164
2165#ifdef DIAGNOSTIC
2166    M_ASSERTPKTHDR(m);
2167#endif
2168
2169    ifp = m->m_pkthdr.rcvif;
2170    /* Find which vif the packet arrived on. */
2171    for (vifi = 0; vifi < numvifs; vifi++)
2172	if (viftable[vifi].v_ifp == ifp)
2173	    break;
2174
2175    if (vifi == numvifs || viftable[vifi].v_rsvpd == NULL) {
2176	/*
2177	 * If the old-style non-vif-associated socket is set,
2178	 * then use it.  Otherwise, drop packet since there
2179	 * is no specific socket for this vif.
2180	 */
2181	if (ip_rsvpd != NULL) {
2182	    if (rsvpdebug)
2183		printf("rsvp_input: Sending packet up old-style socket\n");
2184	    rip_input(m, off);  /* xxx */
2185	} else {
2186	    if (rsvpdebug && vifi == numvifs)
2187		printf("rsvp_input: Can't find vif for packet.\n");
2188	    else if (rsvpdebug && viftable[vifi].v_rsvpd == NULL)
2189		printf("rsvp_input: No socket defined for vif %d\n",vifi);
2190	    m_freem(m);
2191	}
2192	splx(s);
2193	return;
2194    }
2195    rsvp_src.sin_addr = ip->ip_src;
2196
2197    if (rsvpdebug && m)
2198	printf("rsvp_input: m->m_len = %d, sbspace() = %ld\n",
2199	       m->m_len,sbspace(&(viftable[vifi].v_rsvpd->so_rcv)));
2200
2201    if (socket_send(viftable[vifi].v_rsvpd, m, &rsvp_src) < 0) {
2202	if (rsvpdebug)
2203	    printf("rsvp_input: Failed to append to socket\n");
2204    } else {
2205	if (rsvpdebug)
2206	    printf("rsvp_input: send packet up\n");
2207    }
2208
2209    splx(s);
2210}
2211
2212/*
2213 * Code for bandwidth monitors
2214 */
2215
2216/*
2217 * Define common interface for timeval-related methods
2218 */
2219#define	BW_TIMEVALCMP(tvp, uvp, cmp) timevalcmp((tvp), (uvp), cmp)
2220#define	BW_TIMEVALDECR(vvp, uvp) timevalsub((vvp), (uvp))
2221#define	BW_TIMEVALADD(vvp, uvp) timevaladd((vvp), (uvp))
2222
2223static uint32_t
2224compute_bw_meter_flags(struct bw_upcall *req)
2225{
2226    uint32_t flags = 0;
2227
2228    if (req->bu_flags & BW_UPCALL_UNIT_PACKETS)
2229	flags |= BW_METER_UNIT_PACKETS;
2230    if (req->bu_flags & BW_UPCALL_UNIT_BYTES)
2231	flags |= BW_METER_UNIT_BYTES;
2232    if (req->bu_flags & BW_UPCALL_GEQ)
2233	flags |= BW_METER_GEQ;
2234    if (req->bu_flags & BW_UPCALL_LEQ)
2235	flags |= BW_METER_LEQ;
2236
2237    return flags;
2238}
2239
2240/*
2241 * Add a bw_meter entry
2242 */
2243static int
2244add_bw_upcall(struct bw_upcall *req)
2245{
2246    struct mfc *mfc;
2247    struct timeval delta = { BW_UPCALL_THRESHOLD_INTERVAL_MIN_SEC,
2248		BW_UPCALL_THRESHOLD_INTERVAL_MIN_USEC };
2249    struct timeval now;
2250    struct bw_meter *x;
2251    uint32_t flags;
2252    int s;
2253
2254    if (!(mrt_api_config & MRT_MFC_BW_UPCALL))
2255	return EOPNOTSUPP;
2256
2257    /* Test if the flags are valid */
2258    if (!(req->bu_flags & (BW_UPCALL_UNIT_PACKETS | BW_UPCALL_UNIT_BYTES)))
2259	return EINVAL;
2260    if (!(req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ)))
2261	return EINVAL;
2262    if ((req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ))
2263	    == (BW_UPCALL_GEQ | BW_UPCALL_LEQ))
2264	return EINVAL;
2265
2266    /* Test if the threshold time interval is valid */
2267    if (BW_TIMEVALCMP(&req->bu_threshold.b_time, &delta, <))
2268	return EINVAL;
2269
2270    flags = compute_bw_meter_flags(req);
2271
2272    /*
2273     * Find if we have already same bw_meter entry
2274     */
2275    s = splnet();
2276    mfc = mfc_find(req->bu_src.s_addr, req->bu_dst.s_addr);
2277    if (mfc == NULL) {
2278	splx(s);
2279	return EADDRNOTAVAIL;
2280    }
2281    for (x = mfc->mfc_bw_meter; x != NULL; x = x->bm_mfc_next) {
2282	if ((BW_TIMEVALCMP(&x->bm_threshold.b_time,
2283			   &req->bu_threshold.b_time, ==)) &&
2284	    (x->bm_threshold.b_packets == req->bu_threshold.b_packets) &&
2285	    (x->bm_threshold.b_bytes == req->bu_threshold.b_bytes) &&
2286	    (x->bm_flags & BW_METER_USER_FLAGS) == flags)  {
2287	    splx(s);
2288	    return 0;		/* XXX Already installed */
2289	}
2290    }
2291    splx(s);
2292
2293    /* Allocate the new bw_meter entry */
2294    x = (struct bw_meter *)malloc(sizeof(*x), M_BWMETER, M_NOWAIT);
2295    if (x == NULL)
2296	return ENOBUFS;
2297
2298    /* Set the new bw_meter entry */
2299    x->bm_threshold.b_time = req->bu_threshold.b_time;
2300    GET_TIME(now);
2301    x->bm_start_time = now;
2302    x->bm_threshold.b_packets = req->bu_threshold.b_packets;
2303    x->bm_threshold.b_bytes = req->bu_threshold.b_bytes;
2304    x->bm_measured.b_packets = 0;
2305    x->bm_measured.b_bytes = 0;
2306    x->bm_flags = flags;
2307    x->bm_time_next = NULL;
2308    x->bm_time_hash = BW_METER_BUCKETS;
2309
2310    /* Add the new bw_meter entry to the front of entries for this MFC */
2311    s = splnet();
2312    x->bm_mfc = mfc;
2313    x->bm_mfc_next = mfc->mfc_bw_meter;
2314    mfc->mfc_bw_meter = x;
2315    schedule_bw_meter(x, &now);
2316    splx(s);
2317
2318    return 0;
2319}
2320
2321static void
2322free_bw_list(struct bw_meter *list)
2323{
2324    while (list != NULL) {
2325	struct bw_meter *x = list;
2326
2327	list = list->bm_mfc_next;
2328	unschedule_bw_meter(x);
2329	free(x, M_BWMETER);
2330    }
2331}
2332
2333/*
2334 * Delete one or multiple bw_meter entries
2335 */
2336static int
2337del_bw_upcall(struct bw_upcall *req)
2338{
2339    struct mfc *mfc;
2340    struct bw_meter *x;
2341    int s;
2342
2343    if (!(mrt_api_config & MRT_MFC_BW_UPCALL))
2344	return EOPNOTSUPP;
2345
2346    s = splnet();
2347    /* Find the corresponding MFC entry */
2348    mfc = mfc_find(req->bu_src.s_addr, req->bu_dst.s_addr);
2349    if (mfc == NULL) {
2350	splx(s);
2351	return EADDRNOTAVAIL;
2352    } else if (req->bu_flags & BW_UPCALL_DELETE_ALL) {
2353	/*
2354	 * Delete all bw_meter entries for this mfc
2355	 */
2356	struct bw_meter *list;
2357
2358	list = mfc->mfc_bw_meter;
2359	mfc->mfc_bw_meter = NULL;
2360	splx(s);
2361	free_bw_list(list);
2362	return 0;
2363    } else {			/* Delete a single bw_meter entry */
2364	struct bw_meter *prev;
2365	uint32_t flags = 0;
2366
2367	flags = compute_bw_meter_flags(req);
2368
2369	/* Find the bw_meter entry to delete */
2370	for (prev = NULL, x = mfc->mfc_bw_meter; x != NULL;
2371	     x = x->bm_mfc_next) {
2372	    if ((BW_TIMEVALCMP(&x->bm_threshold.b_time,
2373			       &req->bu_threshold.b_time, ==)) &&
2374		(x->bm_threshold.b_packets == req->bu_threshold.b_packets) &&
2375		(x->bm_threshold.b_bytes == req->bu_threshold.b_bytes) &&
2376		(x->bm_flags & BW_METER_USER_FLAGS) == flags)
2377		break;
2378	}
2379	if (x != NULL) { /* Delete entry from the list for this MFC */
2380	    if (prev != NULL)
2381		prev->bm_mfc_next = x->bm_mfc_next;	/* remove from middle*/
2382	    else
2383		x->bm_mfc->mfc_bw_meter = x->bm_mfc_next;/* new head of list */
2384	    splx(s);
2385
2386	    unschedule_bw_meter(x);
2387	    /* Free the bw_meter entry */
2388	    free(x, M_BWMETER);
2389	    return 0;
2390	} else {
2391	    splx(s);
2392	    return EINVAL;
2393	}
2394    }
2395    /* NOTREACHED */
2396}
2397
2398/*
2399 * Perform bandwidth measurement processing that may result in an upcall
2400 */
2401static void
2402bw_meter_receive_packet(struct bw_meter *x, int plen, struct timeval *nowp)
2403{
2404    struct timeval delta;
2405    int s;
2406
2407    s = splnet();
2408    delta = *nowp;
2409    BW_TIMEVALDECR(&delta, &x->bm_start_time);
2410
2411    if (x->bm_flags & BW_METER_GEQ) {
2412	/*
2413	 * Processing for ">=" type of bw_meter entry
2414	 */
2415	if (BW_TIMEVALCMP(&delta, &x->bm_threshold.b_time, >)) {
2416	    /* Reset the bw_meter entry */
2417	    x->bm_start_time = *nowp;
2418	    x->bm_measured.b_packets = 0;
2419	    x->bm_measured.b_bytes = 0;
2420	    x->bm_flags &= ~BW_METER_UPCALL_DELIVERED;
2421	}
2422
2423	/* Record that a packet is received */
2424	x->bm_measured.b_packets++;
2425	x->bm_measured.b_bytes += plen;
2426
2427	/*
2428	 * Test if we should deliver an upcall
2429	 */
2430	if (!(x->bm_flags & BW_METER_UPCALL_DELIVERED)) {
2431	    if (((x->bm_flags & BW_METER_UNIT_PACKETS) &&
2432		 (x->bm_measured.b_packets >= x->bm_threshold.b_packets)) ||
2433		((x->bm_flags & BW_METER_UNIT_BYTES) &&
2434		 (x->bm_measured.b_bytes >= x->bm_threshold.b_bytes))) {
2435		/* Prepare an upcall for delivery */
2436		bw_meter_prepare_upcall(x, nowp);
2437		x->bm_flags |= BW_METER_UPCALL_DELIVERED;
2438	    }
2439	}
2440    } else if (x->bm_flags & BW_METER_LEQ) {
2441	/*
2442	 * Processing for "<=" type of bw_meter entry
2443	 */
2444	if (BW_TIMEVALCMP(&delta, &x->bm_threshold.b_time, >)) {
2445	    /*
2446	     * We are behind time with the multicast forwarding table
2447	     * scanning for "<=" type of bw_meter entries, so test now
2448	     * if we should deliver an upcall.
2449	     */
2450	    if (((x->bm_flags & BW_METER_UNIT_PACKETS) &&
2451		 (x->bm_measured.b_packets <= x->bm_threshold.b_packets)) ||
2452		((x->bm_flags & BW_METER_UNIT_BYTES) &&
2453		 (x->bm_measured.b_bytes <= x->bm_threshold.b_bytes))) {
2454		/* Prepare an upcall for delivery */
2455		bw_meter_prepare_upcall(x, nowp);
2456	    }
2457	    /* Reschedule the bw_meter entry */
2458	    unschedule_bw_meter(x);
2459	    schedule_bw_meter(x, nowp);
2460	}
2461
2462	/* Record that a packet is received */
2463	x->bm_measured.b_packets++;
2464	x->bm_measured.b_bytes += plen;
2465
2466	/*
2467	 * Test if we should restart the measuring interval
2468	 */
2469	if ((x->bm_flags & BW_METER_UNIT_PACKETS &&
2470	     x->bm_measured.b_packets <= x->bm_threshold.b_packets) ||
2471	    (x->bm_flags & BW_METER_UNIT_BYTES &&
2472	     x->bm_measured.b_bytes <= x->bm_threshold.b_bytes)) {
2473	    /* Don't restart the measuring interval */
2474	} else {
2475	    /* Do restart the measuring interval */
2476	    /*
2477	     * XXX: note that we don't unschedule and schedule, because this
2478	     * might be too much overhead per packet. Instead, when we process
2479	     * all entries for a given timer hash bin, we check whether it is
2480	     * really a timeout. If not, we reschedule at that time.
2481	     */
2482	    x->bm_start_time = *nowp;
2483	    x->bm_measured.b_packets = 0;
2484	    x->bm_measured.b_bytes = 0;
2485	    x->bm_flags &= ~BW_METER_UPCALL_DELIVERED;
2486	}
2487    }
2488    splx(s);
2489}
2490
2491/*
2492 * Prepare a bandwidth-related upcall
2493 */
2494static void
2495bw_meter_prepare_upcall(struct bw_meter *x, struct timeval *nowp)
2496{
2497    struct timeval delta;
2498    struct bw_upcall *u;
2499    int s;
2500
2501    s = splnet();
2502
2503    /*
2504     * Compute the measured time interval
2505     */
2506    delta = *nowp;
2507    BW_TIMEVALDECR(&delta, &x->bm_start_time);
2508
2509    /*
2510     * If there are too many pending upcalls, deliver them now
2511     */
2512    if (bw_upcalls_n >= BW_UPCALLS_MAX)
2513	bw_upcalls_send();
2514
2515    /*
2516     * Set the bw_upcall entry
2517     */
2518    u = &bw_upcalls[bw_upcalls_n++];
2519    u->bu_src = x->bm_mfc->mfc_origin;
2520    u->bu_dst = x->bm_mfc->mfc_mcastgrp;
2521    u->bu_threshold.b_time = x->bm_threshold.b_time;
2522    u->bu_threshold.b_packets = x->bm_threshold.b_packets;
2523    u->bu_threshold.b_bytes = x->bm_threshold.b_bytes;
2524    u->bu_measured.b_time = delta;
2525    u->bu_measured.b_packets = x->bm_measured.b_packets;
2526    u->bu_measured.b_bytes = x->bm_measured.b_bytes;
2527    u->bu_flags = 0;
2528    if (x->bm_flags & BW_METER_UNIT_PACKETS)
2529	u->bu_flags |= BW_UPCALL_UNIT_PACKETS;
2530    if (x->bm_flags & BW_METER_UNIT_BYTES)
2531	u->bu_flags |= BW_UPCALL_UNIT_BYTES;
2532    if (x->bm_flags & BW_METER_GEQ)
2533	u->bu_flags |= BW_UPCALL_GEQ;
2534    if (x->bm_flags & BW_METER_LEQ)
2535	u->bu_flags |= BW_UPCALL_LEQ;
2536
2537    splx(s);
2538}
2539
2540/*
2541 * Send the pending bandwidth-related upcalls
2542 */
2543static void
2544bw_upcalls_send(void)
2545{
2546    struct mbuf *m;
2547    int len = bw_upcalls_n * sizeof(bw_upcalls[0]);
2548    struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
2549    static struct igmpmsg igmpmsg = { 0,		/* unused1 */
2550				      0,		/* unused2 */
2551				      IGMPMSG_BW_UPCALL,/* im_msgtype */
2552				      0,		/* im_mbz  */
2553				      0,		/* im_vif  */
2554				      0,		/* unused3 */
2555				      { 0 },		/* im_src  */
2556				      { 0 } };		/* im_dst  */
2557
2558    if (bw_upcalls_n == 0)
2559	return;			/* No pending upcalls */
2560
2561    bw_upcalls_n = 0;
2562
2563    /*
2564     * Allocate a new mbuf, initialize it with the header and
2565     * the payload for the pending calls.
2566     */
2567    MGETHDR(m, M_DONTWAIT, MT_HEADER);
2568    if (m == NULL) {
2569	log(LOG_WARNING, "bw_upcalls_send: cannot allocate mbuf\n");
2570	return;
2571    }
2572
2573    m->m_len = m->m_pkthdr.len = 0;
2574    m_copyback(m, 0, sizeof(struct igmpmsg), (caddr_t)&igmpmsg);
2575    m_copyback(m, sizeof(struct igmpmsg), len, (caddr_t)&bw_upcalls[0]);
2576
2577    /*
2578     * Send the upcalls
2579     * XXX do we need to set the address in k_igmpsrc ?
2580     */
2581    mrtstat.mrts_upcalls++;
2582    if (socket_send(ip_mrouter, m, &k_igmpsrc) < 0) {
2583	log(LOG_WARNING, "bw_upcalls_send: ip_mrouter socket queue full\n");
2584	++mrtstat.mrts_upq_sockfull;
2585    }
2586}
2587
2588/*
2589 * Compute the timeout hash value for the bw_meter entries
2590 */
2591#define	BW_METER_TIMEHASH(bw_meter, hash)				\
2592    do {								\
2593	struct timeval next_timeval = (bw_meter)->bm_start_time;	\
2594									\
2595	BW_TIMEVALADD(&next_timeval, &(bw_meter)->bm_threshold.b_time); \
2596	(hash) = next_timeval.tv_sec;					\
2597	if (next_timeval.tv_usec)					\
2598	    (hash)++; /* XXX: make sure we don't timeout early */	\
2599	(hash) %= BW_METER_BUCKETS;					\
2600    } while (0)
2601
2602/*
2603 * Schedule a timer to process periodically bw_meter entry of type "<="
2604 * by linking the entry in the proper hash bucket.
2605 */
2606static void
2607schedule_bw_meter(struct bw_meter *x, struct timeval *nowp)
2608{
2609    int time_hash, s;
2610
2611    if (!(x->bm_flags & BW_METER_LEQ))
2612	return;		/* XXX: we schedule timers only for "<=" entries */
2613
2614    /*
2615     * Reset the bw_meter entry
2616     */
2617    s = splnet();
2618    x->bm_start_time = *nowp;
2619    x->bm_measured.b_packets = 0;
2620    x->bm_measured.b_bytes = 0;
2621    x->bm_flags &= ~BW_METER_UPCALL_DELIVERED;
2622    splx(s);
2623
2624    /*
2625     * Compute the timeout hash value and insert the entry
2626     */
2627    BW_METER_TIMEHASH(x, time_hash);
2628    x->bm_time_next = bw_meter_timers[time_hash];
2629    bw_meter_timers[time_hash] = x;
2630    x->bm_time_hash = time_hash;
2631}
2632
2633/*
2634 * Unschedule the periodic timer that processes bw_meter entry of type "<="
2635 * by removing the entry from the proper hash bucket.
2636 */
2637static void
2638unschedule_bw_meter(struct bw_meter *x)
2639{
2640    int time_hash;
2641    struct bw_meter *prev, *tmp;
2642
2643    if (!(x->bm_flags & BW_METER_LEQ))
2644	return;		/* XXX: we schedule timers only for "<=" entries */
2645
2646    /*
2647     * Compute the timeout hash value and delete the entry
2648     */
2649    time_hash = x->bm_time_hash;
2650    if (time_hash >= BW_METER_BUCKETS)
2651	return;		/* Entry was not scheduled */
2652
2653    for (prev = NULL, tmp = bw_meter_timers[time_hash];
2654	     tmp != NULL; prev = tmp, tmp = tmp->bm_time_next)
2655	if (tmp == x)
2656	    break;
2657
2658    if (tmp == NULL)
2659	panic("unschedule_bw_meter: bw_meter entry not found");
2660
2661    if (prev != NULL)
2662	prev->bm_time_next = x->bm_time_next;
2663    else
2664	bw_meter_timers[time_hash] = x->bm_time_next;
2665
2666    x->bm_time_next = NULL;
2667    x->bm_time_hash = BW_METER_BUCKETS;
2668}
2669
2670
2671/*
2672 * Process all "<=" type of bw_meter that should be processed now,
2673 * and for each entry prepare an upcall if necessary. Each processed
2674 * entry is rescheduled again for the (periodic) processing.
2675 *
2676 * This is run periodically (once per second normally). On each round,
2677 * all the potentially matching entries are in the hash slot that we are
2678 * looking at.
2679 */
2680static void
2681bw_meter_process()
2682{
2683    static uint32_t last_tv_sec;	/* last time we processed this */
2684
2685    uint32_t loops;
2686    int i, s;
2687    struct timeval now, process_endtime;
2688
2689    GET_TIME(now);
2690    if (last_tv_sec == now.tv_sec)
2691	return;		/* nothing to do */
2692
2693    s = splnet();
2694    loops = now.tv_sec - last_tv_sec;
2695    last_tv_sec = now.tv_sec;
2696    if (loops > BW_METER_BUCKETS)
2697	loops = BW_METER_BUCKETS;
2698
2699    /*
2700     * Process all bins of bw_meter entries from the one after the last
2701     * processed to the current one. On entry, i points to the last bucket
2702     * visited, so we need to increment i at the beginning of the loop.
2703     */
2704    for (i = (now.tv_sec - loops) % BW_METER_BUCKETS; loops > 0; loops--) {
2705	struct bw_meter *x, *tmp_list;
2706
2707	if (++i >= BW_METER_BUCKETS)
2708	    i = 0;
2709
2710	/* Disconnect the list of bw_meter entries from the bin */
2711	tmp_list = bw_meter_timers[i];
2712	bw_meter_timers[i] = NULL;
2713
2714	/* Process the list of bw_meter entries */
2715	while (tmp_list != NULL) {
2716	    x = tmp_list;
2717	    tmp_list = tmp_list->bm_time_next;
2718
2719	    /* Test if the time interval is over */
2720	    process_endtime = x->bm_start_time;
2721	    BW_TIMEVALADD(&process_endtime, &x->bm_threshold.b_time);
2722	    if (BW_TIMEVALCMP(&process_endtime, &now, >)) {
2723		/* Not yet: reschedule, but don't reset */
2724		int time_hash;
2725
2726		BW_METER_TIMEHASH(x, time_hash);
2727		if (time_hash == i && process_endtime.tv_sec == now.tv_sec) {
2728		    /*
2729		     * XXX: somehow the bin processing is a bit ahead of time.
2730		     * Put the entry in the next bin.
2731		     */
2732		    if (++time_hash >= BW_METER_BUCKETS)
2733			time_hash = 0;
2734		}
2735		x->bm_time_next = bw_meter_timers[time_hash];
2736		bw_meter_timers[time_hash] = x;
2737		x->bm_time_hash = time_hash;
2738
2739		continue;
2740	    }
2741
2742	    /*
2743	     * Test if we should deliver an upcall
2744	     */
2745	    if (((x->bm_flags & BW_METER_UNIT_PACKETS) &&
2746		 (x->bm_measured.b_packets <= x->bm_threshold.b_packets)) ||
2747		((x->bm_flags & BW_METER_UNIT_BYTES) &&
2748		 (x->bm_measured.b_bytes <= x->bm_threshold.b_bytes))) {
2749		/* Prepare an upcall for delivery */
2750		bw_meter_prepare_upcall(x, &now);
2751	    }
2752
2753	    /*
2754	     * Reschedule for next processing
2755	     */
2756	    schedule_bw_meter(x, &now);
2757	}
2758    }
2759    splx(s);
2760
2761    /* Send all upcalls that are pending delivery */
2762    bw_upcalls_send();
2763}
2764
2765/*
2766 * A periodic function for sending all upcalls that are pending delivery
2767 */
2768static void
2769expire_bw_upcalls_send(void *unused)
2770{
2771    bw_upcalls_send();
2772
2773    bw_upcalls_ch = timeout(expire_bw_upcalls_send, NULL, BW_UPCALLS_PERIOD);
2774}
2775
2776/*
2777 * A periodic function for periodic scanning of the multicast forwarding
2778 * table for processing all "<=" bw_meter entries.
2779 */
2780static void
2781expire_bw_meter_process(void *unused)
2782{
2783    if (mrt_api_config & MRT_MFC_BW_UPCALL)
2784	bw_meter_process();
2785
2786    bw_meter_ch = timeout(expire_bw_meter_process, NULL, BW_METER_PERIOD);
2787}
2788
2789/*
2790 * End of bandwidth monitoring code
2791 */
2792
2793#ifdef PIM
2794/*
2795 * Send the packet up to the user daemon, or eventually do kernel encapsulation
2796 *
2797 */
2798static int
2799pim_register_send(struct ip *ip, struct vif *vifp,
2800	struct mbuf *m, struct mfc *rt)
2801{
2802    struct mbuf *mb_copy, *mm;
2803
2804    if (mrtdebug & DEBUG_PIM)
2805        log(LOG_DEBUG, "pim_register_send: ");
2806
2807    mb_copy = pim_register_prepare(ip, m);
2808    if (mb_copy == NULL)
2809	return ENOBUFS;
2810
2811    /*
2812     * Send all the fragments. Note that the mbuf for each fragment
2813     * is freed by the sending machinery.
2814     */
2815    for (mm = mb_copy; mm; mm = mb_copy) {
2816	mb_copy = mm->m_nextpkt;
2817	mm->m_nextpkt = 0;
2818	mm = m_pullup(mm, sizeof(struct ip));
2819	if (mm != NULL) {
2820	    ip = mtod(mm, struct ip *);
2821	    if ((mrt_api_config & MRT_MFC_RP) &&
2822		(rt->mfc_rp.s_addr != INADDR_ANY)) {
2823		pim_register_send_rp(ip, vifp, mm, rt);
2824	    } else {
2825		pim_register_send_upcall(ip, vifp, mm, rt);
2826	    }
2827	}
2828    }
2829
2830    return 0;
2831}
2832
2833/*
2834 * Return a copy of the data packet that is ready for PIM Register
2835 * encapsulation.
2836 * XXX: Note that in the returned copy the IP header is a valid one.
2837 */
2838static struct mbuf *
2839pim_register_prepare(struct ip *ip, struct mbuf *m)
2840{
2841    struct mbuf *mb_copy = NULL;
2842    int mtu;
2843
2844    /* Take care of delayed checksums */
2845    if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
2846	in_delayed_cksum(m);
2847	m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
2848    }
2849
2850    /*
2851     * Copy the old packet & pullup its IP header into the
2852     * new mbuf so we can modify it.
2853     */
2854    mb_copy = m_copypacket(m, M_DONTWAIT);
2855    if (mb_copy == NULL)
2856	return NULL;
2857    mb_copy = m_pullup(mb_copy, ip->ip_hl << 2);
2858    if (mb_copy == NULL)
2859	return NULL;
2860
2861    /* take care of the TTL */
2862    ip = mtod(mb_copy, struct ip *);
2863    --ip->ip_ttl;
2864
2865    /* Compute the MTU after the PIM Register encapsulation */
2866    mtu = 0xffff - sizeof(pim_encap_iphdr) - sizeof(pim_encap_pimhdr);
2867
2868    if (ip->ip_len <= mtu) {
2869	/* Turn the IP header into a valid one */
2870	ip->ip_len = htons(ip->ip_len);
2871	ip->ip_off = htons(ip->ip_off);
2872	ip->ip_sum = 0;
2873	ip->ip_sum = in_cksum(mb_copy, ip->ip_hl << 2);
2874    } else {
2875	/* Fragment the packet */
2876	if (ip_fragment(ip, &mb_copy, mtu, 0, CSUM_DELAY_IP) != 0) {
2877	    m_freem(mb_copy);
2878	    return NULL;
2879	}
2880    }
2881    return mb_copy;
2882}
2883
2884/*
2885 * Send an upcall with the data packet to the user-level process.
2886 */
2887static int
2888pim_register_send_upcall(struct ip *ip, struct vif *vifp,
2889	struct mbuf *mb_copy, struct mfc *rt)
2890{
2891    struct mbuf *mb_first;
2892    int len = ntohs(ip->ip_len);
2893    struct igmpmsg *im;
2894    struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
2895
2896    /*
2897     * Add a new mbuf with an upcall header
2898     */
2899    MGETHDR(mb_first, M_DONTWAIT, MT_HEADER);
2900    if (mb_first == NULL) {
2901	m_freem(mb_copy);
2902	return ENOBUFS;
2903    }
2904    mb_first->m_data += max_linkhdr;
2905    mb_first->m_pkthdr.len = len + sizeof(struct igmpmsg);
2906    mb_first->m_len = sizeof(struct igmpmsg);
2907    mb_first->m_next = mb_copy;
2908
2909    /* Send message to routing daemon */
2910    im = mtod(mb_first, struct igmpmsg *);
2911    im->im_msgtype	= IGMPMSG_WHOLEPKT;
2912    im->im_mbz		= 0;
2913    im->im_vif		= vifp - viftable;
2914    im->im_src		= ip->ip_src;
2915    im->im_dst		= ip->ip_dst;
2916
2917    k_igmpsrc.sin_addr	= ip->ip_src;
2918
2919    mrtstat.mrts_upcalls++;
2920
2921    if (socket_send(ip_mrouter, mb_first, &k_igmpsrc) < 0) {
2922	if (mrtdebug & DEBUG_PIM)
2923	    log(LOG_WARNING,
2924		"mcast: pim_register_send_upcall: ip_mrouter socket queue full");
2925	++mrtstat.mrts_upq_sockfull;
2926	return ENOBUFS;
2927    }
2928
2929    /* Keep statistics */
2930    pimstat.pims_snd_registers_msgs++;
2931    pimstat.pims_snd_registers_bytes += len;
2932
2933    return 0;
2934}
2935
2936/*
2937 * Encapsulate the data packet in PIM Register message and send it to the RP.
2938 */
2939static int
2940pim_register_send_rp(struct ip *ip, struct vif *vifp,
2941	struct mbuf *mb_copy, struct mfc *rt)
2942{
2943    struct mbuf *mb_first;
2944    struct ip *ip_outer;
2945    struct pim_encap_pimhdr *pimhdr;
2946    int len = ntohs(ip->ip_len);
2947    vifi_t vifi = rt->mfc_parent;
2948
2949    if ((vifi >= numvifs) || (viftable[vifi].v_lcl_addr.s_addr == 0)) {
2950	m_freem(mb_copy);
2951	return EADDRNOTAVAIL;		/* The iif vif is invalid */
2952    }
2953
2954    /*
2955     * Add a new mbuf with the encapsulating header
2956     */
2957    MGETHDR(mb_first, M_DONTWAIT, MT_HEADER);
2958    if (mb_first == NULL) {
2959	m_freem(mb_copy);
2960	return ENOBUFS;
2961    }
2962    mb_first->m_data += max_linkhdr;
2963    mb_first->m_len = sizeof(pim_encap_iphdr) + sizeof(pim_encap_pimhdr);
2964    mb_first->m_next = mb_copy;
2965
2966    mb_first->m_pkthdr.len = len + mb_first->m_len;
2967
2968    /*
2969     * Fill in the encapsulating IP and PIM header
2970     */
2971    ip_outer = mtod(mb_first, struct ip *);
2972    *ip_outer = pim_encap_iphdr;
2973#ifdef RANDOM_IP_ID
2974    ip_outer->ip_id = ip_randomid();
2975#else
2976    ip_outer->ip_id = htons(ip_id++);
2977#endif
2978    ip_outer->ip_len = len + sizeof(pim_encap_iphdr) + sizeof(pim_encap_pimhdr);
2979    ip_outer->ip_src = viftable[vifi].v_lcl_addr;
2980    ip_outer->ip_dst = rt->mfc_rp;
2981    /*
2982     * Copy the inner header TOS to the outer header, and take care of the
2983     * IP_DF bit.
2984     */
2985    ip_outer->ip_tos = ip->ip_tos;
2986    if (ntohs(ip->ip_off) & IP_DF)
2987	ip_outer->ip_off |= IP_DF;
2988    pimhdr = (struct pim_encap_pimhdr *)((caddr_t)ip_outer
2989					 + sizeof(pim_encap_iphdr));
2990    *pimhdr = pim_encap_pimhdr;
2991    /* If the iif crosses a border, set the Border-bit */
2992    if (rt->mfc_flags[vifi] & MRT_MFC_FLAGS_BORDER_VIF & mrt_api_config)
2993	pimhdr->flags |= htonl(PIM_BORDER_REGISTER);
2994
2995    mb_first->m_data += sizeof(pim_encap_iphdr);
2996    pimhdr->pim.pim_cksum = in_cksum(mb_first, sizeof(pim_encap_pimhdr));
2997    mb_first->m_data -= sizeof(pim_encap_iphdr);
2998
2999    if (vifp->v_rate_limit == 0)
3000	tbf_send_packet(vifp, mb_first);
3001    else
3002	tbf_control(vifp, mb_first, ip, ip_outer->ip_len);
3003
3004    /* Keep statistics */
3005    pimstat.pims_snd_registers_msgs++;
3006    pimstat.pims_snd_registers_bytes += len;
3007
3008    return 0;
3009}
3010
3011/*
3012 * PIM-SMv2 and PIM-DM messages processing.
3013 * Receives and verifies the PIM control messages, and passes them
3014 * up to the listening socket, using rip_input().
3015 * The only message with special processing is the PIM_REGISTER message
3016 * (used by PIM-SM): the PIM header is stripped off, and the inner packet
3017 * is passed to if_simloop().
3018 */
3019void
3020pim_input(struct mbuf *m, int off)
3021{
3022    struct ip *ip = mtod(m, struct ip *);
3023    struct pim *pim;
3024    int minlen;
3025    int datalen = ip->ip_len;
3026    int ip_tos;
3027    int iphlen = off;
3028
3029    /* Keep statistics */
3030    pimstat.pims_rcv_total_msgs++;
3031    pimstat.pims_rcv_total_bytes += datalen;
3032
3033    /*
3034     * Validate lengths
3035     */
3036    if (datalen < PIM_MINLEN) {
3037	pimstat.pims_rcv_tooshort++;
3038	log(LOG_ERR, "pim_input: packet size too small %d from %lx\n",
3039	    datalen, (u_long)ip->ip_src.s_addr);
3040	m_freem(m);
3041	return;
3042    }
3043
3044    /*
3045     * If the packet is at least as big as a REGISTER, go agead
3046     * and grab the PIM REGISTER header size, to avoid another
3047     * possible m_pullup() later.
3048     *
3049     * PIM_MINLEN       == pimhdr + u_int32_t == 4 + 4 = 8
3050     * PIM_REG_MINLEN   == pimhdr + reghdr + encap_iphdr == 4 + 4 + 20 = 28
3051     */
3052    minlen = iphlen + (datalen >= PIM_REG_MINLEN ? PIM_REG_MINLEN : PIM_MINLEN);
3053    /*
3054     * Get the IP and PIM headers in contiguous memory, and
3055     * possibly the PIM REGISTER header.
3056     */
3057    if ((m->m_flags & M_EXT || m->m_len < minlen) &&
3058	(m = m_pullup(m, minlen)) == 0) {
3059	log(LOG_ERR, "pim_input: m_pullup failure\n");
3060	return;
3061    }
3062    /* m_pullup() may have given us a new mbuf so reset ip. */
3063    ip = mtod(m, struct ip *);
3064    ip_tos = ip->ip_tos;
3065
3066    /* adjust mbuf to point to the PIM header */
3067    m->m_data += iphlen;
3068    m->m_len  -= iphlen;
3069    pim = mtod(m, struct pim *);
3070
3071    /*
3072     * Validate checksum. If PIM REGISTER, exclude the data packet.
3073     *
3074     * XXX: some older PIMv2 implementations don't make this distinction,
3075     * so for compatibility reason perform the checksum over part of the
3076     * message, and if error, then over the whole message.
3077     */
3078    if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER && in_cksum(m, PIM_MINLEN) == 0) {
3079	/* do nothing, checksum okay */
3080    } else if (in_cksum(m, datalen)) {
3081	pimstat.pims_rcv_badsum++;
3082	if (mrtdebug & DEBUG_PIM)
3083	    log(LOG_DEBUG, "pim_input: invalid checksum");
3084	m_freem(m);
3085	return;
3086    }
3087
3088    /* PIM version check */
3089    if (PIM_VT_V(pim->pim_vt) < PIM_VERSION) {
3090	pimstat.pims_rcv_badversion++;
3091	log(LOG_ERR, "pim_input: incorrect version %d, expecting %d\n",
3092	    PIM_VT_V(pim->pim_vt), PIM_VERSION);
3093	m_freem(m);
3094	return;
3095    }
3096
3097    /* restore mbuf back to the outer IP */
3098    m->m_data -= iphlen;
3099    m->m_len  += iphlen;
3100
3101    if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER) {
3102	/*
3103	 * Since this is a REGISTER, we'll make a copy of the register
3104	 * headers ip + pim + u_int32 + encap_ip, to be passed up to the
3105	 * routing daemon.
3106	 */
3107	struct sockaddr_in dst = { sizeof(dst), AF_INET };
3108	struct mbuf *mcp;
3109	struct ip *encap_ip;
3110	u_int32_t *reghdr;
3111
3112	if ((reg_vif_num >= numvifs) || (reg_vif_num == VIFI_INVALID)) {
3113	    if (mrtdebug & DEBUG_PIM)
3114		log(LOG_DEBUG,
3115		    "pim_input: register vif not set: %d\n", reg_vif_num);
3116	    m_freem(m);
3117	    return;
3118	}
3119
3120	/*
3121	 * Validate length
3122	 */
3123	if (datalen < PIM_REG_MINLEN) {
3124	    pimstat.pims_rcv_tooshort++;
3125	    pimstat.pims_rcv_badregisters++;
3126	    log(LOG_ERR,
3127		"pim_input: register packet size too small %d from %lx\n",
3128		datalen, (u_long)ip->ip_src.s_addr);
3129	    m_freem(m);
3130	    return;
3131	}
3132
3133	reghdr = (u_int32_t *)(pim + 1);
3134	encap_ip = (struct ip *)(reghdr + 1);
3135
3136	if (mrtdebug & DEBUG_PIM) {
3137	    log(LOG_DEBUG,
3138		"pim_input[register], encap_ip: %lx -> %lx, encap_ip len %d\n",
3139		(u_long)ntohl(encap_ip->ip_src.s_addr),
3140		(u_long)ntohl(encap_ip->ip_dst.s_addr),
3141		ntohs(encap_ip->ip_len));
3142	}
3143
3144	/* verify the version number of the inner packet */
3145	if (encap_ip->ip_v != IPVERSION) {
3146	    pimstat.pims_rcv_badregisters++;
3147	    if (mrtdebug & DEBUG_PIM) {
3148		log(LOG_DEBUG, "pim_input: invalid IP version (%d) "
3149		    "of the inner packet\n", encap_ip->ip_v);
3150	    }
3151	    m_freem(m);
3152	    return;
3153	}
3154
3155	/* verify the inner packet is destined to a mcast group */
3156	if (!IN_MULTICAST(ntohl(encap_ip->ip_dst.s_addr))) {
3157	    pimstat.pims_rcv_badregisters++;
3158	    if (mrtdebug & DEBUG_PIM)
3159		log(LOG_DEBUG,
3160		    "pim_input: inner packet of register is not "
3161		    "multicast %lx\n",
3162		    (u_long)ntohl(encap_ip->ip_dst.s_addr));
3163	    m_freem(m);
3164	    return;
3165	}
3166
3167	/*
3168	 * Copy the TOS from the outer IP header to the inner IP header.
3169	 */
3170	if (encap_ip->ip_tos != ip_tos) {
3171	    /* Outer TOS -> inner TOS */
3172	    encap_ip->ip_tos = ip_tos;
3173	    /* Recompute the inner header checksum. Sigh... */
3174
3175	    /* adjust mbuf to point to the inner IP header */
3176	    m->m_data += (iphlen + PIM_MINLEN);
3177	    m->m_len  -= (iphlen + PIM_MINLEN);
3178
3179	    encap_ip->ip_sum = 0;
3180	    encap_ip->ip_sum = in_cksum(m, encap_ip->ip_hl << 2);
3181
3182	    /* restore mbuf to point back to the outer IP header */
3183	    m->m_data -= (iphlen + PIM_MINLEN);
3184	    m->m_len  += (iphlen + PIM_MINLEN);
3185	}
3186
3187	/* If a NULL_REGISTER, pass it to the daemon */
3188	if ((ntohl(*reghdr) & PIM_NULL_REGISTER))
3189	    goto pim_input_to_daemon;
3190
3191	/*
3192	 * Decapsulate the inner IP packet and loopback to forward it
3193	 * as a normal multicast packet. Also, make a copy of the
3194	 *     outer_iphdr + pimhdr + reghdr + encap_iphdr
3195	 * to pass to the daemon later, so it can take the appropriate
3196	 * actions (e.g., send back PIM_REGISTER_STOP).
3197	 * XXX: here m->m_data points to the outer IP header.
3198	 */
3199	mcp = m_copy(m, 0, iphlen + PIM_REG_MINLEN);
3200	if (mcp == NULL) {
3201	    log(LOG_ERR,
3202		"pim_input: pim register: could not copy register head\n");
3203	    m_freem(m);
3204	    return;
3205	}
3206
3207	/* Keep statistics */
3208	/* XXX: registers_bytes include only the encap. mcast pkt */
3209	pimstat.pims_rcv_registers_msgs++;
3210	pimstat.pims_rcv_registers_bytes += ntohs(encap_ip->ip_len);
3211
3212	/*
3213	 * forward the inner ip packet; point m_data at the inner ip.
3214	 */
3215	m_adj(m, iphlen + PIM_MINLEN);
3216
3217	if (mrtdebug & DEBUG_PIM) {
3218	    log(LOG_DEBUG,
3219		"pim_input: forwarding decapsulated register: "
3220		"src %lx, dst %lx, vif %d\n",
3221		(u_long)ntohl(encap_ip->ip_src.s_addr),
3222		(u_long)ntohl(encap_ip->ip_dst.s_addr),
3223		reg_vif_num);
3224	}
3225	if_simloop(viftable[reg_vif_num].v_ifp, m, dst.sin_family, 0);
3226
3227	/* prepare the register head to send to the mrouting daemon */
3228	m = mcp;
3229    }
3230
3231pim_input_to_daemon:
3232    /*
3233     * Pass the PIM message up to the daemon; if it is a Register message,
3234     * pass the 'head' only up to the daemon. This includes the
3235     * outer IP header, PIM header, PIM-Register header and the
3236     * inner IP header.
3237     * XXX: the outer IP header pkt size of a Register is not adjust to
3238     * reflect the fact that the inner multicast data is truncated.
3239     */
3240    rip_input(m, iphlen);
3241
3242    return;
3243}
3244#endif /* PIM */
3245
3246static int
3247ip_mroute_modevent(module_t mod, int type, void *unused)
3248{
3249    int s;
3250
3251    switch (type) {
3252    case MOD_LOAD:
3253	s = splnet();
3254	/* XXX Protect against multiple loading */
3255	ip_mcast_src = X_ip_mcast_src;
3256	ip_mforward = X_ip_mforward;
3257	ip_mrouter_done = X_ip_mrouter_done;
3258	ip_mrouter_get = X_ip_mrouter_get;
3259	ip_mrouter_set = X_ip_mrouter_set;
3260	ip_rsvp_force_done = X_ip_rsvp_force_done;
3261	ip_rsvp_vif = X_ip_rsvp_vif;
3262	legal_vif_num = X_legal_vif_num;
3263	mrt_ioctl = X_mrt_ioctl;
3264	rsvp_input_p = X_rsvp_input;
3265	splx(s);
3266	break;
3267
3268    case MOD_UNLOAD:
3269	if (ip_mrouter)
3270	    return EINVAL;
3271
3272	s = splnet();
3273	ip_mcast_src = NULL;
3274	ip_mforward = NULL;
3275	ip_mrouter_done = NULL;
3276	ip_mrouter_get = NULL;
3277	ip_mrouter_set = NULL;
3278	ip_rsvp_force_done = NULL;
3279	ip_rsvp_vif = NULL;
3280	legal_vif_num = NULL;
3281	mrt_ioctl = NULL;
3282	rsvp_input_p = NULL;
3283	splx(s);
3284	break;
3285    }
3286    return 0;
3287}
3288
3289static moduledata_t ip_mroutemod = {
3290    "ip_mroute",
3291    ip_mroute_modevent,
3292    0
3293};
3294DECLARE_MODULE(ip_mroute, ip_mroutemod, SI_SUB_PSEUDO, SI_ORDER_ANY);
3295