ip_mroute.c revision 11921
1/*
2 * IP multicast forwarding procedures
3 *
4 * Written by David Waitzman, BBN Labs, August 1988.
5 * Modified by Steve Deering, Stanford, February 1989.
6 * Modified by Mark J. Steiglitz, Stanford, May, 1991
7 * Modified by Van Jacobson, LBL, January 1993
8 * Modified by Ajit Thyagarajan, PARC, August 1993
9 * Modified by Bill Fenner, PARC, April 1995
10 *
11 * MROUTING Revision: 3.5
12 * $Id: ip_mroute.c,v 1.23 1995/10/06 19:30:43 wollman Exp $
13 */
14
15
16#include <sys/param.h>
17#include <sys/systm.h>
18#include <sys/mbuf.h>
19#include <sys/socket.h>
20#include <sys/socketvar.h>
21#include <sys/protosw.h>
22#include <sys/errno.h>
23#include <sys/time.h>
24#include <sys/kernel.h>
25#include <sys/ioctl.h>
26#include <sys/syslog.h>
27#include <sys/queue.h>
28#include <net/if.h>
29#include <net/route.h>
30#include <netinet/in.h>
31#include <netinet/in_systm.h>
32#include <netinet/ip.h>
33#include <netinet/ip_var.h>
34#include <netinet/in_pcb.h>
35#include <netinet/in_var.h>
36#include <netinet/igmp.h>
37#include <netinet/igmp_var.h>
38#include <netinet/ip_mroute.h>
39#include <netinet/udp.h>
40
41#ifndef NTOHL
42#if BYTE_ORDER != BIG_ENDIAN
43#define NTOHL(d) ((d) = ntohl((d)))
44#define NTOHS(d) ((d) = ntohs((u_short)(d)))
45#define HTONL(d) ((d) = htonl((d)))
46#define HTONS(d) ((d) = htons((u_short)(d)))
47#else
48#define NTOHL(d)
49#define NTOHS(d)
50#define HTONL(d)
51#define HTONS(d)
52#endif
53#endif
54
55#ifndef MROUTING
56/*
57 * Dummy routines and globals used when multicast routing is not compiled in.
58 */
59
60struct socket  *ip_mrouter  = NULL;
61u_int		ip_mrtproto = 0;
62struct mrtstat	mrtstat;
63u_int		rsvpdebug = 0;
64
65int
66_ip_mrouter_set(cmd, so, m)
67	int cmd;
68	struct socket *so;
69	struct mbuf *m;
70{
71	return(EOPNOTSUPP);
72}
73
74int (*ip_mrouter_set)(int, struct socket *, struct mbuf *) = _ip_mrouter_set;
75
76
77int
78_ip_mrouter_get(cmd, so, m)
79	int cmd;
80	struct socket *so;
81	struct mbuf **m;
82{
83	return(EOPNOTSUPP);
84}
85
86int (*ip_mrouter_get)(int, struct socket *, struct mbuf **) = _ip_mrouter_get;
87
88int
89_ip_mrouter_done()
90{
91	return(0);
92}
93
94int (*ip_mrouter_done)(void) = _ip_mrouter_done;
95
96int
97_ip_mforward(ip, ifp, m, imo)
98	struct ip *ip;
99	struct ifnet *ifp;
100	struct mbuf *m;
101	struct ip_moptions *imo;
102{
103	return(0);
104}
105
106int (*ip_mforward)(struct ip *, struct ifnet *, struct mbuf *,
107		   struct ip_moptions *) = _ip_mforward;
108
109int
110_mrt_ioctl(int req, caddr_t data, struct proc *p)
111{
112	return EOPNOTSUPP;
113}
114
115int (*mrt_ioctl)(int, caddr_t, struct proc *) = _mrt_ioctl;
116
117void
118rsvp_input(m, iphlen)		/* XXX must fixup manually */
119	struct mbuf *m;
120	int iphlen;
121{
122    /* Can still get packets with rsvp_on = 0 if there is a local member
123     * of the group to which the RSVP packet is addressed.  But in this
124     * case we want to throw the packet away.
125     */
126    if (!rsvp_on) {
127	m_freem(m);
128	return;
129    }
130
131    if (ip_rsvpd != NULL) {
132	if (rsvpdebug)
133	    printf("rsvp_input: Sending packet up old-style socket\n");
134	rip_input(m);
135	return;
136    }
137    /* Drop the packet */
138    m_freem(m);
139}
140
141void ipip_input(struct mbuf *m) { /* XXX must fixup manually */
142	rip_input(m);
143}
144
145int (*legal_vif_num)(int) = 0;
146
147/*
148 * This should never be called, since IP_MULTICAST_VIF should fail, but
149 * just in case it does get called, the code a little lower in ip_output
150 * will assign the packet a local address.
151 */
152u_long
153_ip_mcast_src(int vifi) { return INADDR_ANY; }
154u_long (*ip_mcast_src)(int) = _ip_mcast_src;
155
156int
157ip_rsvp_vif_init(so, m)
158    struct socket *so;
159    struct mbuf *m;
160{
161    return(EINVAL);
162}
163
164int
165ip_rsvp_vif_done(so, m)
166    struct socket *so;
167    struct mbuf *m;
168{
169    return(EINVAL);
170}
171
172void
173ip_rsvp_force_done(so)
174    struct socket *so;
175{
176    return;
177}
178
179#else /* MROUTING */
180
181#define M_HASCL(m)	((m)->m_flags & M_EXT)
182
183#define INSIZ		sizeof(struct in_addr)
184#define	same(a1, a2) \
185	(bcmp((caddr_t)(a1), (caddr_t)(a2), INSIZ) == 0)
186
187#define MT_MRTABLE MT_RTABLE	/* since nothing else uses it */
188
189/*
190 * Globals.  All but ip_mrouter and ip_mrtproto could be static,
191 * except for netstat or debugging purposes.
192 */
193#ifndef MROUTE_LKM
194struct socket  *ip_mrouter  = NULL;
195struct mrtstat	mrtstat;
196
197int		ip_mrtproto = IGMP_DVMRP;    /* for netstat only */
198#else /* MROUTE_LKM */
199extern struct mrtstat mrtstat;
200extern int ip_mrtproto;
201#endif
202
203#define NO_RTE_FOUND 	0x1
204#define RTE_FOUND	0x2
205
206struct mbuf    *mfctable[MFCTBLSIZ];
207u_char		nexpire[MFCTBLSIZ];
208struct vif	viftable[MAXVIFS];
209u_int		mrtdebug = 0;	  /* debug level 	*/
210#define		DEBUG_MFC	0x02
211#define		DEBUG_FORWARD	0x04
212#define		DEBUG_EXPIRE	0x08
213#define		DEBUG_XMIT	0x10
214u_int       	tbfdebug = 0;     /* tbf debug level 	*/
215u_int		rsvpdebug = 0;	  /* rsvp debug level   */
216
217#define		EXPIRE_TIMEOUT	(hz / 4)	/* 4x / second		*/
218#define		UPCALL_EXPIRE	6		/* number of timeouts	*/
219
220/*
221 * Define the token bucket filter structures
222 * tbftable -> each vif has one of these for storing info
223 */
224
225struct tbf tbftable[MAXVIFS];
226#define		TBF_REPROCESS	(hz / 100)	/* 100x / second */
227
228/*
229 * 'Interfaces' associated with decapsulator (so we can tell
230 * packets that went through it from ones that get reflected
231 * by a broken gateway).  These interfaces are never linked into
232 * the system ifnet list & no routes point to them.  I.e., packets
233 * can't be sent this way.  They only exist as a placeholder for
234 * multicast source verification.
235 */
236struct ifnet multicast_decap_if[MAXVIFS];
237
238#define ENCAP_TTL 64
239#define ENCAP_PROTO IPPROTO_IPIP	/* 4 */
240
241/* prototype IP hdr for encapsulated packets */
242struct ip multicast_encap_iphdr = {
243#if BYTE_ORDER == LITTLE_ENDIAN
244	sizeof(struct ip) >> 2, IPVERSION,
245#else
246	IPVERSION, sizeof(struct ip) >> 2,
247#endif
248	0,				/* tos */
249	sizeof(struct ip),		/* total length */
250	0,				/* id */
251	0,				/* frag offset */
252	ENCAP_TTL, ENCAP_PROTO,
253	0,				/* checksum */
254};
255
256/*
257 * Private variables.
258 */
259static vifi_t	   numvifs = 0;
260static void (*encap_oldrawip)() = 0;
261static int have_encap_tunnel = 0;
262
263/*
264 * one-back cache used by ipip_input to locate a tunnel's vif
265 * given a datagram's src ip address.
266 */
267static u_long last_encap_src;
268static struct vif *last_encap_vif;
269
270static int get_sg_cnt(struct sioc_sg_req *);
271static int get_vif_cnt(struct sioc_vif_req *);
272int ip_mrouter_init(struct socket *, struct mbuf *);
273static int add_vif(struct vifctl *);
274static int del_vif(vifi_t *);
275static int add_mfc(struct mfcctl *);
276static int del_mfc(struct mfcctl *);
277static int get_version(struct mbuf *);
278static int get_assert(struct mbuf *);
279static int set_assert(int *);
280static void expire_upcalls(void *);
281static int ip_mdq(struct mbuf *, struct ifnet *, struct mfc *,
282		  vifi_t);
283static void phyint_send(struct ip *, struct vif *, struct mbuf *);
284static void encap_send(struct ip *, struct vif *, struct mbuf *);
285static void tbf_control(struct vif *, struct mbuf *, struct ip *, u_long);
286static void tbf_queue(struct vif *, struct mbuf *);
287static void tbf_process_q(struct vif *);
288static void tbf_reprocess_q(void *);
289static int tbf_dq_sel(struct vif *, struct ip *);
290static void tbf_send_packet(struct vif *, struct mbuf *);
291static void tbf_update_tokens(struct vif *);
292static int priority(struct vif *, struct ip *);
293void multiencap_decap(struct mbuf *);
294
295/*
296 * whether or not special PIM assert processing is enabled.
297 */
298static int pim_assert;
299/*
300 * Rate limit for assert notification messages, in usec
301 */
302#define ASSERT_MSG_TIME		3000000
303
304/*
305 * Hash function for a source, group entry
306 */
307#define MFCHASH(a, g) MFCHASHMOD(((a) >> 20) ^ ((a) >> 10) ^ (a) ^ \
308			((g) >> 20) ^ ((g) >> 10) ^ (g))
309
310/*
311 * Find a route for a given origin IP address and Multicast group address
312 * Type of service parameter to be added in the future!!!
313 */
314
315#define MFCFIND(o, g, rt) { \
316	register struct mbuf *_mb_rt = mfctable[MFCHASH(o,g)]; \
317	register struct mfc *_rt = NULL; \
318	rt = NULL; \
319	++mrtstat.mrts_mfc_lookups; \
320	while (_mb_rt) { \
321		_rt = mtod(_mb_rt, struct mfc *); \
322		if ((_rt->mfc_origin.s_addr == o) && \
323		    (_rt->mfc_mcastgrp.s_addr == g) && \
324		    (_mb_rt->m_act == NULL)) { \
325			rt = _rt; \
326			break; \
327		} \
328		_mb_rt = _mb_rt->m_next; \
329	} \
330	if (rt == NULL) { \
331		++mrtstat.mrts_mfc_misses; \
332	} \
333}
334
335
336/*
337 * Macros to compute elapsed time efficiently
338 * Borrowed from Van Jacobson's scheduling code
339 */
340#define TV_DELTA(a, b, delta) { \
341	    register int xxs; \
342		\
343	    delta = (a).tv_usec - (b).tv_usec; \
344	    if ((xxs = (a).tv_sec - (b).tv_sec)) { \
345	       switch (xxs) { \
346		      case 2: \
347			  delta += 1000000; \
348			      /* fall through */ \
349		      case 1: \
350			  delta += 1000000; \
351			  break; \
352		      default: \
353			  delta += (1000000 * xxs); \
354	       } \
355	    } \
356}
357
358#define TV_LT(a, b) (((a).tv_usec < (b).tv_usec && \
359	      (a).tv_sec <= (b).tv_sec) || (a).tv_sec < (b).tv_sec)
360
361#ifdef UPCALL_TIMING
362u_long upcall_data[51];
363static void collate(struct timeval *);
364#endif /* UPCALL_TIMING */
365
366
367/*
368 * Handle MRT setsockopt commands to modify the multicast routing tables.
369 */
370int
371X_ip_mrouter_set(cmd, so, m)
372    int cmd;
373    struct socket *so;
374    struct mbuf *m;
375{
376   if (cmd != MRT_INIT && so != ip_mrouter) return EACCES;
377
378    switch (cmd) {
379	case MRT_INIT:     return ip_mrouter_init(so, m);
380	case MRT_DONE:     return ip_mrouter_done();
381	case MRT_ADD_VIF:  return add_vif (mtod(m, struct vifctl *));
382	case MRT_DEL_VIF:  return del_vif (mtod(m, vifi_t *));
383	case MRT_ADD_MFC:  return add_mfc (mtod(m, struct mfcctl *));
384	case MRT_DEL_MFC:  return del_mfc (mtod(m, struct mfcctl *));
385	case MRT_ASSERT:   return set_assert(mtod(m, int *));
386	default:             return EOPNOTSUPP;
387    }
388}
389
390#ifndef MROUTE_LKM
391int (*ip_mrouter_set)(int, struct socket *, struct mbuf *) = X_ip_mrouter_set;
392#endif
393
394/*
395 * Handle MRT getsockopt commands
396 */
397int
398X_ip_mrouter_get(cmd, so, m)
399    int cmd;
400    struct socket *so;
401    struct mbuf **m;
402{
403    struct mbuf *mb;
404
405    if (so != ip_mrouter) return EACCES;
406
407    *m = mb = m_get(M_WAIT, MT_SOOPTS);
408
409    switch (cmd) {
410	case MRT_VERSION:   return get_version(mb);
411	case MRT_ASSERT:    return get_assert(mb);
412	default:            return EOPNOTSUPP;
413    }
414}
415
416#ifndef MROUTE_LKM
417int (*ip_mrouter_get)(int, struct socket *, struct mbuf **) = X_ip_mrouter_get;
418#endif
419
420/*
421 * Handle ioctl commands to obtain information from the cache
422 */
423int
424X_mrt_ioctl(cmd, data)
425    int cmd;
426    caddr_t data;
427{
428    int error = 0;
429
430    switch (cmd) {
431	case (SIOCGETVIFCNT):
432	    return (get_vif_cnt((struct sioc_vif_req *)data));
433	    break;
434	case (SIOCGETSGCNT):
435	    return (get_sg_cnt((struct sioc_sg_req *)data));
436	    break;
437	default:
438	    return (EINVAL);
439	    break;
440    }
441    return error;
442}
443
444#ifndef MROUTE_LKM
445int (*mrt_ioctl)(int, caddr_t, struct proc *) = X_mrt_ioctl;
446#endif
447
448/*
449 * returns the packet, byte, rpf-failure count for the source group provided
450 */
451static int
452get_sg_cnt(req)
453    register struct sioc_sg_req *req;
454{
455    register struct mfc *rt;
456    int s;
457
458    s = splnet();
459    MFCFIND(req->src.s_addr, req->grp.s_addr, rt);
460    splx(s);
461    if (rt != NULL) {
462	req->pktcnt = rt->mfc_pkt_cnt;
463	req->bytecnt = rt->mfc_byte_cnt;
464	req->wrong_if = rt->mfc_wrong_if;
465    } else
466	req->pktcnt = req->bytecnt = req->wrong_if = 0xffffffff;
467
468    return 0;
469}
470
471/*
472 * returns the input and output packet and byte counts on the vif provided
473 */
474static int
475get_vif_cnt(req)
476    register struct sioc_vif_req *req;
477{
478    register vifi_t vifi = req->vifi;
479
480    if (vifi >= numvifs) return EINVAL;
481
482    req->icount = viftable[vifi].v_pkt_in;
483    req->ocount = viftable[vifi].v_pkt_out;
484    req->ibytes = viftable[vifi].v_bytes_in;
485    req->obytes = viftable[vifi].v_bytes_out;
486
487    return 0;
488}
489
490/*
491 * Enable multicast routing
492 */
493int
494ip_mrouter_init(so, m)
495	struct socket *so;
496	struct mbuf *m;
497{
498    int *v;
499
500    if (mrtdebug)
501	log(LOG_DEBUG,"ip_mrouter_init: so_type = %d, pr_protocol = %d\n",
502		so->so_type, so->so_proto->pr_protocol);
503
504    if (so->so_type != SOCK_RAW ||
505	so->so_proto->pr_protocol != IPPROTO_IGMP) return EOPNOTSUPP;
506
507    if (!m || (m->m_len != sizeof(int *)))
508	return ENOPROTOOPT;
509
510    v = mtod(m, int *);
511    if (*v != 1)
512	return ENOPROTOOPT;
513
514    if (ip_mrouter != NULL) return EADDRINUSE;
515
516    ip_mrouter = so;
517
518    bzero((caddr_t)mfctable, sizeof(mfctable));
519    bzero((caddr_t)nexpire, sizeof(nexpire));
520
521    pim_assert = 0;
522
523    timeout(expire_upcalls, (caddr_t)NULL, EXPIRE_TIMEOUT);
524
525    if (mrtdebug)
526	log(LOG_DEBUG, "ip_mrouter_init\n");
527
528    return 0;
529}
530
531/*
532 * Disable multicast routing
533 */
534int
535X_ip_mrouter_done()
536{
537    vifi_t vifi;
538    int i;
539    struct ifnet *ifp;
540    struct ifreq ifr;
541    struct mbuf *mb_rt;
542    struct mbuf *m;
543    struct rtdetq *rte;
544    int s;
545
546    s = splnet();
547
548    /*
549     * For each phyint in use, disable promiscuous reception of all IP
550     * multicasts.
551     */
552    for (vifi = 0; vifi < numvifs; vifi++) {
553	if (viftable[vifi].v_lcl_addr.s_addr != 0 &&
554	    !(viftable[vifi].v_flags & VIFF_TUNNEL)) {
555	    ((struct sockaddr_in *)&(ifr.ifr_addr))->sin_family = AF_INET;
556	    ((struct sockaddr_in *)&(ifr.ifr_addr))->sin_addr.s_addr
557								= INADDR_ANY;
558	    ifp = viftable[vifi].v_ifp;
559	    (*ifp->if_ioctl)(ifp, SIOCDELMULTI, (caddr_t)&ifr);
560	}
561    }
562    bzero((caddr_t)tbftable, sizeof(tbftable));
563    bzero((caddr_t)viftable, sizeof(viftable));
564    numvifs = 0;
565    pim_assert = 0;
566
567    untimeout(expire_upcalls, (caddr_t)NULL);
568
569    /*
570     * Free all multicast forwarding cache entries.
571     */
572    for (i = 0; i < MFCTBLSIZ; i++) {
573	mb_rt = mfctable[i];
574	while (mb_rt) {
575	    if (mb_rt->m_act != NULL) {
576		while (mb_rt->m_act) {
577		    m = mb_rt->m_act;
578		    mb_rt->m_act = m->m_act;
579		    rte = mtod(m, struct rtdetq *);
580		    m_freem(rte->m);
581		    m_free(m);
582		}
583	    }
584	    mb_rt = m_free(mb_rt);
585	}
586    }
587
588    bzero((caddr_t)mfctable, sizeof(mfctable));
589
590    /*
591     * Reset de-encapsulation cache
592     */
593    last_encap_src = NULL;
594    last_encap_vif = NULL;
595    have_encap_tunnel = 0;
596
597    ip_mrouter = NULL;
598
599    splx(s);
600
601    if (mrtdebug)
602	log(LOG_DEBUG, "ip_mrouter_done\n");
603
604    return 0;
605}
606
607#ifndef MROUTE_LKM
608int (*ip_mrouter_done)(void) = X_ip_mrouter_done;
609#endif
610
611static int
612get_version(mb)
613    struct mbuf *mb;
614{
615    int *v;
616
617    v = mtod(mb, int *);
618
619    *v = 0x0305;	/* XXX !!!! */
620    mb->m_len = sizeof(int);
621
622    return 0;
623}
624
625/*
626 * Set PIM assert processing global
627 */
628static int
629set_assert(i)
630    int *i;
631{
632    if ((*i != 1) && (*i != 0))
633	return EINVAL;
634
635    pim_assert = *i;
636
637    return 0;
638}
639
640/*
641 * Get PIM assert processing global
642 */
643static int
644get_assert(m)
645    struct mbuf *m;
646{
647    int *i;
648
649    i = mtod(m, int *);
650
651    *i = pim_assert;
652
653    return 0;
654}
655
656/*
657 * Add a vif to the vif table
658 */
659static int
660add_vif(vifcp)
661    register struct vifctl *vifcp;
662{
663    register struct vif *vifp = viftable + vifcp->vifc_vifi;
664    static struct sockaddr_in sin = {sizeof sin, AF_INET};
665    struct ifaddr *ifa;
666    struct ifnet *ifp;
667    struct ifreq ifr;
668    int error, s;
669    struct tbf *v_tbf = tbftable + vifcp->vifc_vifi;
670
671    if (vifcp->vifc_vifi >= MAXVIFS)  return EINVAL;
672    if (vifp->v_lcl_addr.s_addr != 0) return EADDRINUSE;
673
674    /* Find the interface with an address in AF_INET family */
675    sin.sin_addr = vifcp->vifc_lcl_addr;
676    ifa = ifa_ifwithaddr((struct sockaddr *)&sin);
677    if (ifa == 0) return EADDRNOTAVAIL;
678    ifp = ifa->ifa_ifp;
679
680    if (vifcp->vifc_flags & VIFF_TUNNEL) {
681	if ((vifcp->vifc_flags & VIFF_SRCRT) == 0) {
682		/*
683		 * An encapsulating tunnel is wanted.  Tell ipip_input() to
684		 * start paying attention to encapsulated packets.
685		 */
686		if (have_encap_tunnel == 0) {
687			have_encap_tunnel = 1;
688			for (s = 0; s < MAXVIFS; ++s) {
689				multicast_decap_if[s].if_name = "mdecap";
690				multicast_decap_if[s].if_unit = s;
691			}
692		}
693		/*
694		 * Set interface to fake encapsulator interface
695		 */
696		ifp = &multicast_decap_if[vifcp->vifc_vifi];
697		/*
698		 * Prepare cached route entry
699		 */
700		bzero(&vifp->v_route, sizeof(vifp->v_route));
701	} else {
702	    log(LOG_ERR, "source routed tunnels not supported\n");
703	    return EOPNOTSUPP;
704	}
705    } else {
706	/* Make sure the interface supports multicast */
707	if ((ifp->if_flags & IFF_MULTICAST) == 0)
708	    return EOPNOTSUPP;
709
710	/* Enable promiscuous reception of all IP multicasts from the if */
711	((struct sockaddr_in *)&(ifr.ifr_addr))->sin_family = AF_INET;
712	((struct sockaddr_in *)&(ifr.ifr_addr))->sin_addr.s_addr = INADDR_ANY;
713	s = splnet();
714	error = (*ifp->if_ioctl)(ifp, SIOCADDMULTI, (caddr_t)&ifr);
715	splx(s);
716	if (error)
717	    return error;
718    }
719
720    s = splnet();
721    /* define parameters for the tbf structure */
722    vifp->v_tbf = v_tbf;
723    GET_TIME(vifp->v_tbf->tbf_last_pkt_t);
724    vifp->v_tbf->tbf_n_tok = 0;
725    vifp->v_tbf->tbf_q_len = 0;
726    vifp->v_tbf->tbf_max_q_len = MAXQSIZE;
727    vifp->v_tbf->tbf_q = vifp->v_tbf->tbf_t = NULL;
728
729    vifp->v_flags     = vifcp->vifc_flags;
730    vifp->v_threshold = vifcp->vifc_threshold;
731    vifp->v_lcl_addr  = vifcp->vifc_lcl_addr;
732    vifp->v_rmt_addr  = vifcp->vifc_rmt_addr;
733    vifp->v_ifp       = ifp;
734    /* scaling up here allows division by 1024 in critical code */
735    vifp->v_rate_limit= vifcp->vifc_rate_limit * 1024 / 1000;
736    vifp->v_rsvp_on   = 0;
737    vifp->v_rsvpd     = NULL;
738    /* initialize per vif pkt counters */
739    vifp->v_pkt_in    = 0;
740    vifp->v_pkt_out   = 0;
741    vifp->v_bytes_in  = 0;
742    vifp->v_bytes_out = 0;
743    splx(s);
744
745    /* Adjust numvifs up if the vifi is higher than numvifs */
746    if (numvifs <= vifcp->vifc_vifi) numvifs = vifcp->vifc_vifi + 1;
747
748    if (mrtdebug)
749	log(LOG_DEBUG, "add_vif #%d, lcladdr %x, %s %x, thresh %x, rate %d\n",
750	    vifcp->vifc_vifi,
751	    ntohl(vifcp->vifc_lcl_addr.s_addr),
752	    (vifcp->vifc_flags & VIFF_TUNNEL) ? "rmtaddr" : "mask",
753	    ntohl(vifcp->vifc_rmt_addr.s_addr),
754	    vifcp->vifc_threshold,
755	    vifcp->vifc_rate_limit);
756
757    return 0;
758}
759
760/*
761 * Delete a vif from the vif table
762 */
763static int
764del_vif(vifip)
765    vifi_t *vifip;
766{
767    register struct vif *vifp = viftable + *vifip;
768    register vifi_t vifi;
769    register struct mbuf *m;
770    struct ifnet *ifp;
771    struct ifreq ifr;
772    int s;
773
774    if (*vifip >= numvifs) return EINVAL;
775    if (vifp->v_lcl_addr.s_addr == 0) return EADDRNOTAVAIL;
776
777    s = splnet();
778
779    if (!(vifp->v_flags & VIFF_TUNNEL)) {
780	((struct sockaddr_in *)&(ifr.ifr_addr))->sin_family = AF_INET;
781	((struct sockaddr_in *)&(ifr.ifr_addr))->sin_addr.s_addr = INADDR_ANY;
782	ifp = vifp->v_ifp;
783	(*ifp->if_ioctl)(ifp, SIOCDELMULTI, (caddr_t)&ifr);
784    }
785
786    if (vifp == last_encap_vif) {
787	last_encap_vif = 0;
788	last_encap_src = 0;
789    }
790
791    /*
792     * Free packets queued at the interface
793     */
794    while (vifp->v_tbf->tbf_q) {
795	m = vifp->v_tbf->tbf_q;
796	vifp->v_tbf->tbf_q = m->m_act;
797	m_freem(m);
798    }
799
800    bzero((caddr_t)vifp->v_tbf, sizeof(*(vifp->v_tbf)));
801    bzero((caddr_t)vifp, sizeof (*vifp));
802
803    /* Adjust numvifs down */
804    for (vifi = numvifs; vifi > 0; vifi--)
805	if (viftable[vifi-1].v_lcl_addr.s_addr != 0) break;
806    numvifs = vifi;
807
808    splx(s);
809
810    if (mrtdebug)
811      log(LOG_DEBUG, "del_vif %d, numvifs %d\n", *vifip, numvifs);
812
813    return 0;
814}
815
816/*
817 * Add an mfc entry
818 */
819static int
820add_mfc(mfccp)
821    struct mfcctl *mfccp;
822{
823    struct mfc *rt;
824    register struct mbuf *mb_rt;
825    u_long hash;
826    struct mbuf *mb_ntry;
827    struct rtdetq *rte;
828    register u_short nstl;
829    int s;
830    int i;
831
832    MFCFIND(mfccp->mfcc_origin.s_addr, mfccp->mfcc_mcastgrp.s_addr, rt);
833
834    /* If an entry already exists, just update the fields */
835    if (rt) {
836	if (mrtdebug & DEBUG_MFC)
837	    log(LOG_DEBUG,"add_mfc update o %x g %x p %x\n",
838		ntohl(mfccp->mfcc_origin.s_addr),
839		ntohl(mfccp->mfcc_mcastgrp.s_addr),
840		mfccp->mfcc_parent);
841
842	s = splnet();
843	rt->mfc_parent = mfccp->mfcc_parent;
844	for (i = 0; i < numvifs; i++)
845	    rt->mfc_ttls[i] = mfccp->mfcc_ttls[i];
846	splx(s);
847	return 0;
848    }
849
850    /*
851     * Find the entry for which the upcall was made and update
852     */
853    s = splnet();
854    hash = MFCHASH(mfccp->mfcc_origin.s_addr, mfccp->mfcc_mcastgrp.s_addr);
855    for (mb_rt = mfctable[hash], nstl = 0; mb_rt; mb_rt = mb_rt->m_next) {
856
857	rt = mtod(mb_rt, struct mfc *);
858	if ((rt->mfc_origin.s_addr == mfccp->mfcc_origin.s_addr) &&
859	    (rt->mfc_mcastgrp.s_addr == mfccp->mfcc_mcastgrp.s_addr) &&
860	    (mb_rt->m_act != NULL)) {
861
862	    if (nstl++)
863		log(LOG_ERR, "add_mfc %s o %x g %x p %x dbx %x\n",
864		    "multiple kernel entries",
865		    ntohl(mfccp->mfcc_origin.s_addr),
866		    ntohl(mfccp->mfcc_mcastgrp.s_addr),
867		    mfccp->mfcc_parent, mb_rt->m_act);
868
869	    if (mrtdebug & DEBUG_MFC)
870		log(LOG_DEBUG,"add_mfc o %x g %x p %x dbg %x\n",
871		    ntohl(mfccp->mfcc_origin.s_addr),
872		    ntohl(mfccp->mfcc_mcastgrp.s_addr),
873		    mfccp->mfcc_parent, mb_rt->m_act);
874
875	    rt->mfc_origin     = mfccp->mfcc_origin;
876	    rt->mfc_mcastgrp   = mfccp->mfcc_mcastgrp;
877	    rt->mfc_parent     = mfccp->mfcc_parent;
878	    for (i = 0; i < numvifs; i++)
879		rt->mfc_ttls[i] = mfccp->mfcc_ttls[i];
880	    /* initialize pkt counters per src-grp */
881	    rt->mfc_pkt_cnt    = 0;
882	    rt->mfc_byte_cnt   = 0;
883	    rt->mfc_wrong_if   = 0;
884	    rt->mfc_last_assert.tv_sec = rt->mfc_last_assert.tv_usec = 0;
885
886	    rt->mfc_expire = 0;	/* Don't clean this guy up */
887	    nexpire[hash]--;
888
889	    /* free packets Qed at the end of this entry */
890	    while (mb_rt->m_act) {
891		mb_ntry = mb_rt->m_act;
892		rte = mtod(mb_ntry, struct rtdetq *);
893/* #ifdef RSVP_ISI */
894		ip_mdq(rte->m, rte->ifp, rt, -1);
895/* #endif */
896		mb_rt->m_act = mb_ntry->m_act;
897		m_freem(rte->m);
898#ifdef UPCALL_TIMING
899		collate(&(rte->t));
900#endif /* UPCALL_TIMING */
901		m_free(mb_ntry);
902	    }
903	}
904    }
905
906    /*
907     * It is possible that an entry is being inserted without an upcall
908     */
909    if (nstl == 0) {
910	if (mrtdebug & DEBUG_MFC)
911	    log(LOG_DEBUG,"add_mfc no upcall h %d o %x g %x p %x\n",
912		hash, ntohl(mfccp->mfcc_origin.s_addr),
913		ntohl(mfccp->mfcc_mcastgrp.s_addr),
914		mfccp->mfcc_parent);
915
916	for (mb_rt = mfctable[hash]; mb_rt; mb_rt = mb_rt->m_next) {
917
918	    rt = mtod(mb_rt, struct mfc *);
919	    if ((rt->mfc_origin.s_addr == mfccp->mfcc_origin.s_addr) &&
920		(rt->mfc_mcastgrp.s_addr == mfccp->mfcc_mcastgrp.s_addr)) {
921
922		rt->mfc_origin     = mfccp->mfcc_origin;
923		rt->mfc_mcastgrp   = mfccp->mfcc_mcastgrp;
924		rt->mfc_parent     = mfccp->mfcc_parent;
925		for (i = 0; i < numvifs; i++)
926		    rt->mfc_ttls[i] = mfccp->mfcc_ttls[i];
927		/* initialize pkt counters per src-grp */
928		rt->mfc_pkt_cnt    = 0;
929		rt->mfc_byte_cnt   = 0;
930		rt->mfc_wrong_if   = 0;
931		rt->mfc_last_assert.tv_sec = rt->mfc_last_assert.tv_usec = 0;
932		if (rt->mfc_expire)
933		    nexpire[hash]--;
934		rt->mfc_expire	   = 0;
935	    }
936	}
937	if (mb_rt == NULL) {
938	    /* no upcall, so make a new entry */
939	    MGET(mb_rt, M_DONTWAIT, MT_MRTABLE);
940	    if (mb_rt == NULL) {
941		splx(s);
942		return ENOBUFS;
943	    }
944
945	    rt = mtod(mb_rt, struct mfc *);
946
947	    /* insert new entry at head of hash chain */
948	    rt->mfc_origin     = mfccp->mfcc_origin;
949	    rt->mfc_mcastgrp   = mfccp->mfcc_mcastgrp;
950	    rt->mfc_parent     = mfccp->mfcc_parent;
951	    for (i = 0; i < numvifs; i++)
952		    rt->mfc_ttls[i] = mfccp->mfcc_ttls[i];
953	    /* initialize pkt counters per src-grp */
954	    rt->mfc_pkt_cnt    = 0;
955	    rt->mfc_byte_cnt   = 0;
956	    rt->mfc_wrong_if   = 0;
957	    rt->mfc_last_assert.tv_sec = rt->mfc_last_assert.tv_usec = 0;
958	    rt->mfc_expire     = 0;
959
960	    /* link into table */
961	    mb_rt->m_next  = mfctable[hash];
962	    mfctable[hash] = mb_rt;
963	    mb_rt->m_act = NULL;
964	}
965    }
966    splx(s);
967    return 0;
968}
969
970#ifdef UPCALL_TIMING
971/*
972 * collect delay statistics on the upcalls
973 */
974static void collate(t)
975register struct timeval *t;
976{
977    register u_long d;
978    register struct timeval tp;
979    register u_long delta;
980
981    GET_TIME(tp);
982
983    if (TV_LT(*t, tp))
984    {
985	TV_DELTA(tp, *t, delta);
986
987	d = delta >> 10;
988	if (d > 50)
989	    d = 50;
990
991	++upcall_data[d];
992    }
993}
994#endif /* UPCALL_TIMING */
995
996/*
997 * Delete an mfc entry
998 */
999static int
1000del_mfc(mfccp)
1001    struct mfcctl *mfccp;
1002{
1003    struct in_addr 	origin;
1004    struct in_addr 	mcastgrp;
1005    struct mfc 		*rt;
1006    struct mbuf 	*mb_rt;
1007    struct mbuf 	**nptr;
1008    u_long 		hash;
1009    int s;
1010
1011    origin = mfccp->mfcc_origin;
1012    mcastgrp = mfccp->mfcc_mcastgrp;
1013    hash = MFCHASH(origin.s_addr, mcastgrp.s_addr);
1014
1015    if (mrtdebug & DEBUG_MFC)
1016	log(LOG_DEBUG,"del_mfc orig %x mcastgrp %x\n",
1017	    ntohl(origin.s_addr), ntohl(mcastgrp.s_addr));
1018
1019    s = splnet();
1020
1021    nptr = &mfctable[hash];
1022    while ((mb_rt = *nptr) != NULL) {
1023        rt = mtod(mb_rt, struct mfc *);
1024	if (origin.s_addr == rt->mfc_origin.s_addr &&
1025	    mcastgrp.s_addr == rt->mfc_mcastgrp.s_addr &&
1026	    mb_rt->m_act == NULL)
1027	    break;
1028
1029	nptr = &mb_rt->m_next;
1030    }
1031    if (mb_rt == NULL) {
1032	splx(s);
1033	return EADDRNOTAVAIL;
1034    }
1035
1036    MFREE(mb_rt, *nptr);
1037
1038    splx(s);
1039
1040    return 0;
1041}
1042
1043/*
1044 * Send a message to mrouted on the multicast routing socket
1045 */
1046static int
1047socket_send(s, mm, src)
1048	struct socket *s;
1049	struct mbuf *mm;
1050	struct sockaddr_in *src;
1051{
1052	if (s) {
1053		if (sbappendaddr(&s->so_rcv,
1054				 (struct sockaddr *)src,
1055				 mm, (struct mbuf *)0) != 0) {
1056			sorwakeup(s);
1057			return 0;
1058		}
1059	}
1060	m_freem(mm);
1061	return -1;
1062}
1063
1064/*
1065 * IP multicast forwarding function. This function assumes that the packet
1066 * pointed to by "ip" has arrived on (or is about to be sent to) the interface
1067 * pointed to by "ifp", and the packet is to be relayed to other networks
1068 * that have members of the packet's destination IP multicast group.
1069 *
1070 * The packet is returned unscathed to the caller, unless it is
1071 * erroneous, in which case a non-zero return value tells the caller to
1072 * discard it.
1073 */
1074
1075#define IP_HDR_LEN  20	/* # bytes of fixed IP header (excluding options) */
1076#define TUNNEL_LEN  12  /* # bytes of IP option for tunnel encapsulation  */
1077
1078int
1079X_ip_mforward(ip, ifp, m, imo)
1080    register struct ip *ip;
1081    struct ifnet *ifp;
1082    struct mbuf *m;
1083    struct ip_moptions *imo;
1084{
1085    register struct mfc *rt = 0; /* XXX uninit warning */
1086    register u_char *ipoptions;
1087    static struct sockaddr_in 	k_igmpsrc	= { sizeof k_igmpsrc, AF_INET };
1088    static int srctun = 0;
1089    register struct mbuf *mm;
1090    int s;
1091    vifi_t vifi;
1092    struct vif *vifp;
1093
1094    if (mrtdebug & DEBUG_FORWARD)
1095	log(LOG_DEBUG, "ip_mforward: src %x, dst %x, ifp %x\n",
1096	    ntohl(ip->ip_src.s_addr), ntohl(ip->ip_dst.s_addr), ifp);
1097
1098    if (ip->ip_hl < (IP_HDR_LEN + TUNNEL_LEN) >> 2 ||
1099	(ipoptions = (u_char *)(ip + 1))[1] != IPOPT_LSRR ) {
1100	/*
1101	 * Packet arrived via a physical interface or
1102	 * an encapsulated tunnel.
1103	 */
1104    } else {
1105	/*
1106	 * Packet arrived through a source-route tunnel.
1107	 * Source-route tunnels are no longer supported.
1108	 */
1109	if ((srctun++ % 1000) == 0)
1110	    log(LOG_ERR, "ip_mforward: received source-routed packet from %x\n",
1111		ntohl(ip->ip_src.s_addr));
1112
1113	return 1;
1114    }
1115
1116    if ((imo) && ((vifi = imo->imo_multicast_vif) < numvifs)) {
1117	if (ip->ip_ttl < 255)
1118		ip->ip_ttl++;	/* compensate for -1 in *_send routines */
1119	if (rsvpdebug && ip->ip_p == IPPROTO_RSVP) {
1120	    vifp = viftable + vifi;
1121	    printf("Sending IPPROTO_RSVP from %x to %x on vif %d (%s%s%d)\n",
1122		ntohl(ip->ip_src.s_addr), ntohl(ip->ip_dst.s_addr), vifi,
1123		(vifp->v_flags & VIFF_TUNNEL) ? "tunnel on " : "",
1124		vifp->v_ifp->if_name, vifp->v_ifp->if_unit);
1125	}
1126	return (ip_mdq(m, ifp, rt, vifi));
1127    }
1128    if (rsvpdebug && ip->ip_p == IPPROTO_RSVP) {
1129	printf("Warning: IPPROTO_RSVP from %x to %x without vif option\n",
1130	    ntohl(ip->ip_src.s_addr), ntohl(ip->ip_dst.s_addr));
1131	if(!imo)
1132		printf("In fact, no options were specified at all\n");
1133    }
1134
1135    /*
1136     * Don't forward a packet with time-to-live of zero or one,
1137     * or a packet destined to a local-only group.
1138     */
1139    if (ip->ip_ttl <= 1 ||
1140	ntohl(ip->ip_dst.s_addr) <= INADDR_MAX_LOCAL_GROUP)
1141	return 0;
1142
1143    /*
1144     * Determine forwarding vifs from the forwarding cache table
1145     */
1146    s = splnet();
1147    MFCFIND(ip->ip_src.s_addr, ip->ip_dst.s_addr, rt);
1148
1149    /* Entry exists, so forward if necessary */
1150    if (rt != NULL) {
1151	splx(s);
1152	return (ip_mdq(m, ifp, rt, -1));
1153    } else {
1154	/*
1155	 * If we don't have a route for packet's origin,
1156	 * Make a copy of the packet &
1157	 * send message to routing daemon
1158	 */
1159
1160	register struct mbuf *mb_rt;
1161	register struct mbuf *mb_ntry;
1162	register struct mbuf *mb0;
1163	register struct rtdetq *rte;
1164	register struct mbuf *rte_m;
1165	register u_long hash;
1166	register int npkts;
1167#ifdef UPCALL_TIMING
1168	struct timeval tp;
1169
1170	GET_TIME(tp);
1171#endif
1172
1173	mrtstat.mrts_no_route++;
1174	if (mrtdebug & (DEBUG_FORWARD | DEBUG_MFC))
1175	    log(LOG_DEBUG, "ip_mforward: no rte s %x g %x\n",
1176		ntohl(ip->ip_src.s_addr),
1177		ntohl(ip->ip_dst.s_addr));
1178
1179	/*
1180	 * Allocate mbufs early so that we don't do extra work if we are
1181	 * just going to fail anyway.
1182	 */
1183	MGET(mb_ntry, M_DONTWAIT, MT_DATA);
1184	if (mb_ntry == NULL) {
1185	    splx(s);
1186	    return ENOBUFS;
1187	}
1188	mb0 = m_copy(m, 0, M_COPYALL);
1189	if (mb0 == NULL) {
1190	    m_free(mb_ntry);
1191	    splx(s);
1192	    return ENOBUFS;
1193	}
1194
1195	/* is there an upcall waiting for this packet? */
1196	hash = MFCHASH(ip->ip_src.s_addr, ip->ip_dst.s_addr);
1197	for (mb_rt = mfctable[hash]; mb_rt; mb_rt = mb_rt->m_next) {
1198	    rt = mtod(mb_rt, struct mfc *);
1199	    if ((ip->ip_src.s_addr == rt->mfc_origin.s_addr) &&
1200		(ip->ip_dst.s_addr == rt->mfc_mcastgrp.s_addr) &&
1201		(mb_rt->m_act != NULL))
1202		break;
1203	}
1204
1205	if (mb_rt == NULL) {
1206	    int hlen = ip->ip_hl << 2;
1207	    int i;
1208	    struct igmpmsg *im;
1209
1210	    /* no upcall, so make a new entry */
1211	    MGET(mb_rt, M_DONTWAIT, MT_MRTABLE);
1212	    if (mb_rt == NULL) {
1213		m_free(mb_ntry);
1214		m_freem(mb0);
1215		splx(s);
1216		return ENOBUFS;
1217	    }
1218	    /* Make a copy of the header to send to the user level process */
1219	    mm = m_copy(m, 0, hlen);
1220	    if (mm && (M_HASCL(mm) || mm->m_len < hlen))
1221		mm = m_pullup(mm, hlen);
1222	    if (mm == NULL) {
1223		m_free(mb_ntry);
1224		m_freem(mb0);
1225		m_free(mb_rt);
1226		splx(s);
1227		return ENOBUFS;
1228	    }
1229
1230	    /*
1231	     * Send message to routing daemon to install
1232	     * a route into the kernel table
1233	     */
1234	    k_igmpsrc.sin_addr = ip->ip_src;
1235
1236	    im = mtod(mm, struct igmpmsg *);
1237	    im->im_msgtype	= IGMPMSG_NOCACHE;
1238	    im->im_mbz		= 0;
1239
1240	    mrtstat.mrts_upcalls++;
1241
1242	    if (socket_send(ip_mrouter, mm, &k_igmpsrc) < 0) {
1243		log(LOG_WARNING, "ip_mforward: ip_mrouter socket queue full\n");
1244		++mrtstat.mrts_upq_sockfull;
1245		m_free(mb_ntry);
1246		m_freem(mb0);
1247		m_free(mb_rt);
1248		splx(s);
1249		return ENOBUFS;
1250	    }
1251
1252	    rt = mtod(mb_rt, struct mfc *);
1253
1254	    /* insert new entry at head of hash chain */
1255	    rt->mfc_origin.s_addr     = ip->ip_src.s_addr;
1256	    rt->mfc_mcastgrp.s_addr   = ip->ip_dst.s_addr;
1257	    rt->mfc_expire	      = UPCALL_EXPIRE;
1258	    nexpire[hash]++;
1259	    for (i = 0; i < numvifs; i++)
1260		rt->mfc_ttls[i] = 0;
1261	    rt->mfc_parent = -1;
1262
1263	    /* link into table */
1264	    mb_rt->m_next  = mfctable[hash];
1265	    mfctable[hash] = mb_rt;
1266	    mb_rt->m_act = NULL;
1267
1268	    rte_m = mb_rt;
1269	} else {
1270	    /* determine if q has overflowed */
1271	    for (rte_m = mb_rt, npkts = 0; rte_m->m_act; rte_m = rte_m->m_act)
1272		npkts++;
1273
1274	    if (npkts > MAX_UPQ) {
1275		mrtstat.mrts_upq_ovflw++;
1276		m_free(mb_ntry);
1277		m_freem(mb0);
1278		splx(s);
1279		return 0;
1280	    }
1281	}
1282
1283	mb_ntry->m_act = NULL;
1284	rte = mtod(mb_ntry, struct rtdetq *);
1285
1286	rte->m 			= mb0;
1287	rte->ifp 		= ifp;
1288#ifdef UPCALL_TIMING
1289	rte->t			= tp;
1290#endif
1291
1292	/* Add this entry to the end of the queue */
1293	rte_m->m_act		= mb_ntry;
1294
1295	splx(s);
1296
1297	return 0;
1298    }
1299}
1300
1301#ifndef MROUTE_LKM
1302int (*ip_mforward)(struct ip *, struct ifnet *, struct mbuf *,
1303		   struct ip_moptions *) = X_ip_mforward;
1304#endif
1305
1306/*
1307 * Clean up the cache entry if upcall is not serviced
1308 */
1309static void
1310expire_upcalls(void *unused)
1311{
1312    struct mbuf *mb_rt, *m, **nptr;
1313    struct rtdetq *rte;
1314    struct mfc *mfc;
1315    int i;
1316    int s;
1317
1318    s = splnet();
1319    for (i = 0; i < MFCTBLSIZ; i++) {
1320	if (nexpire[i] == 0)
1321	    continue;
1322	nptr = &mfctable[i];
1323	for (mb_rt = *nptr; mb_rt != NULL; mb_rt = *nptr) {
1324	    mfc = mtod(mb_rt, struct mfc *);
1325
1326	    /*
1327	     * Skip real cache entries
1328	     * Make sure it wasn't marked to not expire (shouldn't happen)
1329	     * If it expires now
1330	     */
1331	    if (mb_rt->m_act != NULL &&
1332	        mfc->mfc_expire != 0 &&
1333		--mfc->mfc_expire == 0) {
1334		if (mrtdebug & DEBUG_EXPIRE)
1335		    log(LOG_DEBUG, "expire_upcalls: expiring (%x %x)\n",
1336			ntohl(mfc->mfc_origin.s_addr),
1337			ntohl(mfc->mfc_mcastgrp.s_addr));
1338		/*
1339		 * drop all the packets
1340		 * free the mbuf with the pkt, if, timing info
1341		 */
1342		while (mb_rt->m_act) {
1343		    m = mb_rt->m_act;
1344		    mb_rt->m_act = m->m_act;
1345
1346		    rte = mtod(m, struct rtdetq *);
1347		    m_freem(rte->m);
1348		    m_free(m);
1349		}
1350		++mrtstat.mrts_cache_cleanups;
1351		nexpire[i]--;
1352
1353		MFREE(mb_rt, *nptr);
1354	    } else {
1355		nptr = &mb_rt->m_next;
1356	    }
1357	}
1358    }
1359    splx(s);
1360    timeout(expire_upcalls, (caddr_t)NULL, EXPIRE_TIMEOUT);
1361}
1362
1363/*
1364 * Packet forwarding routine once entry in the cache is made
1365 */
1366static int
1367ip_mdq(m, ifp, rt, xmt_vif)
1368    register struct mbuf *m;
1369    register struct ifnet *ifp;
1370    register struct mfc *rt;
1371    register vifi_t xmt_vif;
1372{
1373    register struct ip  *ip = mtod(m, struct ip *);
1374    register vifi_t vifi;
1375    register struct vif *vifp;
1376    register int plen = ntohs(ip->ip_len);
1377
1378/*
1379 * Macro to send packet on vif.  Since RSVP packets don't get counted on
1380 * input, they shouldn't get counted on output, so statistics keeping is
1381 * seperate.
1382 */
1383#define MC_SEND(ip,vifp,m) {                             \
1384                if ((vifp)->v_flags & VIFF_TUNNEL)  	 \
1385                    encap_send((ip), (vifp), (m));       \
1386                else                                     \
1387                    phyint_send((ip), (vifp), (m));      \
1388}
1389
1390    /*
1391     * If xmt_vif is not -1, send on only the requested vif.
1392     *
1393     * (since vifi_t is u_short, -1 becomes MAXUSHORT, which > numvifs.)
1394     */
1395    if (xmt_vif < numvifs) {
1396	MC_SEND(ip, viftable + xmt_vif, m);
1397	return 1;
1398    }
1399
1400    /*
1401     * Don't forward if it didn't arrive from the parent vif for its origin.
1402     */
1403    vifi = rt->mfc_parent;
1404    if ((vifi >= numvifs) || (viftable[vifi].v_ifp != ifp)) {
1405	/* came in the wrong interface */
1406	if (mrtdebug & DEBUG_FORWARD)
1407	    log(LOG_DEBUG, "wrong if: ifp %x vifi %d vififp %x\n",
1408		ifp, vifi, viftable[vifi].v_ifp);
1409	++mrtstat.mrts_wrong_if;
1410	++rt->mfc_wrong_if;
1411	/*
1412	 * If we are doing PIM assert processing, and we are forwarding
1413	 * packets on this interface, and it is a broadcast medium
1414	 * interface (and not a tunnel), send a message to the routing daemon.
1415	 */
1416	if (pim_assert && rt->mfc_ttls[vifi] &&
1417		(ifp->if_flags & IFF_BROADCAST) &&
1418		!(viftable[vifi].v_flags & VIFF_TUNNEL)) {
1419	    struct sockaddr_in k_igmpsrc;
1420	    struct mbuf *mm;
1421	    struct igmpmsg *im;
1422	    int hlen = ip->ip_hl << 2;
1423	    struct timeval now;
1424	    register u_long delta;
1425
1426	    GET_TIME(now);
1427
1428	    TV_DELTA(rt->mfc_last_assert, now, delta);
1429
1430	    if (delta > ASSERT_MSG_TIME) {
1431		mm = m_copy(m, 0, hlen);
1432		if (mm && (M_HASCL(mm) || mm->m_len < hlen))
1433		    mm = m_pullup(mm, hlen);
1434		if (mm == NULL) {
1435		    return ENOBUFS;
1436		}
1437
1438		rt->mfc_last_assert = now;
1439
1440		im = mtod(mm, struct igmpmsg *);
1441		im->im_msgtype	= IGMPMSG_WRONGVIF;
1442		im->im_mbz		= 0;
1443		im->im_vif		= vifi;
1444
1445		k_igmpsrc.sin_addr = im->im_src;
1446
1447		socket_send(ip_mrouter, mm, &k_igmpsrc);
1448	    }
1449	}
1450	return 0;
1451    }
1452
1453    /* If I sourced this packet, it counts as output, else it was input. */
1454    if (ip->ip_src.s_addr == viftable[vifi].v_lcl_addr.s_addr) {
1455	viftable[vifi].v_pkt_out++;
1456	viftable[vifi].v_bytes_out += plen;
1457    } else {
1458	viftable[vifi].v_pkt_in++;
1459	viftable[vifi].v_bytes_in += plen;
1460    }
1461    rt->mfc_pkt_cnt++;
1462    rt->mfc_byte_cnt += plen;
1463
1464    /*
1465     * For each vif, decide if a copy of the packet should be forwarded.
1466     * Forward if:
1467     *		- the ttl exceeds the vif's threshold
1468     *		- there are group members downstream on interface
1469     */
1470    for (vifp = viftable, vifi = 0; vifi < numvifs; vifp++, vifi++)
1471	if ((rt->mfc_ttls[vifi] > 0) &&
1472	    (ip->ip_ttl > rt->mfc_ttls[vifi])) {
1473	    vifp->v_pkt_out++;
1474	    vifp->v_bytes_out += plen;
1475	    MC_SEND(ip, vifp, m);
1476	}
1477
1478    return 0;
1479}
1480
1481/*
1482 * check if a vif number is legal/ok. This is used by ip_output, to export
1483 * numvifs there,
1484 */
1485int
1486X_legal_vif_num(vif)
1487    int vif;
1488{
1489    if (vif >= 0 && vif < numvifs)
1490       return(1);
1491    else
1492       return(0);
1493}
1494
1495#ifndef MROUTE_LKM
1496int (*legal_vif_num)(int) = X_legal_vif_num;
1497#endif
1498
1499/*
1500 * Return the local address used by this vif
1501 */
1502u_long
1503X_ip_mcast_src(vifi)
1504    int vifi;
1505{
1506    if (vifi >= 0 && vifi < numvifs)
1507	return viftable[vifi].v_lcl_addr.s_addr;
1508    else
1509	return INADDR_ANY;
1510}
1511
1512#ifndef MROUTE_LKM
1513u_long (*ip_mcast_src)(int) = X_ip_mcast_src;
1514#endif
1515
1516static void
1517phyint_send(ip, vifp, m)
1518    struct ip *ip;
1519    struct vif *vifp;
1520    struct mbuf *m;
1521{
1522    register struct mbuf *mb_copy;
1523    register int hlen = ip->ip_hl << 2;
1524
1525    /*
1526     * Make a new reference to the packet; make sure that
1527     * the IP header is actually copied, not just referenced,
1528     * so that ip_output() only scribbles on the copy.
1529     */
1530    mb_copy = m_copy(m, 0, M_COPYALL);
1531    if (mb_copy && (M_HASCL(mb_copy) || mb_copy->m_len < hlen))
1532	mb_copy = m_pullup(mb_copy, hlen);
1533    if (mb_copy == NULL)
1534	return;
1535
1536    if (vifp->v_rate_limit <= 0)
1537	tbf_send_packet(vifp, mb_copy);
1538    else
1539	tbf_control(vifp, mb_copy, mtod(mb_copy, struct ip *), ip->ip_len);
1540}
1541
1542static void
1543encap_send(ip, vifp, m)
1544    register struct ip *ip;
1545    register struct vif *vifp;
1546    register struct mbuf *m;
1547{
1548    register struct mbuf *mb_copy;
1549    register struct ip *ip_copy;
1550    register int i, len = ip->ip_len;
1551
1552    /*
1553     * copy the old packet & pullup it's IP header into the
1554     * new mbuf so we can modify it.  Try to fill the new
1555     * mbuf since if we don't the ethernet driver will.
1556     */
1557    MGET(mb_copy, M_DONTWAIT, MT_DATA);
1558    if (mb_copy == NULL)
1559	return;
1560    mb_copy->m_data += 16;
1561    mb_copy->m_len = sizeof(multicast_encap_iphdr);
1562
1563    if ((mb_copy->m_next = m_copy(m, 0, M_COPYALL)) == NULL) {
1564	m_freem(mb_copy);
1565	return;
1566    }
1567    i = MHLEN - M_LEADINGSPACE(mb_copy);
1568    if (i > len)
1569	i = len;
1570    mb_copy = m_pullup(mb_copy, i);
1571    if (mb_copy == NULL)
1572	return;
1573    mb_copy->m_pkthdr.len = len + sizeof(multicast_encap_iphdr);
1574
1575    /*
1576     * fill in the encapsulating IP header.
1577     */
1578    ip_copy = mtod(mb_copy, struct ip *);
1579    *ip_copy = multicast_encap_iphdr;
1580    ip_copy->ip_id = htons(ip_id++);
1581    ip_copy->ip_len += len;
1582    ip_copy->ip_src = vifp->v_lcl_addr;
1583    ip_copy->ip_dst = vifp->v_rmt_addr;
1584
1585    /*
1586     * turn the encapsulated IP header back into a valid one.
1587     */
1588    ip = (struct ip *)((caddr_t)ip_copy + sizeof(multicast_encap_iphdr));
1589    --ip->ip_ttl;
1590    HTONS(ip->ip_len);
1591    HTONS(ip->ip_off);
1592    ip->ip_sum = 0;
1593#if defined(LBL) && !defined(ultrix)
1594    ip->ip_sum = ~oc_cksum((caddr_t)ip, ip->ip_hl << 2, 0);
1595#else
1596    mb_copy->m_data += sizeof(multicast_encap_iphdr);
1597    ip->ip_sum = in_cksum(mb_copy, ip->ip_hl << 2);
1598    mb_copy->m_data -= sizeof(multicast_encap_iphdr);
1599#endif
1600
1601    if (vifp->v_rate_limit <= 0)
1602	tbf_send_packet(vifp, mb_copy);
1603    else
1604	tbf_control(vifp, mb_copy, ip, ip_copy->ip_len);
1605}
1606
1607/*
1608 * De-encapsulate a packet and feed it back through ip input (this
1609 * routine is called whenever IP gets a packet with proto type
1610 * ENCAP_PROTO and a local destination address).
1611 */
1612void
1613#ifdef MROUTE_LKM
1614X_ipip_input(m)
1615#else
1616ipip_input(m, iphlen)
1617#endif
1618	register struct mbuf *m;
1619	int iphlen;
1620{
1621    struct ifnet *ifp = m->m_pkthdr.rcvif;
1622    register struct ip *ip = mtod(m, struct ip *);
1623    register int hlen = ip->ip_hl << 2;
1624    register int s;
1625    register struct ifqueue *ifq;
1626    register struct vif *vifp;
1627
1628    if (!have_encap_tunnel) {
1629	    rip_input(m);
1630	    return;
1631    }
1632    /*
1633     * dump the packet if it's not to a multicast destination or if
1634     * we don't have an encapsulating tunnel with the source.
1635     * Note:  This code assumes that the remote site IP address
1636     * uniquely identifies the tunnel (i.e., that this site has
1637     * at most one tunnel with the remote site).
1638     */
1639    if (! IN_MULTICAST(ntohl(((struct ip *)((char *)ip + hlen))->ip_dst.s_addr))) {
1640	++mrtstat.mrts_bad_tunnel;
1641	m_freem(m);
1642	return;
1643    }
1644    if (ip->ip_src.s_addr != last_encap_src) {
1645	register struct vif *vife;
1646
1647	vifp = viftable;
1648	vife = vifp + numvifs;
1649	last_encap_src = ip->ip_src.s_addr;
1650	last_encap_vif = 0;
1651	for ( ; vifp < vife; ++vifp)
1652	    if (vifp->v_rmt_addr.s_addr == ip->ip_src.s_addr) {
1653		if ((vifp->v_flags & (VIFF_TUNNEL|VIFF_SRCRT))
1654		    == VIFF_TUNNEL)
1655		    last_encap_vif = vifp;
1656		break;
1657	    }
1658    }
1659    if ((vifp = last_encap_vif) == 0) {
1660	last_encap_src = 0;
1661	mrtstat.mrts_cant_tunnel++; /*XXX*/
1662	m_freem(m);
1663	if (mrtdebug)
1664          log(LOG_DEBUG, "ip_mforward: no tunnel with %x\n",
1665		ntohl(ip->ip_src.s_addr));
1666	return;
1667    }
1668    ifp = vifp->v_ifp;
1669
1670    if (hlen > IP_HDR_LEN)
1671      ip_stripoptions(m, (struct mbuf *) 0);
1672    m->m_data += IP_HDR_LEN;
1673    m->m_len -= IP_HDR_LEN;
1674    m->m_pkthdr.len -= IP_HDR_LEN;
1675    m->m_pkthdr.rcvif = ifp;
1676
1677    ifq = &ipintrq;
1678    s = splimp();
1679    if (IF_QFULL(ifq)) {
1680	IF_DROP(ifq);
1681	m_freem(m);
1682    } else {
1683	IF_ENQUEUE(ifq, m);
1684	/*
1685	 * normally we would need a "schednetisr(NETISR_IP)"
1686	 * here but we were called by ip_input and it is going
1687	 * to loop back & try to dequeue the packet we just
1688	 * queued as soon as we return so we avoid the
1689	 * unnecessary software interrrupt.
1690	 */
1691    }
1692    splx(s);
1693}
1694
1695/*
1696 * Token bucket filter module
1697 */
1698
1699static void
1700tbf_control(vifp, m, ip, p_len)
1701	register struct vif *vifp;
1702	register struct mbuf *m;
1703	register struct ip *ip;
1704	register u_long p_len;
1705{
1706    register struct tbf *t = vifp->v_tbf;
1707
1708    if (p_len > MAX_BKT_SIZE) {
1709	/* drop if packet is too large */
1710	mrtstat.mrts_pkt2large++;
1711	m_freem(m);
1712	return;
1713    }
1714
1715    tbf_update_tokens(vifp);
1716
1717    /* if there are enough tokens,
1718     * and the queue is empty,
1719     * send this packet out
1720     */
1721
1722    if (t->tbf_q_len == 0) {
1723	/* queue empty, send packet if enough tokens */
1724	if (p_len <= t->tbf_n_tok) {
1725	    t->tbf_n_tok -= p_len;
1726	    tbf_send_packet(vifp, m);
1727	} else {
1728	    /* queue packet and timeout till later */
1729	    tbf_queue(vifp, m);
1730	    timeout(tbf_reprocess_q, (caddr_t)vifp, TBF_REPROCESS);
1731	}
1732    } else if (t->tbf_q_len < t->tbf_max_q_len) {
1733	/* finite queue length, so queue pkts and process queue */
1734	tbf_queue(vifp, m);
1735	tbf_process_q(vifp);
1736    } else {
1737	/* queue length too much, try to dq and queue and process */
1738	if (!tbf_dq_sel(vifp, ip)) {
1739	    mrtstat.mrts_q_overflow++;
1740	    m_freem(m);
1741	    return;
1742	} else {
1743	    tbf_queue(vifp, m);
1744	    tbf_process_q(vifp);
1745	}
1746    }
1747    return;
1748}
1749
1750/*
1751 * adds a packet to the queue at the interface
1752 */
1753static void
1754tbf_queue(vifp, m)
1755	register struct vif *vifp;
1756	register struct mbuf *m;
1757{
1758    register int s = splnet();
1759    register struct tbf *t = vifp->v_tbf;
1760
1761    if (t->tbf_t == NULL) {
1762	/* Queue was empty */
1763	t->tbf_q = m;
1764    } else {
1765	/* Insert at tail */
1766	t->tbf_t->m_act = m;
1767    }
1768
1769    /* Set new tail pointer */
1770    t->tbf_t = m;
1771
1772#ifdef DIAGNOSTIC
1773    /* Make sure we didn't get fed a bogus mbuf */
1774    if (m->m_act)
1775	panic("tbf_queue: m_act");
1776#endif
1777    m->m_act = NULL;
1778
1779    t->tbf_q_len++;
1780
1781    splx(s);
1782}
1783
1784
1785/*
1786 * processes the queue at the interface
1787 */
1788static void
1789tbf_process_q(vifp)
1790    register struct vif *vifp;
1791{
1792    register struct mbuf *m;
1793    register int len;
1794    register int s = splnet();
1795    register struct tbf *t = vifp->v_tbf;
1796
1797    /* loop through the queue at the interface and send as many packets
1798     * as possible
1799     */
1800    while (t->tbf_q_len > 0) {
1801	m = t->tbf_q;
1802
1803	len = mtod(m, struct ip *)->ip_len;
1804
1805	/* determine if the packet can be sent */
1806	if (len <= t->tbf_n_tok) {
1807	    /* if so,
1808	     * reduce no of tokens, dequeue the packet,
1809	     * send the packet.
1810	     */
1811	    t->tbf_n_tok -= len;
1812
1813	    t->tbf_q = m->m_act;
1814	    if (--t->tbf_q_len == 0)
1815		t->tbf_t = NULL;
1816
1817	    m->m_act = NULL;
1818	    tbf_send_packet(vifp, m);
1819
1820	} else break;
1821    }
1822    splx(s);
1823}
1824
1825static void
1826tbf_reprocess_q(xvifp)
1827	void *xvifp;
1828{
1829    register struct vif *vifp = xvifp;
1830    if (ip_mrouter == NULL)
1831	return;
1832
1833    tbf_update_tokens(vifp);
1834
1835    tbf_process_q(vifp);
1836
1837    if (vifp->v_tbf->tbf_q_len)
1838	timeout(tbf_reprocess_q, (caddr_t)vifp, TBF_REPROCESS);
1839}
1840
1841/* function that will selectively discard a member of the queue
1842 * based on the precedence value and the priority
1843 */
1844static int
1845tbf_dq_sel(vifp, ip)
1846    register struct vif *vifp;
1847    register struct ip *ip;
1848{
1849    register int s = splnet();
1850    register u_int p;
1851    register struct mbuf *m, *last;
1852    register struct mbuf **np;
1853    register struct tbf *t = vifp->v_tbf;
1854
1855    p = priority(vifp, ip);
1856
1857    np = &t->tbf_q;
1858    last = NULL;
1859    while ((m = *np) != NULL) {
1860	if (p > priority(vifp, mtod(m, struct ip *))) {
1861	    *np = m->m_act;
1862	    /* If we're removing the last packet, fix the tail pointer */
1863	    if (m == t->tbf_t)
1864		t->tbf_t = last;
1865	    m_freem(m);
1866	    /* it's impossible for the queue to be empty, but
1867	     * we check anyway. */
1868	    if (--t->tbf_q_len == 0)
1869		t->tbf_t = NULL;
1870	    splx(s);
1871	    mrtstat.mrts_drop_sel++;
1872	    return(1);
1873	}
1874	np = &m->m_act;
1875	last = m;
1876    }
1877    splx(s);
1878    return(0);
1879}
1880
1881static void
1882tbf_send_packet(vifp, m)
1883    register struct vif *vifp;
1884    register struct mbuf *m;
1885{
1886    struct ip_moptions imo;
1887    int error;
1888    int s = splnet();
1889
1890    if (vifp->v_flags & VIFF_TUNNEL) {
1891	/* If tunnel options */
1892	ip_output(m, (struct mbuf *)0, (struct route *)0,
1893		  IP_FORWARDING, (struct ip_moptions *)0);
1894    } else {
1895	imo.imo_multicast_ifp  = vifp->v_ifp;
1896	imo.imo_multicast_ttl  = mtod(m, struct ip *)->ip_ttl - 1;
1897	imo.imo_multicast_loop = 1;
1898	imo.imo_multicast_vif  = -1;
1899
1900	error = ip_output(m, (struct mbuf *)0, (struct route *)0,
1901			  IP_FORWARDING, &imo);
1902
1903	if (mrtdebug & DEBUG_XMIT)
1904	    log(LOG_DEBUG, "phyint_send on vif %d err %d\n",
1905		vifp - viftable, error);
1906    }
1907    splx(s);
1908}
1909
1910/* determine the current time and then
1911 * the elapsed time (between the last time and time now)
1912 * in milliseconds & update the no. of tokens in the bucket
1913 */
1914static void
1915tbf_update_tokens(vifp)
1916    register struct vif *vifp;
1917{
1918    struct timeval tp;
1919    register u_long tm;
1920    register int s = splnet();
1921    register struct tbf *t = vifp->v_tbf;
1922
1923    GET_TIME(tp);
1924
1925    TV_DELTA(tp, t->tbf_last_pkt_t, tm);
1926
1927    /*
1928     * This formula is actually
1929     * "time in seconds" * "bytes/second".
1930     *
1931     * (tm / 1000000) * (v_rate_limit * 1000 * (1000/1024) / 8)
1932     *
1933     * The (1000/1024) was introduced in add_vif to optimize
1934     * this divide into a shift.
1935     */
1936    t->tbf_n_tok += tm * vifp->v_rate_limit / 1024 / 8;
1937    t->tbf_last_pkt_t = tp;
1938
1939    if (t->tbf_n_tok > MAX_BKT_SIZE)
1940	t->tbf_n_tok = MAX_BKT_SIZE;
1941
1942    splx(s);
1943}
1944
1945static int
1946priority(vifp, ip)
1947    register struct vif *vifp;
1948    register struct ip *ip;
1949{
1950    register int prio;
1951
1952    /* temporary hack; may add general packet classifier some day */
1953
1954    /*
1955     * The UDP port space is divided up into four priority ranges:
1956     * [0, 16384)     : unclassified - lowest priority
1957     * [16384, 32768) : audio - highest priority
1958     * [32768, 49152) : whiteboard - medium priority
1959     * [49152, 65536) : video - low priority
1960     */
1961    if (ip->ip_p == IPPROTO_UDP) {
1962	struct udphdr *udp = (struct udphdr *)(((char *)ip) + (ip->ip_hl << 2));
1963	switch (ntohs(udp->uh_dport) & 0xc000) {
1964	    case 0x4000:
1965		prio = 70;
1966		break;
1967	    case 0x8000:
1968		prio = 60;
1969		break;
1970	    case 0xc000:
1971		prio = 55;
1972		break;
1973	    default:
1974		prio = 50;
1975		break;
1976	}
1977	if (tbfdebug > 1)
1978		log(LOG_DEBUG, "port %x prio%d\n", ntohs(udp->uh_dport), prio);
1979    } else {
1980	    prio = 50;
1981    }
1982    return prio;
1983}
1984
1985/*
1986 * End of token bucket filter modifications
1987 */
1988
1989int
1990ip_rsvp_vif_init(so, m)
1991    struct socket *so;
1992    struct mbuf *m;
1993{
1994    int i;
1995    register int s;
1996
1997    if (rsvpdebug)
1998	printf("ip_rsvp_vif_init: so_type = %d, pr_protocol = %d\n",
1999	       so->so_type, so->so_proto->pr_protocol);
2000
2001    if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_RSVP)
2002	return EOPNOTSUPP;
2003
2004    /* Check mbuf. */
2005    if (m == NULL || m->m_len != sizeof(int)) {
2006	return EINVAL;
2007    }
2008    i = *(mtod(m, int *));
2009
2010    if (rsvpdebug)
2011	printf("ip_rsvp_vif_init: vif = %d rsvp_on = %d\n",i,rsvp_on);
2012
2013    s = splnet();
2014
2015    /* Check vif. */
2016    if (!legal_vif_num(i)) {
2017	splx(s);
2018	return EADDRNOTAVAIL;
2019    }
2020
2021    /* Check if socket is available. */
2022    if (viftable[i].v_rsvpd != NULL) {
2023	splx(s);
2024	return EADDRINUSE;
2025    }
2026
2027    viftable[i].v_rsvpd = so;
2028    /* This may seem silly, but we need to be sure we don't over-increment
2029     * the RSVP counter, in case something slips up.
2030     */
2031    if (!viftable[i].v_rsvp_on) {
2032	viftable[i].v_rsvp_on = 1;
2033	rsvp_on++;
2034    }
2035
2036    splx(s);
2037    return 0;
2038}
2039
2040int
2041ip_rsvp_vif_done(so, m)
2042    struct socket *so;
2043    struct mbuf *m;
2044{
2045	int i;
2046	register int s;
2047
2048    if (rsvpdebug)
2049	printf("ip_rsvp_vif_done: so_type = %d, pr_protocol = %d\n",
2050	       so->so_type, so->so_proto->pr_protocol);
2051
2052    if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_RSVP)
2053	return EOPNOTSUPP;
2054
2055    /* Check mbuf. */
2056    if (m == NULL || m->m_len != sizeof(int)) {
2057	    return EINVAL;
2058    }
2059    i = *(mtod(m, int *));
2060
2061    s = splnet();
2062
2063    /* Check vif. */
2064    if (!legal_vif_num(i)) {
2065	splx(s);
2066        return EADDRNOTAVAIL;
2067    }
2068
2069    if (rsvpdebug)
2070	printf("ip_rsvp_vif_done: v_rsvpd = %x so = %x\n",
2071	       viftable[i].v_rsvpd, so);
2072
2073    viftable[i].v_rsvpd = NULL;
2074    /* This may seem silly, but we need to be sure we don't over-decrement
2075     * the RSVP counter, in case something slips up.
2076     */
2077    if (viftable[i].v_rsvp_on) {
2078	viftable[i].v_rsvp_on = 0;
2079	rsvp_on--;
2080    }
2081
2082    splx(s);
2083    return 0;
2084}
2085
2086void
2087ip_rsvp_force_done(so)
2088    struct socket *so;
2089{
2090    int vifi;
2091    register int s;
2092
2093    /* Don't bother if it is not the right type of socket. */
2094    if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_RSVP)
2095	return;
2096
2097    s = splnet();
2098
2099    /* The socket may be attached to more than one vif...this
2100     * is perfectly legal.
2101     */
2102    for (vifi = 0; vifi < numvifs; vifi++) {
2103	if (viftable[vifi].v_rsvpd == so) {
2104	    viftable[vifi].v_rsvpd = NULL;
2105	    /* This may seem silly, but we need to be sure we don't
2106	     * over-decrement the RSVP counter, in case something slips up.
2107	     */
2108	    if (viftable[vifi].v_rsvp_on) {
2109		viftable[vifi].v_rsvp_on = 0;
2110		rsvp_on--;
2111	    }
2112	}
2113    }
2114
2115    splx(s);
2116    return;
2117}
2118
2119void
2120rsvp_input(m, iphlen)
2121	struct mbuf *m;
2122	int iphlen;
2123{
2124    int vifi;
2125    register struct ip *ip = mtod(m, struct ip *);
2126    static struct sockaddr_in rsvp_src = { sizeof rsvp_src, AF_INET };
2127    register int s;
2128    struct ifnet *ifp;
2129
2130    if (rsvpdebug)
2131	printf("rsvp_input: rsvp_on %d\n",rsvp_on);
2132
2133    /* Can still get packets with rsvp_on = 0 if there is a local member
2134     * of the group to which the RSVP packet is addressed.  But in this
2135     * case we want to throw the packet away.
2136     */
2137    if (!rsvp_on) {
2138	m_freem(m);
2139	return;
2140    }
2141
2142    /* If the old-style non-vif-associated socket is set, then use
2143     * it and ignore the new ones.
2144     */
2145    if (ip_rsvpd != NULL) {
2146	if (rsvpdebug)
2147	    printf("rsvp_input: Sending packet up old-style socket\n");
2148	rip_input(m);
2149	return;
2150    }
2151
2152    s = splnet();
2153
2154    if (rsvpdebug)
2155	printf("rsvp_input: check vifs\n");
2156
2157#ifdef DIAGNOSTIC
2158    if (!(m->m_flags & M_PKTHDR))
2159	    panic("rsvp_input no hdr");
2160#endif
2161
2162    ifp = m->m_pkthdr.rcvif;
2163    /* Find which vif the packet arrived on. */
2164    for (vifi = 0; vifi < numvifs; vifi++) {
2165	if (viftable[vifi].v_ifp == ifp)
2166 		break;
2167 	}
2168
2169    if (vifi == numvifs) {
2170	/* Can't find vif packet arrived on. Drop packet. */
2171	if (rsvpdebug)
2172	    printf("rsvp_input: Can't find vif for packet...dropping it.\n");
2173	m_freem(m);
2174	splx(s);
2175	return;
2176    }
2177
2178    if (rsvpdebug)
2179	printf("rsvp_input: check socket\n");
2180
2181    if (viftable[vifi].v_rsvpd == NULL) {
2182	/* drop packet, since there is no specific socket for this
2183	 * interface */
2184	    if (rsvpdebug)
2185		    printf("rsvp_input: No socket defined for vif %d\n",vifi);
2186	    m_freem(m);
2187	    splx(s);
2188	    return;
2189    }
2190    rsvp_src.sin_addr = ip->ip_src;
2191
2192    if (rsvpdebug && m)
2193	printf("rsvp_input: m->m_len = %d, sbspace() = %d\n",
2194	       m->m_len,sbspace(&(viftable[vifi].v_rsvpd->so_rcv)));
2195
2196    if (socket_send(viftable[vifi].v_rsvpd, m, &rsvp_src) < 0)
2197	if (rsvpdebug)
2198	    printf("rsvp_input: Failed to append to socket\n");
2199    else
2200	if (rsvpdebug)
2201	    printf("rsvp_input: send packet up\n");
2202
2203    splx(s);
2204}
2205
2206#ifdef MROUTE_LKM
2207#include <sys/conf.h>
2208#include <sys/exec.h>
2209#include <sys/sysent.h>
2210#include <sys/lkm.h>
2211
2212MOD_MISC("ip_mroute_mod")
2213
2214static int
2215ip_mroute_mod_handle(struct lkm_table *lkmtp, int cmd)
2216{
2217	int i;
2218	struct lkm_misc	*args = lkmtp->private.lkm_misc;
2219	int err = 0;
2220
2221	switch(cmd) {
2222		static int (*old_ip_mrouter_cmd)();
2223		static int (*old_ip_mrouter_done)();
2224		static int (*old_ip_mforward)();
2225		static int (*old_mrt_ioctl)();
2226		static void (*old_proto4_input)();
2227		static int (*old_legal_vif_num)();
2228		extern struct protosw inetsw[];
2229
2230	case LKM_E_LOAD:
2231		if(lkmexists(lkmtp) || ip_mrtproto)
2232		  return(EEXIST);
2233		old_ip_mrouter_cmd = ip_mrouter_cmd;
2234		ip_mrouter_cmd = X_ip_mrouter_cmd;
2235		old_ip_mrouter_done = ip_mrouter_done;
2236		ip_mrouter_done = X_ip_mrouter_done;
2237		old_ip_mforward = ip_mforward;
2238		ip_mforward = X_ip_mforward;
2239		old_mrt_ioctl = mrt_ioctl;
2240		mrt_ioctl = X_mrt_ioctl;
2241              old_proto4_input = inetsw[ip_protox[ENCAP_PROTO]].pr_input;
2242              inetsw[ip_protox[ENCAP_PROTO]].pr_input = X_ipip_input;
2243		old_legal_vif_num = legal_vif_num;
2244		legal_vif_num = X_legal_vif_num;
2245		ip_mrtproto = IGMP_DVMRP;
2246
2247		printf("\nIP multicast routing loaded\n");
2248		break;
2249
2250	case LKM_E_UNLOAD:
2251		if (ip_mrouter)
2252		  return EINVAL;
2253
2254		ip_mrouter_cmd = old_ip_mrouter_cmd;
2255		ip_mrouter_done = old_ip_mrouter_done;
2256		ip_mforward = old_ip_mforward;
2257		mrt_ioctl = old_mrt_ioctl;
2258              inetsw[ip_protox[ENCAP_PROTO]].pr_input = old_proto4_input;
2259		legal_vif_num = old_legal_vif_num;
2260		ip_mrtproto = 0;
2261		break;
2262
2263	default:
2264		err = EINVAL;
2265		break;
2266	}
2267
2268	return(err);
2269}
2270
2271int
2272ip_mroute_mod(struct lkm_table *lkmtp, int cmd, int ver) {
2273	DISPATCH(lkmtp, cmd, ver, ip_mroute_mod_handle, ip_mroute_mod_handle,
2274		 nosys);
2275}
2276
2277#endif /* MROUTE_LKM */
2278#endif /* MROUTING */
2279